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1. Introduction 
 

Network science has been an increasingly important domain since the 1736 

bridges of the Königsberg problem to today’s multiple applications. Its characteristics 

allow it to be used as a tool that in combination with domain-specific data sets can 

offer a whole new perspective on the way we analyze data. 

Network science is based on depicting data as networks of interacting 

elements and underlining patterns or models. This view into data is an invaluable 

asset in the sense that it is a combination of displaying quantitative data in a dynamic 

visual manner.  

Complex networks have been used as analysis support in various areas such 

as computer science, social sciences, medicine, astronomy, civil engineering, 

psychology, etc. The advantage of using such an approach is that it can be adapted 

and combined with multiple other data analysis technologies: big data, machine 

learning, prediction algorithms, or imaging technologies. 

The medical domain has greatly benefitted from this new type of science. 

Metabolic networks, genetic pathways, disease networks, pneumology, neurological 

networks, assisted or enhanced diagnostics, medical imaging - they have all used 

network science as a means of gaining more diverse information into the studied 

data[1]–[4].  

Another important aspect they have in common is that the amount of 

information characterizing each one has increased tremendously in the past decade. 

Human knowledge is now richer than ever has been and it is all due to human curiosity 

together with the evolved technical means and infrastructure involved in the process 

of research.  

Complex networks, due to their graphical nature and mathematical support 

can be a game changer in all the problems related to patterns in Medical Science. 

Patterns should be visualized and analyzed, exactly the forte of complex networks. 

These are two complementary approaches (visualization and analysis) that stand at 

the base of this domain and are the main focus for development. 

While visualization tools are meant to bring knowledge in a creative manner, 

they are however faced with multiple challenges when dealing with large datasets 

such as the ones in the biology domain[5], [6].  

Complex networks analysts are always striving to find new methods of 

representing data in manners that could underline certain intrinsic characteristics of 

those networks, unobservable by the bare human eye[7]. Given that complex 

networks are usually based on large data sets, it is quite intuitive that, beyond a 

certain order of magnitude or dimension, the human brain cannot fully coagulate and 

extract useful information from the studied data [8]. 

This is where data visualization techniques come in handy. One of the most 

relevant ways of depicting data is through representation layouts which arrange the 

data according to different criteria [4], [9]. A large number of researchers choose 

complex networks as a common means of visually arranging data and indeed this 
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approach seems to manage to bring all of the data together while emphasizing 

connections between nodes, and cluster formation [10], [11]. 

A fair number of network visualization tools have been developed in response 

to this emerging need to deepen one’s understanding of such networks. These offer 

different approaches to representing data starting with basic statistics (node degree, 

betweenness centrality, closeness centrality, modularity) and continuing with force-

directed visualization algorithms  (Force Atlas, Fruchterman-Reingold, OpenOrd, etc) 

[12].  

However, one issue with visualizing data as networks has to do with the fact 

that there is no obvious ranking or differentiation between vertices other than their 

visual dimension which can be proportional to the relevance of that node within the 

network according to a chosen criterion. Displaying networks in a 2D manner can only 

give us so many dimensions of analyzing them. 3D networks on the other hand have 

the advantage of spatially scattering vertices and clusters and thus get a better 

understanding of the distance between any two nodes of the graph. Nevertheless, one 

major drawback of currently available tools implementing this approach is that, in the 

context of large data networks, the user loses grasp on the whole network and clusters 

seem to be floating around (although most 3D visualization tools offer the possibility 

of manually manipulating them)[13]. This highlights the opportunity to improve 

spatial distribution across a multi-dimension canvas and it is one of the gaps this 

thesis aims to fill. 

In terms of data pattern analysis in bioinformatics (the second direction 

covered by this thesis) there are currently multiple approaches available. Starting 

with machine learning algorithms, or even off-the-shelf software applications (e.g. 

CALIPER), these tools are designed to consolidate the knowledge of medical 

specialists and support medical diagnosis with a more objective „second opinion”. 

Diffuse interstitial lung diseases (DILD) are among the pathologies which could make 

the most use of such software solutions. Medical specialists heavily rely on HRCTs to 

be able to correctly diagnose such illnesses, yet this procedure still depends on the 

doctors’ „clinical sense”, which is, however experienced, inherently a subjective 

process. This disadvantage underlines a need to integrate more objective means of 

assessing a patient’s health state into daily practice. To be able to improve the 

decision-making process, approaches such as Computer Aided Diagnosis (CAD) have 

emerged as valuable candidates aiming to enhance analytical data and reduce 

diagnostic errors[14].    

Despite their increasing popularity and the specialists’ general interest in 

including these types of tools in their daily diagnostic process, CAD tools are still in 

their infancy and are not yet reliable enough to be fully integrated with medical 

practice[15]. Some of them might reqire quite a large suite of additional medical tests 

(which doctors might not have for every patient – e.g. Caliper) while other approaches 

(AI, machine learning) still fail to capture the dynamics of a pathology evolution.  

These pitfalls leave room for a new approach, the one proposed here, which 

is focused on enhancing DILD diagnosis through a complex qualitative and 
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quantitative measurement, as well as helping to close the gap regarding illness 

progression and early diagnosis of such ailments.   

1.2. Network visualization tools facilities and pitfalls 

 

While there are many tools being used at the moment by researchers, not all 

of them are perfectly suited for all types of domains and data types. This is why 

multiple factors need to be taken into consideration when choosing a certain tool for 

to display data as complex networks. 

On the one hand, the data set dimension is a multifaceted subject. Smaller 

data sets (up to several hundreds of nodes and edges) are probably the most versatile 

type of data due to the fact that a small number of elements poses no problem in 

representing from a canvas size point of view. As a consequence, when dealing with 

smaller data sets, one can easily experiment with visualization layouts and tools and 

not worry about whether the data will fit the screen, or if labels will clutter the image 

so much so that they will have to omit to display them altogether. The dimension 

factor is in fact an important aspect when dealing with large sets of data because this 

also restricts the type of tools and layout algorithm one chooses. This type of data 

pushes applications to the limit from multiple points of view: how well they can 

structure data and group similar elements together, how well they take advantage of 

all the canvas space to relay a clear image of the network.  

When dealing with large data sets (hundreds, thousands, or even millions of 

nodes and edges) the approach to representing such data volumes is not as 

straightforward as in the previous case. This poses quite a few challenges due to the 

fact that the drawing canvas becomes more and more crowded. As a consequence, 

the pressure falls on the shoulders of visualization algorithms, pushing them toward 

their limits in terms of performance and efficiency. This type of entry data calls for 

customized applications, maybe even dedicated to a certain data type. Specialization, 

while useful in some cases, loses its genericity in favor of unidirectional performance. 

But this is only natural from a point forward. 

In terms of data set specifics or domain characteristics, there are multiple 

fields that need and can profit from a visual representation of their structural 

components and dynamics. However, they do not all share the same characteristics. 

The number of nodes and connections, graph density and the number of clusters 

generally tends to differ from one domain to another. 

In the biology and omics area, researchers tend to deal with very dense 

networks, large numbers of nodes and edges, or incomplete data: DNA networks, 

genetic pathways, brain networks, or protein-protein interactions (PPIs)[16], [17]. 

Social network analysis is also an area strongly relying on complex networks 

for a visual representation since it is the closest conceptual structure to the real social 

network. Naturally, network vertices are a correspondent of real entities, while edges 

represent the relationship between them. These types of networks as well have a 

large number of elements and density[18]. Author citation networks are yet another 
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type of application of complex networks, as well as astronomical networks, or even 

road networks. 

The purpose that such visualization tools are needed for is another important 

factor to consider, and this greatly depends on the user’s needs. One of the most 

common applications of network layouts is that it constitutes a vizual support when 

dealing with abstract data. It could also represent another point of view along with 

charts and diagrams to complete the picture. However, sometimes this sort of 

visualization technique constitutes the main research tool in itself.  

Fields such as genetics - which still have incomplete data – seek to fill in the 

missing pieces by looking at “the big picture”, hence the integration of complex 

networks into the analysis process. Discovering the different tendencies or intrinsic 

characteristics of such networks together with similarities expressed by individual 

nodes could help uncover either missing elements or give new meaning to the existing 

network entities. However, the ability to accurately represent the graphical equivalent 

of such complex ecosystems becomes a challenge for current visualization tools, given 

the overwhelming amount of available data. This drawback forces network layout tools 

to make certain concessions on a number of aspects: whether it is in terms of 

graphical appeal, performance-wise, or network complexity.  

Although there are numerous applications of network visualization tools and 

layouts [19], [20], the current thesis focuses on their role within the biology domain, 

one specific area which is both problematic and intriguing. This approach strives to 

reduce the aforementioned limitations by offering a 3D network layout for medium to 

large networks which offers more depth and a more meaningful visual representation 

of such ensembles.  

1.3. Pattern analysis in the medical domain - challenges 

 

The medical diagnosis process is more and more based on complex procedures 

generating high-resolution images of different parts of the body. MRI, CT/PET scans, 

X-rays, or 2D/3D ultrasound have not only evolved a lot in the past decades but also 

tend to incorporate different detection algorithms which help as decision support in 

the diagnosis of different diseases[21], [22].  

On the one hand, visual support is always a more solid and reliable source of 

information that reflects reality as is, rather than by trying to clinically analyze the 

patient’s health state, which is a more subjective and error-prone process[23]. 

In addition, the advantage of such high-resolution images is that they can be 

used as input for other pattern detection algorithms. These AI or machine learning 

algorithms have started becoming more and more important in the medical field[24]. 

Although they are not evolved enough yet and cannot substitute a doctor’s diagnosis, 

for understandable ethical reasons which constitute an ongoing debate, they are 

definitely a second opinion worth taking into consideration. All this only provided that 

the detection algorithms have had enough training data so as to reduce the 

misdiagnosis chance as much as possible[25]. 
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The applications of machine learning and pattern identification algorithms in 

the medical domain are numerous: computer-aided diagnosis, image interpretation, 

image fusion, image registration, image segmentation, image retrieval, and analysis. 

Abnormalities detection within high-resolution imaging such as lung disease detection, 

bone disease or abnormalities, heart disease, muscle structure analysis, tumor tissue 

evaluation, and death risk probability - these are all development directions 

encompassed by machine learning algorithms[26]–[28].  

In terms of DILDs, which are a category of over 200 lung diseases, the 

diagnosis process is a very complex one, entailing multiple tests and procedures, 

cumulated with the medical knowledge and experience of the medical specialists. 

Besides being a subjective procedure in some aspects, this approach is also in need 

of technical tools which could enhance and speed up the diagnosis treatment process, 

especially since time is sometimes a critical aspect in managing lung pathologies.  

While there are several CAD tools available at the moment which have slowly started 

making their way into daily practice[29]–[31], these software applications are still not 

mature and comprehensive enough. Some tools like Caliper require a set of extra lung 

parameters and tests (e.g. pulmonary function tests, spirometry) to be able to offer 

a pertinent output, yet other programmatical approaches lean towards a more in-

depth approach at evaluating lung sections. Nevertheless, one major drawback of 

such solutions is that they merely provide a static analysis of HRCTs, and fail to record 

the time variation of a pathology evolution. In addition, none of them innovate in 

terms of DILD early diagnosis and classification, which are crucial medical 

management information, needed to prolong the life quality and duration of the 

afflicted patients.   

1.4. Research objectives 

 

Given the problematics exposed here, this thesis aims to develop complementary 

solutions to the visualization and analysis of patterns from the medical and biological 

domain. 

First the development of a new layout algorithm that fulfills the demanding 

requirements imposed by the medical data specifics. This new hybrid 3D approach 

strives to highlight and categorize complex networks data to reveal intrinsic 

characteristics which would otherwise not be available.  

Secondly, on the account of data patterns, this thesis proposes a new complex 

networks approach to HRCT processing, which would allow medical specialists to 

perform an in-depth analysis of medical data with much higher accuracy than the 

human eye. This technical solution also proposes a novel way of understanding the 

dynamics of DILD pathologies (deterioration rate or affected lung volume) from an 

angle that has not yet been exploited at its true potential: complex networks analytics.  
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2. Theoretical Background 
 

2.1. Complex networks 

  

The natural way of visualizing biological data is that of a network [32]. 

Because similarly to a network, DNA, for example, consists of genes that interact with 

each other and interconnect. It is easier to view clusters, groups of elements with the 

same or similar function, or groups of elements that are so tightly coupled that they 

are seen as part of a process (metabolic processes for example). 

One other advantage of complex networks is that there are different types of 

network models to choose from in order to best fit the training data. Choosing the 

right type of network model not only helps understand patterns that rule the network 

but can also even help predict missing links that may not have been experimentally 

discovered until now [33]. 

 

2.2. Complex networks metrics 

 

A complex network is essentially a graph, and as such, it usually consists of 

vertices and edges. The vertices (or nodes) are the elements that compose the system 

and the edges (or links) are the connections between the nodes. 

 

2.2.1 Degree distribution 

 

Node degree is probably the simplest and the most basic attribute of a node. 

This characteristic represents the number of links a certain node has to other vertices 

in the graph. The short notation for node degree is 𝑑𝑒𝑔(𝑛𝑖). Depending on whether the 

graph is directed or not, a node 𝑛𝑖 might have an in-degree (𝑑𝑒𝑔 − (𝑛𝑖)) and an out-

degree (𝑑𝑒𝑔 + (𝑛𝑖))  (for incoming respectively outgoing links or directed graphs) or 

simply, a degree (for undirected graphs). 
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Figure 2.1  a) Directed graph b) Undirected graph [34] 

  

Complex networks such as genetic networks can be represented as both, 

depending on their type and specificity. Protein-protein interaction networks (PPI), 

gene regulatory networks (GRNs), Signal transduction networks, or Metabolic 

networks are just a few examples that can be represented as directed graphs since 

connections in the graph are actually interactions that happen at certain points in time 

and the order and precedence in which these take place can be translated into directed 

edges [34]. 

 

 

Figure 2.2  Sample metabolic network [35] 

 

The network diameter represents the longest path that links two nodes of the 

graph. 

The degree distribution of a graph (𝑃(𝑘)) can be described as the probability 

that a randomly selected node has precisely 𝑘 edges. For a graph with n nodes, nk of 

them having the degree k, then [36], [37]: 
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 𝑃(𝑘) =  𝑛𝑘/𝑛  (2.1)                                                   

                                              

2.2.2 Clustering coefficient 

 

In graph theory, the clustering coefficient measures the degree to which graph 

vertices tend to cluster together [38]. There are two types of clustering coefficients: 

the global clustering coefficient and the local clustering coefficient. 

The global clustering coefficient (𝐶) measures the overall indication of 

clustering in a graph and is calculated as the ratio of closed triplets of nodes (or closed 

triangles) to the total number of triplets (open or closed) in the graph. 

The local clustering coefficient of a node gives an idea about its 

embeddedness, or in other words, how close its neighbors are to being a complete 

graph. For directed networks, the coefficient can be calculated as: directed networks 

the formula becomes: 

 𝐶𝑖 =
|𝑒𝑗𝑘:𝑣𝑗,𝑣𝑘∈𝑁𝑖,𝑒𝑗𝑘∈𝐸|

𝑘𝑖(𝑘𝑖−1)
   (2.2) 

Where 𝑒𝑗𝑘 is the edge connecting vertice 𝑣𝑗 to 𝑣𝑘, 𝑁𝑖 being the neighborhood 

for a node 𝑣𝑖 and can be defined as: 

 

 𝑁𝑖 = {𝑣𝑗: 𝑒𝑖𝑗 ∈ 𝐸 𝑉 𝑒𝑖𝑗 ∈ 𝐸}       (2.3) 

while 𝑘𝑖 represents the number of neighbour nodes ((|𝑁𝑖|) of a vertex. In the 

case of undirected networks, the formula becomes: 

 

 𝐶𝑖 =
2|𝑒𝑗𝑘:𝑣𝑗,𝑣𝑘∈𝑁𝑖,𝑒𝑗𝑘∈𝐸|

𝑘𝑖(𝑘𝑖−1)
 (2.4) 

  

2.2.3 Modularity 

  

Modularity (𝑄) is a measurement that indicates network structure. The 

purpose of this indicator is to quantify the division strength of a network into modules 

(or communities) [39]–[41]. It can take values in the range [−1, 1]. A high modularity 

coefficient suggests a network with dense connections between members of the same 

communities, yet few links between nodes pertaining to different clusters. A lot of 

examples having this characteristic can be found in biological networks or social 

networks. 

As a practical example, assuming a vertex 𝑣 belongs to community 𝑖 (𝜍𝑖) and 

it does not take part in community 𝑗 (𝜍𝑗) , then, when defining a membership variable 

𝑠  which characterizes 𝑣 concerning the two communities, 𝑠𝑣 = 1 in the case of 𝜍𝑖 

and 𝑠𝑣 = −1 for  𝜍𝑗. 
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There are a number of different ways for computing network modularity [32], 

and one of them is the following: 

 𝑄 = ∑ [
𝐸𝜍𝑖𝑖𝑛

𝐸
−  (

2∙𝐸𝜍𝑖𝑖𝑛
+𝐸𝜍𝑖𝑜𝑢𝑡

2∙𝐸
)

2

]𝜍𝑖∈𝜍𝑠𝑒𝑡
  (2.5) 

where 𝜍𝑠𝑒𝑡  is the set of all communities, 𝜍𝑖 is a cluster belonging to the set,  

𝐸𝜍𝑖𝑖𝑛
 represents the number of edges between nodes in the community,  𝐸𝜍𝑖𝑜𝑢𝑡

 is the 

number of outgoing connections from the community and  is the total number of 

edges [42]. 

  

2.2.4 Density 

  

The density 𝐷 is the measurement that reflects the ratio of the number of 

existing edges 𝐸 in a network with 𝑁 nodes to the total number of possible edges 

[43]. It can be computed as: 

 𝐷 =
2(𝐸−𝑁−1)

𝑁(𝑁−3)+2
=  

𝑇−2𝑁+2

𝑁(𝑁−3)+2
  (2.6) 

where ties 𝑇 are unidirectional. 

  

2.3. Centrality Measures 

2.3.1 Degree Centrality 

  

Degree centrality is based on the degree of each node and assigns them a 

weight based on the degree [44], [45]. Degree centrality is also a specific case of 

another measure called k-path centrality which counts all paths of length k or less 

which start from a node. In the case of 𝑘 = 1, this measure is identical to degree 

centrality. 

2.3.2 Closeness centrality 

  

Closeness centrality (or the closeness of a node) is calculated as the sum of 

all distances (shortest paths) from a node to all other nodes. A larger value of this 

measure indicates less centrality and as a consequence, this is an inverse centrality 

measure. 

 𝐶(𝑥) =
1

∑ 𝑑(𝑦,𝑥)𝑦
  (2.7) 

where 𝑑(𝑦, 𝑥) is the distance from vertice x to y. 
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2.3.3 Betweenness centrality 

  

Betweenness centrality is a centrality measure based on the number of 

shortest paths that a vertice is a part of. The greater the number, the bigger the node 

centrality is [46]. 

                                                                                                              

 𝑔(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡   (2.8) 

Or as defined by Freeman: 

                                                                                                                  

 𝐶𝑘
𝐵𝐸𝑇 = ∑ ∑

𝑔𝑖𝑗𝑘

𝑔𝑖𝑗
𝑗𝑖   (2.9) 

where 𝑔𝑖𝑗 represents the number of geodesic paths from i to j and 𝑔𝑖𝑗𝑘 is the 

number of geodesic paths that go from i to j and pass through a node k. “The measure 

is, in effect, k’s share of all shortest-path traffic from i to j, summed across all choices 

of i and j” [45]. 

 

2.4. Network models 

 

2.4.1 The Albert Barabasi mathematical model 

  

The Albert Barabasi mathematical model is based on a degree distribution that 

resembles a power law degree distribution. Growth and preferential attachment are 

two of the distinct characteristics of this model. Meaning that as the network extends, 

a new link is being added and new links will always be prone to attaching to nodes 

that already have a high degree, because the probability of this being true is higher 

[4], [47]. As an example of studied networks which support Barabasi’s theories, 

there’s the Human Disease network [2], metabolic networks [32], [48], computer 

networks [49], cosmic networks [50], social networks [51], etc. 
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Figure 2.3  Evolution of the Albert Barabasi model [33] 

  

The algorithm can be described in the following: it starts with an original graph 

(𝑚0) of connected vertices. As new nodes are being gradually added to the network, 

they are linked to 𝑚 ≤ 𝑚0 already added nodes with a probability that depends on the 

degree of the existing nodes. 

 𝑝𝑖 =
𝑘𝑖

∑ 𝑘𝑗𝑗
  (2.10) 

where 𝑘𝑖 represents the degree of each node i and the ∑ 𝑘𝑗𝑗  – the sum of all 

existing nodes j. 

 

2.4.2 The Erdős–Rényi model 

  

The Erdős–Rényi model is designed for generating random graphs. The utility 

of this model comes into play when trying to demonstrate that certain graphs satisfy 

a certain property [52]. 

Given graph 𝐺{𝐸, 𝑉}, 𝑛 = |𝑉|, 𝑚 = |𝐸|. The is a probability p that a pair of 

nodes in the graph are connected. 

 〈𝑚〉 = 𝑝
𝑛(𝑛−1)

2
  (2.11) 

 〈𝑘〉 =
1

𝑛
∑ 𝑘𝑖 =

2〈𝑚〉

𝑛
= 𝑝(𝑛 − 1) ≈ 𝑝𝑛𝑖   (2.12) 

 𝑝 =
〈𝑚〉

𝑛(𝑛−1)/2
  (2.13) 
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Figure 2.4  Evolution of Erdos-Renyi graph [53] 

 

When  𝑝 = 0 then the graph is empty, for  𝑝 = 1 graph is complete. There is 

a 𝑝𝑐 where the graph starts to change in structure (𝑝 < 𝑝𝑐  to 𝑝 > 𝑝𝑐). For a large 

connected component forms [54], [55]. 

