CONTRIBUȚII PRIVIND PROIECTAREA ȘTIINȚIFICĂ A EXPERIMENTELOR DE SINTEZĂ A NANOCRISTALELOR (TiO₂)

Teză destinată obținerii titlului științific de doctor inginer la Universitatea "Politehnica" din Timișoara în domeniul INGINERIE MECANICĂ de către

ing. Marilena Georgeta Olivia Tărbăț

Conducători științifici: Prof. univ. dr. ing. Ioan Nicoară Prof. univ. dr. fiz. Ioan Grozescu, Cercet. Șt. I

Referenți științifici: Gen.prof. univ. dr. ing. Emil Crețu Prof. univ. dr. ing. Ioan Doroftei Conf. univ. dr. ing. Corina Gruescu

Ziua susținerii tezei: 14 iunie 2012

Seriile Teze de doctorat ale UPT sunt:

- 1. Automatică
- 2. Chimie
- 3. Energetică
- 4. Ingineria Chimică
- 5. Inginerie Civilă
- 6. Inginerie Electrică
- 7. Inginerie Electronică și Telecomunicații
- 8. Inginerie Industrială
- 9. Inginerie Mecanică
- 10. Ştiinţa Calculatoarelor
- 11. Știința și Ingineria Materialelor

Universitatea "Politehnica" din Timişoara a iniţiat seriile de mai sus în scopul diseminării expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul şcolii doctorale a universității. Seriile conţin, potrivit H.B.Ex.S. Nr. 14 / 14.07.2006, tezele de doctorat susținute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica – Timişoara, 2006

Această publicație este supusă prevederilor legii dreptului de autor. Multiplicarea acestei publicații, în mod integral sau în parte, traducerea, tipărirea, reutilizarea ilustrațiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă formă este permisă numai cu respectarea prevederilor Legii române a dreptului de autor în vigoare și permisiunea pentru utilizare obținută în scris din partea Universității "Politehnica" din Timișoara. Toate încălcările acestor drepturi vor fi penalizate potrivit Legii române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9, tel. 0256 403823, fax. 0256 403221 e-mail: editura@edipol.upt.ro

Cuvânt înainte

Cercetările prezentate în teza de doctorat au fost elaborate pe parcursul activității mele, începute în anul 2006, în cadrul Universității "Politehnica" din Timișoara, ca Doctorand al Facultății de Mecanică, Catedra de Mecatronică. Teza de doctorat s-a finalizat cu suportul și aportul mai multor persoane.

Cele mai alese sentimente de recunoștință Domnului Prof. Dr. Ing. Ioan Nicoară și Domnului Cș 1. Dr. Fiz. Ioan Grozescu pentru îndrumarea competentă și îndemnul permanent dat pentru finalizarea acestei lucrări și, nu în ultimul rând, pentru încrederea acordată.

Mulţumesc, de asemenea, referenţilor, membri ai comisiei de doctorat, Gen. Prof. Univ. Dr. Ing. Emil Creţu, de la Academia Tehnică Militară din Bucureşti, Prof. Univ. Dr. Ing. Ioan Doroftei, de la Universitatea "Gh. Asachi" din Iaşi, Conf. Univ. Dr. Ing. Corina Gruescu, de la Universitatea "Politehnica" din Timişoara pentru promptitudinea cu care au răspuns solicitării de a efectua recenzia lucrării, precum şi domnului Prof. Univ. Dr. Ing. Inocenţiu Maniu, Decanul Facultăţii de Mecanică din Timişoara, pentru amabilitatea de a prezida comisia de susţinere publică a tezei.

De asemenea am multă considerație și mulţumiri la adresa tuturor celor care, prin opiniile exprimate, dezbaterile și analizele științifice pe care le-au făcut, mi-au oferit sfaturi pertinente care au influențat pozitiv atât conținutul științific cât și forma de redactare a prezentei lucrări.

Aduc mulţumiri familiei mele, prietenilor şi tuturor celor care mi-au oferit sprijin moral sau profesional.

Timişoara, martie 2012

Marilena Georgeta Olivia TĂRBĂŢ

Tărbăț, Marilena Georgeta Olivia

CONTRIBUȚII PRIVIND PROIECTAREA ȘTIINȚIFICĂ A EXPERIMENTELOR DE SINTEZĂ A NANOCRISTALELOR (TiO₂)

Teze de doctorat ale UPT, Seria 9, Nr. 117 Editura Politehnica, 2012, 184 pagini, 132 figuri, 84 tabele.

ISSN: 1842-4937 ISBN: 117-978-606-554-479-6

Cuvinte cheie:

nanocristale, dioxid de titan (TiO_2) , sinteză, metoda Taguchi, metoda Suprafeței de Răspuns, experimente, analiză, rezultate experimentale.

Rezumat

Teza de doctorat răspunde unor probleme de maximă actualitate ce rezidă din faptul că au apărut noi probleme teoretice, tehnologice și aplicative legate de proiectarea proceselor de sinteză a nanoparticulelor, astfel se impune necesitatea dezvoltării și dobândirii de cunoștinte avansate prin elaborarea unor metode adecvate de sinteză.

Pornind de la scopul final al cercetării, cel al determinării combinației optime a factorilor astfel încât să se obțină o valoare țintă de 10nm \pm 0,2 nm, respectiv 5nm \pm 0,2 nm pentru dimensiunea nanocristalelor de TiO₂ dopate cu Ag **obiectivul tezei** este cel al identificării metodelor potrivite pentru verificarea stabilității dimensionale a nanocristalelor de TiO₂ dopate cu Ag. Realizarea obiectivului impune studierea metodelor de sinteză a nanoparticulelor și tehnologiilor de obținere, respectiv a domeniilor de aplicație ale acestora.

Abordarea stabilității dimensiunii nanoparticulelor prin prisma metodologiei studiate constituie axa elaborării acestei lucrări. Astfel, metodologia propusă pentru determinarea dimensiunii nanoparticulelor asigură facilitarea unui control riguros al dimensiunilor, structurii și proprietăților acestora.

Cercetările teoretice efectuate sunt validate prin aplicarea metodei Taguchi și a metodei Suprafeței de Răspuns, prin planurile de experimente L_8 și L_9 Taguchi, a planurilor Draper Lin și Box Behnken în cadrul sintezei hidrotermale în câmp de microunde și a sintezei hidrotermale rapide, pentru verificarea stabilității dimensiunilor nanoparticulelor de TiO₂ dopate cu Ag.

Pentru a conceptualiza modul de aplicare al metodelor și tehnicilor de verificare a stabilității dimensiunii nanocristalelor, trebuie realizată o combinație optimă a factorilor care determină stabilitatea dimensiunii, respectiv de a identifica metodele care parcurg un număr minim de experimente.

CUPRINS

Notații, abrevieri, acronime	8
Lista de tabele	9
Lista de figuri	12
INTRODUCERE	.16
1. METODE DE PROIECTARE A EXPERIMENTELOR. METODA SUPRAFEJEI DE RÀSPUNS	.20
1.1 Strategii de experimentare	20
1.2 Proiectarea experimentelor	21
1.2.1 Metoda Taguchi de proiectare a experimentelor	.21
1.2.1.1 Proiectarea Calității "off-line" Taguchi. Funcția Pierdere a Calității Eri	ror!
Bookmark not defined.	
1.2.1.2 Expresia matematică a funcției pierdere pătratice Taguchi Error! Bookm	ark
not defined.	
1.2.1.3 Raportul Semnal/Zgomot (S/N Ratio)	.28
1.2.1.4 Proiectarea Calității "off-line" Taguchi. Proiectarea parametrilor	. 30
1.2.1.5 Matrici de experiențe fracționate ortogonale Taguchi standard	.33
1.2.1.6 Planuri de experimente Taguchi	.35
1.2.2 Metoda planurilor de experimente factoriale complete	.37
1.2.3 Metoda planurilor de experimente compoziționale centrale (CCD)	.38
1.2.4 Metoda planurilor de experimente D-optimale	.39
1.2.5 Metoda planurilor de experimente a hipercuburilor latine	.39
1.2.6 Metoda planurilor de experimente Audze-Eglais	.39
1.2.7 Metoda planurilor de experimente Van Keulen	.41
1.2.8 Metoda Suprafeței de Răspuns (RSM)	.41
1.2.8.1 Modelul de ordin I. Planuri de experiențe pentru adecvarea modelului de	
ordin I	.43
1.2.8.2 Modelul de ordinul II. Planuri de experiențe pentru adecval	rea
modelului de ordin II	.47
1.2.8.3 Analizarea punctului staționar	.49
1.2.8.4 Deplasarea pe suprafața de raspuns dupa direcția pantei maxime	.49
	56
2.CONSIDERAJII GENERALE ASUPRA DIOXIDULUI DE IITAN (110 ₂)	.58
2.1 Caracteristici structurale	
2.2. Proprietați ale dioxidulul de titan (110_2)	61
2.2.1 Proprietați optice	.61
2.2.2 Proprietați electrice	.62
2.2.3 Proprietați rotocatalitice	.63
2.3 Metode de obținere a dioxidulul de titan (110_2)	64
2.3.1 Metoda Sol-gel	.04
2.3.2 Metoda hidrotermală în câmp de microunde	.05
2.3.5 metoda marotermala in camp de microunde	.00
2.3.4 SINCEZA PHILI HILLI VEHIUISIE	.00 60
2.3.3 Sinteza phili compusite	.00
2.3.0 Since a ciecci ochimica	.00
$2 + \pi \rho n c \alpha \rho n c $	09

6 Cuprins

2.4.1 Decontaminarea apei	.69
2.4.2 Decontaminarea aerului	.70
2.4.3 Aplicații în senzoristică	.71
2.4.4 Obţinerea de suprafeţe anti-aburire	.71
2.4.5 Obţinerea de suprafeţe cu proprietatea de auto-dezinfecţie	.72
2.4.6 Asigurarea protecției anticorozive	.73
2.5 Concluzii	73
3. CERCETĂRI APLICATIVE PRIVIND SINTEZA NANOCRISTALELOR DE TiO ₂	.75
3.1 Aplicarea Metodei Taguchi în cadrul sintezei hidrotermale în câmp de micround	de75
3.1.1 Alegerea matricei de experimente, stabilirea și atribuirea factorilor ș	;i a
nivelurilor acestora	.75
3.1.2 Stabilirea succesiunii condițiilor de experimentare	.76
3.1.3 Determinarea variabilității în și între condițiile de experimentare	.78
3.1.4 Analiza efectelor medii ale factorilor asupra raportului S/N	.79
3.1.5 Analiza interacțiunilor factorilor	.85
3.1.6 Analiza varianței cu metoda ANOVA	.92
3.1.7 Analiza condițiilor optime și a performanței metodei utilizate	.95
3.1.8 Experimente de confirmare	.98
3.1.8.1 Experimentul de confirmare numărul 1	.98
3.1.8.2 Experimentul de confirmare numărul 2	101
3.1.9 Simularea factorială completă a comportamentului sistemului	104
3.2 Aplicarea Metodei Suprafeței de Răspuns (RSM). Planul de experimente Draper-Li	n în
cadrul sintezei hidrotermale în câmp de microunde	.108
3.2.1 Planul de experimente Draper-Lin. Modelul statistic. Rezultate experimentale	109
3.2.2 Analiza efectelor principale	110
3.2.3 Analiza varianței cu metoda ANOVA	113
3.2.4 Ecuația de regresie a modelului asociat planului de experimente Drap	er-
Lin	114
3.2.6 Estimarea rezultatelor pe baza modelului asociat planului de experime	ente
Draper-Lin	114
3.2.7 Analiza predicțiilor cu ajutorul metodei gradientului (metoda "pantei c	elei
mai abrupte")	116
3.2.8 Rezultate experimentale. Optimizarea răspunsului la dimensiunea de	10
nm a nanocristalelor	117
3.3 Aplicarea Metodei Taguchi in cadrul sintezei hidrotermale rapida	.121
3.3.1 Analiza efectelor principale	122
3.3.2 Analiza varianței cu metoda ANOVA	125
3.3.3 Ecuația de regresie asociata planului de experimente L9	125
3.3.4 Estimarea rezultateior pe baza modelului asociat pianului de experime	inte
Lg	120
3.3.5 Analiza predicțiilor cu ajutorul metodel gradientului (metoda - pantel ce	1 2 C
mai abrupte)	126
3.3.6 Rezultate experimentale. Optimizarea raspunsului la ulmensiunea de 5 ni	1 20
24 Anlicarea metadoi Suprefetai de Păceune (PSM), Planul de evenerimente Pov Pobelco	120 n în
ort Aplicated metodel ouplategel de Kaspuns (KSM). Plandi de experimente BOX-Bennke	175
2 4 1 Applize of october principale	122
3.4.2 Analiza variantoi cu motoda ANOVA	120
3.4.2 Ecuatia do rogrosio asociată planului do ovnorimente Poy Pohekon	1/0
5.4.5 Ecuaçia de regresie asociata pianului de experimente box-bennken	140

3.4.4 Estimarea rezultatelor pe baza modelului asociat planului de experimente
Box-Behnken141
3.4.5 Analiza interacțiunilor142
3.4.6 Analiza predicțiilor cu ajutorul metodei gradientului (metoda "pantei cele
mai abrupte")144
3.4.7 Rezultate experimentale. Optimizarea răspunsului la dimensiunea de 5
nm a nanocristalelor 145
3.5 Comparație între planul de experimente L9 Taguchi și planul de experimente
Box-Behnken152
3.6 Concluzii
4. PROIECTAREA EXPERIMENTELOR DE SINTEZĂ A NANOCRISTALELOR PRIN METODA
HIDROTERMALĂ164
4.1 Metoda hidrotermală164
4.1.1. Generalități
4.1.2. Modul de lucru
4.1.3 Obținerea TiO ₂ dopat cu Ag prin metoda hidrotermală în câmp de
microunde
4.1.4 Obţinerea TiO ₂ dopat cu Ag prin metoda hidrotermală rapidă168
4.2 Metode de caracterizare fizico-chimică a nanomaterialelor sintetizate
4.2.1 Utilizarea difracției cu raze X168
4.2.2 Utilizarea microscopie electronice de baleiaj cuplată cu EDAX169
4.3 Concluzii. Contribuții personale170
5. CONCLUZII FINALE. CONTRIBUȚII PERSONALE 172
5.1 Concluzii finale
5.2 Contribuții personale
5.3 Noi direcții de cercetare175
Bibliografie

Notații, abrevieri, acronime

CCD	Metoda planurilor de experiențe compoziționale centrale
COV	Compuşi organici volatili
EDC	Endocrine Disruptor Chemicals
FH	Metoda hidrotermală rapidă
GDL	Număr grade de libertate
HEPA	High Efficiency Particulate Absorbing
ITS	Intervalul de Toleranțe Specificat
LCL	Limita inferioară de control
MCMMP	Metoda Celor Mai Mici Pătrate
MHMW	Metoda hidrotermală clasică în câmp de microunde
MSD	Abatere medie pătratică
NO	Monoxid de azot
NTB	Nominal cel mai bun
RSM	Metoda suprafeței de răspuns
S/N Ratio	Raport Semnal / Zgomot
TiO ₂	Dioxid de titan
UCL	Limita superioară de control
UFC	Unități formatoare de colonii
UV	Ultra Violet

Lista de tabele

Tab. 1.1 Plan factorial complet clasic pentru 3 factori pe 2 niveluri
Tab. 1.2 Plan factorial complet în notația Taguchi pentru 3 factori la 2 niveluri31
Tab. 1.3 Planuti factoriale fractionate echivalente Taguchi pentru 3 factori la 2 niveluri 31
Tab. 1.4 Matricea Taguchi standard I
Tab. 1.4 Matricea Tagucii Staliuaru L ₈
Tab. 1.5 Datele pentru modelul de regresie multipla 44
Tab. 1.6 Analiza varianței pentru semnificativitatea regresiei45
Tab. 1.7 Analiza varianței pentru lipsa de adecvare a modelului
Tab. 2.1 Tabel comparativ al metodelor de obtinere a TiO ₂ 74
Tab 3.1 Atribuirea factorilor și a nivelurilor acestora 75
Tab. 3.2 Successinger alexandre de rulare 6 pertru conditille de experimentare 1. 76
Tab. 5.2 Successioned aleatoare de rulare o pentru conditiile de experimentare 170
Tab. 3.3 Succesionea aleatoare de rulare 4 pentru condiține de experimentare 176
Tab. 3.4 Succesiunea aleatoare de rulare 5 pentru condițiile de experimentare 176
Tab. 3.5 Succesiunea aleatoare de rulare 2 pentru condițiile de experimentare 476
Tab. 3.6 Succesiunea aleatoare de rulare 7 pentru condițiile de experimentare 577
Tab. 3.7 Succesiunea aleatoare de rulare 2 pentru conditiile de experimentare 677
Tab. 3.8 Succesiunea aleatoare de rulare 8 pentru conditiile de experimentare 777
Tab. 3.9 Succesiunes alestoare de rulare 1 pentru conditiile de experimentare 8, 77
Tab. 2.10 Valorilo of tabler modified a locator the "Concentration depart" acurate contribution
5/N
Tab. 3.11 Valorile efectelor medii ale factorului "Durata autoclavizare" asupra raportului
S/N80
Tab. 3.12 Valorile efectelor medii ale factorului "Temperatură autoclavizare" asupra
raportului S/N82
Tab. 3.13 Valorile efectelor medii ale factorului "Putere cuptor" asupra raportului S/N82
Tab. 3.14 Valorile efectelor medii ale factorului" <i>Cantitate nutrient</i> " asupra raportului
S/N 83
Tab. 3 15 Valorile efectelor medii ale factorului. "DH colutie" acupra raportului S/N. 84
Tab. 3.15 Valorile efectedor medii ale factor dui "ri solație asupra reportului S(N. 94
Tab. 5.10 Valorité electeror médir ale factorului Grad d'implere asupra raportului S/N.84
Tab. 3.17 Condiția optimă pe baza analizel efectelor medil ale factorilor
Tab. 3.18 Interacțiunile între factori
Tab. 3.19 Valorile calculate pentru interacțiunea între cantitatea de nutrient și PH-ul
soluției
Tab. 3.20 Valorile calculate pentru interactiunea între durata de autoclavizare și cantitatea
de nutrient
Tab. 3.21 Valorile calculate pentru interactiunea între durata de autoclavizare și PH-
ui soluției.
Tab. 5.22 Valorile calculate pentru interacjunea intre concentrația dopantului și durată
autoclavizarii
Tab. 3.23 Valorile calculate pentru interacțiunea între puterea cuptorului și gradul de
umplere90
Tab. 3.24 Valorile calculate pentru interacțiunea între temperatura de autoclavizare
și gradul de umplere91
Tab. 3.25 Conditia optimă pe baza analizei interactiunilor factorilor
Tab. 3.26 Ordinea importantei factorilor
Tab 3.27 Tabelul de ontim

10 Lista de tabele

Tab. 3.28 Situația comparativă a parametrilor condiției curente versus condiției
îmbunătățite
Tab 3.29 Condițiile de realizare a experimentului de confirmare numărul 198
Tab 3.30 Condițiile de realizare a experimentului de confirmare numărul 2 101
Tab. 3.31 Situatia comparativă a parametrilor condiției previzionate versus condițiilor
obtinute prin experimentele de confirmare
Tab. 3.32 Rezultatele simulării experimentului factorial complet
Tab. 3.33 Conditiile de minimum si maximum (simulare experiment factorial complet) si conditiile
de optim calculate (corespunzătoare l.).
Tab. 3.34 Matricea ortogonală La obținuță în urma simulării experimentului factorial
complet
Tab. 3.35 Comparatie între valorile calculate în urma simulării experimentului factorial
complet si valorile obtinute prin măsurare
Tab. 3.6 Disput do experimento Disporte lin si regultatelo experimentale 110
Tab. 3.37 Efected actimate pontru dimensional propertial alor 111
Tab. 3.39 Ordinoa importantoi factorilor obtinută prin motoda Taguchi și motoda DSM (plan
de experimente Draper Lin)
Tab 2.20 Tabalul ANOVA (plan da averarimenta Dranar – Lin)
Tab. 3.39 Tabelul ANOVA (plati de experimente Diaper – Lin)
napului de experimente Draper Lin
planului de experimente Draper-Lin
(madificanza temperaturii de autoclauizare au incremente de EOC)
(mounicarea temperaturii de autociavizare cu incremente de 5°C)
Tab. 3.42 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticuleior
(modificarea gradulul de umplere cu incremente de 1%)
Tab. 3.43 Valorile factorilor și valoarea previzionata pentru dimensiunea nanoparticuleior
(modificarea puterii cuptorului cu incremente de 10 w)
Tab. 3.44 Complinația optimizată a nivelurilor factorilor pentru planul Draper-Lin 11/
Tab. 3.45 Comparație intre diferitele metode de estimare, masurare și calcul a
Valorii dimeniunii nanoparticuleior
Tab. 3.46 Nivelurile factorilor și rezultatele experimentelor conform matricii Taguchi
standard L ₉
Tab. 3.4/ Efectele estimate pentru dimensiunea nanoparticulelor
Tab. 3.48 Tabelul ANOVA (plan de experiențe L_9)
Tab. 3.49 Estimațiile dimensiunii nanoparticulelor pe baza modelului de ordin I
asociat planului de experimente L ₉ 126
Tab. 3.50 Valorile factorilor și valoarea previzionată pentru dimensiunea
nanoparticulelor (modificarea concentrației dopantului cu incremente de 0,1%). 126
Tab. 3.51 Valorile factorilor și valoarea previzionată pentru dimensiunea
nanoparticulelor (modificarea duratei de autoclavizare de 1,5 min.) 127
Tab. 3.52 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticulelor
(modificarea temperaturii de autoclavizare cu incremente de 5°C)
Tab. 3.53 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticulelor
(modificarea puterii cuptorului cu incremente de 20 W) 128
Tab. 3.54 Combinația optimizată a nivelurilor factorilor pentru planul L ₉
Tab. 3.55 Nivelurile factorilor și rezultatele experimentelor pentru planul de experimente Box-
Behnken
Tab. 3.56 Efectele estimate pentru dimensiunea nanoparticulelor
Tab. 3.57 Tabelul ANOVA (plan de experimente Box-Behnken) 139
Tab. 3.58 Estimațiile dimensiunii nanoparticulelor pe baza modelului de ordin II asociat
planului de experimente Box-Behnken141
• •

Tab. 3.59 Valorile factorilor și valoarea previzionată pentru dimensiunea
nanoparticulelor (modificarea concentrației dopantului cu incremente de 0,1%). 144
Tab. 3.60 Valorile factorilor și valoarea previzionată pentru dimensiunea
nanoparticulelor (modificarea duratei de autoclavizare de 1,5 min.)144
Tab. 3.61 Valorile factorilor și valoarea previzionată pentru dimensiunea
nanoparticulelor (modificarea temperaturii de autoclavizare cu incremente de 5°C)
Tab. 3.62 Valorile factorilor și valoarea previzionată pentru dimensiunea
nanoparticulelor (modificarea puterii cuptorului cu incremente de 20 W)
Tab. 3.63 Combinația optimizata a nivelurilor factorilor pentru planul Box-Behnken
14b
Tab. 3.64 Comparație intre numarul de experimente
Tab. 3.65 Modelul experimental
Tab. 3.67 Modia si abatoroa standard a ovnorimentolor
Tab. 3.68 Metoda gradientului (mentinere Dimensiune la 5 nm) 153
Tab. 3.69 Ontimizarea planurilor de experimente
Tab. 4.1 Reactivii utilizati în sinteza TiO_2 dopat cu Ag prin metoda hidrotermală în câmp de
microunde
Tab. 4.2 Aparatura utilizată pentru sinteza TiO ₂ dopat cu Ag prin metoda hidrotermală în
câmp de microunde167
Tab. 4.3 Parametri de sinteză ai probelor de TiO ₂ sintetizate prin metoda hidrotermală
în câmp de microunde
Tab. 4.4 Parametri de sinteză ai probelor de TiO ₂ dopat cu Ag, sintetizat prin metoda
hidrotermală rapidă168
Tab. 4.5 Dimensiunile medii ale particulelor sintetizate prin metoda hidrotermală în
câmp de microunde169
Tab. 4.6 Dimensiunile medii ale particulelor sintetizate prin metoda hidrotermală rapidă169
Tab. 5.1 Contribuții personale

Lista de figuri

```
Fig. 1.1 Strategia lui G. Taguchi de minimizare a impactului factorilor – zgomot...22
Fig. 1.3 Utilizarea funcției pierdere a calității......23
Fig. 1.4 Functie pierdere pătratică simetrică continuă ......24
Fig. 1.6 Funcția pierdere a calității pentru un criteriu ce trebuie minimizat.......27
Fig. 1.7 Funcția pierdere a calității pentru un criteriu ce trebuie maximizat ...........28
Fig. 1.13 Plan de experimente 3^{N} factorial complet (27 puncte = 27 experimente) 37
Fig. 1.14 Trei planuri de experimente factoriale fracționate 3<sup>3-1</sup> (9 puncte = 9 experimente
provenite dintr-un plan de experiențe factorial complet 3^3 (27 puncte = 27 experimente) 38
Fig. 1.15 Plan de experiențe compozițional central pentru 3 variabile de proiectare la 2
Fig. 1.16 Comparație între CCD (a), Hipercub Latin (b), Audze-Eglais ......40
Fig. 1.17 Suprafața de răspuns tridimensională și conturul bidimensional ......42
Fig. 1.18 Reprezentare a punctelor axiale ......48
Fig. 1.19 Plan CCD cu 4 puncte factoriale, 4 puncte axiale și 1 punct central.......48
Fig. 1.23 Direcția pantei maxime cu puncte experimentale alese echidistant .......55
Fig. 2.1 a Structura cristalină a rutilului......58
Fig. 3.2 Rezultate experimentale și raporturile S/N (captură de ecran - soft)......78
Fig. 3.3 Variabilitatea în interiorul condițiilor de experimentare și între acestea ....79
Fig. 3.4 Efectele medii ale factorilor asupra raportului S/N (captură de ecran - soft)
Fig. 3.5 Efectele medii ale factorului "Concentrație dopant " asupra raportului S/N80
Fig. 3.6 Efectele medii ale factorului"Durată autoclavizare" asupra raportului S/N.81
Fig. 3.7 Efectele medii ale factorului "Temperatură autoclavizare" asupra raportului
S/N......81
Fig. 3.8 Efectele medii ale factorului "Putere cuptor" asupra raportului S/N......82
Fig. 3.9 Efectele medii ale factorului "Cantitate nutrient" asupra raportului S/N....83
Fig. 3.10 Efectele medii ale factorului "PH soluție" asupra raportului S/N...........83
Fig. 3.11 Efectele medii ale factorului "Grad umplere" asupra raportului S/N......84
```

Fig. 3.17 Interacțiunea între durata de autoclavizare și cantitatea de nutrient.....88 Fig. 3.19 Interacțiunea între concentrația dopantului și durata autoclavizării.......89 Fig. 3.20 Interacțiunea între puterea cuptorului și gradul de umplere.......90 Fig. 3.21 Interacțiunea între temperatura de autoclavizare și gradul de umplere ..91 Fig. 3.23 Tabelul ANOVA după eliminare factorului "PH soluție" (captură de ecran -Fig. 3.24 Influențele factorilor semnificativi (primii 6, inclusiv factorul eroare)93 Fig. 3.25 Influențele factorilor semnificativi (ultimii 6, inclusiv factorul eroare)....93 Fig. 3.26 Influențele factorilor semnificativi (inclusiv factorul eroare)......94 Fig. 3.27 Tabelul ANOVA după eliminare factorilor "PH soluție" și "Cantitate nutrient" Fig. 3.28 Influențele factorilor semnificativi (inclusiv factorul eroare) după eliminarea factorului "Cantitate nutrient"......95 Fig. 3.29 Performanța optimă cu prezentarea contribuțiilor factorilor principali96 Fig. 3.30 Graficul reducerii variației pe baza condițiilor îmbunătățite (captură de Fig. 3.31 Distribuția indicilor de capabilitate Cp și Cpk pentru experimentul de confirmare numărul 1......99 Fig. 3.32 Graficul distribuției Cpk versus Abaterea standard pentru experimentul de confirmare numărul 1......99 Fig. 3.33 Graficul distribuției Cpk versus Medie pentru experimentul de confirmare Fig. 3.34 Graficul distribuției Cp versus Abaterea standard pentru experimentul de confirmare numărul 1......100 Fig. 3.35 Distribuția indicilor de capabilitate Cp și Cpk pentru experimentul de confirmare numărul 2......101 Fig. 3.36 Graficul distributiei Cpk versus Abaterea standard pentru experimentul de confirmare numărul 2......102 Fig. 3.37 Graficul distribuției Cpk versus Medie pentru experimentul de confirmare Fig. 3.38 Graficul distribuției Cp versus Abaterea standard pentru experimentul de confirmare numărul 2......103 Fig. 3.39 Diagrama Pareto standardizată pentru efectele factorilor asupra Fig. 3.40 Efectelele principale asupra dimensiunii......112 Fig. 3.43 Efectul puterii cuptorului asupra dimensiunii 113 Fig. 3.44 Suprafața de răspuns estimată (temperatura de autoclavizare – gradul de Fig. 3.45 Contururile suprafaței de răspuns estimate (temperatura de autoclavizare – gradul de umplere)......119 Fig. 3.46 Suprafața de răspuns estimată (temperatura de autoclavizare - putere Fig. 3.47 Contururile suprafatei de răspuns estimate (temperatura de autoclavizare Fig. 3.48 Suprafata de răspuns estimată (putere cuptor – grad umplere) 120

Fig. 3.49 Contururile suprafaței de răspuns estimate (putere cuptor – grad umplere)
Fig. 3.50 Diagrama Pareto standardizată pentru efectele factorilor asupra
dimensiunii
Fig. 3.51 Efectele medii ale factorilor asupra dimensiunii
Fig. 3.52 Efectul concentrației dopantului asupra dimensiunii
Fig. 3.53 Efectul duratei de autoclavizare asupra dimensiunii 124
Fig. 3.54 Efectul temperaturii de autoclavizare asupra dimensiunii 124
Fig. 3.55 Efectul puterii cuptorului asupra dimensiunii 124
Fig. 3.56 Suprafața de răspuns estimată (concentrație dopant – durată
autoclavizare) 129
Fig. 3.57 Contururile suprafeței de răspuns estimate (concentrație dopant – durată
autoclavizare) 129
Fig. 3.58 Suprafața de răspuns estimată (concentrație dopant – temperatură
autoclavizare)
Fig. 3.59 Contururile suprafeței de răspuns estimate (concentrație dopant –
temperatură autoclavizare)
Fig. 3.60 Suprafața de răspuns estimată (concentrație dopant – putere cuptor) . 131
Fig. 3.61 Contururile suprafeței de răspuns estimate (concentrație dopant – putere
cuptor)
Fig. 3.62 Suprafața de raspuns estimata (durata autoclavizare – temperatura
autociavizare)
Fig. 3.63 Contururile suprafeței de raspuns estimate (durată autociavizare –
temperatura autociavizare)
Fig. 3.64 Suprarață de răspuns estimată (durată autoclavizare – putere cuptor). 13:
rig. 3.65 Contururile suprareței de raspuns estimate (durată autociavizare – putere
Cupion)
rig. 5.00 Supraraja de raspuns estimata (temperatura autociavizare – putere
Fig. 3.67 Contururile suprafetei de răspuns estimate (temperatură autoclavizare –
nutere cuntor)
Fig. 3.68 Diagrama Pareto standardizată pentru efectele factorilor asupra
dimensiunii
Fig. 3.69 Efectele principale ale factorilor asupra dimensiunii nanoparticulelor 137
Fig. 3.70 Efectul principal al concentratiei dopantului asupra dimensiunii
nanoparticulelor
Fig. 3.71 Efectul principal al duratei autoclavizării asupra dimensiunii
nanoparticulelor
Fig. 3.72 Efectul principal al temperaturii de autoclavizare asupra dimensiunii
nanoparticulelor
Fig. 3.73 Efectul principal al puterii cuptorului asupra dimensiunii nanoparticulelor
Fig. 3.74 Interacțiunea concentrație dopant - durată autoclavizare
Fig. 3.75 Interacțiunea concentrație dopant - temperatură autoclavizare 142
Fig. 3.76 Interacțiunea concentrație dopant – putere cuptor142
Fig. 3.77 Interacțiunea durată autoclavizare - temperatură autoclavizare 143
Fig. 3.78 Interacțiunea durată autoclavizare – putere cuptor
Fig. 3.79 Interacțiunea temperatură autoclavizare – putere cuptor
Fig. 3.80 Suprafața de răspuns estimată (concentrație dopant – durată
autoclavizare)

Fig. 3.81 Contururile suprafeței de răspuns estimate (concentrație dopant – durată
autoclavizare)
Fig. 3.82 Suprafața de răspuns estimată (concentrație dopant – temperatură
autoclavizare)
Fig. 3.83 Contururile suprafeței de răspuns estimate (concentrație dopant –
temperatură autoclavizare)148
Fig. 3.84 Suprafața de răspuns estimată (concentrație dopant – putere cuptor) . 148
Fig. 3.85 Contururile suprafeței de răspuns estimate (concentrație dopant – putere
cuptor)
Fig. 3.86 Suprafața de răspuns estimată (durată autoclavizare – temperatură
autoclavizare)
Fig. 3.87 Contururile suprafeței de raspuns estimate (durata autoclavizare –
temperatura autociavizare)
Fig. 3.88 Suprarața de raspuns estimata (durată autociavizare – putere cuptor). 150
rig. 3.89 Contururile supraleței de raspuns estimate (durata autociavizare – putere
Fig. 3 90 Suprafata do răspuns ostimată (tomporatură autoslavitare – putore
cuptor)
Fig. 3 91 Contururile suprafetei de răspuns estimate (temperatură autoclavizare –
nutere cuntor) 152
Fig. 3.92 Graficul probabilității normale pentru planul de experimente La Taguchi 153
Fig. 3.93 Graficul probabilității normale pentru planul de experimente Box-Behnken
Fig. 3.94 Graficul probabilității jumătate normale pentru planul de experimente L ₉
Taguchi
Fig. 3.95 Graficul probabilității jumătate normale pentru planul de experimente Box-
Behnken
Fig. 3.96 Observate versus previzionate pentru planul de experimente L ₉ Taguchi155
Fig. 3.97 Observate versus previzionate pentru planul de experimente Box-Behnken
Fig. 3.98 Reziduale versus previzionate pentru planul de experimente L ₉ Taguchi 156
Fig. 3.99 Reziduale versus previzionate pentru planul de experimente Box-Behnken
Fig. 3.100 Reziduale versus ordinea experimentelor pentru planul de experimente L ₉
15/
Fig. 3.101 Reziduale versus ordinea experimentelor pentru planul de experimente
BOX-Bennken
Fig. 3.102 Grancul probabilității normale a rezidualelor pentru planul de experimente
Eg 1 dyuchi
Boy-Behnken 150
Fig. 4.1 Cuptorul cu microunde utilizat în sinteza de panocristale (a): autoclave
utilizate în sinteza de nanocristale (b)
Fig. 4.2 Morfologia suprafetei prin SEM pentru TiO ₂ dopat cu Ag (sau ion metalic) 171
Fig. 4.3 Spectrul EDAX pentru TiO ₂ dopat cu Ag (sau ion metalic)

INTRODUCERE

În cadrul aplicațiilor practice în toate domeniile socio-economice, nanomaterialele, având proprietăți speciale, diferite față de materialele la scară macro, oferă o arie largă, cu perspective mari în ceea ce privește diversificarea sau creșterea performanțelor tehnice ale dispozitivelor. În același timp au apărut noi probleme teoretice, tehnologice și aplicative legate de proiectarea proceselor de sinteză a acestora deoarece, fiecare aplicație reclama o serie de caracteristici morfostructurale bine precizate ale materialului la scară nanometrică. De aici rezultă necesitatea dezvoltării și dobândirii de cunoștinte avansate prin elaborarea unor metode adecvate de sinteză, care să faciliteze un control riguros al dimensiunilor, structurii și proprietăților acestora. Un interes deosebit este acordat obținerii de nanomateriale în general, iar dioxidului de titan, TiO_2 , care a fost utilizat intensiv ca și fotocatalizator pentru conversia energiei solare în energie chimică și în aplicații pentru protecția mediului înconjurător, în special.

Comparativ cu alţi agenţi antimicrobieni, TiO_2 a atras atenţia datorită stabilităţii bune oferite, dar şi datorită faptului că este prietenos cu mediul înconjurător, sigur, ieftin, nontoxic, bioactiv, etc. Dioxidul de titan a fost studiat foarte mult în ultimii ani şi îmbunătăţit în câteva variante, una dintre acestea fiind doparea cu diverse elemente chimice (ioni metalici, nemetalici, sau alţi oxizi) urmărindu-se extinderea spectrului radiaţiei activatoare spre domeniul vizibil, făcând posibilă astfel activarea mai eficientă a materialului la lumina solară.

Nanoparticulele au un mare potențial catalitic, respectiv agenți redox activi pentru purificarea apei și aerului datorită suprafețelor specifice mari. Astfel, în ultimii ani, nanoparticulele de dioxid de titan (TiO_2) s-au dovedit un fotocatalizator promițător, servind atât ca oxidant cât și reducător pentru poluanții organici și anorganici în prezența luminii ultraviolete. Acest material a îndeplinit cel mai bine condițiile impuse fiind fotoactiv chimic, respectiv biologic inert, fotostabil și ieftin. Unii cercetători au redeschis subiectul utilizării fotocatalizatorilor în tratarea apelor contaminate cu poluanți anorganici și organici arătând succesul utilizării nanoparticulelor de TiO_2 pentru: degradarea compușilor organici și reducerea ionilor toxici metalici în soluțiile apoase sub acțiunea luminii ultraviolete.

Utilizarea materialelor nanostructurate în practica curentă impune unele caracteristici esențiale pentru eficientizarea utilizării lor. Astfel, pentru ca nanoparticulele să poată avea o eficiență ridicată în practică, trebuie să posede o serie de caracteristici precum: puritate înaltă și compoziție chimică unitară, mărimea nanoparticulelor să se înscrie într-o distribuție uniformă îngustă și să fie controlabilă, forma și morfologia nanoparticulelor să fie identice.

În practică este destul de dificil de obținut nanoparticule care să întrunească toate aceste caracteristici, de aceea atenția lumii științifice este continuu îndreptată spre găsirea de noi metode de sinteză care să asigure o uniformizare cât mai înaltă a proprietăților acestora. În contextul economic actual al pieței globalizate, pentru îmbunătățirea competitivității, organizațiile trebuie să ofere produse de calitate înaltă la un preț redus și care să satisfacă cerințele clienților. În acest scop acestea trebuie să își modifice radical metodele de proiectare, metodele de dezvoltare a tehnologiilor precum și modul de fabricare a produselor. O posibilitate de creștere a eficienței și competitivității utilizării nanomaterialelor, este introducerea proiectării științifice a experimentelor în cadrul metodelor de sinteză a nanomaterialelor . Pe de o parte, se poate utiliza metoda Suprafeței de Răspuns (RSM), iar pe de altă parte proiectarea robustă Taguchi. Pentru obținerea unor modele experimentale care să aproximeze cât mai bine sistemele tehnologice reale, trebuie să se analizeze un număr cât mai mare de factori, iar pe de altă parte trebuie să se reducă volumul global al experimentării din motive economice.

Pornind de la scopul final al cercetării, cel al determinării combinației optime a factorilor astfel încât să se obțină o valoare țintă de 10nm \pm 0,2 nm (prin metoda hidrotermală în câmp de microunde), respectiv 5nm \pm 0,2 nm (prin metoda hidrotermală rapidă) pentru dimensiunea nanocristalelor de TiO₂ dopate cu Ag **obiectivul tezei** este cel al identificării metodelor adecvate pentru asigurarea stabilității dimensionale a nanocristalelor de TiO₂ dopate cu Ag. Pentru realizarea obiectivului tezei, au fost prevăzute următoarele obiective intermediare:

- 1. Evaluarea stadiului actual al metodelor și tehnologiilor de obținere a nanocristalelor de TiO_2 dopate cu Ag
- Studiul caracteristicilor generale ale dioxidului de titan (TiO₂), a metodelor de obţinere şi domeniile de aplicaţie ale acestora
- 3. Identificarea metodelor adecvate de proiectare. Studiul aplicării metodei Taguchi și metodei Suprafeței de Răspuns pentru proiectarea experimentală
- 4. Analiza posibilităţilor de îmbunătăţire a stabilităţii dimensionale a nanocristalelor de TiO₂ dopate cu Ag în cadrul sintezei Hidrotermale în Câmp de Microunde, prin aplicarea planurilor de experimente Taguchi.
- 5. Analiza posibilităților de îmbunătățire a stabilității dimensionale a nanocristalelor de TiO₂ dopate cu Ag în cadrul sintezei Hidrotermale în Câmp de Microunde, prin aplicarea planurile de experimente Draper Lin.
- 6. Analiza posibilităților de îmbunătățire a stabilității dimensionale a nanocristalelor de TiO₂ dopate cu Ag în cadrul sintezei Hidrotermale Rapide, prin aplicarea planurilor de experimente Taguchi.
- Analiza posibilităţilor de îmbunătăţire a stabilităţii dimensionale a nanocristalelor de TiO₂ dopate cu Ag în cadrul sintezei Hidrotermale Rapide, prin aplicarea planurilor de experimente Box - Behnken.
- 8. Compararea planurilor de experimente Taguchi cu planul factorial complet simulat.

B. Prezentarea conținutului tezei

Obiectivele propuse au condus la structurarea lucrării într-un număr de 5 capitole, al căror conținut este prezentat în continuare.

În **Capitolul 1** – Metode de proiectare a experimentelor. Metoda suprafeței de răspuns – se prezintă studiul obținerii unor modele experimentale similare cu sistemele tehnologice reale, caracterizate printr-o complexitate ridicată, în sensul că numărul factorilor de influență, respectiv al nivelurilor acestor factori care influențează evoluția și perspectivele sistemelor au valori importante, fapt ce conduce obligatoriu la efectuarea unui număr de încercări din care să rezulte informații cu privire la starea și evoluția sistemelor. Se prezintă în continuare o comparație între principalele strategii de proiectare a experimentelor, și anume: *metoda Taguchi*, printr – o sinteză asupra stadiului actual în cadrul proiectării robuste Taguchi; *metoda planurilor de experiențe factoriale complete*, caz în care trebuie definite limitele superioară și inferioară pentru variabilele de proiectare; *metoda planurilor de experiențe compoziționale centrale (CCD; metoda planurilor de*

18 Introducere

experiențe D-optimale, care din punct de vedere statistic conduc la modele pentru care varianța maximă a răspunsurilor previzionate este minimizată; *metodologia Suprafeței de Răspuns (RSM)*, care reprezintă un conglomerat de tehnici statistico-matematice pentru construirea de modele empirice, obiectivul metodologiei constând în optimizarea unui răspuns (variabila de ieșire) care este influențat de mai multe variabile independente (variabile de intrare),având loc modificări ale variabilelor de intrare pentru a identifica motivele schimbărilor în variabila de răpuns (ieșire); *deplasarea pe suprafața de răspuns după direcția pantei maxime.*

În **Capitolul 2** – *Considerații generale asupra dioxidului de titan* (TiO_2) – se prezintă proprietățile termodinamice, optice, electrice ale dioxidului de titan, precum și efectele fotocatalitice ale acestuia, având în vedere că cercetarea actuală se concentrează în primul rând pe creșterea randamentului cuantic a procesului fotocatalitic obținut folosind metode generale (ori o combinație a lor), metode care se referă la optimizarea structurii TiO₂ pur, la modificarea suprafeței specifice, de obicei prin dopare. În continuare se prezintă metodele de obținere a dioxidului de titan: metoda sol gel, metoda hidrotermală clasică, metoda hidrotermală în câmp de microunde, metoda hidrotermală rapidă, sinteza prin microemulsie, sinteza prin combustie, sinteza electrochimică. Se face în continuare o prezentare a domeniilor de aplicație deoarece dioxidul de titan prezintă un interes din ce în ce mai mare datorită stabilității sale chimice, netoxicității, costului redus și a altor proprietăți avantajoase pe care le are, iar datorită valorii mari a indicelui de refracție este folosit ca strat antireflex pentru celulele solare pe bază de Si și ca filme subțiri în cazul multor dispozitive optice.

În **Capitolul 3** – Cercetări aplicative privind sinteza nanocristalelor de TiO_2 – s-a **aplicat metoda de proiectare robustă – Taguchi pentru îmbunătățirea stabilității dimensionale** a nanocristalelor de TiO_2 dopate cu Ag sintetizate prin metoda hidrotermală în câmp de microunde (MHMW), pentru aceasta s-a ales o matrice de experimente L₈, corespunzătoare pentru şapte factori studiați la 2 niveluri fiecare, realizându-se de asemenea stabilirea ordinii condițiilor de experimentare, determinarea variabilității în și între condițiile de experimentare, analiza efectelor medii ale factorilor asupra raportului Semnal/Zgomot, analiza interacțiunilor factorilor, analiza varianței cu metoda ANOVA. De asemenea, s-au realizat două experimente de confirmare prezentându-se parametri statistici ai experimentelor și indicatorii capabilității acestora.

Pentru îmbunătățirea stabilității dimensiunii nanoparticulelor de TiO₂ s-a aplicat atât **Metoda Suprafeței de Răspuns (RSM)**, cu ajutorul unui plan de experimente compozițional de dimensiuni reduse (40 experimente) Draper-Lin, respectiv cu ajutorul unui plan de experimente Box-Behnken (27 experimente), corespunzătoare pentru 4 factori studiați la 3 niveluri fiecare, cât și metoda de proiectare robustă – Taguchi, pentru îmbunătățirea stabilității dimensionale a nanocristalelor de TiO₂ dopate cu Ag sintetizate prin metoda Hidrotermală Rapidă. Cu ajutorul metodei gradientului (metoda "pantei celei mai abrupte") s-au analizat predicțiile, prin modificarea factorilor cu diverse incremente.

