

HYBRID ANALYTICAL-
SIMULATION MODEL

FOR PERFORMANCE PREDICTION
OF DISTRIBUTED SYSTEMS

Teză destinată obţinerii

titlului ştiinţific de doctor inginer
la

Universitatea “Politehnica” din Timişoara
în domeniul CALCULATOARE ŞI TEHNOLOGIA

INFORMAŢIEI
de către

Ing. Cosmina CHIŞE

Conducător ştiinţific: prof.univ.dr.ing Ioan JURCA.

Referenţi ştiinţifici: prof.univ.dr. Dana PETCU.

 prof.univ.dr.ing. Ioan SALOMIE.

 prof.univ.dr.ing. Vladimir-Ioan CREŢU.

Ziua susţinerii tezei: 4 noiembrie 2011.

BUPT

Seriile Teze de doctorat ale UPT sunt:

1. Automatică 8. Inginerie Industrială
2. Chimie 9. Inginerie Mecanică
3. Energetică 10. Ştiinţa Calculatoarelor
4. Ingineria Chimică 11. Ştiinţa şi Ingineria Materialelor

5. Inginerie Civilă 12. Ingineria sistemelor
6. Inginerie Electrică 13. Inginerie energetică
7. Inginerie Electronică şi Telecomunicaţii 14. Calculatoare şi tehnologia informaţiei

Universitatea „Politehnica” din Timişoara a iniţiat seriile de mai sus în scopul
diseminării expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul
şcolii doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006,
tezele de doctorat susţinute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica – Timişoara, 2011

Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea
acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea
ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă
formă este permisă numai cu respectarea prevederilor Legii române a dreptului de

autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea
Universităţii „Politehnica” din Timişoara. Toate încălcările acestor drepturi vor fi
penalizate potrivit Legii române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,
tel. 0256 403823, fax. 0256 403221

e-mail: editura@edipol.upt.ro

BUPT

Cuvânt înainte

 Teza de doctorat a fost elaborată pe parcursul activităţii mele în cadrul
Departamentului de Calculatoare al Facultăţii de Automatică şi Calculatoare din
cadrul Universităţii „Politehnica” din Timişoara, activitate desfăşurată concomitent cu

profesia de inginer software în cadrul companiei Alcatel-Lucent Romania.

 Mulţumiri deosebite se cuvin conducătorului de doctorat prof.dr.ing. Ioan
Jurca, pentru îndrumare şi facilitarea accesului la materiale din domeniul ingineriei
performanţei software. Dl. prof. Jurca a avut încredere în mine chiar şi atunci când
am întâmpinat greutăţi în abordarea tematicii tezei. Datorită experienţei sale, a avut
răbdare şi a reuşit să evidenţieze cu claritate valoarea activităţii de cercetare pe
care am desfăşurat-o, activitate cu atât mai importantă cu cât este prima abordare

a acestui domeniu de actualitate în cadrul departamentului. În plus faţă de noua
abordare teoretică propusă, partea practică a presupus o documentare temeinică,
abilităţi de implementare a unor algoritmi specifici şi a unui model de simulare,
precum şi interfaţarea celor două metode.

Un rol important în formarea mea ca om l-au avut părinţii mei, Maria şi

Pavel. Din fericire, am avut în tatăl meu un exemplu demn de urmat, prin activitatea
de cercetare desfăşurată de-a lungul multor ani, într-un domeniu diferit, al ştiinţei
materialelor, obţinând titlul de dr.ing. când eu eram studentă în primul an de
facultate.

Aş dori să mulţumesc de asemenea prietenilor care mi-au rămas alături şi

m-au încurajat chiar dacă preocupările de cercetare mi-au ocupat o mare parte din

timpul liber. Totodată, adresez mulţumiri colegilor de la locul de muncă pentru
apreciere, înţelegere şi susţinere. Colegii din cadrul Departamentului de Calculatoare
şi specialiştii întâlniţi la simpozioanele şi conferinţele la care am avut onoarea să
particip cu lucrări m-au ajutat sa-mi lărgesc perspectiva ştiinţifică prin discuţiile
prolifice şi sugestiile constructive aduse.

Le sunt recunoscătoare tuturor cadrelor didactice care au contribuit la

formarea şi dezvoltarea competenţelor mele intelectuale şi profesionale, începând
din şcoala primară până la anii liceului şi facultăţii.

Timişoara, noiembrie 2011 Cosmina Chişe

BUPT

Chişe, Cosmina

Hybrid analytical-simulation model for performance prediction
of distributed systems

Teze de doctorat ale UPT, Seria 14, Nr. 3, Editura Politehnica, 2011,
130 pagini, 59 figuri, 12 tabele.

ISSN:2069-8216
ISSN-L:2069-8216

ISBN:978-606-554-373-7

Cuvinte cheie: Performance analysis, distributed systems, hybrid
model, solver, simulation, LQN, MVA, UML MARTE, application

Rezumat

Distributed systems are at risk of being useless, since design flaws
often lead to critical performance issues at deployment, when usually
they are too costly to fix. Software Performance Engineering is

concerned with modeling and prediction of performance parameters
early in the software development process. This thesis proposes a
new hybrid analytical-simulation approach for performance model
solving. The UML model of the analyzed system is transformed into a

performance model hierarchically decomposed into layers, in order to
be able to address submodels. Simulation results for these submodels
are later used in the higher level submodels by the analytical solver.
The proposed approach, implemented by the author in a tool called
PHYMSS (Performance Hybrid Model Solver and Simulator), is proven
to be faster than simulation and more accurate than analytical
calculus.

BUPT

Contents

Contents 5

List of Figures 9

List of Tables 11

List of Abbreviations 13

1 Introduction 17
1.1 Role of Performance Analysis in Distributed Systems Development 17
1.2 Performance Analysis Automation. Standardization of Distributed Systems

Modeling Languages . 18
1.3 Thesis Objectives . 19
1.4 Organization . 19

2 Software Performance Engineering Approaches 21
2.1 Software Performance Models and Solution Procedures 21

2.1.1 Intermediate Performance Models . 22
2.1.2 LQN Methodology and Model Solvers 26
2.1.3 Simulation Models and Simulators . 30
2.1.4 Methodologies for Component-Based Systems 35

2.2 Interpretation of Performance Results . 36
2.3 Hybrid Approaches . 38
2.4 Summary . 41

3 Standardization of Distributed Systems Modeling Languages 43
3.1 Transformation Methodology: Input Models to Performance Models 43
3.2 Automation of Conversion and Performance Analysis. Input Formalisms for

Tools. 44
3.3 Frameworks . 51
3.4 UML 2 or MARTE-Compliant Methodologies and Tools 54
3.5 Summary . 55

4 Hybrid Analytical/Simulation Model and Solver 57
4.1 Novel Performance Model . 57

4.1.1 Hybrid Meta-Model Overview . 57
4.1.2 Model Decomposition . 58
4.1.3 Simulation Submodel . 60

5

BUPT

4.1.4 Queueing Network Model/Submodels 62
4.2 Hybrid Solver . 63

4.2.1 Iterative Process . 63
4.2.2 Analytical Algorithm Extensions . 67

4.3 Summary . 69

5 Transformation of UML MARTE Models to the Hybrid Model 71
5.1 UML 2.0 Diagrams and the MARTE Profile 71
5.2 Transformation of Deployment Diagrams . 71
5.3 Transformation of Use Case and Activity Diagrams 73
5.4 Transformation of Sequence Diagrams . 74
5.5 Summary . 75

6 Performance Hybrid Model Solver and Simulator 79
6.1 Tool Overview . 79
6.2 Performance Prediction Process with PHYMSS 80
6.3 Implemented Performance Analysis Methods 82
6.4 User’s Guide . 85
6.5 Summary . 88

7 Case Studies 91
7.1 Input Models . 91
7.2 Validation of Implementation and Improvements for Pure Analysis Methods . 91

7.2.1 Help Desk System . 91
7.2.2 Simulation Model Validation . 92
7.2.3 Analytical Enhancements Validation 94

7.3 Real Distributed System for PHYMSS Validation 96
7.3.1 System Model . 96
7.3.2 Performance Results . 99

7.4 Improving System Design: Early Problem Detection by Performance Analysis . 99
7.4.1 Initial Design . 100
7.4.2 Design Improvements . 104
7.4.3 Validation of Improvements to Analytical Estimations 107
7.4.4 Heuristic Rules for Choosing the Simulation Level 107
7.4.5 Performance Results . 107

7.5 Summary . 108

8 Contributions and Future Work 109
8.1 Contributions . 109
8.2 Publications . 110
8.3 Future Work Directions . 112

6

BUPT

A Pure Analytical Solving Techniques 113
A.1 Bard-Schweitzer Algorithm for Closed Queueing Networks (A-MVA) 113
A.2 Chandy-Neuse Algorithm for Closed Queueing Networks (Linearizer) 114
A.3 MVA Algorithm for Mixed Queueing Networks 115

B The UML MARTE Profile 117

C Open Model Behavior Described Step by Step 119

Bibliography 121

7

BUPT

8

BUPT

List of Figures

2.1 CSM meta-model class diagram [97] . 23
2.2 Performance Model Interchange Format notation: QN meta-model [116] . . 25
2.3 SPE interchange process: PMIF and S-PMIF [113] 27
2.4 Layered Queueing Network example [102] 28
2.5 Notation for Layered Queueing Network replicated servers [83] 30
2.6 Layered Queueing Network component model: application server [127] . . . 31
2.7 Layered Queueing Network component assembly model example [127] . . . 31
2.8 Performance prototyping process [57] . 33
2.9 UML-PSI overview [73] . 34
2.10 UML-PSI simulation model [13] . 35
2.11 The simulation process for CAPPLES [110] 36
2.12 Performance results interpretation automated process [34] 37
2.13 Classification of hybrid models [108] . 39
2.14 Hybrid modeling [108] . 40

3.1 Early Performance Aware Development (E-PAD) process [96] 44
3.2 NFP integration framework architecture [33] 45
3.3 XPRIT tool block diagram [36] . 46
3.4 UML-QNE model transformation [12] . 48
3.5 UML-QNE QN model [12] . 48
3.6 Attributes of CSM meta-classes [97] . 49
3.7 Mapping of UML SPT stereotypes to CSM types [97] 50
3.8 Intermediate Model example [56] . 50
3.9 PUMA approach [99] . 51
3.10 Unified Performance Engineering (UPE) framework architecture [121] 52

4.1 Hybrid meta-model [31] . 58
4.2 PerformanceObject base class . 59
4.3 Performance model layers based on nested calls from sequence diagrams . . 59
4.4 Performance model levels following control flow in activity diagrams 60
4.5 Extensions of the simulation action model to support nested calls 61
4.6 Transformation of composite steps: nested calls become sequential messages 62
4.7 Initial hybrid iterative approach: three step iterations applied on fine-grained

analytical submodels . 64
4.8 Hybrid iteration hierarchical pseudo-code [31] 66
4.9 Hybrid iteration sequential pseudo-code . 67

5.1 Deployment diagram with two layers . 72
5.2 Deployment diagram with one layer . 72
5.3 Annotated use case and activity diagrams 73