2.4.3 The Watts-Strogatz network model 

  

The Watts-Strogatz network model was developed by Duncan J. Watts and 

Steven Strogatz. It is a random graph generation model which creates graphs with 

small-world properties. 

 

 

Figure 2.5  The construction of the Watts-Strogatz model [56] 

 

The method by which this model is composed starts with a ring of N nodes. 

Each node gets linked to its k nearest neighbors. Then, one by one each node’s edge 

to its nearest neighbor is redirected to another neighbor with a probability p. Once 

this step is done for all nodes, the same procedure applies to each node’s connection 
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to its second nearest neighbor, and afterward to the third, and so on until their 

furthest neighbors are considered [56]. 

The probability (p) influences how random the resulted graph will be, however 

it keeps the number of vertices and edges constant [57]. 

 

2.4.4 The random geometric graph 

  

The Random geometric graph describes a spatial network, with nodes placed 

randomly and links between nodes added only if the distance between the two vertices 

is within a certain established range. This type of model suits very well social networks 

as the resulting communities seem to resemble very much real human social networks 

[58]. 

2.5. Clustering Algorithms 

2.5.1 Louvain community detection  

As its name suggests, the Louvain method is a community detection algorithm 

conceived by Etienne Lefebvre in 2007 and later on improved by Vincent Blondel, 

Jean-Loup Guillaume, and Renaud Lambiotte. It bears the name of the Louvain 

University, where all its creators worked during the development of this method [59]. 

This algorithm was first designed for undirected and unweighted graphs, 

however, it can and has been adapted to directed or weighted graphs. There are at 

the moment numerous network visualization tools that include it in their arsenal, such 

as Gephi, NetworkX, iGraph framework for Python and R, Neo4J, etc. 

First of all, modularity (based on the concept Q introduced by Newman and 

Girvan [60]) is defined agreed as: 

 

 𝑄 =  ∑ (𝑒𝑟𝑟 − 𝑎𝑟
2)𝑟   (2.14) 

 

where 𝑒𝑟𝑟 is the ratio of links that link two vertices within cluster r, 𝑎𝑟
  is the 

fragment of edges that have either one or both nodes inside the cluster r, and sum 

extends to all clusters r in a given graph. The accuracy of partitioning a network into 

communities is proportional to the value of Q.  

Starting from the weak and strong community definitions established by 

Radicchi el al. [61], the authors propose a new one: if V1, V2,..., Vn are m communities 

of G, Vk, k=1,2,...,m should satisfy that 

 ⋃ 𝑉𝑘 = 𝐺𝑘−𝑚
𝑘=1  (2.15) 

and 

 ∀𝑗 ∈ 𝑉𝑘, ∑ 𝐴𝑖,𝑗 ≥ 𝑚𝑎𝑥{∑ 𝐴𝑖,𝑗𝑖∈𝑉𝑡
, 𝑡 = 1,2, … , 𝑚}𝑖∈𝑉𝑘

  (2.16) 
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In other words, a community should reflect the condition that the degree of 

each node within its community should be higher than its degree to the rest of the 

communities.  

𝐹𝑘,𝑖 defines the attraction force of cluster k to vertex i and 𝐹𝑘,𝑖  may be defined 

as: 

 𝐹𝑘,𝑖 = ∑ 𝐴𝑖,𝑗𝑗∈𝑉𝑘
  (2.17) 

 

 

The process consists of a few steps which include grouping each node and half 

of its neighbors into temporary communities, calculating the attraction force 𝐹𝑘 for 

every k and i, moving each node to the communities with the largest attraction forces, 

respectively, removing duplicate communities if there are any. These steps are to be 

repeated either for a predefined number of iterations or until the partitions are fixed.  

The algorithm’s overall complexity is O(n2) which claims to be lower than 

other similar existing algorithms.  

 

 

Figure 2.6  Louvain algorithm phases: modularity optimization and community 
aggregation [59] 

 

The algorithm’s ability to correctly identify connected components has been 

challenged in the past years by other field researchers claiming that the Louvain 

algorithm has a flaw in the fact that it can yield internally disconnected communities 

- meaning that some nodes pertaining to the same community are only interconnected 

by paths going through external nodes[62]. 
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This is only a manifestation of an underlying issue, claim the Leiden algorithm 

creators, and the the subject of the qualitative partitions has also been discussed and 

analyzed by others in the context of large networks [63], [64]. 

 

2.5.2 Leiden algorithm 

 

The Leiden algorithm is a community detection algorithm that comes to fill the 

gaps left by the Louvain algorithm and claims to be both faster and more accurate in 

detecting clusters. Moreover, it scales well on very large networks (millions of nodes 

- but this also depends on the available memory) [62]. It can be used with the help 

of the iGraph package (Python version). 

Unlike the Louvain algorithm, Leiden starts with a single partition consisting 

of all network nodes. They are then redistributed among communities and then further 

refined in order to be aggregated and then repeat the whole process with the newly 

formed aggregate network, for a number of iterations until the result reaches a fixed 

phase which means no further improvements can be made. (Fig. 2.7) 

In terms of efficiency, Leiden aims to shorten the processing time through the 

use of a local moving phase which eliminates unnecessary processing of stable nodes 

and focuses only on the ones which don’t seem to have found their final state yet. 
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Figure 2.7  Leiden community detection algorithm [62] 

2.5.3 K-means clustering 

 

K-means clustering is one of the most popular clustering algorithms, also used 

in conjunction with machine learning techniques. The algorithm consists of several 

steps starting with selecting some centroids (k) for future clusters. These elements 

are also called reference buses. The rest of the nodes are then assigned to their 

corresponding clusters according to their closeness (euclidean distance) to one of the 

k centroids. When all vertices are assigned to a community, centroid positions are 

recalculated adjusting them to the newly created clusters with the following formula: 

 𝜇𝑗 = 1/𝑛𝑗 ∑ 𝑥𝑖𝑗
𝑛𝑗

𝑖=1
  (2.18) 

 

 

The error measure is then recalculated with: 

 𝜙 = 𝑚𝑖𝑛 ∑ ∑ |𝑥𝑖𝑗 − 𝜇𝑗|2𝑛𝑗

𝑖=1
𝑘
𝑗=1   (2.19) 

 

 

In equation (2.19), k stands for the total community number, while the 

number of buses of the j-th community is noted with nj. Xij is the bus in the j-th 

community, while the centroid of the j-th community is symbolized by μj. The 

euclidean distance between xij and μj is noted with |xij−μj|. 

The previous steps are repeated until all reference buses are stable and remain 

in a fixed position, meaning that the algorithm has finished. This algorithm is highly 

dependent on the initial selection of the k clusters [65]. 

 

 
Figure 2.8  K-means Clustering example with diagrams [65] 

 

Figure 2.3 depicts how two iterations of K-means clustering would develop 

given that the data consists of nine 2D data points. These points are then grouped 
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into two distinct communities. Vertices in community 1 have a bright pink color, while 

the ones in the second community are all black. Data nodes are represented by empty 

circles, while reference points are all filled circles. Communities are highlighted 

through dotted lines. This example shows that, even if the initial reference points are 

wrongly chosen, the algorithm swiftly converges toward the correct clustering[65]. 
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2.6. State-of-the-Art 

2.6.1 Graph layout algorithms 
 

Force Atlas & Force Atlas 2 

  

FA and FA2 are continuous layout algorithms based on making highly 

connected nodes attract and unrelated nodes (or indirectly related) or clusters 

repulse. The live visual spatialization of the network nodes is one of the bonuses of 

this algorithm. Asides from getting a visually pleasing graph, the user can also 

incrementally watch the nodes pulling farther apart, or getting closer together. Due 

to the specificity of this algorithm, it runs indefinitely until the user obtains the desired 

result and stops it. The nodes’ positions are not related to any specific variable, and 

they can only be interpreted in comparison to the others. Being part of the force-

directed algorithms, it is naturally based on Hooke’s law of physics. 

The formula for this force-directed algorithm is based on the repulsion formula 

of the electrically charged particles 𝐹𝑟 = 𝑘/𝑑2  and the attraction formula of springs 

𝐹𝑎 = −𝑘 ∙ 𝑑2 [66]. 

As their creator Mathieu Jacomy notes, Force Atlas - launched in 2007 - can 

handle a graph of up to 10,000 vertices, and Force Atlas 2 (as an improved version 

of the former, launched in 2011) can work with 1,000,000 nodes. 

  

Fruchterman-Reingold 

  

The Fruchterman-Reingold is also a force-directed algorithm but it differs from 

Force Atlas/ForceAtlas2. The attraction forces formula is 𝐹𝑎 = 𝑑2/𝑘 and the repulsion 

formula is 𝐹𝑟 = −𝑘2/𝑑, with  adjusting the scaling of the network) [67]. 

This approach aims to distribute vertices evenly in the available space, make 

edges lengths uniform, minimize edge crossings, and fit to the frame. Also, as it was 

projected by its owner, it was thought as a system of rings and springs, where the 

rings represent vertices and respectively the springs represent the edges and forces 

between them. This idea was inspired by the work of Eades, which also launched the 

idea of calculating repulsing forces between all nodes but attracting forces only 

between connected ones [67]. 

Although as opposed to the Force Atlas layout, it produces a more evenly 

distribution of nodes across the graph, and behaves well for a maximum of 1000 

nodes. 

 

OpenOrd (VxOrd) 

  

OpenOrd (2010) is also a force-directed 2D algorithm that aims to single out 

clusters from one another. It is based on VxOrd, an implementation of Fruchterman 

Reingold, and is designed as a parallel algorithm that increases its efficiency and stops 

automatically. It can handle large datasets (100 to 1,000,000 nodes) and it aims to 
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improve three aspects of Fruchterman Reingold: it is faster, it is more visually 

appealing and it favorises uncovering the global structure of a network to the 

detriment of a precise local structure [55]. The formula it attempts to solve is: 

 𝑚𝑖𝑛𝑥1,…,𝑥𝑛
∑ (∑ (𝑤𝑖𝑗𝑑(𝑥𝑖, 𝑥𝑗)

2
) + 𝐷𝑥𝑖𝑗 )𝑖   (2.20) 

 

Where 𝐷𝑥𝑖
 is the density of the points 𝐷𝑥1…𝑥𝑛

 near 𝑥𝑖, ∑ (𝑤𝑖𝑗𝑑(𝑥𝑖 , 𝑥𝑗)
2

)𝑗  is the 

attractive term, drawing points closer together, while 𝐷𝑥𝑖
 is the repulsing term pulling 

them apart. 

The interesting part of the algorithm consists of iterations in which the position 

of each vertex is calculated in two possible ways. In addition, each stage of the 

algorithm is controlled via a simulated annealing type schedule, consisting of five 

phases: liquid, expansion, cool-down, crunch and simmer . 

 

Yifan-Hu 

  

Yifan-Hu is also a force-directed multilevel algorithm, well suited for large 

graphs - up to 100,000 nodes. It makes use of the Barnes-Hut optimization [68] and 

treats clusters of distant nodes as single super nodes, thus reducing the complexity 

of standard force-directed algorithms [69]. 

  

Kamada and Kawai 

  

Kamada Kawai algorithm is based on the same metaphorical representation of 

a graph as Eades and Fruchterman-Reingold [67]. However, besides the rings and 

springs along with calculating the attracting forces only among connected nodes, he 

solves some partial differential equations (based on Hooke’s law) and introduces the 

notion of ideal distance between nodes, which is proportional to the length of the 

shortest path between two nodes. 

 ∑ 𝑘𝑖𝑗(|𝑝𝑖 − 𝑝𝑗| − 𝑙𝑖𝑗)
2

≤𝑖<𝑗≤|𝑉|   (2.21) 

  

where 𝑝𝑖 is the position of the ring corresponding to vertex 𝑣𝑖, 𝑘𝑖𝑗 is the spring 

constant for the spring between 𝑝𝑖 and 𝑝𝑗 , and 𝑙𝑖𝑗 is the optimum distance between 

vertices 𝑣𝑖 and 𝑣𝑗 [70]. 

According to Kamada Kawai, drawing a graph is a matter of reducing the 

amount of energy of a system (exerted by compression and repulsion forces) and the 

nearest that two nodes would ever be is equal to the ideal distance calculated for two 

rings. 

An important aspect to be noted here is that every ring’s location is calculated 

iteratively and not in parallel to calculating others’ locations, and as a result, in one 

step, only the impact of one node’s forces over the system is being modified. This 

step repeats for every ring until the result reaches a pre-established threshold. 
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2.6.2 Visualization tools 

 

Gephi 

  

Gephi is a standalone data visualization tool launched in 2010. It has greatly 

developed over time, offering more and more features for data layout and graph 

metrics/statistics. The available metrics are: Betweenness Centrality, Closeness, 

Diameter, Clustering Coefficient, PageRank, Community detection (Modularity), 

Random generators, Shortest path. 

Regarding graph layout algorithms, Gephi implements two types of layout 

categories: force-based algorithms and optimize for graph readability. Among these: 

Contraction, Expansion, Force Atlas, Force Atlas 2, Fruchterman-Reingold, Noverlap, 

OpenOrd, Random Layout, Yifan Hu. Algorithm parameters can easily be customized 

through the user interface, to achieve the best layout [71].  

 

 

Figure 2.9  Gephi network sample of a genetic network 

 

The main challenge with Gephi layouts is that it is difficult to accurately 

measure the amount of time needed for rendering any type of layout. In the case of 

Force Atlas 2 layouts, given that Force Atlas is a continuous algorithm, it can run 

indefinitely until the user decides to stop it from running. In addition, depending on 

the available processing power and the available resources overall, the algorithm can 

run faster or slower. However, the dynamic graph clearly reaches a stability phase, 

not long into the rendering process, when most clusters are already compactly 

grouped and node positions stop varying dramatically. Graph movement inside the 

drawing canvas becomes less and less evident, and no drastic changes can occur 

anymore. Yet stabilization time clearly depends on the size of the graph. 
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Python (NetworkX) 

  

NetworkX is a graph layout library implemented in Python. It too implements 

two categories of node positioning algorithms, structural and force-directed: circular 

layout, random layout, shell layout (concentric circles), spring layout (Fruchterman-

Reingold), spectral layout(positioning nodes based on the eigenvectors of the graph 

Laplacian). Graph analysis metrics like centrality,and network density are also 

available in Python. As its creators state, NetworkX is not designed with the purpose 

of competing with tools like Gephi or Cytoscape in terms of graph rendering. However, 

when dealing with large sets of data, trading visual appeal for computation speed and 

efficiency may become a compromise worth making [72]. 

 

 

Figure 2.10  NetworkX sample network [73] 

  

R (iGraph) 

  

R comes with its own graph layout library iGraph. This library is also available 

in Python. Among the implemented 2D layout algorithms: igraph_layout_graphopt — 

Optimizes vertex layout via the graphopt algorithm, Kamada Kawai, multidimensional 

scaling, LGL (Large graph layout algorithm), Reingold-Tilford layout for tree graphs, 

Circular Reingold-Tilford layout for trees, Sugiyama layout algorithm for layered 

directed acyclic graphs. Some of these algorithms are also used for 3D layouts 

(Fruchterman-Reingold, Kamada Kawai). 

Similar to the NetworkX in Python, iGraph is also a programmatic solution to 

graph rendering and lacks a user interface. Despite not being best in class at user 

friendliness or visual aspect, it does however deliver good results in terms of speed 
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and efficiency, which makes it also a good alternative to the previously mentioned 

tools [74]. 

 

Figure 2.11  iGraph sample network of DNA mice genes 

  

Cytoscape 

  

Cytoscape is an autonomous 2D data visualization tool. It implements force-

directed, grid or circular layout algorithms [75]. However, it is not recommended for 

large datasets as it becomes very slow in rendering and quite resource-consuming 

[76]. 

Cytoscape comes as an alternative to Gephi. It is similar to it in the fact that 

it was first created as a standalone application offering multiple network layout 

options. However, it now offers a Javascript library that has similar functionalities to 

the application. Similar to Gephi, graphs can be imported into the application in 

numerous ways: as a list of nodes, as a list of edges, as unformatted files, as 

formatted text files, or Excel Workbooks. All this is packaged into a fairly intuitive user 

interface. In any case, the available documentation extensively covers all 

functionalities, being a user-friendly application.  

A few of the helpful features in terms of graph visibility and clarity include 

grouping nodes into clusters and reducing them to one element to decrease 

complexity, eliminating node labels if the number of nodes is above a certain 

predefined threshold (200), or if the sum of nodes and edges is bigger than 4000. 

Cytoscape aims to be a versatile network visualization tool given the palette 

of network layouts it implements. 

The grid layout is a default one and is one of the most simplistic ways of 

displaying data. Just like its name suggests, the elements represented using this 

algorithm are dispersed in a grid shape. This view is less efficient when the number 

of nodes and edges is high. However, if dealing with a reasonable graph density, it 
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might come as a means of viewing data in a table-like manner, giving it more 

structure.  

Attribute Circle Layout is simple yet effective when dealing with small networks 

and it places nodes on a circle, grouping them according to a user-selected criterion. 

Group Attributes Layout resembles the Circle Layout with the sole difference 

that nodes are split into multiple circles. Nodes having the same attribute value are 

placed on the same circle.  

Edge-weighted Spring-Embedded Layout is one of the most interesting in 

Cytoscape’s arsenal. It is based on the principle of electrically charged particles as 

implemented by Kamada Kawai. This means that nodes play the roles of particles that 

attract or repel according to certain forces. The bigger the similarity between two 

nodes, the stronger the attraction force and the closer together they end up on the 

graph. Conversely, the more two vertices differ, the bigger the repelling force and the 

farther apart the nodes will be placed. 

 

   
a)      b)  

Figure 2.12  Cytoscape layouts (a) Edge Weighted (b) Prefuse force directed 
[77] 

 

Prefuse Force Directed Layout is also a force-directed layout inspired by Jeff 

Heer. It claims to have a very good performance in terms of generation speed and it 

generates interesting results. 

The advantage of the Compound Spring embedded Layout is the fact that it 

maps well to graphs that require compound nesting of elements.  

Circular Layout is another version of Attribute Circle Layout which groups the 

nodes into circular shapes. These circles are then dispersed into a tree shape. 

The Hierarchical layout does exactly what its name suggests. It structures the 

element according to a certain chosen hierarchical criterion. This approach resembles 

the grid layout, except the rule by which nodes are arranged ensures minimum edge 

crossing and conveys the way information flows within such a network.  
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The Copycat Layout is an interesting feature that allows the arrangement of network 

nodes by copying the structure and layout of another. This theoretically allows 

“importing” other types of layouts into Cytoscape and applying them to the desired 

network without having those layouts already implemented by the application [77]. 

As an extra package, yFiles addon can be downloaded and added to 

Cytoscape, thus adding a few more to the existing ones: Circular Layout, Hierarchic 

Layout, Hierarchic Layout Selected Nodes, Organic Layout, Orthogonal Layout, Radial 

Layout, Tree Layout, Orthogonal Edge Router, Organic Edge Router. 

 

Nodetrix 

  

NodeTrix is a hybrid network visualization tool designed especially for social 

networks. It aims to address the problem of graph readability in a grid-like manner.  

NodeTrix is an application that claims to offer a user-friendly interface, with 

an accent on interactivity capabilities. It allows dragging of nodes around the graph 

and rearranging elements so that the user can better group them or highlight certain 

aspects [78]. 

 
Figure 2.13  Co-Authorship network - NodeTrix layout [78] 

 

Although it uses matrices for intra-cluster links and a classical node-edge 

approach for the overall graph, this looks more like a mathematical approach to 

network visualization. This might be a less popular feature among researchers given 

that for intra-cluster visualization, we do not get an idea about how close nodes are 

to each other or how related they are. One can only see that there is a connection 

between adjacent nodes.  

Depending on the purposes this tool is used for, it could be helpful to some 

extent yet it does have limitations. In a network based on a genetic data set, this is 

an incomplete layout, as it does not offer the complete image. Genetic pathways are 

for example an incompatible set of data, as it is important to follow the flux of 

information or interaction paths among all network nodes.  
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IGraph 

 

IGraph is a network visualization library created to work with Python and R. It 

implements multiple 2D and 3D visualization algorithms 

Its Random layout (1.1 igraph_layout_random) is one of the simplest options, 

which distributes nodes randomly and uniformly in a 2D space. [74] 

The Circle layout (igraph_layout_circle) is quite a simplistic or rudimentary 

view, given that the strategy for placing nodes around a circle is solely based on ids, 

which is not very relevant from a user perspective.  

There are numerous other algorithms implemented by iGraph among which: 

 igraph_layout_star — Generate a star-like layout 

 igraph_layout_grid — Places the vertices on a regular grid on the plane. 

 igraph_layout_graphopt — Optimizes vertex layout via the graphopt 

algorithm. 

 igraph_layout_bipartite — Simple layout for bipartite graphs 

 igraph_layout_drl — The DrL layout generator, igraph_layout_drl_3d — 

The DrL layout generator, 3d version. 

 igraph_layout_fruchterman_reingold — Places the vertices on a plane 

according to the Fruchterman-Reingold algorithm. 

 igraph_layout_kamada_kawai — Places the vertices on a plane according 

to the Kamada-Kawai algorithm. 

 igraph_layout_gem — The GEM layout algorithm, as described in Arne 

Frick, Andreas Ludwig, 

 igraph_layout_davidson_harel — Davidson-Harel layout algorithm 

 igraph_layout_mds — Places the vertices on a plane using 

multidimensional scaling.  

 igraph_layout_lgl — Force based layout algorithm for large graphs. 

 igraph_layout_reingold_tilford — Reingold-Tilford layout for tree graphs 

 igraph_layout_reingold_tilford_circular — Circular Reingold-Tilford layout 

for trees 

 igraph_layout_sugiyama — Sugiyama layout algorithm for layered 

directed acyclic graphs. 