Capitolul 4 – Programarea experimentelor de sinteză a nanocristalelor prin metoda Hidrotermală – prezintă metoda hidrotermală clasică de obținere a substanțelor nanocristaline, dezavantajele utilizării unei astfel de metode fiind înlocuite prin metoda hidrotermală de obținere a nanocristalelor în câmp de microunde, care se dovedește a fi o metodă foarte eficientă și economică de producere a nanopulberilor, dar prezintă același neajuns întâlnit în toate metodele de sinteză și anume, particulele sunt foarte aglomerate necesitând o etapă suplimentară de dispersare. În continuare se prezintă metoda *Hidrotermală Rapidă*, care prezintă avantajul că se obține o mai bună cristalizare, omogenitate mare a nanocristalelor și, datorită încălzirii rapide se elimină cristalizarea prematură nedorită. De asemenea se prezintă și o caracterizare fizico – chimică a materialelor sintetizate.

În **Capitolul 5** sunt prezentate concluziile finale, principalele contribuții teoretice și aplicative ale tezei precum și noi direcții de cercetare viitoare.

1. METODE DE PROIECTARE A EXPERIMENTELOR. METODA SUPRAFEȚEI DE RĂSPUNS

1.1 Strategii de experimentare

Obţinerea de modele experimentale care să aproximeze cât mai bine sistemele reale poate fi una dificilă atunci când acestea sunt de mare complexitate, cu mulţi factori de influenţă. Este important să se analizeze un număr cât mai mare de factori de influenţă dar trebuie făcută o planificare atentă a experimentelor (în sensul reducerii acestora) pentru a ţine seama de aspectul economic şi de cel al duratei de experimentare. În cazul cercetării experimentale obiectivul cel mai important este reprezentat de modelarea matematică a acţiunii factorilor de influență $x_1, x_2,...,x_k$ asupra funcției obiectiv y a sistemului studiat (obiect, fenomen, proces), prin precizarea dependentei funcționale:

$$\mathbf{y} = \mathbf{f}\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \dots, \mathbf{X}_{k}\right) \tag{1.1}$$

Prin modelarea matematică se urmărește:

- Obținerea unor date complete în cazul studierii și analizării sistemului cercetat, cu ajutorul modelului matematic
- Cunoaşterea factorilor de influenţă care acţionează asupra sistemului cercetat; se va evidenţia mecanismul de acţiune al acestora
- Verificarea ipotezelor se face cu ajutorul interacţiunilor din cadrul sistemului
- Optimizarea sistemului în raport cu diferite criterii, respectiv conducerea sistemului în spațiu și timp
- Proiectarea și calculul sistemului.

Printre cerințele impuse modelelor generale dar și experimentale se numără și capacitatea sistemului de a reflecta valorile funcției obiectiv, care nu trebuie să difere de valorile reale, precum și furnizarea de informații precise care să conducă la atingerea optimului funcției obiectiv.

În cazul modelării experimentale Se acceptă aprioric o anumită formă a modelului matematic, care aproximează cel mai bine modelul real, datele necesare explicitării modelului vor permite determinarea efectivă a coeficienților numerici ai formei adoptate pentru modelul matematic [C10].

Strategia modelării experimentale furnizează informații cu privire la direcția pe care trebuie să o urmeze cercetarea pentru deplasarea către optim a modelului experimental obținut, printr – un număr minim de experimente.

Strategia clasică de experimentare (Gauss-Seidel) se caracterizează prin sloganul "*un factor la un moment dat*" și reduce orice cercetare experimentală la o cercetare unifactorială, în sensul că, la un moment dat se reglează (se modifică) un singur factor de influență; pentru ceilalți factori de influență se atribuie valori constante, mai mult sau mai puțin arbitrare, care pot exercita o influență semnificativă asupra rezultatului obținut. Astfel pentru evidențierea influenței unui factor se utilizează numai o parte a încercărilor experimentale, ceea ce amplifică semnificativ, în cazul unui număr mare de factori de influență, volumul experimentării.

Strategia modernă (factorială) de experimentare (Box-Wilson) este caracterizată prin sloganul "*toți factorii în fiecare moment"* și utilizează experimente de tip factorial, astfel la fiecare încercare experimentală se modifică valoarea tuturor factorilor de influență și în consecință, fiecare factor influențează valorile funcției obiectiv care este determinată de toate încercările efectuate, fapt ce duce la micșorarea considerabilă a volumului experimental [B5].

Principalele obiective ale acestei strategii sunt:

- Achiziționarea progresivă de informații în urma efectuării experiențelor, existând posibilitatea efectuării unui număr redus de determinări pentru formularea concluziilor.
- Obținerea unei precizii maxime de estimare a modelului, pentru un număr de măsurări impus;
- Furnizarea de informații privind direcția de deplasare a determinărilor pentru atingerea domeniului de optim al funcției obiectiv.

Se poate demonstra că, în condițiile existenței erorilor aleatoare de măsurare, strategia de experimentare modernă, aplicată cu ajutorul experimentelor factoriale, este o strategie de experimentare optimă, iar programul de experimentare factorială este un plan de experimentare optimal.

1.2 Proiectarea experimentelor

Strategiile au fost inițial concepute pentru modelarea experimentelor fizice dar pot fi aplicate de asemenea experimentelor numerice. Obiectivul "Proiectării Experimentelor" este selectarea punctelor în care trebuie evaluat răspunsul. Cele mai multe criterii pentru proiectarea optimală a experimentelor sunt asociate cu modelul matematic al procesului. De obicei aceste modele matematice sunt constituite din polinoame de structură necunoscută astfel încât experimentele corespunzătoare sunt proiectate pentru fiecare caz particular. Tipul de experimente ales influențează decisiv asupra exactității aproximării și asupra costului experimentului [I3]. Se prezintă în continuare o comparație între principalele strategii de proiectare a experimentelor.

1.2.1 Metoda Taguchi de proiectare a experimentelor

Strategia abordării lui Genichi Taguchi, (Fig. 1.1), se bazează pe minimizarea impactului factorilor paraziți (factori – zgomot), acționând experimental asupra factorilor controlați prin găsirea combinațiilor de valori ale acestora astfel încât procesul sau produsul să respecte performanțele funcționale și totodată să fie robust la factorii – zgomot [T1].

În ceea ce privește proiectarea produselor, Genichi Taguchi are o abordare nouă (Fig. 1.2).

Fig. 1.1 Strategia lui G. Taguchi de minimizare a impactului factorilor – zgomot

1.2.1.1 Proiectarea Calității "off-line" Taguchi. Funcția Pierdere a Calității

"Funcția pierdere a calității" ("Quality Loss Function") reprezintă unul din aporturile majore pe care le-a adus Genichi Taguchi, [A2]. În termeni uzuali, "funcția pierdere a calității" reprezintă un mod de-a arăta cum fiecare produs imperfect rezultă într-o pierdere pentru individ, firmă, societate. Dr. Edwards W. Deming spunea: "O pierdere minimă la valoarea nominală și o veșnică creștere a pierderii cu depărtarea în cele două direcții" [D6]. G. Taguchi definește calitatea ca o caracteristică ce evită pierderile de bani atât pentru producător în timpul procesului de fabricație și pentru utilizator, cât și la nivelul global al societății.

Este evident că un produs începe să se uzeze și să se deterioreze din momentul în care el a fost pus în funcțiune și există posibilitatea că dacă el se defectează în perioada de garanție să fie reparat sau înlocuit, caz în care costul este suportat de fabricant. Dacă însă defectul s-a produs în perioada de post-garanție, atunci costurile reparării sau înlocuirii produsului vor fi suportate de utilizator/consumator. Problema este că un produs de calitate înaltă nu generează decât costuri mici întrucât (conform definiției Calității – ISO 2000), el îndeplinește așteptările în timpul perioadei pe care utilizatorul/consumatorul o consideră adecvată. Atunci când însă utilizatorul/consumatorul este nemulţumit sau consideră că produsul nu corespunde nevoilor sale, este greu de apreciat și calculat reacția sa negativă. Indirect, producătorul este cel care va suporta însă toate consecințele materiale, de imagine și/sau pierdere a piețelor.

Funcția "pierdere a calității" exprimată de Genichi Taguchi permite cuantificarea sub formă de pierderi financiare ale consecințelor pentru producător și pentru clienți/utilizatori/consumatori ale nivelului calității unui produs. Utilizarea funcției pierdere a calității este prezentată în figura 1.3.

1.2 Proiectarea experimentelor 23

Fig. 1.3 Utilizarea funcției pierdere a calității

1.2.1.2 Expresia matematică a funcției pierdere pătratice Taguchi

O definiție tehnică a funcției pierdere Taguchi este cea dată de William Duncan " O reprezentare parabolică care estimează pierderea calității exprimată în unități monetare ce rezultă când caracteristica de calitate se abate de la valoarea țintă, costul acestei abateri crescând pătratic pe măsură ce caracteristica se îndepărtează tot mai departe de valoarea țintă " [D7]. Se notează cu Y o caracteristică de calitate care are valoarea țintă y_N.

O funcție pierdere pătratică simetrică continuă este prezentată în Fig. 1.4 și care reprezintă în fapt ipoteza simplificatoare a lui G. Taguchi conform căreia pierderea este proporțională cu pătratul abaterii caracteristicii în raport cu valoarea fixată.

Fig. 1.4 Funcție pierdere pătratică simetrică continuă

Aşa cum se observă din figură, pierderea calității notată cu L (y) este egală cu 0 când caracteristica de calitate este exact pe țintă (Y = y_N), pierderea calității crescând pe măsură ce caracteristica de calitate se îndepărtează de valoarea țintă în ambele direcții. La fiecare limită de toleranță (specificație), pierderea calității este egală cu A (U.M.), deviația lui Y față de y_N în oricare direcție fiind deci considerată nedorită. În general se consideră pentru caracteristica de calitate Y, funcția pierdere L (y) ce reprezintă valoarea monetară a pierderilor, induse unui client arbitrar, pentru o unitate de produs.

Pentru determinarea aproximativă a acestei funcții se dezvoltă în serie Taylor funcția evaluată în y_N până la termenii de ordin II, termenii de ordin superior neglijându-se conform relației (1.2).

$$L(y) = L(y_{N}) + \frac{L'(y_{N})}{1!}(y - y_{N}) + \frac{L''(y_{N})}{2!}(y - y_{N})^{2} + \dots$$
(1.2)

Se observă că $L(y_{N}) = 0$, și deoarece valoarea minimală a funcției este la y_{N} , prima derivată a funcției evaluate în acest punct este egală cu 0, adică $L'(y_{N}) = 0$. Atunci relația (1.2) poate fi rescrisă sub forma (1.3).

$$L(y) = \frac{L''(y_N)}{2!} (y - y_N)^2 = k (y - y_N)^2$$
(1.3)

unde k = $\frac{L''(y_N)}{2!}$ reprezintă o constantă numită *coeficient de pierdere a*

calității.

Este evident că această caracteristică de calitate Y variază de la unitate la alta în timp și practic reprezintă variația sa printr-o funcție probabilitate de repartiție. Se presupune că funcția densitate de probabilitate a lui Y este f (y). Având funcția pierdere a calității L(y) și funcția densitate de probabilitate f (y), pierderea așteptată poate fi scrisă sub forma generală (1.4).

$$\mathsf{E}[\mathsf{L}(\mathsf{y})] = \int_{-\infty}^{+\infty} \mathsf{L}(\mathsf{y}) \cdot \mathsf{f}(\mathsf{y}) d\mathsf{y}$$
(1.4)

În cazul funcției pierdere pătratice, se poate substitui L(y) din ecuația (1.3) direct în ecuația (1.5).

$$E[L(y)] = \int_{-\infty}^{+\infty} k(y - y_{N})^{2} f(y) dy = k \left[\sigma_{y}^{2} + (\mu_{y} - y_{N})^{2}\right]$$
(1.5)

unde $\mu_{y}\, \varsigma i_{\,\sigma_{\,v}}{}^{2}\,$ sunt media respectiv varianța lui Y.

În cazul criteriilor țintă, funcția pierdere pătratică Taguchi se aplică pentru caracteristicile care au o valoare nominală specificată, criteriul țintă fiind tocmai valoarea nominală. Expresia matematică în cazul unui singur produs este:

$$L(\mathbf{y}) = \mathbf{k} \left(\mathbf{y} - \mathbf{y}_{N} \right)^{2}$$
(1.6)

unde: L(y) este valoarea pierderii unitare exprimată în unități monetare

y este valoarea caracteristicii de calitate măsurate

y_N este valoarea nominală specificată (valoarea țintă)

k este constantă de cuantificare a pierderilor financiare

Din punct de vedere grafic relația (1.6) reprezintă o parabolă. În Fig. 1.5 se face o comparație între ITS (Intervalul de Toleranțe Specificat) și reprezentarea grafică a funcției pierdere a calității.

Dacă se dorește evaluarea calității medii pentru un lot de produse, se folosește media lui $(y_i - y_N)^2$ numită abatere medie pătratică sau MSD (mean square deviation), care poate fi calculată conform relației (1.7):

MSD =
$$\sum_{i=1}^{n} \frac{(y_i - m)^2}{n} + (m - y_N)^2$$
 (1.7)

Unde m reprezintă media rezultatelor

n reprezintă numărul rezultatelor

Dacă se ține cont că $\sum_{i=1}^{n} \frac{(y_i - m)^2}{n} = \sigma^2$ reprezintă definiția varianței populației pieselor se obține în final expresia funcției pierdere a calității pentru un lot de produse:

$$L(y) = k \left[\sigma^{2} + (m - y_{N})^{2}\right]$$
(1.8)

Dacă se consideră un eșantion de n piese asupra cărora se fac măsurările, atunci se vor folosi valorile estimate ale mediei, \overline{y} și abaterii standard s, rezultând pentru funcția pierdere a calității relația (1.9)

$$L(\mathbf{y}) = \mathbf{k} \left[\mathbf{s}^{2} + (\overline{\mathbf{y}} - \mathbf{y}_{N})^{2} \right]$$
(1.9)

În cazul criteriilor de minimizat, funcția pierdere pătratică Taguchi se aplică la caracteristicile a căror valoare nominală este zero ($y_N = 0$), criteriul care trebuie minimizat este: *cu cât este mai mic cu atât este mai bun*. Funcția pierdere a calității este:

$$L(y) = ky^{2}$$
 - pentru un singur produs (1.10)

$$L(y) = k(s^{2} + \overline{y}^{2}) - pentru un lot de produse$$
(1.11)

Fig. 1.5 ITS și funcția pierdere a calității pentru un criteriu țintă

Reprezentarea grafică a funcției pierdere a calității în cazul criteriilor care trebuie minimizate este o jumătate de parabolă ca în Fig. 1.6.

Criteriul este mult mai sensibil la valoarea medie decât la dispersia valorilor măsurate, fiind preferabil să se lucreze cu o valoare medie mică și o abatere standard mare decât invers.

În cazul criteriilor de minimizat, funcția pierdere pătratică Taguchi se aplică la caracteristicile a căror valoare țintă este teoretic infinită, criteriul care trebuie maximizat fiind: *cu cât este mai mare cu atât este mai bun*. Funcția pierdere a calității pentru un singur produs este dată în relația (1.12):

$$L(y) = \frac{1}{y^2}$$
 - pentru un singur produs (1.12)

$$L(y) = k \frac{1}{n} \sum_{i=1}^{n} \frac{1}{y_{i}^{2}}$$
 - pentru un lot de (1.13)

Deoarece relația (1.13) este relativ greu de utilizat, pentru evaluarea calității medii a unui lot de produse, se folosește media $\frac{1}{y_i^2}$, numită și abatere

medie pătratică sau MSD și care poate fi calculată conform relației (1.14):

$$MSD = \frac{1}{m^2} \left[1 + 3 \left(\frac{\sigma}{m} \right)^2 \right]$$
(1.14)

Deci funcția pierdere a calității pentru un lot de produse în cazul criteriilor de maximizat este dată în relația (1.15).

$$L(y) = k \frac{1}{m^{2}} \left[1 + 3 \frac{\sigma^{2}}{m^{2}} \right]$$
(1.15)

Dacă se înlocuiesc m și σ cu valorile lor estimate rezultă relația (2.16)

$$L(y) = k \frac{1}{\overline{y}^2} \left[1 + 3 \frac{s^2}{\overline{y}^2} \right]$$
(1.16)

Reprezentarea grafică a funcției pierdere a calității în cazul criteriilor care trebuie maximizate este o hiperbolă ca în Fig. 1.7. Criteriul este mult mai sensibil la valoarea medie decât la dispersia valorilor măsurate și este preferabil să se obțină o valoare medie cât mai mare posibil chiar dacă abaterea standard este mare, decât invers.

Fig. 1.7 Funcția pierdere a calității pentru un criteriu ce trebuie maximizat

1.2.1.3 Raportul Semnal/Zgomot (S/N Ratio)

Atunci când se încearcă optimizarea rapidă a unui produs sau proces nou mijloacele alese pentru evaluarea performanței unui sistem au un rol critic, scopul fiind reducerea costurilor asociate ciclului de dezvoltare a produsului sau procesului. Folosind metoda tradițională de evaluare a performanței prin parcurgerea unei liste detaliate a problemelor specifice (*check-list*), atunci se poate obține o *îmbunătățire punctuală* a produsului sau procesului, îmbunătățirea globală a calității acestora fiind incertă.

Jinând cont de aceste lucruri este esențial să se dezvolte o "*metrologie specifică și sintetică*" care să permită evaluarea performanței într-o manieră eficientă. Considerăm că "*Performanța*" reprezintă "*ieșirea*" unui sistem cu una sau mai multe "*intrări*", iar atunci când se dorește evaluarea performanțelor unui sistem, trebuie considerate pe rând atât "*ieșirile dorite* "(cele pe care dorim să le obținem) cât și "*ieșirile nedorite*" (cele pe care dorim să le evităm).

La primele ne referim în calitate de "Semnale" și la celelalte în calitate de "Zgomote", prin analogie cu folosirea tradițională a celor două noțiuni din expresia "Raportul Semnal/Zgomot (S/N)" utilizat în domeniul comunicațiilor electronice sau optoelectronice. Spre deosebire de abordările clasice (tradiționale) care tratează separat aceste două componente, G. Taguchi utilizează pentru a evalua calitatea unui produs sau proces, o măsură sintetică a performanței cu aceeași denumire (raport semnal/zgomot) care ia în calcul simultan atât media cât și dispersia.

Scopul unui experiment este să se fixeze anumite valori pentru parametrii de intrare în sistem (*intrările*), ale unui produs sau proces, astfel încât acestea să atingă performanțele dorite (*ieșirile dorite*) și în plus să aibe o sensibilitate minimă la factorii necontrolabili (zgomote), adică *ieșirile nedorite*, atunci este logic ca cele două componente (*media și dispersia*) să fie optimizate împreună.

Există sisteme la care în mod frecvent caracteristica de ieșire trebuie să îndeplinească un obiectiv de tipul: "*optimul este valoarea nominală* "sau se folosește expresia " *caracteristica de calitate este un criteriu țintă* ".

Ambele exprimări, criteriu țintă sau valoare nominală, reprezintă de fapt un mod de a defini o valoare nominală preferențială pentru ieșirea unui sistem ce

urmează a fi optimizat. Toate celelalte valori sunt mai puțin dorite decât valoarea nominală sau țintă.

Pentru determinarea raportului Semnal/Zgomot bazat pe raportul medie/abatere standard se pornește de la funcția pierdere a calității a lui G. Taguchi pentru criterii țintă pentru eșantion de "n" piese:

$$L(y) = k \left[s^{2} + \left(\overline{y} - y_{N} \right)^{2} \right]$$
(1.17)

Aşa cum s-a arătat anterior pentru reducerea pierderii, răspunsul \overline{y} trebuie

apropiat de valoarea nominală y_N cu păstrarea raportului y_N / \overline{y} . Având în vedere că factorul de reglare care produce deplasarea mediei păstrează constant și raportul medie/abatere standard, se poate spune că s'=s (y_N / \overline{y}), adică o dată ce răspunsul

 \overline{y} a fost reglat la y_N , abaterea standard va fi egală cu s'. Rezultă că funcția pierdere a calității poate fi scrisă:

$$L(\mathbf{y}) = \mathbf{k} \cdot \mathbf{s'}^2 = \mathbf{k} \cdot \left[\mathbf{s} \left(\frac{\mathbf{y}_{N}}{\overline{\mathbf{y}}} \right) \right]^2 = \mathbf{k} \cdot \mathbf{y}_{N}^2 \cdot \frac{\mathbf{s}^2}{\overline{\mathbf{y}}^2}$$
(1.18)

În relația (1.18) k și y_N fiind constante, pentru minimizarea pierderii

trebuie maximizat raportul adimensional \overline{y}^2/S^2 care corespunde speranței matematice atunci când $n \rightarrow \infty$. Expresia raportului Semnal/Zgomot pentru criteriile țintă este dată în relația (1.19). Se menționează că pentru îmbunătățirea aditivității se utilizează logaritmul raportului și prin analogie cu convenția din electronică și acustică, raportul se exprimă în decibeli, respectiv formula se ajustează cu raportul 1/n pentru păstrarea rigurozității matematice atunci când numărul de măsurări este relativ mic.

$$\frac{S}{N} = 10 \log \left[\frac{\overline{y}^2}{s^2} - \frac{1}{n} \right] \quad [dB]$$
(1.19)

Concluzie: Cu cât valoarea algebrică a raportului S/N este mai mare cu atât performanța produsului sau procesului ce trebuie optimizat va fi mai bună (evident pierderea generată va fi mai mică).

Observații:

- Raportul S/N permite relativizarea valorii abaterii standard în raport cu valoarea medie, eliminând totodată problema unității de măsură.
- În cazul în care toate valorile măsurate sunt egale adică s = 0, atunci calculul direct al raportului S/N nu este posibil. Totuşi pentru a putea evalua performanţa prin calcularea raportului S/N, se alocă abaterii standard o valoare foarte mică.
- În cazul în care caracteristicile de performanţă iau valori pozitive şi negative, există posibilitatea ca valoarea medie să devină algebric inferioară abaterii standard şi atunci intervalul de variaţie se măsoară utilizând varianţa s². Pentru calculul raportului S/N se foloseşte relaţia (1.19) în care semnul " – " indică faptul că valoarea algebrică a raportului S/N va fi cu atât mai mare cu cât varianţa s² este mai mică.
- Criteriile de performanță asimilate criteriilor țintă sunt de fapt un caz particular al criteriilor dinamice:

$$\frac{S}{N} = -10 \log s^2 \quad [dB]$$
 (1.20)

În multe cazuri valoarea țintă, pentru măsurarea performanței, are valoarea zero. Pornind de la expresia funcției pierdere a calității pentru criterii ce trebuie minimizate (relația 1.21), se observă că pentru a minimiza pierderea trebuie minimizată expresia: $S^2 + \overline{y}^2$. Pentru a păstra regula de utilizare a raportului Semnal/Zgomot, acesta se exprimă tot în decibeli și este precedat de semnul "–", (relația 1.22), semnificând faptul că pierderea va fi cu atât mai mică (adică performanța cu atât mai mare) cu cât dispersia se diminuează.

$$L(y) = k \cdot \left(s^2 + \overline{y}^2\right) \tag{1.21}$$

$$\frac{S}{N} = -10 \log \left(s^2 + \overline{y}^2\right) \quad [dB] \qquad (1.22)$$

Dacă $\overline{y} = 0$, adică atunci când toate valorile măsurate sunt egale cu zero, atunci și s = 0 și apare o nedeterminare. Pentru a evalua performanța și a putea calcula raportul Semnal/Zgomot se alocă pentru \overline{y} și s valori foarte mici (de ex 0,0001).

În unele cazuri performanța poate fi tratată și ca un "zgomot " în cadrul unei probleme cu criteriu țintă, alteori ca un "zgomot "corespunzător unui semnal de intrare nul. Este recomandabil să se trateze problema în regim dinamic luând în considerare întreaga plajă de intrări în loc de a se limita la o singură valoare a semnalului de intrare.

Dacă se pornește de la expresia funcției pierdere a calității pentru criteriile ce trebuie maximizate conform relației (1.16), minimizarea pierderii (creșterea performanței) înseamnă minimizarea expresiei: $(1/\overline{y}^2) \cdot (1 + 3s^2/\overline{y}^2)$.

Expresia pentru raportul Semnal/Zgomot este dată în relația (1.23) și păstrează caracteristicile prezentate anterior.

$$\frac{S}{N} = -10 \log \left[\left(\frac{1}{\overline{y}^2} \right) \cdot \left(1 + 3 \frac{s^2}{\overline{y}^2} \right) \right]$$
(1.23)

1.2.1.4 Proiectarea Calității "off-line" Taguchi. Proiectarea parametrilor

Planurile de experimente constau în efectuarea unor experimente stabilite aprioric cu scopul de a determina, cu minimum de încercări și maximum de precizie, influențele posibile ale diferiților parametrii astfel încât să se optimizeze performanțele unui sistem și au fost dezvoltate de Jacques Hadamard și Ronald A. Fisher. Realizarea unui plan de experiențe factorial fracționat Taguchi se bazează pe ideea că unele combinații posibile ale factorilor încercați aduc mai multe informații eficiente, reușindu-se astfel și reducerea considerabilă a numărului de experimente efectuate.

În tabelul 1.1 se prezintă varianta unui plan de experiențe factorial complet clasic pentru 3 factori pe 2 niveluri, în tabelul 1.2 se prezintă un plan factorial

complet, iar în tabelul 1.3 se prezintă două variante de plan factorial fracționat Taguchi.

Tab. 1.1 Plan factorial complet clasic pentru 3 factori pe 2 niveluri

		C1	C2
A1	B1	R1	R2
	B2	R3	R4
A2	B1	R5	R6
	B2	R7	R8

Tab. 1.2 Plan factorial complet în notația Taguchi pentru 3 factori la 2 niveluri

Nr.	Factori încercați			Rezultatul
Încercare	А	В	C	încercării
1	1	1	1	R1
2	1	1	2	R2
3	1	2	1	R3
4	1	2	2	R4
5	2	1	1	R5
6	2	1	2	R6
7	2	2	1	R7
8	2	2	2	R8

Tab. 1.3 Planuri factoriale fracționate echivalente Taguchi pentru 3 factori la 2 niveluri

Nr.	Factori încercați			Rezultatul
Încercare	А	В	С	încercării
1	1	1	1	R1
4	1	2	2	R4
6	2	1	2	R6
7	2	2	1	R7
Nr.	Factori încercați			Rezultatul
Încercare	А	В	С	încercării
2	1	1	2	R2
3	1	2	1	R3
5	2	1	1	R5
8	2	2	2	R8

Observații:

- Pentru a putea calcula efectele unui factor independent de alţi factori, planul de experienţe trebuie să fie *ortogonal*.
- Într-o matrice ortogonală fiecare nivel al fiecărui factor este combinat cu fiecare nivel al celorlalţi factori într-un număr egal de ori. În cazurile reale efectele unui factor pot depinde de nivelul altui factor. Șe spune că între factori există o *interacţiune*.
- În figura 1.8 (a, b, c) se prezintă cazurile posibile ale interacțiunii a doi factori.

Fig. 1.8 (a, b, c,) Cazuri posibile de interacțiune a doi factori

Dreptele sunt paralele, efectul factorului A este independent de nivelurile factorului B, nu există interacțiune. Dreptele nu sunt paralele, efectul factorului A nu este independent de nivelurile factorului B, există interacțiune. Dreptele se intersectează, efectul factorului A se inversează funcție de nivelurile factorului B, există o interacțiune foarte puternică.

Pentru a măsura interacțiunea dintre doi sau mai mulți factori, trebuie rezervată o coloană în matricea de experiențe. De exemplu, se consideră un plan factorial complet care conține doi factori A și B fiecare testat la două niveluri (sunt necesare $2^2=4$ încercări). Se introduce o nouă coloană pentru a studia interacțiunea dintre cei doi factori, I_{AB}. Se constată că nivelurile corespund ca și cum această coloană ar fi alocată unui al treilea factor C. Calculându-se efectul mediu al lui C se

constată că este egal cu efectul interacțiunii I_{AB}. Acest rezultat indică faptul că în realitate cele două efecte se confundă (sunt congruente). Dacă am aloca de la început colona a 3-a pentru factorul C s-ar obține un *plan factorial fracționat saturat* (conține coloane rezervate numai pentru factori independenți), un *plan factorial complet* pentru 3 factori având nevoie de 2^3 =8 încercări (experimente).

Se definește numărul de grade de libertate (*gdl*) ale unui sistem ca fiind numărul minim de comparări care se efectuează. Gradul de libertate al unui factor este egal cu numărul de comparări necesare pentru a studia efectul său (de exemplu un factor cu 3 niveluri va avea două *gdl*). În cazul interacțiunilor, numărul gradelor de libertate este egal cu produsul gradelor de libertate ale factorilor individuali. Numărul de grade de libertate al unei matrici de experiențe este egal cu numărul de încercări (experimente) minus 1. Determinarea numărului de grade de libertate este importantă în vederea alegerii matricii de experiențe potrivite fiecărei aplicații în parte.

1.2.1.5 Matrici de experiențe fracționate ortogonale Taguchi standard

Matricile Taguchi standard se dovedesc suficient de largi pentru a satisface marea majoritate a situațiilor ce intervin în practica industrială. Simbolizarea matricilor Taguchi standard se face funcție de numărul de experimente (numărul de linii ale matricii), numărul de factori și interacțiuni (numărul de coloane ale matricii) respectiv numărul de niveluri. De exemplu L_{18} ($2^1 \times 3^7$) este o matrice care are 18 încercări, $2^1=1$ factor la 2 niveluri, $3^7 = 7$ factori la 3 niveluri. *a) Modul de alegere a unei matrici Taguchi standard*

Așa cum s-a arătat anterior trebuie aleasă cea mai mică matrice care să furnizeze informațiile dorite în concordanță cu obiectivele experimentului. Se calculează numărul total al gradelor de libertate și se alege matricea Taguchi standard adecvată.

Nr.		Rezultatul						
încercare	Α	В	С	D	E	F	G	încercării
1	1	1	1	1	1	1	1	R1
2	1	1	1	2	2	2	2	R2
3	1	2	2	1	1	2	2	R3
4	1	2	2	2	2	1	1	R4
5	2	1	2	1	2	1	2	R5
6	2	1	2	2	1	2	1	R6
7	2	2	1	1	2	2	1	R7
8	2	2	1	2	1	1	2	R8

Tab. 1.4 Matricea Taguchi standard L₈

b) Tabele triunghiulare și grafuri liniare

Tabelele triunghiulare și grafurile liniare sunt asociate majorității matricilor Taguchi standard și se folosesc pentru a defini coloanele utilizate pentru studiul interacțiunilor și pentru adaptarea matricilor la nevoile specifice. Se consideră matricea standard L_8 din tabelul 1.4, Tabelul triunghiular corespunzător L_8 din figura 1.9, respectiv Grafurile liniare L_8 din figura 1.10.

Fig. 1.9 Tabel triunghiular corespunzător matricii L₈

Dacă factorii A și B sunt repartizați în coloanele 1 respectiv 2 din matricea L_8 atunci coloana rezervată interacțiunii I_{AB} se obține la intersecția liniilor corespunzătoare coloanei factorului A respectiv B, adică în coloana 3.

Fig. 1.10 Grafuri liniare asociate matricii L₈

Factorii sunt reprezentați prin cercuri, numărul corespunzător fiecăruia fiind cel al coloanei matricii. Numărul coloanei pentru interacțiuni este corespunzător segmentelor de legătură dintre cercuri. De exemplu, dacă factorul A este pe coloana 2 a matricii L_8 și factorul B este pe coloana 4 a matricii L_8 , atunci interacțiunea I_{AB} va fi repartizată pe coloana 6.

Observații:

- dacă se doreşte neglijarea interacţiunii dintre doi factori, numărul segmentului care îi uneşte poate fi repartizat unui alt factor
- un graf liniar este reprezentarea grafică a unui tabel triunghiular
- pentru fiecare matrice Taguchi standard există atâtea grafuri liniare câte combinații posibile ale repartizărilor pot exista.

Există cazuri când utilizarea matricilor Taguchi standard nu se poate face direct fiind necesare modificări ale acestora. În primul rând trebuie determinat numărul gradelor de libertate pe care matricea modificată ar trebui să le conțină. Se caută apoi printre matricile Taguchi standard matricea minimă care după modificare răspunde cerințelor impuse. Se pot în acest mod introduce factori cu 4 niveluri în matricile cu 2 niveluri etc.

nr. 5

1.2.1.6 Planuri de experimente Taguchi

Metoda planurilor de experimente Taguchi este o aplicație particulară a planurilor de experimente clasice. Planurile de experimente Taguchi tratează în mod unitar media și variabilitatea caracteristicilor măsurate. Prin utilizarea raportului S/N se poate găsi în primă instanță o combinație a nivelurilor semnalelor de intrare (factori controlabili) care se dovedesc cei mai insensibili la factorii zgomot. Exprimarea raportului S/N în dB independent de natura caracteristicilor măsurate permite compararea performanțelor mai multor caracteristici care se optimizează simultan. În figura 1.11 sunt redate etapele succesive ale metodei planurilor de experimente Taguchi.

Planurile de experimente combinate Taguchi reprezintă o configurație particulară a planurilor de experiențe și sunt folosite pentru studiul sensibilității unui sistem la factorii zgomot bine precizați. În planurile combinate se găsesc atât factorii ținuți sub control (care pilotează sistemul), cât și factorii zgomot (pe care îi suportă sistemul). Se folosesc două matrici de experiențe astfel:

- ٠ o matrice internă ce conține factorii controlați.
- ۲ o matrice extrenă ce conține factorii zgomot.

Matricea externă are ca scop repetarea fiecărei încercări din matricea internă pentru fiecare configurație a factorilor zgomot. În figura 1.12 se prezintă un plan de experiment Taguchi combinat la care matricea internă este L_8 cu 7 factori la 2 niveluri, iar matricea externă este L₄ cu 3 factori zgomot cu două niveluri.

Plan intern									Plan extern						
									Nr. de încercări repetate				Factori		
									2	3	4	zgomot			
									1	2	2	Р			
Factori ţinuţi sub control									2	1	2	Q			
Nr.încercări	Α	В	С	D	Е	F	G	1	2	2	1	R			
1	1	1	1	1	1	1	1								
2	1	1	1	2	2	2	2								
3	1	2	2	1	2	2	1								
4	1	2	2	2	1	1	2		1	◄	ѫ		4		
5	2	1	2	1	1	2	2	1							
6	2	1	2	2	2	1	1								
7	2	2	1	1	2	1	2	/ /					/		
8	2	2	1	2	1	2	1	/ /					/		
Rezultatele repetărilor încercării nr. 5 din planul							Med măs ansa rezu	lia va surate p amblul ultatelor	lorilor pentru	S/N pentru ansamblul rezultatelor de la					
principal							încercării nr. 5 încercarea								

Fig. 1.12 Plan de experimente combinat Taguchi

principal

Fig. 1.11 Etapele de realizare a unui plan de experimente Taguchi
1.2.2 Metoda planurilor de experimente factoriale complete

Pentru a defini un model aproximativ care să conțină toate interacțiunile posibile între q variabile de proiectare poate fi necesar un plan de experimentare factorial complet. În acest caz trebuie definite limitele (superioară și inferioară) al fiecărei din cele q variabile. Apoi acest interval este discretizat la câte niveluri se consideră necesar. Dacă spre exemplu se folosesc numai limitele intervalului (2 niveluri), atunci planul de experimențe se numește plan de experiențe 2^{q} factorial complet, iar dacă se folosesc și puncte intermediare (3 niveluri) se numește plan de experiențe 3^{N} factorial complet, așa cum se observă din figura 1.13.

Fig. 1.13 Plan de experimente 3^{N} factorial complet (27 puncte = 27 experimente)

Planurile de experimente factoriale se pot folosi la modelele de ordinul II, care îmbunătăţesc semnificativ optimizarea procesului atunci când modelele de ordinul I nu se potrivesc. În general pentru un număr mare de variabile, numărul de experimente crește exponențial și de aceea un plan de experimente factorial complet se folosește pentru maximum 4 sau 5 variabile. Dacă totuși numărul de variabile este relativ mare, se poate apela la o fracțiune din planul de experimente factorial complet cu costul estimării a mai puține combinații între variabile. Aceste planuri de experimente se numesc planuri de experimente factoriale fracționate (din categoria cărora fac parte și planurile de experimente Taguchi). Planurile de experimente factoriale fracționate se folosesc de obicei la identificarea celor mai importante variabile de proiectare.

De exemplu pentru un plan de experimente factorial complet 3^{q} , o fracțiune de $(1/3)^{k}$ poate fi utilizată rezultând 3^{q-k} puncte (experimente). Pentru k = 1 într-un plan de experiențe 3^{3} , rezultatul este o fracțiune de o treime numită plan de experiențe 3^{3-1} (figura 1.14).

Fig. 1.14 Trei planuri de experimente factoriale fracționate 3^{3-1} (9 puncte = 9 experimente provenite dintr-un plan de experiențe factorial complet 3^3 (27 puncte = 27 experimente)

1.2.3 Metoda planurilor de experimente compoziționale centrale (CCD)

Un model de ordinul II poate fi construit eficient și cu un plan de experiențe compozițional central (CCD). CCD sunt planuri factoriale complete de tip 2^q care au fost lărgite prin adăugarea unor puncte (experimente) centrale și axiale ce permit estimarea parametrilor de reglaj a modelelor de ordinul II (vezi RSM).

În figura 1.15, planul de experiențe implică 2^q puncte factoriale (experimente), 2^q puncte axiale (experimente) si 1 punct central (experiment). CCD este o alternativă a planurilor de experiențe 3^q în construirea unui model de ordinul II datorită numărului mai mic de experimente (15 în cazul planului CCD față de 27 în cazul planului factorial complet). Totuși, dacă numărul de variabile este mare, chiar utilizarea planurilor CCD poate fi prohibitivă.

1.2.4 Metoda planurilor de experimente D-optimale

Criteriul de D-optimalitate permite o mai eficientă construire a modelului de ordinul II. Obiectivul metodei este să se selecteze P puncte (experimente) de proiectare dintr-un set mai larg de puncte (experimente).

Dacă se consideră X matricea valorilor variabilelor de proiectare, criteriul de D-optimalitate consideră că cel mai bun set de puncte (experimente) maximizează determinantul I X^T X I.

Din punct de vedere statistic planurile D-optimale conduc la modele pentru care varianța maximă a răspunsurilor previzionate este minimizată. Aceasta înseamnă că pentru experimentele selectate se va minimiza eroarea coeficienților estimați ai modelului.

Avantajul metodei reprezintă posibilitatea folosirii de forme neregulate și posibilitatea includerii de puncte (experimente) suplimentare.

1.2.5 Metoda planurilor de experimente a hipercuburilor latine

Aceste planuri de experiențe sunt o extensie N-dimensională a planurilor de experiențe a cuburilor latine tradiționale. La fiecare nivel a fiecărei variabile de proiectare se plasează un punct (experiment). Există același număr de niveluri ca și numărul de experimente, care sunt atribuite aleatoriu experimentelor.

Prin această metodă se asigură că fiecare variabilă de proiectare este reprezentată și în plus numărul de puncte (experimente) ce urmează a fi analizate poate fi definit în mod direct.

1.2.6 Metoda planurilor de experimente Audze-Eglais

Această metodă are la bază un criteriu de elaborare a planurilor de experiențe, similar cu precedentul, care nu este dependent de modelul matematic. Datele de intrare pentru elaborarea planului sunt: numărul de variabile de proiectare (factori) N și numărul de experimente K. Modul de construire a planurilor de experiențe este:

- Numărul nivelurilor factorilor (acelaşi pentru fiecare factor) este egal cu numărul de experimente, pentru fiecare nivel existând un singur experiment (similar cu planurile hipercubului latin).
- Punctele experimentului sunt distribuite cât se poate de uniform în domeniul variabilelor de proiectare. Există o analogie fizică cu minimumul energiei potențiale a forțelor repulsive pentru un set de puncte de masă unitară dacă magnitutinea acestor forțe repulsive este invers proporțională cu pătratul distanței dintre puncte conform relației (1.24).

$$\sum_{p=1}^{P} \sum_{q=p+1}^{P} \frac{1}{L_{pq}^{2}} \to \min$$
 (1.24)

unde Lpq este distanța dintre punctele cu numerele p și q $(p \neq q)$.

Elaborarea planului este laborioasă, astfel încât fiecare plan de experimentare este realizat numai o singură dată și este stocat într-o matrice

caracterizată de nivelurile factorilor pentru fiecare din cele P experimente. De exemplu pentru un număr N = 2 factori și P = 10, matricea este:

8	10	4	6	2	3	9	5	7	1
1	7	10	6	8	5	4	2	9	3

Planul de mai sus este prezentat în figura 1.16 și este comparat cu un CCD pentru 2 variabile de proiectare și un plan hipercub latin.

Avantajul metodei este o mai bună acoperire a spațiului de experimentare iar dezavantajul este că odată definit planul de experiențe nu pot fi adăugate puncte suplimentare.

Fig. 1.16 Comparație între CCD (a), Hipercub Latin (b), Audze-Eglais

1.2.7 Metoda planurilor de experimente Van Keulen

Acest model pentru planurile de experiențe se bazează pe ideea că în decursul unui proces de optimizare iterativ prin aproximări, trebuie generate noi puncte în domenii specificate ale spațiului variabilelor de proiectare. Schema elaborată are următoarele caracteristici:

- Schema lucrează eficient chiar dacă se generează numai un singur punct adițional planului existent. Pentru un număr de noi puncte, algoritmul este folosit de câteva ori.
- Schema rămâne eficientă chiar dacă se folosesc diferite tipuri de funcții în cadrul aceleași sarcini de optimizare pentru aproximarea funcției obiectiv și a restricțiilor

Abordarea distribuie punctele cât se poate de omogen în subdomeniul de interes, acest lucru realizându-se prin introducerea următoarei funcții de cost:

$$Q = \sum_{p=1}^{P} \frac{n^{2}}{\left|\overline{x}_{p} - d\right|} + \sum_{p=1}^{P} \sum_{i=1}^{n} \frac{1}{\left(\left|\overline{x}_{i}\right|_{p} - d_{i}\right)^{2}} + \sum_{i=1}^{n} \frac{1}{\left(2\overline{d}_{i}\right)^{2}} + \sum_{i=1}^{n} \frac{1}{\left(2-2\overline{d}_{i}\right)^{2}} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{\left(\overline{d}_{i} - \overline{d}_{j}\right)^{2}}$$
(1.25)

care este minimizată în raport cu locația noului punct d. Simbolurile notate cu bară deasupra se referă la coordonate care sunt normalizate în subdomeniul de interes. Primul termen din expresie încearcă maximizarea distanței dintre puncte, iar al doilea termen încearcă asigurarea unei distribuții de-a lungul axelor de coordonate.

1.2.8 Metoda Suprafeței de Răspuns (RSM)

Metoda Suprafeței de Răspuns (RSM) este un conglomerat de tehnici statistico-matematice pentru construirea de modele empirice. Prin proiectarea experimentelor se dorește optimizarea răspunsului (variabila de ieșire), care este influențat de mai multe variabile independente (variabile de intrare), iar modificarea comportamentului variabilelor de intrare duce la identificarea schimbărilor în variabila de răspuns (ieșire).

Inițial metoda Suprafeței de Răspuns (RSM) a fost utilizată pentru modelarea răspunsurilor experimentale iar mai apoi pentru modelarea experimentelor numerice. Diferența constă în modul de generare a erorilor de către răspuns. Dacă în experimentele fizice eroarea poate apare datorită erorilor de măsurare, în experimentele generate computerizat, zgomotul (eroarea) poate fi rezultatul convergenței incomplete a procesului iterativ, rotunjirilor sau reprezentarea discretă a unor procese în fapt continue. În metoda Suprafeței de Răspuns (RSM) se consideră că erorile sunt de tip aleatoriu.

Aproximarea funcției de răspuns y = f(x1, x2,...,xq) + e poate fi considerată la limită ca fiind esența RSM. Aplicarea metodei Suprafeței de Răspuns (RSM) la optimizarea proiectelor are ca scop reducerea costurilor comparativ cu alte metode

(ca de exemplu Metoda Elementului Finit) și reducerea zgomotelor numerice asociate cu acestea.

De exemplu se consideră funcția de răspuns y din relația (1.26) prin care se dorește să se afle nivelul variabilelor de intrare x_1 și x_2 pentru care y este maximă și unde ε reprezintă zgomotul sau eroarea observată în aceasta:

$$\mathbf{y} = \mathbf{f} \left(\mathbf{x}_{1}, \mathbf{x}_{2} \right) + \varepsilon \tag{1.26}$$

Suprafaţa reprezentată de $f(x_1, x_2)$ se numeşte *suprafaţă de răspuns*. Răspunsul poate fi reprezentat grafic fie tridimensional fie bidimensional (contur) pentru a uşura vizualizarea formei suprafeţei de răspuns. Contururile reprezintă curbe de răspuns constant prezentate în planul x_i, x_j , păstrând celelalte variabile fixe. Fiecare contur corespunde unei înălţimi particulare a suprafeţei de răspuns (figura 1.17).

Fig. 1.17 Suprafața de răspuns tridimensională și conturul bidimensional

În majoritatea aplicațiilor RSM, funcția de răspuns y este necunoscută și de obicei pentru a construi o aproximare corectă pentru y se începe cu un polinom de rang 1 într-o zonă mică. Dacă răspunsul poate fi definit de o funcție liniară de variabile independente, atunci funcția de aproximare se numește model de ordinul I. De exemplu un astfel de model pentru 2 variabile independente este dat în relația (1.27):

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \varepsilon \tag{1.27}$$

Dacă există o anumită curbură în suprafața de răspuns, trebuie utilizat un polinom de grad superior. De exemplu, funcția de aproximare pentru 2 variabile se numește model de ordinul II (relația 1.28)

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \beta_{11} \mathbf{x}_1^2 + \beta_{22} \mathbf{x}_2^2 + \beta_{12} \mathbf{x}_1 \mathbf{x}_2 + \varepsilon \quad (1.28)$$

În general în problematica RSM se utilizează fie unul din cele două modele separat fie o mixtură a acestora. În oricare din situațiile precedente este necesar ca nivelurile fiecărui factor să fie independent de nivelurile celorlalți factori. De asemenea este important ca planul de experiențe utilizat pentru colectarea datelor să fie corect ales astfel încât să se obțină rezultate eficiente în aproximarea polinoamelor. După colectarea datelor se aplică Metoda Celor Mai Mici Pătrate (MCMMP) pentru estimarea parametrilor polinoamelor.