9

BUPT

5.4 Annotated sequence diagram . 74
5.5 Connection between messages and operations in sequence diagrams: Sen-

tEvent attribute . 75
5.6 Annotations for steps in sequence diagrams 76

6.1 PHYMSS block diagram [30] . 79
6.2 Role of PHYMSS in the prediction process [31] 81
6.3 PHYMSS components . 82
6.4 PHYMSS menu . 85
6.5 PHYMSS toolbar . 85
6.6 PHYMSS operation flow . 86
6.7 PHYMSS Simulation Status Panel . 87
6.8 PHYMSS Configuration Parameters Panel 88

7.1 Help Desk System model: pseudo-code for scenarios 92
7.2 Help Desk configuration file for analytical method validation 95
7.3 Help Desk one-step scenarios for analytical method validation 95
7.4 Authentication System sequence diagram [31] 97
7.5 Authentication step demand (msec) distribution histogram 98
7.6 Authentication System configuration file 98
7.7 AATC initial use case, deployment and activity diagrams 101
7.8 AATC configuration file for the closed model 102
7.9 AATC improved deployment and activity diagrams 104
7.10 AATC best diagrams: deployment and Landing activity diagram 106

B.1 MARTE performance extensions for workload, behavior and time observations
[89] . 118

C.1 Computation of performance parameters for the Help Desk system 119

10

BUPT

List of Tables

5.1 Transformation rules from UML diagrams to the performance model 77

7.1 Input performance parameters for Help Desk System 92
7.2 Help Desk simulation results compared to computed mean values 94
7.3 Offset between simulation results and step-by-step calculus 94
7.4 Analytical solver results validation . 96
7.5 Analytical solver validation: detailed response time comparison [sec] 96
7.6 Measured input parameters for the Authentication System 97
7.7 Response time values comparison . 99
7.8 Performance analysis results for initial design. 103
7.9 Performance analysis results for improved design. 105
7.10 Performance analysis results for best design. 105
7.11 Performance analysis results for best design, using A-MVA 107

11

BUPT

12

BUPT

List of Abbreviations

A-MVA Approximate-MVA (Bard-Schweitzer estimation)

AADL Architecture Analysis Description Language

AATC Airport Air-Traffic Control system

ADL Architectural Description Language

AMG Analysis Model Generator

AQN Augmented Queueing Network

C2P CSM to Performance model transformation

CAPPLES CApacity Planning and Performance analysis method for the migration of
LEgacy Systems

CHAM CHemical Abstract Machine

CLISSPE CLient/Server SPE

CQN Closed Queueing Network

CSM Core Scenario Model

CTMC Continuous Time Markov Chain

DES Discrete Event Simulation

DESMO-J Discrete Event Simulation and Modeling in Java

DOM Domain Object Model

DSA Deterministic Service Approximation

E-PAD Early Performance Aware Development

EG Execution Graph

EIA/CDIF Electronic Industries Association/CASE Data Interchange Format

EQN Extended Queueing Network

EQNM Extended Queueing Network Model

FAQ Frequently Asked Questions

FP Flight Plan

13

BUPT

14

GQAM Generic Quantitative Analysis Modeling

GreatSPN GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets

GRM Generic Resource Modeling

GSMP Generalized Semi-Markov Process

GSPN Generalized Stochastic Petri Net

GUI Graphical User Interface

IM Intermediate Model

IPM Intermediate Performance Model

JS Java Script

KIB Knowledge Interchange Broker

KLAPER Kernel LAnguage for PErformance and Reliability analysis

LAN Local Area Network

LGSPN Labeled Generalized Stochastic Petri Net

LQML LQN Modeling Language

LQN Layered Queueing Network

LQNS Layered Queueing Network Solver

LRT Left and Right Truncated

LT Left Truncated

LTS Labeled Transition System

MARTE Modeling and Analysis of Real Time and Embedded systems

MDA Model Driven Architecture

MDD Model Driven Development

MIL Model Implementation Layer

MML MetaModeling Layer

MOF Meta Object Facility

MOSES Modeling Software and platform architEcture in UML 2 for Simulation-
based performance analysis

MPC Model Predictive Control

MSC Message Sequence Charts

BUPT

15

MTL (Meta Transformation Language

MVA Mean Value Analysis

NFP Non-Functional Property

NICE Naval Integrated Communication Environment

NUMA Non-Uniform Memory Access

OMG Object Management Group

OQN Open Queueing Network

OR/MS Operations Research/Management Science

PAM Performance Analysis Modeling

PCM Palladio Component Model

PEPA Performance Evaluation Process Algebra

PHYMSS Performance Hybrid Model Solver and Simulator

PMIF Performance Model Interchange Format

PUMA Performance by Unified Model Analysis

QN Queueing Network

QNM Queueing Network Model

QoS&FT Quality of Service and Fault Tolerance

QVT Query/View/Transformation

RPC Remote Procedure Calls

RSA Rational Software Architect

RT Right Truncated

S-PMIF Software Performance Model Interchange Format

SCM Supply Chain Management

SDL Standard and Description Language (Telelogic Tau G2)

SimML Simulation Modeling Language

SLA Service Level Agreement

SMG Simulation Model Generator

SPA Stochastic Process Algebra

BUPT

16

SPE Software Performance Engineering

SPN Stochastic Petri Net

SPT Schedulability, Performance and Time

TL Tool Layer

TVL Tag Value Language

U2C UML to CSM transformation

UCD Use Case Diagram

UCM Use Case Map

UCM2LQN UCM to LQN transformation

UCMNav UCM Navigator

UML Unified Modeling Language

UML-PSI UML Performance Simulator (UML−Ψ)

UML-RT UML-Real-Time

UPE Unified Performance Engineering

VSL Value Specification Language

WPF Windows Presentation Foundation

XMI XML Metadata Interchange

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

BUPT

1. INTRODUCTION

1.1. Role of Performance Analysis in Distributed Systems Development

The fast expansion of computer networks during the last two decades led to un-
precedented possibilities in the development of larger, more powerful applications that rely on
resources belonging to several interconnected machines. Such distributed systems need to be
designed for performance and verified before actual deployment. If not anticipated properly,
the inherent communication delays for remote calls, the access policies for shared resources
and the real traffic conditions (including high load periods) may lead to early decommissioning
of the application. Experience has shown that most problems come from application design,
but by the time the application is finished it is too late to fix them because the costs are too
high.

Performance prediction based on Model-Driven Development (MDD) has an impor-
tant role, helping developers make informed design decisions. In the last decade several
research directions have been pursued, covering the entire performance prediction process:
from input languages, and model transformation techniques, to model solvers or simulators
and interpreters of performance results, providing feedback about the design and even sugges-
tions of improvement. Current performance prediction tools rely on analytical or simulation
models. Analytical models are mathematical representations of the system, solved in order to
obtain performance parameters, such as response time, throughput and resource utilization.
The same parameters can also be measured when using simulation models, executable sys-
tems, having a similar behavior to the original system. While analytical models can be solved
fast, they usually need simplifying assumptions and thus cannot be applied to systems with
complex behavior. On the other hand, simulation models can be derived from any kind of
system, regardless of the complexity, the drawback being the large number of iterations that
need to be performed to obtain sufficient measurements from which relevant mean values of
parameters can be computed.

This thesis presents a hybrid approach: it combines analytical solving with simulation
in order to benefit from the strengths of both prediction methods. The performance model
is based on a simulation model that can be treated as a Layered Queueing Network (LQN)
model [125] during the analysis process. The approach relies on the hierarchical decomposition
used by LQNS, a popular LQN solver presented in [48], in order to be able to address system
submodels. Simulation is inserted from a certain level downwards, and yields performance
results for submodels or groups of submodels, results that can be later used in the higher level
submodels by the analytical solver.

17

BUPT

18 Introduction - 1

1.2. Performance Analysis Automation. Standardization of Distributed
Systems Modeling Languages

Performance evaluation assumes obtaining performance parameters, such as response
time, throughput and resource utilization, based on preliminary information about the system.
Since most developers do not have performance analysis knowledge, performance analysis au-
tomation via tools was addressed, mostly after year 2000, when the most important analysis
techniques had already been theoretically defined. These tools extract the performance model
from the system description annotated with performance information and provide performance
results. Complete information on the system is not available, since the development process
is ongoing, but performance analysis does not need detailed models. Some information (like
actual business specific parameters of client requests) would be meaningless from the per-
formance point of view, the only important input parameters are the number of requests,
the arrival rate and the performance parameters for steps needed to provide service, such as
demand from the host resource, and the probability of execution.

Automation is an important step further in the direction of integrating performance
analysis into the development lifecycle. The tools developed so far usually cover part of the
process and are not too robust. They have been developed only as proof-of-concept tools
in order to support various modeling and performance evaluation techniques and to verify
their effectiveness. Another problem is that each tool usually relies on its own specific input
formalism, which is an impediment in using these tools. Automation is meant to relieve
software developers from learning performance specific methods and formalisms. The entire
analysis process should be transparent to the developer, requiring a minimal understanding
effort in providing the input parameters and interpreting the results.

Standardization of description languages for performance oriented system models is
still ongoing. UML (Unified Modeling Language) [84] has been widely adopted as a universal
modeling language, and extensions for specific purposes have been defined. Performance
related annotations are part of two different UML profiles, SPT (Schedulability, Performance
and Time) [91] and QoS&FT (Quality of Service and Fault Tolerance) [90], unified in the
more comprehensive MARTE (Modeling and Analysis of Real Time and Embedded systems)
profile [89]. AADL (Architecture Analysis Description Language) was adopted in 2004 for
time critical systems definition and analysis, but it requires a detailed system design. Since
2007, MARTE is under development by OMG as a new UML profile. It is preferred because it
does not require too many design details, so the analysis can be performed at a higher level,
and thus earlier in the project lifecycle [85].

Performance Hybrid Model Solver and Simulator (PHYMSS) is the tool developed
by the author of this thesis, implementing both the proposed hybrid method and a simulation
approach. It is developed in C#, using Microsoft .NET Framework 3.5. Several input models
consisting in deployment, use case, and activity diagrams have been built using the diagram
editors Papyrus UML [5] with MARTE extensions for performance annotations. Since support
for complete definition of sequence diagrams was not available in Papyrus UML, Rational
Software Architect (RSA) v7.0 with a plug-in for MARTE [3] has been used for models
based on deployment and sequence diagrams. These models are evaluated by the hybrid
solver, the simulator and by pure analytical calculus. The results are compared from different
perspectives: duration of processing and precision.

BUPT

1.3 - Thesis Objectives 19

1.3. Thesis Objectives

The thesis intends to accomplish the following:

• From the methodological point of view, defining a new hybrid approach to performance
modeling and analysis:

– New layered hybrid analytical/simulation model to be easily transformed to a sim-
ulation model or a Queueing Network (QN) model.

– Enhance and extend each component approach: the simulation model and the
Mean Value Analysis (MVA) [104] analytical approach.

• As an application, building a new performance analysis tool, Performance Hybrid Model
Solver and Simulator:

– Parsing UML input models, with MARTE performance annotations (or SPT where
needed).

– Implementing both the proposed hybrid approach and a multi-threaded simulator.

• Validation of the proposed hybrid analysis method:

– Finding and/or building diverse case studies, whose models are to be analyzed.
– Comparison of the new method to pure analytical and simulation by running

PHYMSS: the hybrid approach is expected to be faster than simulation and more
precise than analytical calculus.

1.4. Organization

Chapter 2 reviews main research directions in Software Performance Engineering
(SPE), from performance models to interpreting results, and classifies hybrid approaches.