  

It is worth mentioning here that some of them are more popular than others 

and can also be found in other network visualization tools.  

Fruchterman Reingold and Kamada Kawai are among Gephi’s list of force 

directed algorithms as well.  
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Figure 2.14  Igraph3D layouts [79] 

  

In addition to the 2D layouts, iGraph also implements an array of 3D 

alternatives. From simple ones such as a random 3D node dispersion or a sphere/grid 

dispersion to a more structured placement of nodes such as Fruchterman-Reingold or 

Kamada-Kawai. 

  

 igraph_layout_random_3d — Random layout in 3D 

 igraph_layout_sphere — Places vertices (more or less) uniformly on a 

sphere. 

 igraph_layout_grid_3d — Places the vertices on a regular grid in the 3D 

space. 

 igraph_layout_fruchterman_reingold_3d — 3D Fruchterman-Reingold 

algorithm. 

 igraph_layout_kamada_kawai_3d — 3D version of the Kamada-Kawai 

layout generator 
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2.6.3 Defining the niche 

 

All the aforementioned software packages and algorithms claim to be able to 

generate graphs of fairly large complex networks, leading to the natural question of 

whether there is one best suited to efficiently generate the most relevant and 

qualitative rendering of a biological system. Apart from that, there is also a need to 

determine the disadvantages of such tools and detect areas of improvement to be 

taken into consideration when building such software solutions. Consequently, an 

array of criteria and a scale have been proposed for the purpose of this evaluation. 

Firstly a fairly large biological dataset has been chosen for benchmarking 

purposes, to compare the performance of three visualization tools/software libraries: 

Python, Gephi, and R. The dataset dimensions consist of 5168 nodes and 42087 

edges, and it represents a system of mice DNA genes, some of which are suspected 

to be responsible for the early emergence of genetic abnormalities or illnesses. Data 

is prefiltered with the help of a domain specialist. The selected batch of data is also 

considered a good test candidate due to its scale-free characteristics, which is a trait 

of most biology networks. 

 

a)      b)          c) 

Figure 2.15  FA2 Network layout rendering of a mice DNA data set in                    
a) Python (NetworkX) b) Gephi c) R [13] 

Fig. 2.15 shows the different types of visualizations generated by the 

benchmarked tools: NetworkX, Gephi, and R. Strictly from a visual point of view, there 

is already a major difference between the three renderings and Gephi seems to come 

up ahead in this aspect. The R figure (Fig 2.15 c) does not manage to group nodes 

into communities, thus ending up with a chaotic display of elements. 
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        a)     b)          c) 

Figure 2.16  FR Network layout rendering of a mice DNA data set in                 
a) Python (NetworkX) b) Gephi c) R [13] 

From an FR point of view, (Fig. 2.16) the R rendering manages to cope with 

the data size and the output with this run is more rewarding than the Python one. 

In terms of performance, the results for the three tested tools are wildly 

different. 

 

Alg. 
Visualization tools 

NetworkX Gephi R 

FA2 11752.9 s 34 s 4376.916 s 

FR 134.11 s 588 s 387.11 s 

Table 2.1 Execution times for each tool [13] 

Table 2.1 shows that although Gephi performs better than its two competitors 

when generating visualizations with the Force Atlas 2 (FA2) algorithm, there are still 

cases when it does not achieve the same rendering speed, like with the Fruchterman 

Reingold (FR) algorithm. The result is also dependent on the graph size and density, 

yet it is clear that other tools like Python’s NetworkX can surpass it. In opposition, 

NetworkX behaves better in the case of FR, yet in terms of visual aspect (Fig. 2.16 

a), the layout looks rather simplistic and does not seem to convey as much relevant 

information as the other two. Needless to say, despite R having a better FA2 rendering 

time than NetworkX, there is a clear failure in terms of cluster aggregation there (Fig. 

2.15 c) and the user cannot identify separate components of the network. 

Given the results in Table 2.1, it is clear that there is no single tool that can 

successfully achieve both a good performance and a pleasing visual aspect without 

compromising. This leaves way for tools that can better comply with the domain 

requirements in order to deliver better speed and visual appeal.  
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Criteria 

Visualization tools 

Python Gephi R 

FA2 FR FA2 FR FA2 FR 

Speed 1 2 2 3 2 3 

Visual appeal 2 1 4.5 3 3 2 

Relevance/ 
Utility 

1 1 4 3 1 2 

User 
friendliness 

2 2 5 5 2 2 

Customizability 5 5 3 3 5 5 

ML capability 1 1 0 0 1 1 

No 
programming 
skills required 

0 0 1 1 0 0 

Interactivity 
 0 (no) / 1 (yes) 

0 0 1 1 1 1 

Totals 5 5 16.5 15 9 10 

Table 2.2 Visualization tools comparison [13] 

 

Table 2.2 defines a wider range of comparison criteria and the tools are graded on a 

scale from 1 to 5 (1 representing the lowest grade and 5 being the highest) by a 

group of domain specialists in different.  

In terms of speed, marks have been normalized proportionally to the run times 

of each algorithm. Values higher than 10.000 s correspond to a 1, while values ranging 

from 100 s to 10.000 s are the equivalent of grades 2 or 3. Any values smaller than 

100 s will receive a grade between 4 and 5. 

Visual appeal can be considered subjective, yet comparing the renderings in Fig. 

2.15 and Fig. 2.16 there is no doubt that there are major differences that comfortably 

put Gephi at the top of the list. The Relevance/Utility metric suggests the extent to 

which researchers are able to use these tools for detecting patterns or using them for 

scientific discoveries. Usefulness is a reflection of clarity and relevant details, together 

with a solid aggregation of data. User-friendliness defines how easily a researcher 

would be able to use such tools and how intuitive the Graphical User Interface is. 

Customizability reflects the ability of each tool to adapt to the users’ needs. Machine 

Learning (ML) Capability is another criterion that has proven to be very important in 

the recent past, as domain specialists seek to make use of ML algorithms more and 

more often. Yet this aspect requires the user to have programming skills, which is 

why the rating shows that Python and R have an edge, Gephi being an out-of-the-box 

tool. Finally, interactivity tells whether the researcher can interact with the generated 

visualization or not, and in this aspect, only Gephi and R comply. 

In conclusion, there are multiple directions for improvement in the area of 

complex networks visualization for biology datasets, especially since neither of them 

manages to fully cover the majority (or a fair part) of the proposed criteria.  
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In addition, there is one extra criterion not included in the table, and that is: 

having a clear and visually measurable reference system included in the visualization. 

None of the assessed tools offer a fixed reference system or a clear ranking system 

which would allow the user to better understand the network structure, as well as 

grasp the dimensions of different elements or network components.   
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3.   Visual Patterns in Bioinformatics 
 

3.1. A Hybrid 3D Visualization Algorithm for Complex 

Networks 

 

The present algorithm proposes a new hybrid approach to network layouts 

which aims to solve some of the most important needs identified with the existing 

layout algorithms in the field. The starting point when implementing such frameworks 

is considering what is the main type of network it addresses. Small networks (0 <|V| 

<~200 elements, 0 < |E| < ~500 edges) are fairly well suited for the majority of the 

readily available network tools. However, for medium to large networks (|V| > 200, 

|E| > 500), not all of them are capable of displaying data just as well [13]. A large 

number of nodes together with a high edge density pose quite a challenge from four 

major points of view: 

 Structurally - or how to represent data in such a way that the human eye can 

perceive and grasp major interacting components 

 Graphically - whether it is pleasant enough (subjective, yet follows some well-

defined criteria), or whether it brings out key elements in the graph 

 Resource consumption - is it dependent on the processing power, or does it 

convey good results even with a sub-optimal workstation 

 Time consumption - whether the runtime is acceptable with regard to the 

quality it delivers. Good quality does not justify very long running times. As a 

result, a compromise needs to be made and the right balance should be 

established. 

Given the above-mentioned hypotheses, the current algorithm has been 

defined as a solution for medium to large complex networks, an area that forces 

researchers to experiment with different types of layouts almost exhaustively, in the 

search for the perfect ‘visual angle’ to enhance and support intrinsic network dynamics 

and characteristics. 

It is designed to solve a structural requirement, very important when dealing 

with large networks, it uses simple graphics without overcrowding the canvas and 

delivers an overall qualitative network layout without consuming excessive resources. 

Running time is also addressed in comparison with other tools, but without a major 

cost in terms of used resources.  

This hybrid algorithm also aims to bring to the table an innovative compound 

feature, which cannot be found in other current layout types: a new concept in the 

display of data and at the same time 3D reference system as an important visual 

queue for graph interpretation. 

The new layout concept proposed here started with the desire of adding more 

meaning to 2D and even 3D graphs. The core idea emerged from the concept of a 3D 

heatmap (Fig. 3.1), which is basically a 3D representation of a mathematical function. 

Beyond the simplicity of it, this way of visualizing information is strongly tied to the 
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notion of depth (third dimension) but also to the concreteness sensation one gets 

when looking at data as a sort of geographic map. This type of layout involves 

hierarchy, subordination, and prioritization of the represented information according 

to certain criteria which can be either generic but are customizable enough to allow 

for specific domain-related restrictions. 

 

 
Figure 3.1  Sample 3D heatmap in Octave 

 

The idea of a 3D network is indeed one step further than 2D graphs, yet only 

if it brings added value to the layout from a scientific point of view. In other words, 

the person looking at such an image should be able to use the extra dimension to 

determine and extract pieces of information that would not normally be obvious from 

a 2D perspective. This is what most other 3D network visualization tools lack, despite 

an appealing image. The Z axis does not mean anything if nodes are randomly placed 

in space but there is no means for the user to associate its placement to an additional 

characteristic whether it is domain-specific, or an aggregation of multiple metrics. 

3.2. Layout structure 

 

It is worth mentioning from the start that this type of layout is based on a 

predefined set of visual rules so that there is a specific targeted structure that all 

rendered layouts will comply with. 

There are a couple of principles behind this visualization type. 
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All graph clusters and elements should be well-spaced and the structure 

should be clearly visible. Creating a visual backbone of the network allows for a good 

overall comprehension of the image. Previous research shows that the prerequisite 

for a layout to be qualitative, it needs to check as many of these points as possible 

(at once) [13]: 

 Easy to understand 

 Reduce edge crossings 

 Well-delimited clusters and nodes 

In terms of edge crossings, this problem has been long studied along with the 

Barycenter Heuristic[80], [81]. In practice, when implementing such a network 

visualization algorithm, one must tend towards such a desideratum, yet compromise 

is, most often than not, inevitable given the long list of functional and structural 

criteria these types of networks should respect. 

 

3.3. Layout Algorithm Version 1 

 

Based on the desideratum above, the first representation of such a network 

was decided. The complete network would be dispersed along a 3D inverse paraboloid 

(composed of concentric circles with decreasing radiuses). This would already be an 

improvement over its 2D version, as their hierarchy would be much clearer. 

 

 
(a) 
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(b) 

Figure 3.2  A 3D layout of a complex network rendered with the Hybrid 
algorithm V1  

 

Although the paraboloid support figure gives the network a 3D structure, the 

figure seems too crowded. There are no clearly delimited clusters yet, but that is due 

to the early stage of development this algorithm was in. At this point there are two 

options for going forward, neither of them developed so far in the field: 

1. Keep the whole network distributed across one single 3D paraboloid.  

2. Split the network into its composing clusters and distribute each community 

across its own paraboloid, or even choose a hybrid layout containing both 2D 

and 3D clusters. 
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3.4. Layout algorithm version 2 

 

The algorithm proposed here is based on two structural techniques used for 

plotting complex networks: 

1. At a macro level, clusters are well-spaced and all of them have a 

circular/radial disposition. All clusters are placed around a center cluster - 

either a random one or preselected by the user. 

2. At an intra-cluster level, all nodes are placed in concentric circles along the 

Oz axis. If clusters are only displayed in 2D, then the z-coordinate will be null 

for all of them and the result is a classical 2D layout. 

 
Figure 3.3  Cluster view a) 2D and b) 3D view 

 

The rules for their individual placement are similar to a force-directed 

algorithm and are defined as follows: 

1. First, identify the potential positions of a vertice in correlation with all its 

external connections. This means that each element should always have 

a position within its cluster which allows it to be reasonably well placed 

among community neighbor nodes, but at the same time fairly close to 

external clusters/nodes it is most connected to.  To calculate these 

candidates for a node’s intra-cluster position, we determine the weighted 

mass center of all other clusters (Cluster 2, Cluster 3 in this case) 

excluding the current one. The weights are proportional to the number of 

outgoing edges from point P to Cluster 2 and Cluster 3 respectively [Fig. 

1]. Given that node P has two edges to Cluster 2 and three edges to 

Cluster 3, the resulting mass center will be closer to Cluster 2’s origin. 

Once the mass center point is determined (Mc(x1,y1)), we draw an 

imaginary line defined by it and the cluster center (O1(x2,y2)):  

 𝑦 − 𝑦1 =
𝑦2−𝑦1

𝑥2−𝑥1
(𝑥 − 𝑥1)  (3.1) 
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On the other hand, as per the intended design, each community node will 

stand on one of the concentric circles of Cluster 1. The circle it will reside on is the 

circle corresponding to the node’s importance within the cluster. In other words, the 

origin of the circle is the same as all other circles for Cluster 1 and the radius will be 

proportional to the weight of that node. This intersection of this line with the intra-

cluster concentric circle to which the current node pertains will define two points: PP1, 

and PP2. These points constitute the potential positions starting from which we can 

further refine this node’s position. 

2. The result of the first step is a pair of geometric coordinates based on 

which intracluster positioning is adjusted. There are multiple options 

starting from here: either keeping the closest point with regards to 

external clusters or keeping the farthest point, provided that the node in 

discussion has little or no connections to external clusters. Once one of 

the two gets selected, its position is adjusted towards other intra-cluster 

adjacent nodes depending on the coexpression of the current node and 

nodes which have already been placed on the graph (i.e. they already 

have a stable position) 

This process is repeated until every vertice of the graph has been positioned 

within its cluster. 

 
Figure 3.4  Node placement phase – potential position calculation 
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3.5. Algorithm implementation overview 

 

The proposed algorithm consists of three main stages, as per the following: 

1. DB and data curation 

2. Graph structure creation and spatial positioning 

3. Layout generation 

 

 

 
Figure 3.5  Algorithm overview 

 

DB and data preparation refers to the raw data being used for the current 

experiment and fed to the proposed visualization algorithm. Most often used data 

sources are medical research institutes that regularly publish observation data 

resulting from their studies or experiments.   

The most consistent part of the network layout generation process consists of the 

hybrid layout algorithm. This has been devised in the form of a process split into 

multiple steps, each one responsible for the aggregation, clusterization, and spatial 
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geometric placement of the network nodes, in this particular order. The main concept 

is based on a pipeline with the purpose of producing a useful enough graphical image 

so that the researcher can extract more valuable information from it. 

Interestingly enough, layout generation - the last step of this process - is the most 

costly part of the algorithm, as it consumes the most graphical resources and it claims 

the majority of the total time spent. 

 

3.5.2 Data sets 

 

The solution chosen for this research consists of several curated files 

containing graph metadata. This metadata describes the minimum features of a 

network so that one can recreate it using the given information. 

There are two types of files being used: 

1. Cluster files – multiple JSON files containing information about all cluster 

nodes, grouped by cluster. These also contain the number of connections each 

vertex has (e.g. node degree). All vertices in a cluster file are sorted in a 

descending order based on node degree/ Betweenness Centrality / or any 

other domain-specific metric such as the molecular mass of the cluster 

elements. The number of files is equal to the number of clusters within a 

network. The data is structured using the following format: 

 <Node_ID>⊔<Degree/Betweenness Centrality/Any Meaningful Metric> 

2. One edge file - containing all connections (links) between cluster nodes. No 

ordering is needed here. Depending on the type of network we are creating, 

the edges could be directed or undirected. Although for the purpose of this 

research, mostly undirected connections are being used. 

 

The clusterization of the networks analyzed in the current thesis has been 

achieved with the use of the Louvain community detection algorithm. This is the exact 

same algorithm used by Gephi and has become increasingly popular among clustering 

methods. This is used as an external tool for the prefiltering and arrangement of the 

data and must be run as a pre-step to obtain the cluster files necessary as input 

material. The result of running this algorithm is a series of cluster files containing only 

vertices pertaining to the same cluster.  

Another important aspect here is the naming convention established for all cluster 

files and follows the following pattern: [graph_name]_cluster_[cluster_no].json. This 

is how the application identifies all cluster files pertaining to a network name given as 

input. 
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Figure 3.6  JSON Cluster files 

 

Future potential improvements could consist of relational or non-relational 

databases which could improve data filtering and manipulation by queries tailored to 

the needs of the user. However, this aspect implies either using some of the existing 

databases made available by research institutes or entities, or curating some of the 

file-based medical information. The lack of consistency between researchers in terms 

of storage formats can lead to more work being done in order to obtain a consistent 

and wholesome data foundation. 

 

 

  

BUPT



40 
 

3.5.3 Data sets characteristics 

 

For this research experiment, the data sets have been picked from the biology 

domain, and they belong to the C. Elegans nematode [82]. More precisely, this is a 

collection of neurons and they are represented as a complex network, given that the 

nature of their interaction resembles an interconnected and interactive system.  

These complex networks shall be defined as follows: 

G = (V, E) where V is the set of C. Elegans neurons and E is the collection of 

interconnecting edges. In this case, the total number of nodes and respectively total 

number of edges are |V| = 279 and |E| = 2287. 

The average degree is then calculated to be a=16.39 considering that it is an 

undirected graph, and as such, the appropriate formula for the average degree is 

a=2*|E|/|V|. 

The degree distribution scattered graph (Fig. 3.7) for this specific data set 

shows that the largest part of the edges is split between a small number of vertices, 

rather than being evenly distributed. What this means in terms of a visual display, is 

that the high-value nodes (the ones with the highest degree) will have a cluttering 

effect wherever they reside among the clusters, all the more if they are part of the 

same community. And thus, the final layout will be difficult to make sense of, for the 

human eye. 

 
Figure 3.7  Node degree distribution for a C. Elegans network [83] 

 

Here, the Louvain community detection algorithm was used to group vertices 

into clusters, being one of the popularly used algorithms of its kind [59]. Gephi 

networks layout tool uses the same algorithm. Thus, the resulting number of 

communities (|M|) is in this case |M| = 5. 
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To determine the complexity of the graph and the „crowdedness” we calculate 

the average number of vertices per community, respectively the average number of 

edges per cluster as follows:  

avg(|V|/|M|)=56 

avg(|E|/|M|)= 457.4 

 

What these numbers say about the structure of the network is that its layout 

is going to be inevitably quite heavy, yet it seems that links are distributed fairly 

equally between vertices from separate clusters. 

 

 
Figure 3.8  Vertex distribution per community (Modularity class) [83] 

 
 
Since it is estimated that the resulting network layout will be quite congested this 
aspect will make it complicated for any viewer to distinguish separate elements or 
assess the importance of single vertices within the whole picture. As a result, the 
algorithm should be able to adapt to the network specificities or be able to disperse 
vertices based on the density of nodes in certain areas or clusters. This type of 

coefficient should not be a global one, but it should be a community-dependent one. 
In terms of inter-cluster interaction or closeness, this should also take into 
consideration the number of connections two clusters might have, and increase or 

decrease the distance between them to accommodate the large number of edges that 
need to be plotted and make them easily visible. 
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3.6. Algorithm steps 

 

The layout algorithm is, as previously mentioned, a pipeline type of operation 

composed of multiple steps designed to process data and send it further to the next 

step in line. 

 

3.6.1 Input parsing 

 

The first stage is in charge of parsing the input files (cluster files) one by one 

and creating a graph structure object containing all nodes grouped by cluster, as well 

as storing metainformation about each node.  

This vertice meta information consists of:  

 node id  

 weight: could be node degree, node betweenness centrality, or any 

discriminating metric 

 clusterId - the number indicated in the file name, corresponding to the cluster 

a node pertains to 

 color - specific color associated with each cluster 

 potentialPositions - an array of intermediary positions associated with each 

node to be used in determining the final placement 

 position - final position of each node 

 

Clusters attributes are also stored at this point: 

 id - unique cluster id associated with each individual cluster; 

 weight - cluster weight is equal to the sum of all node weights in the cluster 

 nodesNbr - number of nodes in each cluster; 

 avgDegree - average degree; 

 maxCoEx - maximum coexpression; 

 maxZ - maximum height (in 3D) per each cluster 

At this stage, the adjacency file (edges file) is parsed into an adjacency matrix. The 

edge file respects the following naming convention: [graph_name]_edges.csv. 
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Figure 3.9  Edge file sample 

 

3.6.2 Covariance based positioning 

 

To determine the position of a vertice within its community, a hierarchical 

criterion is defined to help with node placement in a cluster. 

The idea behind vertice placement is based on the 3D paraboloid shape. A 3D 

paraboloid consists of an infinite number of concentric circles of various radiuses 

which, placed one on top of the other, form the resulting shape. 