Se consideră că obiectivul studierii RSM poate fi îndeplinit prin:

- ✓ Înţelegerea topografiei suprafeţei de răspuns (maximum şi minimum local, linii de nivel)
- ✓ Găsirea regiunii unde se află răspunsul optim prin deplasarea rapidă şi eficientă pe o traiectorie prin care să se obţină răspunsul maxim (sau minim) astfel încât răspunsul să fie optimizat

Din punct de vedere istoric evoluția RSM a fost următoarea:

- 1951 introducerea modelelor de ordin I pentru aproximare și a planurilor de experiențe ortogonale pentru acestea (Box și Wilson)
- 1959 introducerea planurilor de experiențe compoziționale de dimensiuni reduse din motive de economie (Hartley)
- 1959 introducerea planurilor factoriale fracționate pentru factori la 3 niveluri (Connor şi Zehlen)
- 1960 introducerea CCD (Box şi Behnken)

Astăzi se consideră că primul scop al RSM este să se găsească răspunsul optim. În cazul în care există mai multe răspunsuri, atunci este important să se găsească optimul de compromis care nu optimizează un singur răspuns [O2]. Al doilea scop este să se înțeleagă cum se modifică răspunsul într-o anumită direcție atunci când se modifică variabilele de proiectare (intrare).

1.2.8.1 Modelul de ordin I. Planuri de experiențe pentru adecvarea modelului de ordin I

Funcția de aproximare f este un model de ordinul I atunci când răspunsul este o funcție liniară de variabile independente. Un model de ordinul I cu N experimente efectuate asupra q variabile de proiectare și un singur răspuns poate fi exprimată conform relației (1.29):

$$y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + ... + \beta_{q}x_{iq} + \varepsilon_{i} \quad (i = 1, 2, ... N) \quad (1.29)$$

Răspunsul y este o funcție de variabilele de proiectare $x_1, x_2, ... x_q$ notată prin f, plus eroarea experimentală. Modelul de ordinul I este de fapt un model de regresie multiplă în care β_j sunt coeficienții de regresie. Un model de regresie multiplă care are q variabile independente are forma din relația (1.30):

_

$$y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + ... + \beta_{q}x_{iq} + \varepsilon_{i} = \beta_{0} + \sum_{j=1}^{q}\beta_{j}x_{ij} + \varepsilon_{i}$$
(1.30)
(i = 1, 2, ...n) (j = 1, 2, ...q)
unde n > q

Parametrul β_i măsoară schimbarea așteptată în răspunsul y per creșterea unitară în x_i atunci când celelalte variabile independente sunt menținute constante. Observația i și nivelul j al variabilei independente sunt reprezentate prin x_{ii}. Structura datelor pentru un model de regresie multiplă este prezentată în tabelul 1.5:

У	x ₁	x ₂	 xq
У1	X ₁₁	x ₁₂	 x _{1q}
У2	x ₂₁	x ₂₂	 x _{2q}
•			
Уn	x _{n1}	x _{n2}	 X _{nq}

Tab. 1.5 Datele pentru modelul de regresie multiplă

Modelul de regresie multiplă poate fi scris sub formă matriceală ca în relația (1.31):

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e} \tag{1.31}$$

unde:

y este un vector de observație (n X 1), X este matricea variabilelor independente (n X n), β este vectorul coeficienților de regresie (k X 1) și e este vectorul erorilor aleatorii (n X 1) [M11].

Dacă X este o matrice (k X k), atunci sistemul liniar y = X β + e are o soluție unică Metoda Celor Mai Mici Pătrate (MCMMP) dată în relația (1.32):

$$\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}\boldsymbol{X}'\boldsymbol{y}$$
(1.32)

Ecuația de regresie estimată este dată în relația (1.33) care poate fi scrisă și sub forma (1.34):

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$$
(1.33)
$$\hat{\mathbf{y}}_{i} = \hat{\boldsymbol{\beta}}_{0} + \sum_{i=1}^{q} \hat{\boldsymbol{\beta}}_{j} \mathbf{x}_{ij} \quad i = 1, 2, \dots, n$$
(1.34)

Modelul de ordin I se utilizează pentru descrierea suprafețelor plane care pot fi sau nu înclinate, însă nu este adecvat pentru analiza minimului, maximului și a liniilor de nivel.

Aproximarea funcției f de către modelul de ordin I este rezonabilă atunci cînd f nu prezintă o curbură accentuată în acea regiune și de asemenea regiunea nu este prea extinsă, cu alte cuvinte modelul de ordin I poate fi considerat ca o aproximare adecvată într-o regiune relativ mică a x-ilor.

a) Planuri de experiențe ortogonale pentru modelul de ordin I

Planurile de experiențe ortogonale de ordinul I au avantajul că minimizează variația coeficienților de regresie β_j estimați. Un plan de experiențe de ordinul I este ortogonal dacă toate elementele matricii (X'X) sunt zero în afară de elementele de pe diagonală. Corespunzător, suma tuturor produselor dintre coloanele matricii X este zero, inversa matricii (X'X) se obține imediat și toți coeficienții de regresie sunt necorelați.

> Verificarea adecvării modelului

Pentru a verifica dacă modelul adoptat este potrivit pentru aproximarea suprafeței de răspuns reale, se utilizează ANOVA, analiza de regresie și teste pentru lipsa de adecvare. În tabelul 1.6 se prezintă analiza varianței pentru semnificativitatea modelului de regresie.

Variația	Suma pătratelor	Grade de libertate	Media pătratică	Fo
Regresie	SS _R	q	MS _R	
Eroare sau valori reziduale	SS _E	N – q - 1	MS _E	MS _R / MS _E
Total	SS⊤	N - 1	MS⊤	

Tab.	1.6	Analiza	variantei	pentru	semnificativitatea	rearesiei
				P 0		

unde N este numărul de observații iar q este numărul de variabile independente

Suma pătratelor erorilor SS_E este o măsură a volumului variației explicată de regresie. Cu cât mai mic SS_E , cu atât e mai bun modelul de regresie adoptat. Variația totală poate fi descompusă astfel:

$$SS_{E} = SS_{T} - SS_{R}$$

$$SS_{T} = y'y - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n} ; SS_{R} = \hat{\beta}'X'y - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n} (1.35)$$

$$SS_{E} = y'y - \hat{\beta}'X'y$$

> Testarea semnificativităţii regresiei

Un model de regresie adecvat trebuie să explice variația variabilei dependente din eșantion. Există teste de ipoteză referitoare la parametrii modelului care ajută la măsurarea eficienței modelului. Un astfel de test cere ca termenul de eroare (e_i) să fie distribuit normal și independent cu media egală cu zero și varianta s^2 . Cel mai simplu mod de a vedea acest lucru este să se reprezinte grafic probabilitatea normalității pentru valorile reziduale.

Dacă valorile reziduale reprezentate grafic se apropie de o linie dreaptă, atunci poate fi acceptată ideea normalității. Ținând cont că termenul de eroare este diferența dintre valorile observate și cele obținute prin modelare (relația 1.36), atunci pe baza ipotezei normalității se poate considera că și valorile y_i sunt independent și normal distribuite.

$$e'_{i} = y_{i} - \hat{y}_{i}$$
 (1.36)

j

În aceste condiții se poate aplica testul pentru semnificativitatea regresiei pentru a determina dacă există într-adevăr relația între variabila dependentă y și variabilele independente $x_1, x_2, ... x_q$. Ipotezele corespunzătoare sunt:

$$\begin{array}{l} H_{0}:\beta_{1}=\beta_{2}=\ldots=\beta_{q}=0\\ H_{1}:\beta_{i}\neq 0, \quad \text{pentru celputin un} \end{array}$$

Dacă statistica $F_{calculat} > F_{critic}$, atunci ipoteza H_0 va fi respinsă și viceversa.

> Testarea coeficienților individuali ai regresiei

Pentru a testa dacă anumite variabile trebuie incluse sau excluse din model, trebuie testate ipotezele pentru coeficienții individuali ai regresiei. În acest scop se vor reprezenta grafic efectele principale permiţînd astfel să se identifice care dintre acestea sunt importante și care nu (eventual eliminând acele variabile care nu au un efect suficient de important).

c) Planuri de experiențe factoriale 2^q cu puncte centrale pentru modelul de ordin I

Aceste planuri de experiențe constau din puncte factoriale n_f și puncte centrale n_c . Punctele centrale sunt observații colectate la $x_i = 0$ (i = 1, 2,...q). Punctele replicate la acestea pot fi folosite pentru a calcul eroarea pură. De asemenea contrastul între media punctelor centrale și media punctelor factoriale furnizează un test pentru lipsa de adecvare a acestui model. Lipsa de adecvare pentru un model de ordinul I apare atunci când modelul nu reprezintă corect răspunsul mediu ca o funcție de nivelul factorului. În tabelul 1.7 se prezintă analiza varianței pentru lipsa de adecvare.

Variația	Suma pătratelor	Grade de libertate	Media pătratică	Fo
Valori	SSE	N – q - 1	MS _E	
reziduale				MS_{LOF} / MS_{PE}
Lipsa de	SSLOF	n _d – q - 1	MS _{LOF}	
adecvare				
Eroare pură	SSPE	N - n _d	MS _{PE}	

Tab. 1.7 Analiza varianței pentru lipsa de adecvare a modelului

unde N este numărul de observații, q este numărul de variabile independente iar n_d numărul punctelor de proiectare distincte

Se observă că SS_E = SS_{PE} + SS_{LOF}. Replicările la centru pot fi utilizate pentru calcularea mediei pătratice a erorii pure, unde \overline{y}_c este media celor n_c experimente la punctul central.

Se pot scrie următoarele relații:

$$M S_{PE} = \frac{S S_{PE}}{n_c - 1} = centru \frac{\sum_{i=1}^{r} (y_i - \overline{y}_c)}{n_c - 1}$$

$$M S_{LOF} = \frac{S S_{LOF}}{n_d = q - 1}$$

$$F_0 = \frac{M S_{LOF}}{M S_{PE}}$$
(1.37)

n c

F₀ se folosește pentru verificarea ipotezei nule a lipsei de adecvare.

1.2.8.2 Modelul de ordinul II. Planuri de experiențe pentru adecvarea modelului de ordin II

Atunci când există curbură în suprafața de răspuns, modelul de ordinul I nu este suficient. Un model de ordinul II se utilizează la aproximarea unei regiuni a suprafeței de răspuns reale cu o curbură parabolică. Modelul de ordinul II include toți termenii modelului de ordin I plus termeni pătratici și termenii obținuți prin produsul valorilor de proiectare. Forma modelului de ordinul II este dată în relația (1.38):

$$\mathbf{y} = \beta_0 + \sum_{j=1}^{q} \beta_j \mathbf{x}_j + \sum_{j=1}^{q} \beta_{jj} \mathbf{x}_j^2 + \sum_{i < j} \beta_{ij} \mathbf{x}_i \mathbf{x}_j + \varepsilon =$$
(1.38)

$$= \beta_0 + \mathbf{x}_i \boldsymbol{\beta} + \mathbf{x}_i \boldsymbol{\beta} \mathbf{x}_i + \varepsilon_{ij}$$

unde $x_i = (x_{1i}, x_{2i}, ..., x_{iq})$; $\beta = (\beta_1, \beta_2, ..., \beta_q)$

Modelul de ordin II, prin flexibilitatea sa, poate aproxima eficient diverse forme locale ale suprafețelor de răspuns reale. Și pentru acest model se poate utiliza Metota celor mai mici pătrate (MCMMP) pentru estimarea coeficienților β_{i} .

Există mai multe tipuri de planuri de experiențe disponibile pentru adecvarea unui model de ordinul II.

a) Planuri de experiențe CCD pentru modelul de ordin II

Acest plan constă din puncte factoriale (dintr-un plan factorial complet 2^q sau un plan factorial fracționat 2^{q-k}), puncte centrale și puncte axiale. O reprezentare a punctelor axiale este prezentată în figura 1.18.

Fig. 1.18 Reprezentare a punctelor axiale

Planurile CCD au apărut atunci când modelele de ordin I arătau o lipsă de adecvare. Numărul de puncte centrale n_c (la origine) și distanța a (a punctelor axiale) față de centru constituie cei doi parametri ai planurilor CCD. Punctele centrale conțin informații despre curbura suprafeței (dacă aceasta este semnificativă). Punctele axiale permit o estimare eficientă a termenilor pătratici. În figura 1.19 se prezintă un plan CCD pentru q = 2 factori.

Fig. 1.19 Plan CCD cu 4 puncte factoriale, 4 puncte axiale și 1 punct central

Există 2 moduri de a alege punctele centrale n_c și punctele axiale a:

> Rularea planurilor CCD în blocuri incomplete

Blocurile reprezintă un set de condiții experimentale aproximativ omogene. Un plan CCD cu blocuri incomplete poate fi utilizat atunci când nu toate experimentele pot fi rulate în fiecare bloc. Pentru a păstra forma suprafeței de răspuns, efectul blocului trebuie să fie ortogonal relativ la efectul experimentelor. Acest lucru se poate realiza alegând corect a și n_c în blocurile factoriale și axiale.

> Rularea planurilor CCD fără blocuri

Se pot alege a și n_c astfel încât planul CCD să nu ruleze în blocuri. Dacă precizia estimației suprafeței de răspuns la un anumit punct x depinde numai de distanța de la x la origine, nu și de direcție, atunci planul se consideră rotabil. Atunci

când planul rotabil se rotește în jurul centrului, varianța lui y va rămâne aceeași. Modul de alegere a lui a, va face planul CCD rotabil prin folosirea pentru a = $2^{q/4}$ (pentru planul factorial complet) sau a = $2^{(q-k)/4}$ (pentru planul factorial fracționat).

b) Planuri de experiențe CCD ortogonale pentru modelul de ordin II

Există posibilitatea ca un plan CCD să conțină numai o singură observație la fiecare din cele n_f puncte factoriale și la fiecare din cele 2^q puncte axiale și avînd n_c observații la centru. Un astfel de plan se numește Khuri & Cornell ortogonal dacă există condiția din relația (1.39):

$$(n_{f} + 2a^{2})^{2} = n_{f}n$$
 (1.39)

unde n este numărul total de observații; n = $n_f + 2q + n_c$

Planurile CCD ortogonale cu o singură observație se obțin prin alegerea corectă a lui a și n_c . Valoarea lui a va fi cea din relația (1.40) [D3]:

a =
$$\left(\frac{\sqrt{n_{f}n} - n}{2}\right)^{\frac{1}{2}}$$
 (1.40)

c) Planuri de experiențe factoriale fracționate cu 3 niveluri pentru modelul de ordin II

Există posibilitatea, atunci când curbura suprafeței de răspuns este deosebit de importantă, să se folosească planuri de experiențe factoriale cu 3 niveluri 3^q. De obicei se rulează experimentele în blocuri incomplete folosind tehnica de confundare în blocuri.

1.2.8.3 Analizarea punctului staționar

Modelele de ordin II pun în evidență pentru suprafețele de răspuns minimuri, maximuri, culmi, și dacă există un optim, atunci acesta este un punct staționar. Punctul staționar reprezintă combinația unor variabile de proiectare la care suprafața de răspuns este fie la un maxim fie la un minim în toate direcțiile. Dacă punctul staționar este la maxim într-o direcție și la minim în altă direcție, atunci este un punct șa. Atunci când suprafața de răspuns este curbă într-o direcție și aproximativ constantă în altă direcție, atunci acest tip de suprafață se numește de tip culme. Punctul staționar poate fi aflat folosind algebra matriceală.

1.2.8.4 Deplasarea pe suprafața de răspuns după direcția pantei maxime

În general modelul experimental reprezintă un instrument, obiectivul final al cercetării fiind acela de a determina valorile factorilor de influență care asigură atingerea unui flux optim al funcției obiectiv. Astfel, precizia cu care dorim să fie făcută estimarea și costurile pe care le presupune experimentul reprezintă obiectivul care trebuie atins, prin numărul de experimente necesare a se efectua. Gândind rațional, proiectarea experimentului și dezvoltarea acestuia trebuie să se realizeze

progresiv, secvențial, astfel încât să se acopere toate situațiile previzibile. De asemenea, domeniul experimental și modelul regresional al procesului sau fenomenului studiat sunt adaptate succesiv, orientarea lor fiind determinată de concluziile formulate pe baza prelucrărilor rezultatelor experimentale anterioare; criteriile de orientare putând fi variate, fiecare generând o metodă de orientare secvențială.

O metodă des utilizată este cea de deplasare a cercetării după direcția de pantă maximă a suprafeței de răspuns, metodă ce se mai numește și *metoda ascensiunii rapide* și ea întrunește avanjatele a trei metode: metoda Gauss-Seidel, metoda gradientului și metoda planurilor factoriale.

În cadrul acestei metode deplasarea pas cu pas spre domeniul optim se realizează după direcția gradientului funcției obiectiv (panta maximă a suprafeței de răspuns), această direcție fiind corectată la atingerea unui extrem local al funcției obiectiv; în punctul corespunzător extremului local se efectuează un nou experiment factorial, iar în baza rezultatelor se determină modelul matematic și cu ajutorul informațiilor conținute de aceasta, se realizează deplasarea după o nouă direcție de pantă maximă.

Principiul experimentării orientate după direcția de pantă maximă (gradient), constă în aproximarea succesivă a suprafeței de răspuns prin plane (pentru cazul a doi factori de influență) sau hiperplane (pentru mai mult de doi factori de influență). În primul rând se alege arbitrar sau pe baza informației apriorice, o bază în spațiul factorilor de influență (variabile independente), având ca bază un punct central, se proiectează și se realizează un experiment factorial fracționat. Prin intermediul modelului se determină înclinarea planului care aproximează suprafața de răspuns și se avansează dinspre bază (punctul central), pe planul de aproximație, după direcția pantei maxime, care este ortogonală față de liniile de contur (ale estimației suprafeței de răspuns) și dă o indicație asupra cantității relative cu care trebuie modificate variabilele independente pentru a obține o creștere maximă a funcției obiectiv (fig. 1.20).

Fig 1.20 Direcția pantei maxime

Deoarece prin extrapolare în afara domeniului experimental pentru care a fost definit, modelul polinomial poate să nu fie adecvat rezultatelor experimentale, pe măsură ce se realizează deplasarea, din loc în loc, se execută experimente de control pentru a verifica concordanțele între valorile estimate și cele măsurate ale functiei obiectiv.

Mai departe trebuie progresat pe o direcție inițială, înaintea unei modelări suplimentare printr-un nou experiment factorial ce depinde de experiența cercetătorului, de natura modelului, de costuri etc. În general, dacă în urma unei experiente de control se constată că avansarea pe directia urmată devine dificilă (datorită modificării pantei), se ia acest punct drept noua bază și se execută un alt program experimental care conduce la obținerea unui nou model liniar, ceea ce reduce aproximarea suprafaței de răspuns printr-un nou plan, după care procedura deplasării se repetă.

Dacă suprafața de răspuns ia valori din ce în ce mai convenabile pentru funcția obiectiv, componentele gradientului devin mai mici și mai greu de estimat. În partea extremă, aproximarea suprafeței de răspuns reale printr-un plan este nesatisfăcătoare și o estimare cât mai corectă a acesteia se poate obține cu ajutorul modelelor de ordin superior. Astfel, strategia deplasării după panta maximă este indicată numai pentru apropierea domeniului investigat de o regiune cvasistaționară a suprafetei de răspuns, o regiune în care pantele acestei suprafete sunt mici în raport cu erorile de estimare ale lor.

În zona extremelor, metoda ascensiunii rapide nu poate fi folosită eficient deoarece în această zonă, coeficienții b_i ai polinomului de regresie, se micșorează, pot să devină mai mici decât erorile de estimare, astfel încât direcția ascensiunii rapide nu mai poate fi determinată cu o precizie suficient de bună.

Dacă, în timpul realizării programului experimental, se obține o valoare a funcției obiectiv care nu mai poate fi depășită prin ascensiunea rapidă, atunci punctul din spațiul multifactorial care a furnizat cea mai bună valoare a funcției obiectiv, se alege drept centrul unui plan de experiente de ordin superior. Dar, există și situații, în care din cauza ineficienței metodei deplasării după panta maximă, apare o neconcordanță cu modelul de ordinul I care furnizează direcția gradientului. În astfel de cazuri se recomandă revenirea la programul factorial inițial și înlăturarea cauzelor care provoacă neconcordanța, respectiv, obținerea unui model de ordinul I adecvat, fapt ce se poate realiza, de regulă, prin micșorarea intervalelor de variație ale factorilor de influență sau prin trecerea de la experimente factoriale fractionate la experimente factoriale fractionate complete.

Pentru situația în care suprafața de răspuns are mai multe extreme, prin strategia aplicată se identifică zona în care se află unul dintre ele, în functie de punctul luat ca bază de pornire. Pentru identificarea unui alt extrem, este necesară reluarea explorării, pornind de la o alta bază inițială. Această ascensiune după direcția de pantă maximă se consideră eficientă dacă verificările experimentale ce se efectuează pe parcursul realizării ei, confirmă îmbunătățirea valorilor funcției obiectiv în comparație cu valorile determinate anterior. Aplicarea strategiei ascensiunii după direcția de pantă maximă presupune realizarea unuia sau mai multor blocuri experimentale aplicate iterativ, fiecare bloc experimental cuprinzând:
 un experiment factorial fracționat 2^{k-p} efectuat pentru determinarea

- direcției de deplasare (directiei gradientului)
- un experiment unidimensional de avansare pe directia de pantă maximă cu un anumit pas, λ .

De exemplu, pentru un model cu 2 factori (k = 2) determinarea direcției se face conform modelului din figura 1.21:

Fig. 1.21 Determinarea direcției de cercetare pentru un model cu 2 factori

Dacă se presupune că modelul experimental de ordinul I obținut în urma aplicării strategiei factoriale este adecvat datelor experimentale și are forma din relația (1.41), atunci rezultă că estimația suprafeței de răspuns din relație, este un hiperplan aparținând unui spațiu k + 1 dimensional.

$$y = b_0 + b_1 x_1 + b_2 x_2 \dots + b_k x_k$$
(1.41)

Un posibil model de diagramă de flux pentru optimizarea experimentală este dată în figura 1.22:

Fig. 1.22 Diagrama de flux pentru optimizarea experimentală

Se poate demonstra, că drumul cel mai scurt dintr-un punct dat, în scopul ascensiunii acestui hiperplan, trebuie făcut după direcția de pantă maximă a hiperplanului, determinat de direcția gradientului.

Gradientul funcției y = $(x_1, x_2, ..., x_k)$ se determină cu relația (1.42):

grad
$$y = \frac{\partial y}{\partial x_1} \overline{v}_1 + \frac{\partial y}{\partial x_2} \overline{v}_2 + \dots + \frac{\partial y}{\partial x_k} \overline{v}_k$$
 (1.42)

În care:

 $\frac{\partial y}{\partial x_i}$ este derivata parțială a funcției y în raport cu variabila x_j ;

 \overline{v}_i este versorul direcției j atașată variabilei x_i a spațiului multifactorial.

Comparând relatiile (1.41) și (1.42) rezultă:

$$\frac{\partial y}{\partial x_1} = b_1; \frac{\partial y}{\partial x_2} = b_2; \dots; \frac{\partial y}{\partial x_k} = b_k$$

Relația gradientului poate fi rescrisă sub forma relației (1.43):

grad
$$y = b_1 v_1 + b_2 v_2 + \dots + b_k v_k$$
 (1.43)

Rezultă că pentru deplasarea după direcția de pantă maximă (direcția gradientului) a suprafeței de răspuns este necesar ca valorile factorilor de influență,

corespunzătoare direcțiilor V_j ale spațiului multifactorial, să se modifice proporțional cu valorile calculate ale coeficienților b_i ai modelului de ordinul I.

Experimentul unidimensional presupune efectuarea a t determinări experimentale în puncte situate la distanțele $\lambda_1, \lambda_2, ..., \lambda_t$ față de centrul experimentului factorial, pe direcția de pantă maximă.

Rezultă că, în cazul utilizării valorilor codificate pentru factorii de influență, coordonatele codificate ale punctelor în care vor fi efectuate cele t determinări sunt conform relației (1.44):

$$\mathbf{x}_{jr} = \mathbf{x}_{0j} + \lambda_{r} \mathbf{b}_{j} \qquad (1.44)$$

Unde j = 1,...k; r = 1,...t

Cele t puncte experimentale pot fi alese echidistant: $\lambda_r - \lambda_{r-1} = \lambda = \text{constant}$ (pas constant al deplasării, cazul cel mai frecvent ca în figura 1.23), sau pot fi alese la distanțe diferite.

Fig. 1.23 Direcția pantei maxime cu puncte experimentale alese echidistant

În cazul valorilor fizice ale factorilor de influență, etapele ce trebuie parcurse pentru realizarea practică a deplasării după direcția de pantă maximă cu pas constant, sunt următoarele:

- Se calculează produsele $b_j |_{jfiz}$ j = 1,...,k (componentele gradientului) între coeficienții ecuației de regresie și intervalele fizice

de variație ale factorilor de influență; Acest calcul este necesar deoarece modificarea cu o unitate a variabilei codificate x_j corespunde unei variații I_{jfiz} unități a variabilei fizice x_{jfiz}, modificarea cu b_j a variabilei codificate x_j conducând la o variație b_il_{jfiz};

- Se alege drept factor de influență de bază variabila x_j pentru care produsul $b_j l_{jfiz}$ are valoarea maximă și se notează conform relației (1.45):

$$max \left(b_{j} I_{jfiz} \right) = a \qquad (1.45)$$

Pe baza informației apriorice se alege pasul ascensiunii rapide 1;

- Se calculează componentele gradientului cu relația (1.46):

$$g_{j} = \frac{b_{j} - I_{jfiz}}{a} \lambda \quad j = 1,...,k$$
(1.46)

În care coeficientii b_j se iau cu semnul algebraic corespunzător, iar variabilele g_j se rotunjesc;

- Se trece la căutarea zonei de optim local prin adăugarea succesivă a componentelor gradientului la nivel zero (de bază) al factorilor de influență; valorile factorilor de influență astfel obținute sunt codificate și se introduc în ecuația modelului de ordinul I, calculându-se apoi valorile estimate punctual ale funcției obiectiv;
- Se continuă înaintarea după logica prezentată mai sus până când fie se indentifică un maxim local, fie se justifică schimbarea direcţiei de înaintare pe baza rezultatelor unui nou experiment factorial fracţionat.

Atunci când verificarea experimentală conduce la atingerea domeniului unui optim local oarecare, deplasarea după direcția de pantă maximă se consideră încheiată. În această fază se iau deciziile necesare continuării experimentării, care depind în mare măsură de tipul concret al problemei ce trebuie rezolvată.

Decizia care se ia cel mai frecvent în aceasă situație este aceea de continuare a cercetării cu ajutorul unui program experimental de ordin superior în scopul estimării unei zonei de optim, cât mai bune, în vederea determinării coordonatelor punctului de extrem al funcției obiectiv.

1.3 Concluzii

- Având în vedere obiectivul tezei de doctorat, verificarea stabilităţii dimensiunii nanoparticulelor de TiO₂ prin studiul bibliografic realizat, s – a ajuns la concluzia că Metoda Taguchi şi Metoda Suprafeţei de Răspuns, determină printr– un număr minim de experimente nanoparticule de dimensiuni prestabilite.
- Modelul asociat planurilor de experienţe Taguchi, este un model de ordinul I doar atunci când nu se studiază interacţiunile dintre factori, suprafaţa este un plan, şi numărul de experimente, realizate pentru verificarea stabilităţii dimensionale a nanoparticulelor, este minim.
- Metoda Suprafeţei de Răspuns permite, prin utilizarea planurilor CCD, planurilor factorial complete, planurilor de experimente Box-Behnken, planurilor de experienţe Draper - Lin, asocierea atât a modelelor de ordinul I cât şi a modelelor de ordinul II (adăugarea interacţiunilor factorilor şi a termenilor pătratici), prin identificarea celor mai importanţi factori ce afectează procesul, fiind necesare un număr suplimentar de experimente pentru a localiza setările optime ale acestora. Întrucât optimul implică adesea un minimum sau maximum planurile de experimente de optimizare implică cel puţin trei niveluri la fiecare factor astfel încât să se poată exprima curbura suprafeţei.
- Dacă modelul Taguchi (modelul de ordinul I), prin factorii selectați nu explică suficient variabilitatea caracteristicilor măsurate, atunci este necesar să se mărească numărul de experimente (prin adăugarea interacțiunii

factorilor și a termenilor pătratici), pentru a se explica variabilitatea caracteristicilor măsurate (Fig. 1.2).

- În cazul proiectării statice, metoda de proiectare "off-line" Taguchi asigură determinarea combinației optime a factorilor de control şi a interacțiunilor dintre aceştia.
- Metoda de proiectarea Robustă Taguchi este o metodă care poate fi folosită nu numai pentru atingerea robusteţei produselor sau proceselor de fabricaţie ci poate fi folosită în cercetarea experimentală fundamentală.
- Scopul unui experiment (conform abordării lui Taguchi) este să se fixeze anumite valori pentru parametrii de intrare în sistem (*intrările*), ale unui produs sau proces, astfel încât acestea să atingă performanţele dorite (*ieşirile dorite*) şi în plus să aibe o sensibilitate minimă la factorii necontrolabili (zgomote), adică *ieşirile nedorite*.
- Cu cât valoarea algebrică a raportului Semnal/Zgomot este mai mare cu atât performanţa produsului sau procesului ce trebuie optimizat va fi mai bună (evident pierderea generată va fi mai mică).
- În cazul în care dorim să ținem seama de toate interacțiunile posibile dintre factori, atunci modelul este un plan de experimente factorial complet, ce folosește un model de ordinul II doar atunci când modelele de ordinul I nu se potrivesc.
- Pentru planul de experienţe compoziţional central (CCD), care de asemenea apelează la un model de ordinul II şi care este de fapt un plan de experienţe factorial complet căruia i s – au adăugat puncte centrale şi axiale, utilizarea acestora devine prohibitivă atunci când numărul factorilor este mare.
- În cadrul celor două metode utilizate, metoda Taguchi şi metoda Suprafeţei de Răspuns, pentru analiza predicţiilor s – a utilizat metoda direcţiei de pantă maximă a suprafeţei de răspuns sau metoda gradientului, ce constă în aproximarea succesivă a suprafeţei de răspuns prin plane (pentru cazul a doi factori de influenţă) sau hiperplane (pentru mai mult de doi factori de influenţă).
- Raţionamentul de alegere a metodei Taguchi şi metodei Suprafeţei de Răspuns utilizate în capitolul 3 al tezei de doctorat se fundamentează pe principalul punct forte pe care acestea îl prezintă în raport cu toate celelalte metode dedicate, evidenţiate în literatura de specialitate, şi anume un număr minim de experimente necesare din care să se obţină informaţia maximă.

2.CONSIDERAȚII GENERALE ASUPRA DIOXIDULUI DE TITAN (TiO₂)

2.1 Caracteristici structurale

Dioxidul de titan TiO₂ se găsește stabil în patru forme naturale[L1]:

- ♦ anatas (tetragonal)
- *brookit* (ortorombic)
- rutil (tetragonal)
- TiO₂-B (monoclinic)

Formele rutil, anatas și brookit prezintă structură octaedrică de tip [TiO₆]. Cele trei structuri cristaline prezentate schematic în figura 2.1 (a, b, c), diferă prin tipul distorsiunii fiecăruia dintre octaedri și prin structura de ansamblu a lanţurilor octaedrice. Anatasul poate fi privit ca fiind construit din octaedri care sunt conectați pe axele verticale, în cazul rutilului sunt conectați prin intermediul muchiilor, iar brookit-ul prin muchii după axe verticale. Calculele termodinamice, bazate pe date calorimetrice, au stabilit că rutilul este faza cea mai stabilă la toate temperaturile și la presiuni de până la 60 kbarr [C2].

Fig. 2.1 a Structura cristalină a rutilului

Fig. 2.1 b Structura cristalină a anatas - ului

Fig. 2.1 c Structura cristalină a brookit - ului

Diferențele mici dintre energiile libere Gibbs (4...10) kJ/mol între cele trei faze sugerează că formele polimorfe sunt aproape la fel de stabile ca rutilul la temperaturi și presiuni normale. Datele experimentale au scos în evidență faptul că stabilitatea fazelor cristaline poate varia funcție de dimensiunile particulelor. Anatasul, una dintre formele importante și cu multiple aplicații ale dioxidului de titan (TiO₂), este stabil din punct de vedere cinetic, transformarea sa în rutil la

titan (110₂), este stabil din punct de Vedere cinetic, transformarea sa in rutil la temperatura camerei este atât de lentă încât, practic, tranziția nu are loc. La scară macroscopică, tranziția de fază ajunge la o viteză măsurabilă la temperaturi mai mari de 600^oC [S7]. În timpul transformării, planurile de oxigen pseudoîmpachetate devin planuri strâns împachetate tipice rutilului și are loc un rearanjament cooperativ între ionii de Ti și cei de O spre această configurație. Mecanismul propus implică o modificare a rețelei formate din ionii de O cu o rupere minimă a legăturilor Ti-O ca rezultat al nucleației la suprafață, urmată de creșterea particulelor. Procesul de nucleație este influențat foarte mult de contactul interfacial în materialele nanocristaline și, odată inițiat, se desfășoară rapid fiind urmat de procesul de creștere [Z4]. Conversia monotropică anatas / rutil a fost studiată în special pentru aplicații, deoarece faza cristalină în care se află TiO₂ (anatas sau rutil) este unul dintre parametri critici care determină utilizarea ca catalizator, sau material pentru membranele ceramice [L7]. Această transformare, obținută la temperatură și presiune înaltă este influențată de numeroși factori, dintre care pot fi amintiți concentrația defectelor în rețea, dimensiunea particulelor sau presiunea aplicată mediului de creștere.

Concentrația defectelor în rețea și la suprafață depinde în principal de metoda de sinteză și de prezența dopanților. O creștere a numărului defectelor de suprafață duce la creșterea vitezei de transformare de fază anatas în rutil deoarece dopanții acționează ca centri de nucleație. Se crede că valoarea mare a energiei de interfață între brookit și anatas este cauza apariției unor centri de nucleație potențiali ai acestei transformări [H10].

Din punct de vedere fizic, temperatura de conversie și viteza tranziției de fază depind de cât de repede cristalizează particulele în faza anatas pentru a ajunge la dimensiunea critică. Din dovezi circumstanțiale rezultă că este de așteptat ca dimensiunea critică a nucleelor cristalitelor de rutil să fie de cel puțin trei ori mai mare decât cele de anatas [W3]. Aceasta înseamnă că dacă sinterizarea particulelor de anatas este întârziată prin tehnici adecvate (metode de sinteză, dispersia pe un suport sau adăugarea unor compuși ca Ln_2O_3 , ZrO_2 , sau SiO_2 utilizați în preîntâmpinarea aglomerării particulelor de anatas) probabilitatea formării unor nuclee de dimensiune critică este micșorată, transformarea este întârziată și stabilizarea fazei anatas este posibilă până la temperatura de 1000⁰C [S7].

Pe de altă parte, o dimensiune redusă a particulelor este de regulă asociată cu o suprafaţă specifică mai mare. În aceste condiţii, valoarea energiei totale de suprafaţă a TiO₂ creşte, forţele care duc la formarea rutilului cresc şi se produce transformarea anatas/rutil. Odată ce dimensiunea critică a particulelor este atinsă folosind anatas nanodimensional ca material de start, transformarea atinge o viteză măsurabilă la temperaturi mai mici de 400^oC [G2].

Prin aplicarea unei presiuni, care apare ca parametru variabil în sinteza hidrotermală, atât energia liberă de suprafață, cât și energia potențială de suprafață pot fi reglate cu suficientă acuratețe. O creștere a presiunii de la 1 la 23 kbarr scade temperatura de transformare cu 500°C oferind posibilitatea sintetizării la temperatură scăzută [S9].

Din punct de vedere termodinamic, sinteza dioxidului de titan presupune câteva considerații interesante.

În procesul de tratare termică pot avea loc următoarele transformări de fază: anatas - brookit şi/sau rutil, brookit - anatas şi/sau rutil, anatas - rutil şi brookit - rutil. Aceste transformări de fază cristalină implică un strâns echilibru energetic în funcție de dimensiunea particulelor. Entalpiile de suprafață ale celor trei forme polimorfe sunt diferite, astfel încât intersectarea stabilității termodinamice poate apărea în condiții premergătoare macrogranulării, anatas şi/sau brookite fiind stabile la dimensiuni mici ale particulelor [Z3,Z4]. Cu toate acestea, ocazional, au fost observate comportamente anormale şi rezultatele sunt inconsecvente.

Hwu și colaboratorii au demonstrat că structura nanoparticulelor de TiO₂ depinde în mare măsură de metoda de sinteză [H12]. Pentru particule de TiO₂ mai mici de 50 nm, anatasul este mai stabil, iar tranziția în rutil are loc la temperaturi mai mici de 973 K. Odată ce a fost format rutilul, acesta a crescut mult mai repede decât anatasul. Banfield și colaboratorii au descoperit că rutilul devine mai stabil decât anatasul pentru particule cu dimensiunea de ~ 14 nm [G4]. Ye și colaboratorii au observat o tranziție de fază lentă a brookit-ului și o creștere a particulelor la temperaturi mai mici de 1053 K. De asemenea, au observat că au loc transformări rapide din brookit în anatas și din anatas în rutil în intervalul de temperatură (1053...1123) K, precum și o creștere rapidă a dimensiunii particulelor cristalizate în forma rutil la temperatura de 1123 K. Ei au ajuns la concluzia că nu are loc transformarea directă a brookit-ului în rutil, ci înainte trebuie să se transforme în anatas. Totuși, s-a observat că pot avea loc transformări directe ale nanocristalelor de brookit în rutil la temperatura de 973 K [K3]. Într-un studiu ulterior s-a arătat că succesiunea transformărilor și stabilitatea termodinamică a fazelor cristaline depind de dimensiunea inițială a particulelor anatas și brookit.

Astfel, a fost studiat comportamentul transformărilor de fază a agregatelor nanocristaline în timpul procesului de creștere pentru reacțiile izotermice și izocronice [Z4].

În urma studiilor, a rezultat că anatasul este stabil termodinamic pentru dimensiuni ale particulelor de 11nm, forma brookit între (11...35) nm, iar rutilul la dimensiuni de peste 35 nm. Dimensiunea particulelor de antas și rutil crește cu creșterea temperaturii, dar rata de creștere este diferită, rutilul având o rată mult mai mare de creștere decât anatasul. Particulele de rutil cresc rapid după procesul de nucleație, în timp ce dimensiunea particulelor de anatas rămâne practic neschimbată. Valoarea energiei de activare obținută este de 299, 236, și 180 kJ/mol pentru nanoparticulele de TiO₂ cu dimensiuni de 23, 17, și 12 nm [X2]. Descreșterea stabilității termice în nanoparticulele de granulație mai mică s-a datorat energiei de activare reduse.

2.2. Proprietăți ale dioxidului de titan (TiO₂)

O serie de proprietăți fizice deosebite ale dioxidului de titan îl fac atractiv pentru diverse aplicații practice, iar câteva considerații teoretice vor explica în plus importanța și necesitatea efortului de a identifica metode științifice de programare a sintetizei acestui material prin una dintre cele mai eficiente și moderne metode, cea hidrotermală.

2.2.1 Proprietăți optice

Mecanismul principal de absorbție a luminii în semiconductori puri este tranziția directă a electronilor între benzile energetice. Această absorbție este mică în semiconductorii indirecți ca de exemplu dioxidul de titan, unde tranzițiile electronice între centri de bandă sunt interzise prin simetria cristalului. Ca urmare a tranzițiilor indirecte de electroni absorbția luminii în cristalele mici de TiO_2 se intensifică.

Tranzițiile indirecte sunt permise datorită elementelor mari din matricea dipol și a densității mari, pentru electronii din banda de valență. O intensificare considerabilă a absorbției are loc la nanocristalele de TiO_2 cu dimensiuni mici, la fel ca în semiconductorii microcristalini și poroși.

O creştere rapidă a absorbției are loc la energii fotonice mici când: hv < Eg+Wc, unde Eg este energia benzii interzise, iar Wc este lărgimea benzii de conducție. Tranzițiile electronice în fiecare punct din banda de conducție devin posibile când hv = Eg + Wc. O intensificare a absorbției are loc datorită creșterii densității electronice, numai în banda de valență. Absorbția la interfață devine cel mai important mecanism al absorbției luminii pentru cristale care au dimensiuni mai mici de 20nm. Sato și Sakai au arătat prin calcule și măsurări că banda interzisă a nanoparticulelor de TiO₂ este mai mare decât banda interzisă a materialului monolit, datorită dimensiunilor mici, de ex., tranzițiile electronice între straturile 3d și 2d [S1,S2].

Astfel, prin măsurări, s-a constatat că marginea inferioară a benzii de conducție pentru nanoparticulele de TiO_2 a fost cu aproximativ 0,1 V mai mare, în timp ce marginea superioară a benzii de valență a fost cu 0,5 V mai mică decât cea a dioxidului de titan în forma cristalină anatas [S1]. Bavykin și colaboratorii au studiat absorbția optică și fotoluminiscența nanotuburilor de TiO_2 cu diametrul în intervalul [2,5...5] nm, și au găsit că, deși diametrele nanotuburilor erau diferite, acestea aveau aceleași proprietăți optice [B2]. În plus, față de cercetările anterioare cu privire la structurile electronice pe monoliți, s-au facut studii și pe diferite nanocristale de TiO_2 . Mora-Sero și Bisquert au investigat nivelul Fermi al stărilor în nanoparticulele de TiO_2 prin statisticile stării stabile ale electronilor [M9]. Ei au demonstrat că, capcanele electronice de pe suprafață nu echilibrează electronii.

2.2.2 Proprietăți electrice

În anul 1942 Earle a observat faptul că dioxidul de titan(TiO₂) sub formă cristalină rutil sau anatas este semiconductor de tip "n", iar conductivitatea scade odată cu creșterea presiunii parțiale a O₂ la o temperatură de aproximativ 600°C [E2]. Efectul oxigenului a fost explicat pe baza unui echilibru ce implică eliberarea termică a O₂ din rețeaua cristalină. Aceasta conduce la formarea ionilor de Ti³⁺ responsabili de conductivitatea electrică. Energia de activare pentru conductivitatea electrică este de 1,75 eV pentru faza cristalină rutil nesinterizată și de 1,7 eV pentru pulberea rutil sinterizată, iar banda interzisă a monocristalelor de rutil este în jurul valorii de 3,05 eV.

Măsurările conductivității în prezența și respectiv în absența luminii au fost de asemenea realizate pe probe ușor reduse (reducerea s-a realizat în mediu de H_2 la temperatura de 600°C). Conductivitatea la întuneric s-a dovedit a fi de mare interes în momentul în care temperatura probei a fost crescută de la 25°C la 250°C și apoi răcită la temperatura camerei.

Proprietățile electrice ale filmelor subțiri de rutil și anatas au fost studiate, existând diferențe mari ale conductivității electrice a celor două tipuri de filme în urma reducerii prin încălzire sub vid chiar și la 400-450°C. Filmele de anatas au avut aspect metalic cu nici o schimbare în conductivitate, în schimb filmele de rutil au prezentat diferențe măsurabile ale energiilor de activare: 0,076 eV pentru 400°C și 0,06 eV pentru 450°C.

Pe baza unui spectru de absorbție optică, banda de energie interzisă a fost estimată a fi 3,0 eV pentru rutil și 3,2 eV pentru anatas. Forro și colaboratorii au studiat proprietățile electrice ale monocristalului de anatas de puritate ridicată și au măsurat o energie de activare pentru conductivitatea electrică de 0,004 eV. Recent, Hendry și colaboratorii au atras atenția asupra problemei de transport a electronilor, existând un domeniu foarte larg între valorile mobilității Hall (0,01...10) cm²V⁻¹s⁻¹ și polaron [H6]. O parte din problemă poate fi datorată prezenței sau absenței dopantului care poate scădea mobilitatea electronilor.

2.2.3 Proprietăți fotocatalitice

Fotocatalizatorii pe bază de semiconductori au atras tot mai multă atenție, deoarece pot fi utilizați pentru purificarea aerului, tratarea apelor, agenți antibacterieni, materiale cu proprietăți de auto-curățare etc. Dintre varietatea de materiale fotocatalitice, dioxidul de titan (TiO_2) a fost cel mai adesea utilizat și investigat [G3], deoarece prezintă avantaje în ceea ce privește costurile, stabilitatea chimică, nontoxicitate precum și proprietățile sale optoelectronice. În scopul îmbunătățirii activității fotocatalitice a dioxidului de titan, au fost investigați diferiți dopanți.

Un obiectiv relativ recent al ultimului deceniu este găsirea de noi generații de fotocatalizatori sensibili la radiațiile din spectrul vizibil. Acesta este un fapt demonstrat de numărul de publicații, cărți și conferințe. Chiar dacă succesul dioxidului de titan ca fotocatalizator este limitat, se au în vedere și alte aplicații, pe termen lung sau scurt, toate având dioxidul de titan în rol primar în cadrul sistemului [H9]. Cercetarea unui fotocatalizator activat în domeniul vizibil are în vedere o creștere exponențială a numărului de aplicații ale acestuia.

Dacă banda interzisă a TiO_2 sau a altui fotocatalizator ar putea fi redusă, ar putea fi absorbiți fotonii cu energie mai scăzută, iar fotoactivitatea catalizatorului ar crește direct proporțional. Totuși, există limitarea impusă de potențialele redox de care depinde menținerea eficienței fotocatalitice [M9]. De exemplu, marginea benzii de valență a fotocatalizatorului semiconductor trebuie să aibă suficientă energie pentru a stimula reacția de oxidare necesară generării de radicali. Dacă banda interzisă scade sub un anumit nivel specific, cerința energetică pentru reacția fotocatalitică nu este îndeplinită, deși semiconductorul absoarbe radiația vizibilă. În consecință, banda interzisă a unui fotocatalizator ideal ar trebui să fie atât de îngustă cât permit cerințele minime legate de poziția marginilor de bandă [N3]. Fotocatalizatorul ideal ar trebui să fie stabil fotochimic și de aceea nesusceptibil la orice tip de coroziune în toate mediile de reacție.