Chapter 3 covers the multitude of input formalisms used in performance analysis to
the present date and tools that rely on them.

Chapter 4 proposes innovative alternatives to building a hybrid model, and a novel
solving method that processes and integrates data from two types of models: simulation and
Queueing Networks.

Chapter 5 states the rules defined by the thesis author to extract the hybrid model
from a UML input model, annotated using the MARTE profile. Several sets of diagrams are
considered, since system behavior can be specified either by activity or by sequence diagrams.

Chapter 6 presents the tool which implements the new analysis technique, Perfor-
mance Hybrid Model Solver and Simulator.

In order to compare performance of the method to real measurements and to pure
simulation and show how the novel approach is applied step by step, chapter 7 includes case
studies that cover several types of input models.

Chapter 8 concludes the thesis by summarizing the contributions and establishing
future work directions.

BUPT

20 Introduction - 1

BUPT

2. SOFTWARE PERFORMANCE ENGINEERING APPROACHES

2.1. Software Performance Models and Solution Procedures

The first approach to integrating performance analysis into the software development
process was described in [111], by Smith, who set the basis for SPE. System performance
descriptions use two models: software execution model and system execution model.

The software execution model shows system behavior and uses Execution Graphs
(EGs) to represent workload scenarios. EGs describe control flow among functional compo-
nents. Static analysis is performed by solving such a software model and obtaining information
on the response time and resource requirements of the software. The analysis has simplifying
assumptions; it does not consider multiple users or resource contention. If the results are
satisfactory, model refinement should be performed by building the system execution model,
otherwise it is clear that the system is not feasible.

The system execution model describes system structure, represented as Queueuing
Networks (QNs). This dynamic model takes into account the influence of multiple users,
therefore the results are more accurate; resource requirements obtained by solving the soft-
ware model are input parameters of the system model. Solving this system model leads to
identification of bottleneck resources and helps in evaluating the effects of workload changes,
software changes and hardware upgrades on performance.

Research until year 2000 focused on SPE methodology, the main elaborated algo-
rithms being reviewed in [14]. Bernardo uses the TwoTowers tool which builds a Markov
chain that is numerically solved. However, most approaches derive QN or EQN (Extended
Queueing Network) models from various input system descriptions, detailed in chapter 3.

The most difficult part of the SPE process is considered by Cortellesa [37] to be
the definition of a software model, because platform models can be extracted by other tools.
The proposed performance model is based on QNs and can be solved by existing tools which
implement numerical solutions. In order to evaluate the performance model, certain input
parameters are obtained from the environment specification, others are present in the EG,
such as classes of requested jobs, their service demands, routing probabilities among network
centers. The steps to solve the model are presented below:

• Assign environment parameters to the Extended Queueing Network Model (EQNM).

• Apply reduction analysis techniques to the EG to obtain software parameters and assign
them to the EQNM.

• Solve the EQNM with simulation-based and/or analytical methods.
Smith and Williams [115] present SPE best practices, concerning project manage-

ment, modeling and measurement. The performance modeling recommendations are the
following:

• Use performance models to evaluate architecture and design alternatives before com-
mitting to code.

21

BUPT

22 Software Performance Engineering Approaches - 2

• Start with the simplest model that identifies problems with the system architecture,
design, or implementation plans; then add details as your knowledge of the software
increases.

• Use best- and worst-case estimates of resource requirements to establish bounds on
expected performance and manage uncertainty in estimates.

• Establish a configuration management plan for creating baseline performance models
and keeping them synchronized with changes to the software.

• Use performance measurements to gather data for constructing SPE models and vali-
dating their results.

A comprehensive survey on performance models is [10]. The most important and
widely used performance models are the following:

• Execution Graphs (EG) [36]

• Queueing Networks (QN) [36, 12], and their extensions:

– Extended Queueing Networks (EQN) [37]
– Layered Queueing Networks (LQN) [96, 101, 128]

• Stochastic Petri Nets (SPN) [63, 17, 71, 2]

• Stochastic Process Algebras (SPA)

– Performance Evaluation Process Algebra (PEPA) [118].

2.1.1 Intermediate Performance Models

Since several different performance models can be derived from the same specifications, the
idea of having a common representation occurred. Then, this common intermediate represen-
tation could be transformed into any kind of analytical model. A pivot language, also known
as intermediate or bridge language, can be used as an intermediary for translation in cases
where many source languages are translated to many target languages.

An important intermediate model is the Core Scenario Model (CSM) [97, 98], which
extracts relevant performance information stored implicitly and explicitly in UML diagrams
and SPT Profile data. The desired performance model is obtained by two transformations:
UML model to CSM (U2C) and CSM to Performance model (C2P). The CSM meta-model
provides explicit representation for entities that are required in order to build performance
models, as shown in figure 2.1. Scenario flows are described as ordered sequences of steps
and PathConnection objects which connect each pair of steps. Two consecutive steps are
connected by a Sequence object, when there are several alternative steps (OR-fork, OR-join)
Branch and Merge objects are used, while for parallel activities (AND-fork, AND-join) there
are Fork and Join objects. Each PathConnection object has m source steps and n target steps,
n and m depend on the particular object subtype. Messages will be used related to network
communication, but they are not currently supported in UML SPT. Each step is executed by
an active resource, which may be a device (ProcessingResource) or an operation provided by

BUPT

2.1 - Software Performance Models and Solution Procedures 23

an external subsystem (ExternalService). Steps can use passive resources, including processes
or threads in an operating system, hosted by ProcessingResources.

Several step types are emphasized, such as Start, End, ResourceAcquire and Re-
sourceRelease; the first step of a scenario (Start) may be associated to a workload. This kind
of subtyping improves model checking and performance model generation.

The first phase of the model transformation, U2C, will be detailed in chapter 3.
Regarding the second phase, transformation of CSM to a performance model, a systematic
algorithm to convert a scenario model Use Case Map (UCM) (almost identical to CSM) into a
LQN model is described in [94, 95]. This algorithm has been implemented in the UCM2LQN
tool. Other examples of intermediate models are graph models (or kinds of EGs) in order to
build queueing models.

Figure 2.1: CSM meta-model class diagram [97]

Another approach in transforming annotated UML models into LQN models uses an
intermediate model (IM) represented as an XML tree [56]. This model was developed in
parallel with CSM, so it has similar features, but unlike CSM, it is a task-based model: steps
are grouped into tasks, rather than into scenarios.

Since the intermediate model CSM can also be converted to other performance mod-
els, it is the center of a framework, called Performance by Unified Model Analysis (PUMA)
[126]. Three types of performance models are addressed: Layered Queueing Networks (LQNs),
Petri Nets, and Queueing Networks (QNs).

Deriving LQNs from CSMs is based on the algorithm for UCMs, described in [95], as
mentioned earlier. The LQN model is represented in an XML syntax called LQML, for input
to the LQN editor, solver, and simulator.

BUPT

24 Software Performance Engineering Approaches - 2

The translation to Generalized Stochastic Petri Nets (GSPNs) can be implemented
using Labeled Generalized Stochastic Petri Nets (LGSPNs). Fragments of a CSM model have
direct representations as fragments of LGSPN, with labels that direct the composition of the
fragments into a full model. Using the compositional properties of LGSPN, the fragments
are composed through several stages until the LGSPN representing the whole scenario is
generated. For each class in the CSM meta-model there is a LGSPN pattern, parameterized
by the attributes of the CSM class.

The translation into ordinary (not extended) Queueing Networks can be carried out by
applying the workload reduction technique, first described by Smith in [111], treating the steps
in the CSM model as steps in Execution Graphs. Automation is not discussed, only manual
conversion is described in the paper. Ordinary QNs do not describe simultaneous resource
possession, so this model ignores logical resources such as process threads and buffers and
their Resource Acquire/Release Steps.

Two performance model formats have been defined in order to standardize notations
regarding software models and system models: Performance Model Interchange Format (PMIF
2.0) and Software Performance Model Interchange Format (S-PMIF).

Performance Model Interchange Format (PMIF 2.0) [116, 112] is used for system
performance models that represent computer platforms and network interconnections with a
network of queues and servers.

Key requirements for an appropriate representation technique for PMIF:

• Expressive power - covering a wide range of models:

– from a small number of servers to very large numbers of servers;
– from one to many workloads;
– both open and closed models;
– solved using either analytic or simulation solution techniques.

• Extendibility - initially a format for a subset of QNMs (that may be solved using efficient,
exact analytic techniques) will be defined and then extensions to cover additional facets
of QNMs will be added.

• Compatibility with existing tools and theory.

• Visual QNM representation - in addition to the QNM details required to solve the model,
a picture of the model could be exchanged among tools that support this.

• Model results - exchanging results derived from the modeling tool should also be pos-
sible.

• Ease of translation - it must be easy to generate the format for a model, and easy to
translate the PMIF into an internal representation of a model.

• Tool support - the format should lend itself to a standard lexical analyzer and parser
that could be used by all tools that wish to support the PMIF.

Several tools and QNM notations were considered in order to define a common language, and
then the format to express the resulting meta-model was chosen to be EIA/CDIF (Electronic
Industries Association/CASE Data Interchange Format). These standards define a transfer

BUPT

2.1 - Software Performance Models and Solution Procedures 25

format that allows tools with different internal databases and storage formats to exchange
information. An exchange takes place via a file and internal tool information is translated
to and from the file’s transfer format. The QN meta-model, depicted in figure 2.2, is used
to define the transfer format that enables the exchange of information specified in the meta-
model between tools that support the format.

Figure 2.2: Performance Model Interchange Format notation: QN meta-model [116]

To export models with PMIF, tools provide all data they have that is specified in the
meta-model. Tools must provide default values for the essential data in the PMIF meta-model
if other values are not available. To import models in the PMIF format, tools use the data
provided, discard data items they do not need, and make assumptions about data items they
require that are not in the basic meta-model.

For software models a new notation is defined: Software Performance Model Inter-
change Format (S-PMIF), an XML notation based on an updated SPE meta-model [113].
The use of S-PMIF provides the following benefits for SPE tasks:

• Export of software system design to SPE tools where performance models can be con-
structed automatically.

• The model transformation can be used during system design evolution to check that
the resulting processing details are those intended by the UML specification.

BUPT

26 Software Performance Engineering Approaches - 2

• Data available to developers is captured in the development tool, while other specific
data can be added by performance specialists in the SPE tool.

• Rapid production of models makes data available for supporting design decisions in a
timely fashion, thus allowing study of architecture and design tradeoffs before commit-
ting to code.

• Developers do not need detailed knowledge of performance modeling.

The paper also proves how the two notations, S-PMIF and PMIF, can be used together for
model data interchange between different analysis tools; the process is illustrated in figure 2.3.
Since the approach involves two phases, the UML model is converted to an S-PMIF model,
by using a tool such as XPRIT [36], and then the S-PMIF model can be transformed into a
PMIF model in order to perform system performance model analysis.

2.1.2 LQN Methodology and Model Solvers

Essentially, an LQN is made of client requests, tasks and hardware devices [102]. Each task
runs on a processor, has entries that provide different classes of service to clients, and at
the same time issues service requests to lower level tasks or hardware devices; an example is
presented in figure 2.4.

Since LQNs are extensions of Queueing Networks on several layers, the following
paragraph covers the basics of queueing theory, then an LQN solving method and optimizations
are described; also, a language for defining LQN components is presented.