Based on the newly created adjacency matrix, a co-expression matrix is 

created. This coexpression table computes the similarities between nodes of the same 

cluster. The covariance of two nodes is an indicator of how much two nodes change 

at the same time. Applied to this concrete example, the more neighbors they have in 

common, the higher the covariance. The resulting values are not (necessarily) 

standardized and can greatly vary. 

Thus, we define covariance as follows. 

Given x, y two nodes pertaining to the same graph G (V, E). 

 𝐴 = {𝑧 |𝑧 ∈ 𝑉⋀{𝑥, 𝑧} ∈ 𝐸⋀{𝑦, 𝑧} ∈ 𝐸 ∧ 𝑥 ≠ 𝑦 ≠ 𝑧}  (3.2) 

 

Where A is the set of nodes connected to both x and y. 

Then we can define the covariance of x and y as: 

 𝑐𝑜𝑣(𝑥, 𝑦) = |𝐴|  (3.3) 

In other words, the cardinality of the set consisting of vertices common to both x and 

y represents the covariance of the two. 
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3.6.3 Vertex 3D positioning 

 

In calculating a node’s potential position within its community, three important factors 

are being taken into consideration: 

1. The number of connections a node has to all other clusters. 

2. The positioning of connected clusters excluding the one the current node is 

part of. 

3. The node’s connectivity within its own community. 

 

Let 

 𝑋𝑖,𝑘 = {
1 𝑖𝑓 ∃{𝑖, 𝑘} ∈ 𝐸
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3.4) 

  

where community(i) != community(k) 

 

Then 

 𝐷𝑖 = ∑ 𝑥𝑖,𝑘
𝑛−1
𝑘=1   (3.5) 

Is the number of edges from vertex i. 

 

We define the weighted center of all communities excluding Ci as follows: 

𝐺 = [𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + ⋯ +  𝑤𝑛 ∗ 𝑥𝑛, 𝑤1 ∗ 𝑦1 + 𝑤2 ∗ 𝑦2 + ⋯ + 𝑤𝑛 ∗ 𝑦𝑛]  (3.6) 

 𝐺 = ∑ 𝑤𝑖 ∗ 𝑥𝑖
𝑛
𝑖=1 , ∑ 𝑤𝑖 ∗ 𝑦𝑖

𝑛
𝑖=1   (3.7) 

Where 

 ∑ 𝑤𝑖 = 1𝑛
𝑖=1   (3.8) 

Once G has been established, then it will stand as a point of reference for the 

positioning of node i in relation to its outgoing connections. 

 

Let O1G be the line defined by points O1 (Cluster center 1) and G. Then: 

 𝑂1𝐺:
𝑦−𝑦𝑂1

𝑦𝐺−𝑦𝑜1
=

𝑥−𝑥𝑂1

𝑥𝐺−𝑥𝑜1
  (3.10) 

where O1 and G are distinct points. 

 

In addition, each vertice within the cluster must follow the following rules in terms of 

inner cluster positioning:  

1. Establish feature/metric associated with the Z axis - this hierarchy will help 

determine a node’s vertical priority. Sort nodes by value, in descending order.  

2. Consider each distinct Z value (Zv) as the squared radius of an imaginary 

circle placed in a 3D space as follows: 

 (𝑥 − 𝑂𝑥)2 + (𝑦 − 𝑂𝑦)2 = 𝑟2  (3.11) 

Where r2 = Zv 

 Given the known radius, the position of a point P(xp, yp) on the previously 

defined circle should comply with the circle equation: 

 (𝑥 − 𝑂𝑥)2 + (𝑦 − 𝑂𝑦)2 = 𝑍𝑣  (3.12) 
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3. Calculate the intersection of O1G and circle Ci: 

 𝑂𝑖𝐺 𝐶𝑖 = {𝑃𝑃𝑖1, 𝑃𝑃𝑖2}  (3.13) 

 

Based on the two potential points of intersection, and the covariance matrix the 

following choice is made: if covariance between node i and previously placed node i-

1 (more important node, higher Z value) is greater than the average covariance per 

cluster (Ci) then keep PPi1. Else keep PPi2. 

 𝑃𝑖 = {
𝑃𝑃𝑖1, 𝑐𝑜𝑣(𝑉𝑖, 𝑉𝑖−1) > 𝑎𝑣𝑔(𝑐𝑜𝑣(𝐶))
𝑃𝑃𝑖2, 𝑐𝑜𝑣(𝑉𝑖, 𝑉𝑖−1) ≤ 𝑎𝑣𝑔(𝑐𝑜𝑣(𝐶))

  (3.14) 

3.6.4 Position adjustment phase 

 

Once the potential starting position has been chosen (PPi1 or PPi2) the 

placement of the node on the circle is adjusted by an angle proportional to the node’s 

betweenness centrality within the graph. If the centrality value is smaller than 

average outgoing degree per Ci, then move the node farther apart from other clusters. 

Otherwise, bring it closer to the middle of the graph.  

In the position adjustment phase, when establishing the final node 3D 

coordinates, the density of nodes within a certain circle area is considered. Given that 

at some point multiple vertices in cluster C1 might get roughly the same potential 

position considering their connections to the other external clusters, there may be 

cases where one circle area becomes too crowded. And while the idea of staying close 

to external connection remains, the internal positioning within the cluster changes. 

Thus, given the previous node position is always stored (𝑃𝑖−1), when 

calculating the position for the current processed node 𝑃𝑖 (assuming both nodes 

pertain to the same cluster) the coexpression between the two is compared to the 

average coexpression within the cluster. The closer these values are, the closer the 

final positioning will be. Otherwise, node Pi coordinate adjustment will begin from PPi2 

(the potential position calculated in the previous step and the one farthest away). 

Having decided the starting position to adjust (PPi1 or PPi2), the angle 

between the two is calculated first with the help of the cosine law. Assuming the two 

points could have a different z-index, in other words pertaining to two different circles, 

the cosine of the angle between the two can be calculated as follows: 

  𝑝𝑟𝑒𝑣𝑅 = 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡(𝑃𝑜, 𝑃𝑖−1)  (3.15) 

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅 = 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡(𝑃𝑜, 𝑃𝑖)  (3.16) 

 𝑐𝑜𝑠𝐴 =
(𝑝𝑟𝑒𝑣𝑅2+𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅2)−𝑑(𝑃𝑖,𝑃𝑖−1)

2∗𝑝𝑟𝑒𝑣𝑅∗𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅
  (3.17) 

 

Where prevR is the radius of the circle where the previous point resides on, currentR 

is the radius of the current circle and current point, and cosA is the cosine of the angle 

formed by the two points. 

Based on the obtained cosine, the angle α can be deduced by applying an arccosine 

function 𝛼 = acos (𝑐𝑜𝑠𝐴). The angle is then increased with a coefficient that is directly 
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proportional to the difference between the two node’s coexpression and the maximum 

coexpression within that cluster. In other words, the more interconnected the two 

nodes are, the closer they should be placed to one another. 

 𝑠𝑖𝑚𝐶𝑜𝑒𝑓 =
𝑚𝑎𝑥𝐶𝑜−𝐶𝑜(𝑃𝑖−1,𝑃𝑖)

𝑚𝑎𝑥𝐶𝑜
   (3.18) 

 

In the above equation, simCoef is the normalized similarity coefficient (simCoef) 

defined as the subunitary difference between the maximum coexpression value within 

the cluster (maxCo) and the current coexpression value between 𝑃𝑖 and 𝑃𝑖−1. 

Thus, the obtained angle is increased with the similarity coefficient defined by their 

coexpression.   

 𝛼′ =  𝛼(1 + 𝑠𝑖𝑚𝐶𝑜𝑒𝑓)  (3.19) 

 

Having obtained a new angle for the node repositioning, the new coordinates of 𝑃𝑖 are 

computed: 

 𝑥𝑃𝑖 = (𝑥𝑃𝑃𝑖 − 𝑥𝑃𝑂) ∗ cos(𝛼′) − (𝑦𝑃𝑃𝑖 − 𝑦𝑃𝑂) ∗ sin(𝛼′) + 𝑥𝑃𝑂  (3.20) 

 𝑦𝑃𝑖 = (𝑦𝑃𝑃𝑖 − 𝑦𝑃𝑂) ∗ cos(𝛼′) − (𝑥𝑃𝑃𝑖 − 𝑥𝑃𝑂) ∗ sin(𝛼′) + 𝑦𝑃𝑂  (3.21) 

 

where [𝑥𝑃𝑖 ,𝑦𝑃𝑖] are the new coordinates of 𝑃𝑖, [𝑥𝑃𝑃𝑖, 𝑦𝑃𝑃𝑖] are the coordinates of the 

predetermined potential position (one of two), and [𝑥𝑃𝑜, 𝑦𝑃𝑜] are the coordinates of the 

cluster center. 

 

3.6.5 Edge plotting 

 

Once node positions have been calculated across all clusters of the networks, and the 

color palette has been chosen (each cluster is assigned a color from the color palette), 

the edges are plotted in a 3D space. 

There are multiple approaches that can be taken in terms of plotting: 

1. Plotting all clusters in a 3D space against its paraboloid 

2. Plotting only one cluster at a time in 3D while keeping all other clusters 

in 2D  

3. Displaying only vertices in 3D while keeping edges on a 2D plane and 

connecting all the node’s 2D projections together 

4. Removing inter-cluster edges and only showing intra-cluster connections  

 
Depending on the desired outcome, one of these approaches can be used due to the 

algorithm being highly customizable.  

BUPT



47 
 

 

3.7. Results 

 

With the first version of the algorithm, the following graph sample layouts were 

obtained. 

 

3.7.1 Hybrid 3D algorithm V1 

 

 

(a) 

 

(b) 

 
(c) 

 

Figure 3.10  3D Layout algorithm V1 – all nodes distributed across one single 
paraboloid (a) paraboloid view from the side[84] (b) 2D view of the 
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paraboloid and nodes[84] (c) Zoom in on the 3D network from a side, with 
node labels 

All nodes are placed within the same 3D space, and the same paraboloid (Fig. 3.10). 

They are still placed in concentric circles, yet there is no grouping nor is there a 

specific order to them. 

One aspect which gives an idea of how important nodes are within their 

network is node dimension, color as well as position. 

The closed a node is to the center of the paraboloid, the higher a degree it 

has, and from a maximum degree perspective, it can be considered the highest ranked 

within the whole network. 

In terms of color, the lighter the color (bright yellow) the higher a node is 

ranked, while the darker ones (dark green) assume a less important role within the 

community. 

Node dimension (bubble size) also gives a visual indicator of the same factor 

and is directly proportional to node degree. Node labels can also be displayed, 

however, at a certain point, this feature might become undesirable, given the number 

of elements in a network layout. 

 

3.7.2 Hybrid 3D algorithm V2 

 

With the second version of the algorithm, communities are all separated, keeping one 

of them in a 3D space (nodes distributed across the paraboloid) while all others are 

placed around the cluster of interest. Fig. 3.11 shows the first stage of the algorithm 

(node rendering) part of them in 3D, and the other part of them in 2D. 

 
Figure 3.11  Hybrid 3D layout algorithm V2 (E. Coli network) – stage 1 (only 

nodes) [83] 
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The chosen cluster is either preselected by the user or it can be a random one if no 

preference is specified. The gradient of the nodes also changes as they get placed 

higher up on the top of the paraboloid. The colors can be changed depending on the 

selected color palette. Vertex size is proportional to their degree – the fewer 

connections, the smaller the node bubble. Conversely, the more links a node has, the 

bigger it appears within the layout. 

 
(a)  

 
(b) 
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(c) 

Figure 3.12  Hybrid 3D Layout algorithm V2  (E. Coli network) – Stage 2: all 

communities with intra-cluster edges (a) 3D view from the side [83] (b) 3D 
view from above (c) 2D view from above 

 

Figure 3.12 (a,b,c) shows the second stage of the Hybrid algorithm (V2) where intra-

cluster edges are plotted. For now, communities are not interconnected, and it is 

possible that if the user wishes, they can be kept like this. There is also the option of 

zooming in and out of the clusters or changing the color of cluster nodes.  

 

 
Figure 3.13  Hybrid 3D Layout algorithm V2  (E. Coli network) – Stage 3: all 

communities with intra and inter-cluster connections [83] 

 

Figure 3.13 above shows the final layout of the network with all clusters 

interconnected. Given this is quite a dense network, it is expected that the final result 
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will be quite busy. However, this 3D model can be zoomed in and manipulated so as 

to better distinguish the network elements. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3.14  3D Hybrid Layout of the C. Elegans network [83] (a) 3D view, 

communities have different colors (b) 3D view layout, no paraboloid support 
for main cluster (c) View from above 

 

A visual improvement to the Hybrid layout consists of different colors for the 

clusters, so as to differentiate them better from one another (Fig. 3.14). This also 

helps for an improved structure of the entire graph. 
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While sometimes the supporting paraboloid is an interesting addition to the 

layout, other times, when dealing with large networks, any extra element taking up 

space (even 3D space) might make the design difficult to understand and could create 

an opposite efect. That is why this feature does not always have to be present, but it 

is there merely to show the logic behind node placement. 

 Still, even with all the visual adjustments, one cannot help but wonder if there 

are better, clearer ways to approach the representation of a complex network. 

 Another attempt at a more exotic approach of displaying a graph might be 

one where all clusters are spread in a 3D space, all of them distributed over different 

meshes – emulating a continuous platform underneath the nodes. While this may be 

an interesting approach to smaller graphs, this is again something that might not 

work for large and highly interconnected networks.  

 Figure 3.15 below shows an alternative 3D layout where clusters are all 

plotted on 3D meshes. Again, the cluster of interest can be placed higher than others, 

or they can all be placed at the height dictated by their node degrees. 

 

 
Figure 3.15  Alternative Hybrid 3D Layout (E. Coli network - partial) – all 

clusters distributed on 3D meshes 

 

Another possibility to unclutter the resulting layout is, as shown in Fig 3.16 (a) and 

(b) below, to plot all communities and intra-cluster edges in 3D, yet keep all inter-

community edges on a 2D plane. 
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(a) 

 
(b) 
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Figure 3.16  Hybrid 3D Layout V3 - all clusters in 3D with intra-community 
edges, 2D inter-cluster edges 

 

That way, the network elements seem more evenly spread out, and the whole 

ensemble is looking more loosely coupled. Inter-cluster edges can also be colored 

according to their communities, however, if the aim is to put an accent on the 

individual clusters, then there is no use in adding too many unnecessary features 

which might distract the user from the points of interest. 
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3.8. Discussion 

 

The 3D Hybrid Layout proposed here aims to be a viable option apart from the 

already well-known visualization tools or algorithms such as Gephi, NetworkX, 

NodeTrix, etc. This type of 2D and 3D combined approach is quite uncommon among 

network layout software and proposes a different approach in emphasizing different 

network properties, elements, and communities. This comes in handy, especially with 

biological networks where the maximum degrees, as well as average degrees, are 

high. 

The advantage of such a technique consists in adding a reference system 

(xOyz axes) which aims to help the viewer better understand the difference in 

densities, size, and the structure of communities altogether within a 3D gridded space. 

This does not happen with the most common visualization tools (Gephi – Fig. 3.17) 

where visual appeal takes precedence over functional aspects, leaving behind valuable 

information. 

 

Figure 3.17  Gephi (Force Atlas 2) layout of the C. Elegans network [83] 

 

In the case of C. Elegans network, there is an important difference between 

the Gephi layout and the Hybrid 2D/3D one. While in Figure 3.17 nodes can be seen 

grouped into fairly irregular clusters, which might as well be considered a 2D plane, 

Figures 3.14. and 3.16 produce a better structure of the same network. Obvious visual 

cues include node color and dimension, as well as placement with regard to all other 

nodes and communities. 

A sample rendering of the same network, but this time produced by Python’s 

Force Atlas 2 algorithm, shows a very cramped graph, where different communities 

can be difficult to visually separate from one another (Fig. 3.18). 
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Figure 3.18  Python rendering with Force Atlas 2 of the C. Elegans network 

 

On the other hand, with the Hybrid approach, there are more visual cues that 

allow for a better understanding of the whole ecosystem: a third degree of liberty (the 

Oz axis), as well as the entire reference system which stands as a ruler and a clear 

and absolute reference point. This way, clusters are not only comparable to one 

another but can be interpreted on their own as well. While typical traits such as node 

size could be an indicator of node degree, the third dimension (z coordinate) could 

stand for a totally different metric, either one of the standard ones (betweenness 

centrality) it could just as well be an entirely new measurement, user-defined. This is 

not possible with the other types of tools, as they are missing the extra dimension. 

When it comes to performance, the run time of the proposed Hybrid algorithm 

can be seen in Table 3.1, for the proposed data set. 

 

Time/ 
Phase 

Layout computation time 

Position calculation 
Nodes 
render 

Edges render 

Avg 
time 

0.035 s 0.6 s 23 s 

Table 3.1 Break down of Hybrid layout rendering time for a C. Elegans network 
[83] 

 

This gives a total run time of Thybrid=23.635 s. Comparing this time with 

Gephi’s layout render time is slightly challenging given that the FA2 algorithm does 

not give the user the possibility of measuring each step of the process. However, the 

whole generation time for the same network has been measured to TGephi=10s. 

The algorithms have been tested against a wider range of networks so as to 

determine each of their strongest and weakest points. These sample networks have 

different characteristics in terms of network size, density, number of communities, 
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etc. They have been named Set1, Set2 and Set3 (Table 3.2) and they all represent 

biological processes (mouse DNA gene sets). 

 

 #nodes #edges Density Avg 

deg 

Network 

diameter 

Modulari

ty 

#clusters 

Set

1 

768 15786 0.054 41.1

09 

6 0.329 9 

Set

2 

2393 5705 0.002 4.76

8 

9 0.538 22 

Set
3 

5168 42087 0.003 16.2
88 

11 0.759 38 

Table 3.2  Test data sets (biological networks) 

 

Average run times have been recorded for the above data sets, with all 3 

algorithms, per 100 renditions.  

 

Layout tool Average Time per 100 renditions 

Set1 Set2 Set3 

Python (NetworkX) 921.3 1843 s 11523.95 s 

Gephi 20 s 142 s 34 s 

Hybrid 2D/3D 155 s 63.37 s 439 s 

Table 3.3 Performance comparison between Python’s FA2 layout algorithm, 
Gephi (FA2) layout algorithm, Hybrid layout algorithm 

 

Table 3.4 shows a comparison between this Hybrid layout, Gephi’s Force atlas 

2 visualization and Python’s NetworkX FA2 algorithm including a number of both 

subjective and objective criteria. All criteria have been graded on a scale from 1 to 5, 

where 1 is the lowest score and 5 is the highest. 

 

Criteria 

Tools 

Gephi (FA2) NetworkX 
Hybrid 
2D&3D 

Speed 4 2 3 

Visual appeal 4.5 2 3.5 

Relevance/ 
Utility 

3.5 2 4 

Node 
distribution 

Semi 3D 2D 2D + 3D 
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Criteria 

Tools 

Gephi (FA2) NetworkX 
Hybrid 
2D&3D 

Fixed reference 
system 
0(no)/1(yes) 

0 0 1 

Allows user 
defined metrics 

0 1 1 

Customizability 4 3 5 

ML Capability 0 1 1 

User 
Friendliness 

5 0 3.5 

Interactivity 1 0 1 

Totals 22 11 23 

Table 3.4 Hybrid layout comparison to Gephi and NetworkX 

 

The chosen criteria were graded based on empirical evaluations. With regards to 

speed, the hybrid algorithm is still behind Gephi, yet both of them are considerably 

faster than the Python one. Visual appeal is, admittedly subjective, yet its grading 

has been calculated based on the opinion of a group of subjects from different domains 

(10 data specialists, in the medical and engineering field). The hybrid algorithm 

provides more visual clarity than NetworkX, however, when compared to Gephi, it 

seems slightly less structured. Still, looking at Fig 3.14 and Fig 3.16 above, there is 

more depth to the Hybrid one, compared to Gephi.  

Relevance/Utility is the category where the proposed layout algorithm aims to 

bring a plus over the others. The fact that it can convey more visual queues than its 

competitors gives it an advantage. In terms of node distribution, or better yet, graph 

dimensions, it is clear that the only one having a real advantage of an extra dimension 

is the hybrid approach and this applies to the next criteria as well (Reference system).  

Allowing user-defined metrics is a plus which only programmatic approaches like 

Python or the Hybrid algorithm (Octave) have.  

In terms of customizability, Gephi’s abilities only go up to a certain point, 

however, being an out-of-the-box tool, it is not meant to let users change any 

definition of the set of metrics already defined within it. With NetworkX this can be 

done, however still, being a predefined type of algorithm, its flexibility only lets the 

user modify certain aspects.  

Machine Learning (ML) capabilities are definitely an aspect desired by most tools 

nowadays, however Gephi is not yet at that point. NetworkX can be adjusted 

accordingly and so can the Hybrid algorithm. User friendliness is not one of the strong 

points of any programmatic solution, and thus, Gephi gets a maximum score in this 

criterion.  
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With interactivity, both Gephi and the hybrid algorithm allow users to manipulate 

the generated graph, while NetworkX offers a static one. A plus here can be 

considered the Hybrid algorithm’s capability of rotating the network around the three 

axes (Ox, Oy, Oz) which cannot be done with any of the other ones, as well as zooming 

in and out of it. 
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4. Modeling Numerical Patterns 
 

4.1. A novel method of Computer Tomography image 

interpretation 

 

Diffuse interstitial lung diseases are a category of lung pathologies that despite 

their similarities, can be treated differently if diagnosed correctly in due time[85]. A 

correct and prompt diagnosis may offer patients a much longer life prospect[86].  This 

is why specialists need to use every paraclinical tool – such as X-Rays or HRCTs[87] 

– to be able to accurately identify lung affections[88]–[90]. Even with the level of 

detail offered by an HRCT, doctors still have to rely on the keen eyes of radiologists 

for this purpose.  