Dioxidul de titan (TiO₂) poate de asemenea să fie considerat netoxic, ca un argument suplimentar pentru folosirea sa ca fotocatalizator. El a fost utilizat în aplicații care au presupus contactul uman direct sau indirect [P1].

În concluzie, TiO₂ s-a impus în domeniul fotocatalizei ca subiect de cercetare, caracterizare și aplicații. Motivul utilizării în diferite domenii se datorează benzii sale interzise moderată, netoxicitate, aria suprafeței mari, cost redus, reciclabilitate, fotoactivitate înaltă, un domeniu larg de procedee de sintetizare, stabilitate chimică și fotochimică. TiO₂ are o fază stabilă, rutil și două faze metastabile anatas și brookit. Deși rutilul are o varietate largă de aplicații în primul rând în industria pigmenților, forma anatas, cu o bandă interzisă de 3,2 eV, s-a dovedit a fi cea mai activă structură cristalină, datorită poziției favorabile a benzii de energie și a suprafeței specifice mari.

Cercetarea actuală se concentrează în primul rând pe creșterea randamentului cuantic a procesului fotocatalitic, care poate fi obținut folosind una

dintre cele două metode generale (ori o combinație a lor). Prima metodă constă în optimizarea structurii TiO_2 pur, iar a doua se referă la modificarea suprafeței specifice, de obicei prin dopare.

2.3 Metode de obținere a dioxidului de titan (TiO₂)

2.3.1 Metoda sol-gel

În anul 1939, Geffcken a elaborat primul patent ce demonstra posibilitatea utilizării metodei sol-gel în realizarea unor filme pe bază de SiO₂ și TiO₂, iar în anul 1953 au fost introduse pe piață primele filme acoperite cu aceste materiale. Metoda se bazează pe reacțiile de hidroliză și condensare ale unor precursori adecvați; caracteristic pentru aceștia este prezența unui cation metalic înconjurat de diferiți liganzi. Succesul metodei este datorat numeroaselor posibilități chimice pe care le oferă în domeniul obținerii de sticle, fibre ceramice, filme, materiale dielectrice, membrane, pulberi ceramice [C7], fotocatalizatori [O5] sau pigmenți. Etapele sintezei TiO₂ prin metoda sol-gel sunt următoarele:

a. Formarea gelului - în urma reacției de hidroliză se obțin sisteme coloidale cu grad mare de dispersie, în care faza dispersată este formată din particule solide cu dimensiuni cuprinse între 1 și 1000 nm; în funcție de natura mediului de dispersie se deosebesc: hidrosoli, organosoli sau aerosoli [F1]; reacția de hidroliză poate fi totală sau parțială în funcție de cantitatea de apă utilizată, iar pentru ca reacția de condensare să se desfășoare cu o viteză mai mică decât hidroliza, se realizează solubilizarea alcoxidului cu alcool.

Reacțiile de condensare rezultă într-un proces de gelifiere, adică în formarea unui agregat macroscopic unitar care înglobează faza lichidă preexistentă sau rezultată din reacții, ce poartă denumirea de gel.

b. Uscarea - constă în evaporarea superficială a umidității, urmată de transportul vaporilor formați, cu ajutorul unui agent purtător de căldură, cum ar fi aerul sau gazele calde (proces termic) și, concomitent, difuzia umidității din interiorul materialelor spre suprafața (proces de transfer de masă). Datorită transferului de căldură și de masă, se realizează la un moment dat o stare de echilibru, astfel că umiditatea materialului și a agentului de uscare rămân constante, în condițiile unei temperaturi constante în sistem.

c. Sinterizarea - este procesul prin care pulberea aglomerată este supusă activării termice și trece în starea de material consolidat, cu proprietăți apropiate sau chiar egale cu cele ale materialului în stare cristalină compactă. În aplicațiile sale, TiO_2 rezultat prin procedeul sol-gel se prezintă atât ca gel amorf, cât și ca material cristalin, sub formă de anatas, brookit sau rutil.

Această metodă implică formarea TiO_2 sub formă de precipitat, sol sau gel prin hidrolizarea și condensarea (cu formare de polimeri) alcoxizilor de titan.

Metoda sol-gel prezintă multe avantaje față de alte tehnici de sinteză cum ar fi puritatea, omogenitatea și flexibilitatea în introducerea dopantului în concentrații ridicate, control stoechiometric, ușurința în procesare, control asupra compoziției, abilitate de a acoperi arii extinse și complexe.

2.3.2 Metoda hidrotermală clasică

Metoda hidrotermală de creștere a cristalelor, mono sau policristaline (ca structură), respectiv macro-, micro- sau nanocristaline (ca dimensiuni) are deja o vechime și tradiție respectabilă. Numeroase procedee și tehnici valoroase au fost elaborate de-a lungul anilor pentru creșterea de monocristale și policristale de cele mai variate tipuri, de la cuarț la safir și rubin, de la ferite până la materiale piezoelectrice.

În ultimii ani, un deosebit avânt l-a luat studiul materialelor cristaline de dimensiuni submicronice, așa numitele nanocristale (1-100) nm. Dimensiunile reduse, care adaugă proprietăți noi substanței cristaline nanodimensionate în raport cu cea macroscopică, fac din aceste materiale elemente de neînlocuit în fizica și chimia catalizatorilor, a celulelor fotovoltaice, a pilelor de combustie, etc.

În general, sinteza hidrotermală a materialelor nanocristaline constă în introducerea într-un recipient închis rezistent la temperatură și presiune (numit autoclavă) a precursorilor și încălzirea acestora, până când temperatura și presiunea generată de încălzire duc la cristalizarea substanțelor aflate în soluție. Controlul judicios al temperaturii, presiunii, duratei procesului, al gradului de umplere al autoclavei, al concentrației precursorilor, permit obținerea de nanocristale cu dimensiunile și tipurile de cristalizare dorite [D5].

Există un interes din ce în ce mai mare în ceea ce privește realizarea de catalizatori suport, fotocatalizatori, catalizatori ai oxidării și electrocatalizatori, având la bază oxizi semiconductori. Dintre oxizii semiconductori, TiO_2 este cel mai studiat material în ultimii ani datorită proprietăților sale unice (bun fotocatalizator, netoxic, biocompatibil etc.). Există câteva căi de obținere a particulelor de TiO_2 , iar una dintre acestea este metoda hidrotermală.

Această metodă prezintă multe avantaje, ca de exemplu obținerea unui produs cristalin omogen, ce poate fi obținut în mod direct la o temperatură de reacție relativ scăzută (mai mică de 150°C). Caracteristica cea mai importantă a metodei constă în faptul că favorizează diminuarea gradului de aglomerare a particulelor, distribuție dimensională redusă, omogenitatea fazei și controlul asupra morfologiei particulelor.

Metoda hidrotermală s-a dovedit a fi una din cele mai bune metode de obținere a particulelor de TiO_2 de mărimi și forme dorite, prezentând omogenitate în compoziție și un grad ridicat de cristalinitate [T11].

Creșterea cristalelor sau procesarea materialelor în condiții hidrotermale necesită un vas de presiune capabil să reziste la temperatură și presiune înaltă și la acțiunea unui solvent corosiv. S-a studiat detaliat obținerea hidrotermală în condiții de temperatură și presiune redusă a particulelor de TiO_2 , și influența diferiților parametrii, ca de exemplu temperatura, timpul în care se realizează experimentul, presiunea, gradul de umplere, tipul solventului, pH-ul și cantitatea inițială a produsului rezultant.

Presiunea, temperatura și rezistența la coroziune sunt cei mai importanți parametri de care trebuie ținut cont în alegerea unei autoclave. Dacă reacția are loc direct în vas, rezistența la coroziune reprezintă primul factor ce determină alegerea materialului autoclavei. Materialele cele mai adecvate sunt aliajele fiabile din punct de vedere mecanic, care prezintă rezistență mare la coroziune, cum ar fi oțelurile inoxidabile austenitice, superaliaje bazate pe fier, nichel, cobalt precum și titanul și aliajele sale. Proprietatea critică, pentru materialul folosit în autoclava hidrotermală, este rezistența la rupere de fluaj, care măsoară timpul după care are loc ruperea materialului tensionat la o temperatură dată. De asemenea, trebuie luate în considerare rezistența la rupere și întinderea. Superaliajele sunt, de regulă, mai rezistente decât oțelul inoxidabil, chiar și la temperaturi mari. Titanul pur este puțin rezistent și greu de utilizat, dar unele aliaje ale titanului au rezistență comparabilă cu oțelul inoxidabil. Titanul pur, datorită rezistenței sale superioare la coroziune, poate fi folosit ca autoclavă până la 300°C.

În majoritatea experimentelor hidrotermale, mineralizatorul folosit este puternic coroziv și poate ataca vasul, ceea ce este dăunător pentru obținerea materialelor cu puritate ridicată. Acest lucru impune acoperirea peretelui interior al autoclavei sau plasarea unei căptușeli separate în autoclavă. Căptușelile sunt capsulele din metale nobile folosite cu succes în cazul mediilor alcaline și neutre. Titanul este mult mai rezistent la coroziune, dar este foarte greu de manevrat. Folosirea tubului din sticlă drept căptușeală a fost aplicat prima dată de Tanaka, iar Qian a introdus prima dată metoda balansului presiunii între tuburile de sticlă ce conțin precursorul și tuburile din oțel care conțin tubul de sticlă. Cheng și colaboratorii au îmbunătățit metoda folosind sticlă pyrex și apă ca transmițător de presiune. Curând, utilizarea autoclavelor din oțel și a căptuțelilor din metale nobile a devenit foarte utilizată, permițând obținerea condițiilor de presiune și temperatură mai înalte [L4].

Obținerea TiO₂ este realizată de obicei în autoclave mici de tip Morey, prevăzute cu căptușeală de teflon. Sinteza hidrotermală a particulelor de TiO₂ se realizează de obicei la temperaturi mai mici de 200° C și presiuni sub 100 barr. Acești parametri fizici facilitează folosirea autoclavelor simple ca model, prevăzute cu căptușeală de teflon [L4].

Sinteza hidrotermală a nanocristalitelor de TiO₂ pornește în general de la geluri amorfe în prezența apei distilate pure sau a diferiților mineralizatori ca hidroxizi, cloruri și floruri ale metalelor alcaline, la diferite valori de pH. [K1]. Ca precursori pentru titan pot fi utilizați atât compuși alcoxidici [K2] cât și non alcoxidici [P2] în sinteza hidrotermală a TiO₂, în mediu acid sau bazic în funcție de caracteristicile morfostructurale dorite [H11]. Metoda hidrotermală a fost utilizată și pentru obținerea de straturi de TiO₂ depuse pe suprafețe de Ti sau diferite aliaje ale acestuia [O1, W6, H3].

2.3.3 Metoda hidrotermală în câmp de microunde

O metodă nouă pentru sinteza nanomaterialelor este metoda hidrotermală cu încălzire în câmp de microunde, care are la bază o serie de mecanisme fizice noi care contribuie la reducerea consumului de energie prin înlăturarea pierderilor și durata mult mai mică a sintezei, precum și la un control mult mai riguros al câmpului termic din mediul de sinteză, prin înlăturarea cauzelor inerției termice și posibilitatea controlului temperaturii prin generatorul de microunde [G1, B3, A1].

În cazul metodei hidrotermale clasice, încălzirea autoclavei se realizează în cuptoare încălzite rezistiv. Creșterea temperaturii se realizează pe baza unui program prestabilit pentru fiecare sinteză. Este posibil ca până la atingerea temperaturii de lucru să apară faze staționare care pot afecta procesul de creștere și tranziție a cristalelor [B1].

Utilizarea microundelor presupune un proces complex și multidisciplinar din punct de vedere al echipamentului și însușirilor materialelor, multe dintre ele depinzând semnificativ de temperatura de lucru. Sunt necesare cunoștințe tehnice și economice, pentru a ști cum, când și unde este eficientă utilizarea microundelor în sinteza de materiale. În principiu, trebuie avute în vedere două criterii majore de apreciere:

a. Caracteristicile de performanță ale utilizării microundelor:

- putere mare de penetrare a radiației
- controlul riguros al distribuției câmpului electric
- încălzirea rapidă
- auto-limitarea reacțiilor

b. Caracteristicile economice ale utilizării microundelor:

- controlul dimensiunii materialului
- valoarea de piață crescută a materialului obținut
- îmbunătățirea caracteristicilor fizice ale materialului
- micşorarea dimensiunii spaţiului fizic ocupat
- consum redus de energie electrică consumată
- costuri scăzute de operare și ale echipamentului.

Unul dintre cei mai dificili parametri de măsurat în procesarea cu microunde este temperatura. Măsurarea temperaturii probei este cea mai comună operație în controlul procesului de încălzire. Inacuratetea măsurării temperaturii sau perturbarea câmpului cu microunde datorită senzorilor de temperatură poate duce la indicații eronate asupra câmpului termic. Măsurătorile de temperatură într-un mediu cu microunde prezintă numeroase dificultăți. Măsurarea temperaturii trebuie făcută direct în interiorul probei și nu în vecinătatea sa; microundele încălzesc proba însăși (din interior). Gradienții termici ce apar în timpul încălzirii cu microunde fac dificil controlul temperaturii probei folosind un singur punct de măsurare. Este dificilă menținerea unui contact bun cu proba datorită modificării dimensiunii acesteia sau datorită mișcării probei. Procedurile convenționale de măsurare a temperaturii folosind termocuple nu sunt potrivite deoarece prezența unor metale în mediul cu microunde poate cauza interferențe electromagnetice, ducând la distorsionarea câmpului electric, cu concentrări locale mărite ale liniilor de câmp, având drept consecință încălzirea locală suplimentară mergând până la ambalarea termică. Măsurările optice presupun cunoașterea curbei emisie - temperatură pentru probă. În funcție de proprietățile optice și dimensiunea probei, emitanța sa poate face sensibilă radiația optică la mediul înconjurător mai rece din jurul probei [04].

Creșterea rapidă cu temperatura a factorului de pierderi în dielectric este principala cauză a instabilității termice și a neuniformității temperaturii. De aceea, deși încălzirea uniformă în câmp de microunde este argumentul cel mai des folosit în favoarea metodei, încălzirea neuniformă este adesea o realitate în cazul multor materiale, la viteze nominale de încălzire. S-au făcut câteva încercări pentru a stabili condițiile în care are loc ambalarea termică și cum poate fi aceasta controlată.

Regimul de stabilitate a fost exprimat luând în discuţie pierderea de căldură și accelerarea puterii absorbite odată cu creșterea temperaturii. Regimul stabil a fost posibil în condițiile unei disipări termice rapide sau a unei dependenţe scăzute cu temperatura a factorului de pierderi dielectrice [N4,H5].

În conductori, electronii se mişcă liber în câmpul electric, rezultând un curent. În afară de cazul supraconductorilor, fluxul de electroni încălzeşte materialul prin încălzire rezistivă. În dielectrici, electronii nu circulă liber, dar reorientarea electronică sau distorsiunea dipolilor permanenți sau induși poate duce la încălzirea materialului. Permitivitatea complexă este o măsură a abilității unui dielectric de a absorbi și a înmagazina energia electrică, cu partea reală caracterizând penetrarea

microundelor în material, iar partea imaginară indicând abilitatea materialului de a stoca energia.

Materialele care sunt adecvate încălzirii în câmp cu microunde sunt cele polarizabile sau au dipoli care se reorientează rapid. Totuși trebuie studiate consecințele conductivității termice scăzute și pierderile dielectrice care măresc dramatic temperatura "punctelor fierbinți" precum și ale instabilității termice [R4]. Interacțiunea dintre microunde și material poate fi descrisă prin trei

Interacțiunea dintre microunde și material poate fi descrisă prin trei procese: încărcarea spațială cu sarcină datorată conducției electronice, polarizarea ionică datorată vibrațiilor în IR-îndepărtat și rotația dipolilor electrici.

2.3.4 Sinteza prin microemulsie

Apa în microemulsie de ulei a fost utilizată cu succes pentru sinteza nanoparticulelor. Microemulsiile pot fi definite ca fiind stabile termodinamic, soluții optic izotopice a două lichide nemiscibile constând în microdomenii ale unuia sau ambelor lichide, stabilizate de un film sau surfactant interfacial. Moleculele surfactantului în general au o extremitate polară (hidrofilică) și o alta alifatică (hidrofobică). Asemenea molecule își optimizează interacțiile prin înlocuire la interfața a două lichide, ceea ce înseamnă reducerea considerabilă a tensiunii interfaciale. Au fost raportate puține studii cu privire la sinteza controlată a oxidului de titanului din aceste microemulsii.

În particular, hidroliza alcoxidului de titan în microemulsie bazată pe metodele sol-gel produce agregarea și flocularea necontrolată excepție făcând cele la concentrații foarte mici [A3]. Recent, o metodă îmbunătățită, utilizând dioxid de carbon în locul uleiului, a fost aplicată în prepararea nanoparticulelor de TiO_2 .

2.3.5 Sinteza prin combustie

Sinteza cu combustie (reacție hiperbolică) conduce la formarea particulelor cristaline cu aria suprefeței mari [M3]. Procesele de sinteză implică încălzirea rapidă a soluției sau compusului conținând amestecuri redox sau grupări redox. În timpul combustiei, temperatura ajunge aproximativ 650°C pentru o perioadă scurtă de timp (1-2) min, formându-se materiale cristaline. Deoarece timpul de sinteză este prea scurt, creșterea particulelor de TiO₂ și tranziția fazei anatas în rutil este întreruptă.

2.3.6 Sinteza electrochimică

Sinteza electrochimică poate fi utilizată pentru a prepara filme subțiri cum ar fi: epitaxial, super-rețele, puncte cuantice și nanopori. Astfel, parametrii variabili ca potențialul, densitatea de curent, temperatura și pH-ul pot controla ușor proprietățile caracteristice ale filmelor. Deși electrodepunerea filmelor de TiO₂ din precursori ai titanului sub formă de TiCl₃, TiO(SO₄) [F4] și (NH₄)₂TiO(C₂O₄)₂ [Z5] este des întâlnită, utilizarea sărurilor anorganice de titan în soluție apoasă este adesea însoțită de dificultăți datorită tendinței ridicate a sărurilor de a hidroliza. Deci, electroliza necesită atât un mediu acid cât și un mediu fără oxigen liber, soluțiile neapoase reprezintă o oportunitate pentru a evita aceste probleme.

2.4 Aplicații ale dioxidului de titan (TiO₂)

Dioxidul de titan prezintă un interes din ce în ce mai mare datorită stabilității sale chimice, netoxicității, costului redus și a altor proprietăți avantajoase pe care le are. Datorită valorii mari a indicelui de refracție, dioxidul de titan este folosit ca strat antireflex pentru celulele solare pe bază de Si și ca filme subțiri în cazul multor dispozitive optice. TiO₂ este folosit cu succes în construcția senzorilor de gaze (datorită dependenței conductivității electrice de compoziția gazelor ambientale), la determinarea concentrațiilor de O₂ și CO la temperaturi mai mari de 600° C și la determinarea simultană a concentrațiilor de CO/O₂ și CO/CH4. Datorită hemocompatibilității cu corpul uman, TiO₂ este folosit ca biomaterial [L4, L5].

TiO₂ este de asemenea folosit în reacțiile catalitice ca promotor, suport pentru metale și oxizii metalici, sau catalizator. Reacțiile care se desfașoară în prezența TiO₂ drept catalizator includ: reducerea selectivă a NO_x la N₂, descompunerea COV (compuși organici volatili) [Z6], compușilor clorului [H7], producerea hidrogenului, oxidarea CO, oxidarea H₂S la S [W1] și stocarea de NO₂.

Anatasul este folosit pentru baterii ca și material anodic, unde ionii de Li se pot intercala reversibil [W2]. În aplicațiile cu celule solare este preferată structura cristalină anatas celei rutil deoarece anatasul permite o mobilitate mai mare a electronilor, constanta dielectrică este mai mică, densitatea mai mică și temperatura de depunere mai scăzută.

Alte aplicații fotochimice și fotofizice includ fotoliza apei, descompunerea poluanților organici în prezența luminii, reacții catalitice specifice și superhidrofilicitatea indusă de lumină. Această listă de aplicații este departe de a fi completă, iar idei noi privind posibile aplicații ale TiO_2 apar cu regularitate.

2.4.1 Decontaminarea apei

După cum a fost menționat în literatura de specialitate, cu privire la proprietățile fotocatalitice ale TiO_2 , în 1977 Frank și Bard au constatat faptul că prin adăugarea unei suspensii formată din pulbere de TiO_2 în apa contaminată cu cianură are loc conversia acesteia în cianat.

Unul dintre avantajele utilizării TiO_2 pentru decontaminarea apei este aceea că este nevoie doar de TiO_2 ca și fotocatalizator (imobilizat pe un suport solid sau sub formă de suspensie) și lumina UV sau VIS, atât artificială cât și solară, ceea ce presupune un cost mai scăzut comparativ cu alte tehnici avansate de oxidare.

Mai mult, în urma procesului de decontaminare fotocatalitică nu se generează produși secundari, ceea ce îl face atractiv pentru procesele de epurare, chiar potabilizare a apei. Totuși, se acceptă fotocataliza TiO₂ doar pentru tratarea apelor reziduale cu conținut mic sau mediu de poluant datorită eficienței relativ scăzute și fluxului limitat de fotoni UV [M2].

A fost studiată decontaminarea apelor infestate cu aminofenoli, agricole [H8] și apelor municipale la scară pilot utilizând fotoreactoare compuse din colectoare parabolice și TiO_2 drept fotocatalizator pentru nămoluri și s-a observat o mineralizare completă a substanțelor organice la concentrații de circa 50 mg/L în câteva ore la lumina soarelui.

70 Cap2. Considerații generale asupra dioxidului de titan

O aplicație interesantă a fotocatalizatorului de TiO_2 este îndepărtarea complecșilor chimici EDC (endocrine disruptor chemicals) din mediul apos. Acești compuși chimici includ hormoni naturali, dioxine, bifenol-A, iar în mediul acvatic reprezintă un risc atât pentru sănătatea umană, cât și animală, ele perturbând funcționarea normală a funcțiilor endocrine prin interacțiunea cu receptorii hormonilor steroizi, chiar și la concentrații foarte mici. Metodele biologice convenționale de îndepărtarea a acestor materiale necesită perioade foarte lungi, iar metodele chimice de oxidare sunt în general neeconomice, datorită concentrațiilor mici de EDC. Nakashima și colaboratorii au proiectat un reactor fotocatalitic utilizând straturi de teflon modificat cu TiO_2 ca și catalizator, utilizându-l la tratarea apei [O4]. Astfel, TiO_2 ca fotocatalizator poate fi aplicat în tratarea efluenților reziduali ca metodă sigură pentru îndepărtarea estrogenilor naturali și sintetici. Această metodă ar trebui să fie posibilă și pentru îndepărtarea altor EDC-uri în concentrații mici din mediul acvatic.

Dezinfecția fotocatalitică cu activare în vizibil pare a fi un proces promițător pentru producerea de apă potabilă, ceea ce poate ajuta la îmbunătățirea sănătății publice. Rincón și colaboratorii au evidențiat posibilitatea dezinfecției unei ape reale contaminate cu E.Coli K12 la o concentrație de 10⁶ UFC/mL (Unități formatoare de colonii) într-un timp de 3 ore într-o zi senină de vară utilizând un catalizator pe bază de TiO₂ [R5].

2.4.2 Decontaminarea aerului

Una dintre cele mai importante aplicații ale TiO₂ ca și fotocatalizator este decontaminarea, odorizarea, dezinfecția aerului din spații închise. Concentrații mici de compuși organici volatili, cum sunt formaldehidele și toluenul, emise din materialele de construcție și mobilier sau microorganisme patogene, pot conduce la numeroase afecțiuni cum ar fi: insuficiența respiratorie, alergii, edem pulmonar, insuficiențe renale și câteodată chiar moartea. În afară de acestea, aerul din interiorul unităților publice, spitale, mijloacele de transport în comun, școli, grădinițe este adesea contaminat cu diferite bacterii sau ciuperci care pun în pericol sănătatea umană. Sistemelor convenționale de purificare a aerului trebuie să li se adapteze filtre (de exemplu filtre HEPA - High Efficiency Particulate Absorbing) pentru curățarea aerului poluat. Poluanții se acumulează în filtrele de carbon activ, acesta devine saturat de substanțele absorbite pierzându-și astfel funcțiile după o anumită perioada de utilizare. Folosirea filtrelor de aer poate cauza riscul apariției unei poluări secundare. Filtrele de decontaminare fotocatalitică a aerului pot descompune substanțele organice, în loc să le acumuleze și, ca rezultat, prezintă o performanță mult mai bună decât aparatele convenționale [F6]. Mai mult, filtrele care conțin materiale fotocatalitice pot distruge bacteriile din aerul de interior sau cele care se dezvoltă în aparatele de aer condiționat, ceea ce este foarte important în procesul de purificare a aerului [G5].

Filtrele fotocatalitice de curățare a aerului pot descompune substanțele organice în locul acumulării acestora, fiind mai performante decât cele convenționale. Mai mult, filtrele fotocatalitice pot ucide bacteriile din aerul încăperilor închise, care este de asemenea important pentru purificarea aerului.

Oxizii de azot NO_x eliminați de către automobile în zonele urbane au devenit o importantă sursă de poluare a aerului. Ti O_2 fotocatalitic prezintă capabilitatea de a îndepărta acești oxizi. A fost sugerată ideea că monoxidul de azot (NO) din aer poate fi oxidat în momentul în care fotocatalizatorul este expus la lumina solară, intermediar se obține dioxidului de azot, care în final este convertit la acid azotic care trebuie depozitat [I1]. În stadiul de dioxid de azot, o parte din gaz poate scăpa de pe suprafața fotocatalizatorului, dar cu ajutorul unui adsorbant, cum ar fi carbonul activ amestecat cu catalizatorul, acest gaz poate fi captat în mod eficient [J2].

2.4.3 Aplicații în senzoristică

Filmele de TiO_2 au fost pe larg studiate ca senzori pentru diferite gaze. Grimes și colaboratorii au efectuat o serie de studii pe detecție utilizând nanotuburi de TiO_2 [M7, M8, V1]. Ei au descoperit că nanotuburile de TiO_2 pot fi folosite ca senzori de hidrogen la temperatura camerei cu o sensibilitate ridicată de 10^4 , dar și cu o capacitatea a fotoactivării (*selfcleaning*) după ce mediul a fost contaminat [M8].

Birkefeld și colaboratorii au constatat că rezistența TiO_2 în forma anatas variază în prezența CO și H_2 la temperaturi de peste 500°C, dar prin cuplarea cu alumină 10% devine selectiv pentru hidrogen. Carney și colaboratorii au constatat că senzorii bazați pe SnO_2 - TiO_2 cu aria suprafeței mare au fost mai sensibili la H_2 în prezența O_2 , prin măsurarea modificării rezistenței electrice a senzorului prin expunerea la diferite concentrații de hidrogen în cadrul unui debit constant de gaz pe bază de hidrogen [C1]. Devi a descoperit că senzorii pe bază de dioxid de titan mezoporos sunt mai sensibili decât senzorii pe bază de pulberi de TiO_2 și că sensibilitatea lor poate fi îmbunătățită prin adăugarea la senzor a 0,5 mol % Nb₂O₅.

Senzorii de oxigen pe bază de nanomateriale de TiO₂ includ TiO_{2-x}, TiO₂-Nb₂O₅, CeO₂-TiO₂, şi Ta-, Nb-, Cr- şi TiO₂ dopat cu platină. Senzorii cu TiO₂ dopat cu platină prezintă o sensibilitate la gaze, temperatură scăzută de funcționare (350-800)°C, precum şi un timp scurt de răspuns (< 0.1 s). În senzorii cu TiO₂ dopat cu Ta, vacanțele de oxigen formate prin fotoiradiere acționează ca site-uri de detectare a oxigenului, nanomaterialele de TiO₂ dopat cu Nb sunt bune materiale pentru senzorii de oxigen. Filmele de dioxid de titan dopate cu Cr şi Nb prezintă o sensibilitate mai mare la oxigen decât filmele cu TiO₂ pur, în care TiO₂ dopat cu Nb prezintă o temperatură de funcționare mai mică [S4].

Dioxidul de titan este un material promiţător pentru senzorii de CO şi pentru senzorii de metanol şi etanol. Ruiz şi colaboratorii au demonstrat că nanoparticulele de TiO₂ dopate cu La sunt materiale potrivite pentru senzorii de etanol, în timp ce nanoparticulele de TiO₂ dopate cu Co şi Cr sunt potrivite pentru senzorii de CO [R7]; pentru senzorii de etanol se foloseşte dioxid de titan dopat cu W, iar cel dopat cu Ta şi Nb a fost utilizat în detecția CO şi NO₂.

2.4.4 Obținerea de suprafețe anti-aburire

Aburirea suprafețelor de sticlă și a oglinzilor apare atunci când aerul umed se răcește pe aceste suprafețe, formând picături de apă. Aceste picături, cu dimensiuni cuprinse între câțiva micrometrii și un milimetru, au tendința de a împrăștia lumina sau pur și simplu, reflectă sau refractă la întâmplare. În ambele cazuri, claritatea vizuală este afectată în mod drastic. Într-unul dintre studii, lucrătorii Watanabe și colaboratorii au constatat că suprafețele de TiO₂-SiO₂ ar putea deveni extrem de hidrofile sub iluminare UV. Rezultatul acestei proprietăți este

faptul că apa se răspândește uniform pe suprafață. În cazul în care cantitatea de apă este relativ mică, stratul de apă devine foarte subțire și se evaporă rapid. În cazul în care cantitatea de apă este mai mare, se formează o peliculă care, de asemenea, are claritate vizuală mare. Prima aplicație comercială a acestui fenomen a fost pentru oglinzile retrovizoare ale automobilelor. Această nouă tehnologie cu funcții anti-aburire, cu prelucrare simplă și la costuri reduse, poate fi folosită la diverse produse din sticlă, cum ar fi oglinzile și ochelarii de vedere [F7]. Atunci când un aparat de aer condiționat este folosit pentru răcire, aerul care este răcit are adesea umiditate mare, cu excepția unui climat extrem de uscat. Pentru un schimbător de căldură cu placă obișnuită, picăturile de apă condensată pot reduce eficiența schimbului de căldură și de creștere a rezistenței fluxului de aer. Takata și colaboratorii au arătat că prin acoperirea suprafeței schimbătorului de căldură cu dioxid de titan superhidrofilic poate împiedica aburirea și formarea picăturilor de apă, eliminarea apei condensate fiind mai eficientă [T7]. Activitățile de cercetare au fost axate pe: (1) creșterea ratei de conversie superhidrofilice; (2) prelungirea stărilor superhidrofilice ale filmelor [Z7] și (3) activarea filmelor la lungimi de undă mai mari [I2]. Filmele mixte de TiO₂ și SiO₂ (sau Al₂O₃), dar cu un raport SiO₂-TiO₂ excesiv, pot avea un efect negativ asupra ratei de conversie superhidrofilice. Este de dorit, ca pentru un film anti-aburire cu randament mare, să existe un echilibru între compoziția de film și rugozitatea suprafeței [F8].

2.4.5 Obținerea de suprafețe cu proprietatea de autodezinfecție

Dioxidul de titan aplicat sub formă de pelicule subțiri și transparente poate descompune contaminanții organici sub incidența luminii ultraviolete. Această observație sugerează aplicația fotocatalizatorului de TiO_2 ca și o nouă tehnică de auto-curățare, prin care o suprafață pe care este depus un strat de TiO_2 poate să se mențină curată sub acțiunea luminii ultraviolete. Eficacitatea suprafețelor cu proprietate *"self-cleaning"* este dependentă de raportul relativ dintre decontaminare în funcție de contaminare. Fotocatalizatorul TiO_2 poate păstra suprafața curată doar atunci când raportul decontaminării fotocatalitice este mai mare decât cel al contaminării. Totuși, s-a observat că efectul de auto-curățare al suprafețelor acoperite cu TiO_2 poate fi crescut atunci când fluxul de apă, de exemplu o aversă de precipitații, este trecut peste suprafață. Așadar, se poate sugera că suprafețele de TiO_2 auto-dezinfectante ar fi cele mai folositoare în exterior, în materialele de construcții, deoarece aceste materiale sunt expuse din abundență luminii solare și precipitațiilor.

Dioxidul de titan cu proprietăți fotocatalitice poate distruge bacteriile de pe suprafață, așadar pot fi obținute suprafețe cu auto-dezinfecție.

Aceste materiale sunt deosebit de utile pentru spitale, unde controlul asupra suprafețelor cu bacteriile și virușii din aer este important. De exemplu, Fujishima și colaboratorii au dezvoltat un tip de faianță antibacteriană, realizate prin acoperirea unor plăci ordinare cu un strat de compozit pe bază de TiO₂-Cu [F7].
S-au studiat noi aplicații ale tehnologiei de auto-cutățare, astfel au fost experimentate straturi de TiO_2 -SiO_2 antireflective cu proprietăți "self-cleaning" care pot fi aplicate în construcția celulelor solare. Straturile pe bază de TiO_2 convențional sunt puternic reflective datorită indicelui de reflexie foarte mare a materialului, și astfel pierderea transmitanței de către TiO_2 poate fi mai mare decât cea cauzată de către straturile contaminate.

2.4.6 Asigurarea protecției anticorozive

În general, metalele sunt protejate de coroziune prin mai multe moduri, de exemplu printr-un strat al unui metal pasiv corespunzător, printr-un strat de vopsea sau printr-un strat al unui metal de sacrificiu (cu un potențial de coroziune mai puțin pozitiv). Au fost studiate efectele anticorozive ale stratului de TiO₂ pentru oţelul inoxidabil de tipul 304 (Z7CN18-09). Sub acțiunea luminii UV, TiO₂ injectează electroni în oţel și ca rezultat îl protejează împotriva coroziunii, în timp ce electron-golurile fotogenerate descompun contaminanții organici pentru a furniza o suprafață *self-cleaning*. Dacă TiO₂ este cuplat cu WO₃ se poate menține efectul anticoroziv chiar și în întuneric pentru o perioadă de timp, imediat după ce iradierea UV a încetat [F7]. Acest fenomen poate fi explicat prin capacitatea WO₃ de a stoca energie. Sub acțiunea iradierii UV, electronii cu banda de valență a TiO₂ sunt excitați în banda de conducție. Electronii excitați sunt injectați în metal, astfel că este menținut potențialul mai negativ decât potențialul de coroziune. Cercetarea este orientată spre prelungirea efectului anticoroziv al straturilor de TiO₂ în întuneric.

2.5 Concluzii

> Având în vedere obiectivul intermediar propus (*studiul caracteristicilor generale ale dioxidului de titan (TiO₂), a metodelor de obținere și domeniile de aplicație ale acestora*), în capitolul 2 sunt prezentate caracteristicile generale ale nanoparticulelor de TiO₂ prin proprietățile fizice de tipul celor electrice, optice, fotocatalitice, proprietăți care stau la baza dezvoltării cercetărilor aplicative (din capitolul 4), respectiv asupra aplicării scenariului propus (în capitolul 3) prin metodele Taguchi și RSM (prezentate în capitolul).

> Ţinând cont că, în cadrul procesului de tratare termică pot avea loc următoarele transformări de fază: anatas - brookit şi/sau rutil, brookit - anatas şi/sau rutil, anatas - rutil și brookit - rutil, aceste transformări de fază cristalină implică un strâns echilibru energetic în funcție de dimensiunea particulelor.

> Entalpiile de suprafață ale celor trei forme polimorfe sunt diferite, astfel încât intersectarea stabilității termodinamice poate apărea în condiții premergătoare macrogranulării, anatas și/sau brookite fiind stabile la dimensiuni mici ale particulelor. Cu toate acestea, ocazional, au fost observate comportamente anormale și rezultatele sunt inconsecvente. \succ Cercetările experimentale efectuate de predecesorii mei, au demonstrat că structura nanoparticulelor de TiO₂ depinde în mare măsură de metoda de sinteză.

Sinteza și modificările nanomaterialelor de TiO₂ au adus proprietăți și aplicații noi, cu performanțe îmbunătățite. Prin sinteza nanoparticulelor de TiO₂ sau realizat noi descoperiri în ceea ce privește forma acestora: nanotuburi, nanofire, precum și structurile mezoporouse și fotonice. Aceste materiale au continuat să fie mai active în aplicațiile fotocatalitice și fotovoltaice, având noi aplicații în electrocromică, detecție și stocare de hidrogen. Acest progres constant a demonstrat că nanomaterialele de TiO₂ joacă și vor continua să joace un rol important în măsurile de protecție a mediului și în căutarea de tehnologii de energie regenerabilă și curată.

> Stadiului actual al metodelor și tehnologiilor de sintetizare a TiO₂. Metodele indicate în cadrul capitolului 2 sunt :

Metoda		Avantaje
Sol – gel		 puritatea, omogenitatea şi flexibilitatea în introducerea dopantului în concentrații ridicate, control stoechiometric, uşurinţa în procesare, control asupra compoziţiei,abilitate de a acoperi arii extinse şi complexe
Hidrotermală clasică		 obţinerea unui produs cristalin omogen, la o temperatură de reacţie scăzută (mai mică de 150°C) favorizează diminuarea gradului de aglomerare a particulelor, distribuţie dimensională redusă, omogenitatea fazei controlul asupra morfologiei particulelor.
Hidrotermală microunde	în cămp de	 reducerea consumului de energie prin înlăturarea pierderilor durata mult mai mică a sintezei un control mult mai riguros al câmpului termic din mediul de sinteză posibilitatea controlului temperaturii prin generatorul de microunde
Sinteză	Prin microemulsie	- microemulsiile sunt stabile termodinamic
	Prin combustie	 procedeul conduce la formarea particulelor cristaline cu aria suprefeței mare
	Electrochimică	 parametrii variabili ca potenţialul, densitatea de curent, temperatura şi pH- ul pot controla uşor proprietăţile caracteristice ale filmelor

Tab. 2.1 Tabel comparativ al metodelor de obținere a TiO₂

3. CERCETĂRI APLICATIVE PRIVIND SINTEZA NANOCRISTALELOR DE TIO₂

3.1 Aplicarea Metodei Taguchi în cadrul sintezei hidrotermale în câmp de microunde

3.1.1 Alegerea matricei de experimente, stabilirea și atribuirea factorilor și a nivelurilor acestora

Pentru realizarea experimentelor de verificare a stabilității dimensiunii nanocristalelor de TiO₂ dopate cu Ag în cadrul sintezei hidrotermale în câmp de microunde, s – a aplicat metoda Taguchi, obiectivul fiind determinarea combinației optime a factorilor astfel încât să se obțină o valoare țintă de 10 nm cu o toleranță de \pm 0,2 nm pentru dimensiunea nanocristalelor. S-a ales o matrice standard Taguchi **L**₈ (7 factori la 2 niveluri fiecare), prezentată în figura 3.1. Atribuirea factorilor precum și stabilirea nivelurilor acestora s-a realizat conform tabelului 3.1.

	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	1	2

Fig.	3.1	Matricea	de	experimente	L_8
------	-----	----------	----	-------------	-------

Tab. 3.1 Atribuirea factorilor și a nivelurilor acestora

Nr. Crt.	Descriere factori	Nivel 1	Nivel 2
1	Concentrație dopant	2 %	3%
2	Durată autoclavizare	15 min	30 min
3	Temperatură autoclavă	150 °C	200 °C
4	Putere cuptor	800 W	1000 W
5	Cantitate nutrient	10 g	20 g
6	PH soluție	2,5	2,8
7	Grad umplere	50 %	60 %

3.1.2 Stabilirea succesiunii condițiilor de experimentare

Succesiunea aleatoare pentru realizarea celor 8 condiții de experimentare este prezentată în tabelele 3.2 – 3.9.

Tab. 3.2 Succesiunea aleatoare de rulare 6 pentru condițiile de experimentare 1

Descriere factori	Nivel 1	Nivel
Concentrație dopant	2 %	1
Durată autoclavizare	15 min	1
Temperatură autoclavă	150 °C	1
Putere cuptor	800 W	1
Cantitate nutrient	10 g	1
PH soluție	2,5	1
Grad umplere	50 %	1

Tab. 3.3 Succesiunea aleatoare de rulare 4 pentru condițiile de experimentare 1

Descriere factori	Nivel 1	Nivel
Concentrație dopant	2 %	1
Durată autoclavizare	15 min	1
Temperatură autoclavă	150 °C	1
Putere cuptor	1000 W	2
Cantitate nutrient	20 g	2
PH soluție	2,8	2
Grad umplere	60 %	2

Tab. 3.4 Succesiunea aleatoare de rulare 5 pentru condițiile de experimentare 1

Descriere factori	Nivel 1	Nivel
Concentrație dopant	2 %	1
Durată autoclavizare	30 min	2
Temperatură autoclavă	200 °C	2
Putere cuptor	800 W	1
Cantitate nutrient	10 g	1
PH soluție	2,8	2
Grad umplere	60 %	2

Tab. 3.5 Succesiunea aleatoare de rulare 2 pentru condițiile de experimentare 4

Descriere factori	Nivel 1	Nivel
Concentrație dopant	2 %	1
Durată autoclavizare	30 min	2
Temperatură autoclavă	200 °C	2
Putere cuptor	1000 W	2
Cantitate nutrient	20 g	2
PH soluție	2,5	1
Grad umplere	50 %	1

Descriere factori	Nivel 1	Nivel
Concentrație dopant	2 %	1
Durată autoclavizare	15 min	1
Temperatură autoclavă	200 °C	2
Putere cuptor	800 W	1
Cantitate nutrient	20 g	2
PH soluție	2,5	1
Grad umplere	60 %	2

Tab. 3.6 Succesiunea aleatoare de rulare 7 pentru condițiile de experimentare 5

Tab. 3.7 Succesiunea aleatoare de rulare 2 pentru condițiile de experimentare 6

Descriere factori	Nivel 1	Nivel
Concentrație dopant	3 %	2
Durată autoclavizare	15 min	1
Temperatură autoclavă	200 °C	2
Putere cuptor	1000 W	2
Cantitate nutrient	10 g	1
PH soluție	2,8	2
Grad umplere	50 %	1

Tab. 3.8 Succesiunea aleatoare de rulare 8 pentru condițiile de experimentare 7

Descriere factori	Nivel 1	Nivel
Concentrație dopant	3 %	2
Durată autoclavizare	30 min	2
Temperatură autoclavă	150 °C	1
Putere cuptor	800 W	1
Cantitate nutrient	20 g	2
PH soluție	2,8	2
Grad umplere	50 %	1

Tab. 3.9 Succesiunea aleatoare de rulare 1 pentru condițiile de experimentare 8

Descriere factori	Nivel 1	Nivel
Concentrație dopant	3 %	2
Durată autoclavizare	30 min	2
Temperatură autoclavă	150 °C	1
Putere cuptor	1000 W	2
Cantitate nutrient	10 g	1
PH soluție	2,5	1
Grad umplere	60 %	2

Rezultatele experimentale ale dimensiunii nanoparticulelor de ${\rm TiO_2}$ dopate cu Ag obținute prin metoda hidrotermală în câmp de microunde sunt prezentate în

Conditions	Sample# 1	Sample# 2	Sample# 3	Sample# 4	Sample# 5	Sample# 6	S/N Ratio
Trial# 1	9.85	9.79	9.88	9.94	9.85		16.691
Trial# 2	10.11	10.18	9.98	9.96	9.92		19.755
Trial# 3	9.81	9.83	9.82	9.9	9.87		16.044
Trial# 4	10.12	10.18	10.17	10.17	10.11		16.318
Trial# 5	9.94	10.14	10.12	10.19	9.98		18.291
Trial# 6	9.8	9.89	9.87	9.91	9.92		17.772
Trial# 7	10.18	10.12	9.93	9.89	9.86		17.778
Trial# 8	10.12	9.98	10.14	10.12	9.94		19.796

figura 3.2. De remarcat că pentru fiecare condiție de experimentare au fost măsurate câte 5 nanoparticule.

Fig.	3.2	Rezultate	experimentale	si	raporturile S/N	(captură d	e ecran -	soft)
5	-					\		/

Valoarea țintă pentru dimensiunea nanocristalelor a fost stabilită la 10 nm. Valorile obținute pentru cele 8 experimente sunt: Media generală = 9,987 nm, abaterea standard = 0,132, S/N mediu 17,806 dB.

3.1.3 Determinarea variabilității în și între condițiile de experimentare

Din figura 3.3 se observă că există o relativ mică variabilitate în interiorul condițiilor de experimentare, ceea ce indică o influență minoră a factorilor de zgomot și o variabilitate relativ mică între condițiile de experimentare.

În continuare se studiază interacțiunile posibile între factori. Prezența unei interacțiuni, indiferent de cât de severă este aceasta, nu înseamnă neapărat că ea este semnificativă. Dacă o interacțiune este semnificativă sau nu, se determină folosind metoda ANOVA, lucru posibil numai dacă i se atribuie interacțiunii o coloană specială în matricea de experiențe. Schimbări în condiția optimă, necesare datorită prezenței unei interacțiuni, trebuie făcute numai dacă acest lucru este semnificativ.

Atunci când nu sunt rezervate coloane pentru interacțiuni, informațiile despre prezența acestora trebuie folosite pentru experimente ulterioare.

Fig. 3.3 Variabilitatea în interiorul condițiilor de experimentare și între acestea

3.1.4 Analiza efectelor medii ale factorilor asupra raportului S/N

Magnitudinea diferenței între efectele medii (L2 – L1), reprezintă influența relativă a unui factor asupra variabilității rezultatului. Această valoare trebuie să fie proporțională cu influența calculată în ultima coloană a tabelului ANOVA.

În figura 3.4 sunt prezentate efectele medii ale factorilor asupra raportului semnal/zgomot (S/N), magnitudinea și sensul diferenței între acestea.