Queueing Theory Basics

A queueing system is usually made of one or more servers (processors) and their queues; for
a queueing model to work, jobs are inserted into the system. Queueing Networks (QN) are
obtained by interconnecting several queueing systems. [47] There are two types of QN models,
depending on the workload (system customers) characteristics [68]:

• Open models: with an infinite stream of arriving customers (transaction workloads),
described by their arrival rate λ.

• Closed models: where customers "re-circulate" (batch or terminal workloads) and are
defined by the population N and think time Z .

Models consisting of both types of customer classes (open and closed) are referred to as
mixed.

Fortier [47] explains that, because of the complexity of classical queueing system
analysis methods, three computational alternatives have emerged:

• Central server model [23]: iterative solution proposed for closed QN based on finding
the normalization constant for the solution of certain product form networks.

• Mean value analysis (MVA) [104]: applies to closed queuing networks that have a
product form solution for the state probabilities.

BUPT

2.1 - Software Performance Models and Solution Procedures 27

Figure 2.3: SPE interchange process: PMIF and S-PMIF [113]

BUPT

28 Software Performance Engineering Approaches - 2

Figure 2.4: Layered Queueing Network example [102]

• Operational analysis [42]: based on observation (for a finite period) of basic, mea-
surable quantities that can be combined into operational relationships; the technique
can be used for open and closed networks, but the network under observation must be
operationally connected (no server may be idle during the entire observation period).

The MVA solutions are based on the assumption that a customer, arriving at any
queue in a closed system that is at steady state, experiences a wait in the queue that is equiv-
alent to the steady-state wait time for that queue with the arriving customer removed. This
assumption leads to an iterative algorithm where the steady-state performance characteristics
for the system with n + 1 customers are derived from the characteristics with n customers,
which are derived from a system with n − 1 customers, and so on down to one customer.

Since MVA is a powerful and elegant algorithm, it has been the focus of further
research and several extensions have been developed [77]:

• Multi-class networks.

• Networks with load dependent servers.

• Networks with open and closed classes of customers.

LQN Solving

Franks defines in [48] a methodology to assess performance for client-server systems that
cannot be solved by simple Mean Value Analysis [104]. Among the various types of LQNs,
Closed Queueing Networks (CQN) are the ones considered for solving; there are several classes
of requests that drive the behavior of the system, and each one is defined by two parameters:
population or number of requests (N) and think time or external delay (Z). The population
of requests is closed, as opposed to open requests characterized by arrival rate, that have no
limit on the number of requests, but open requests never return after being serviced. In CQN,
each client issues requests repeatedly; after a request is serviced and leaves the system, the
client waits for Z time units and then sends a new request to the system.

BUPT

2.1 - Software Performance Models and Solution Procedures 29

A new solver, LQNS [49], is developed. It relies on model decomposition into sub-
models and also includes improvements to previous solving methods: forwarding is supported
in server requests, by further delegating to lower level servers, leading to simultaneous resource
possession; early replies can be modeled by using multi-phase tasks, so that each service can
be divided into phases and the response is provided as soon as possible, while the execu-
tion continues on the server with a second phase, until the operation is completed. Second
phases are usually performance optimizations, executed in parallel, for transaction cleanup or
logging. Activities are defined as the unit of modeling and tasks support both homogeneous
(multiservers) and heterogeneous (fork-join operations and asynchronous RPC) threads.

LQNS applies fixed-point iteration to submodels, obtaining delay and resource uti-
lization values. The steps to solve a client-server Queueing Network model using LQNS are:

• Read the input and construct an object database: tasks, processors, entries and the
calls between them.

• Perform processor, forwarding and think-time transformations.

• Generate the layer submodels, and build MVA submodels from the layer submodels.

• Solve the MVA submodels. The inputs to and the outputs from each submodel are
extracted from or saved to the object database. This step is repeated until the waiting
time results converge for each layer.

• Write the results out.

Several layering strategies are evaluated, in order to perform the topological sort of
servers (establishing their nesting level): strict, loose, batched and squashed layering. Batched
layering is considered the most reasonable one, after performing sets of tests, during which
other methods fluctuated in performance (strict, loose), while squashed layering proved inferior
by far, since it duplicates intermediate level servers.

Submodels are solved one at a time, propagating the results until they reach model
level, and then the process is repeated, until results are convergent. There is a two-way
dependency between submodels on consecutive layers.

Service times are propagated upwards - they are computed from waiting times of
servers from lower level submodels:

sml = Σi∈L,i 6=lΣj∈Siwmj (2.1)

where L is the set of all submodels, l denotes the current submodel, sml is the service time
of task m of submodel l , Si is the set of servers from submodel i , wmj is the waiting time of
server j in providing service to task m.

Think times of clients for each submodel are propagated downwards - they are com-
puted from the parameters of the server in the immediate higher level:

Zi ,l = Ni ,l ·
1− ρi ,l−1

λi ,l−1
(2.2)

where Zi ,l is the waiting time of client i in submodel l , Ni ,l is the number of requests from
client i in submodel l , ρi ,l−1 is the utilization of task i when it is acting as a server in submodel
l − 1, λi ,l−1 is the throughput of task i when it is acting as a server in submodel l − 1.

BUPT

30 Software Performance Engineering Approaches - 2

In order to consider both dependencies, iteration at model level consists of pairs of
passes, one in each direction: top-down and bottom-up. In the first step, submodels are
solved starting from the highest level, in order to propagate think time values along request
chains; and in the second step, the submodels are solved starting from the lowest level, to
propagate upwards service time values for tasks.

An optimization regarding solving LQN including replicated subsystems is described in
[83]. A specific notation is defined for replicated servers, as shown in figure 2.5. The proposed
solution relies on the hierarchical approach in solving LQNs and defines an âĂĲinner loopâĂİ
that handles the replicated subsystems. The replicas are solved once and the results are
replaced in the higher level submodels in order to solve the whole system.

Figure 2.5: Notation for Layered Queueing Network replicated servers [83]

LQN Components

LQN input description language is extended in [76] to support declaration of component
classes, also called reusable submodels. They are parameterized and can be instantiated
inside LQN models, an example is shown in figure 2.6. Parameterization of instances leads to
flexibility regarding multithreaded processing (number of supported threads) or other possible
internal differences, while maintaining the common interface for the component class.

Component instances replace a given task, while component entries and requests, as
well as processors are bound to existing items from the model. The component interfaces and
their bindings are defined by a component assembly model [127], as illustrated in figure 2.7.

2.1.3 Simulation Models and Simulators

While most generic performance models presented earlier can be subject to both analytical
solving and simulation, there are models specifically built for simulation. Simulation modeling
assumes converting the system design into executable form and obtaining performance results
by running the simulation. Simulation models are more accurate since they usually embed more
details on the behavior and parameters of the original system. Performance analysis is also
more precise than analytical solvers, because there are no restrictions on system parameters
and no simplifying assumptions are required. The drawback is that the simulation may be

BUPT

2.1 - Software Performance Models and Solution Procedures 31

Figure 2.6: Layered Queueing Network component model: application server [127]

Figure 2.7: Layered Queueing Network component assembly model example [127]

BUPT

32 Software Performance Engineering Approaches - 2

time-consuming until the results converge and the modeler may create a rather complex
simulation model, since there are no restrictions in building it, other than to behave similar
to the system being analyzed.

Most simulators are based on Discrete Event Simulation (DES) [15], meaning that
the system state changes are caused by events that occur at discrete moments in time.
There are two approaches: event-oriented and process-oriented. An event-oriented simulation
follows a sequence of ordered events, executing the corresponding handlers. In process-oriented
simulation, the system is represented by a set of interacting processes. Most visual simulation
systems provide a process-oriented view.

In order to assist building simulation programs out of system design, a generic frame-
work has been developed, called SimML (Simulation Modeling Language) [8, 9]. It has been
implemented as a Java package, so that simulation programs would be written in Java. They
are executed in the JavaSim simulation environment. SimML contains generic simulation
components that can be used to generate process-based event-oriented simulation programs.
A tool is necessary in order to provide the user with the means to enter the system design
as UML diagrams (class and sequence) and also define simulation parameters. An internal
simulation model is created by the tool, each component exposing a write method which
generates the corresponding part of the JavaSim program. UML and SimML data persistency
is obtained via XML files.

More realistic results can be obtained if the communication resources are also simu-
lated. In [58], Hennig uses the OMNET++ discrete-event simulator, along with pre-modeled
modules that simulate JBoss and even the TCP protocol. He makes use of Use Case, Se-
quence and Deployment diagrams in order to provide network topology and system behavior
information to the simulator.

Another popular network simulator is OPNET, used by De Miguel et al. in [81] in
order to generate simulation models from extended UML diagrams (to express temporal re-
quirements and resource usage, the target being hard real-time systems). UML extensions
are suggested in order to address real-time systems modeling aspects, such as load timing
distribution, resource usage, time constraints, and scheduling. These extensions are orga-
nized as constraints, stereotypes and tagged values, as a response to the UML SPT Profile
RFP (Request for Proposal). Two tools are mentioned in the paper: AMG (Analysis Model
Generator) and SMG (Simulation Model Generator). SMG uses the dynamic library of OP-
NET Ema (External Model Access) and generates OPNET models by reusing generic models
that represent different metaclasses of UML (operation, classifier, node, etc.). These generic
models are customized with application specific information; the application simulation model
is obtained by combining submodels generated for each application element. This model is
the input for OPNET which evaluates system performance; the approach provides feedback,
performance results being inserted as tagged values.

Hennig has also studied alternative system performance evaluation techniques in [57]:
benchmarking, simulation, prototyping and load testing.

Benchmarking means measuring how many small standardized activities a given sys-
tem can execute per second. It is useful for evaluating hardware performance, but it is not
relevant for software systems.

Simulation implies building an abstract model of the infrastructure (hardware and
middleware), the behavior of the business logic as well as the expected load from internal
sources and users.

BUPT

2.1 - Software Performance Models and Solution Procedures 33

Prototyping consists of developing small modules of the system whose functionality
and interoperability are tested; they can also be subject to load-testing. Because manually
developing prototypes is time-consuming and results are restricted, this approach is rarely
used.

Load-testing simulates expected user behavior and can be used for acceptance testing
or during development to test performance aspects of individual modules or prototypes. Load-
testing a finished system is the least predictive method: it is predictive only in terms of the
anticipated user behavior, which might vary greatly from the behavior of real users.

The author suggests use of automated performance prototyping, using UML diagrams
as input, by following the process depicted in figure 2.8.

Figure 2.8: Performance prototyping process [57]

As it can be seen, the required information is extracted from the UML-Tool into
an XML experiment description, which in turn is converted into prototype parts. For user
behavior simulation, a commercial load-testing tool is used. The prototypes are implemented
in JSP (JavaServer Pages) and uploaded into JSP-directories of the respective servlet-engines.

An important simulation tool for software systems, developed by Marzolla as the
application part of the PhD thesis [73], is UML−Ψ (UML Performance SImulator), described
in detail in [74]. The functionality provided by the tool is illustrated through case studies, such
as NICE (Naval Integrated Communication Environment) [73] and an e-commerce application
[74]. UML Performance Simulator is a tool that builds a simulation model of the system
being analyzed and runs the model in order to collect performance information. The overall
structure of the tool is presented in figure 2.9.