Nonetheless, there is a limit to the precision level radiologists can achieve 

even disregarding the inevitable variations among doctors’ diagnoses [91]–[94]. To 

compensate for this process, modern software such as CALIPER or AI-based tools 

have been developed and are being used more frequently[29]–[31], [95], [96].  

This thesis chapter proposes a novel technique aiming to help radiologists 

perform an in-depth analysis of HRCT images. The algorithm takes small samples of 

lung snapshots as an input, translates them into complex networks, and analyzes 

their texture in 3 dimensions: emphysema, ground glass opacity, and consolidation. 

Two sets of lung HRCTs have been processed and the resulting degree distributions 

show a clear difference between healthy and affected lungs. The function forms 

describing each type of network are a key factor in determining whether the patient 

suffers from an illness or even finer details such as lung deterioration due to aging. 

These findings confirm that such software could become part of a clinician’s tools and 

greatly increase diagnosis precision with its fine-grained analysis.  

 

4.2. HRCT and advanced imaging tools used for 

computer-aided diagnostics 

 

HRCTs (High Resolution Computer Tomography) have been used for over 50 

years now and have had a great impact on patient diagnosis and consequently, their 

recovery and survival rate. Whether a doctor needs to confirm a supposed diagnosis, 

or whether they just cannot determine the nature of a patient’s illness, they ultimately 

call on CTs to enhance and enrich the amount of information they have, especially 

when it comes to diagnosing Interstitial Lung Diseases (ILD)[97], [98].  

The HRCT patterns which diagnosis is typically based on, are analyzed in terms 

of spatial distribution within the lung as well as in its basic functional unit – the 

secondary pulmonary lobule (SPL). Basically, the categories of pulmonary lesions 

involved in creating these patterns are four main ones: reticular pattern, nodular 
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pattern, high attenuation, and low attenuation. The combination and quantity of these 

lesions offer an indication of how pathologies can be interpreted and diagnosed[98]. 

The HRCT technique is based on taking a number of X-Ray images of the body 

(or a specific part of it, such as the lungs) and is carried out by producing very thin 

slice images which are then processed using reconstruction algorithms in order to 

produce a very detailed and precise representation of that body part. It can be used 

to either detect and evaluate illnesses, monitor patient progression while under 

treatment or even help decide on the area where a biopsy should be performed to 

determine the nature of affected tissue. 

Fundamental technical HRCT protocols [99]: 

● slice thickness: 0.625-1.25 mm 

● scan time: 0.5-1 second 

● kV: 120 

● mAs: 100-200 

● collimation: 1.5-3 mm 

● matrix size: 768 x 768 or the largest available 

● FOV: 35 cm 

● reconstruction algorithm: high spatial frequency 

● window: lung window 

● patient position: supine (routinely) or prone (if suspected ILD) 

● level of inspiration: full inspiration (routinely recommended) expiratory 

HRCT scans in patients with obstructive lung diseases 

Unlike the old generation CTs, HRCTs produce thinner sections: less than 1.5 

mm compared to the thicker < 3mm offered by the former, due to hardware 

limitations. In terms of radiation exposure, there are two types of techniques for 

generating an HRCT: either a sequential spaced acquisition (less exposure, but less 

precision and detail) or a volumetric acquisition (even thinner slices, usually ~1mm 

or less, combined with a post-processing algorithm which sharpens and improves 

image quality but exposes patients to a higher dose of radiation). 

This technology is considered to be the most sensitive type of radiologic 

evaluation when assessing the lung parenchyma in search of ILD traces. The 

interstitium and SPL are the two most important components of the lung tissue which 

are analyzed for IPF[100]. 

The type of algorithm proposed here is inherently different from the classical 

Computer-Aided Diagnosis (CAD) approaches[24]. The majority of CAD involve ML 

and heuristics, yet they lack an analytical process and they are rather focused on 

classifying data sets rather than offering an insight into the origin of such ailments. 

These techniques do not offer the possibility of assessing the illness evolution or 

severity[29]–[31], [95], [96]. There are other programmatic approaches or software 

which take a more anatomically oriented angle yet to provide a valuable assessment, 

they require extra input information such as PFTs [101]–[103]. 
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The HRCT composing slices also encode a type of visual indicator which cannot 

be guessed by the human eyes, and it reflects the color gradient or the pixel shades. 

Although a human observer could intuitively tell whether there is a difference between 

two pixels (in terms of color), they could not say what it means, or how to quantify 

this pragmatically. If analyzed from a density point of view, pixel shades also 

represent different tissue textures, which is a very important perspective when 

assessing an HRCT. These types of markers are stored as grayscale gradient values 

in the DICOM files, yet they can easily be converted into Hounsfield Units (HU) – a 

type of unit representing the lung radiation absorption capacity. The different types 

of densities are spatially intertwined within the lung tissue and create characteristic 

textures. The resulting patterns can be better highlighted when using complex 

network techniques[104], [105] and this thesis proposes and implements such an 

approach.  

 

4.3. Image processing algorithms 

 

In terms of image processing algorithms, there are quite a few tools currently 

available such as CALIPER or machine learning algorithms. 

The proposed algorithm is composed of a set of steps that, combined, help in 

transforming or translating a plain HRCT image into multiple complex networks, and 

consequently, determining the modeling functions which best fit the characteristics of 

each one.  

Medical practice has been relying more and more on paraclinical tools for an 

accurate diagnosis as well as an objective observation of patient’s health state.  

In diagnosing DILD for instance, there are several broadly used tools or 

instruments used with the purpose of painting a clear picture of the patient’s clinical 

state. Among these, it is worth mentioning peripheral blood tests, chest X-Rays, 

spirometry, etc. However, for more than a decade, HRCTs (High-Resolution Computer 

Tomography) have also become an important part of the clinical diagnosis process, 

given that it presents itself with a a few advantages over some other invasive tests 

(e.g. biopsy) such as noninvasiveness, high visual precision, and low-level details, 

minimal preparation required, no anesthetic involved (with a few exceptions), the 

procedure lasts for no more than 10 minutes.   

4.4. DICOM Image format 

 

As with most modern medical imaging machines, HRCTs have become digital, 

and are created and stored in an international and standardized file format called 

DICOM (Digital Imaging and Communications in Medicine standard) which has been 

broadly accepted and adopted by most radiological equipment producers. 

Consequently, most, if not all, of the latest medical technologies (MRI, CT, HRCT, 
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ultrasound) are now using this file format to store information. The National Electrical 

Manufacturers’ Association (NEMA) created DICOM as a generic standard in order to 

establish and maintain compatibility between different types of medical devices used 

in healthcare [106]. 

These types of files generally have the “.dcm” file extension and they set 

themselves apart from other formats through the fact that they store information as 

data sets. The general structure of such a file consists of two sections: header and 

image data sets. The header holds numerous tags and values representing both the 

physical machine setup parameters (e.g. manufacturer, slice thickness, pixel spacing, 

rescale intercept, rescale slope, etc) as well as the patient’s demographic data (e.g. 

name, age, weight, additional history, etc), all grouped into categories. Given that 

this type of information is sensitive and is subject to GDPR regulations, test data 

should be anonymized when shared for scientific purposes. 

The header is embedded into the DICOM file and cannot be separated, given 

that it holds precious information on both the subject of the study, as well as 

parameters required for any DICOM viewer to be able to correctly interpret the file 

contents. These parameters are a type of metadata that tell the real image 

dimensions, matrix size, gradient, or intensity. 

The rest of the file consists of the actual content, or the pixel intensities stored 

in a binary format, and can only be reconstructed into a visible image with the help 

of header data. It can be either one single image or a set of images, in 2D or 3D. 
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Figure 4.1  DICOM file structure [107] 

 

In terms of visualizing the actual image represented by a DICOM file, this 

usually requires a type of proprietary DICOM browser to be installed, unlike well-

known file types like jpeg, png, or tiff which can be easily opened with a default viewer 

application on a personal computer. These DICOM browsers are software applications 

that can be either free or may require purchasing a license. Some of the most widely 

used browsers in the field are: PostDICOM, Horos, RadiAnt, DICOM Viewer, Reader, 

MicroDicom, OsiriX DICOM Viewer [108]. 
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4.5. Data sets 

 

Multiple data sets were chosen for this experiment. The categories of HRCTs 

belong to a number of chosen pathologies, all related to Interstitial Lung Diseases: 

honeycombing, fibrosis, and sarcoidosis. 

Depending on the specifics of each illness, the resulting complex networks 

greatly differ from one another and certain characteristics can be outlined for each of 

them. 

The collection of HRCTs consists of 60 samples from the private cloud 

repository of ‘Victor Babes’ Infectious Diseases and Pneumoftiziology Clinical Hospital 

Timisoara as follows: 

 30 cases of patient lungs suffering from pathologies in the DILD category 

(all of which included CT exams and exploratory function tests) 

 30 cases of patients categorized as having normal lungs – acting as the 

control group 

All participants had given written consent for the use of their anonymized 

medical data for research purposes. 

Inclusion criteria for the selected cases were considered as follows: 

 Every patient had been diagnosed by at least 3 pulmonologists with a 

medical experience of over 5 years in DILD 

 Every CT has the same technical characteristics and quality as the one 

established across the entire lot  

 All pathological patients have had imagistic evaluations for at least one 

year 

 Every selected pathological patient also has additional investigations 

within their medical record, such as: DLco, FEV, clinical evaluation details, 

and result 

 All selected CTs have been annotated by medical experts with descriptions 

and indications of affected lung areas 

 

Exclusion criteria for the selected lots included: 

 Patients refusing recurrent imagistic evaluation were excluded due to a 

lack of medical data 

 Low-quality HRCT images presenting artifacts or having a slice thickness 

of more than 1.5 mm 

 The presence of other associated serious pathologies such as 

neurodegenerative diseases, neuropsychiatric diseases, heart conditions, 

etc. 

 The lack of written consent offered by patients with regard to using their 

medical records for research studies. 
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4.6. Imaging parameters 

 

All selected HRCTs and their respective DICOM files were the result of a 

General Electric (GE) Healthcare Optima 520 16 slices with 32 slices reconstruction. 

The scanner is a 0.5 mm x 16 detector-row allowing for an 8 mm total z-axis length. 

The machine settings for the whole lot are as follows: slice thickness: 1.25 mm, scan 

time 1 second, kV: 120, mAs: 130, collimation: 2.5 mm, matrix size: 769 x 768, Field 

of View (FOV): 35 mmm reconstruction algorithm: high spatial frequency, window: 

lung window, patient position: supine or prone. 

 

4.7. PC capabilities  

 

All experiments carried out throughout this research paper were performed on 

a personal computer (PC) with the following system capabilities and specifications: 

● Processor: Intel(R) Core(TM) i7-4710HQ CPU @2.50GHz 2.50GHz 

● Installed memory (RAM): 12.0GB (11.9 GB usable) 

● System type: 64-bit Operating System, x64-based processor 

● Hard Disk capacity: 224GB; Usable: 223 GB 

● Operating System: Windows 8.1 Pro 
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4.8. Algorithm Overview 

 

The central idea behind this medical image processing algorithm is that it uses 

complex networks as a means of representing HRCTs and extracting additional 

information and metrics, which would otherwise require other types of machine 

learning algorithms specialized in image processing. 

The algorithm consists of the following steps: 

1. Gathering a set of healthy lung HRCTs (DICOMs) 

2. Curating said DICOM files: 

a. Selecting one or more samples out of each DICOM (one sample per 

person) 

b. Out of each sample, cropping out a patch of 65 x 65 pixels (healthy 

lung sample) 

3. For each sample convert the grayscale image into a Hounsfield Unit matrix: 

a. Treat every square sample as a pixel matrix 

b. Convert grayscale pixel values into Hounsfield Units 

c. Copy all Hounsfield Units corresponding to studied illnesses into new 

matrices (emphysema, ground glass opacity, consolidation) - 

practically constructing new images only with lung tissue 

corresponding to the studied aspects 

4. Each new matrix is converted into an adjacency matrix (complex network) 

according to the following rules: 

a. Every pixel is counted as a vertex 

b. Links (edges) between two nodes exist only if: 

i. The radial distance between them is 𝑟𝑑 ≤ 4 

ii. The gradient difference (Hounsfield unit delta) is 𝛥 ≤ 50 

iii. Hounsfield units values for both nodes fall into the same HU 

band  

5. Each of the 4 matrices is analyzed from a mathematical perspective, defining 

approximating functions for all of them. These functions will constitute a 

baseline for all other studies datasets. 

6. Repeat the whole process with HRCTs (DICOMs) of illness-affected lungs 

7. Compare the resulting functions of healthy lungs to functions corresponding 

to damaged lungs to determine similarities and differences. 
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Figure 4.2  High-level overview of DICOM to Complex Networks processing 

algorithm 
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4.9. Technical HRCT selection  

 

Two sets of DICOM files were put together with the help of a team of medical 

specialists which provided an entire collection of HRCTs split into categories: healthy 

lungs, fibrosi- affected lungs, lungs affected by sarcoidosis, lungs affected by COVID-

19, etc. 

For each of the categories, a set of characteristics was provided along with 

concrete samples illustrating a snapshot of the lung which would be most relevant to 

the case in the study (Figure 4.3). In addition, most patients had not one, but two, 

or three CTs taken at different points in time, and these were used to analyze and 

assess the evolution of the pathologies dynamically. These curated samples were then 

ingested into the proposed algorithm and transformed as per the aforementioned 

steps.  

 

 
Figure 4.3  Sample DICOM image provided by medical specialists, indicating 

affected areas to be analyzed 
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4.10. Curating DICOM files 

 

Each DICOM file was cropped to a 65x65 pixel area containing only a certain 

portion of the lung which would best display the medical diagnostic. Medical 

indications featured in Figure X above show the best areas to be processed for a 

certain ailment. 

4.11. Crop area definition 

 

So far, there have been few attempts at slicing and screening HRCTs in such 

a way. There are multiple reasons behind this starting with the fact that not many 

people have followed this type of approach, and the ones that did, used different 

techniques or algorithms, some in the machine learning area. Some studies show that 

even an 11x11 px area could be enough to identify affected tissue and different 

patterns in the lung. On the other hand, one might argue that such a patch would be 

too small to be able to give any guarantees or high probabilities as to the accuracy of 

the output. This is why, in the pursuit of building a more encompassing algorithm, a 

larger area was chosen for this study, i.e. 65x65 px. The exact dimensions of this 

square patch were selected due to a few factors, also confirmed by clinicians. Among 

these: the area should be large enough to capture an entire secondary lobule - which 

is the fundamental unit of the lung and its contour is indicative of how disease 

manifests itself or how much it has expanded. In reality, the dimension of such a unit 

is normally half the area of the crop, but choosing a larger observation window 

ensures there is at least one secondary lobule in it. Some standard measurements 

used in this case: a regular secondary lobule has a square surface between [1 cm; 

2.5 cm] in diameter [109]. Converting this value into pixels requires knowing the pixel 

spacing (PS) and this is a value encoded as a metadata parameter into every HRCT 

and it typically varies between [0.70, 0.80]. Within the current research experiment, 

all DICOM files had PS = 0.74 mm.  Considering that the maximum secondary lobule 

area is 2.5 cm2 x 2.5 cm2 then a simple calculus shows that the minimum sample size 

should be 25 / 0.74 = 33.7837 px.  However, for a better probability of framing at 

least one entire secondary lobule within the crop sample, the analyzed area 

dimensions are almost doubled (65 px). 

A larger crop could and probably would offer more information, however, this 

is where processing power capabilities impose limits. The larger the studied area, the 

more it takes for the application to process it. Similar research approaches consider 

areas of 11 x 11 px in trying to assess lung tissue, however, the decision for choosing 

such dimensions is not clearly stated [102], [103].  

 Despite this, one of the future goals is to extend said area along with the 

usage of processing units which would increase the performance.  
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Figure 4.4  Secondary pulmonary lobule structure [110] 

Figure 4.4 shows a simplified depiction of the basic lung unit – the secondary 

pulmonary lobule. Its shape and respective size can be better grasped when looking 

at Figure 4.5 along the outer edge of the lungs. 

 

 
Figure 4.5  Secondary Pulmonary Lobule as seen on an HRCT [109] 
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4.12. Radial distance selection 

Radial distance (rd) has been defined as the maximum distance (linear, 

euclidean distance) up to which a certain network vertex Vx can be considered 

potentially connected to another node Vy. In other words:  

 ∃(Vx, Vy) → d(Vx, Vy) ≤  𝑟𝑑  (4.1) 

where rd is a nonarbitrary value chosen according to multiple tests and 

experiments. In this case, an array of discrete values of 𝑟𝑑∈{1;8} has been tested in 

order to find the most proper fit, meaning that the chosen value would have to lead 

to the generation of a medically relevant complex network, with the characteristics of 

a biological process. A value of rd = 1 can be interpreted as: any vertex Vx can only 

be linked to another Vy if the euclidean distance between them is less than or equal 

to 1, in other words, they can be linked only if they are adjacent, while an rd = 8 

allows for potential neighbors at a distance of 8 pixels away. 

The difference between choosing the most useful rd value is made by the 

resulting complex networks. An rd = 1 could make for a very sparse network (thin, 

scattered, disconnected clusters, even single pixels) which would not be very relevant 

medically and could easily be confused with noise - which often happens due to 

patients moving while being scanned. Conversely, an rd = 8 would allow for too much 

inclusion, resulting in a too-dense network, which in medical terms suggests that 

there is no texture difference between all vertices, since they are all connected, and 

as a result, they are treated as being very similar. Another consequence of having a 

too-dense network is that there is an agglomeration of closely interconnected pixels, 

which would not reveal anything new to the researcher, because a high density of 

similar pixels would also be visible to the naked eye. 

Figure 4.6   Degree distributions for various radial distances [111] 

Based on the tested rd values, the most suitable value for such a radial 

distance has been chosen as rd=4, meaning that the sensibility of this approach would 
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detect lesions with a size of 4*0.74 = 2.96 mm. Indeed, this measurement also 

corresponds to the minimum detectable lesion size of 3-17 mm suggested by other 

previous research [112]. 

4.13. Hounsfield Units - selection of Hounsfield Bands 

 

Hounsfield Units (HU) are the basic units used to quantify and evaluate the 

scale of X-ray absorption and attenuation into human tissue. Medical specialists make 

use of this type of analysis when interpreting HRCTs in order to confirm certain 

diagnostic suspicions which would be too difficult to evaluate visually[113]. The 

spectrum of HU values varies between -1000 HU in the case of air to 3000 HU in the 

case of hard metals such as steel. To the human eye, these values can be associated 

with different shades from white to black according to the amount of radiation the 

tissue can absorb. While air has a very dark color (dark gray or even black), lung 

tissue, organs, and vessels tend to be on the other side of the spectrum (white, light 

gray, up to a darker gray).  

 

Pulmonary tissue HU intervals 

Emphysema [-1024, -977) 

Normal pulmonary parenchyma [-977, -703) 

Ground-glass opacities [-703, -368) 

Others (crazy-paving, pleural fat) [-368, -100) 

Consolidation [-100, 5) 

Others (interstitial vessels) >5 HU 

Table 4.1 HU intervals (bands) spectrum per type of pulmonary lesion / 
density[27], [114], [115]  

 
An affected lung might have either one or a combination of multiple such tissue 

densities, according to the pathology it may suffer from. For the purpose of this study, 
only three types of HU bands were analyzed in the context of multiple illnesses: 
Emphysema, Ground-glass opacities and Consolidation. 

 

4.14. Vertex similarity based on maximum gradient delta 

 

As mentioned, for two vertices to be considered similar, the maximum 

gradient delta must be less than or equal to a certain delta = 50. This value was 

chosen based on two criteria: 
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1. Given the range of values each of the HU bands can take, they should be split 

into multiple sub-bands in order to differentiate between pixels pertaining to 

the same HU band. This gives an insight into subtle differences, as well as 

allows the inclusion of connections where pixels are tightly coupled. While the 

Emphysema layer is a narrow one and given the max possible delta = 47  

meaning that all pixels with shades in these bands could be connected to each 

other, the other two layers (GGO and Consolidation) can both be split into 

multiple 50-unit range sub-bands. 

2. Admitting a similarity difference greater than Δ=50 (or none at all) would 

mean that, for instance, a pixel with a HU value HvX=-702 and another one 

HvY=-369 represent the same kind of biological tissue, which would be a great 

overstatement, given that there is such a large range of discrete values that 

needs to be covered between the two. Another case that is eliminated with 

this similarity delta is the one where the HRCT contains a lot of noise, meaning 

that some pixels might be brighter due to the patient moving while being 

scanned. What happens in these situations is that the whole image will often 

look brighter, introducing a lot of so-called “noise”. Eliminating the outliers, 

in this case, the much too bright vertices is obtained if we narrow down the 

search and look for a more specific small range of values when generating 

edges between same-band pixels.  

 

4.15. Converting DICOM grayscale values into 

Hounsfield values 

 

As previously mentioned, the dcm image is stored as an array of grayscale 

values. In order to convert such data into Hounsfield Units, which would give an 

insight into the tissue capacity of X-Ray absorption, and implicitly, understanding the 

nature of lung cells in a certain area, these values need to be converted using a simple 

formula:  

 

 pixel_hu_value = pixel_value * RescaleSlope + RescaleIntercept  (4.2) 

 

where pixel_hu_value is the HU converted value, pixel_value is the original 

grayscale pixel value stored by the dcm file, RescaleSlope and RescaleIntercept are 

constants embedded in the dcm header dependent on the HRCT machine settings. 