Column # / Factors	Level 1	Level 2	L2-L1 🔻
1 Conc. dopant	17.202	18.409	1.206
2 Dur. autoclaviz.	18.127	17.484	643
3 Temp. autoclava	18.505	17.107	-1.398
4 Putere cuptor	17.201	18.41	1.208
5 Cantit. nutrient	17.576	18.035	.458
6 PH solutie	17.774	17.837	.062
7 Grad umplere	17.14	18.472	1.332

Fig. 3.4 Efectele medii ale factorilor asupra raportului S/N (captură de ecran - soft)

În figura 3.5 sunt prezentate efectele medii ale factorului "*Concentrație dopant*" iar în tabelul 3.10 valorile efectelor medii la cele două niveluri.

Fig. 3.5 Efectele medii ale factorului "Concentrație dopant " asupra raportului S/N Tab. 3.10 Valorile efectelor medii ale factorului "Concentrație dopant " asupra raportului S/N

	Factor: Concentrație dopant				
Nivel	1	2			
Efect mediu	17,202	18,409			

Se observă că efectul mediu asupra raportului S/N cel mai mare se obține atunci când factorul "Concentrație dopant "se află la nivelul 2. În figura 3.6 sunt prezentate efectele medii ale factorului "Durată autoclavizare" iar în tabelul 3.11 valorile efectelor medii la cele două niveluri.

Tab. 3.11 Valorile efectelor medii ale factorului "Durată autoclavizare" asupra raportului S/N

	Factor: Durată autoclavizare				
Nivel	1	2			
Efect mediu	17,202	18,409			

Fig. 3.6 Efectele medii ale factorului"Durată autoclavizare" asupra raportului S/N

Se observă că efectul mediu asupra raportului S/N cel mai mare se obține atunci când factorul *"Durată autoclavizare"* se află la nivelul 2. În figura 3.7 sunt prezentate efectele medii ale factorului *"Temperatură autoclavizare"* iar în tabelul 3.12 valorile efectelor medii la cele două niveluri.

Fig. 3.7 Efectele medii ale factorului "Temperatură autoclavizare" asupra raportului S/N

Tab. 3.12 Valorile efectelor medii ale factorului *"Temperatură autoclavizare"* asupra raportului S/N

	Factor: Temperatură autoclavizare				
Nivel	1	2			
Efect mediu	18,505	17,107			

Se observă că efectul mediu asupra raportului S/N cel mai mare se obține atunci când factorul "*Temperatură autoclavizare*" se află la nivelul 1. În figura 3.8 sunt prezentate efectele medii ale factorului "*Putere cuptor*" iar în tabelul 3.13 valorile efectelor medii la cele două niveluri.

Fig. 3.8 Efectele medii ale factorului *"Putere cuptor"* asupra raportului S/N Tab. 3.13 Valorile efectelor medii ale factorului *"Putere cuptor"* asupra raportului S/N

	Factor: Putere cuptor				
Nivel	1 2				
Efect mediu	17,201	18,410			

Se observă că efectul mediu asupra raportului S/N cel mai mare se obține atunci când factorul *"Putere cuptor"* se află la nivelul 2. În figura 3.9 sunt prezentate efectele medii ale factorului *"Cantitate nutrient"* iar în tabelul 3.14 valorile efectelor medii la cele două niveluri.

Fig. 3.9 Efectele medii ale factorului "*Cantitate nutrient*" asupra raportului S/N Tab. 3.14 Valorile efectelor medii ale factorului"*Cantitate nutrient*" asupra raportului S/N

	Factor: Cantitate nutrient				
Nivel	1	2			
Efect mediu	17,576	18,035			

Se observă că efectul mediu asupra raportului S/N cel mai mare se obține atunci când factorul "*Cantitate nutrient*" se află la nivelul 2. În figura 3.10 sunt prezentate efectele medii ale factorului "*PH soluție*" iar în tabelul 3.15 valorile efectelor medii la cele două niveluri.

Fig. 3.10 Efectele medii ale factorului "PH soluție" asupra raportului S/N

Tab. 3.15 Valorile efectelor medii ale factorului "PH soluție" asupra raportului S/N

	Factor: PH soluție				
Nivel	1	2			
Efect mediu	17,576	18,035			

Se observă că efectul mediu asupra raportului S/N cel mai mare se obține atunci când factorul "*PH soluție*" se află la nivelul 2. În figura 3.11 sunt prezentate efectele medii ale factorului "*Grad umplere*" iar în tabelul 3.16 valorile efectelor medii la cele două niveluri.

Fig. 3.11 Efectele medii ale factorului "Grad umplere" asupra raportului S/N

Tab. 3.16 Valorile efectelor medii ale factorului "Grad umplere" asupra raportului S/N

	Factor: "Grad umplere"			
Nivel	1	2		
Efect mediu	17,140	18,472		

Se observă că efectul mediu asupra raportului S/N cel mai mare se obține atunci când factorul "Grad umplere" se află la nivelul 2.

În concluzie se poate afirma că *pe baza analizei efectelor medii ale factorilor asupra raportului S/N, condiția optimă* este dată de poziționarea factorilor la nivelurile din tabelul 3.17.

Analiza efectelor medii ale factorilor				
Factor	Nivel			
Concentrație dopant	2			
Durată autoclavizare	2			
Temperatură autoclavizare	1			
Putere cuptor	2			
Cantitate nutrient	2			
PH soluție	2			
Grad umplere	2			

Tab. 3.17 Condiția optimă pe baza analizei efectelor medii ale factorilor

3.1.5 Analiza interacțiunilor factorilor

În tabelul 3.18 se prezintă toate interacțiunile posibile între doi factori:

- Coloanele, reprezintă locațiile coloanelor cărora le sunt desemnați factorii care interacționează.
- **IS**, reprezintă indicele de severitate al interacțiunii (100% pentru un unghi de 90° între drepte și 0% pentru drepte paralele).
- **Rezervare**, reprezintă numărul coloanei rezervate pentru studiul respectivei interacțiuni.
- **Optimum**, indică nivelurile dorite ale factorilor pentru condiția optimă. Dacă un factor este inclus în studiu și este găsit a fi semnificativ în tabelul ANOVA, nivelul indicat trebuie să înlocuiască nivelul indicat prin condiția optimă.

În figurile 3.12 – 3.15, sunt prezentate grafic în ordine descrescătoare indicii de severitate pentru interacțiunile din tabelul 3.18.

Nr.	Interacțiuni	Col.	IS (%)	Rez.	Opt.
1	Cantitate nutrient x PH soluție	5 x 6	75,26	3	[2,2]
2	Durată autoclavizare x Cantitate nutrient	2 x 5	67,42	7	[1,2]
3	Durată autoclavizare x PH soluție	2 x 6	65,27	4	[1,2]
4	Concentrație dopant x Durată autoclavizare	1 x 2	53,67	3	[2,2]
5	Concentrație dopant x PH soluție	1 x 6	52,45	7	[2,1]
6	Putere cuptor x Grad umplere	4 x 7	51,22	3	[2,2]
7	Concentrație dopant x Cantitate nutrient	1 x 5	50,04	4	[2,1]
8	Putere cuptor x Cantitate nutrient	4 x 5	49,95	1	[2,1]
9	Temperatură autoclavizare x Putere cuptor	3 x 4	48,77	7	[1,2]
10	PH soluție x Grad umplere	6 x 7	47,54	1	[1,2]
11	Durată autoclavizare x Temp. autoclavizare	2 x 3	46,32	1	[2,1]
12	Temperatură autoclavizare x Grad umplere	3 x 7	44,29	4	[1,2]
13	Putere cuptor x PH soluție	4 x 6	34,72	2	[2,2]
14	Cantitate nutrient x Grad umplere	5 x 7	32,57	2	[2,2]
15	Temperatură autoclavizare x PH soluție	3 x 6	24,73	5	[1,2]
16	Concentrație dopant x Temp. autoclavizare	1 x 3	24,69	2	[2,1]
17	Durată autoclavizare x Grad umplere	2 x 7	23,26	5	[1,2]
18	Concentrație dopant x Putere cuptor	1 x 4	19,01	5	[2,2]
19	Durată autoclavizare x Putere cuptor	2 x 4	3,40	6	[1,2]
20	Temp. autoclavizare x Cantitate nutrient	3 x 5	3,39	6	[1,2]
21	Concentrație dopant x Grad umplere	1 x 7	2,48	6	[2,2]

Tab. 3.18 Interacțiunile între factori

Fig. 3.12 Indicele de severitate al interacțiunii (interacțiunile 1 - 5)

Fig. 3.13 Indicele de severitate al interacțiunii (interacțiunile 6 - 10)

Fig. 3.14 Indicele de severitate al interacțiunii (interacțiunile 11 - 15)

Fig. 3.15 Indicele de severitate al interacțiunii (interacțiunile 16 - 20)

Conform procedurilor standard, se vor analiza interacțiunile care au cel mai mare indice de severitate precum și cele considerate a fi importante în ceea ce privește studiul efectuat. Condițiile de optim vor fi apoi comparate cu cele rezultate efectuate în urma analizei varianței ANOVA, stabilindu-se totodată, dacă este cazul, studiul acestor interacțiuni.

În figura 3.16 este prezentată interacțiunea dintre cantitatea de nutrient și PH-ul soluției iar valorile calculate pentru testul de prezență a interacțiunilor sunt date în tabelul 3.19.

Fig. 3.16 Interacțiunea între cantitatea de nutrient și PH-ul soluției

Tab. 3.19 Valorile calculate pentru interacțiunea între cantitatea de nutrient și PH-ul soluției

		Cantitate nutrient			
		X1 X2			
PH soluție	Y1	X1Y1 = 18,24	X2Y1 = 17,30		
	Y2	X1Y2 = 16,90	X2Y2 = 18,76		

Se observă că nivelurile dorite pentru condiția optimă sunt:

- Cantitatea de nutrient Nivel 2
- PH soluție Nivel 2

În figura 3.17 este prezentată interacțiunea dintre durata de autoclavizare și cantitatea de nutrient iar valorile calculate pentru testul de prezență a interacțiunilor sunt date în tabelul 3.20.

Tab. 3.20 Valorile calculate pentru interacțiunea între durata de autoclavizare și cantitatea de nutrient

		Durată autoclavizare		
		X1	X2	
Cantitate	Y1	X1Y1 = 17,23	X2Y1 = 17,92	
nutrient	Y2	X1Y2 = 19,02	X2Y2 = 17,04	

Fig. 3.17 Interacțiunea între durata de autoclavizare și cantitatea de nutrient

Se observă că nivelurile dorite pentru condiția optimă sunt:

- Durata de autoclavizare Nivel 1
- Cantitatea de nutrient Nivel 2

În figura 3.18 este prezentată interacțiunea dintre durata de autoclavizare și PH-ul soluției iar valorile calculate pentru testul de prezență a interacțiunilor sunt date în tabelul 3.21.

Fig. 3.18 Interacțiunea între durata de autoclavizare și PH-ul soluției

Tab. 3.21 Valorile calculate pentru interacțiunea între durata de autoclavizare și PHul soluției

		Durată auto	clavizare
		X1	X2
PH soluție	Y1	X1Y1 = 17,49	X2Y1 = 18,05
	Y2	X1Y2 = 18,76	X2Y2 = 16,91

Se observă că nivelurile dorite pentru condiția optimă sunt:

- Durată de autoclavizare Nivel 1
- PH soluție Nivel 2

În figura 3.19 este prezentată interacțiunea dintre concentrația dopantului și durata autoclavizării iar valorile calculate pentru testul de prezență a interacțiunilor sunt date în tabelul 3.22.

Fig. 3.19 Interacțiunea între concentrația dopantului și durata autoclavizării

		Concentrația dopantului	
		X1	X2
Durată	Y1	X1Y1 = 18,22	X2Y1 = 18,03
autoclavizare	Y2	X1Y2 = 16,18	X2Y2 = 18,78

Tab. 3.22 Valorile calculate pentru interacțiunea între concentrația dopantului și durata autoclavizării

Se observă că nivelurile dorite pentru condiția optimă sunt:

- Concentrația dopantului Nivel 2
- Durată de autoclavizare Nivel 2

În figura 3.20 este prezentată interacțiunea dintre puterea cuptorului și gradul de umplere iar valorile calculate pentru testul de prezență a interacțiunilor sunt date în tabelul 3.23.

Tab. 3.23 Valorile calculate pentru interacțiunea între puterea cuptorului și gradul de umplere

		Putere cuptor	
		X1	X2
Grad umplere	Y1	X1Y1 = 17,23	X2Y1 = 17,04
	Y2	X1Y2 = 17,16	X2Y2 = 19,77

Se observă că nivelurile dorite pentru condiția optimă sunt:

- Puterea cuptorului Nivel 2
- Gradul de umplere Nivel 2

În figura 3.21 este prezentată interacțiunea dintre temperatura de autoclavizare și gradul de umplere iar valorile calculate pentru testul de prezență a interacțiunilor sunt date în tabelul 3.24.

Tab. 3.24 Valorile calculate pentru interacțiunea între temperatura de autoclavizare și gradul de umplere

		Temperatura autoclavizare		
		X1	X2	
Grad umplere	Y1	X1Y1 = 17,23	X2Y1 = 17,04	
	Y2	X1Y2 = 19,77	X2Y2 = 17,16	

Fig. 3.21 Interacțiunea între temperatura de autoclavizare și gradul de umplere

Se observă că nivelurile dorite pentru condiția optimă sunt:

- Temperatura de autoclavizare Nivel 1
- Gradul de umplere Nivel 2

În concluzie se poate afirma că *pe baza analizei interacțiunilor factorilor*, *condiția optimă* este dată de poziționarea factorilor la nivelurile din tabelul 3.25. Se observă că funcție de tipul interacțiunii, durata de autoclavizare și PH-ul soluției sunt acceptabile din acest punct de vedere la ambele niveluri.

Analiza interacțiunii factorilor				
Factor	Nivel			
Concentrație dopant	2			
Durată autoclavizare	2 (1)			
Temperatură autoclavizare	1			
Putere cuptor	2			
Cantitate nutrient	2			
PH soluție	2 (1)			
Grad umplere	2			

Tab. 3.25 Condiția optimă pe baza analizei interacțiunilor factorilor

3.1.6 Analiza varianței cu metoda ANOVA

În tabelul ANOVA din figura 3.22 se examinează ultima coloană din dreapta care reprezintă influența relativă procentuală a factorilor și interacțiunilor (dacă este cazul) la variabilitatea rezultatului.

Cal # / Easter	DOF	Sum of Sqrs.	Variance	F - Ratio	Pure Sum	Percent	
Cor#/ ractor	(1)	(3)	()	(1)	(8)	r(70)	
1 Conc. dopant	1	2.913	2.913		2.913	20.02	
2 Dur. autoclaviz.	1	.827	.827		.827	5.687	
3 Temp. autoclava	1	3.91	3.91		3.91	26.869	
4 Putere cuptor	1	2.924	2.924		2.924	20.096	
5 Cantit. nutrient	1	.422	.422		.422	2.901	
6 PH solutie	1	.008	.008		.008	.056	
7 Grad umplere	1	3.546	3.546		3.546	24.368	
Other/Error	٥						
Omentation	0						
Total:	7	14.553				100.009	%

Fig. 3.22 Tabelul ANOVA (captură de ecran - soft)

Indiferent de mărimea experimentului sau natura rezultatului, trebuie să se ia în considerare eliminarea factorilor care nu prezintă importanță.

În acest caz se elimină factorul "PH soluție", conform figurii 3.22, care are o contribuție de 0,056%. De remarcat că gradul de libertate (gdl) al erorii trebuie să fie diferit de zero deoarece întotdeauna există eroare instrumentală. Procentul influenței termenului de eroare (0,391 %) reprezintă influența combinată a factorilor neincluși în studiu, factorii de zgomot și orice anomalie experimentală neintenționată.

	DOF	Sum of Sqrs.	Variance	F - Ratio	Pure Sum	Percent
Col # / Factor	(f)	(S)	(V)	(F)	(S')	P(%)
1 Conc. dopant	1	2.913	2.913	357.032	2.905	19.965
2 Dur. autoclaviz.	1	.827	.827	101.421	.819	5.631
3 Temp. autoclava	1	3.91	3.91	479.167	3.902	26.814
4 Putere cuptor	1	2.924	2.924	358.385	2.916	20.041
5 Cantit. nutrient	1	.422	.422	51.749	.414	2.845
6 PH solutie	(1)	(.008)		POOLED	(CL= *NC*)	
7 Grad umplere	1	3.546	3.546	434.562	3.538	24.313
Other/Error	1	.007	.007			.391
Total:	7	14.553				100.00%

Fig. 3.23 Tabelul ANOVA după eliminare factorului "PH soluție" (captură de ecran - soft)

În figurile 3.24 și 3.25 sunt prezentate în ordine descrescătoare influențele factorilor semnificativi iar în figura 3.26 sunt prezentate influențele factorilor și a erorii.

Fig. 3.24 Influențele factorilor semnificativi (primii 6, inclusiv factorul eroare)

Fig. 3.25 Influențele factorilor semnificativi (ultimii 6, inclusiv factorul eroare)

Fig. 3.26 Influențele factorilor semnificativi (inclusiv factorul eroare)

Dacă se consideră că și factorul "Cantitate de nutrient" are o contribuție relativ mică, prin eliminarea acestuia din model se obține tabelul ANOVA din figura 3.27.

	DOF	Sum of Sqrs.	Variance	F - Ratio	Pure Sum	Percent
Col # / Factor	(f)	(8)	(V)	(F)	(S')	P(%)
1 Conc. dopant	1	2.913	2.913	13.536	2.698	18.542
2 Dur. autoclaviz.	1	.827	.827	3.845	.612	4.208
3 Temp. autoclava	1	3.91	3.91	18.167	3.695	25.391
4 Putere cuptor	1	2.924	2.924	13.588	2.709	18.618
5 Cantit. nutrient	(1)	(.422)		POOLED	(CL=100%)	
6 PH solutie	(1)	(.008)		POOLED	(CL= *NC*)	
7 Grad umplere	1	3.546	3.546	16.476	3.331	22.89
Other/Error	2	.429	.214			10.351
Total:	7	14.553				100.00%

Fig. 3.27 Tabelul ANOVA după eliminare factorilor "PH soluție" și "Cantitate nutrient" (captură de ecran - soft)

Fig. 3.28 Influențele factorilor semnificativi (inclusiv factorul eroare) după eliminarea factorului "Cantitate nutrient"

Se observă că în această situație eroarea este de peste 10% și în plus, deși influența factorului asupra dimensiunii nanoparticulelor este mică, totuși el va fi păstrat în model, în principal, din motive economice (o cantitate mai mare de nutrient va genera un număr mai mare de nanoparticule).

Ordinea importanței factorilor precum și procentul corespunzător sunt prezentate în tabelul 3.26.

Ordinea importanței	Factor	Procent [%]
1	Temperatură autoclavizare	26,869
2	Grad umplere	24,368
3	Putere cuptor	20,096
4	Concentrație dopant	20,020
5	Durată autoclavizare	5,687
6	Cantitate nutrient	2,901
7	Eroare/altele	0,391
		TOTAL = 100%

Tab. 3.26 Ordinea importanței factorilor

3.1.7 Analiza condițiilor optime și a performanței metodei utilizate

Tabelul de optim prezentat în tabelul 3.27 reprezintă ecuația predictivă pentru performanță la condiția optimă și orice altă condiție posibilă. Valorile calculate și prezentate în tabel sunt cele pentru condiția optimă. În calculul

performanței așteptate se includ numai factorii semnificativi, condiția optimă fiind determinată pe baza caracteristicii de calitate selectată pentru analiză. Se observă că nivelurile factorilor de optim sunt consistente cu cele prezentate în analiza efectelor medii și a interacțiunilor factorilor prezentate anterior. Faptul că factorul *"Durata autoclavizării"* este la nivelul 1 și nu 2 (așa cum s-a obținut din analiza efectelor medii) este favorabil din punct de vedere economic.

Descriere Nivel	Nivel	Contribuție
3 %	2	0,603
15 min	1	0,321
150 °C	1	0,699
1000 W	2	0,604
20 g	2	0,229
60 %	2	0,665
	Descriere Nivel 3 % 15 min 150 °C 1000 W 20 g 60 %	Descriere Nivel Nivel 3 % 2 15 min 1 150 °C 1 1000 W 2 20 g 2 60 % 2

Tab. 3.27 Tabelul de optim

• Contribuția totală a factorilor = 3,12

Media generală curentă a performanţei pentru raportul S/N = 17,806 dB

Rezultatul așteptat la condițiile optime pentru pentru raportul S/N = 20,927 dB

În figura 3.29 se prezintă modul în care contribuțiile diferiților factori ajută la obținerea îmbunătățirii preconizate.

Fig. 3.29 Performanța optimă cu prezentarea contribuțiilor factorilor principali

Pentru un nivel de încredere P = 95% (nivel de semnificație a = 1 – P = 5%), intervalul de încredere Δ , se calculează cu relația (3.1)

$$\Delta = \pm \sqrt{\frac{F(n_1, n_2) \cdot V_e}{N_e}}$$
(3.1)

Unde :

- $F(n_1, n_2) = 1,6$ (valoare calculată)

- n_1 , $n_2 = \overline{1}$ (gradul de libertate al erorii)

- V_e = 0,00816 (varianța erorii)

- $N_e = 1,14$ (numărul efectiv al replicărilor)

- numărul gradelor de libertate al factorilor (gdl= 6) este inclus în estimație.

Rezultă pentru intervalul de încredere valoarea $\Delta = \pm 0,107$ și deci valoarea așteptată a raportului S/N la optimum este 20,927 ± 0,107, adică un interval de încredere [20,820; 21,034]. Rezultă că valoarea așteptată exprimată în unități ale caracteristicii de calitate, bazată pe raportul S/N = 21,034 (valoarea optimă), este $Y_{asteptat}$ = 10 ± 0,089 nm adică un interval de încredere [9,911; 10,089] nm.

Un alt mod de a arăta îmbunătățirea performanței este de a prezenta modificarea în distribuția normală. Astfel, raportul S/N îmbunătățit la condițiile optime, corespunde unei reduceri a abaterii standard. Se va prezenta grafic (figura 3.30) distribuția normală pentru condițiile curente și îmbunătățite, ținând cont de următoarele presupuneri:

- ✓ Performanţa optimă este presupus a fi la ţintă.
- Pierderea înainte de experiment este presupus a fi 1\$ (100 cenţi) pentru a putea calcula economiile realizabile.
- ✓ Limita superioară de control (UCL) și limita inferioară de control (LCL) sunt presupuse a fi la \pm 3 σ pentru a putea calcula valorile Cp și Cpk.
- Abaterea standard (σ) la condiţiile îmbunătăţite se presupune a fi proporţională cu modificarea raportului S/N.

Fig. 3.30 Graficul reducerii variației pe baza condițiilor îmbunătățite (captură de ecran)

În tabelul 3.28 se prezintă comparativ situația parametrilor corespunzători condițiilor curente și îmbunătățite.

Tab. 3.28 Situația comparativă a parametrilor condiției curente versus condiției îmbunătățite

Experiment inițial	Condiții curente	Condiții previzionate
Raportul S/N	17,806	20,927
Media	9,987	10
Abaterea standard	1,19	0,83
Ср	1	1,432
Cpk	0,996	1,432
Economii	-	51,2 cenți/1\$ pierdere

3.1.8 Experimente de confirmare

3.1.8.1 Experimentul de confirmare numărul 1

În tabelul 3.29 se prezintă condițiile de realizare a experimentului de confirmare numărul 1:

Nr.	Factor	Nivel	Descriere nivel
1	Concentrație dopant	2	3% Ag
2	Durată autoclavizare	1	15 min
3	Temperatură autoclavizare	1	150 °C
4	Putere cuptor	2	1000 W
5	Cantitate nutrient	2	20 g
6	PH soluție	1	2,5
7	Grad umplere	2	60 %

Tab 3.29 Condițiile de realizare a experimentului de confirmare numărul 1

Pentru analiza statistică a rezultatelor experimentului de confirmare numărul 1 s-a optat pentru caracteristica de calitate (dimensiunea nanoparticulelor) varianta NTB *"nominal cel mai bun"*, luându-se în considerare valorile optime așteptate conform tabelului 3.28. Ca valoare țintă (nominală) s-a luat în considerare Y_{tintă} = 10 nm, limita inferioară specificată LSL = 9,8 nm, respectiv limita superioară specificată USL = 10,2 nm. S-a derulat experimentul de confirmare numărul 1, măsurându-se 50 de nanoparticule. Parametri statistici ai experimentului și indicatorii capabilității sunt prezentați în figurile 3.31 – 3.34.

Fig. 3.31 Distribuția indicilor de capabilitate Cp și Cpk pentru experimentul de confirmare numărul 1

Fig. 3.32 Graficul distribuției Cpk versus Abaterea standard pentru experimentul de confirmare numărul 1

100 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

Fig. 3.33 Graficul distribuției Cpk versus Medie pentru experimentul de confirmare numărul 1

Fig. 3.34 Graficul distribuției Cp versus Abaterea standard pentru experimentul de confirmare numărul 1

3.1.8.2 Experimentul de confirmare numărul 2

În tabelul 3.30 se prezintă condițiile de realizare a experimentului de confirmare numărul 2:

Nr.	Factor	Nivel	Descriere nivel
1	Concentrație dopant	2	3% Ag
2	Durată autoclavizare	1	15 min
3	Temperatură autoclavizare	1	150 °C
4	Putere cuptor	2	1000 W
5	Cantitate nutrient	2	20 g
6	PH soluție	2	2,8
7	Grad umplere	2	60 %

Tab 3.30 Condițiile de realizare a experimentului de confirmare numărul 2

Pentru analiza statistică a rezultatelor experimentului de confirmare numărul 1 s-a optat pentru caracteristica de calitate (dimensiunea nanoparticulelor) varianta NTB *"nominal cel mai bun"*, luându-se în considerare valorile optime așteptate conform tabelului 3.28. Ca valoare țintă (nominală) s-a luat în considerare $Y_{\text{tintă}} = 10$ nm, limita inferioară specificată LSL = 9,8 nm, respectiv limita superioară specificată USL = 10,2 nm. S-a derulat experimentul de confirmare numărul 2, măsurându-se 50 de nanoparticule. Parametri statistici ai experimentului și indicatorii capabilității sunt prezentați în figurile 3.35 – 3.38.

Fig. 3.35 Distribuția indicilor de capabilitate Cp și Cpk pentru experimentul de confirmare numărul 2

Fig. 3.36 Graficul distribuției Cpk versus Abaterea standard pentru experimentul de confirmare numărul 2

Fig. 3.37 Graficul distribuției Cpk versus Medie pentru experimentul de confirmare numărul 2

Fig. 3.38 Graficul distribuției Cp versus Abaterea standard pentru experimentul de confirmare numărul 2

În tabelul 3.31 este prezentată situația comparativă a parametrilor condiției previzionate versus condițiilor obținute prin experimentele de confirmare.

Experiment inițial	Condiții previzionate	Condiții previzionate pe baza raportului S/N optim și a intervalului de încredere	Condiții obținute în experimentul de confirmare numărul 1	Condiții obținute în experimentul de confirmare numărul 2
Raportul S/N	20,927	20,927	22,523	23,418
Media	10	10	9,99	9,98
Abaterea standard	0,83	-	0,043	0,039
Ср	1,432	-	1,560	1,709
Cpk	1,243	-	1,472	1,538
Economii	51,2 cenți/1\$ pierdere	-	55,8 cenți/1\$ pierdere	58,9 cenți/1\$ pierdere

Tab.	3.31	Situația	compa	arativă	іар	baram	etrilor	condiț	iei	previzi	onate	versus
		condiții	lor obț	;inute	prir	n expe	riment	ele de	со	nfirma	re	

3.1.9 Simularea factorială completă a comportamentului sistemului

Verificarea exactității proiectării experimentelor pe baza unei matrici ortogonale **L**₈ poate fi făcută cu ajutorul rezultatelor simulării factoriale complete (2^7 = 128 rezultate pentru experimentul factorial complet). Există posibilitatea să se lucreze cu un set predefinit de ecuații care pot fi rezolvate în condiții factoriale complete (toate posibilitățile). Prima ecuație (relația 3.2) reprezintă o relație generalizată neliniară între caracteristica de performanță (Y = Dimensiunea nanoparticulelor) și cei șapte factori (A = Concentrație dopant; B = Durată autoclavizare; C = Temperatură autoclavizare; D = Putere cuptor; E = Cantitate nutrient; F = PH soluție; G = Grad umplere):

$$Y = A^{k_1} + B^{k_2} + \frac{C^{k_3} \cdot D^{k_4} \cdot E^{k_5}}{F^{k_6} \cdot G^{k_7}}$$
(3.2)

Unde k₁,...k₇ reprezintă coeficienți constanți / exponenți

Ecuația din relația (3.3) reprezintă o altă posibilitate de a prezenta o relație polinomială de ordin superior între caracteristica de performanță și cei șapte factori.

$$Y = A^{k_1} + B^{k_2} + (k_3 + k_4 + k_5) \cdot \frac{C \cdot D \cdot E}{F^{k_6} \cdot G^{k_7}}$$
(3.3)

Unde k₁,...k₇ reprezintă coeficienți constanți / exponenți

Ecuația din relația (3.4) prezintă o relație liniară între caracteristica de performanță și cei șapte factori.

 $Y = k_1 \cdot A + k_2 \cdot B + k_3 \cdot C + k_4 \cdot D + k_5 \cdot E + k_6 \cdot F + k_7 \cdot G$ (3.4) Unde k_1, \dots, k_7 reprezintă coeficienți constanți / exponenți

Ecuația din relația (3.5) prezintă o relație pătratică între caracteristica de performanță și cei șapte factori.

 $Y = k_1 \cdot A^2 + (k_2 + k_3) \cdot B \cdot C + (k_4 + k_5) \cdot D \cdot E + k_6 \cdot F^2 + k_7 \cdot G^2$ (3.5) Unde $k_1, ..., k_7$ reprezintă coeficienți constanți / exponenți

Ecuația din relația (3.6) prezintă o relație cubică hiperbolică între caracteristica de performanță și cei șapte factori.

$$Y = k_{1} \cdot A^{2} + k_{2} \cdot B^{3} + (k_{3} + k_{4} + k_{5}) \cdot \frac{C \cdot D \cdot E}{k_{6} \cdot F^{2} + k_{7} \cdot G^{2}}$$
(3.6)

Unde k₁,...k₇ reprezintă coeficienți constanți / exponenți

Presupunând că ecuația caracteristică reprezintă comportamentul sistemului, valoarea maximă obținută din combinațiile experimentului factorial complet, poate fi considerată ca fiind soluția exactă cu care poate fi comparată soluția din experimentul bazat pe matricea ortogonală L_8 . De asemenea

performanța la condițiile optime poate fi comparată cu soluția exactă pentru a stabili exactitatea predicției experimentului L_8 .

Au fost efectuate 2000 de simulări pentru ecuațiile caracteristice din relațiile (3.2) – (3.6)(400 x5) obținându-se ecuația caracteristică liniară prin relația (3.7). Rezultatele simulării experimentului factorial complet sunt prezentate în tabelul 3.32.

$$Y = 0,425 \cdot A + 0,025 \cdot B + 0,001 \cdot C + 0,00225 \cdot D + 0,045 \cdot E + 0,485 \cdot F + 0,04575 \cdot G$$
(3.7)

Tab. 3.32 Rezultatele simulării experimentului factorial complet

Nr.	Combinația factorilor							Valoarea calculată	L ₈
1	1	1	1	1	1	1	1	9,48	L ₈ - # 1
2	1	1	1	1	1	1	2	9,93	
3	1	1	1	1	1	2	1	9,62	
4	1	1	1	1	1	2	2	9,08	
5	1	1	1	1	2	1	1	9,93	
6	1	1	1	1	2	1	2	9,38	
7	1	1	1	1	2	2	1	9,07	
8	1	1	1	1	2	2	2	9,53	
9	1	1	1	2	1	1	1	9,93	
10	1	1	1	2	1	1	2	9,38	
11	1	1	1	2	1	2	1	9,07	
12	1	1	1	2	1	2	2	9,53	
13	1	1	1	2	2	1	1	9,38	
14	1	1	1	2	2	1	2	9,83	
15	1	1	1	2	2	2	1	9,52	
16	1	1	1	2	2	2	2	9,98	L ₈ - # 2
17	1	1	2	1	1	1	1	8,98	
18	1	1	2	1	1	1	2	9,43	
19	1	1	2	1	1	2	1	9,12	
20	1	1	2	1	1	2	2	9,58	
21	1	1	2	1	2	1	1	9,43	
22	1	1	2	1	2	1	2	9,88	
23	1	1	2	1	2	2	1	9,57	
24	1	1	2	1	2	2	2	10,03	
25	1	1	2	2	1	1	1	9,43	
26	1	1	2	2	1	1	2	9,88	
27	1	1	2	2	1	2	1	9,57	
28	1	1	2	2	1	2	2	10,03	
29	1	1	2	2	2	1	1	9,88	
30	1	1	2	2	2	1	2	10,33	
31	1	1	2	2	2	2	1	10,02	
32	1	1	2	2	2	2	2	10,48	
33	1	2	1	1	1	1	1	8,85	
34	1	2	1	1	1	1	2	9,31	
35	1	2	1	1	1	2	1	9,00	
36	1	2	1	1	1	2	2	9,45	
37	1	2	1	1	2	1	1	9,30	
38	1	2	1	1	2	1	2	9,76	
39	1	2	1	1	2	2	1	9,45	
40	1	2	1	1	2	2	2	9,90	
41	1	2	1	2	1	1	1	9,30	
42	1	2	1	2	1	1	2	9,76	
43	1	2	1	2	1	2	1	9,45	
44	1	2	1	2	1	2	2	9,90	
45	1	2	1	2	2	1	1	9,75	
46	1	2	1	2	2	1	2	10.21	

47		-		_	-	-			
47	1	2	1	2	2	2	1	9,90	
48	1	2	1	2	2	2	2	10,35	
49	1	2	2	1	1	1	1	9 35	
- - J	1	2	2	1	1	1	2	5,55	
50	1	Z	Z	1	1	1	2	9,81	
51	1	2	2	1	1	2	1	9,50	
52	1	2	2	1	1	2	2	9,95	L。- # 3
53	1	2	2	1	2	1	1	9.80	_8
55	1	2	2	1	2	1	1	9,00	
54	1	2	2	1	2	1	2	10,26	
55	1	2	2	1	2	2	1	9,95	
56	1	2	2	1	2	2	2	10 40	
50	-	2	2	2	1	-	-	10,10	
57	T	2	2	2	1	1	1	9,80	
58	1	2	2	2	1	1	2	10,26	
59	1	2	2	2	1	2	1	9,95	
60	1	2	2	2	1	2	2	10 40	
C1	-	2	2	2	-	4	4	10,40	
01	1	2	2	2	2	1	1	10,25	L ₈ - # 4
62	1	2	2	2	2	1	2	10,71	
63	1	2	2	2	2	2	1	10,40	
64	1	2	2	2	2	2	2	10.85	
6		<u>ک</u>	<u>ک</u>	<u>ک</u>	<u>ک</u>			10,05	
65	2	1	1	1	1	1	1	8,90	
66	2	1	1	1	1	1	2	9,36	
67	2	1	1	1	1	2	1	9,04	
60	-	1	1	1	1	- 2	2	0 50	
00	2	1	1	1	1	Z é	Z é	9,50	
69	2	1	1	1	2	1	1	9,35	
70	2	1	1	1	2	1	2	9,81	
71	2	1	1	1	2	2	1	9 50	
72	2	1	1	1	2	2	2	5,50	
72	2	1	1	1	2	2	2	9,95	
73	2	1	1	2	1	1	1	9,35	
74	2	1	1	2	1	1	2	9,81	
75	2	1	1	2	1	2	1	9 50	
75	2	1	1	2	1	2	2	5,50	
76	2	1	1	2	1	2	2	9,95	
77	2	1	1	2	2	1	1	9,80	
78	1								
70	2	1	1	2	2	1	2	10.00	Optim 1
70	2	1	1	2	2	1	2	10,00	Optim 1
79	2	1	1	2	2	1 2	2	10,00 9,95	Optim 1
79 80	2 2 2	1 1 1	1 1 1	2 2 2	2 2 2	1 2 2	2 1 2	10,00 9,95 10,02	Optim 1 Optim 2
79 80 81	2 2 2 2	1 1 1 1	1 1 1 2	2 2 2 1	2 2 2 1	1 2 2 1	2 1 2 1	10,00 9,95 10,02 9,40	Optim 1 Optim 2
79 80 81 82	2 2 2 2 2	1 1 1 1 1	1 1 2 2	2 2 2 1 1	2 2 2 1 1	1 2 2 1 1	2 1 2 1 2	10,00 9,95 10,02 9,40 9.86	Optim 1 Optim 2
79 80 81 82	2 2 2 2 2 2	1 1 1 1 1 1	1 1 2 2 2	2 2 2 1 1 1	2 2 2 1 1 1	1 2 2 1 1 2	2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86	Optim 1 Optim 2
79 80 81 82 83	2 2 2 2 2 2 2	1 1 1 1 1 1	1 1 2 2 2	2 2 1 1 1 1	2 2 1 1 1 1	1 2 1 1 2 2	2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55	Optim 1 Optim 2
79 80 81 82 83 84	2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1	1 1 2 2 2 2 2	2 2 1 1 1 1 1	2 2 1 1 1 1 1	1 2 1 1 2 2 2	2 1 2 1 2 1 2 2	10,00 9,95 10,02 9,40 9,86 9,55 10,00	Optim 1 Optim 2
79 80 81 82 83 84 85	2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1	2 2 1 1 1 1 2	1 2 1 1 2 2 2 1	2 1 2 1 2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85	Optim 1 Optim 2
79 80 81 82 83 84 85 85	2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1	2 2 1 1 1 1 2 2	1 2 1 1 2 2 1 1	2 1 2 1 2 1 2 1 2	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31	Optim 1 Optim 2
79 80 81 82 83 84 85 86 87	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1	2 2 1 1 1 1 2 2 2	1 2 1 1 2 2 1 1 1 2 1 2	2 1 2 1 2 1 2 1 2 1 2	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31	Optim 1 Optim 2 L ₈ - # 5
79 80 81 82 83 84 85 86 87	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 1 1	2 2 1 1 1 1 2 2 2	1 2 1 1 2 2 1 1 2 1 1 2 2	2 1 2 1 2 1 2 1 2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00	Optim 1 Optim 2 L ₈ - # 5
79 80 81 82 83 84 85 86 87 88	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 1 1 1 1	2 2 1 1 1 2 2 2 2 2 2	1 2 1 1 2 2 1 1 2 1 2 2 2 2	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45	Optim 1 Optim 2 L ₈ - # 5
79 80 81 82 83 84 85 86 87 88 88 89	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 2	2 2 1 1 1 2 2 2 2 2 1	1 2 1 1 2 2 1 1 2 2 1 2 2 1	2 1 2 1 2 1 2 1 2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85	Optim 1 Optim 2 L ₈ - # 5
79 80 81 82 83 83 84 85 86 87 87 88 88 89 90	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 2 2 2	2 2 1 1 1 2 2 2 2 2 2 1 1	1 2 1 1 2 2 1 1 2 2 2 2 2 1 1 1	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85 10,31	Optim 1 Optim 2 L ₈ - # 5
79 80 81 82 83 84 85 86 87 88 89 90	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 2 2 2	2 2 1 1 1 2 2 2 2 2 1 1	1 2 1 1 2 2 1 1 2 2 1 2 2 1 1 1 2	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85 10,31	Optim 1 Optim 2 L ₈ - # 5
79 80 81 82 83 84 85 86 87 88 89 90 91	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2	2 2 1 1 1 2 2 2 2 2 1 1 1 1 1	1 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85 10,31 10,00	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 87 88 89 90 91 92	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 2 2 2 2 2 2	2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1	1 2 1 2 2 2 1 1 2 2 1 2 2 1 1 2 2 2 2	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85 10,31 10,00 10,45	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2	2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2	1 2 2 1 2 2 2 1 1 2 2 2 1 1 2 2 1 2 2 1	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 10,31 10,00 10,45 10,45 10,30	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2	1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85 10,31 10,00 10,45 10,31 10,00 10,45 10,30	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 97	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 1 2	1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 1 2	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,45 9,85 10,31 10,00 10,45 9,85 10,31 10,00 10,45 10,30	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2	1 2 2 1 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 2 2 2 1 1 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2	2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 10,31 10,00 10,45 10,30 10,76 10,45	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 88 89 90 91 92 93 94 95 96	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2	1 2 2 2 2 2 1 1 2 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 2 2	2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85 10,31 10,00 10,45 10,30 10,76 10,45 10,30	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 2	1 2 1 2 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 1 1 2 2 1	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85 10,31 10,00 10,45 10,30 10,45 10,30 10,76 10,45 10,90 9,27	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2	1 2 2 1 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 2	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 10,31 10,00 10,45 10,30 10,76 10,45 10,30 10,76 10,45 10,90 9,27 9,73	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 88 89 90 91 92 93 94 95 96 97 97 98	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2	2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2	1 2 2 1 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 10,31 10,00 10,45 10,30 10,76 10,45 10,30 10,76 10,45	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 99	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2	2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2	1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 1	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85 10,31 10,00 10,45 10,30 10,76 10,45 10,30 10,76 10,45 10,90 9,27 9,73 9,42	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2	1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1 2	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85 10,31 10,00 10,45 10,30 10,76 10,45 10,30 10,76 10,45 10,90 9,27 9,73 9,42 9,88	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2	2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2	1 2 2 1 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 1	2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 10,31 10,00 10,45 10,31 10,30 10,76 10,45 10,30 10,76 10,45 10,90 9,27 9,73 9,42 9,88 9,73	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2	2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2	1 2 2 1 2 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1	2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85 10,31 10,00 10,45 10,30 10,76 10,45 10,30 10,76 10,45 10,90 9,27 9,73 9,42 9,88 9,73 10,18	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 79 80 81 82 83 84 85 87 87 88 87 87 88 89 90 91 92 93 94 95 96 97 97 98 99 100 101 102	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2	1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 2	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85 10,31 10,00 10,45 10,30 10,76 10,45 10,30 10,76 10,45 10,90 9,27 9,73 9,42 9,88 9,73 10,18	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2	2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2	1 2 2 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2	2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 10,31 10,00 10,45 10,31 10,00 10,76 10,45 10,30 10,76 10,45 10,90 9,27 9,73 9,42 9,88 9,73 10,18 9,87	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6 L ₈ - # 7
79 80 81 82 83 84 85 86 87 88 88 90 91 92 93 94 95 96 97 98 99 94 95 96 97 98 99 100 101 102 103 104	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2	1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1	2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 10,31 10,00 10,45 10,30 10,76 10,45 10,30 10,76 10,45 10,90 9,27 9,73 9,42 9,88 9,73 10,18 9,87 10,33	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6 L ₈ - # 7
79 80 81 82 83 84 85 87 88 87 88 88 90 90 91 92 93 94 95 96 97 98 99 90 100 101 102 103 104 105	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2	1 2 2 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85 10,31 10,00 10,45 10,30 10,76 10,45 10,30 10,76 10,45 10,90 9,27 9,73 9,42 9,88 9,73 10,18 9,87 10,33 9,73	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6 L ₈ - # 7
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1	1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 2	2 1 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 9,85 10,31 10,00 10,45 10,30 10,76 10,45 10,30 10,76 10,45 10,90 9,27 9,73 9,42 9,88 9,73 10,18 9,87 10,33 9,73 10,18	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6 L ₈ - # 7 L ₈ - # 7
79 80 81 82 83 84 85 86 87 88 88 89 90 91 92 93 94 95 96 97 98 99 94 95 96 97 98 97 91 00 100 101 102 104 105 10 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2	2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2	1 2 2 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1	2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	10,00 9,95 10,02 9,40 9,86 9,55 10,00 9,85 10,31 10,00 10,45 10,31 10,00 10,45 10,30 10,76 10,45 10,30 10,76 10,45 10,90 9,27 9,73 9,42 9,88 9,73 10,18 9,87 10,33 9,73 10,18	Optim 1 Optim 2 L ₈ - # 5 L ₈ - # 6 L ₈ - # 6 L ₈ - # 7 L ₈ - # 7

106 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

1									
108	2	2	1	2	1	2	2	10,33	
109	2	2	1	2	2	1	1	10,18	
110	2	2	1	2	2	1	2	10,63	
111	2	2	1	2	2	2	1	10,32	
112	2	2	1	2	2	2	2	10,78	
113	2	2	2	1	1	1	1	9,77	
114	2	2	2	1	1	1	2	10,23	
115	2	2	2	1	1	2	1	9,92	
116	2	2	2	1	1	2	2	10,38	
117	2	2	2	1	2	1	1	10,23	
118	2	2	2	1	2	1	2	10,68	
119	2	2	2	1	2	2	1	10,37	
120	2	2	2	1	2	2	2	10,83	
121	2	2	2	2	1	1	1	10,23	
122	2	2	2	2	1	1	1	10,66	
123	2	2	2	2	1	2	1	10,37	
124	2	2	2	2	1	2	2	10,83	
125	2	2	2	2	2	1	1	10,68	
126	2	2	2	2	2	1	2	11,13	
127	2	2	2	2	2	2	1	10,82	
128	2	2	2	2	2	2	2	11,12	

Condițiile de minimum și maximum rezultate în urma simulării experimentului factorial complet sunt prezentate în tabelul 3.33:

Tab.	3.33 Condițiile de minimum și maximum (simulare experiment factorial
	complet) și condițiile de optim calculate (corespunzătoare L ₈)

Nr.			Combiı	Valoarea calculată	L ₈				
1	1	1	1	1	1	1	1	9,48	minimum
128	2	2	2	2	2	2	2	11,12	maximum
78	2	1	1	2	2	1	2	10,00	Optim 1
80	2	1	1	2	2	2	2	10,02	Optim 2

Matricea ortogonală L_8 obținută în urma simulării experimentului factorial complet și valorile corespunzătoare calculate sunt prezentate în tabelul 3.34:

Tab. 3.34 Matricea ortogonală L_8 obținută în urma simulării experimentului factorial complet

Nr.			Combir	nația fa		Valoarea calculată	L ₈		
1	1	1	1	1	1	1	1	9,48	L ₈ - # 1
16	1	1	1	2	2	2	2	9,98	L ₈ - # 2
52	1	2	2	1	1	2	2	9,95	L ₈ - # 3
61	1	2	2	2	2	1	1	10,25	L ₈ - # 4
86	2	1	2	1	2	1	2	10,31	L ₈ - # 5
91	2	1	2	2	1	2	1	10,00	L ₈ - # 6
103	2	2	1	1	2	2	1	9,87	L ₈ - # 7
106	2	2	1	2	1	1	2	10,18	L ₈ - # 8

Valoarea optimă rezultată în urma simulării experimentului factorial complet este: $Y_{optim1} = 10,00$ și $Y_{optim2} = 10,02$ iar eroarea utilizării unei matrice ortogonale L_8 în loc de un experiment factorial complet este de 0% și respectiv 0,02%. În tabelul 3.35 se prezintă o comparație între valorile calculate în urma simulării experimentului factorial complet și valorile obținute prin măsurare în urma aplicării planului de experiențe dat de matricea ortogonală L_8 .