The tool relies on a C++ library, libcppsim, which provides basic functionalities for
process-oriented simulation modeling and simulation output data analysis [72].

Tool input consists in XMI (XML Metadata Interchange) files exported by ArgoUML
[1] (or the commercial version Poseidon), a visual tool for defining UML diagrams. The
diagrams are annotated with performance information according to UML SPT Profile [91].
UML−Ψ extracts relevant information from the XMI input file (Use Case, Deployment and

BUPT

34 Software Performance Engineering Approaches - 2

Figure 2.9: UML-PSI overview [73]

Activity diagrams) and generates a performance process-oriented simulation model of the
system. The simulation model is based on three main types of entities, corresponding to the
actions of activity diagrams, the resources of the software system and the workloads.

The simulation model is executed by using information from a configuration file
[75]. The configuration file can be an arbitrary fragment of Perl code, which usually defines
simulation parameters, such as simulation duration and desired accuracy of results, and also
provides values for unbounded variables in the UML model. The file name is specified as
the value of the paramFileName tag associated to the whole UML model. After the code
in this file has been parsed, the Perl interpreter environment (modified by every declaration
contained in the configuration file) is used to parse the tagged values, attached to elements
of the UML model. Hence, the configuration file may be used to define Perl variables which
are used inside tagged values. The user may then explore different performance behaviors for
different values of these variables by simply changing the configuration file, without affecting
the UML model.

Performance results are inserted into the software model as tagged values for relevant
UML elements. The feedback mechanism is immediate since there is a clear correspondence
between the software model and the simulation model, as shown in figure 2.10.

During the life cycle of a software system it is customary to carry out capacity
planning and performance analysis, not only to evaluate the system’s environment but also
to plan its operation. CAPPLES, a CApacity Planning and Performance analysis method for
the migration of LEgacy Systems [110], has been developed to address the particularities of
performance evaluation during migration of a software system. Simulation models are used,
since analytical models usually require simplifications that may not be adopted for mission
critical systems.

BUPT

2.1 - Software Performance Models and Solution Procedures 35

Figure 2.10: UML-PSI simulation model [13]

The simulation process for performance evaluation of a non-operational target system
subject to migration is shown in the activity diagram in figure 2.11. The focus in the process
is on obtaining a valid model. After the model is built (Modelling), the model is executed
in the Simulation activity, producing simulation results. The Validation activity is based
on a comparison of the simulation results with the results produced in the Experimentation
activity. If the simulation and experimental results are similar enough, the model can be
classified as valid. Otherwise, the Modelling refinement activity may be required to produce
a more accurate simulation model. Once the model is validated, the Prediction activity is
executed producing the simulation results that describe the predicted behavior of the target
system.

2.1.4 Methodologies for Component-Based Systems

Special-purpose prediction techniques and tools have been defined for component-based sys-
tems in the last few years, they use specific input model notations and their main goal is to
facilitate selection and reuse of components, by evaluating different choices regarding com-
ponent assembly into larger systems.

Performance models for component-based systems were defined as early as 10 years
ago. Kahkipuro [62] proposes a framework on UML notation (from which a selective Per-
formance Modeling Language is defined) for describing such performance models based on
Augmented Queueing Networks (AQN). Gomaa and Menascé [51] investigate how UML dia-
grams can be used to define component interconnection patterns, and the diagrams annotated
using an XML-type notation are transformed into QN performance models in order to be an-
alyzed.

A reference paper in the field of component-based SPE is [22]: it presents an SPE
methodology and a tool that implements it. The proposed technique, also described in [20, 21],
shows how to apply SPE analysis to components in the process of component selection and
reuse: parameterized evaluation is applied to components and then the global results are
obtained by assembling the components step-by-step. The tool receives input from ArgoUML
[1] and the system is modeled as EG and QN, according to the SPE methodology [111];

BUPT

36 Software Performance Engineering Approaches - 2

Figure 2.11: The simulation process for CAPPLES [110]

solvers are integrated for both models. The component assembly is expressed using a simple
language that allows compositional performance analysis, language described in [52].

KLAPER (Kernel LAnguage for PErformance and Reliability analysis) [54, 53] is an
intermediate language for model-driven performance and reliability analysis of component-
based systems. The language is used to derive an intermediate model from the UML input
model (that uses SPT) and the intermediate KLAPER model is then transformed into an LQN
model. The environment will be extended to support many-to-many mappings between input
models and output performance models (QN, Markov models). It does not address model
solving, it just transforms models.

The Palladio Component Model (PCM) [16, 67] is a domain specific modeling lan-
guage for component-based software architectures. PCM does not use annotated UML as
design model, but defines its own meta-model. This reduces the model to notions necessary
for performance prediction and does not introduce the high complexity of arbitrary UML mod-
els with a variety of concepts and views. A simulation tool has been implemented based on
PCM and used to prove the efficiency of the method.

2.2. Interpretation of Performance Results

Integrating performance analysis within the software lifecycle also assumes interpret-
ing feedback from SPE regarding system architecture or design. A framework that auto-

BUPT

2.2 - Interpretation of Performance Results 37

matically interprets performance output parameters and suggests improvements by identifying
performance anti-patterns is described in [34]. The high-level flow chart of the proposed
process is shown in figure 2.12.

Figure 2.12: Performance results interpretation automated process [34]

The approach goes through two fundamental phases:

• identification phase (or interpretation phase), where the analysis of the performance
results helps identify particular scenarios that affect performance;

• construction phase (or generation phase), where several architectural alternatives are
constructed, based on the information collected in the previous phase.

Three granularity levels were identified at which software architecture can be analyzed:

• System level - only global indices can be obtained: end-to-end response time (i.e. from
input to output), system throughput.

• Subsystem level - an intermediate abstraction level where the system’s components and
their interactions can be analyzed (the system can be split by applying several criteria).

• Resource level - the finest granularity level for conducting a performance analysis; indices
of software or hardware components (that cannot be further split) are obtained at this
level.

The approach is exemplified on a LQN model in [35], but it is generic enough to be applied
to any kind of performance model.

BUPT

38 Software Performance Engineering Approaches - 2

2.3. Hybrid Approaches

Performance has mostly been predicted by pure analytical or simulation approaches;
some tools implement both techniques, so the appropriate one can be chosen, depending on
project constraints.

The first paper that defines and classifies hybrid approaches is [108]. According to
this paper, there are two distinct approaches:

• Hybrid simulation/analytic models - combining simulation and analytical models of parts
of the system and even the solution procedures.

• Hybrid simulation/analytic modeling - development of independent simulation and an-
alytical models of the whole system, and solving of the problem by using the solution
procedures together.

Hybrid models are divided into four classes, as shown in figure 2.13:

• CLASS I. A model whose behavior over time is obtained by alternating between using
independent simulation and analytic models. The simulation (analytic) part of the
model is carried out without intermediate use of the analytic (simulation) part.

• CLASS II. A model in which a simulation model and an analytic model operate in parallel
over time with interactions through their solution procedure.

• CLASS III. A model in which a simulation model is used in a subordinate way for an
analytic model of the total system.

• CLASS IV. A model in which a simulation model is used as an overall model of the
total system, and it requires values from the solution procedure of an analytic model
representing a portion of the system for some or all of its input parameters.

Four potential usages of hybrid modeling (figure 2.14) were given in [108]:

• Developing Operations Research/Management Science (OR/MS) theory.

• Gaining insight into system behavior.

• Validating analytic models.

• Performing optimization.

While the previously presented paper emphasizes hybrid models, Ignall and Kolesar
[59] encourage use of hybrid modeling.

A more recent paper was published by Sargent in 1994 [105], to conclude on the
effects of [108] on models and modeling research: before 1978 and after 1984 the usage of
hybrid models and modeling was quite limited. The systematic approaches and classifications
of 1978-1984 have not been incorporated into the field and research was still needed.

Hybrid models have usually been implemented for analyzing the behavior of hetero-
geneous systems or systems that have clearly defined modules, for which one method or the
other was considered more appropriate.

BUPT

2.3 - Hybrid Approaches 39

Figure 2.13: Classification of hybrid models [108]

BUPT

40 Software Performance Engineering Approaches - 2

Figure 2.14: Hybrid modeling [108]

Nico van Dijk describes several examples of systems which benefit from hybrid mod-
eling [45]: queueing theory is used to provide rules and directions, narrowing the number of
design alternatives, while simulation is run to compare these options and chose the optimal
one. A more comprehensive paper on optimization by hybrid modeling is [44], in which sim-
ulation is combined with queueing, linear programming, dynamic programming, or heuristic
dynamic scheduling, in different applications, such as call centers, airport check-in, or train
scheduling.

Hybrid simulation-analytic modeling was used in production-distribution planning
[69], as part of Supply Chain Management (SCM). The approach involves obtaining pro-
duction and distribution rates from the analytical model, and using them as input for the
independently developed simulation model; this iterative process is repeated until simulation
results show that the rates are feasible in realistic operational conditions. Another hybrid mod-
eling solution for SCM is presented in [107], by combining Model Predictive Control (MPC)
with DES. In MPC, the current and historical measurements of a process are used to predict
future behavior, by using a control-relevant objective function. A Knowledge Interchange Bro-
ker (KIB) is used for model composition, since each of the approaches (DEVSJAVA simulation
and MPC MATLAB solver) has its own syntax and semantics. The simulator sends its current
output (inventory level) to the MPC solver that estimates future inventory levels, compares
them to forecasted demands, sends computed starts of each factory to the simulator, and
then the process is repeated.

NUMA (Non-Uniform Memory Access) architectures benefit from hybrid modeling
too [122]; Westall and Geist present a system for describing (input modeling) and solving
closed queuing network models of such systems. The input model is translated in order to
be processed by either a discrete event simulator, or an algorithm derived from value analysis
(MVA). The analytical algorithm combines MVA with DSA (Deterministic Service Approxi-

BUPT

2.4 - Summary 41

mation), in order to correctly consider the deterministic service times of devices (memories,
buses) belonging to NUMA architectures. The fast MVA-DSA solver is used to interpolate
between design points computed by simulation.

A few examples of recently applied hybrid modeling approaches are presented in the
following paragraph; the methods are separately applied, in an iterative manner, have distinct
input and output parameters and they are ordered one after the other. The motivation for
these approaches is that analytical models are not able to cover certain lower level parameters
that can be measured by simulation. A hybrid approach combines software design evaluation
with network specific architecture in [119]. The software model (LQN) and network model
(NS-2 [4]) are solved iteratively, thus the analysis results are refined. Another hybrid method
is an iterative algorithm that applies alternatively analytical techniques and simulation for
network processor design [24].

This thesis presents a hybrid model of class III, according to the classification in
[108]: the analytical model uses results from a simulated submodel in the solving algorithm.
This approach is different compared to the previously mentioned hybrid modeling approaches,
because only part of the system model is simulated. In hybrid modeling, a model of the entire
system is simulated, and an independent analytical model is used for optimization or for rapid
narrowing of design solution space that is simulated afterwards (analytical results are validated
by means of simulation). The main purpose of the proposed approach is similar to optimization
approaches: improvement of prediction speed, by limiting the size of the simulated submodel
(while in optimization, the number of model design alternatives is limited) and improvement
of accuracy, compared to pure analytical models.