For the current study, all HRCTs have the following default rescale parameters 

presented in Table 4.2. 
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Tag ID Description Value 

(0028,1052) Rescale Intercept -1024 

(0028,1053)  Rescale Slope 1 

(0028,1054)  Rescale Type HU 

Table 4.2 Rescale parameters – DICOM Metadata Parameters [116] 

 

In table 4.2 Rescale Type defines the output unit of pixel_hu_value in (4.2) 

above. It can have one out of multiple values such as: OD (Optical Density), HU 

(Hounsfield Units), US (Unspecified), MGML (mg/ml), Z_EFF (Effective Atomic 

Number), ED (Electron Density), EDW (Electron Density Normalized), HU_MOD 

(Modified Hounsfield Unit), PCT (Percentage %). 

The Tag ID for each of the parameters is the official documented ID  and it is 

part of the standard for all DICOM files. 

4.16. Converting HU bands into complex networks 

 

For this study, only three HU bands were selected as being relevant, and as a 

consequence, the proposed algorithm generates one adjacency matrix for each one, 

as well as one containing all of them. 

The adjacency matrix is constructed based on the previously defined rules: 

1. Two vertices are linked if the maximum radial distance (rd) between them is 

rd = 4 

2. Two nodes are adjacent if the maximum gradient difference between them is 

Δ=50  

 

Figure 4.7 shows an original piece of a DICOM image, with a dimension of 

65x65 pixels. While Fig 4.7 (a) shows the original 65 x 65 px sample image, Figures 

4.7 (b), (c), (d) and (e) show the transformation it suffers throughout the layering 

process: first the noise is eliminated (any other HU values not pertaining to the three 

selected bands are left out), then the resulting image is further split into 3 separate 

images, each one containing only pixels whose HU value pertain to one HU band: 

Emphysema, GGO or Consolidation.  

A more in-depth example is described in Figure 4.8 from a programmatic point of 

view. 
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(a) 

 
(b) 

 
(c)

 
(d) 

 
(e)

 

Figure 4.7  Original HRCT deconstructed into multiple HU layers: a) Sample crop 

b) Emphysema layer, GGO layer, Consolidation layer only, without “noise”  
c) Emphysema layer d) GGO layer e) Consolidation layer 
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(a)  

 
(b)  

 
(c) 

 

          (d)                                       (e)                                       (f)        

 

 

 

 

 

 

 

 

 

 

       (g) 

Figure 4.8  Image to matrix conversion for an rd≤4 and Δ≤50 

a) Original DICOM image b) Sample crop c) Sample equivalent matrix VMxN 

d) HU values e) Limit neighborhood to rd ≤4 f) Calculate Δ between HUvi 
and HU rest of the pixels g) Mark adjacency matrix with 1 where the Δ≤50 

condition is met and 0 otherwise 

Figure 4.8 Shows how lung samples are converted from grayscale to HU values 

and then based on the conversion rules, are turned into an adjacency matrix.  

367 241 230 149 75 130 83 

269 180 195 190 189 228 123 

382 479 533 500 589 387 267 

419 517 502 549 460 537 491 

258 326 421 575 257 522 146 

323 403 334 533 487 262 234 

373 371 292 233 243 270 219 

  230 149 75   

 180 195 190 189 228  

382 479 533 500 589 387 267 

419 517 502 549 460 537 491 

258 326 421 575 257 522 146 

 403 334 533 487 262  

  292 233 243   

  319 400 474   

 369 354 359 360 321  

167 70 16 49 40 162 282 

130 32 47  89 12 58 

291 223 128 26 292 27 403 

 146 215 16 62 287  

  257 316 306   

  0 0 0   

 0 0 0 0 0  

0 0 1 1 1 0 0 

0 1 1  0 1 0 

0 0 0 1 0 1 0 

 0 0 1 0 1  

  0 0 0   
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For each of the composing pixels, the algorithm evaluates all neighbors within 

the rd≤4 and Δ≤50. If these conditions are met, then the edge is marked in the 

adjacency matrix. 

First (Fig. 4.8 d) the selected image crop pixels are all converted into their HU 

equivalents according to equation 4.2.  

Each of the composing pixels is then considered the center of an area and all 

its neighbors are evaluated in terms of similarity and radial distance. 

Subsequently, any other pixels beyond the rd=4 pixel area of the current pixel 

is eliminated for not complying with the distance criterion. (Fig. 4.8. e).  

Secondly, for the similarity criterion to be fulfilled, all potentially linked pixels 

should have a HU value within 50 units difference from the main pixel. In other words, 

the delta calculated between the two HU values should be Δ≤50. If this condition is 

met, then the edge is marked with 1 in the adjacency matrix (equivalent to the image 

crop), otherwise, no edge is stored. Edges are undirected and unweighted. 

When all composing pixels have been evaluated, the adjacency matrix is 

complete and it can be used as raw material for the complex network representation 

of the selected sample. Based on this adjacency table, the degree distribution can be 

computed and different network characteristics can be highlighted. 
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4.17. Algorithm implementation 

 

The described algorithm has been implemented in Python, a flexible 

programming language that offers an array of libraries with different functions. One 

of the libraries in particular has the ability to read and interpret HRCTs and medical 

images stored in a Dicom format: Pydicom. 

4.17.1  Main function 

 
def process_cts(ctNumber, fibrosisLungPath, threshold, n, 

radialDistance, patchOrigin): 

 

start_time = time.time() 

 

   #ctNumber = 1 

   #fibrosisLungPath = r"PATH/TO/DICOM/FILE.DCM"; 

   #threshold = 50 #gradient threshold 

   #n = 65 # sample area width/length 

 

   # read hrct file  

ds = dcmread(fibrosisLungPath) 

 

ct = ds.pixel_array 

networkParams = NetworkParams(n, threshold, radialDistance) 

 

adjacencyMatrix = [] 

xOrigin = patchOrigin.x 

yOrigin = patchOrigin.y 

 

   # sampled area coordinates 

sampleCT = ct[xOrigin: xOrigin + n, yOrigin: yOrigin + n]   

   # calculate ggo/emphisema/consolidation matrix 

huMatrices = convertToHu(n, ds, sampleCT) 

 

convertedImageGgo = huMatrices.huMatrixAll 

convertedImageGgo_e = huMatrices.huMatrixE 

convertedImageGgo_g = huMatrices.huMatrixG 

convertedImageGgo_c = huMatrices.huMatrixC 

 

 

plt.imshow(convertedImageGgo, cmap=plt.cm.bone) 

plt.show() 

plt.clf() 
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# Defining output file path for layer images 

imagePath = "C:\\PATH\\TO\\OUTPUT\\" + str(ctNumber) + "CT" + 

str(ctNumber) 

 

# Generate curated images for all HU layers 

generate_separated_images(imagePath, huMatrices) 

 

 adjFilePath = "C:\\PATH\\TO\\OUTPUT\\" + str(ctNumber) + 

"\\edgeList_nsip_CT_" + str(ctNumber) 

 

generate_all_adj_matrices_at_once(adjFilePath,networkParams, 

huMatrices) 

  end_time = time.time() 

  print("--- %s seconds ---" % (end_time - start_time)) 

 

Code Snippet 4.1. The main function of the algorithm 

 

Given the complexity of the algorithm and having in mind the idea of 

scalability, the performance of the algorithm needs to be evaluated. The high number 

of dicom files that need to be processed and converted into complex networks requires 

a fast algorithm and quick results. For this reason, all reruns are tracked and timed. 

All the HRCTs are numbered and split into multiple folders/categories 

depending on the illnesses. (ctNumber). 

The path to all Dicom files is passed as an argument and varies according to 

the category. (fibrosisLungPath)  

Threshold represents the gradient threshold beyond which two vertices are 

not considered linked anymore. 

n represents the dimension of the lung patch to be processed. In this case, 

has been chosen as n = 65 pixels. 

patchOrigin is the origin of the selected 65 x 65 px square framing of the 

analyzed lung area, indicated by medical specialists and radiologists. 

convertToHu, convertToHuEmphysema, convertToHuGgo, 

convertToHuConsolid are all functions converting the dicom image into its equivalent 

HU values matrices. 

Generates an image containing only the pixels pertaining to the different 

separated HU bands. 
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4.17.2  Converting pixel values to HU values 

 

def convertToHu(n, ds, sampleCT): 

   convertedImage_egc = [] 

   convertedImageGgo_e = [] 

   convertedImageGgo_g = [] 

   convertedImageGgo_c = [] 

   rescaleSlope = ds.RescaleSlope 

   rescaleIntercept = ds.RescaleIntercept 

 

   for i in range(0, n): 

       currentLine = [] 

       currentLine_e = [] 

       currentLine_g = [] 

       currentLine_c = [] 

       for j in range(0, n): 

           gradient = sampleCT[i, j] 

           nodeHu = rescaleSlope * gradient + rescaleIntercept 

 

           if (-1024 < nodeHu < -984): #emphysema 

               currentLine.append(gradient) 

               currentLine_e.append(gradient) 

           else: 

               if (-634 <= nodeHu <= -368):    #GGO 

                   currentLine.append(gradient) 

                   currentLine_g.append(gradient) 

               else: 

                   if (-109 <= nodeHu <= 9):   #Consolidation 

                       currentLine.append(gradient) 

                       currentLine_c.append(gradient) 

                   else: 

                       currentLine.append(0) 

                       currentLine_e.append(0) 

                       currentLine_g.append(0) 

                       currentLine_c.append(0) 

 

       convertedImageGgo.append(np.array(currentLine)) 

       convertedImageGgo_e.append(np.array(currentLine)) 

       convertedImageGgo_g.append(np.array(currentLine)) 

       convertedImageGgo_c.append(np.array(currentLine)) 

 

   huMatrices = HuMatrices(convertedImage_egc, 

convertedImageGgo_e, convertedImageGgo_g, convertedImageGgo_c) 

   return huMatrices   

 

Code Snippet 4.2 - Converting DICOM image into HU layers 
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In code Snipped 4.2, the function does exactly what its name suggests: it 

receives as an argument the dicom image, the dimension of the analyzed patch (in 

this case n = 65), and the two HRCT parameters for converting pixels into HU values. 

All pixels are iterated through, converted, and then depending on their value, either 

stored in one of the new HU layer matrices or discarded. Finally, all resulting matrices 

are stored in a HuMatrices object and returned. 

 

def generate_separated_images(imagePath, huMatrices): 

   png = ".png" 

   plt.imshow(huMatrices.huMatrixAll, cmap=plt.cm.bone) 

   plt.savefig(imagePath + "_snapshot_e_g_c" + png) 

 

   plt.imshow(huMatrices.huMatrixE, cmap=plt.cm.bone) 

   plt.savefig(imagePath + "_snapshot_e" + png) 

 

   plt.imshow(huMatrices.huMatrixG, cmap=plt.cm.bone) 

   plt.savefig(imagePath + "_snapshot_g" + png) 

 

   plt.imshow(huMatrices.huMatrixC, cmap=plt.cm.bone) 

   plt.savefig(imagePath + "_snapshot_c" + png) 

 

Code Snippet 4.3 - Generating sample images out of each HU layer matrix 

 

Generating HU layer images is quite simple once the matrices have been 

generated. Cmap specifies the color map to be used when printing the pixel values. 

 

4.17.3  Generating adjacency matrices 

 

def generate_all_adj_matrices_at_once(adjFilePath, networkParams, 

huMatrices): 

 

   # ALL 

   adjFileName1 = adjFilePath + "_e_ggo_c.csv" 

   adjFileName2 = adjFilePath + "_e.csv" 

   adjFileName3 = adjFilePath + "_ggo.csv" 

   adjFileName4 = adjFilePath + "_c.csv" 

   fEGC = open(adjFileName1 , "w") 

   fE = open(adjFileName2 , "w") 

   fG = open(adjFileName3 , "w") 

   fC = open(adjFileName4 , "w") 

   adjacencyMatrixEGC = [] 

   adjacencyMatrixE = [] 

   adjacencyMatrixG = [] 

   adjacencyMatrixC = [] 
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adjList1 = [] 

adjList2 = [] 

adjList3 = [] 

adjList4 = [] 

 

n = networkParams.n 

radialDistance = networkParams.radialDistance 

threshold = networkParams.threshold 

 

for i in range(0, n * n - 1): 

   currentLine1 = [] 

   currentLine2 = [] 

   currentLine3 = [] 

   currentLine4 = [] 

   for j in range(0, n * n - 1): 

       xI = i // n 

       yI = i % n 

       xJ = j // n 

       yJ = j % n 

       a = (xI, yI) 

       b = (xJ, yJ) 

       distIJ = distance.euclidean(a, b) 

 

delta1 = abs(huMatrices.huMatrixAll[xI][yI] - 

huMatrices.huMatrixAll[xJ][yJ]) 

delta2 = abs(huMatrices.huMatrixE[xI][yI] - 

huMatrices.huMatrixE[xJ][yJ]) 

delta3 = abs(huMatrices.huMatrixG[xI][yI] - 

huMatrices.huMatrixG[xJ][yJ]) 

delta4 = abs(huMatrices.huMatrixC[xI][yI] - 

huMatrices.huMatrixC[xJ][yJ]) 

 

       # e_ggo_c 

       if radialDistance >= distIJ > 0 and delta1 < 

threshold and huMatrices.huMatrixAll[xI][yI] != 0 and 

huMatrices.huMatrixAll[xJ][yJ] != 0: 

           currentLine1.append(1) 

           edge = str(i) + ' ' + str(j) 

           altEdge1 = str(j) + ' ' + str(i) 

           if edge not in adjList1: 

               adjList1.append(edge) 

               adjList1.append(altEdge1) 

               fEGC.write(str(i) + ' ' + str(j)) 

               fEGC.write('\n') 

       else: 

           currentLine1.append(0) 
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       # emphysema 

       if radialDistance >= distIJ > 0 and delta2 < 

threshold and huMatrices.huMatrixE[xI][yI] != 0 and 

huMatrices.huMatrixE[xJ][yJ] != 0: 

           currentLine2.append(1) 

           edge = str(i) + ' ' + str(j) 

           altEdge2 = str(j) + ' ' + str(i) 

           if edge not in adjList2: 

               adjList2.append(edge) 

               adjList2.append(altEdge2) 

               fE.write(str(i) + ' ' + str(j)) 

               fE.write('\n') 

       else: 

           currentLine2.append(0) 

 

       # ggo 

       if radialDistance >= distIJ > 0 and delta3 < 

threshold and huMatrices.huMatrixG[xI][yI] != 0 and 

huMatrices.huMatrixG[xJ][yJ] != 0: 

           currentLine3.append(1) 

           edge = str(i) + ' ' + str(j) 

           altEdge3 = str(j) + ' ' + str(i) 

           if edge not in adjList3: 

               adjList3.append(edge) 

               adjList3.append(altEdge3) 

               fG.write(str(i) + ' ' + str(j)) 

               fG.write('\n') 

       else: 

           currentLine3.append(0) 

 

       # consolidation 

       if radialDistance >= distIJ > 0 and delta4 < 

threshold and huMatrices.huMatrixC[xI][yI] != 0 and 

huMatrices.huMatrixC[xJ][yJ] != 0: 

           currentLine4.append(1) 

           edge = str(i) + ' ' + str(j) 

           altEdge4 = str(j) + ' ' + str(i) 

           if edge not in adjList4: 

               adjList4.append(edge) 

               adjList4.append(altEdge4) 

               fC.write(str(i) + ' ' + str(j)) 

               fC.write('\n') 

       else: 

           currentLine4.append(0) 

 

   adjacencyMatrix1.append(np.array(currentLine1)) 

   adjacencyMatrix2.append(np.array(currentLine2)) 
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   adjacencyMatrix3.append(np.array(currentLine3)) 

   adjacencyMatrix4.append(np.array(currentLine4)) 

 

fEGC.close() 

fE.close() 

fG.close() 

fC.close() 

 

adjMatrices = NetworkAdjacencyMatrices() 

adjMatrices.adjMatrixAll = np.array(adjacencyMatrix1) 

adjMatrices.adjMatrixE = np.array(adjacencyMatrix2) 

adjMatrices.adjMatrixG = np.array(adjacencyMatrix3) 

adjMatrices.adjMatrixC = np.array(adjacencyMatrix4) 

 

return adjMatrices 

 

Code Snippet 4.4 - Converting HU layers into Network Adjacency Matrices 
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4.18. Results 

 

All DICOM sets were analyzed through the above algorithm. The following 

samples illustrate how this process is carried out for two different patients: a clinically 

healthy one as well as one with a DILD (Diffuse Interstitial Lung Disease) diagnosis. 

 

 

        (a)                                                        (b) 

Figure 4.9  Sample selection for two different patients (a) Normal (control) 
sample of a healthy lung; (b) DILD (IPF) diagnosed lung sample 

 

 The following steps of the algorithm produce the 3 layers corresponding to 

the HU bands selected as the main interest for this research experiment. Pixels 

pertaining to different categories are separated and aggregated as individual images, 

then converted into complex networks adjacency matrices according to the 

established conditions.  

 The Emphysema layer is the first analyzed HU band, resulting in two different 

images for each of the two samples. Although they may not seem to be a visible 

difference when looking at them with the naked eye, Fig 4.10 (b) is still showing more 

pixels than Fig 4.10 (a), meaning that the affected lung is displaying signs of 

abnormality. This can also be observed in Fig 4.11 (b) where the degree distribution 

and the number of Emphysema pixels for the ill lungs are quite higher and denser. 
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(a)                                                        (b) 

 

Figure 4.10  Emphysema layers for (a) normal lungs sample (b) DILD lung 
sample 

 

 
 

                            (a)                                                          (b) 

Figure 4.11  Emphysema layer degree distribution for (a) normal lung sample 
(b) DILD lung sample 

 

The degree distributions (Fig. 4.11) of both samples can tell apart which of the 

samples is the normal lung and which has a pathology. 
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(a)                                                                (b) 

 

Figure 4.12  Emphysema layer converted into complex networks for (a) normal 
lung sample (b) DILD lung sample 

The resulting complex networks for the Emphysema layer (Fig 4.12) are also visibly 

different and this confirms that this type of tissue is more likely to be found in the 

affected lung rather than the healthy one. 

The second layer of interest is the GGO, again, with the three steps involved: 

generating the snapshots, creating the adjacency matrices, and displaying the 

resulting equivalent complex networks. 

 

 
(a)                                                        (b) 

Figure 4.13  GGO layers for (a) normal lungs sample (b) DILD lung sample 
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There is quite a visible difference between the two layers in terms of GGO (Fig. 

4.13), and indeed, medical specialists confirm that this type of tissue density forms 

in the case of DILD diseases. In contrast, healthy lungs have much less of it, but 

depending on the patient’s particularities (age, associated diseases, lifestyle) they 

may also display small areas of such tissue. 

 

 
 

                            (a)                                                          (b) 

Figure 4.14  GGO layer degree distribution for (a) normal lung sample (b) DILD 
lung sample 

 

 

 
                              (a)                                                          (b)                          

 

Figure 4.15  GGO layer converted into complex networks for (a) normal lung 
sample (b) DILD lung sample 
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(b)                                                        (b) 

Figure 4.16  Consolidation layers for (a) normal lungs sample (b) DILD lung 
sample 

 

Similar to the GGO layer, the Consolidation samples are showing a clear disproportion 

regarding the density of affected tissue which can be found in a DILD lung and this 

will also be reflected in the degree distributions of the equivalent complex networks. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17  Consolidation layer degree distribution for (a) normal lung sample 
(b) DILD lung sample 

 

 While in Fig. 4.16 (a) Consolidation pixels barely exist, Fig 4.16 (b) shows a whole 

different story, which is coherent and consistent with what one might assume. 
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Figure 4.18  Consolidation layer converted into complex networks for (a) normal 
lung sample (b) DILD lung sample 

 

Lastly, complex networks representing the two GGO samples (Fig 4.18 (a) and (b)) 

could not be more different. Multiple clusters can be seen in the DILD sample (marked 

in purple, light green, blue, pink, and black). 

4.19. Fitting Complex Networks metrics 

 

Given the initial results for the whole lot revealed an obvious distinction between the 

control set of HRCTs and the other types of disease categories, the following step 

would naturally be to determine a pattern or a certain network metric that could best 

approximate the different types of network models.  

BUPT



88 
 

 
(c) 

Figure 4.19  Degree distributions comparisons when different network metrics 
are considered: (a) Total count (b) Average count (c) Maximum degree 

[111] 

 

In Figure 4.19, healthy lungs (control group) are represented as Class 0 (bright pink), 

while affected DILD lungs are symbolized by Class 1 (yellow).  

 

 

 

 

(a)                                                                (b) 
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(a)                                                           (b) 

Figure 4.20  (a) Normal set distribution based on average degree. The two 
different classes (bright pink – Class 0 and yellow – Class 1) both represent 
healthy lungs but they are split into two categories: normal lungs diagnosed 

before the Covid pandemic, respectively during the Covid era. (b) DILD 
diagnosed population distribution based on average degree. The six different 

classes represent different types of lung affections (UIP, probable UIP, UIP 
and Emphysema, OP, HP, Sarcoidosis) [111] 

 

Fig. 4.20. shows two very distinct population lots. While the normal population (Fig. 

4.20 a) is relatively tight, there are still a few outliers which will be explained 

separately. Fig 4.20. (b) however tells a different story, with all affected lung CTs 

grouped by individual pathologies. These pathologies, part of the ILD category, all 

present the three HU analyzed bands (Emphysema, GGO, Consolidation), yet the 

combination and quantity differs from one to another  

4.20. Discussion 

 

The starting point of the above research material was the intention to generate 

and analyze a complex network model which would represent real HRCT lung images.  