Număr experiment factorial complet (simulare)	Număr experiment L ₈	Valoarea calculată (simulare)	Valoare medie măsurată L ₈	Eroare relativă [%]
1	1	9,48	9,862	- 3,87
16	2	9,98	10,030	- 0,49
52	3	9,95	9,846	1,05
61	4	10,25	10,150	0,98
86	5	10,31	10,074	2,34
91	6	10,00	9,878	1,23
103	7	9,87	9,996	-1,26
106	8	10,18	10,040	1,39

Tab. 3.35 Comparație între valorile calculate în urma simulării experimentului factorial complet și valorile obținute prin măsurare

Se observă că eroarea relativă maximă este de aproximativ – **3,87 %** iar erorile pentru condițiile de experimentare numărul 78 și 80 (cele care de fapt oferă combinația optimă a factorilor) sunt de **0%** și respectiv - **0,02%**, ceea ce permite să se concluzioneze că ecuația din relația 3.7, reprezintă soluția analitică corectă a relației între caracteristica de performanță (dimensiunea nanoparticulelor) și factorii luați în considerare. Forma finală a ecuației care prezintă soluția corectă, cu o eroare maximală de **- 3,87%** este dată în relația 3.8:

$$\begin{aligned} \text{Dim}_{\text{nanoparticule}}[\text{nm}] &= 0,425 \cdot \text{Concentratie}_{\text{dopant}}[\%] + 0,025 \cdot \text{Durata}_{\text{autoclavizare}}[\text{min}] + \\ &+ 0,001 \cdot \text{Temperatura}_{\text{autoclavizare}}[^{\circ}\text{C}] + 0,00225 \cdot \text{Putere}_{\text{cuptor}}[\text{W}] + \\ &+ 0,045 \cdot \text{Concentratie}_{\text{nutrient}}[\text{g}] + 0,485 \cdot \text{PH} + 0,04575 \cdot \text{Grad}_{\text{unplere}}[\%] \end{aligned}$$

$$(3.8)$$

3.2 Aplicarea Metodei Suprafeței de Răspuns (RSM). Planul de experimente Draper-Lin în cadrul sintezei hidrotermale în câmp de microunde

Cele mai utilizate planuri de experiențe grupate sub numele de *Metoda Suprafeței de Răspuns* sunt: planurile compoziționale centrale, planurile factoriale cu trei niveluri, planurile Box-Behnken și planurile Draper-Lin.

- Planurile compoziţionale centrale sunt planuri constând dintr-un plan factorial cu 2 niveluri sau un plan factorial fracţionat de rezoluţie V plus puncte stea adiţionale utilizate pentru a modela curbura în raport cu fiecare factor
- Planurile factoriale cu 3 niveluri sunt planuri constând din toate combinațiile a celor 3 niveluri a fiecărui factor experimental
- Planurile Box-Behnken sunt planuri cu 3 niveluri incluzând un subset de experimente constând dintr-un plan factorial cu 3 niveluri complet
- Planurile Draper-Lin sunt planuri compoziţionale de dimensiuni reduse în care porţiunea centrală a planului are o rezoluţie mai mică de ordinul V.

Atunci când costul experimentării este mare, trebuie menținut numărul de experimente cât mai mic.

În continuare se va folosi un plan de experimente **Draper-Lin**, care este un plan compozițional de dimensiuni reduse constând dintr-un plan factorial fracționat sau un plan Plackett-Burman (pentru matrici cu număr de experimente multiplu de 4 dar nu putere a lui 2) cu rezoluție mai mică de ordinul V, cu puncte stea adiționale.

Planurile cu rezoluție de ordin V pot estima toate efectele principale și interacțiunile, planurile cu rezoluție de ordin IV pot estima toate efectele principale dar unele din interacțiunile între doi factori pot fi confundate (amestecate) cu alte interacțiuni sau efecte ale blocurilor iar planurile cu rezoluție de ordin III pot estima doar efectele principale fără interacțiuni pentru o interpretare corectă.

3.2.1 Planul de experimente Draper-Lin. Modelul statistic. Rezultate experimentale

Modelul statistic pe care se bazează analiza planurilor RSM (inclusiv planurile Draper-Lin) exprimă variabila de răspuns (dimensiunea nanoparticulelor) ca o funcție liniară a factorilor experimentali, interacțiunile între factori, termeni de ordinul 2 (pătratici) și un termen de eroare. Există 2 tipuri de modele care se pot folosi, prezentându-se acestea pentru cazul de față, și anume pentru șapte factori: 1. Modelul de ordinul I – care conține termeni care reprezintă numai efectele principale.

 $\mathbf{Y} = \beta_0 + \beta_1 \mathbf{X}_1 + \beta_2 \mathbf{X}_2 + \beta_3 \mathbf{X}_3 + \beta_4 \mathbf{X}_4 + \beta_5 \mathbf{X}_5 + \beta_6 \mathbf{X}_6 + \beta_7 \mathbf{X}_7 + \varepsilon \quad (3.9)$

2. Modelul de ordinul II – care conține termeni care reprezintă efectele principale, interacțiuni de ordinul doi și efectele pătratice

$$\begin{split} \mathbf{Y} &= \beta_{0} + \beta_{1} X_{1} + \beta_{2} X_{2} + \beta_{3} X_{3} + \beta_{4} X_{4} + \beta_{5} X_{5} + \beta_{6} X_{6} + \beta_{7} X_{7} + \\ \beta_{12} X_{1} X_{2} + \beta_{13} X_{1} X_{3} + \beta_{14} X_{1} X_{4} + \beta_{15} X_{1} X_{5} + \beta_{16} X_{1} X_{6} + \beta_{17} X_{1} X_{7} + \\ \beta_{23} X_{2} X_{3} + \beta_{24} X_{2} X_{4} + \beta_{25} X_{2} X_{5} + \beta_{26} X_{2} X_{6} + \beta_{27} X_{2} X_{7} + \beta_{34} X_{3} X_{4} + \\ \beta_{35} X_{3} X_{5} + \beta_{36} X_{3} X_{6} + \beta_{37} X_{3} X_{7} + \beta_{45} X_{4} X_{5} + \beta_{46} X_{4} X_{6} + \beta_{47} X_{4} X_{7} + \\ \beta_{56} X_{5} X_{6} + \beta_{57} X_{5} X_{7} + \beta_{67} X_{6} X_{7} + \beta_{11} X_{1}^{2} + \beta_{22} X_{2}^{2} + \beta_{33}^{2} + \beta_{44}^{2} + \beta_{55}^{2} + \\ \beta_{66}^{2} + \beta_{77}^{2} + \epsilon \end{split}$$

A fost creat un plan de experimente compozițional de dimensiuni mici ortogonal randomizat Draper-Lin cu ajutorul căruia se va studia efectul a şapte factori în 40 de experimente, într-un singur bloc (incluzînd 2 puncte centrale per bloc) cu 4 grade de libertate pentru eroare. În tabelul 3.36 se prezintă planul de experimente Draper-Lin și rezultatele experimentale.

		Tab. 3.36	Planul de	experiment	e Draper-	·Lin şi re	zultatele	e experime	ntale
Nr.	B L O C	Conc. nutrient (A-1)	Dur. autoclav. (B-2)	Temp. autocla. (C-3)	Putere cuptor (D-4)	Cantit. nut. (E-5)	PH (F-6)	Grad umplere (G-7)	Dim. nanopart
		%	min	°C	w	a		%	nm
1	1	2	30	200	800	20	2.5	50	9,99
2	1	3	30	150	1000	20	2.5	60	9,99
3	1	3	30	200	800	20	2.5	60	9.97
4	1	2	30	200	1000	20	2,5	50	10,1
5	1	2,5	39,1002	175	900	15	2,65	55	10,15
6	1	3	15	200	1000	20	2,5	60	9,87
7	1	3	15	200	800	10	2,5	60	9,85
8	1	2	15	150	800	10	2,5	50	9,94
9	1	2,5	5,89977	175	900	15	2,65	55	10,11
10	1	2,5	22,5	230,334	900	15	2,65	55	10,14
11	1	2	15	200	800	10	2,8	60	9,89
12	1	3	30	200	1000	10	2,8	50	9,78
13	1	2	30	150	1000	10	2,5	60	10,11
14	1	2	15	150	1000	20	2,8	50	10,04
15	1	3	15	150	1000	10	2,5	50	10,01
16	1	2	15	200	1000	20	2,8	60	9,99
17	1	2,5	22,5	175	900	15	2,65	55	9,86
18	1	2,5	22,5	175	900	15	2,982	55	9,78
19	1	2,5	22,5	119,666	900	15	2,65	55	10,23
20	1	2,5	22,5	175	900	15	2,65	43,9332	9,9
21	1	2	30	200	800	20	2,8	50	9,79
22	1	2,5	22,5	175	900	15	2,65	55	10,11
23	1	2,5	22,5	175	900	15	2,65	66,0668	10,2
24	1	3	30	200	1000	10	2,8	60	10,21
25	1	3	30	150	800	20	2,8	50	9,99
26	1	2,5	22,5	175	900	15	2,318	55	9,97
27	1	2,5	22,5	175	900	3,9331	2,65	55	10,04
28	1	2	30	150	800	10	2,8	60	10,12
29	1	2,5	22,5	175	678.664	15	2,65	55	9,99
30	1	3	15	150	800	20	2,5	50	10
31	1	2	15	200	1000	10	2,5	50	9,98
32	1	1,39332	22,5	175	900	15	2,65	55	10
33	1	2	30	200	800	20	2,5	50	9,99
34	1	3	30	150	1000	20	2,5	60	9,99
35	1	3	30	200	800	20	2,5	60	9,97
36	1	2	30	200	1000	20	2,5	50	10,1
37	1	2,5	39,1002	175	900	15	2,65	55	10,15
38	1	3	15	200	1000	20	2,5	60	9,87
39	1	3	15	200	800	10	2,5	60	9,85
40	1	2	15	150	800	10	2,5	50	9,94

3.3 Aplicarea Metodei Taguchi in cadrul sintezei hidrotermale rapide 110

3.2.2 Analiza efectelor principale

În tabelul 3.37 se prezintă efectele principale estimate ale factorilor, de asemenea prezentându-se abaterea standard a fiecărui efect care măsoară eroarea de eşantionare. Pentru un plan ortogonal perfect, toate valorile factorilor sunt la valoarea 1.

3.2 Aplicarea Metodei Suprafeței de Răspuns. Planul de experimente Draper Lin 111

Efect	Estimația	Ab. standard	V.I.F.
Media	10,0032	0,0279508	
A: Concentrație dopant	0,000378769	0,0608149	1,0
B: Durată autoclavizare	0,00997303	0,0608149	1,0
C: Temperatură autoclavizare	-0,054394	0,0608149	1,0
D: Putere cuptor	0,0412168	0,0608147	1,0
E: Cantitate nutrient	-0,0130976	0,0608149	1,0
F: PH	0,0106201	0,0608151	1,0
G: Grad umplere	0,0463939	0,0608149	1,0

Tab.	3.37	Efectele	estimate	pentru	dimensiunea	nanocristalelo

În figura 3.39 se prezintă efectele factorilor în ordine descrescătoare iar cu o linie verticală se determină care efecte sunt semnificative din punct de vedere statistic (diagrama Pareto standardizată în care au fost excluse toate interacțiunile).

Fig. 3.39 Diagrama Pareto standardizată pentru efectele factorilor asupra dimensiunii nanoparticulelor

În tabelul 3.38 se prezintă comparativ ordinea importanței factorilor pentru metoda Taguchi și metoda RSM (plan de experimente Draper-Lin)

Tab. 3.38 Ordinea importanței factorilor obținută prin metoda Taguchi și metoda RSM (plan de experimente Draper-Lin)

Ordinea importanței	Taguchi L ₈	Draper-Lin (fără interacțiuni)
1	Temperatură autoclavizare	Temperatură autoclavizare
2	Grad umplere	Grad umplere
3	Putere cuptor	Putere cuptor
4	Concentrație dopant	Cantitate nutrient
5	Durată autoclavizare	PH
6	Cantitate nutrient	Durată autoclavizare
7	PH	Concentrație dopant

112 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

Se observă că factorii *Temperatură autoclavizare, Grad de umplere* și *Putere cuptor* sunt considerați ca fiind factorii principali (în această ordine) în ambele abordări.

În figura 3.40 se prezintă graficul efectelor principale, iar în figurile 3.41 – 3.43 graficele efectelor factorilor individuali asupra dimensiunii nanoparticulelor.

Fig. 3.40 Efectelele principale asupra dimensiunii

Fig. 3.41 Efectul temperaturii de autoclavizare asupra dimensiunii

3.2 Aplicarea Metodei Suprafeței de Răspuns. Planul de experimente Draper Lin 113

Fig. 3.42 Efectul gradului de umplere asupra dimensiunii

Fig. 3.43 Efectul puterii cuptorului asupra dimensiunii

3.2.3 Analiza varianței cu metoda ANOVA

În tabelul 3.39 se prezintă tabelul Anova care conține valorile "p" care pot fi folosite pentru a testa semnificația statistică a fiecărui efect. Tabelul ANOVA partiționează variabilitatea dimensiunii nanoparticulelor în componente separate pentru fiecare efect. Se testează apoi semnificația statistică a fiecărui efect prin compararea mediei pătratice cu o estimație a erorii experimentale.

114	Cap3.	Cercetări	aplicative	privind	sinteza	nanocristalelor	de	TiO ₂
-----	-------	-----------	------------	---------	---------	-----------------	----	------------------

Sursa	Suma pătratelor	Gdl	Media pătratică	Raport	Valoare
				F	р
A:Concentrație dopant	0,00000121221	1	0,00000121221	0,00	0,9933
B:Durata autoclavizare	0,000840397	1	0,000840397	0,05	0,8239
C:Temp. autoclavizare	0,0249996	1	0,0249996	1,50	0,2299
D:Putere cuptor	0,0143543	1	0,0143543	0,86	0,3607
E:Cantitate nutrient	0,00144949	1	0,00144949	0,09	0,7701
F:PH	0,000952973	1	0,000952973	0,06	0,8127
G:Grad umplere	0,0181866	1	0,0181866	1,09	0,3044
Total eroare	0,534093	32	0,0166904		
Total (corecție)	0,594878	39			

Tab. 3.39	Tabelul	ANOVA	(plan	de	experimente	Draper -	Lin)
-----------	---------	-------	-------	----	-------------	----------	------

Din tabel se observă că 3 efecte (marcate cu ro_{su}) sunt în mod semnificativ diferite de 0, cu o probabilitate de 70%.

3.2.4 Ecuația de regresie a modelului asociat planului de experimente Draper-Lin

În relația (3.11) este prezentată ecuația de regresie, conform modelului de ordin I din relația (3.9) și în care valorile variabilelor sunt specificate în unitățile de măsură originale.

$$\begin{split} & \text{Dim}_{\text{nanoparticule}} \left[nm \right] = 9,66292 + 0,000378769 \cdot \text{Concentratie}_{\text{dopant}} \left[\% \right] + \\ & + 0,0006648469 \cdot \text{Durata}_{\text{autoclavizare}} \left[min \right] - 0,00108788 \cdot \text{Temp}_{\text{autoclavizare}} \left[^{\circ}\text{C} \right] + \\ & + 0,000206084 \cdot \text{Putere}_{\text{cuptor}} \left[W \right] - 0,00130976 \cdot \text{Cantitate}_{\text{nutrient}} \left[g \right] + \\ & + 0,0354602 \cdot \text{PH} + 0,00463939 \cdot \text{Grad}_{\text{umplere}} \left[\% \right] \end{split}$$

3.2.6 Estimarea rezultatelor pe baza modelului asociat planului de experimente Draper-Lin

În tabelul 3.40 se prezintă informații privind dimensiunea nanoparticulelor generate pe baza modelului de ordin I din relația (3.9) asociat planului de experimente Draper-Lin și anume valorile măsurate, valorile previzionate pentru acestea pe baza modelului, valorile previzionate pentru medii precum și limitele acestora cu o probabilitate de 95% (semnificație de 5%).

|--|

Nr	Nr Valori Valori măsurate previzionate		Lim. inf. medii previzionate P=95%	Lim. sup. medii previzionate P=95%
1	10,1	10,0449	9,91811	10,1717
2	9,88	10,0489	9,94038	10,1574
3	10,19	10,0678	9,94105	10,1946
4	10,12	9,93931	9,81253	10,0661
5	9,79	10,0391	9,91229	10,1659
6	10,03	10,0037	9,89518	10,1122
7	9,94	9,98876	9,88027	10,0972
8	9,98	10,027	9,90022	10,1538
9	9,99	9,92519	9,7984	10,052
10	9,99	10,0676	9,94079	10,1944
11	9,97	9,97196	9,84518	10,0987
12	10,1	9,9664	9,83962	10,0932
13	10,15	10,0143	9,9058	10,1228
14	9,87	10,0032	9,87642	10,13
15	9,85	9,97508	9,8483	10,1019
16	9,94	9,9827	9,85592	10,1095
17	10,11	9,99221	9,88373	10,1007
18	10,14	9,94305	9,83457	10,0515
19	9,89	9,98532	9,85854	10,1121
20	9,78	9,9905	9,86372	10,1173
21	10,11	10,0803	9,95351	10,2071
22	10,04	10,0214	9,89466	10,1482
23	10,01	10,0243	9,89752	10,1511
24	9,99	10,0134	9,88666	10,1402
25	9,86	10,0032	9,96164	10,0449
26	9,78	10,015	9,90652	10,1235
27	10,23	10,0634	9,95496	10,1719
28	9,9	9,95191	9,84342	10,0604
29	9,79	9,93581	9,80902	10,0626
30	10,11	10,0032	9,96164	10,0449
31	10,2	10,0546	9,94611	10,1631
32	10,21	10,0369	9,91011	10,1637
33	9,99	9,99058	9,8638	10,1174
34	9,97	9,9915	9,88301	10,1
35	10,04	10,0177	9,90926	10,1262
36	10,12	10,0497	9,92291	10,1765
37	9,99	9,95764	9,84915	10,0661
38	10,0	9,96999	9,8432	10,0968
39	9,98	9,96953	9,84274	10,0963
40	10,0	10,0028	9,89435	10,1113

Tab. 3.40 Estimațiile dimensiunii nanoparticulelor pe baza modelului de ordin I asociat planului de experimente Draper-Lin

3.2.7 Analiza predicțiilor cu ajutorul metodei gradientului (metoda "pantei celei mai abrupte")

Traiectul"pantei celei mai abrupte" pornește din centrul regiunii experimentului curent de-a lungul căruia răspunsul estimat se modifică cel mai rapid pentru cea mai mică schimbare în valorile factorilor experimentali. Indică locațiile favorabile în care trebuie efectuate experimente adiționale. În tabelele 3.41 – 3.43 se prezintă valorile factorilor și valorile previzionate pentru dimensiunea nanoparticulelor prin generarea a 11 puncte prin modificarea factorilor cu diverse incremente.

Conc. dopant	Dur. autoclav	Temp. autoclav	Putere cuptor	Cantitate nutrient	РН	Grad umplere	Dimensiune previzionată
%	min	°C	w	g		%	nm
2,5	22,5	175,0	900,0	15,0	2,65	55,0	10,0032
2,4993	22,225	180,0	884,845	15,2408	2,64414	54,1471	9,99002
2,49861	21,95	185,0	869,69	15,4816	2,63829	53,2942	9,9768
2,49791	21,6749	190,0	854,535	15,7224	2,63243	52,4412	9,96357
2,49721	21,3999	195,0	839,38	15,9632	2,62657	51,5883	9,95035
2,49652	21,1249	200,0	824,225	16,204	2,62071	50,7354	9,93712
2,49582	20,8499	205,0	809,07	16,4447	2,61486	49,8825	9,9239
2,49513	20,5748	210,0	793,916	16,6855	2,609	49,0295	9,91067
2,49443	20,2998	215,0	778,761	16,9263	2,60314	48,1766	9,89745
2,49373	20,0248	220,0	763,606	17,1671	2,59728	47,3237	9,88422
2,49304	19,7498	225,0	748,451	17,4079	2,59143	46,4708	9,871

Tab. 3.41 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticulelor (modificarea temperaturii de autoclavizare cu incremente de 5°C)

Tab. 3.42 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticulelor (modificarea gradului de umplere cu incremente de 1%)

Conc. dopant	Dur. autoclav	Temp. autoclav	Putere cuptor	Cantitate nutrient	PH	Grad umplere	Dimensiune previzionată
%	min	°C	w	g		%	nm
2,5	22,5	175,0	900,0	15,0	2,65	55,0	10,0032
2,50082	22,8224	169,138	917,768	14,7177	2,65687	56,0	10,0188
2,50163	23,1449	163,276	935,536	14,4354	2,66373	57,0	10,0343
2,50245	23,4673	157,413	953,305	14,1531	2,6706	58,0	10,0498
2,50327	23,7898	151,551	971,073	13,8707	2,67747	59,0	10,0653
2,50408	24,1122	145,689	988,841	13,5884	2,68434	60,0	10,0808
2,5049	24,4347	139,827	1006,61	13,3061	2,6912	61,0	10,0963
2,50571	24,7571	133,965	1024,38	13,0238	2,69807	62,0	10,1118
2,50653	25,0796	128,102	1042,15	12,7415	2,70494	63,0	10,1273
2,50735	25,402	122,24	1059,91	12,4592	2,71181	64,0	10,1428
2,50816	25,7245	116,378	1077,68	12,1769	2,71867	65,0	10,1583

3.2 Aplicarea Metodei Suprafeței de Răspuns. Planul de experimente Draper Lin 117

Conc. dopant	Dur. autoclav	Temp. autoclav	Putere cuptor	Cantitate nutrient	PH	Grad umplere	Dimensiune previzionată
%	min	٥C	w	g		%	nm
2,5	22,5	175,0	900,0	15,0	2,65	55,0	10,0032
2,50046	22,6815	171,701	910,0	14,8411	2,65386	55,5628	10,012
2,50092	22,8629	168,401	920,0	14,6822	2,65773	56,1256	10,0207
2,50138	23,0444	165,102	930,0	14,5233	2,66159	56,6884	10,0294
2,50184	23,2259	161,803	940,0	14,3645	2,66546	57,2512	10,0382
2,5023	23,4074	158,504	950,0	14,2056	2,66932	57,814	10,0469
2,50276	23,5888	155,204	960,0	14,0467	2,67319	58,3768	10,0556
2,50322	23,7703	151,905	970,0	13,8878	2,67705	58,9396	10,0643
2,50368	23,9518	148,606	980,0	13,7289	2,68092	59,5024	10,0731
2,50414	24,1333	145,307	990,0	13,57	2,68478	60,0652	10,0818
2,50459	24,3147	142,007	1000,0	13,4111	2,68865	60,628	10,0905

Tab. 3.43 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticulelor (modificarea puterii cuptorului cu incremente de 10 W)

3.2.8 Rezultate experimentale. Optimizarea răspunsului la dimensiunea de 10 nm a nanocristalelor

Pentru menținerea răspunsului (dimensiunea nanoparticulelor) la 10 nm, în tabelul 3.44 se prezintă combinația optimizată a nivelurilor factorilor.

Factor	Min	Max	Optimum	Valoare optimă
Concentrație dopant	1,39332	3,60668	2,51328	
Durată autoclavizare	5,89977	39,1002	22,5813	
Tem. autoclavizare	119,666	230,334	176,099	
Putere cuptor	678,664	1121,34	894,826	10
Cantitate nutrient	3,93318	26,0668	15,1762	_
PH soluție	2,318	2,982	2,65026	
Grad umplere	43,9332	66,0668	54,8221	

Tab. 3.44 Combinația optimizată a nivelurilor factorilor pentru planul Draper-Lin

În tabelul 3.45 se face o comparație între valorile măsurate în experimentele de confirmare bazate pe planul de experiențe Taguchi L_8 , valorile așteptate optime obținute prin simularea unui plan factorial complet (128 experimente), valorile așteptate obținute prin aplicarea planului de experiențe Taguchi L_8 , valoarea medie calculată prin aplicarea planului de experiențe Draper-Lin. De asemenea se prezintă nivelurile factorilor pentru condițiile respective.

118	Cap3.	Cercetări	aplicative	privind	sinteza	nanocristalelor	de	TiO ₂
-----	-------	-----------	------------	---------	---------	-----------------	----	------------------

	Factori și niveluri							
Metoda	Valoare	Α	В	С	D	Е	F	G
Valoare medie măsurată (L ₈)	9,987	2	1	1	2	2	2	2
Valoare optimă previzionată (L ₈)	10	2	1	1	2	2	2 (1)	2
Valoare optimă calculată 1 (simulare-128)	10	2	1	1	2	2	1	2
Valoare optimă calculată 2 (simulare-128)	10	2	1	1	2	2	2	2
Valoare măsurată (medie exp. confirmare 1)	9,90	2	1	1	2	2	2	2
Valoare măsurată (medie exp. confirmare 2)	9,98	2	1	1	2	2	2	2
Valoare medie măsurată (Draper-Lin)	9,999	2	1	1	2	2	2	2

Tab. 3.45 Comparație între diferitele metode de estimare, măsurare și calcul a valorii dimeniunii nanoparticulelor

În figurile 3.44 – 3.49 sunt prezentate suprafețele de răspuns estimate și respectiv contururile suprafețelor de răspuns estimate. Se remarcă faptul că înalțimea suprafeței reprezintă valorile previzionate pentru dimensiunea nanoparticulelor asupra unui spațiu determinat de 2 factori, restul de 5 factori fiind menținuți la valorile lor medii.

Fig. 3.44 Suprafața de răspuns estimată (temperatura de autoclavizare – gradul de umplere)

Fig. 3.45 Contururile suprafaței de răspuns estimate (temperatura de autoclavizare – gradul de umplere)

Fig. 3.46 Suprafața de răspuns estimată (temperatura de autoclavizare – putere cuptor)

120 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

Fig. 3.47 Contururile suprafaței de răspuns estimate (temperatura de autoclavizare – putere cuptor)

Fig. 3.48 Suprafața de răspuns estimată (putere cuptor - grad umplere

Fig. 3.49 Contururile suprafaței de răspuns estimate (putere cuptor – grad umplere)

3.3 Aplicarea Metodei Taguchi în cadrul sintezei hidrotermale rapidă

Pentru realizarea experimentelor de verificare a stabilității dimensiunii nanocristalelor de TiO₂ dopate cu Ag în cadrul sintezei hidrotermale rapide, s – a aplicat metoda Taguchi, obiectivul fiind determinarea combinației optime a factorilor astfel încât să se obțină o valoare țintă de 5 nm cu o toleranță de \pm 0,2 nm pentru dimensiunea nanocristalelor. S-a ales o matrice standard Taguchi **L**₉ (4 factori la 3 niveluri fiecare). În tabelul 3.46 se prezintă nivelurile factorilor și rezultatele măsurărilor pentru cele 9 experimente. De remarcat că pentru fiecare condiție de experimentare au fost măsurate câte 5 nanocristale.

Tab. 3.46 Nivelurile factorilor și rezultatele experimentelor conform matricii Taguchi standard ${\sf L}_9$

Exp.	Concentrație dopant	Durată autoclavizare	Temperatură autoclavizare	Putere cuptor	Dimensiune
	%	min.	°C	W	nm
1	2	15	150	800	4,82
2	2	30	200	1000	4,9
3	2	45	250	1200	5,13
4	3	15	200	1200	5,01
5	3	30	250	800	4,88
6	3	45	150	1000	4,81
7	4	15	250	1000	5,02
8	4	30	150	1200	5,04
9	4	45	200	800	5,04

3.3.1 Analiza efectelor principale

În tabelul 3.47 se prezintă efectele principale estimate ale factorilor, de asemenea prezentându-se abaterea standard a fiecărui efect care măsoară eroarea de eşantionare. Abaterea standard se bazează pe o eroare totală cu 4 grade de libertate. Pentru un plan ortogonal perfect, toate valorile factorilor sunt la valoarea 1.

Efect	Estimația	Ab. standard	V.I.F.
Media	4,96111	0,0301795	
A: Concentrație dopant	0,0833333	0,0739244	1,0
B: Durată autoclavizare	0,0433333	0,0739244	1,0
C: Temperatură autoclavizare	0,12	0,0739244	1,0
D: Putere cuptor	0,146667	0,0739244	1,0

Tab. 3.47 Efectele estimate pentru dimensiunea nanoparticulelor

În figura 3.50 se prezintă efectele factorilor în ordine descrescătoare iar cu o linie verticală se determină care efecte sunt semnificative din punct de vedere statistic (diagrama Pareto standardizată).

În figura 3.51 se prezintă graficul efectelor principale, iar în figurile 3.52 – 3.55 graficele efectelor factorilor individuali asupra dimensiunii nanoparticulelor.

Fig. 3.50 Diagrama Pareto standardizată pentru efectele factorilor asupra dimensiunii

Fig. 3.51 Efectele medii ale factorilor asupra dimensiunii

Fig. 3.52 Efectul concentrației dopantului asupra dimensiunii

124 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

Fig. 3.55 Efectul puterii cuptorului asupra dimensiunii

3.3.2 Analiza varianței cu metoda ANOVA

În tabelul 3.48 se prezintă tabelul Anova care conține valorile "p" care pot fi folosite pentru a testa semnificația statistică a fiecărui efect. Tabelul ANOVA partiționează variabilitatea dimensiunii nanoparticulelor în componente separate pentru fiecare efect. Se testează apoi semnificația statistică a fiecărui efect prin compararea mediei pătratice cu o estimație a erorii experimentale. În acest caz 2 efecte au valori "p" mai mici decât 0,2 indicând că sunt semnificativ diferite de zero, au nivel de semnificație de 80%. Valorile rezultate din tabelul ANOVA sunt:

R-pătratic = 67,1746 % R- pătratic (adjustat pentru gdl) = 34,3493 % Eroarea standard a estimației = 0,0905385 Eroarea absolută a mediei = 0,0497531 Statistica Durbin-Watson = 1,08438 (p=0.0511) Autocorelație reziduală = 0,290259

Statistica R-pătratic indică faptul că modelul asociat explică 67,1746 % din variabilitatea dimensiunii. Eroarea standard a estimației arată că abaterea standard a valorilor reziduale este 0,0905385. Eroarea absolută a mediei reprezintă media valorilor reziduale. Statistica Durbin-Watson testează valorile reziduale pentru a verifica dacă există corelații semnificative. Deoarece "p" este mai mic de 20%, există posibilitatea de corelații la un nivel de semnificație de 20%.

Sursa	Suma	Gdl	Media	Raport	Valoare
	påtratelor		pătratică	F	р
A:Conc. dopant	0,0104167	1	0,0104167	1,27	0,3227
B:Durată autoclavizare	0,00281667	1	0,00281667	0,34	0,5892
C:Temp. autoclavizare	0,0216	1	0,0216	2,64	0,1799
D:Putere cuptor	0,0322667	1	0,0322667	3,94	0,1183
Total eroare	0,0327889	4	0,00819722		
Total (corecție)	0,0998889	8			

Tab. 3.48 Tabelul ANOVA (plan de experiențe L₉)

3.3.3 Ecuația de regresie asociată planului de experimente L₉

În relația (3.12) este prezentată ecuația de regresie, conform modelului de ordin I asociat planului de experiențe L_9 , și în care valorile variabilelor sunt specificate în unitățile de măsură originale.

$$\begin{split} \text{Dimensiune}_{\text{nanoparticule}} \left[nm \right] = & 4,18611 + 0,041667 \cdot \text{Concentratie}_{\text{dopant}} \left[\% \right] + \\ & + 0,00144444 \cdot \text{Durata}_{\text{autodavizare}} \left[min \right] + 0,0012 \cdot \text{Temperatura}_{\text{autodavizare}} \left[^{\circ}\text{C} \right] + \ ^{(3.12)} \\ & + 0,000366667 \cdot \text{Putere}_{\text{cuptor}} \left[\text{W} \right] \end{split}$$

3.3.4 Estimarea rezultatelor pe baza modelului asociat planului de experimente L₉

În tabelul 3.49 se prezintă informații privind dimensiunea nanoparticulelor generate pe baza modelului de ordin I asociat planului de experiențe L_9 , valorile măsurate, valorile previzionate pentru acestea pe baza modelului, valorile previzionate pentru medii precum și limitele acestora cu o probabilitate de 95% (semnificație de 5%).

Nr.	Valori măsurate	Valori previzionate	Lim. inf. medii previzionate P=95%	Lim. sup. medii previzionate P=95%
1	4,82	4,76444	4,54275	4,98614
2	4,9	4,91944	4,78696	5,05193
3	5,13	5,07444	4,85275	5,29614
4	5,01	5,01278	4,84519	5,18036
5	4,88	4,94778	4,78019	5,11536
6	4,81	4,92278	4,75519	5,09036
7	5,02	5,04111	4,8446	5,23762
8	5,04	5,01611	4,8196	5,21262
9	5,04	4,95111	4,7546	5,14762

Tab. 3.49 Estimațiile dimensiunii nanoparticulelor pe baza modelului de ordin I asociat planului de experimente L_9

3.3.5 Analiza predicțiilor cu ajutorul metodei gradientului (metoda " pantei celei mai abrupte")

Traiectul "pantei celei mai abrupte" pornește din centrul regiunii experimentului curent de-a lungul căruia răspunsul estimat se modifică cel mai rapid pentru cea mai mică schimbare în valorile factorilor experimentali. Indică locațiile favorabile în care trebuie efectuate experimente adiționale. În tabelele 3.50 – 3.53 se prezintă valorile factorilor și valorile previzionate pentru dimensiunea nanoparticulelor prin generarea a 11 puncte prin modificarea factorilor cu diverse incremente.

Concentrație dopant	Durată autoclavizare	Temperatură autoclavizare	Putere cuptor	Dimensiune previzionată
%	min	°C	W	nm
3,0	30,0	200,0	1000,0	4,96111
3,1	30,78	207,2	1035,2	4,98795
3,2	31,56	214,4	1070,4	5,01479
3,3	32,34	221,6	1105,6	5,04163

Tab. 3.50 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticulelor (modificarea concentrației dopantului cu incremente de 0,1%)

3,4	33,12	228,8	1140,8	5,06847
3,5	33,9	236,0	1176,0	5,09531
3,6	34,68	243,2	1211,2	5,12215
3,7	35,46	250,4	1246,4	5,14899
3,8	36,24	257,6	1281,6	5,17583
3,9	37,02	264,8	1316,8	5,20267
4,0	37,8	272,0	1352,0	5,22951

3.3 Aplicarea Metodei Taguchi in cadrul sintezei hidrotermale rapide 127

Tab. 3.51 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticulelor (modificarea duratei de autoclavizare de 1,5 min.)

Concentrație dopant	Durată autoclavizare	Temperatură autoclavizare	Putere cuptor	Dimensiune previzionată
%	min	°C	W	nm
3,0	30,0	200,0	1000,0	4,96111
3,19231	31,5	213,846	1067,69	5,01273
3,38462	33,0	227,692	1135,38	5,06434
3,57692	34,5	241,538	1203,08	5,11596
3,76923	36,0	255,385	1270,77	5,16757
3,96154	37,5	269,231	1338,46	5,21919
4,15385	39,0	283,077	1406,15	5,2708
4,34615	40,5	296,923	1473,85	5,32242
4,53846	42,0	310,769	1541,54	5,37403
4,73077	43,5	324,615	1609,23	5,42565
4,92308	45,0	338,462	1676,92	5,47726

Tab. 3.52 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticulelor (modificarea temperaturii de autoclavizare cu incremente de 5°C)

Concentrație dopant	Durată autoclavizare	Temperatură autoclavizare	Putere cuptor	Dimensiune previzionată
%	min	°C	W	nm
3,0	30,0	200,0	1000,0	4,96111
3,06944	30,5417	205,0	1024,44	4,97975
3,13889	31,0833	210,0	1048,89	4,99839
3,20833	3,625	215,0	1073,33	5,01703
3,27778	32,1667	220,0	1097,78	5,03567
3,34722	32,7083	225,0	1122,22	5,05431
3,41667	3,25	230,0	1146,67	5,07294
3,48611	33,7917	235,0	1171,11	5,09158
3,55556	34,3333	240,0	1195,56	5,11022
3,625	34,875	245,0	1220,0	5,12886
3,69444	35,4167	250,0	1244,44	5,1475

Concentrație dopant	Durată autoclavizare	Temperatură autoclavizare	Putere cuptor	Dimensiune previzionată
%	min	°C	W	nm
3,0	30,0	200,0	1000,0	4,96111
3,05682	30,4432	204,091	1020,0	4,97636
3,11364	30,8864	208,182	1040,0	4,99161
3,17045	31,3295	212,273	1060,0	5,00686
3,22727	31,7727	216,364	1080,0	5,02211
3,28409	32,2159	220,455	1100,0	5,03736
3,34091	32,6591	224,545	1120,0	5,05261
3,39773	33,1023	228,636	1140,0	5,06786
3,45455	33,5455	232,727	1160,0	5,08311
3,51136	33,9886	236,818	1180,0	5,09836
3,56818	34,4318	240,909	1200,0	5,11361

Tab. 3.53 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticulelor (modificarea puterii cuptorului cu incremente de 20 W)

3.3.6 Rezultate experimentale. Optimizarea răspunsului la dimensiunea de 5 nm a nanocristalelor

Pentru menținerea răspunsului (dimensiunea nanoparticulelor) la 5 nm, în tabelul 3.54 se prezintă combinația optimizată a nivelurilor factorilor.

Factor	Min	Max	Optimum	Valoare optimă
Concentrație dopant	2,0	4,0	2,96591	
Durată autoclavizare	15,0	45,0	30,0915	5
Temperatură autoclavizare	150,0	250,0	212,838	
Putere cuptor	800,0	1200,0	1067,56	

Tab. 3.54 Combinația optimizată a nivelurilor factorilor pentru planul L9

În figurile 3.56 – 3.67 sunt prezentate suprafețele de răspuns estimate, respectiv contururile suprafețelor de răspuns estimate.

De remarcat că înalțimea suprafeței reprezintă valorile previzionate pentru dimensiunea nanoparticulelor asupra unui spațiu determinat de 2 factori, restul de 2 factori fiind menținuți la valorile lor medii.

Fig. 3.56 Suprafața de răspuns estimată (concentrație dopant – durată autoclavizare)

Fig. 3.57 Contururile suprafeței de răspuns estimate (concentrație dopant – durată autoclavizare)

130 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

Fig. 3.58 Suprafața de răspuns estimată (concentrație dopant – temperatură autoclavizare)

Fig. 3.59 Contururile suprafeței de răspuns estimate (concentrație dopant – temperatură autoclavizare)

Fig. 3.60 Suprafața de răspuns estimată (concentrație dopant - putere cuptor)

Fig. 3.61 Contururile suprafeței de răspuns estimate (concentrație dopant – putere cuptor)

132 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

Fig. 3.62 Suprafața de răspuns estimată (durată autoclavizare – temperatură autoclavizare)

Fig. 3.63 Contururile suprafeței de răspuns estimate (durată autoclavizare – temperatură autoclavizare)

3.3 Aplicarea Metodei Taguchi in cadrul sintezei hidrotermale rapide 133

Fig. 3.65 Contururile suprafeței de răspuns estimate (durată autoclavizare – putere cuptor)

134 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

Fig. 3.66 Suprafața de răspuns estimată (temperatură autoclavizare – putere cuptor)

Fig. 3.67 Contururile suprafeței de răspuns estimate (temperatură autoclavizare – putere cuptor)

3.4 Aplicarea metodei Suprafeței de Răspuns (RSM). Planul de experimente Box-Behnken în cadrul sintezei hidrotermale rapidă

Planurile de experimente Box-Behnken reprezintă o alternativă rezonabilă la planurile factoriale complete (4 factori la 3 niveluri = 81 experimente) și planurile de experiențe CCD pentru situațiile în care se dorește un plan cu 3 niveluri și care să fie aproape rotabil. Planurile de experiențe CCD cu puncte centrale pe fețe au de asemenea 3 niveluri și își plasează punctele de experimentare la colțurile regiunii de experimentare. Această opțiune este fezabilă dacă acea regiune definește chiar condițiile procesului. Dacă însă se pornește de la o anumită combinație a factorilor și se dorește să se obțină condiții mai bune, un aranjament mai sferic al punctelor de experimentare este mai eficient. Planurile de experimente Box-Behnken constau din experimente în care fiecare pereche de factori este variată între nivelurile de minim și maxim, în timp ce ceilalți factori experimentali sunt menținuți la nivelul mediu.

Pentru acest plan de experimentare s-au ales 4 factori la 3 niveluri care se rulează în 3 blocuri într-un număr total de 27 de experimente inclusiv 1 punct central pe bloc. Planul este complet randomizat, numărul gradelor de libertate pentru eroare este egal cu 10.

În tabelul 3.55 se prezintă nivelurile factorilor și rezultatele măsurărilor pentru cele 27 experimente. De remarcat că pentru fiecare condiție de experimentare au fost măsurate câte 5 nanocristale. Valoarea țintă pentru dimensiunea nanocristalelor a fost stabilită la 5 nm cu o toleranță de \pm 0,2 nm.

Exp.	Bloc	Conc dopant	Durată Autoclav	Temp autoclav	Putere cuptor	Dim.
		%	min	grade C	w	nm
1	1	2	15	200	1000	4,9
2	1	4	15	200	1000	5,11
3	1	2	45	200	1000	5,21
4	1	3	30	150	800	4,82
5	1	4	45	200	1000	4,89
6	1	3	30	250	800	5,11
7	1	3	30	200	1000	4,88
8	1	3	30	250	1200	5,13
9	1	3	30	150	1200	5,11
10	2	3	45	250	1000	5,09
11	2	3	45	150	1000	5,11
12	2	4	30	200	1200	5,08
13	2	3	15	250	1000	5
14	2	3	30	200	1000	5
15	2	2	30	200	800	4,98
16	2	3	15	150	1000	5,01
17	2	4	30	200	800	4,89

Tab.	3.55 Nivelurile factorilor și rezultatele experimentelor pentru	planul	de
	experimente Box-Behnken		

18	2	2	30	200	1200	5
19	3	2	30	250	1000	5,01
20	3	2	30	150	1000	4,99
21	3	3	45	200	1200	5,05
22	3	3	45	200	800	4,82
23	3	3	30	200	1000	4,96
24	3	4	30	250	1000	5,19
25	3	3	15	200	800	4,82
26	3	4	30	150	1000	5,03
27	3	3	15	200	1200	5,14

136 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

3.4.1 Analiza efectelor principale

În tabelul 3.56 se prezintă efectele principale estimate ale factorilor, de asemenea prezentându-se abaterea standard a fiecărui efect care măsoară eroarea de eşantionare. Abaterea standard se bazează pe o eroare totală cu 10 grade de libertate. Pentru un plan ortogonal perfect, toate valorile factorilor sunt la valoarea 1.

Efect	Estimația	Ab. standard	V.I.F.
Media	4,94667	0,0459982	
A: Concentrație dopant	0,0166667	0,0459982	1,0
B: Durată autoclavare	0,0316667	0,0459982	1,0
C: Temperatură autoclavare	0,0766667	0,0459982	1,0
D: Putere cuptor	0,178333	0,0459982	1,0
AA	0,0825	0,0689973	1,25
AB	-0,265	0,0796712	1,0
AC	0,07	0,0796712	1,0
AD	0,085	0,0796712	1,0
BB	0,05	0,0689973	1,25
BC	-0,005	0,0796712	1,0
BD	-0,045	0,0796712	1,0
CC	0,1625	0,0689973	1,25
CD	-0,135	0,0796712	1,0
DD	0,0	0,0689973	1,25
bloc	0,0111111	0,0433675	1,33333
bloc	-0,0222222	0,0433675	1,33333

Tab. 3.56 Efectele estimate pentru dimensiunea nanoparticulelor

În figura 3.68 se prezintă efectele factorilor în ordine descrescătoare iar cu o linie verticală se determină care efecte sunt semnificative din punct de vedere statistic (diagrama Pareto standardizată).

În figura 3.69 se prezintă graficul efectelor principale, iar în figurile 3.70 – 3.73 graficele efectelor factorilor individuali asupra dimensiunii nanoparticulelor.

3.4 Aplicarea Metodei Suprafeței de Răspuns - sinteza hidrotermală rapidă 137

Fig. 3.68 Diagrama Pareto standardizată pentru efectele factorilor asupra dimensiunii

Fig. 3.69 Efectele principale ale factorilor asupra dimensiunii nanoparticulelor

138 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

Fig. 3.71 Efectul principal al duratei autoclavizării asupra dimensiunii nanoparticulelor

Fig. 3.72 Efectul principal al temperaturii de autoclavizare asupra dimensiunii nanoparticulelor

3.4.2 Analiza varianței cu metoda ANOVA

În tabelul 3.57 se prezintă tabelul Anova care conține valorile "p" care pot fi folosite pentru a testa semnificația statistică a fiecărui efect. Tabelul ANOVA partiționează variabilitatea dimensiunii nanoparticulelor în componente separate pentru fiecare efect. Se testează apoi semnificația statistică a fiecărui efect prin compararea mediei pătratice cu o estimație a erorii experimentale. În acest caz 5 efecte au valori "p" mai mici decât 0,2 indicând că sunt semnificativ diferite de zero pentru un nivel de semnificație de 80%. Valorile rezultate din tabelul ANOVA sunt:

R-pătratic = 80,5926 % R- pătratic (adjustat pentru gdl) = 57,9507% Eroarea standard a estimației = 0,0796712 Eroarea absolută a mediei = 0,0427572 Statistica Durbin-Watson = 2.23241 (p = 0.6157) Autocorelație reziduală = - 0,182764

Statistica R-pătratic indică faptul că modelul asociat explică 80,5926 % din variabilitatea dimensiunii. Eroarea standard a estimației arată că abaterea standard a valorilor reziduale este 0,0796712. Eroarea absolută a mediei reprezintă media valorilor reziduale. Statistica Durbin-Watson testează valorile reziduale pentru a verifica dacă există corelații semnificative. Deoarece "p" este mai mare ca 20%, nu există indicații privind posibilitatea de corelații la un nivel de semnificație de 20%.