2.4. Summary

SPE is focused on integrating performance analysis in the software development
lifecycle as early as possible. The main research directions in SPE are reviewed.

First, the most important approaches in modeling are presented, from performance
models, such as EG, QN, SPN, to intermediate performance models that allow transformation
of different input formalisms into several performance models (CSM) and interchange formats
(PMIF, S-PMIF) to facilitate transfer of performance data between analysis tools.

Two kinds of performance analysis methods are covered: analytical and simulation.
Analytical solving techniques for performance models are presented in the context of

queueing theory. LQN related methodologies are detailed since these will be the basis for the
analytical component of the proposed hybrid approach.

Simulators and simulation frameworks (SimML) are also reviewed, focusing on DES,
without omitting alternative dynamic evaluation techniques: benchmarking, prototyping and
load testing. UML − Ψ and CAPPLES are two examples of simulators: the former supports
UML SPT diagrams as input and has a scenario based internal model, while the latter is
applied for optimizing legacy systems.

Component-based systems are modeled using specific formalisms, since they are
mostly concerned with selection and reuse of components and their assembly. A few such
languages are presented: KLAPER, PCM.

Automation of interpreting performance analysis results is a more recently pursued
direction. It provides design alternatives based on anti-pattern recognition techniques.

BUPT

42 Software Performance Engineering Approaches - 2

Hybrid approaches are classified and existing hybrid modeling directions are briefly pre-
sented, since hybrid models haven’t been incorporated in the field yet. The hybrid meta-model
proposed by the thesis author in chapter 4 belongs to class III according to the classification.

BUPT

3. STANDARDIZATION OF DISTRIBUTED SYSTEMS
MODELING LANGUAGES

3.1. Transformation Methodology: Input Models to Performance Models

Several system modeling languages were used to provide a high-level description of
systems subject to performance analysis; the formalisms and the transformation procedures
until year 2000 are briefly presented in this section.

Bernardo et al. [19] use an architectural description language (ADL) based on SPAs
and the TwoTowers tool [18] that supports such input.

However, most approaches consist in deriving QN (or EQN) models from different
kinds of system descriptions, which will be mentioned in the following paragraphs.

Gomaa and Menascé created CLISSPE (CLient/Server SPE) program specifications
and a compiler that generates a corresponding QN model [50].

Balsamo et al. [11] use the CHAM (CHemical Abstract Machine) formalism [60];
evaluation relies on the analysis of the Labeled Transition System (LTS) representing the
dynamic behavior of the CHAM architecture.

Andolfi et al. [6] start from Message Sequence Charts (MSC); the dynamic aspect of
the behavior is emphasized by considering the real degree of parallelism (through description
of sequences of events).

Aquilani et al. [7] use Labeled Transition Systems (LTS), a finite state representa-
tion of system architecture, independent of any ADL; concurrent execution and component
interaction are modeled by EQN models.

Williams and Smith [123] obtain the software execution model (QN) from MSC or
sequence diagrams; class and deployment diagrams are used to complete the system specifi-
cation, but are not involved in the conversion. As already stated in section 2.1, EGs describe
the software execution model, and resource requirements lead to the system execution model
(QN). A tool that accepts such input formalisms has been developed, SPE•ED, which also
allows simulation of the QN model. After year 2000, tool development started to make
significant progress.

A more formal methodology to automatically extract a performance model from UML
diagrams, based on the previously mentioned approach of Williams and Smith, is defined in
[37]. The system description consists of use case diagrams, sequence diagrams and deployment
diagrams, which define the Extended Queueing Network Model (EQNM) and the relationships
between software and hardware. The basic steps of building the performance model, as
presented in [37], are the following:

• Extract user profile from Use Case Diagram (UCD).

• For each use case in the UCD process the set of Sequence Diagrams to obtain the
meta-EG.

43

BUPT

44 Standardization of Distributed Systems Modeling Languages - 3

• Use the deployment diagram to obtain the EQNM of the hardware platform and to tailor
the meta-EG in order to derive an EG instance.

• Combine the EG and EQNM into the system performance model.

More details on the most important approaches are presented by Balsamo and Simeoni
[14], where the evolution of the SPE methodology until year 2000 is reviewed.

3.2. Automation of Conversion and Performance Analysis. Input For-
malisms for Tools.

The input to performance evaluation can have different degrees of abstraction. A
high level description is used in [94, 96], starting from Use Case Maps (UCM) and deriving
an LQN model, which is then analyzed by automated solvers. The proposed process is called
Early Performance Aware Development (E-PAD) and uses generative programming principles
in order to evaluate performance early during software development. The process is illustrated
in figure 3.1.

Figure 3.1: Early Performance Aware Development (E-PAD) process [96]

Tools have been developed in order to automate the process. UCM Navigator (UCM-
Nav) is a UCM visual editor enhanced by the possibility to define additional information.
UCM2LQN converter is a generative tool, it is integrated with UCMNav, takes the internal
representation of the specification from UCMNav and converts UCM paths into sequences of
LQN elements. The generated LQN models are saved as text files and will be solved by LQNS
or ParaSRVN.

More details in system specification lead to more accurate results, so UML diagrams
are preferred in order to provide input to performance analysis tools. Most approaches rely on
the UML Profile for Schedulability, Performance and Time (SPT) [91], in order to annotate
the diagrams in a consistent manner. However, UML diagrams were used for performance
analysis even before the SPT Profile existed.

BUPT

3.2 - Automation of Conversion and Performance Analysis. Input Formalisms for Tools. 45

A first approach to the integration of non-functional properties into the software
model, which previously included only the functional attributes, describing behavior, is pre-
sented in [33]. The proposed framework combines information from system descriptions ex-
pressed in XML format using different models, depending on the type of system view, and
may provide output for various analyzer tools, which perform validity checks and/or compute
output parameters (metrics), as shown in figure 3.2. The various input descriptions are fil-
tered and combined into a common representation, called XML Models Representation, by
using a schema for each input description type. The Semantic Relations section translates
analysis results (feedback) from one notation to another; it is also based on XML files, each
one containing translation rules for a pair of notations corresponding to different analyzers.

Figure 3.2: NFP integration framework architecture [33]

Starting from the SPE (Software Performance Engineering) approach, defined by C.U.
Smith [114], which divides performance analysis in two phases – software execution model
analysis and system execution model analysis – a tool called XPRIT (XML-based PRIMA-UML
Tool) [36] was built. The tool represents an implementation of the PRIMA-UML methodology
[38]. It provides inputs for both phases by parsing annotated UML models. It may generate
either EG (as software execution model), or QN (as system execution model), as illustrated
in figure 3.3.

Performance models were extracted from UML diagrams even before the SPT Profile
was adopted; conversion algorithms and their automation were a main concern. King and
Pooley [63] define an intuitive method to obtain a Generalized Stochastic Petri Net (GSPN)
from UML collaboration diagrams with embedded statecharts. Bernardi et al. [17] present
an algorithm for derivation of Stochastic Petri Nets (SPN) from UML sequence and state
diagrams; the statecharts are used to describe the behavior of each participant to an interaction
modeled by a sequence. Lindemann et al. [70] derive a Generalized Semi-Markov Process

BUPT

46 Standardization of Distributed Systems Modeling Languages - 3

Figure 3.3: XPRIT tool block diagram [36]

BUPT

3.2 - Automation of Conversion and Performance Analysis. Input Formalisms for Tools. 47

(GSMP) from UML state and activity diagrams; several extensions are proposed by the authors
to allow the association of events with exponentially distributed and deterministic delays. The
approach is implemented in DSPNexpress 2000, which includes an efficient numerical solver
of discrete-event stochastic systems underlying UML diagrams and Petri Nets.

During the definition of UML SPT, Petriu and Shen [101] developed a graph-grammar
based transformation algorithm from UML SPT annotated diagrams expressed in XMI for-
mat [93] to Layered Queueing Network performance models. After UML SPT was officially
adopted, Xu et al. [128] illustrate how to analyze and improve system performance using
deployment and sequence diagrams with SPT notations; an LQN model is generated and
evaluated in order to detect issues and adjust the UML design.

A first attempt to use SPT notations shows how they can be inserted into use case
and statechart diagrams [78]. In use case diagrams, each scenario should be associated with
an openLoad or closedLoad and the corresponding performance parameters should be defined
(PAoccurence, or PApopulation and PAextDelay respectively). Also, a usage probability is
attached to every edge connecting an actor to a use case. A scenario will be considered
belonging to PAstep stereotype and will have a tagged value called PAprob, which is computed
using the following formula:

P (x) = Σm
j=1 (pi ·Pix) , (3.1)

where pi denotes the i-th user frequency of software usage (Σm
i=1pi = 1), Pix is the probability

that the i-th user makes use of the x-th use case (Σn
x=1Pix = 1). The SPT profile suggests

that each scenario should be decomposed into steps illustrated by activity or collaboration
diagrams. The authors have a different perspective, they use statechart diagrams to describe
the life of each object in the system; each class with dynamic behavior will be modeled by a
statechart. Activities are stereotyped as PAstep, thus being able to model parameters such
as response time, demand, repetition, delay. If transitions are also stereotyped as PAstep,
the probability attribute can be used to avoid non-determinism among several transitions
originating from the same state; network delays can also be modeled in this case.

The previous research was continued in [71] by exploring the role of activity diagrams
in order to refine activities in statecharts. Regarding performance annotations, each activity
and transition (routing rate) will be stereotyped as PAstep, specifying PAprob (for routing
rates) and PArespTime (for action durations); in case probabilities are not mentioned for
transitions, they are considered equiprobable (equal probabilities are assigned to transitions
originating from the same action). In order to obtain a formal performance model, LGSPNs
are derived from each activity diagram and then they are composed into a scenario model or
system model. A drawback is that resource capacity is not considered (an infinite amount is
assumed). A Java module has been developed to take as input XMI files obtained by defining
the statechart and activity diagrams in the ArgoUML tool [1]; a LGSPN model is generated by
the module and it can be further analyzed by the GreatSPN (GRaphical Editor and Analyzer
for Timed and Stochastic Petri Nets) tool [2] in order to get performance measures.

Balsamo et al. [12] describe an automated algorithm to transform UML SPT di-
agrams satisfying a few constraints (service demands exponentially distributed only) into a
product-form Queueing Network performance model. The transformation is based on the
mapping shown in figure 3.4.

The algorithm works according to the following steps:

• Each deployment diagram Node is mapped to a service center.

BUPT

48 Standardization of Distributed Systems Modeling Languages - 3

Figure 3.4: UML-QNE model transformation [12]

• Each Actor in use case diagrams is mapped to a class of customers in the QN.

• Each activity diagram associated to an Actor generates the routing matrix for the current
class of customers according to the predecessor-successor relationship of Action states.
Routing probabilities are obtained from the PAprob tag associated to UML transitions.

Input diagrams are obtained by using the ArgoUML tool [1], UML-QNE generates
an internal representation of a QN, as depicted in figure 3.5, which is solved by MVA, one of
the popular solving approaches described in section 2.1.2.

Figure 3.5: UML-QNE QN model [12]

UML diagrams with SPT annotations can also be transformed into CSM [97], an
intermediate performance model allowing for flexibility in the transformation process, as pre-
sented in section 2.1.1. Query/View/Transformation (QVT) of Meta Object Facility (MOF)

BUPT

3.2 - Automation of Conversion and Performance Analysis. Input Formalisms for Tools. 49

[86] is recommended to define the model transformation, but, due to lack of tools to sup-
port this language, XSLT (Extensible Stylesheet Language Transformations) is used. XSLT
operates on models represented in XML format, as illustrated in [55] when transforming UML
models to LQN.