 From a network science perspective, one approach to representing real-world 

systems is through their degree distributions. Understanding what these degree 

distributions reveal about the system itself is a matter of mathematically and 

programmatically pinpointing the function types which would best approximate these 

types of distributions.  
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4.20.1  Normal lungs model function 

 

Previous research shows that these ecosystems fall into the categories of 

logarithmic or power law functions [117]. Indeed, the research hereby conducted (Fig. 

4.21) comes as a confirmation that, for example, normal lungs samples (Fig 4.11 a, 

Fig 4.14 a) comply with a logarithmic distribution given that the predetermined 

biological resolution is used (Rd = 4).  

 A question arises then, whether these systems could also fit into a power law 

function, even with an Rd variation, in order to cover for all the biological variations. 

This is not the case, however, because the attempts to fit a power function to the 

normal population set concluded in a less precise approximation of the degree 

distributions, and thus, proved to be less relevant than the logarithmic one. 

  

Figure 4.21  The average coefficient of determination (R2) for logarithmic and 
power distributions based on radial distance (Rd)[111] 

 

These findings can be explained by the fact that biological systems are diverse 

and have different particularities based on whether they are feedback systems or not. 

Previous research shows that biological systems without tightly coupled feedback 

loops can be represented as a logarithmic model rather than a power distribution 

[118], and this proves to be the case with lungs, as well. This is indeed also validated 

through the current proposed model. 

 

4.20.2  Pathological lungs model function 

 

On the opposite side, affected lungs describe a completely different function 

model (Fig 4.11 b, Fig. 4.14 b, Fig. 4.17 b). In this case, polynomial functions best fit 
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the model rather than logarithmic ones, and this is also validated by previous 

literature results [1], [119]. These show that DILD pathologies are considered 

proliferative processes in terms of inflammation and fibrosis, and although the cause 

of such processes may not be a virus,  their development and propagation behave 

similarly. 

It is worth mentioning that the polynomial function best approximating all 

studied cases is not the same for all, and the maximum degree may also differ within 

the range [2,8]. This is explained by the fact that the pathologies were multiple and 

each of them is a combination of the 3 HU bands. A more in-depth study is required 

to be able to differentiate between types of illnesses, together with far larger data 

sets, that is representative of each of them.  

 So far, this study formulates a powerful indicator in the fact that normal lungs 

have different modeling functions from affected lungs, however, we cannot yet tell 

which specific pathology a patient suffers from. 

 

Figure 4.22  Relative comparisons of standard deviation for DILD-affected lungs 

and normal lungs considering all HU bands, based on maximum degree, 
total count, and average degree 

 
Further analysis (Fig. 4.22 above) confirms that the chosen models are valid, and also 
validates what one could intuitively observe with the naked eye in some cases (Fig 
4.19 and 4.20). When comparing standard deviations for all patients’ data series, the 
result is as shown in Fig 4.22 (above). Key indicators (maximum degree, total count, 
average count) evaluated for both categories of lungs – healthy and DILD- and for all 
3 HU bands (separately and combined), reveal that there is a clear delimitation 
between normal lung networks and pathological ones. 
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4.20.3  Medical validation of models 

From a medical science perspective, there are a number of cases (outliers) 
that need to be addressed in order to validate the aforementioned models. Figure 
4.20 a) shows a few cases that might seem to fall out of the proposed models. 
However, there are multiple factors to be taken into consideration with nodes NC13, 
NC14, and NC15 (higher GGO and consolidation). First, the clinical definition of a 
healthy (or normal) was understood differently due to the fact that NC13 and NC14 
are patients recovering from covid. As a result, it is considered normal that scattered 
artifacts of GGO and consolidation might still be found in the lungs, given the disease 
evolution. On the other hand, NC15, also an outlier, reflects the case of a patient 
whose HRCT was performed prior to developing COVID, when a negative PCR test 
also infirmed the disease. Later on (approximately two days later), the patient did 
develop a severe case of COVID, and this diagnosis was also confirmed by a positive 
PCR test. These cases show that the models defined for both the control group and 
the pathological one could be used to detect early signs of potential lung illnesses 
reflected by modifications in the lung tissue. 

In terms of pre-COVID outliers (NN group), although the algorithm showed 
some of them as being close to the boundary of normal, these differences can be 
explained by patient particularities such as heavy smoking (NN06, NN03). These 
aspects are often treated as such when diagnosing patients.  

The proposed model also deals well with overlapping patterns. Real-life cases 
may display a combination of  HU bands which would normally not be a characteristic 
to one single pathology. This has also been observed in the following case study, 
where the patient suffered from a mix of IPF (reflected through a pronounced GGO 
layer) and Emphysema.  

 
 

 
(a) 

BUPT



93 
 

 

 
 

                                (b)                                                      (c) 

 

   
                                
                               (d)                                                       (e) 
 

   
 
                               (f)                                                       (g) 
 

Figure 4.23  (a) HRCT slice under analysis (b) Sample 1 (c) Sample 2 (d) Degree 
distribution for sample 1 on the emphysema layer (e) Degree distribution for 

sample 2 on the emphysema layer (f) Degree distribution for sample 1 on 
the GGO layer (g) Degree distribution for sample 2 on the GGO layer 
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Figure 4.23 shows a case of different samples taken from the same patient, where 
one of them also includes an additional affection (an emphysema bubble Fig 4.23 (b)). 
However, the decomposition of layers offered by the proposed algorithm offers the 
advantage of deconstructing the lung tissue into multiple layers and allowing the 
medical specialist to analyze them either separately or in combination, depending on 
the case. This supports a better diagnosis process, given that here, an examiner could 
confirm that although the underlying disease (IPF) has been indicated by the GGO 
degree distributions (Fig 4.23 f, g), there may always be additional overlapping 
patterns (Fig 4.23 d, e) which can easily be observed in isolation, thus reducing the 
complexity or the difficulty of interpreting HRCTs with the naked eye. The CN 
algorithm has proven in this case that it can successfully be applied to overlapping 
patterns. 

4.20.4  T-test model validation 

 
A t-test is further presented as a statistical demonstration that the algorithm and 
model work in a comprehensive manner. This independent sample t-test assuming 
unequal variances was performed against the two sets of samples: normal and DILD. 

 

 
Figure 4.24  Box plot for DILD (left) and Normal (right) for complex network 

parameter maximum degree [111] 
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Figure 4.25  Box plot for DILD (left) and Normal (right) for complex network 

parameter total count[111] 

 
 

Figure 4.26  Box plot for DILD (left) and Normal (right) for complex network 
parameter average degree[111] 
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 Maximum degree Total count Average count 

 DILD Normal DILD Normal DILD Normal 
Mean 

15.96875 7.032258 846.5692 7.1 51.65253 32.53397 
Variance 

39.45933 3.365591 206084.5 3.334483 362.9068 113.4483 
Obervations 30 30 30 30 30 30 

Hypothesized 
Mean 
Difference 0  0  0  

Df 82  64  92  
T Stat 

10.49451  14.9084  6.288591  

P (T≤t) one-
tail 

3.97E-17  8.52E-23  5.31E-09  

T Critical one-
tail 

1.663649  1.669013  1.661585  
P (T≤t) two-
tail 

7.93E-17  1.7E-22  1.06E-08  
T Critical two-
tail 

1.989319  1.99773  1.986086  

 
Table 4.3 Statistical comparisons[111] 

 
Table 4.4 concludes the outcome of the test, revealing that the measured p is smaller 
than 0.05 (3.97 × 10−17, 8.52 × 10−23, and 5.31 × 10−9). Having all the pieces, 
we then calculate the test statistic. Knowing that t statistic can be calculated with the 
following formula:  

 𝑡 =
𝑋1−𝑋2

√𝑠1
2+𝑠2

2−2𝜌𝑠1𝑠2
𝑛

 (4.1) 

 
it can be concluded that the t-statistic (t Stat in Table 4.4) set of values [10.49, 14.91, 
6.29] is larger than the t-critical set [1.98, 1.99, 1.98]. 
This result proves that, indeed, the null hypothesis is rejected. In other words, the 
differences observed between the two analysed sets (groups) have a 95% confidence 
of not being due to chance.  
 

4.20.5  Comparisons with other HRCT analysis tools 

 

This section aims to analyze the advantages and disadvantages of the 

proposed algorithm (complex networks model) against other field technologies or 

methodologies. When considering the classical diagnosis process, it resembles an 

information-gathering procedure, where medical specialists (radiologists and doctors) 

assess the HRCT but also acquire medical data from multiple sources or lung tests to 
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complete the picture. This is not necessarily a standardized process, but involves a 

combination of analytical thinking, and “clinical sense” (based on experience and prior 

knowledge), adding to this a subjective evaluation of the patient’s illness 

progression[91]–[94].  

In terms of tools and computer-aided diagnosis, one of the most popular ones 

is Caliper [101], a paid standalone off-the-shelf solution, which uses a mix of HRCTs 

and extra Pulmonary Function Tests (PFT) to be able to measure lung expansion and 

give a potential diagnosis.  

 

Method/ 
Tool 

HRCT 
only 

Analytical Empirical Standalone Measurement 

Doctor N Y 
Y (“clinical 
sense”) 

Y Subjective 

Caliper 
[101] 

N, PFT Y N Y 
Yes, 1 
dimensional 
size 

Zrimec 
[102], 
[103] 

Y Y N Mostly Maybe 

Machine 
learning 

Y N Y Maybe Maybe 

Complex 
networks 
model 

Y Y N N 
Yes, 3 
dimensional 

 
Table 4.4 Methodology comparisons[111] 

 
There is a major drawback in research-stemmed approaches such as Zrimec 

[102], [103] or even machine learning (ML) algorithms[29]–[31], [95]  in the fact 

that these methods rely on programmatically processing the HRCT yet they do not 

yield a quantifyable measurement of the illness, or if they do, it is at best a volumetric 

one. The majority of ML algorithms are based on proper classification and pattern 

recognition but no means of quantification. 

 Unlike the hereby proposed model, these other methods (Table 4.5) do not 

offer a way of mathematically representing affected lung patches. The complex 

networks approach proposed here, however, offers a way to quantify and qualify 

pathological processes in three dimensions (3 axes). Admittedly, this method is not a 

standalone one yet, although the implementation of future improvements is already 

underway, and needs to be validated against a larger training set in order to improve 

its classification capabilities.  

 

BUPT



98 
 

5. Analysing Numerical Patterns 
 

5.1. Enhancing Imagistic Interstitial Lung Disease 

Diagnostic 

 

The proposed algorithm (described in Chapter 4) aims to provide more than 

an analysis tool for helping medical specialists assess lung HRCTs. Early detection is 

one other goal this complex networks model strives to play a role in. When it comes 

to Diffuse Interstitial Lung Diseases, it is of paramount importance that the primary 

diagnosis is corroborated with a series of previous HRCT scans from the patient’s 

medical records. This allows for specific DILD patterns to develop and be observed 

and caught in the early stages [120]. One of the challenges in identifying this category 

of pathologies is that even with the right tools and a comprehensive medical record, 

they have an unpredictable temporal evolution, depending on the patient 

characteristics. One other influential factor is the type of predominantly affected tissue 

and its progression slope: inflammation or fibrosis.  

In addition to classic imaging techniques, medical specialists use other 

functional lung investigations to assist in DILD diagnosis such as Pulmonary Function 

Tests (PFT). Recent research [121] implies that HRCT imaging could have a role to 

play in evaluating the diffusion capacity of the lungs for CO2 (DLco)[122].   

There are still other indicators such as the modified ILD-GAP (Gender, Age, 

Physiology, ILD subtype) score which can be used in enhancing or supporting DILD 

diagnosis [123], [124], however, they are usually not considered an early detection 

mechanism, but rather a way of categorizing pathologies or creating a mortality 

prediction model [125].  

5.2. Computer-aided diagnosis 

 

The field of computer-aided diagnosis is still a developing one. While some of 

the existing techniques are based on artificial intelligence, neural networks, or 

machine learning [29]–[31] there are gaps that have not been covered yet, and areas 

needing improvement. One of the weak points these software applications have is the 

fact that they fail to represent the dynamics of illness development. These tools 

function by evaluating HRCTs as a one-time operation and their outcome refers strictly 

to the current evaluated image. Overmore, some of them cannot offer a proper 

conclusion unless input data is accompanied by pulmonary function tests, for instance, 

in the case of CALIPER. 

Although the technique entailed by some of these tools involves analyzing 

image samples of various dimensions (15 x 15 x 15 px 3D cubes for Caliper, 11 x 11 

px for Zrimec [95]) none of them manage to use this type of analysis in such a way 
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that they offer an early DILD diagnosis and classification based on deterioration rate 

and affected lung volume. 

This uncharted territory offers a great opportunity for approaches such as 

pattern matching and complex networks [111]. 

The two main points that this approach aims to solve are the following: 

1. Quantitatively evaluating DILD illness evolution with the help of a complex 

networks analytical model 

2. Contributing in early detection of DILD pathologies 

5.3. HRCT lot selection 

 

The total number of analyzed HRCTs is 96, split into two categories as follows: 

1. Number of normal lung patients was 31 

2. Number of DILD-affected patients was 65, each of them having a series of 

2, 3, or even 4 HRCTs taken at different points in time 

All data used for this research study has had patient written approval to be 

used for research purposes. The patient lot contained various people with roughly the 

same age and sex profile, and for all of them, there were additional function test 

results available, gathered from previous medical consults such as PFTs ( forced vital 

capacity (FVC), spirometry, DLco). 

All HRCTs study candidates had already been analyzed and categorized by 

three specialists and were selected based on multiple preestablished DILD-related 

criteria: 

1. They all presented typical signs of the following interstitial lung diseases: 

sarcoidosis (S), idiopathic pulmonary fibrosis (IPF), organizing 

pneumonitis (OP), non-specific interstitial pneumonia (NSIP), 

hypersensitivity pneumonitis (HP). These pathologies present various 

combinations of the three basic lesions: Consolidation (C), Ground Glass 

Opacities (GGO), and Emphysema. These have also been defined within 

the previously described CN algorithm. The respective HU bands known 

in radiology have already been established in Chapter 4. 

2. Preprocessing of the HRCT set was available: an experienced radiologist 

with a vast experience in imagistic diagnosis indicated the lung areas 

which the algorithm should focus on. Each of these pulmonary sections 

presented typical expressions of the above-mentioned pathologies: NSIP, 

S, OP, HP, and IPF.  

 

HRCTs were all stored in the DICOM format and provided by the National Fibrosis 
Center database. 
 

5.4. Pathological alterations specificities 
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As with the previous experiment, the selected HU bands are the same under scrutiny 
here: Consolidation (and reticulation) (C), Ground Glass Opacities (GGO), and 
Emphysema (E). The HU bands corresponding to these types of textures are the 
previously established intervals: Emphysema [-1024,-977], GGO [-977,-703], and 
Consolidation [-100, 5)[27, p. 19], [114, p. 19], [115]. 
Each of these layers is described in the literature according to their specificities[98], 
[126]. 

Emphysema (E) has a round or even polygonal aspect[127], [128], presenting 
a low attenuation on the HRCT. On the grayscale, this translates into dark shades of 
gray or even black. 

Ground glass opacities (GGO) presents itself as a „foggy” area, less easy to 
isolate or visually separate from the neighboring elements, yet unlike the Emphysema 
lesion type, this one has an increased opacity [129]. In terms of pixel shades, this 
layer is represented by brighter shades, and lighter grays. 
 Finally, the consolidation layer (C) which is the most dense type of lesion, and 
as a result, it visually looks more compact on an HRCT. This is a consequence of the 
thickening of the intra and interlobular septa of the secondary pulmonary lobule which 
is due to interstitium injuries [130]. Pixel colors are even brighter than GGO. 
 In real life, in the case of DILD pathologies,  there is almost never a case 
where one single lesion of these is found alone. Usually, there is a combination of 
them, in different proportions, overlapping, creating patterns. These patterns might 
sometimes look like a textbook definition of such DILD, yet other times they might be 
more elusive[131]–[137].  
 This is where algorithms such as the one presented in this thesis could provide 
major support to the diagnosis process, by separating these lesion layers and helping 
doctors better differentiate between them. 

5.5. Complex Networks approach and data processing 

 

As with the experiment presented in Chapter 5 the proposed complex 

networks algorithm is run against all HRCTs in both data sets (normal and 

pathological).  

The following steps are performed, as extensively described in Chapter 4: 

1. They are sampled to 65 x 65 px sections of the relevant lung area  

2. All pixels converted to their HU equivalend  

3. Layered into the three basic lung lesions (E, GGO, C) thus obtaining three 

separate images with the isolated lesion type 

4. Convert images into complex networks, similar to [104], [105] 

5. Analyze specificities according to network metrics 

5.6. Relevant network metrics 

 

The goal of this study was to identify the progression of DILD pathologies and 

as such, the complex networks algorithm and the resulting network should reflect the 

biological lung specificities in such a way as to describe an evolving process in terms 

of shape, dimension, but also as density (which could also be translated into 

interconnectedness)[138].  

As a result, the most relevant network metrics to take into account are:  
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 Maximum degree - the maximum degree a single node can have. For a 

single vertex, this would be the total sum of in-degree and out-degree in 

a directed network, however, in an undirected network (the current case) 

there is no differentiation between them. 

 𝑑𝑒𝑔𝑚𝑎𝑥 = 𝑑𝑒𝑔(𝑉𝑥)|{ 𝑉𝑥  ∈ 𝐺(𝑉, 𝐸)  ∧  ∄ 𝑉𝑦|𝑑𝑒𝑔(𝑉𝑦) > 𝑑𝑒𝑔(𝑉𝑥)}  (5.1) 

 Total degree count: the sum of connections in the network 

 𝑇𝑑𝑒𝑔 = ∑ 𝑑𝑒𝑔(𝑉𝑥) where 𝑉𝑥  ∈ 𝐺(𝑉, 𝐸)  (5.2) 

 Average degree count: average number of connections per node. 

 𝑎𝑣𝑔𝑑𝑒𝑔 = 2 ∗
𝑇𝑑𝑒𝑔

𝑁𝑉
    (5.3) 

where 𝑁𝑉 = 𝑐𝑜𝑢𝑛𝑡(𝑉). 

 

 

 

 
(a) 

 
(c) 

 
(b) 

 
(d) 
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(e) 

                                                            

 

(f) 

 

Figure 5.1  Comparative illustrations of biological lung samples and their 
associated CN measurements[139] (a) CT section with a micronodule in the 

center (b) CN depicting micronodule CT (c) CT section with 
sarcoidosis(perilymphatic micronodules) (d) CN depicting sarcoidosis CT (e) 

CT section with honeycombing cysts (f) CN depicting honeycombing CT 

 
 

Figure 5.1 above shows different types of CT samples with affected lungs and 
their equivalent complex networks counterparts. In figure 5.1 b), d) and f) vertex size 
is proportional to its degree (number of total connections towards other nodes) and 
each one is assigned a numeric ID for better identification. Cluster size and positioning 
within the network is meant to reflect the original pixel positioning within the DICOM 
image. Vertex colorization is only meant as a visual differentiating factor between 
communities and is not correlated with the original pixel grayscale shade. Edges share 
the same characteristics and width, except for the color, given that they are not 
weighted. The HRCT slice scale in Fig. 5.1 (a), (c), and (e) are not identical as the 
main purpose of this side-by-side comparison was to show the resulting complex 
networks. 

 
These three network measurements mentioned above have been presented in 

Fig 5.1. a) shows a micronodule (circled in purple) that gets converted into a group 

(cluster) of nodes within its CN equivalent (b) (the purple group with the highest 

degree).  

In terms of total degree count (the second chosen metric) Figure 5.1 c) and 

e) present roughly the same number of total links yet the average degree metric 

shows a whole different story: while the average degree for the sarcoidosis sample is 

avgdegS≈2 (also reflected by what one can observe with the naked eye – a multitude 

of sparse nodes or small clusters with few connections), in the case of honeycombing 

cysts, avgdeghc=5.8 which translates into a smaller number of vertices yet a higher 

density of connections per node.  

As an overall conclusion for the three chosen metrics, each of them reflects 

an aspect of the analyzed lung sample: total count represents the cumulated damage 
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on the whole patch, average count suggests the confinement of these lesions while 

the maximum degree shows the highest intensity of a lesion. As a result, the two 

aspects under scrutiny (interconnectedness and size) are rightfully reflected by the 

above metrics, following the proposed paradigm of HU layering for the three HU 

bands. 

The approach proposed in this experiment (progression assessment) involved 

assessing a lot of patients which had an array of successive scans performed over a 

longer period of time. The lung sections (pertaining to the same patient) selected for 

analysis were taken from approximately the same area of the lung (for anatomical 

continuity). With the same approach as described in Chapter 4, every sample was 

split into the three HU bands (E, GGO, C) and compared to its subsequent ones.  

Progression is measured as the variation of a parameter within a certain period 

of time, and this leads to the engineering formula for speed. Nevertheless, in order 

for this speed to be a valid measurement across all individuals in a lot, it needs to be 

defined as a relative speed, rather than an absolute speed. This relative speed formula 

is defined in equation (5.4): 

 𝑣 = {

(𝑠−𝑠0)

𝑠0×𝑡
, 𝑓𝑜𝑟 𝑠0 ! = 0

𝑠

𝑡
            , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (5.4) 

where s is the metric under analysis and s0 is the equivalent point in the 

reference sample used for normalization. t is a measurement unit expressed in years, 

given that normally, DILD patients come in for control visits every year[140]. 