Sursa	Suma pătratelor	Gdl	Media pătratică	Raport F	Valoare p
A: Concentrație dopant	0,000833333	1	0,000833333	0,13	0,7246
B: Durată autoclavare	0,00300833	1	0,00300833	0,47	0,5068
C: Temp. autoclavare	0,0176333	1	0,0176333	2,78	0,1265
D: Putere cuptor	0,0954083	1	0,0954083	15,03	0,0031
AA	0,009075	1	0,009075	1,43	0,2594
AB	0,070225	1	0,070225	11,06	0,0077

Tab.	3.57	Tabelul	ANOVA	(plan	de ex	perimente	Box-Behnken)
------	------	---------	-------	-------	-------	-----------	-------------	---

AC	0,0049	1	0,0049	0,77	0,4002
AD	0,007225	1	0,007225	1,14	0,3111
BB	0,00333333	1	0,00333333	0,53	0,4853
BC	0,000025	1	0,000025	0,00	0,9512
BD	0,002025	1	0,002025	0,32	0,5846
СС	0,0352083	1	0,0352083	5,55	0,0403
CD	0,018225	1	0,018225	2,87	0,1210
DD	0,0	1	0,0	0,00	1,0000
blocuri	0,00166667	2	0,000833333	0,13	0,8785
Eroare torală	0,063475	10	0,0063475		
Total (corecție)	0,327067	26			

140 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

3.4.3 Ecuația de regresie asociată planului de experimente Box-Behnken

În relația (3.13) este prezentată ecuația de regresie, conform modelului de ordin II asociat planului de experimente Box-Behnken, și în care valorile variabilelor sunt specificate în unitățile de măsură originale:

 $\begin{aligned} \text{Dimensiune}_{\text{nanoparticule}} \left[nm \right] &= 4,72958 - 0,326667 \cdot \text{Concentratie}_{\text{dopant}} \left[\% \right] + \\ &+ 0,0290556 \cdot \text{Durata}_{\text{autoclavizare}} \left[min \right] - 0,00748333 \cdot \text{Temperatura}_{\text{autoclavizare}} \left[^{\circ}\text{C} \right] + \\ &+ 0,00138333 \cdot \text{Putere}_{\text{cuptor}} \left[W \right] + 0,04125 \cdot \left(\text{Concentratie}_{\text{dopant}} \left[\% \right] \right)^{2} - \\ &- 0,00883333 \cdot \text{Concentratie}_{\text{dopant}} \left[\% \right] \cdot \text{Durata}_{\text{autoclavizare}} \left[min \right] + \\ &+ 0,0007 \cdot \text{Concentratie}_{\text{dopant}} \left[\% \right] \cdot \text{Temperatura}_{\text{autoclavizare}} \left[^{\circ}\text{C} \right] + \\ &+ 0,0002125 \cdot \text{Concentratie}_{\text{dopant}} \left[\% \right] \cdot \text{Putere}_{\text{cuptor}} \left[W \right] + \\ &+ 0,000111111 \cdot \left(\text{Durata}_{\text{autoclavizare}} \left[min \right] \right)^{2} - \\ &- 0,00000333333 \cdot \text{Durata}_{\text{autoclavizare}} \left[min \right] \cdot \text{Temperatura}_{\text{autoclavizare}} \left[^{\circ}\text{C} \right] - \\ &- 0,0000075 \cdot \text{Durata}_{\text{autoclavizare}} \left[min \right] \cdot \text{Putere}_{\text{cuptor}} \left[W \right] + \\ &+ 0,00003235 \cdot \left(\text{Temperatura}_{\text{autoclavizare}} \left[^{\circ}\text{C} \right] \right)^{2} - \end{aligned}$

 $-0,00000675 \cdot \text{Temperatura}_{\text{autoclavizare}} \left\lceil {}^{\circ}\text{C} \right\rceil \cdot \text{Putere}_{\text{cuptor}} \left[\text{W} \right] +$

 $+0,0\cdot(Putere_{cuptor}[W])^2$

3.4.4 Estimarea rezultatelor pe baza modelului asociat planului de experimente Box-Behnken

În tabelul 3.58 se prezintă informații privind dimensiunea nanoparticulelor generate pe baza modelului de ordin II asociat planului de experimente Box-Behnken și anume valorile măsurate, valorile previzionate pentru acestea pe baza modelului, valorile previzionate pentru medii precum și limitele acestora cu o probabilitate de 95% (semnificație de 5%).

Tab. 3.58 Estimațiile dimensiunii nanoparticulelor pe baza modelului de ordin II asociat planului de experimente Box-Behnken

Nr.	Valori măsurate	Valori previzionate	Lim. inf. medii previzionate P=95%	Lim. sup. medii previzionate P=95%
1	49	4 86181	4 71787	5 00574
2	5 11	5 14347	4 99954	5 28741
3	5 21	5 15847	5 01454	5 30241
4	4.82	4,83847	4.69454	4,98241
5	4.89	4,91014	4,76621	5,05407
6	5.11	5.05014	4.90621	5,19407
7	4.88	4.95222	4.83891	5.06553
8	5.13	5.09347	4,94954	5,23741
9	5.11	5,15181	5.00787	5,29574
10	5,09	5,11014	4,96621	5,25407
11	5,11	5,03847	4,89454	5,18241
12	5,08	5,13347	4,98954	5,27741
13	5,0	5,08347	4,93954	5,22741
14	5,0	4,95222	4,83891	5,06553
15	4,98	4,93847	4,79454	5,08241
16	5,01	5,00181	4,85787	5,14574
17	4,89	4,87014	4,72621	5,01407
18	5,0	5,03181	4,88787	5,17574
19	5,01	5,05306	4,90912	5,19699
20	4,99	5,04639	4,90246	5,19032
21	5,05	5,04306	4,89912	5,18699
22	4,82	4,90972	4,76579	5,05366
23	4,96	4,93556	4,82225	5,04886
24	5,19	5,13972	4,99579	5,28366
25	4,82	4,83306	4,68912	4,97699
26	5,03	4,99306	4,84912	5,13699
27	5,14	5,05639	4,91246	5,20032

3.4.5 Analiza interacțiunilor

Fig. 3.76 Interacțiunea concentrație dopant - putere cuptor

Fig. 3.77 Interacțiunea durată autoclavizare - temperatură autoclavizare

Fig. 3.78 Interacțiunea durată autoclavizare - putere cuptor

Fig. 3.79 Interacțiunea temperatură autoclavizare - putere cuptor

3.4.6 Analiza predicțiilor cu ajutorul metodei gradientului (metoda "pantei celei mai abrupte")

Traiectul "pantei celei mai abrupte" pornește din centrul regiunii experimentului curent de-a lungul căruia răspunsul estimat se modifică cel mai rapid pentru cea mai mică schimbare în valorile factorilor experimentali. Indică locațiile favorabile în care trebuie efectuate experimente adiționale. În tabelele 3.59 – 3.62 se prezintă valorile factorilor și valorile previzionate pentru dimensiunea nanoparticulelor prin generarea a 11 puncte prin modificarea factorilor cu diverse incremente.

Concentrație dopant	Durată autoclavizare	Temperatură autoclavizare	Putere cuptor	Dimensiune previzionată
%	min	°C	W	nm
3,0	30,0	200,0	1000,0	4,94667
3,1	30,5315	210,219	1082,35	4,99242
3,2	30,0875	215,722	1115,2	5,01616
3,3	29,3876	220,197	1136,88	5,03864
3,4	28,5586	224,197	1153,27	5,06286
3,5	27,6508	227,922	1166,59	5,0899
3,6	26,6895	231,469	1177,88	5,12028
3,7	25,6897	234,892	1187,75	5,15428
3,8	24,6606	238,223	1196,57	5,19208
3,9	23,6087	241,485	1204,57	5,23379
4,0	22,5384	244,691	1211,94	5,27949

Tab. 3.59 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticulelor (modificarea concentrației dopantului cu incremente de 0,1%)

Tab. 3.60 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticulelor (modificarea duratei de autoclavizare de 1,5 min.)

Concentrație dopant	Durată autoclavizare	Temperatură autoclavizare	Putere cuptor	Dimensiune previzionată			
%	min	°C	W	nm			
3,0	30,0	200,0	1000,0	4,94667			
2,93394	31,5	202,071	1038,43	4,96625			
2,94131	33,0	208,052	1102,84	4,99657			
3,00671	34,5	216,523	1182,88	5,03005			
3,19804	36,0	231,365	1305,28	5,08009			
3,15443	37,5	231,989	1328,52	5,08114			
2,89254	39,0	222,103	1282,59	5,06209			
2,86383	40,5	223,24	1308,8	5,07058			
2,8106	42,0	223,149	1327,05	5,07859			
2,73821	43,5	222,121	1339,27	5,08822			
2,65298	45,0	220,471	1347,52	5,10107			
3.4 Aplicarea	Metodei S	Suprafeței	de Răspuns –	sinteza	hidrotermală	rapidă 14	5
---------------	-----------	------------	--------------	---------	--------------	-----------	---
---------------	-----------	------------	--------------	---------	--------------	-----------	---

Concentrație dopant	Durată autoclavizare	Temperatură autoclavizare	Putere cuptor	Dimensiune previzionată
%	min	°C	W	nm
3,0	30,0	200,0	1000,0	4,94667
3,03471	30,4626	205,0	1043,64	4,97029
3,09714	30,5303	210,0	1080,76	4,99148
3,18588	30,1634	215,0	1111,16	5,01286
3,29592	29,4122	220,0	1135,83	5,03758
3,42169	28,3605	225,0	1156,11	5,06835
3,55871	27,0851	230,0	1173,17	5,10721
3,70382	25,6443	235,0	1187,87	5,15556
3,85484	24,0798	240,0	1200,82	5,21438
4,0103	22,4209	245,0	1212,44	5,28435
4,16914	20,6887	250,0	1223,04	5,36597

Tab. 3.61 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticulelor (modificarea temperaturii de autoclavizare cu incremente de 5°C)

Tab. 3.62 Valorile factorilor și valoarea previzionată pentru dimensiunea nanoparticulelor (modificarea puterii cuptorului cu incremente de 20 W)

Concentrație dopant	Durată autoclavizare	Temperatură autoclavizare	Putere cuptor	Dimensiune previzionată
%	min	°C	W	nm
3,0	30,0	200,0	1000,0	4,94667
3,01208	30,2457	202,209	1020,0	4,95752
3,03061	30,4351	204,557	1040,0	4,96832
3,05758	30,542	207,095	1060,0	4,97933
3,0957	30,5307	209,894	1080,0	4,99103
3,14863	30,3526	213,05	1100,0	5,00429
3,22122	29,9439	216,689	1120,0	5,02069
3,31959	29,2231	220,973	1140,0	5,04302
3,45111	28,0925	226,094	1160,0	5,07613
3,62389	26,4441	232,266	1180,0	5,12793
3,8458	24,1721	239,697	1200,0	5,21058

3.4.7 Rezultate experimentale. Optimizarea răspunsului la dimensiunea de 5 nm a nanocristalelor

Pentru menținerea răspunsului (dimensiunea nanoparticulelor) la 5 nm, în tabelul 3.63 se prezintă combinația optimizată a nivelurilor factorilor.

146	Cap3.	Cercetări	aplicative	privind	sinteza	nanocristalelor	de	TiO ₂
-----	-------	-----------	------------	---------	---------	-----------------	----	------------------

Factor	Min	Max	Optimum	Valoare optimă
Concentrație dopant	2,0	4,0	2,49645	
Durată autoclavizare	15,0	45,0	31,1997	5
Temperatură autoclavizare	150,0	250,0	212,969	
Putere cuptor	800,0	1200,0	1121,84	

Tab. 3.63 Combinația optimizată a nivelurilor factorilor pentru planul Box-Behnken

În figurile 3.80 – 3.91 sunt prezentate suprafețele de răspuns estimate și respectiv contururile suprafețelor de răspuns estimate. De remarcat că înălțimea suprafeței reprezintă valorile previzionate pentru dimensiunea nanoparticulelor asupra unui spațiu determinat de 2 factori, restul de 2 factori fiind menținuți la valorile lor medii.

Fig. 3.80 Suprafața de răspuns estimată (concentrație dopant – durată autoclavizare)

3.4 Aplicarea Metodei Suprafeței de Răspuns - sinteza hidrotermală rapidă 147

Fig. 3.81 Contururile suprafeței de răspuns estimate (concentrație dopant – durată autoclavizare)

Fig. 3.82 Suprafața de răspuns estimată (concentrație dopant – temperatură autoclavizare)

Fig. 3.83 Contururile suprafeței de răspuns estimate (concentrație dopant – temperatură autoclavizare)

Fig. 3.84 Suprafața de răspuns estimată (concentrație dopant – putere cuptor)

Fig. 3.85 Contururile suprafeței de răspuns estimate (concentrație dopant – putere cuptor)

Fig. 3.86 Suprafața de răspuns estimată (durată autoclavizare – temperatură autoclavizare)

150 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

Fig. 3.87 Contururile suprafeței de răspuns estimate (durată autoclavizare – temperatură autoclavizare)

Fig. 3.88 Suprafața de răspuns estimată (durată autoclavizare - putere cuptor)

Fig. 3.89 Contururile suprafeței de răspuns estimate (durată autoclavizare – putere cuptor)

Fig. 3.90 Suprafața de răspuns estimată (temperatură autoclavizare – putere cuptor)

Fig. 3.91 Contururile suprafeței de răspuns estimate (temperatură autoclavizare – putere cuptor)

3.5 Comparație între planul de experimente L₉ Taguchi și planul de experimente Box-Behnken

Se prezintă în continuare o comparație între planul de experimente L₉ Taguchi și planul de experimente Box-Behnken în funcție de mai multe criterii:

Tab. 3.64	Comparație	între	numărul	de	experimente
-----------	------------	-------	---------	----	-------------

L ₉ Taguchi	Box-Behnken	Factorial complet
9	27	81

Tab. 3.65 Modelul experimental

L ₉ Taguchi	Box-Behnken
Model ordinul I	Model ordinul II

Tab. 3.66 Ordinea și importanța factorilor (exclusiv interacțiunile)

L ₉ Taguchi	Box-Behnken
Putere	Putere
Temperatură autoclavizare	Temperatură autoclavizare
Concentrație dopant	Durată autoclavizare
Durată autoclavizare	Concentrație dopantg

3.5 Comparație între L₉ și Box Behnken 153

	L ₉ Taguchi	Box-Behnken
Media	4,96111	4,94667
Abaterea standard	0,0301795	0,04599

Tab. 3.67 Media și abaterea standard a experimentelor

Tab. 3.68 Metoda gradientului (menținere Dimensiune la 5 nm)

	L ₉ Taguchi	Box-Behnken
Concentrație dopant		
3%	4,96111	4,94667
4%	5,22951	5,27949
Durată		
autoclavizare		
30 min.	4,96111	4,94667
45 min.	5,47726	5,10107
Temperatură		
autoclavizare		
200 °C	4,96111	4,94667
250 °C	5,1475	5,36597
Putere cuptor		
1000 W	4,96111	4,94667
1200 W	5,11361	5,21056

154 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

Fig. 3.94 Graficul probabilității jumătate normale pentru planul de experimente L_{9} Taguchi

Fig. 3.95 Graficul probabilității jumătate normale pentru planul de experimente Box-Behnken

Fig. 3.96 Observate versus previzionate pentru planul de experimente L₉ Taguchi

156 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

Fig. 3.98 Reziduale versus previzionate pentru planul de experimente L_9 Taguchi

3.5 Comparație între L₉ și Box Behnken 157

Fig. 3.99 Reziduale versus previzionate pentru planul de experimente Box-Behnken

Fig. 3.100 Reziduale versus ordinea experimentelor pentru planul de experimente L_{9} Taguchi

158 Cap3. Cercetări aplicative privind sinteza nanocristalelor de TiO₂

Fig. 3.101 Reziduale versus ordinea experimentelor pentru planul de experimente Box-Behnken

Fig. 3.102 Graficul probabilității normale a rezidualelor pentru planul de experimente L_9 Taguchi

Fig. 3.103 Graficul probabilității normale a rezidualelor pentru planul de experimente Box-Behnken

	L ₉ Taguchi	Box-Behnken	Valoare optimă
Concentrație dopant	2,965921	2,49465	
Durată autoclavizare	30,0195	31,1997	5
Temperatură	212,838	212,969	
autoclavizare			
Putere cuptor	1067,56	1121,84	

Tab. 3.69 Optimizarea planurilor de experimente

3.6 Concluzii

Capitolul 3 prezintă scenariul metodei Taguchi (prezentat în capitolul 1, Fig. 1.11), adaptat obiectivului cercetării experimentale (*evaluarea stadiului actual al metodelor și tehnologiilor de obținere a nanocristalelor de TiO*₂ *dopate cu Ag prin metoda hidrotermală clasică în câmp de microunde și metoda hidrotermală rapidă*), iar datele obținute în cercetarea experimentală de până acum, au servit ca bază pentru teza de doctorat.

Pornind de la obiectivele intermediare stabilite:

Analiza posibilităților de îmbunătățire a stabilității dimensionale a nanocristalelor de TiO₂ dopate cu Ag sintetizate prin metoda Hidrotermală în Câmp de Microunde, prin aplicarea planurile de experimente Draper - Lin. Analiza posibilităților de îmbunătățire a stabilității dimensionale a nanocristalelor de TiO₂ dopate cu Ag sintetizate prin metoda Hidrotermală în Câmp de Microunde, prin aplicarea planurilor de experimente Taguchi.

pentru realizarea experimentelor de sinteză a nanocristalelor de TiO₂ dopate cu Ag prin metoda *Hidrotermală în Câmp de Microunde*, am ales o matrice standard Taguchi L₈, în care variabila de ieșire este **caracteristica de calitate a nanocristalelor de TiO₂ (dimensiunea nanoparticulelor)**, iar pentru variabilele de intrare sunt luați în considerare **şapte factori: concentrație dopant, durată autoclavizare, temperatură autoclavă, putere cuptor, cantitate nutrient, Ph – ul soluției, respectiv gradul de umplere,** utilizând programul Qualitek - 4 (Automatic Design and Analysis of Taguchi Experiments); pentru fiecare condiție de experimentare au fost măsurate câte 5 nanoparticule obținute în urma procesului de sintetizare prezentat în capitolul 2.

Pe baza analizei efectelor medii ale factorilor asupra raportului S/N **s-a obținut o condiție optimă dată de poziționarea factorilor la anumite niveluri** (Tab. 3.17).

Analizând interacțiunea factorilor (Tab. 3.18) și gradul de severitate a acestora s – a ajuns la concluzia că:

- condiția optimă este dată de poziționarea factorilor la niveluri similare cu cele obținute prin analiza efectelor medii ale factorilor.
- s-a determinat că în funcție de tipul interacțiunii, durata de autoclavizare şi PH-ul soluției, nivelurile factorilor sunt acceptabile din punctul de vedere al interacțiunilor la ambele niveluri (Tab. 3.25).

În urma analizei varianței cu metoda ANOVA (Fig. 3.22) s – a constat că factorii "PH soluție" și "Cantitate nutrient" **nu sunt semnificativi din punct de vedere statistic și deci pot fi eliminați din model** (pot avea oricare din cele două niveluri):

- în această situație eroarea instrumentală este de peste 10%
- și, deși influența factorului "Cantitate nutrient" asupra dimensiunii nanoparticulelor este mică, el va fi păstrat în model în principal din motive economice (o cantitate mai mare de nutrient va genera un număr mai mare de nanoparticule).
- în urma acestei analize s-a determinat ordinea importanţei factorilor precum şi procentul corespunzător (Tab. 3.26).
- s-a obținut practic ecuația predictivă pentru performanță la condiția optimă și orice altă condiție posibilă (Tab. 3.27).
- în calculul performanţei aşteptate s-au inclus numai factorii semnificativi, condiţia optimă fiind determinată pe baza caracteristicii de calitate selectată pentru analiză (Tab. 3.27).
- s-a observat că nivelurile factorilor de optim sunt consistente cu cele prezentate în analiza efectelor medii şi a interacţiunilor factorilor prezentate anterior.
- factorul "Durata autoclavizării", este la nivelul 1 şi nu 2 (aşa cum sa obţinut din analiza efectelor medii), ne este favorabil din punct de vedere economic.

Pentru a confirma cele afirmate mai sus:

- s-au realizat 2 experimente de confirmare, măsurându-se 50 de nanoparticule pentru fiecare din acestea
- > factorii au fost aleși la nivelurile previzionate anterior

- pentru analiza statistică a rezultatelor experimentelor de confirmare s-a optat pentru caracteristica de calitate (dimensiunea nanoparticulelor) varianta NTB "nominal cel mai bun", luându-se în considerare valorile optime aşteptate
- ca valoare țintă (nominală) s-a luat în considerare Y_{țintă} = 10 nm, limita inferioară specificată LSL = 9,8 nm, respectiv limita superioară specificată USL = 10,2 nm
- s-au obţinut pentru parametrii statistici ai experimentelor de confirmare valori superioare celor previzionate

Verificarea exactității proiectării experimentelor pe baza unei matrici ortogonale L_8 poate fi făcută cu ajutorul rezultatelor simulării factoriale complete (2⁷ = 128 rezultate pentru experimentul factorial complet). Există posibilitatea să se lucreze cu un set predefinit de ecuații care pot fi rezolvate în condiții factoriale complete (toate posibilitățile). S-a luat în considerare: o relație generalizată neliniară între caracteristica de performanță (dimensiunea nanoparticulelor) și cei şapte factori (relația 3.2), o relație polinomială de ordin superior (relația 3.3), o relație liniară (relația 3.4), o relație pătratică (relația 3.5) și o relație cubică hiperbolică (relația 3.6).

Presupunând că ecuația caracteristică reprezintă comportamentul sistemului, **valoarea maximă obținută** din combinațiile experimentului factorial complet, poate fi considerată ca fiind soluția exactă cu care poate fi comparată soluția din experimentul bazat pe matricea ortogonală L_8 . De asemenea performanța la condițiile optime poate fi comparată cu soluția exactă pentru a stabili exactitatea predicției experimentului L_8 .

Pe baza efectuării a 2000 de simulări pentru ecuațiile caracteristice, s-a constatat că cea mai adecvată modelare este conform ecuației caracteristice liniare (relația 3.4). Pe baza acesteia:

- s-au calculat rezultatele simulării experimentului factorial complet cu ajutorul ecuației din relația 3.7 (Tab. 3.32)
- > am determinat totodată și condițiile de minimum și maximum (Tab.3.33)
- > au fost determinate valorile optime rezultate în urma simulării experimentului factorial complet (tab. 3.34), constatându-se că eroarea utilizării unei matrice ortogonale L_8 în loc de un experiment factorial complet este de 0% și respectiv 0,02%.
- comparând valorile calculate în urma simulării experimentului factorial complet şi valorile obținute prin măsurare în urma aplicării planului de experiențe dat de matricea ortogonală L₈ (Tab. 3.35), s-a constatat că eroarea relativă maximă este de aproximativ 3,87 % iar erorile pentru condițiile de experimentare numărul 78 şi 80 (cele care de fapt oferă combinația optimă a factorilor) sunt de 0% şi respectiv 0,2%,
- rezultă că ecuația caracteristică liniară reprezintă soluția analitică corectă a relației între caracteristica de performanță (dimensiunea nanocristalelor) și factorii luați în considerare (relația 3.8).

Pentru sinteza nanocristalelor de TiO₂ dopate cu Ag prin metoda *Hidrotermală în Câmp de Microunde*, s-a aplicat și Metodologia Suprafeței de Răspuns:

- > prin utilizarea unui plan de experimente Draper-Lin
- modelul statistic al planului de experimente Draper-Lin ales este un model de ordinul I (relaţia 3.9) care conţine termeni care reprezintă numai efectele principale

- a fost creat un plan de experimente compoziţional de dimensiuni mici ortogonal randomizat Draper-Lin cu ajutorul căruia am studiat efectul celor şapte factori în 40 de experimente, într-un singur bloc (incluzînd 2 puncte centrale per bloc) cu 4 grade de libertate pentru eroare
- s-a efectuat analiza efectelor principale (Tab. 3.37)
- > s-au ordonat factorii în funcție de semnificativitatea lor statistică (Fig. 3.39). În concluzie cercetările experimentale realizate în cele 2 viziuni aplicative (L_8

și Draper-Lin) au evidențiat că procesul de sinteză a TiO_2 este puternic determinat de cei trei factori **temperatură autoclavizare, grad umplere și putere cuptor** (conform Tab. 3.38).

Pentru a testa semnificația statistică a factorilor a fost efectuată analiza varianței cu metoda ANOVA (Tab. 3.39):

- > s-a determinat ecuația de regresie a modelului de ordin I asociat planului de experimente Draper-Lin (relația 3.11), estimându-se totodată rezultatele şi anume valorile măsurate, valorile previzionate pentru acestea pe baza modelului, valorile previzionate pentru medii precum şi limitele acestora cu o probabilitate de 5% (semnificație de 5%) (Tab. 3.40)
- s-a efectuat analiza predicțiilor cu ajutorul metodei gradientului (metoda "pantei celei mai abrupte") prin care s-au indicat locațiile favorabile în care trebuie efectuate experimente adiționale
- s-au determinat valorile factorilor și valoarile previzionate pentru dimensiunea nanoparticulelor prin generarea a 11 puncte prin modificarea factorilor cu diverse incremente (Tab. 3.41 – 3.43)
- s-a determinat combinația optimizată a nivelurilor factorilor pentru planul Draper-Lin, precizându-se valorile de minim, maxim și optime pentru factori (Tab. 3.44)
- > s-a făcut o comparație între valorile măsurate în experimentele de confirmare bazate pe planul de experiențe Taguchi L_8 , valorile așteptate optime obținute prin simularea unui plan factorial complet (128 experimente), valorile așteptate obținute prin aplicarea planului de experiențe Taguchi L_8 , valoarea medie calculată prin aplicarea planului de experimente Draper-Lin, prezentându-se nivelurile factorilor pentru condițiile respective (Tab. 3.45)
- s-a ajuns la concluzia că nu există diferențe semnificative între cele 3 metode aplicate
- > s-au prezentat suprafeţele de răspuns estimate şi respectiv contururile suprafeţelor de răspuns estimate, înalţimea suprafeţei reprezintă valorile previzionate pentru rezistenţa la compresiune asupra unui spaţiu determinat de 2 factori, restul de 5 factori fiind menţinuţi la valorile lor medii (Fig. 3.44 – 3.49)

În concluzie aplicarea **Metodei de proiectare robustă Taguchi prin** planul de experimente L₈ (8 experimente):

- are rezultate sensibil egale cu cele obţinute prin simularea factorială completă (128 experimente) şi prin aplicarea Metodei Suprafeţei de Răspuns prin planul de experimente Draper-Lin (40 experimente)
- modelul de ordin I este cel care estimează cel mai bine dimensiunea nanoparticulelor în funcție de cei şapte factori controlați
- economiile substanțiale obținute prin utilizarea a numai 8 experimente.

Pornind de la obiectivele stabilite:

- Analiza posibilităților de îmbunătățire a stabilității dimensionale a nanocristalelor de TiO₂ dopate cu Ag sintetizate prin metoda Hidrotermală Rapidă, prin aplicarea planurilor de experimente Box - Behnken.
- Analiza posibilităților de îmbunătățire a stabilității dimensionale a nanocristalelor de TiO₂ dopate cu Ag sintetizate prin metoda Hidrotermală Rapidă, prin aplicarea planurilor de experimente Taguchi.

pentru sinteza nanocristalelor de TiO_2 dopate cu Ag prin metoda Hidrotermală Rapidă (FH), s-a aplicat în primă instanță metoda de proiectare robustă Taguchi prin utilizarea unui plan de experimente **L**₉ (9 experimente) prin programul StatGraphics Centuroin XV, în care s-a studiat efectul a 4 factori la 3 niveluri (Tab. 3.46).

S-au efectuat proceduri similare cu procedurile din cazul metodei Hidrotermale în câmp de microunde rezultând:

- o ecuație de regresie liniară între variabila de răspuns și factori (relația 3.12)
- modelul de ordinul I asociat planului de experimente L₉ explicând 67,1746 % din variabilitatea dimensiunii nanoparticulelor (Tab. 3.48)

Pentru atingerea obiectivelor propuse s-a aplicat Metoda Suprafeței de Răspuns prin utilizarea unui plan de experimente Box-Behnken (27 experimente) care reprezintă o alternativă rezonabilă la planurile factoriale complete (4 factori la 3 niveluri = 81 experimente) și planurile de experiențe CCD pentru situațiile în care se dorește un plan cu 3 niveluri și care să fie aproape rotabil. Pentru acest plan de experimentare s-au ales 4 factori la 3 niveluri care se rulează în 3 blocuri într-un număr total de 27 de experimente inclusiv 1 punct central pe bloc. Planul este complet randomizat, numărul gradelor de libertate pentru eroare este egal cu 10 (Tab. 3.55).

S-au efectuat proceduri similare cu procedurile din cazul metodei hidrotermale în câmp de microunde rezultând:

- ecuația de regresie de gradul 2 (având în vedere că s-au luat în considerare și interacțiunile) între variabila de răspuns și factori (relația 3.13)
- modelului de ordin II asociat planului de experimente Box-Behnken explicând 80,5926% din variabilitatea dimensiunii nanoparticulelor (Tab. 3.58)
- > dacă nu se iau în considerare interacţiunile, atunci modelul asociat planului de experimente Box-Behnken este de ordinul I (relaţie liniară între variabilea de ieşire şi factori), explicând numai 34,5670% din variabilitatea dimensiunii particulelor
- în concluzie în cazul a 4 factori la 3 niveluri trebuie să se țină cont şi de interacțiuni dacă se doreşte o modelare exactă a sistemului

dacă însă se dorește numai obținerea valorii țintă pentru dimensiunea nanoparticulelor atunci modelul de ordinul I poate fi considerat satisfăcător

4. PROIECTAREA EXPERIMENTELOR DE SINTEZĂ A NANOCRISTALELOR PRIN METODA HIDROTERMALĂ

Bazat pe proiectarea științifică a experimentelor de laborator tratată în capitolul 3, în cadrul acestui capitol s-au efectuat o serie de experimente de laborator, de verificare a teoriei, pentru sinteza nanoparticulelor de dioxid de titan dopate cu argint prin metoda hidrotermală în câmp de microunde.

4.1 Metoda hidrotermală

4.1.1. Generalități

Pe lângă metodele de obținere a nanocristalelor: sol-gel, spray-piroliză, precipitare, solvotermală, electrochimică, prin combustie etc, metoda hidrotermală de obținere a substanțelor nanocristaline prezintă numeroase avantaje.

Prin metoda hidrotermală clasică materialele se obțin într – o incintă închisă, autoclavă, realizată din materiale rezistente la presiuni și temperaturi mari, precum și la acțiunea corozivă a mediului de reacție. Aceasta, după introducerea materialului precursor, este încălzită și menținută la o temperatură bine stabilită timp de câteva ore fiind apoi răcită lent, în atmosferă, înainte de a fi deschisă.

Metoda hidrotermală prezintă multiple avantaje față de alte metode de obținere a nanocristalelor, ca de exemplu obținerea unui produs omogen, ce poate fi obținut în mod direct la o temperatură de reacție relativ scazută (mai mică de 200°C), favorizează diminuarea gradului de îngrămădire dintre particule, distribuția dimensiunilor într-un domeniu îngust și controlul asupra morfologiei și dimensiunii particulelor. Deasemenea aseastă metodă oferă o compoziție uniformă, puritatea produsului, existența particulelor monodisperse, controlul asupra formei și mărimii particulelor, un grad ridicat de cristalinitate și nu în ultimul rând un caracter nepoluant al metodei.

Avantajele metodei hidrotermale constau în:

- permite sinteze la temperaturi mai joase decât în incinte deschise, datorită presiunii ridicate

- timpii de cristalizare sunt considerabil reduși

- condițiile de sinteză pot fi reproduse cu ușurință, influența factorilor de mediu fiind considerabil redus

- incinta fiind închisă, se elimină cu desăvârsire posibilitatea degajării în atmosferă/mediul înconjurător a substanțelor potențial toxice

- consumurile energetice sunt doar o fracțiune din consumurile în incinte deschise.

Dezavantajele metodei hidrotermale sunt:

- viteza reacției de cristalizare este destul de lentă, lipsește o agitare eficace a soluției care să alimenteze germenii de cristalizare cu nutrient proaspăt din soluție

- căldura este transmisă mediului de creștere de la cuptor prin intermediul pereților autoclavei, inerția termică a sistemului este foarte mare, deci și procesul de încălzire este lent, ca și cel de răcire, rezultând astfel timpi totali de sinteză relativi mari

- încălzirea realizându-se lent, apar regimuri tranzitorii nedorite, și pot apărea cristalizări premature, omogenitatea fazei cristaline și a dimensiunilor cristalelor neputând fi controlată riguros.

O bună parte a acestor neajunsuri poate fi înlăturată folosind o metodă alternativă, și anume încălzirea conținutului autoclavei în câmp de microunde în autoclave din materiale transparente la microunde (radiație electromagnetică, de regula cu frecvența de cca 2,45 GHz) și neabsorbante în acest domeniu de lungimi de undă, cum ar fi teflonul, sticla Pyrex sau cuarțul, solvenții conductori din soluție vor absorbi energie, încălzindu-se rapid dinspre interior. Încălzirea este rapidă și uniformă iar procesele tranzitorii sunt complet eliminate temperatura de lucru putând fi atinsă în intervale de timp de ordinul minutelor și poate fi menținută constantă prin controlul adecvat al puterii de emisie a magnetronului care generează radiația. Se evită și apariția gradienților de temperatură în soluție, o uniformizare a temperaturii în autoclavă fiind mai ușor de obținut decât la încălzirea în cuptoare electrice convenționale.

Dimensiunile mai mici ale nanoparticulelor obținute (suprafețele specifice mai mari ale pulberilor) pot fi puse pe seama vitezei foarte mari de recristalizare, un număr foarte mare de nanocristale crescând rapid și simultan, epuizând rapid cantitatea de nutrient din soluție și împiedicând astfel formarea de granule mai mari. Astfel, metoda hidrotermală de obținere a nanocristalelor în câmp de microunde se dovedește a fi o metodă foarte eficientă și economică de producere a nanopulberilor, dar prezintă același neajuns întâlnit în toate metodele de sinteză, și anume particulele sunt foarte aglomerate necesitând o etapă suplimentară de dispersare.

În cazul metodei hidrotermale clasice, în mod uzual, precursorii sunt introduși în autoclave de teflon sau în autoclave de teflon căptușite cu oțel. Autoclava este încălzită într-un cuptor electric, iar procesul de încălzire este foarte lent, deoarece căldura este transferată prin autoclavă, care are o conductivitate termică scăzută. Prin urmare, la temperaturi ridicate în interiorul autoclavei de 150-220°C, timpul necesar cristalizării este de zeci de minute, poate ore. Aceasta înseamnă că o mare parte din energia electrică este risipită și poate avea loc cristalizarea prematură, înainte de a ajunge la temperatura țintă.

Se utilizează, pentru obținerea unor cantități mici de material, metoda hidrotermală rapidă ce presupune scufudarea unei fiole de cuarţ închisă ermetic și blindată cu o cămașă protectoare de oțel conținând soluția mineralizatoare și materialul precursor, într – o baie termostatată la temeratura de proces. Metoda are avantajul că reduce în mod semnificativ timpul de sinteză și se obține o mai bună cristalizare, omogenitate mare a nanocristalelor, iar datorită încălzirii rapide se elimină cristalizarea prematură nedorită. De asemenea, răcirea rapidă permite un control riguros al timpului de cristalizare, evitând-se formarea conglomeratelor.

4.1.2. Modul de lucru

Sinteza hidrotermală a dioxidului de titan, în general, urmează un anumit protocol de lucru care presupune:

- i) obținerea precursorilor
- ii) ajustarea cu acizi sau baze a pH-ului soluției de creștere
- iii) tratare termică care presupune ca materialele obținute în prima, în starea amorfă, să fie supuse unui proces de tratare termică suplimentară pentru a fi indusă cristalizarea într – un cuptor cu microunde Anton Paar (prezentat în figura 4.1 a);

- Fig. 4.1 Cuptorul cu microunde utilizat în sinteza de nanocristale (a); autoclave utilizate în sinteza de nanocristale (b)
 - iv) filtrarea (având în vedere că produşii de reacţie sunt de dimensiuni nanometrice, se impune folosirea unor filtre cu porozitate foarte mică), spălarea cu apă distilată şi uscarea în etuvă pentru îndepărtarea urmelor de apă sunt procedee care conduc la îndepărtarea compuşilor secundari de reacţie, cum sunt resturile de compuşi organici şi/sau anumiţi ioni proveniţi din precursorii de dopare sau ajustare a pH-ului
 - v) caracterizarea fizico chimică a materialelor obținute, acesta realizându

 se prin metodele de caracterizare specifice (XRD, UV-VIS, SEM/EDAX).
 Un parametru important al procesului hidrotermal îl constituie gradul de umplere cu soluție mineralizatoare a incintei de lucru (autoclavei).
 Presiunea din incinta autoclavei este autogenerată și depinde de gradul de umplere al acesteia și de temperatura de lucru, dar poate depinde și de natura reacțiilor chimice care au loc la sinteza materialului. Gradul de umplere al autoclavelor este ales în funcție de planul de experiențe adoptat.

În general, reactivii utilizați în sinteza materialelor prin metoda hidrotermală în câmp de microunde sunt prezentați în tabelul 4.1 iar aparatura utilizată în cadrul metodelor de laborator este prezentată în tabelul 4.2.

Tab. 4.1 Reactivii utilizați în sinte	eza TiO ₂ dopat	cu Ag prin	metoda hi	drotermală în
câ	imp de microu	nde		

Denumire reactiv	Puritate[%]
Izopropoxid de titan	99
Acid azotic	67
1q	-
Azotat de Ag	99,5

Tab. 4.2 Aparatura utilizată pentru sinteza TiO₂ dopat cu Ag prin metoda hidrotermală în câmp de microunde

Denumire aparat	Tip aparat
Cuptor cu microunde	ANTON PAAR
Agitator magnetic	VELP Scientifica
Baie termostatată	ThermoHake
pH-metru tip pH/Ion 340I	WTW
Etuvă 6060 UT	HERAEUS
Baie ultrasonică	BRANSON 2510

4.1.3 Obținerea TiO₂ dopat cu Ag prin metoda hidrotermală în câmp de microunde

Într-un pahar Berzelius s-au adăugat o cantitate de alcool etilic absolut peste care s-au adăugat în picătură izopropoxid de titan sub agitare continuă, iar după câteva minute se adaugă apă dublu distilată urmărindu-se, prin adăugarea de acid azotic, ajustarea ph-ului final conform planului de experimente.

S-a adăugat apoi soluția de dopant, azotatul de argint. În momentul în care se adăugă izopropoxidul de titan peste alcoolul etilic, soluția precipită, obținându-se un precipitat alb care, înainte de tratarea termică, a fost spălat cu apă distilată, filtrat și uscat la temperatura de 600°C, timp de 10 ore.

S-au efectuat un număr de 8 experimente de verificare, factorii de control fiind prezentați în tabelul 4.3.

Probă	Conc Ag [%]	Durată autoclavare [min.]	Temperatură autoclavare [ºC]	Puterea cuptorului cu microunde [W]
P1 _{MWF} (15-150-800)	2	15	150	800
P2 _{HMWF} (30-150-800)	2	30		
РЗниме (15-200-1000)	2	15	200	1000

30

P4_{HMWF} (30-200-1000)

Tab. 4.3 Parametri de sinteză ai probelor de TiO₂ sintetizate prin metoda hidrotermală în câmp de microunde

168 Cap.4 Proiectarea experimentelor de sinteză a nanocristalelor

P5 _{HMWF} (15-150-800)	3	15	150	800
P6 _{HMWF} (30-150-800)	3	30		
P7 _{HMWF} (15-200-1000)	3	15	200	1000
P8 _{HMWF} (30-200-1000)	3	30		

În urma autoclavării în câmp de microunde a dioxidului de titan, materialele au fost filtrate și spălate cu apă distilată în vederea îndepărtării produșilor secundari de reacție. Uscarea filtratului s-a realizat în etuvă la temperatura de 60^oC.

4.1.4 Obținerea TiO₂ dopat cu Ag prin metoda hidrotermală rapidă

Într-un pahar Berzelius s-au adăugat apă bidistilată și izopropoxid de titan sub agitare continuă. S-a adăugat azotat de argint ca soluție de dopare, după ajustarea pH-ului cu soluție de acid azotic. Tratarea termică s-a realizat în baia termostatată umplută cu ulei siliconic. Trebuie precizat faptul că înainte de introducerea autoclavei în uleiul din baia termostatată, acesta a fost încălzită în prealabil la temperatura de procesare.

S-au efectuat experimente preliminare, probele de TiO_2 dopate cu Ag sintetizate și factorii de control sunt prezentate în tabelul 4.4.

Probă	Concentrație Ag [%]	Timp autoclavare [min.]	Temperatură de autoclavare [ºC]
P1 _{FH} (15-150)	2	15	150
P2 _{FH} (30-150)	2	30	
P3 _{FH} (15-200)	2	15	200
P4 _{FH} (30-200)	2	30	
P5 _{FH} (15-150)	3	15	150
P6 _{FH} (30-150)	3	30	
P7 _{FH} (15-200)	3	15	200
P8 _{FH} (30-200)	3	30	

Tab. 4.4 Parametri de sinteză ai probelor de TiO₂ dopat cu Ag, sintetizat prin metoda hidrotermală rapidă

Materialele obținute au fost filtrate, spălate cu apă distilată în vederea îndepărtării produșilor secundari de reacție si uscate in etuvă. Verificarea prezenței ionilor de argint în soluția de spălare s-a realizat cu clorură de calciu.

4.2 Metode de caracterizare fizico-chimică a nanomaterialelor sintetizate

4.2.1 Utilizarea difracției cu raze X

Studiul structurii cristaline al materialelor sintetizate se realizează cu un difractometru PANalytical X´Pert Pro MPD, cu tub anodic de cupru și detector PixCEL.

Parametrii de lucru utilizați au fost: tensiune de 45 KV, curent 30 mA, dimensiune pas–0,016°2θ, timp de 50/pas, iar viteza de rotație a suportului cu proba de 16sec/rot. Prelucrarea datelor în vederea determinării structurii materialului și identificării fazelor cristaline se efectuează cu programele X'pert HighScore Plus, *FullProf Suite (WinPLOTR) și OriginPro 7.5.* Pregătirea probelor pentru analiza prin difracție de raze X constă în mojararea unei mici cantități de probă și dispersarea pe suporturi standard din siliciu monocristalin cu fond zero în alcool etilic. Dimensiunile medii ale particulelor se calculează utilizând ecuația Scherrer (relația 4.1) [R3].

$$D = \frac{K \cdot \lambda}{\beta \cdot \cos \theta}$$
(4.1)

unde:

 λ - lungimea de undă a radiației X (λ = 0.15406 nm),

K – constanta lui Scherrer (K = 0,89),

 θ – unghiul de difracție,

 β – lățimea (bandă) la jumătatea înălțimii pentru diferitele vârfuri din difractogramă.

Rezultatelor obținute au permis să concluzionăm că structura și formele cristaline ale nanocristalelor de TiO_2 sintetizate prin metoda hidrotermală în câmp de microunde sunt influențate de cantitatea de dopant, și de tratamentul termic.

În tabelul 4.5 sunt prezentate dimensiunile medii ale cristalitelor pentru materialele care au cristalizat sub formă anatas, sintetizate prin metoda hidrotermală în câmp de microunde.

Calculul dimensiunilor medii s-a realizat cu ecuația Scherrer, iar rezultatele au arătat că dimensiunile medii ale particulelor sunt grupate in jurul valorii de 10 nanometri.

Tab. 4.5 Dimensiunile medii ale particulelor sintetizate prin metoda hidrotermală în câmp de microunde

Tip material	Dimensiune particule (nm)
P4 _{HMWF} (30-200-1000)	9,95
P8 _{HMWF} (30-200-1000)	10,2

În tabelul 4.6 sunt prezentate dimensiunile medii ale cristalitelor pentru materialele care au cristalizat sub formă anatas, sintetizate prin metoda hidrotermală rapidă. Calculul dimensiunilor medii s-a realizat cu ecuația Scherrer, iar rezultatele au arătat că dimensiunile medii ale particulelor sunt de aproximativ 5 nm.

Tab. 4.6 Dimensiunile medii ale particulelor sintetizate prin metoda hidrotermală rapidă

Tip material	Dimensiune particule (nm)
P4 _{FH} (30-200)	5,1
P8 _{FH} (30-200)	4.8

4.2.2 Utilizarea microscopie electronice de baleiaj cuplată cu EDAX

Pentru analiza morfologică și elementală a nanomaterialelor obținute a fost utilizată microscopia electronică de baleiaj. Această metodă a fost utilizată pentru a pune în evidență dimensiunea și forma nanoparticulelor de dioxid de titan. Analiza semicantitativă a materialelor sintetizate s-a realizat cu modulul de spectrometrie cu energie dispersată cu raze X (EDAX), o componentă a SEM pentru identificarea elementelor chimice existente în probele analizate. Această metodă oferă informații despre puritatea materialului și prezența dopantului în probele studiate. Imaginile SEM și spectrele EDAX au fost realizate cu ajutorul unui Microscop Electronic Inspect SFEI Company, Olanda.