Each class in the meta-model has attributes (shown in figure 3.6), which correspond
to tagged values in the UML SPT Profile.

Figure 3.6: Attributes of CSM meta-classes [97]

The first phase, U2C, consists of converting deployment and activity diagrams into
CSM: input consists of XMI files representing the UML model; the CSM internal representation
is a DOM (Domain Object Model) tree that can be exported in XML format. Some of the
resources and components in UML SPT can be directly mapped to CSM objects, as shown in
figure 3.7. Attributes are obtained from tagged values (figure 3.6).

From each activity diagram, a CSM scenario is obtained by connecting steps with
PathConnector objects; pseudostates are converted into corresponding PathConnector objects.
If two pseudostates are consecutive, a dummy Step is inserted between the two connectors
in the CSM model. Each partition (swimlane) of the activity diagram corresponds to a
component in CSM, which should be found in the deployment diagram (describing resources
or components of the system). A transition from one swimlane to another implies releasing one
CSM component and acquiring the other. If the specification is incomplete, default values are
assigned to parameters and reports are provided to the user after the conversion; ambiguities
are to be solved explicitly by the user.

Another intermediate model mentioned in section 2.1.1 is IM, represented as an XML
tree [56], used when transforming annotated UML models into LQN models. Transformation
rules between models are expressed using XSLT, in order to make use of low-level operations
on XML trees, such as XMLgebra and XACT [64, 65]; the implementation makes use of
DTD and XPath to operate directly at XML level the rules defined at a higher abstraction

BUPT

50 Standardization of Distributed Systems Modeling Languages - 3

Figure 3.7: Mapping of UML SPT stereotypes to CSM types [97]

level by graph transformations. The input, expressed as UML (in XMI format), is converted
into IM based on an algorithm that maps UML nodes and states (from activity diagrams)
to IM concepts (some of these are shown in figure 3.8). The second conversion, from IM to
LQN needs mapping between the two domains of IM and LQN respectively. A challenging
transformation rule is deciding whether to assign groups of steps (from IM) to LQN phases or
activities; this was implemented by checking if there is a fork that does not involve a reply. If
there is such an operation, then the corresponding entry is mapped to an activity, otherwise
it is considered a phase.

Figure 3.8: Intermediate Model example [56]

BUPT

3.3 - Frameworks 51

3.3. Frameworks

The next step towards flexibility in deriving performance models consists in building
frameworks. They allow integration of various UML tools and notations, meaning different
kinds of diagrams that can be used to describe the system, with the possibility to derive
several alternative performance models. This is a kind of N-by-M problem to translate N
design notation types into M performance model types.

Performance by Unified Model Analysis (PUMA) [126] is a framework, based on CSM,
which allows integration of various tools to facilitate CSM extraction from the design model
(XMI representation of UML diagrams or UCMs) and also to translate CSM into performance
models (LQN, Petri Nets, QN).

The UML-to-CSM translation, also described in [97], is focused on performance
related annotations. In this case, the challenges of the translation are pointed out:

• filtering out relevant information (UML models contain multiple system views);

• handling incomplete or inconsistent UML models.

Because of the wide range of UML diagrams, a UML model can contain redundant information.
On the other hand, not all aspects of the system are important for performance analysis. This
is the reason of emphasizing the filtering process.

Specifications in UML format are semi-formal; usually the notation can be extended
to accommodate the intended purpose and domain of the system that is being modeled.
Thus, a UML model cannot be checked for correctness. However, it can be checked for
consistency and completeness as far as performance aspects are concerned. Performance
modeling requires a limited set of conditions and notations that need to be checked; for
instance, model construction requires that scenarios are continuously connected, and that
all resources acquired should be released. Another issue derives from concurrent execution of
scenarios. They should be analyzed separately as individual CSMs that interact; the interaction
should be modeled separately too and should be performed through resources.

The PUMA approach in scenario-based performance engineering is shown in figure
3.9. For each target performance modeling tool, a conversion from CSM is defined, as pre-
sented in section 2.1.1.

Figure 3.9: PUMA approach [99]

Another framework proposal is Unified Performance Engineering (UPE) [121], a
model-driven SPE framework. The performance model evolves together with the system

BUPT

52 Standardization of Distributed Systems Modeling Languages - 3

design model during the design stage. Unlike the previous example of PUMA [126], where
the performance annotations were included in the design model, in this case, additional in-
formation is kept in views, so the system design model can serve as a basis for other specific
models (e.g. security model).

Models and transformations between them are based on MOF and QVT [86], using
a high-level transformation language. The framework architecture is shown in figure 3.10.
Intermediate Performance Model (IPM) is similar to CSM [97], it includes both design and
performance information, after combining the performance view with the UML model. IPM
will be transformed into a specific performance model to be analyzed by appropriate per-
formance analysis tools. Feedback mechanisms (results inserted into the performance view)
imply inverse transformations.

Figure 3.10: Unified Performance Engineering (UPE) framework architecture [121]

In order to make use of the diversity of small, specific, available tools based on
Model Driven Architecture (MDA) approach [88] and XML format, a tool interoperability
framework is suggested in [41]. MDA supports software systems development by transforma-
tion of platform-independent models into platform specific models, executable components
and applications. The focus is moved from coding to modeling. Both the UML system design
model and the performance model (LQN has been chosen, because of the substantial work
that has been carried out in this field) are described as MOF [87] meta-models, so that the
transformation can also be expressed at the meta-model level. It is eventually translated (au-
tomatically) into a specific implementation technology, so that the UML model instance can
be converted into an LQN model instance (for the particular software system being analyzed).

A three layer approach is described for the model transformation framework: a tech-
nology independent MetaModeling Layer (MML), a technology specific Model Implementation
Layer (MIL) and a Tool Layer (TL). MML has three sub-layers, extensions of the corresponding

BUPT

3.3 - Frameworks 53

MOF metadata architecture levels; at the M1 sub-layer, the SPT Profile is used to annotate
UML model elements with performance-oriented data, obtained by estimations of experts or
by measurements on similar systems.

As it was the case for CSM [97], because tool support is not available for QVT, XML
based technologies such as XSLT are used for transformations. In the prototype implemen-
tation of the model transformation framework, the MTL (Meta Transformation Language)
transformations have been translated to XSLT rules that are given as input to a standard
XSLT processor, which converts the XMI representation of the UML model into the LQN
model, also in XMI format. Framework flexibility can be improved by considering CSM in-
stead of the LQN model; thus, a variety of PMs would be addressed with the cost of two
transformations instead of one.

It would seem that direct XSLT conversions from UML models to PMs are more
efficient, but this approach shows limitations in terms of reusability and maintainability, due to
verbosity and poor readability of XMI and XSLT. By separation of transformation specification
from its implementation, maintainability is facilitated and reuse of patterns in transformation
is possible. The productivity can also increase, by automation; this aspect will be even more
obvious when QVT tools will be available to convert transformations directly into executable
code (without needing the intermediate XSLT transformation). Conceptually, it is necessary to
move from the already established platform interoperability at tool layer to the more effective
meta-model-driven model interoperability. The ultimate goal is to have a single CASE tool that
would be transparently and efficiently used to create models, execute model transformation
and also perform model evaluation.

In the last few years, developments have been made to provide complete environ-
ments, starting at system modeling, having the possibility of applying performance evaluation
repeatedly before system implementation, in order to gradually improve system design.

Such an environment is presented in [109]: TANGRAM-II covers the whole modeling
cycle, from model building to model solution and experimentation. An advantage is that it
offers both an analytical approach and a simulation one, providing flexibility for performance
analysis: the user can choose the desired method.

A simulation-based performance analysis tool (that also provides an analytical model
for flexibility), called PerfCenter, has also been recently developed and presented in [120, 43].
Its purpose is to help the data center architects by providing means to automatically analyze
different design alternatives. The results are provided as response times, throughputs, but the
main drawback in using this tool is that it requires the input to be specified in a particular
textual format, specification that needs to be provided manually: there is no tool that can
generate such output starting from system diagrams.

Another approach to provide flexibility is the use of frameworks where the model
solver component may either be analytical or a simulator (usually, simulators are preferred for
accurate results).

Such a framework is described in [39] and its stated intent is integration of software
models with platform models, in order to devise meaningful performance models. The paper
focuses on defining platform models and mapping software components onto items from the
platform model; the UML-RT (UML-Real-Time) notation is used for model prototypes.

Another, more general framework (based on standard UML notation), is presented in
[46]. Its advantage is the use of a library of optimized node models (built by performance en-
gineers). These node models have been defined by expert performance engineers and are used

BUPT

54 Standardization of Distributed Systems Modeling Languages - 3

by system architects to yield system models as combinations of such nodes. The system mod-
els are translated to performance models using the PMIF notation, by using a translator tool
(e.g. XPRIT) and then they are simulated (or solved) using another tool (e.g. TANGRAM-II).

3.4. UML 2 or MARTE-Compliant Methodologies and Tools

A MARTE compliant performance evaluation tool, developed as a plug-in for Rational
Software Architect (RSA) v7, is described in [118]. The tool implements an algorithm that
converts an input UML MARTE model into a Performance Evaluation Process Algebra (PEPA)
model, which can further be evaluated by solving the underlying Continuous Time Markov
Chain (CTMC).

A simulation tool that uses UML 2 diagrams is DESMO-J (Discrete-Event Simulation
and Modeling in Java). N. Knaak and B. Page explain the benefits of using UML 2 in [66]
and express their intention to adopt these diagrams as input for DESMO-J. After a review
of diagram types and their utility (structural, behavior, and interaction diagrams), activity
diagrams are presented in more detail. In the context of DES, these diagrams provide means to
express both event-based simulation (modeling event routines) and process-based simulation:
modeling the lifecycle of simulation processes, by using features such as concurrency, object
flow and message passing.

V. Cortellessa et al. have implemented MOSES (MOdeling Software and platform
architEcture in UML 2 for Simulation-based performance analysis) [40], a methodology that
accomplishes integration of software models with platform models, in order to devise mean-
ingful performance models. This approach allows estimating the performance of the same
software architecture on multiple platform architectures without underlying (possibly incor-
rect) model transformations. Instead of such transformations, this methodology integrates
in one notation software and platform models plus annotations, thus building a performance
model in a unified notation.

The general methodology involves the following steps:

• Separately build software architectural model and platform architectural model.

• Merge software and platform model to obtain an integrated architectural model.

• Annotate the integrated model with data related to performance.

• Simulate the annotated model to obtain the indices of interest.

Tool support was needed for visual modeling and simulation: Telelogic Tau G2 was chosen
because it also provides a language, SDL (Standard and Description Language), to describe
statecharts and to model actions. Hence, specification of platform details (needed for perfor-
mance analysis) can be delayed: SDL blocks can be inserted at a later time, not necessarily
at software design time.