Calculating its value involves a fairly trivial formula, where the difference in days 

between the two HRCT dates is calculated as a delta, and then normalized by dividing 

it by the number of days in a year (considered the default as being 365 days). In the 

following equation, t0 represents the oldest HRCT taken for a patient, while t1 is the 

HRCT currently being evaluated.  

 t = DAY (DATE (t1) – DATE(t0))/365  (5.5) 

 

The default number of days in a year could just as well have been limited to 360, by 

taking the example of typical financial calculations, however, the most important 

aspect here is the normalization type consistency. For the purpose of this experiment, 

equation 5.5 above was used for normalization. 
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5.7. Results 

5.7.1 Case studies 

 

As an example of the above-proposed approach, two different patients with 

different pathologies have been selected and processed. For each of them, multiple 

samples from their HRCT were marked and compared, displaying the imagistic 

progression of their illnesses. 

Figure 5.2 shows a typical patient suffering from UIP + emphysema (CPFE 

phenotype). 

 

 

(a) 

 

 

(b)

 

(c) 
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(d) 

 

(e) 
 

(f) 

 

 

(g) 
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(h) 

Figure 5.2  Case study for lung HRCT (axial), UIP+E pattern(CPFE) patient 
progression for three consecutive years (a) t0 year - Superior lung region 

(b) t1 year - same lung region in the following year (c) t2 year – same 

region in the second year (d) Relative speed variations on the superior lung 
slice (E, GGO and C HU layers) (e) t0 year – Basal lung area (f) t1 year – 
same basal lung area in the following year (g) t2 year – same lung area in 

the second year (h) Relative speed variations for basal lung sections (E, 
GGO and C HU layers) [139] 

 

The following represents another patient with a classic NSIP pattern dynamic. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e)

 

(f) 

Figure 5.3  Case study for an NSIP+E patient progression (a) t0 year - superior 
lung area in initial t0 year (b) t1 year - superior lung area in the following 

year (c) Relative speed variations on the superior lung slice (E, GGO, C) (d) 

t0 year - basal lung area in first year (e) t1 year - basal lung region axial 
HRCT slice in the following year (f) Relative speed variations on the basal 

lung slice (E, GGO, C) [139] 
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5.7.2 Progression speed 

 

The patient HRCT sets were processed and analyzed according to the 

previously described approach. A t-test was calculated considering the relative speed 

parameter (for every one of the HU layers) compared to the DLco relative variation. 

The t-test evaluated all of the HRCTs: normal and DILD. This type of analysis could 

also be performed against the maximum degree metric, however, when talking about 

progression, dealing with peak values does not render the proper result. 

  

HU Layer Total count / 

DLco 

Avg count VS 

DLco 

Parameters 

E 1.81144865 2.297734923 t Stat 

0.038529988 0.013194925 P(T≤t) one-tail 

2.016692199 2.015367574 T Critical two-tail 

GGO -1.334981884 -1.82528253 t Stat 

0.092702764 0.035714932 P(T≤t) one-tail 

1.987934206 1.987934206 T Critical two-tail 

C -1.334981884 -1.82528253 t Stat 

0.093421672 0.035996812 P(T≤t) one-tail 

1.999623585 1.992543495 t Critical two-tail 

Table 5.1 T-test calculus for the relative speed of progression in HU bands 
against DLco [139] 

Looking at the results, Table 5.1 shows that the null hypothesis is rejected by 

the E band and the values corresponding to Average count / DLco [2.297734923; 

0.013194925; 2.015367574]. 

 

5.7.3 Early detection hypothesis validation 

 

To assess whether early detection is possible with the described method, the 

patients were divided into two sets of HRCTs: the normal ones, and the cases with 

early signs of DILD having some fairly decent functional characteristics (0-3 GAP-ILD 

points, DLco between 70-85%). DLco values were represented as an interval centered 

around the 80% standard limit in order to be able to include the early stages of 

affected alveolar-capillary membranes. The evaluated metrics (maximum degree, 

average count, total count) are shown in Fig 5.6 and then a t-test is performed in 

Table 5.2. 

 

BUPT



109 
 

 

 

(a) 

 

(b)

 

 

(c) 

Figure 5.4  Network metrics on Borderline normal / Normal – Emphysema layer 
(a) Max degree (b) Total count (c) Avg count [139] 

 

 

(a) 

 

(b) 

 

 

(c) 

Figure 5.5  Network metrics on Borderline normal / Normal - GGO layer (a) Max 

degree (b) Total count (c) Avg count [139] 

BUPT



110 
 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.6  Network metrics on Borderline normal / Normal - Consolidation layer 
(a) Max degree (b) Total count (c) Avg count [139] 

 

Table 5.2 below presents the t-test calculations for the three HU layers and the 

aforementioned metrics, highlighting the series rejecting the null hypothesis. 

 

HU 

Layer 

Max Degree Total count Avg Count Parameters 

E −0.357327012 −0.33960631 −1.194455411 t Stat 

0.361362738 0.367964892 0.119667428 P(T ≤ t) one-tail 

2.02107539 2.02107539 2.02107539 t Critical two-tail 

GGO 2.362901118 2.496174465 2.132901092 t Stat 

0.016568972 0.012345754 0.023097162 P(T ≤ t) one-tail 

2.144786688 2.131449546 2.093024054 t Critical two-tail 

C 2.787128882 2.910253494 1.723111496 t Stat 

0.006593367 0.005384188 0.048371727 P(T ≤ t) one-tail 

2.119905299 2.131449546 2.055529439 t Critical two-tail 

Table 5.2 Statistical t-test results for borderline and normal lungs [139] 
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5.8. Discussion 

 

The analysis of a patient suffering from UIP and Emphysema is presented in Figure 

5.2. In this context, there are two regions included (superior and basal), being 

considered a classical imagistic progression of such pathology.  

In terms of relative variation speed on each HU band, the complex networks proposed 

model offers these values. The calculated speed is considered to be typical to a 

selected area and displays a relative variation in characteristics within a time frame. 

This type of measurement is meant to underline rapid changes in lung tissue 

consistency and is not an absolute value. Another advantage of this approach is its 

granularity, given that the complex networks algorithm analyses affected lung tissue 

with an area of around 3 mm [111], which is quite small for the human eye to be able 

to detect, considering that a medical specialist looks at the whole slice and all of the 

overlapping layers as a whole, and not separately. 

Analyzing the relative speed variation with regards to the patient in Fig. 5.2 

there are certain visible aspects reflected through this metric. Although on the 

Emphysema layer both the superior and basal affected areas evolve in year 1 and 

year 2, their progression speeds are definitely different. The inferior (basal) area is 

almost 10 times slower in deteriorating than the one in the upper part of the lung, 

where the cumulated emphysema and honeycombing areas are also better expressed.  

In terms of Consolidation, the density of this layer appears to have increased 

both in the upper part and the basal one. This type of progression can be categorized 

as a usual pathological process of lesion progression.  

There are also some small GGO variations highlighted by the proposed 

method, more precisely in the lower plane (Fig 5.2 e,f,g,h). This type of granularity 

in detecting small-scale changes has proved to be more efficient than what medical 

specialists could detect when looking at the same HRCT slices. Clinical patient data 

from the following year (year 1) suggests that some symptoms had slightly worsened, 

unlike year 2 however. This explains the subtle variation in the calculated relative 

speed and validates the complex networks model capability for early detection. The 

results from the following year, however, suggest that the functional status is almost 

unchanged, suggesting the idea that the subtle change detected by the complex 

network model was indeed a premature one. 

For the second patient with a NSIP case, presented in Fig 5.3, the relative 

speed variation in the case of Emphysema shows a definite increase on the total count 

axis, while the average degree shows only a medium increase. The GGO layer shows 

a small up variation in t1 compared to the initial evaluation while the Consolidation 

layer also has an up variation reflected by the multilayer cysts and their walls. 

Functional parameters show no significant variation, which also comes to show that 

the complex networks method has detected a premature change. 

In terms of the whole group of patients (both normal and borderline), Table 

5.1 validates the testing of hypothesis 1, and more precisely, that the proposed 

algorithm has the capability of characterizing DILD progression in an accurate and 

quantitative manner. This theory is proved to be true due to the fact that comparison 
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results between DLco and complex networks measurements display valid 

resemblance. The sole outlier is the Emphysema layer (column Average count versus 

DLco) which has been highlighted accordingly in the table. The complex networks 

metrics have shown to be similar to the biological terms for the Emphysema layer, 

however, the average intensity proved to be more suitable to describe it than its 

equivalent functional parameter variance.   

Given the results shown in Figure 5.5 and Table 5.2, it can be concluded that 

this direction requires a more in-depth analysis. No early detection has been proven 

on the Emphysema layer due to having no statistical difference between the early 

diagnosis and the normal one. In terms of GGO and Consolidation, however, the 

statistical results show that on these layers there are notable differences and the 

proposed model can detect changes. In the case of GGO, the null hypothesis is 

rejected. As for the Consolidation layer, the maximum degree and total count 

measurements successfully allow for early DILD detection, but not on account of the 

average degree.  To sum up, the complex networks method has been proven effective 

in the case of well-contoured consolidation lesions, but cannot yet detect diffuse early 

consolidations in their premature state. In conclusion, with regards to the second 

hypothesis, the complex networks model is effective in detecting early changes on 

the GGO band, partially true on the Consolidation band and false on the Emphysema 

band. 
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6. Conclusions and personal contributions 
 

6.1. Conclusions to the Hybrid 3D Network Layout 

Visualization Algorithm 

 

The Hybrid layout proposed in Chapter 3 aims to become a viable and 

appealing choice when talking about 2D and 3D graph layout solutions. This type of 

algorithm has proved that it can successfully fill the gap or the missing piece in 

network software which was until now lacking in terms of network structure, from a 

visual point of view. This approach offers a special type of view (2D and 3D) into the 

network elements, and also considers the user’s point of interest (centering the user’s 

cluster of interest as a 3D entity). It also enhances the network view with a gridded 

aspect, which gives a more practical approach to graph representation, offering clear 

quantifiable visual queues (graded xOyz axes). 3D graph interaction and manipulation 

are also possible with this solution, giving users the possibility to turn the resulting 

image on all axes. 

The additional third dimension (Oz axis) offers more space for a better node 

distribution across the entire 3D canvas, as well as providing a layering of elements, 

giving a different significance to each of them. 

Further improvements aim at improving generation time, especially in terms 

of edge plotting, as well as reducing edge crossings, thus enhancing graph readability. 

 

6.2. Conclusions to Approach 2 – A novel method for 

Computer Tomography image interpretation 

A novel complex networks-based method that transforms and interprets 

HRCTs has been developed and tested. This approach analyzes medical data in a three 

dimension manner, involving mathematical function fitting. The overview and 

algorithm development sections in Chapter 4 describe the algorithm stages in a 

detailed manner.  

There is a solid argumentation regarding the analyzed sample size (65 x 65 

px) and a comparison with existing field tools justifies taking a step further and 

enlarging the interest area. Sample dimensions are also consistent with the 

anatomical details (secondary pulmonary lobule).  

Vertex connectivity and the associated radial distance selection are supported 

by an extensive experiment regarding pixel similarity criteria corroborated with 

complex networks attachment principles, as well as evaluating the role of network 

density and clusterization in the process of medical diagnosis. 

The proposed algorithm uses Hounsfield Unit intervals both for image layering 

and simultaneously as similarity criteria for potentially linked nodes, allowing for more 
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granularity when observing lung injuries. These ranges are also dependent on the 

device and resolution of the machine used to perform the HRCTs. 

The results section presents a full algorithm execution and its comparative 

outcome for two sample patients, a normal one (baseline sample)  as well as a 

pathological one.  

Furthermore, the discussion section justifies the coherence and correctness of 

the complex networks-based algorithm from a Systems Science standpoint, by 

entailing the metric of degree distribution as a central device for system 

representation.  We also showcase clusterization as a network measurement which 

shows distinct discrepancies between the two studies HRCT lots: healthy (normal) and 

pathological patients. From a Medical Science viewpoint, the model is validated by its 

faithful and fine-grained representation of clinical data and this can prove to be crucial 

in the diagnosis process. 

Finally, the comparisons with other present days tools underline the 

advantages of using the proposed method: offering a comprehensive measuring 

instrument for qualitative and quantitative analysis.  

Among the drawbacks, we mention its inability to work as off-the-shelf 

software yet, as well as the particularly modest lot size used for testing it. 

Improvements regarding the aforementioned are to be addressed in future research, 

with a much larger training set, as well as user-friendly customizations (a graphical 

user interface) which would offer it a more appealing look. 

In conclusion, the new complex networks algorithm has been shown to be 

extremely useful in the DILD diagnosis process, by transforming lung HRCTs into 

quantifiable and qualifiable structures. 

6.3. Conclusions to Approach 3 - Enhancing Interstitial 

Lung disease diagnostic 

 

This complex networks approach has been developed as a means of support 

for the process of diagnosing and managing DILDs. For this purpose, there were two 

hypotheses being evaluated: early detection and accurately evaluating disease 

progression, as these are the two main factors that medical specialists have been 

struggling with. Especially when it comes to IPF, for instance, existing techniques or 

technologies in the field have, so far, not been able to provide effective answers.  

For the first of the proposed hypotheses, regarding progression, the proposed 

complex networks algorithm and overall approach have proven to be a success. Given 

its precision and 3 mm granular lesion detection, this approach has shown a very 

good connection with the clinical symptoms at such a level that could not be reached 

by the usual functional tests. It is worth noting here that the Emphysema layer 

constitutes an exception to this conclusion (average count measurement), however, 

this is easily surpassed by the other five metric axes. 

As for the second hypothesis, regarding early detection, the best results have 

been for the GGO and Consolidation band. From a medical perspective, the GGO and 
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Consolidation layers and their expression are very important in detecting common 

DILD states. This is an essential capability demonstrated by an algorithm of this kind, 

and is very fitting to DILD, unlike other software in the field such as Caliper. 

In terms of challenges that are still considered for improvement, this approach 

still takes a fair amount of time, which is directly correlated to the dimension of the 

analyzed window. Added to this is the time spent preprocessing the HRCT slices, but 

this can be overcome through the use of other CAD rather than manually. 

Future improvements involve integrating this algorithm into a larger software 

solution and combining swifter ML segmentation and pattern recognition 

competencies with the steadier but more granular and precise complex networks in-

depth analysis.   

 

6.4. Personal Contributions 

 

The aim of the current research paper has been to offer insight into biomedical 

patterns via two major complex networks approaches: an innovative visualization 

layout for complex networks as well as a Computer Aided Diagnosis algorithm based 

on complex networks.  

The first part of this thesis deals with a hybrid 3D layout algorithm developed 

for visualizing complex networks (biological data) in a completely new manner: 

combining 2D and 3D dimensions to display and enhance data features that might 

otherwise be underrepresented with other available layout tools. Thus, regarding 

personal contributions, the following have been achieved: 

 I conducted an analysis and evaluation of current state-of-the-art tools 

for complex networks visualization published in [4], [9], [13]; 

 I proposed and implemented a new force-directed complex networks 

layout algorithm in a 3D space published in [83], [84]; 

 I gathered and tested (performance-wise) and fine-tuned against multiple 

various-sized data sets pertaining to the biology domain; 

 I implemented a new co-variance approach for vertex similarity and 

positioning within the network layout [83]; 

 I conducted a comparison between the current approach and other state-

of-the-art tools[83], [84]. 

 

Considering the second and third parts of this thesis (Chapters 4 and 5) 

regarding the Novel Method for Computer Tomography image interpretation, the 

following contributions have been brought: 

 I participated in the multidisciplinary approach of creating a complex 

networks method for modeling lung HRCTs published in [111], [139]; 

 I proposed and implemented the HRCT processing algorithm based on 

complex networks published in [111]; 
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 I created and defined a model responsible for layering and analyzing 

DICOM images according to the three dimensions: Emphysema, GGO, and 

Consolidation[111];  

 I processed and curated all data sets used for this approach, after their 

inclusion in the lot by the medical couterparts; 

 I participated in defining a proper window size (crop dimensions of 65 x 

65 pixels) for the analyzed data sets, so as to satisfy two major 

requirements: medical relevance (covering the basic lung unit – 

secondary pulmonary lobule) and delivering an adequate performance 

and throughput; 

 I conducted an in-depth analysis of various radial distance dimensions 

and the impact or relevance of such values for the final complex networks 

model of lung tissue [111], [139]; 

 I defined a similarity metric (delta) based on HU bands (Emphysema, 

GGO, Consolidations) and validated it against medical data, together with 

a medical team of specialists [111], [139]; 

 I identified the mathematical functions fitting the complex networks 

degree distributions associated with normal lungs and affected 

lungs[111], [139]; 

 I conducted an analysis for assessing the accuracy of such mathematical 

functions in the case of normal lungs and diseased lungs, as well as the 

extent to which they reflect System Science as well as Medical 

Science[111], [139]. 

 I validated the proposed model from a Network Science perspective[111], 

[139].  

 I analyzed the model for three different complex networks metrics: total 

count, average degree, and maximum degree[111], [139]. 

 I participated in defining a new measurement type and mathematical 

formula for fibrosis progression speed. Based on the classical notion of 

speed (defined as variation over time), the new relative variation speed 

formula was proposed[139].  

 

6.5. Future research directions 

 

The algorithms developed and proposed in this research paper are two 

different approaches to visualizing and identifying patterns in the realm of biomedical 

data. However complex they are, there still are multiple points where improvements 

could lead to better and more accurate results. 

Regarding the 3D Hybrid visualization layout algorithm, performance 

improvements would involve: faster processing and rendering times, reduce edge 

overlapping, refining the force-directed formula for node placement, customizing it 

with new metrics which would enhance different network aspects, and developing a 

user-friendly graphical user interface (GUI). 
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Referring to the second part of the thesis and the complex networks HRCT 

processing algorithm, the following enhancements are planned to be developed: an 

automated system for lung pre-segmentation, a continuous automated assessment 

across the whole lung in all three dimensions, integrating an artificial intelligence 

classifier for identifying outlier lung regions, a user-friendly GUI to render it more 

appealing to non-technical users, using cloud technologies for storing and processing 

HRCTs – allowing for more processing resources and better performance.  

Potential future developments also aim to accommodate the analysis of other 

categories of human tissue and associated ailments, given that this method is generic 

enough to be adapted to any type of entry data, as long as it is represented in the 

standardized DICOM format. 
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6.6. Publications 

 

To this date, I have the following publications submitted, accepted and 

presented at international conferences, journals or books: 

1. Ancușa Versavia, Broască Laura. (2015). “A Method to Pinpoint 

Undiscovered Links in Genetic and Protein Networks”. Studies in health technology 

and informatics. 210. 771-5. 10.3233/978-1-61499-512-8-771.  

2. Broască Laura, Ancușa Versavia, Ciocârlie Horia. (2016). “Bioinformatics 

Visualisation Tools: An Unbalanced Picture”. Studies in health technology and 

informatics. 228. 760-4.  

3. Broască Laura, Ancușa Versavia-Maria, Ciocârlie Horia (2017). “Social 

Media as Medical Validator”. BRAIN. Broad Research in Artificial Intelligence and 

Neuroscience, 8(3), pp. 47-56.  

4. Broască Laura, Ancușa Versavia, Ciocârlie Horia. (2019). “A Qualitative 

Analysis on Force Directed Network Visualization Tools in the Context of Large 

Complex Networks”. 656-661. 10.1109/ICSTCC.2019.8885641.  

5. Broască Laura, Ancușa Versavia, Ciocârlie Horia. (2020). “A 3D Surface 

Fitting Layout for Complex Networks Visualization”. Studies in health technology and 

informatics. 272. 362-365. 10.3233/SHTI200570.  

6. Broască Laura, Ancușa Versavia, Ciocârlie Horia. (2020). “Towards a 

Hybrid Layout for Complex Networks Visualization”. 118-123. 

10.1109/ICSTCC50638.2020.9259656.  

7. Trușculescu Adriana, Broască Laura, Ancușa Versavia, Manolescu Diana, 

Tudorache Emanuela, Oancea Cristian. (2021). “Managing Interstitial Lung Diseases 

with Computer-Aided Visualization”. In: Kumar Bhoi, A., Mallick, P.K., Narayana 

Mohanty, M., Albuquerque, V.H.C.d. (eds) “Hybrid Artificial Intelligence and IoT in 

Healthcare”. Intelligent Systems Reference Library, vol 209. Springer, Singapore 

10.1007/978-981-16-2972-3_12.  

8. Broască Laura, Trușculescu Ana, Ancușa Versavia, Ciocârlie Horia, Oancea 

Cristian-Iulian, Stoicescu Emil, Manolescu Diana. (2022). “A Novel Method for Lung 

Image Processing Using Complex Networks”. Tomography (Ann Arbor, Mich.). 8. 

1928-1946. 10.3390/tomography8040162.  

9. Trușculescu Ana, Manolescu Diana, Broască Laura, Ancușa Versavia, 

Ciocârlie Horia, Pescaru Camelia, Vaștag Emanuela, Oancea Cristian. (2022). 

“Enhancing Imagistic Interstitial Lung Disease Diagnosis by Using Complex 

Networks”. Medicina. 58. 1288. 10.3390/medicina58091288.  

10. Awarded 1st prize for best paper at the 27th Congress of the Romanian 

Society of Pneumology (Sinaia 2-6 Nov 2022) for the paper: Trușculescu Ana, Ancușa 

Versavia, Broască Laura, Manolescu Diana, Pescaru Camelia, Oancea Cristian. 

“Diffuse Interstitial Lung Diseases Computer-Aided Imaging Diagnosis, with the help 

of Complex Networks”.   
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