4.3 Concluzii. Contribuții personale

Capitolul 4 a avut ca deziderat o serie de experimente de laborator, de verificare a teoriei, pentru sinteza nanoparticulelor de dioxid de titan (TiO₂) dopat în diferite proporții cu Ag, prin metoda hidrotermală în câmp de microunde. În prima parte cercetările experimentale au avut ca obiect identificarea proprietăților TiO₂ dopat cu Ag, ca rezultat al metodelor aplicate. Utilizând metoda hidrotermală clasică au putut fi evidențiate următoarele proprietăți:

- obţinerea de nanocristale cu dimensiunile şi tipurile de cristalizare dorite prin controlul judicios al temperaturii, presiunii, duratei procesului, al gradului de umplere al autoclavei, al concentraţiei precursorilor;
- obţinerea unui produs cristalin omogen, ce poate fi obţinut în mod direct la o temperatură de reacţie relativ scăzută (mai mică de 150°C).
- diminuarea gradului de aglomerare a particulelor, distribuţie dimensională redusă, omogenitatea fazei şi controlul asupra morfologiei particulelor.

Cercetările prin metoda difracției de raze X au evidențiat că structura și formele cristaline ale cristalelor de TiO_2 dopate cu Ag sunt influențate de cantitatea de dopant și de tratamentul termic, iar dimensiunile medii ale particulelor se calculează utilizând relația lui Scherrer (dimensiunile nanoparticulelor de TiO_2 sunt prezentate în Tab. 4.5 și Tab. 4.6).

Prin microscopie electronică de baleiaj am pus în evidență dimensiunea și forma particulelor de dioxid de titan, iar prin analiza cu componenta EDAX acestuia au fost identificate elementele chimice ale probelor, oferind informații despre puritatea materialului și prezența dopantului. Rezultatele analizei SEM/EDAX au permis stabilirea următoarelor concluzii:

- Materialele sintetizate au formă sferică și sunt bine diferențiate
- Spectrele EDAX au pus în evidenţă atât puritatea materialelor obţinute prin cele două metode, cât şi prezenţa dopantului Ag.

Prin programarea științifică a experimentelor de laborator, numărul acestora s-a redus substanțial ceea ce a condus la o micșorare a costurilor de producere a nanomaterialelor de calitatea și dispersia dimensională dorită, la reducerea cantității de substanță de sinteză utilizată și implicit la reducerea consumului energetic, în acord cu cerințele și standardele internaționale de protecție și conservare a mediului natural.

4.3 Concluzii. Contribuții personale 171

Fig. 4.2 Morfologia suprafeței prin SEM pentru TiO_2 dopat cu Ag (sau ion metalic)

Fig. 4.3 Spectrul EDAX pentru TiO₂ dopat cu Ag (sau ion metalic)

5. CONCLUZII FINALE. CONTRIBUȚII PERSONALE

Actualitatea problematicii abordate în lucrarea de față rezidă din faptul că au apărut noi probleme teoretice, tehnologice și aplicative legate de proiectarea proceselor de sinteză a nanoparticulelor, astfel se impune necesitatea dezvoltării și dobândirii de cunoștinte avansate prin elaborarea unor metode adecvate de sinteză, care să faciliteze un control riguros al dimensiunilor, structurii și proprietăților acestora.

La baza conceperii desfășurătorului tezei, a stat preocuparea pentru a oferi posibiltăți de obținere a nanoparticulelor prin aplicarea unor metode noi care parcurg un număr minim de experimente.

Pornind de la obiectivele acestei lucrări, în continuare se pot evidenția ca principale concluzii și contribuții personale, următoarele:

5.1 Concluzii finale

• Studiul bibliografic (prezentat în cap. 1) reflectă metodele posibile care pot fi aplicate în obținerea nanoparticulelor de TiO_2 în detrimentul metodelor clasice care necesită un număr considerabil de experimente.

• Metoda de proiectare robustă Taguchi (prezentată în cap. 1) reprezintă o modalitate prin care produsele și procesele de fabricație pot fi optimizate în ceea ce privește robustețea lor la factorii de zgomot încă din fazele inițiale ale proiectării.

• Exemplificările caracteristicilor generale ale dioxidului de titan (TiO₂) prin proprietățile optice, electrice și fotocatalitice (prezentate în cap. 2) au stat la baza dezvoltării cercetărilor aplicative (din capitolul 3), și constituie obiective majore ale cercetării științifice pentru protecția mediului și a populației. Una din aplicațiile cu mare potențial este obținerea de noi sisteme fotocatalitice care să poată fi activate în domeniul vizibil.

• Nanoparticulele pot fi utilizate ca și catalizatori respectiv agenți redox activi pentru purificarea aerului și apei datorită, sau pentru decontaminarea unor suprafațe. Ultimele cercetări în nanoinginerie au dovedit că nanoparticulele de dioxid de titan (TiO_2) pot fi folosite ca și fotocatalizator (catalizator oxidant și reductor) pentru poluanții organici și anorganici în prezența luminii ultraviolete. Acest tip de material este pe de o parte fotoactiv chimic și biologic, inert, fotostabil iar pe de altă parte este relativ ieftin.

• Problemele care implică calitatea apei și a aerului ar putea fi rezolvate sau în mare parte ameliorate utilizând nanomateriale de tipul nanoadsorbanți, nanocatalizatori, nanoparticule bioactive, membrane catalitice nanostructurate și nanoparticule care îmbunătățesc filtrarea, descompunerea și inactivarea contaminanților din apă, alături de alte produse și procese rezultate în urma dezvoltării nanotehnologiei. • Sinteza nanocristalelor de TiO₂ dopate cu Ag prin metoda Hidrotermală în Câmp de Microunde (prezentată în cap. 2), s-a realizat prin aplicarea metodei de proiectare robustă Taguchi, pornind de la selectarea parametrilor și determinarea valorilor optime ale acestora, precum și combinația optimă a factorilor de control.

• Pentru sinteza nanocristalelor de TiO₂ dopate cu Ag prin metoda Hidrotermală în Câmp de Microunde, s-a aplicat de asemenea Metoda Suprafeței de Răspuns. S-a utilizat un plan de experimente Draper-Lin, care este un plan compozițional de dimensiuni reduse constând dintr-un plan factorial fracționat cu rezoluție mai mică ca ordinul V, cu puncte stea adiționale.

• Verificarea exactității proiectării experimentelor pe baza unei matrici ortogonale L_8 s-a realizat cu ajutorul rezultatelor simulării factoriale complete (2⁷ = 128 rezultate pentru experimentul factorial complet).

• Cercetările experimentale realizate în cele 2 viziuni aplicative (L₈ și Draper-Lin) au evidențiat că procesul de sinteză a TiO₂ este puternic determinat de cei trei factori **temperatură autoclavizare, grad umplere și putere cuptor**.

• Aplicarea Metodei de proiectare robustă Taguchi prin planul de experimente L₈ (8 experimente) are rezultate sensibil egale cu cele obținute prin simularea factorială completă (128 experimente) și prin aplicarea Metodei Suprafeței de Răspuns prin planul de experimente Draper-Lin (40 experimente). De asemenea modelul de ordin I este cel care estimează cel mai bine dimensiunea particulelor în funcție de cei șapte factori controlați. De remarcat și economiile realizate prin utilizarea a numai 8 experimente.

• Pentru sinteza nanocristalelor de TiO₂ dopate cu Ag prin metoda Hidrotermală Rapidă, s-a aplicat în primă instanță metoda de proiectare robustă Taguchi prin utilizarea unui plan de experimente L_9 (9 experimente) prin care s-a studiat efectul a 4 factori la 3 niveluri.

• S-a aplicat de asemenea Metoda Suprafeţei de Răspuns prin utilizarea unui plan de experimente Box-Behnken (27 experimente) care reprezintă o alternativă rezonabilă la planurile factoriale complete (4 factori la 3 niveluri = 81 experimente) și planurile de experienţe CCD pentru situațiile în care se doreşte un plan cu 3 niveluri și care să fie aproape rotabil.

• Se poate trage concluzia că în cazul a 4 factori la 3 niveluri trebuie să se țină cont și de interacțiuni dacă se dorește o modelare exactă a sistemului. Dacă însă se dorește numai obținerea valorii țintă pentru dimensiunea nanoparticulelor atunci modelul de ordinul I poate fi considerat satisfăcător.

• Pentru materialele de dioxid de titan dopat cu Ag, care au prezentat forma cristalină anatas, sintetizate prin metodele: Hirotermală în Câmp de Microunde și Hidrotermală Rapidă au fost calculate dimensiunile medii ale particulelor cu ecuația Scherrer (relația 4.1).

• Rezultatele analizei SEM/EDAX au permis stabilirea următoarelor concluzii:

Materialele sintetizate au formă sferică şi sunt bine diferenţiate

Spectrele EDAX au pus în evidență atât puritatea materialelor obținute prin cele două metode, cât și prezența dopantului Ag.

5.2 Contribuții personale

Principalele contribuții din cadrul tezei sunt grupate în două categorii:

- I. Contribuții teoretice
 - II. Contribuții aplicative

Tab. 5.1 Contribuții personale

Nr. Crt	Descrierea contribuției	Tipul contributiei	Cap.
1	Identificarea metodelor adecvate de proiectare. Studiul aplicării metodei Taguchi și metodei Suprafeței de Răspuns pentru proiectarea experimentală	teoretică	Ι
2	Evaluarea stadiului actual al metodelor și tehnologiilor de obținere a nanocristalelor de TiO $_2$ dopate cu Ag	teoretică	II
3	Studiul științific al aplicațiilor nanomaterialelor de TiO ₂	teoretică	II
4	Studiul științific al sintezei și caracterizării TiO ₂ dopat cu Ag prin metoda hidrotermală	teoretică	IV
5	Aplicarea planurilor de experimente Taguchi pentru obținerea stabilității dimensionale a nanoparticulelor de TiO ₂ dopate cu Ag prin metoda hidrotermală în câmp de microunde	aplicativă	III
6	Simularea factorială completă a comportamentului sistemului	aplicativă	III
7	Determinarea relației generalizate liniare între caracteristica de performanță și cei șapte factori controlați	teoretică și aplicativă	III
8	Aplicarea Metodei Suprafeței de Răspuns (RSM) – Planul de experimente Draper-Lin la obținerea stabilității dimensionale a nanoparticulelor de TiO ₂ dopate cu Ag prin metoda hidrotermală în camp de microunde	aplicativă	III
9	Aplicarea planurilor de experimente Taguchi la obținerea stabilității dimensionale a nanoparticulelor de TiO ₂ dopate cu Ag prin metoda hidrotermală rapidă	aplicativă	III
10	Aplicarea Metodei Suprafeţei de Răspuns (RSM) – Planul de experimente Box-Behnken la obţinerea stabilităţii dimensionale a nanoparticulelor de TiO ₂ dopate cu Ag prin metoda hidrotermală rapidă	aplicativă	III

5.3 Noi direcții de cercetare

O direcție importantă în cercetarea ştiințifică o reprezintă extinderea aplicării metodei Taguchi, utilizând factori de zgomot astfel încât să se realizeze o matrice de experiențe combinată și să se poată optimiza simultan mai multe caracteristici de calitate, la elaborarea metodelor și tehnologiilor de obținere a unor nanomateriale de mare interes pentru ştiința și tehnologia modernă în vederea realizării, atât a reproductibilității tehnicilor, cât și al eficienței tehnicilor de sinteză și stabilității dimensionale a nanoparticulelor obținute prin diferite metode fizice și/sau chimice și în special prin metodele moderne ce implică tehnica hidrotermală cu diversele ei posibilități și oportunități științifice și tehnice.

Rezultatele înregistrate în acest sens vor sta la baza elaborării unor noi proiecte de cercetare – dezvoltare, urmărindu – se îndeosebi implicarea industriei în parteneriat cu universități și institute de cercetare astfel încât obiectivele tehnice ale proiectelor să fie direcționate spre aplicarea rezultatelor obținute în procesele industriale, contribuind astfel atât la punerea în evidență a activității de cercetare care, pe lângă o largă diseminare în mediul științific internațional se va bucura și de recunoașterea mediului de afaceri, cât și la creșterea productivității prin plusvaloarea adusă, ceea ce conduce implicit la creșterea cifrei de afaceri.

Posibilitățile de valorificare a rezultatelor cercetării efectuate sunt multiple, deoarece metoda poate fi extinsă la multe alte procese tehnologice similare dar, având în vedere faptul că în procesul de elaborare a acesteia sunt implicate instituții de învățământ superior și cercetare cu specialiști recunoscuți în domeniu, valorificarea rezultatelor se va face, în viitorul foarte apropiat, prin elaborarea în comun de proiecte de cercetare științifică naționale în parteneriat cu mediul de afaceri pentru transferul de cunoștiințe și tehnologii, iar într – o următoare etapă, prin elaborarea de proiecte transnaționale sau europene pentru atragerea de fonduri comunitare și dezvoltarea în parteneriat regional sau european a unor proiecte complexe în care operatorul economic să fie implicat atât ca și cofinanțator, cât și ca utilizator, cu rezultate științifice și tehnice de înalt nivel științific și tehnologic, cu aplicabilitate imediată la beneficiar.

Bibliografie

[A1] ADUDA, B. O., RAVIRAJAN, P., CHOY, K. L., NELSON, J., Effect of morphology on electron drift mobility in porous TiO2, International Journal of Photoenergy 6, 141, 2004.

[A2] ALEXIS, J., – Metoda Taguchi în practica industrială – Editura Tehnică, București, 1999.

[A3] ALFARO, M. A. Q., FERRO, S., MARTINEZ – HUITLE, C. A., VONG, Y. M., Boron doped diamond electrode for the wastewater treatment, Journal of the Brazilian Chemical Society, 17, 227 – 236, 2006

[A4] ANANPATTARACHAI, J., KAJITVICHYANUKUL, P., SERAPHIN, S., Visible light absorption ability and photocatalytic oxidation activity of various interstitial N – doped TiO_2 prepared from different nitrogen dopants, Journal of Hazardous Materials, 168, 253 – 261, 2009.

[B1] BALAKHONOV, S. V., TSYMBARENKO, D. M., MESKIN, P. E., CHURAGULOV, B. R., GOODILIN, E. A., TRETYAKOV, Y. D., Hydrothermal synthesis of a novel phase of vanadia – based nanowhiskers, Mendeleev Communications, 3, 20, 153, 2010.

[B2] BAVYKIN, D.V., GORDEEV, S.N., MOSKALENKO, A.V., LAPKIN, A.A., WALSH, F.C., Apparent Two – Dimensional Behavior of TiO2 Nanotubes Revealed by Light absorption and Luminescence, Journal of Physical Chemistry B, 109, 8565, 2005.

[B3] BLANCO, J., FERNANDEZ, P., MALATO, S., Solar photocatalytic detoxification and disinfection of water: Recent overview. Journal of Solar Energy Engineering 129, 4 -15, 2007.

[B4] BOX, G.E.P., DRAPER, N.R. – Empirical Model-Building and response Surface Methodology – John Wiley & Sons, NY, USA, 1988.

[B5] BOX, G.E.P., HUNTER, W.G., HUNTER, J.S. – Statistics for experimenters – John Wiley & Sons, NY, USA, 1978.

[C1] CARNEY, C. M., YOO, S., AKBAR, S. A., TiO2–SnO2 nanostructures and their H2 sensing behavior, Sensors and Actuators, B. 108 pp 29 – 33, 2005.

[C2] CARP, O., HUISMAN, C. L., RELLER, A., Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, Volume 32, Issue 1-2, Pages 33 – 177, 2004.

[C3] CICALĂ, E. F., Prelucrarea datelor experimentale, Curs și aplicații, Timișoara, 1996

[C4] CICALĂ, E. F., Metode de prelucrare statistică a datelor experimentale, Ed. Politehnica, Timișoara, 1999.

[C5] CICALĂ, E. F., Metodologia experimentelor factoriale, Proiectarea experimentelor, modelare, optimizare, Ed. Politehnica, Timişoara, 2005.

[C6] CONNOR, W.S., MARVIN, Z., 1959. Fractional factorial experiment designs for factors at three-levels, Washington: U.S. Gov. 2006. Response surfacemethodology.http://en.wikipedia.org/wiki/response_surface_methodology (accesat Mai 12, 2011).

[C7] CRIŞAN, M., JITIANU, A., ZAHARESCU, M., FUJIO, M., SHU-ICHI, N., Sol – gel Mono- and Poly- component Nanosized Powders in the Al2O3 – TiO2 – SiO2 – MgO System, Journal of Dispersion Science and Technology, Volume 24, Issue 1, 129, 2003. [D1] DEAN, A., VOSS, D. (1999). Design and Analysis of Experiments, New York: Springer.

[D2] DELOGU, F., A mechanistic study of TiO2 anatase – to – rutile phase transformation under mechanical processing conditions, Journal of Alloys and Compounds, 2009

[D3] DI PAOLA, A., CUFALO, G., ADDAMO, M., BELLARDITA, M., COMPOSTRINI, R., ISCHIA, M., CECCATO, R., PALMISONO, L., Photocatalytic activity of nanocrystalline TiO2 (Brookite, Rutile and Brookite - based) powders prepared by termohydrolysis of TiCl4 in aqueous chloride solutions, Colloids and Surface A: Physicochemical and Engineering Aspects, Volume 317, Issue 1-3, Pages 366 – 376, 2008.

[D4] DONOHUE, J.M. – Simulation designs for quadratic response surface models in the presence of model misspecification – Management Science38 (12), pp 1765-1791, 1992.

[D5] DRNOVŠEK, N., DANEU, N., REČNIK,A., MAZAJ, M., KOVAČ, J., NOVAK, S., Hydrothermal synthesis of a nanocrystalline anatase layer on Ti6A4V implants, Surface & Coatings Technology 203, 1462–1468, 2009

[D6] DEMING, W.E., Out of the Crisis, 1982, MIT, Cambridge, Mass., USA.

[D7] DUNCAN, W., Total Quality Key Terms. p. 171

[E1] EALEY, L.A. – Les méthodes Taguchi dans l'industrie occidentale – Les Editions D'Organisation, Paris, 1990

[E2] EARLE, M.D., The Electrical Conductivity of Titanium Dioxide, Physical Review 61, 56, 1942.

[F1] FARIA, E. H., MARÇAL, A. L., NASSAR, E. J., CIUFFI, K. J., CALEFI, P. S., Sol – Gel TiO2 Thin films Sensitized with the Mulberry Pigment Cyanidin, Matererials Research, 10, 413, 2007.

[F2] FATHI, Y. – A Nonlinear Programming Approach to the Parameter design Problem – European Journal of Operational research, Vol. 53, pp 371-381, 1991.

[F3] FOWLKERS, W.Y., CREVELING, C.M. – Engineering Methods for Robust Production Design Using Taguchi Methods în Technology and Product – Addison-Wesley, 1997.

[F4] FUJISHIMA, M., MATSUO, Y., TAKATORI, H., UCHIDA, K., Proton – conductive acid – base complex consisting of k – carrageenan and 2 – mercatoimidazole, Electrochemistry Communications, 10, 10, 1482, 2008.

[F5] FUJISHIMA, A., ZHANG, X., TRYK, A. D., TiO2 photocatalysis and related surface phenomena, Surface Science Reports, Volume: 63, Issue: 12, Publisher: Elsevier, Pages: 515-582, 2008.

[F6] FUJISHIMA, A., ZHANG, X., Titanium dioxide photocatalysis: present situation and future approaches, Comptes Rendus Chimie, Volume 9, Issues 5–6, Pages 750–760, 2006.

[F7] FUJISHIMA, A., RAO, T. N., TRYK, D. A., Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, volume 1, pp. 1 – 21, 2000.

[F8] FUJISHIMA, A., RAO, T. N., TRYK, D. A., TiO2 photocatalysis and related surface phenomena, Surface Science Reports, 63:515-582, 2008.

[G1] GELOVER, S., GÓMEZ, L. A., REYES, K., LEAL, M. T., A practical demonstration of water disinfection using TiO2 films and sunlight, Water Research, 40, 17, 3274, 2006.

[G2] GOUMA, P. I., DUTTA, P. K., MILLS, M. J., Structural stability of titania then films, Nanostructured Materials, Volume 11, pages 1231, 1999.

[G3] GRÄTZEL, M., Artificial photosynthesis : water cleavage into hydrogen and oxygen by visible light, Accounts of Chemical Research, Pages 376 – 384, 1981.

178 Bibliografie

[G4] GRIBB, A. A.; BANFIELD, J. F., Particle size effects on transformation kinectics and Phase stability in nanocrystalline TiO2, American Mineralogist, Volume 82, Pages 717 – 728, 1997.

[G5] GRINSHPUN, S.A., ADHIKARI, A., HONDA, T., KIM, K-Y., TOIVOLA, M., RAO, K.S.R., REPONEN, T., Control of Aerosol Contaminants in Indoor Air: Combining the Particle Concentration Reduction with Microbial Inactivation, Environmental Science and Technology,41(2):606-612, 2007.

[G6] GROZESCU, I., ş.a. – Thermographic Analyse for polycristalline nutrient and AlPO4 monocrystal hydrothermally grown – 1st International Conference on Chemical Sciences and Industry, Greece, 1998.

[G7] GROZESCU, I., MUŞCUTARIU, I. – Researches on the obtaining of AlPO4 Monocrystals at High Pressure and High Temperature – Romanian Conference on Advanced Materials, Romanian Academy, Bucureşti, Romania, 1995.

[G8] GROZESCU, I., ş.a.– The influence of pressure and molar concentration upon the berlinit solubilization temperatures – The Second International Conference about Microelectronics, Chişinău, Republica Moldova, 1997.

[G9] GROZESCU, I., ş.a.- Nonlinear-optic Bulk Crystal Growth by Hydrothermal Technique – Conferința Națională de Materiale Avansate a Academiei Româno-Americane, secțiunea PH-1, Cleveland, USA, iulie 2000.

[G10] GROZESCU, I., – Cercetări privind echilibrele de fază și tranzițiile de fază de speța I-a (Solid soluție) și speța a II-a (în stare solidă ordonată tridimensională) la presiuni mari și temperaturi ridicate în compuși oxidici poli și monocristalini de tipul X1Y1O4 (X1 = Al, Y1 = P) – Contract de Cercetare Științifică Nr. 947B/1993, Institutul de Cercetare a Materiei Condensate, Timișoara, 1993

[G11] **GIUCA, O.,** Cheking the stability of TiO_2 nanoparticles size by response surface method, International Conference on Innovative Technologies, IN – TECH 2012, Rijeka, Croatia, 26 -29.09.2012

[G12] **GIUCA, O.**, NICOARĂ, I., GROZESCU, I., Using Experimental Methods for checking stability of TiO₂ nanoparticles size, International Conference on Innovative Technologies, IN – TECH 2012, Rijeka, Croatia, 26 -29.09.2012

[G13] **GIUCA, O.**, Factors in decision - making method of implementation of information systems for automotive industry, Buletinul Științific al Universității Politehnica din Timișoara, Seria Mecanică, Vol 57(71), Issue 1, 2012, ISSN 1224 - 6077, Editura Politehnica

[H1] HA, P. S., YOUN, H. J., JUNG, H. S., HONG, K. S., PARK, Y. H., KO, K. H., Anatase Rutile Transition of Precipitated Titanium Oxide With Alcohol Rinsing, Journal of Colloid and Interface Science, Volume 223, Issue 1, Pages 16 – 20, 2000.

[H2] HAMILTON, J.W.J., BYRNE, J.A., McCULLAGH, C., DUNLOP, P.S. Electrochemical Investigation of doped Titanium Dioxide, International Journal of Photoenergy, 2008, Artile ID 631597.

[H3] HART, J. N., MENZIES, D., CHENG, Y. B., SIMON, G., SPICCIA, L., TiO2 sol-gel blocking layers for dye-sensitised solar cells, CR Chimie, 9, 622-626, 2006.

[H4] HART, J. N., BOURGEOIS, L., CERVINI, R., CHENG, Y. B., SIMON, G., SPICCIA, L., Low temperature crystallisation behaviour of TiO2 derived from a sol-gel process, Journal of Sol Gel Science & Technology, 42, 107-117, 2007.

[H5] HASHIMOTO, K., IRIE, H., FUJISHIMA, A., TiO2 Photocatalysis : A Historical Overview and Future Prospects, Japanese Journal of Applied Physics, 44, 8269, 2005.

[H6] HENDRY, E., WANG, F., SHAN, J., HEINZ, T. F., BONN, M., Electron Transport in TiO2 Probed by THz Time – domain Spectroscopy, Physical Review, B 69, Art. No. 081101, 2004.

[H7] HENGERER, R., BOLLIGER, B., ERBUDAK, M., GRÄTZEL, M., Structure and stability of the anatase TiO2 (101) and (001) surfaces, Surface Science, Volume 460, Issues 1–3, Pages 162–169, 2000.
[H8] HINCAPIÉ, M., MALDONADO, M.I., OLLER, I., GERNJAK, W., SÁNCHEZ -

[H8] HINCAPIÉ, M., MALDONADO, M.I., OLLER, I., GERNJAK, W., SÁNCHEZ -PÉREZ, J. A., BALLESTEROS, M. M., MALATO, S., Solar photocatalytic degradation and detoxification of EU priority substances, Catalysis Today , 101, 203-210, 2005.

[H9] HOFFMANN, M. R., MARTIN, S. T., CHOI, W., BAHNEMANN, D. W., Environmental applications of semiconductor photocatalysis, Chemical Review, 95, Pages 69 – 96, 1995.

[H10] HU, Y., TSAI, H. L., HUANG, C. L., Effect of Brookite Phase on the Anatase – Rutile Transition in Titania Nanoparticles, Journal of the European Ceramic Society, 23, 691 – 696, 2003.

[H11] HUA,T., JUNFENG, M., KANG, L., JINJUN, L., Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange, Ceramics International, 35, 3, 1289 – 1292, 2009.

[H12] HWU, Y., YAO, Y. D., CHENG, N. F., TUNG, C. Y., LIN, H. M., X – ray absorption of nanocrystal TiO2, Nanostructured Materials, Volume 9, Issues 1 – 8, Pages 355 – 358, 1997.

[I1] ICHIURA, H., KITAOKA, T., TANAKA, H., Photocatalytic oxidation of NOx using composite sheets containing TiO2 and a metal compound, Chemosphere 51, 855, 2003

[I2] IRIE, H., WATANABE, Y., HASHIMOTO, K., Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, Journal of Physical Chemistry B Volume 107, Issue 23, Pages 5483-5486, 2003.

[I3] ISAIC – MANIU, Al., VODĂ, V. Ch., Proiectarea statistică a experimentelor, Fundamente și studii de caz, Ed. Economică, 2006.

[J1] JIANG, B., YIN, H., JIANG, T., JIANG, Y., FENG, H., CHEN, K., ZHOU, W., WADA, Y., Hydrothermal synthesis of rutile TiO2 nanoparticles using hydroxyl and carboxyl group – containing organics as modifiers, Materials Chemistry and Physics, Volume 98, Issue 2 - 3, Pages 231 – 235, 2006.

[J2] JO, W. K., PARK, K. H., Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application, Chemosphere, 57(7):555 – 565, 2004.

[K1] KOLEN'KO, Y. V., BURUKHIN, A. A., CHURAGULOV, B. R., OLEYNIKOV, N. N., Phase Composition of Nanocrystalline Titania Synthesized under Hydrothermal Conditions from Different Titanyl Compounds, Inorganic Materials, 40, 8, 822 – 828, 2004.

[K2] KOLEN'KO, Y.V., CHURAGULOV, B.R., KUNST, M., MAZEROLLES, L., COLBEAU – JUSTIN, C., Photocatalytic properties of titania powders prepared by hydrothermal method, Applied Catalysis B: Environmental, Volume 54, issue 1, 51 – 58, 2004

[K3] KOMINAMI, H., KOHNO, M., KERA, Y., Synthesis of brookite –type titanium oxide nano-crystals in organic media, Journal of Materials Chemistry 10, 1151, 2000 [L1] LATROCHE, M., BROHAN, L., MARCHAND, R., TOURNOUX, M., New hollandite oxides: TiO2 (H) and K0,06 TiO2, Journal of Solid State Chemistry, Volume 81, Issue 1, Pages 78 – 92, 1989.

[L2] LĂZĂU, C., SFÎRLOAGA, P., ORHA, C., RAŢIU, C., GROZESCU, I., Development of a novel fast – hydrothermal method for synthesis of Ag – doped TiO2 nanocrystals, Materials Letters, 65 (2), pp. 337 – 339, 2011.

[L3] LĂZĂU, C., SFÎRLOAGĂ, P., VLĂZAN, P., NOVACONI, Ş., MIRON, I., RAŢIU, C., MOCANU, L., IOIŢESCU, A., GROZESCU, I., Synthesis and Characterization of Functional TiO2 ,Chemical Bulletin of "POLITEHNICA" University of Timişoara, 53 (67), 273, 2008.

[L4] LĂZĂU, C., BURADA, F., I. SILOŞI, SFÎRLOAGĂ, P., RAŢIU, C., ORHA, C., NOVACONI, S., VLĂZAN, P., ROGOZ, I., ROGOZ, S., BARVINSCHI, P., GROZESCU, I. Immune response of animal organism treated with TiO2 nanocrystals, Scientific and Technical Bulletin 13, 2008.

[L5] LĂZĂU, C., SFÎRLOAGĂ, P., RAŢIU, C., ORHA, C., IOIŢESCU, A., MIRON, I., NOVACONI, Ş., HĂDĂRUGĂ, D. I., HĂDĂRUGĂ, N. G., BANDUR, G. N., RUSU, G. GROZESCU, I., Synthesis of bioactive materials based on undoped/doped TiO2 and their nanocrystals with α / β –cyclodextrins, Journal of Optoelectronics and Advanced Materials vol.11, no. ISS7, 2009.

[L6] LI, J.-G., ISHIGAKI, T., Brookite to Rutile Phase Transformation of TiO2 Studied with Monodispersed Particles, Acta Materialia, 52, 5143-5150, 2004.

[L7] LINSEBIGLER, A. L., LU, G. Q., YATES Jr., J. T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms and Selected Results, Chemical Review, 95, Pages 735 – 758, 1995.

[M1] MAHSHIDA, S., ASKARI, M., SASANI GHAMSARI, M., AFSHAR, N., LAHUTI, S., Mixed-phase TiO2 nanoparticles preparation using sol-gel method, Journal of Alloys and Compounds, Volume 478, Issues 1–2, Pages 586–589, 2009.

[M2] MALATO S., BLANCO, J., CÁCERES, J., FERNÁNDEZ-ALBA, A. R., AGÜERA, A., RODRIGUEZ, A., Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy, Catalysis Today, 76, 209-220, 2002

[M3] MARTINEZ - HUITLE, C. A., FERRO, S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes, Chemical Society Reviews, 35: 1324–1340, 2006.

[M4] MENZIES, D., DAI, Q., MAUDERS, C., CHENG, Y.B., SPICCIA, L., SIMON, G.P., Sol-gel synthesis of TiO2 nanocrystals for application in dye-sensitized solar cells, Proceedings of IEEE conference on Nanotechnology, Nagoya, Japan, 2, 585–588, 2005.

[M5] MINTO, C. (2006). Response Surface Modeling of Drug Interactions. http://eurosiva.org/Archive/Vienna/abstracts (accesat Iulie 17, 2010).

[M6] MONTGOMERY, D.C – Design and analysis of experiments – John Wiley & Sons, New York, 1991.

[M7] MOR, G. K., VARGHESE, O. K., PAULOSE, M., GRIMES, C. A., A Self – cleaning room Temperature Titania – Nanotube Hydrogen Gas Sensor, Sens. Lett. 1, 42, 2003

[M8] MOR, G. K., Carvalho, M. A., Varghese, O. K., Pishko, M. V., Grimes, C. A., A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination, Journal of Materials Research 19, 628, 2004

[M9] MORA – SERO, I., BISQUERT, J., Fermi Level of Surface States in TiO2 Nanoparticles, Nanostructures Materials, Volume 3, Pages 945 – 949, 2003.

[M10] MYERS, R.H., ş.a. – Response Surface alternatives to the Taguchi robust parameter design approach – the American Statistician 46 (2), pp 131-139, 1992.

[M11] MYERS, R. H., KHURI, A. I., CARTER, W. H., Jr. (1989). Response surface methodology: 1966-1988. Technometrics 31 (2): 137-153 http://www.jstor.org/ (accesat Iunie 19, 2011).

[M12] MYERS, R. H., MONTGOMERY, D. C., (1995). Response Surface Methodology: process improvement with steepest ascent, the analysis of response Surfaces,
experimental designs for fitting response surfaces, 183-351, New York: John Wiley and Sons, Inc.

[M13] MÎRZU, M., CREŢU, E., NICOARĂ, I., Optica Ondulatorie și Fourier, Ed. Academiei Tehnice Militare, Ed Pro Transilvania, București, 1996.

[N1] NAHAR, Mst. S., HASEGAWA, K., KAGAYA, S., KURODA, S., Comparative assessment of the effiency of Fe – doped TiO2 prepared by two doping methods and photocatalytic degradation of phenol in domestic water suspensions, Science and Technology of Advanced Materials, 8, 286, 2007.

[N2] NAIR, V.N. – Taguchi's parameter design: A Panel Discussion – Echonometrics, Vol. 34, No. 2, May 1992.

[N3] NAKAMURA, R., TANAKA, T., NAKATO, Y., Mechanism for Visible Light Responses in Anodic Photocurrents at N – Doped TiO2 film Electrodes, The Journal of Physical Chemistry B, 108 (30), Pages 10617 – 10620, 2004.

[N4] NICHICI, Al., ş.a. – Prelucrarea datelor experimentale – Centrul de multiplicare Universitatea "Politehnica" Timişoara, 1996.

[N5] NICOARĂ, I., GRUESCU, C., ATIŢOAOIEI, V., DUMA, V.F., Aparate optice, Editura Orizonturi Universitare, Timişoara, 2000.

[N6] NICOARĂ, I., GRUESCU, C., STICLARU, C., Fiabilitate și terotehnică, Editura Politehnica Timișoara, 2009

[N7] NICOARĂ, I., Încercarea Angrenajelor, Editura Orizonturi Universitare Timișoara, 2000

[O1] OBATA, A., KASUGA, T., Surface Modification of Titanium by Hydrothermal Treatment, Key Engineering Materials, 361–363, 609, 2008.

[O2] OEHLERT, G. W. (2000). Design and analysis of experiments: Response surface design. New York: W.H. Freeman and Company

[O3] OHKO, Y., IUCHI, K., NIWA, C., TATSUMA, T., NAKASHIMA, T., IGUCHI, T., KUBOTA, Y., FUJISHIMA, A., 17 beta-estradiol degradation by TiO2 photocatalysis as a means of reducing estrogenic activity, Environmental Science and Technology, 36, 4175, 2002

[O4] OLLER, I., GERNJAK, W., MALDONADO, M. I., PÉREZ-ESTRADA, L. A., SÁNCHEZ- PÉREZ, J. A., MALATO, S., Solar photocatalytic degradation of some hazardous water – soluble pesticides at pilot – plant scale, Journal of Hazardous Materials, 138, 507, 2006.

[P1] PARMON, V., EMELINE, A., SERPONE, N., Glossary of terms in Photocatalysis and radiocatalysis, International Journal of Photoenergy, 4, 91, 2002

[P2] PAVASUPREE, S., SUZUKI, Y., YOSHIKAWA, S., KAWAHATA, R., Synthesis of titanate, TiO2 (B), and atanase TiO2 nanofibers from natural rutile sand, Journal of Solid State Chemistry, 178, 3110 – 3116, 2005.

[P3] PEACE, G.S. – Taguchi Methods – Assison-Wesley, 1993.

[P4] PUGNA, A. P.; MOCAN, M. L.; NEGRU - STRĂUŢĪ, G., **GIUCA, M. G. O.**: Using doe to improve sintered basalt mechanical properties, Annals of DAAAM for 2011 &

Proceedings of the 22nd International DAAAM Symposium, ISBN 978-3-901509-83-4, ISSN 1726-9679, pp 0295-0296, Editor B[ranko] Katalinic, Published by DAAAM International, Vienna, Austria 2011

[R1] RAMBERG, J.S., ş.a. – A critique and enhancement of the Taguchi Method – ASQC Quality Conngress Transactions, pp 491-498, 1992.

[R2] RAMBERG, J.S., ş.a. – Designind simulation experiments :Taguchi methods and Response Surface Models – Proceedings of the 1994 Winter Simulation Conference, Institute of Electrical and Elactronic Engineers, Piscataway, NJ, USA, 1994. [R3] RENGARAJ, S., LI, X. Z., Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension, Journal of Molecular Catalysis A: Chemical, Volume 243, Issue 1, Pages 60–67, 2006.

[R4] RINCÓN, A. G., PULGARIN, C., Field solar E.coli inactivation in the absence and presence of TiO2: is UV solar dose an appropriate parameter for standardization of water solar disinfection?, Solar Energy 77, 635 – 648, 2004.

[R5] RINCÓN, A. G., PULGARIN, C., ADLER, N., PERINGER, P., Interaction between E.coli inactivation and DBP – precursors – dihydroxybenzene isomers – in the photocatalytic process of drinking – water disinfection with TiO2. Journal of Photochemistry and Photobiology A: Chemistry 139, 233 – 241, 2001.

[R6] ROY, R. – A Primer on the Taguchi Method – Van Nostrand – Reinhold, NY, USA, 1990.

[R7] RUIZ, A.M., CORNET, A., MORANTE, J. R., Performances of La–TiO2 nanoparticles as gas sensing material, Sensors and Actuators B: Chemical, B111-B112, 7, 2005.

[S1] SAKAI, N., EBINA, Y., TAKADA, K., SASAKI, T., Electronic Band Structure of Titania Semiconductor Nanosheets Revealed by Electrochemical and Photoelectrochemical Studies, Journal of the American Chemical Society, 126, 5851, 2004.

[S2] SATO, H., ONO, K., SASAKI, T., YAMAGISHI, A., First – principles Study of Two – Dimensional Titanium Dioxides, Journal of the Physical Chemistry B 107, 9824, 2003.

[S3] SENAIN, I., NAYAN, N., SAIM, H., Influence of the Condition of Heat Treatment to the Properties of TiO2 Thin Film Prepared using Spin Coating Technique, AIP Conf. Proc. 1328, pp. 193-195, MALAYSIA Annual Physics Conference 2010

[S4] SHEN, M., WU, Z., HUANG, H., DU, Y., ZOU, Z., YANG, P., Carbon – doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation, Materials Letters 60, 693 – 697, 2006.

[S5] SHKLOVER, V., BRAGINSKY, L., HOFMANN, H., Domain structure and optical properties of colloidal photonic crystal, Materials Science and Engineering: C, Volume 26, Issue 1, Pages 142 – 148, 2006.

[S6] SIMONS, P. Y., DACHILLE, F., The structure of TiO2 II, a high – pressure phase of TiO2, Acta Cryst., 23, 1967.

[S7] SO, W.W., PARK, S.B., KIM, K.J., SHIN, C.H., MOON, S. J., The crystalline phase stability of titania particles preparated at room temperature by the sol – gel method, Journal of Materials Science, Volume 36, Nr 17, Pages 4299 – 4305, 2001. [T1] TAGUCHI, G., ş.a. – Robust Engineering –McGraw-Hill, New York, 2000.

[T2] TAGUCHI, G., – System of Experimental Design – Vol I & II, Unipub/Kraus International Publications, White Plains, NY, USA, 1987.

[T3] TAGUCHI, G., – Introduction to Quality Engineering – Unipub/Kraus International Publications, White Plains, NY, USA, 1986.

[T4] TAGUCHI, G., WU, Y. – Introduction to off-line quality control – Central Japan Quality Association, Nagoya, Japan, 1980.

[T5] TAGUCHI, G., ş.a. – Quality Engineering in Production Systems – McGraw-Hill, NY, USA, 1989.

[T6] TAGUCHI, G., Taguchi on Robust Technology : Bringing Quality Engineering Upstream – ASME Press, NY, USA, 1993.

[T7] TAKATA, Y., HIDAKA, S., CAO, J.M., NAKKAMURA, T., YAMAMOTO, H., MASUDA, M., ITO, T., Effect of surface wettability on boiling and evaporation, Energy, The International Journal, Vol.30, Issue 2, pp. 209 – 220, 2005.

[T8] TANG, Z.; PARK, M.S.; JIN, S.H.; WIE, C.R., Drain bias dependent bias temperature stress instability in a-Si:H TFT, Solid-State Electronics, Volume 53, Issue 2, February 2009, Pages 225-233

[T9] THIMSEN, E., RASTGAR, N., BIWAS, P., Nanostructured TiO2 Films with controlled Morphology synthesized in a Single Step Process: Performance of dye – Sensitized Solar Cells and Photo Watersplitting, The Journal of Physical Chemistry C, 112 (11), 4134 – 4140, 2008.

[T10] TIAN, H., MA, J., LI, K., LI, J., Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange, Ceramics International, Volume 35, Issue 3, Pages 1289–1292, April 2009.

[T11] TORKHOV, D. S., MESKIN, P. E., KOLEN'KO, Yu. V., KETSKO, V. A., BURUKHIN, A. A., CHURAGULOV, B. R., Reactivity of Nanocrystalline TiO2 (Anatase and Rutile) Synthesized under Hydrothermal Conditions, Doklady Chemistry, 394, 4 – 6, 36 – 38, 2004.

[V1] VARGHESE, O. K., GONG, D., PAULOSE, M., ONG, K. G., GRIMES, C. A., Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure, Sens. Actuators, B B93, 338, 2003

[V2] VINING, G.G., MYERS, R.H. – Combining Taguchi and response surface philosophies : A dual response approach – Journal of Quality Technology 22, pp 38-45, 1990.

[W1] WAGNER, C., TRAUD, W., On the Interpretation of Corrosion Processes through the Superposition of Electrochemical Partial Processes and on the Potential of Mixed Electrodes," with a Perspective by F. Mansfeld, Corrosion 62, 843 (2006).

[W2] WAITA, S. M., ADUDA, B. O., MWABORA, J. M., NIKLASSON, G. A., GRANQVIST, C. G., BOSCHLOO, G., Electrochemical characterization TiO2 blocking layers prepared by reactive magnetron sputtering, Journal of Electroanalytical Chemistry, 1-2, 637, 79, 2009.

[W3] WANG, C.C., YING, J.Y., Sol – Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals, Chemistry Materials, 11, Pages 3113 – 3120, 1999.

[W4] WANG, Y. M., LIU, S. W., LÜ, M. K., WANG, S. F., GU, F., GAI, X. Z., CUI, X. P., PAN, J., Preparation and photocatalytic properties of Zr4+ - doped TiO2 nanocrystals, Journal of Moleular Catalysis A-Chemical, 215, 137, 2004

[W5] WHEELER, D.J., CHAMBERS, D.S. - Understanding Statistical Process Control – SPC Press Inc, Knoxville, Tennessee, 1986

[W6] WONG, M.H., CHENG, F.T., MAN, H.C., Deposition of TiO2 on NiTi by cathodic Synthesis for improving Corrosion Resistance and Apatite – Forming ability, Journal of the american Ceramic Society, 91, 2, 414 – 420, 2008.

[X1] XIA, X.H., JIA, Z.J., YU, Y., LIANG, Y., WANG, Z., MA, L.L., Preparation of multi-walled carbon nanotube supported TiO2 and itsphotocatalytic activity in the reduction of CO2 with H2O, Carbon;45(4):717–721, 2007.

[X2] XIAOBO, C., SAMUEL, S. M., Titanium Dioxide Nanomaterials : Synthesis Properties, Modifications and Applications, Chemical Reviews, 107, 2891, 2007.

[Y1] YAMAKATA, A., ISHIBASHI, T., ONISHI, H., Time resolved infrared absorbtion spectroscopy of photogenerated electrons in platinized TiO2 particles, Chemical Physics Letters 333 (2001), Pages 271 – 277.

[Y2] YING, J.Y., WANG, C.C., Low Temperature Crystallization of Titania Nanoparticles in Proceedings of the 14th International Symposium on Industrial Crystallization, Cambridge, England, 1999.

[Y3] YUNG, H.S., LEE, S.W., KIM, J.Y., HONG, K.S., LEE, Y.C., KO, K.H., Correlation Between dispersion properties of TiO2 , colloidal sols and photoelectric characteristics of TiO2 films, Journal of Colloid and Interface Science, Volume 279, Issue 2, Pages 479 - 483, 2004.

[Z1] ZHANG, F.J., CHEN, M.M., Oh WC. Electrochemical preparationof TiO2 /CNT electrodes with a TNB electrolyte and theirphotoelectrocatalytic effects, Journal of the Korean Ceramic Society, 46(4):357-364, 2009.

[Z2] ZHANG, H., BANFIELD, J. F., Size dependence of the kinetic rate constant for phase transformation in TiO2 nanoparticles, Chemistry of Materials, Volume 17, Pages 3421 – 3425, 2005. [Z3] ZHANG, H., BANFIELD, J. F., Thermodynamic analysis of phase stability of

nanocrystalline titania, Journal of Materials Chemistry, Volume 8, 1998.

[Z4] ZHANG, H., BANFIELD, J. F., Understanding Polybioriphic Phase Transformation Behaviour during Growth of Nanocrystalline Aggregates: Insighta from TiO2, The Journal of Physical Chemistry, B, 104 (15), Pages 3481 – 3487, 2000.

[Z5] ZHANG, L., XIA, D., SHEN, Q., Synthesis and Characterization of Ag@TiO2 Core-shell Nanoparticles and TiO2 Nanobubbles, Journal of Nanoparticle Research Volume 8, Number 1, 23-28, 2006.

[Z6] ZHANG, Z. X., DONG, H., BELL, T., XU, B.S., The effect of deep-case oxygen hardening on the tribological behaviour of a-C:H DLC coatings on Ti6Al4V alloy, Journal of Alloys and Compounds, Volume 464, Issues 1–2, Pages 519–525, 2008.

[Z7] ZHANG, X., FUJISHIMA, A., JIN, M., EMELINE, A.V., MURAKAMI, T., TiO2-SiO2 Double-Layered Nanostructured Films with Self-Cleaning and Antireflective Properties, Journal of Physical Chemistry B, (110) 25142-25148, 2006.