A transformation methodology from UML diagrams with MARTE annotations to a
LQN model is described by Petriu in [100]. The conversion steps are presented below:

1. Generate LQN model structure

(a) map high-level component instances to LQN tasks according to patterns;

BUPT

3.5 - Summary 55

(b) map deployment diagram nodes to LQN hardware devices;

2. Generate LQN entries, phases, activities from scenarios

(a) for each scenario
i. generate a LQN reference task and its dummy processor corresponding to the

scenario workload;
ii. match messages with inter-component communication style from patterns;
iii. map external message calls to entries;
iv. for each entry

A. group corresponding execution occurrences according to patterns;
B. map groups to phases or activities;
C. for each phase and activity compute service time and number of calls.

3.5. Summary

The chapter starts with a brief review of the input formalisms and transformation
methodologies used until year 2000: SPAs, CLISSPE, CHAM, MSC, LTS, or UML diagrams
were converted to EG or QN on which performance analysis was performed.

After year 2000, the process was automated by tool development along with new
formalisms and emerging transformation techniques. High level descriptions can be provided
in the form of UCMs. An even better idea is to combine information from several repre-
sentations (UML, MSC, ADLs) of the same system. Before having dedicated annotations
for performance analysis, methods were elaborated to convert UML diagrams into Petri Nets
or Markov Processes. After the adoption of UML SPT, several approaches described how
performance annotations could be used in different types of diagrams. Conversion algorithms
were developed to obtain intermediate models (CSM, IM) from UML SPT diagrams.

A step forward towards flexibility is taken by using frameworks that allow conversion
of N input formalisms to M performance models: PUMA, UPE. In the last few years, complete
environments were developed, such as TANGRAM-II, or PerfCenter.

Since UML 2 and MARTE were recently adopted and are still subject to improve-
ments, there are few analysis tools relying on them (DESMO-J, RSA plug-in). This is the
reason for which an approach needs to be defined concerning the way MARTE notations can
be mapped to a flexible, generic performance meta-model which is the subject of the following
chapter.

BUPT

56 Standardization of Distributed Systems Modeling Languages - 3

BUPT

4. HYBRID ANALYTICAL/SIMULATION MODEL AND SOLVER

4.1. Novel Performance Model

Performance models have been defined separately so far either for analytical solving
or for simulation. This section describes a hybrid model that allows combining of a simulation
submodel with an analytical approach applied to a QN model. In order to apply the two types
of methods, the performance model is partly transformed into a simulation submodel, and
also into a QN model for the analytical solving stage.

In addition to performance related information from the UML input model, entity
interactions are stored in the hybrid model. In order to improve analysis efficiency, only the
necessary information is kept in the model, with no redundancies.

The outcome of this research activity is building a performance meta-model that
combines flexibility and conciseness. Its actual purpose is to provide a propagation environ-
ment for intermediate analysis results shared by the simulation submodel and the QN model.
Also, the performance model allows model hierarchical or sequential decomposition into layers,
depending on the input system specification.

4.1.1 Hybrid Meta-Model Overview

Reference models from both analytical and simulation approaches were chosen: the simulation
model from UML−Ψ [74] and an intermediate meta-model called Core Scenario Model (CSM)
[97].

The two selected meta-models are similar, having a scenario oriented structure, so
the new performance meta-model is derived in a straightforward manner in [28], a research
paper written by the author of this thesis. The meta-model in [28] was improved and extended
[31, 32], as shown in figure 4.1.

The main three categories of entities are typical in scenario oriented models: work-
loads, resources, and steps; the steps are grouped into scenarios. Workloads can be open or
closed (the adopted notation in the MARTE Profile is still undergoing substantial changes, so
the notation in SPT is used to specify distributions). Resources may be either active (process-
ing units or modules) or passive (buffers and other kinds of logical resources, or even LANs,
since they are shared within networks). PassiveResources can be acquired or released by Re-
sourceActions and also inherit attributes such as "Utilization" and "Throughput", since these
parameters are very likely to reveal the presence of bottlenecks in the system. ActiveResources
are used by ProcessingSteps: the corresponding action is executed on a processing unit, also
called a host. Several steps may rely on the same host and if the host is not multithreaded, the
particular scheduling policy will be applied and the requests will be queued up until they can
be serviced. ForkAction and JoinAction allow definition of parallel sequences of steps (they
may not be executed in parallel if they rely on shared resources available in limited amounts).
CallAction is useful when calling a scenario within another scenario.

57

BUPT

58 Hybrid Analytical/Simulation Model and Solver - 4

Figure 4.1: Hybrid meta-model [31]

Performance parameters are available for each entity by inheritance from Perfor-
manceObject, the base class for all entity types presented in the meta-model depicted in
figure 4.2. The ArtifactInstance entity was added to denote a lifeline from a sequence dia-
gram, connecting a host resource to the composite steps on a lifeline. A CompositeStep is a
processing step that calls other (possibly composite) steps and also has a caller step (deduced
from the source of the incoming message in the sequence diagram).

The following subsections present the model decomposition strategy and the trans-
formations of the performance model into analytical and simulation (sub)models.

4.1.2 Model Decomposition

Level numbers are assigned to entities of the performance model as the model is built. The in-
put system model can be provided in different formats, depending on the information available
about the system and on the nature of the system.

In case sequence diagrams are available, the model is hierarchically decomposed,
based on call nesting, as shown in figure 4.3.

For a system specified using activity diagrams, the model is sequentially decomposed,
following request chains along transitions. An example is shown in figure 4.4.

The explanation for using a sequential decomposition in case of activity diagrams is
based on UML representation practices. Usually, UML steps rely on one resource (active or
passive) at most and not on other steps. Resource dependencies can be defined in deployment
diagrams, which usually have a maximum of two layers denoting the software applications
(services) and the platforms they are running on. Hence, performance submodels obtained
from UML MARTE activity diagrams will lead to QN models with two layers at most. In this

BUPT

4.1 - Novel Performance Model 59

Figure 4.2: PerformanceObject base class

Figure 4.3: Performance model layers based on nested calls from sequence diagrams

BUPT

60 Hybrid Analytical/Simulation Model and Solver - 4

Figure 4.4: Performance model levels following control flow in activity diagrams

case, a hierarchical solving method is not applicable. The only possibility to decompose such
a model is sequentially, following transitions between steps.

Submodels are obtained by decomposition using the batched layering strategy [48]:
submodel l includes entities on level l as servers and all their clients, regardless of the level
of the clients (of course, higher than l, but not necessarily equal to l-1). Such submodels are
only used during the analytical solving for input sequence diagrams, where the hierarchical
approach is applied; for activity diagrams, levels are only useful when separating the simulation
submodel, the analytical approach being applied to the entire model.

In the remainder of the thesis, the following convention (based on figure 4.4) is made
when referring to level values:

• Level l is considered "above" or "higher than" level k, when l < k.

• Level l is considered "below" or "lower than" level k, when l > k.

4.1.3 Simulation Submodel

The pure simulator is based on the simulation model defined by Marzolla in UML − Ψ [74];
the original implementation based on single-threaded coroutines was improved by adopting a
multi-threaded approach, using thread pools.

The simulation submodel, derived from UML−Ψ, is built from all entities with level
values greater than or equal to a certain level k, which will be referred to as the simulation
level. This means that entities on the simulation level generate scenarios and all their clients

BUPT

4.1 - Novel Performance Model 61

will be transformed into requests for the simulation submodel. Entities are either Steps from
Scenarios, or Resources: Steps are considered clients of the Resource they are using, and
of the Steps towards which they have transitions. Steps that are clients of Resources are
excluded from the submodel workload, since resources cannot be considered use cases. Each
Step on the simulation level generates a use case, whose composite action starts with that
Step and includes all steps following it, on all remaining levels.

When simulating steps from activity diagrams, the collection of outgoing transitions
presents a set of options, each having a probability of being called next. In case of steps from
sequence diagrams, called CompositeSteps in the meta-model, there is an additional aspect
to consider in the list of outgoing transitions: their nesting is important.

The author of this thesis extended the simulation model from UML − Ψ to support
nested calls, in addition to sequential calls that were originally supported. The base class for
all action entities, which initially included only a list of transitions, has been extended to keep
a list of calls and a method that handles the calls during the simulation. The extensions are
highlighted in figure 4.5.

Figure 4.5: Extensions of the simulation action model to support nested calls

In case there are several steps on the simulation level called by the same client,
because of the use case oriented structure of the simulation model, all such calls will be part
of a single use case, in which call order is emphasized: the first call is to the first action in the
list, and, after it finishes execution, control is passed to the second action and so on. In order
to capture this kind of call sequencing, a transformation was defined from the hierarchical
model to a composite activity with explicit transitions between sequential calls, as shown in
figure 4.6.

BUPT

62 Hybrid Analytical/Simulation Model and Solver - 4

Figure 4.6: Transformation of composite steps: nested calls become sequential messages

Only call messages have been depicted, return messages are not relevant for the
sequential order; the transformation affects message 4 (in case the simulation level k = 3) or
message 7 (for k = 2), by changing their source to be the previous step on the same level
from the execution flow. In case the simulation level k = 2, only message 7 is transformed,
message 4 is not altered since nested calls are supported for simulation actions inside the use
case, only the use case has the single entry point restriction.

4.1.4 Queueing Network Model/Submodels

The QN submodel(s) on levels above the simulation submodel have been defined at different
granularities, depending on the way the input model is specified. The input model may provide
information either on hierarchical (sequence diagrams) or on sequential (activity diagrams)
interactions between steps.

A fine granularity is used for input models described by sequence diagrams: each
submodel on a certain layer is solved using results from analysis of lower-level submodels.
Input service times for a particular QN submodel are cumulated from response times on lower
levels obtained both analytically (during LQN solving) and by simulation (for levels lower than
the simulation level).

In case of input models defined using activity diagrams, due to lack of layering, a
single QN model is defined, which uses results from simulation of lower-levels. In order to
clearly separate the simulated submodel, entity levels are established sequentially, instead
of hierarchically: level number increases along the activity flow, following the transitions
between steps. This sequential approach aggregates all service times on levels higher than the
simulation level and response times on lower levels (simulation submodel) at use case level.

The submodels subject to analytical solving are built as follows:

• service centers: system resources, both active and passive

– resource demands are computed from service times on levels above the simulation
level and response times obtained from simulation;

BUPT

4.2 - Hybrid Solver 63

• tasks:

– steps on the current submodel (QN) layer, in case of hierarchical decomposition,
– use cases (scenarios), when a single QN is built for the entire system.

In case of passive resources, simulation effects are present in values of input demands
for service centers of the (L)QN model.

In case of hierarchically decomposed models, these demands are computed as sums of
service times for all composite and non-composite steps enclosed between an AcquireAction
and a ReleaseAction for a passive resource. Both resource management actions should be
performed by the same entity (they belong to the same lifeline) and are positioned on the
same level. The execution flow between these two actions includes steps on the same level,
which in turn are composed by steps on lower levels, whose response times have been obtained
by simulation (for levels below the simulation level).

For sequentially layered models, demands are computed considering all levels in the
QN model: service demands from the input UML model are considered until the simulation
level is reached, then response times are used instead, since they are more accurate, being
obtained by simulation.

Each of the above mentioned time intervals (demand) is weighted by the quantity
of held resources; steps situated between an AcquireAction and a ReleaseAction for a passive
resource, R, hold a quantity given by the request in the AcquireAction.

4.2. Hybrid Solver

4.2.1 Iterative Process

The hybrid analysis method is an iterative process which was refined in time.
Iterations are repeated until values of parameters converge, a predefined iterationCount

is reached, or the user explicitly requests cancellation of the solving process. The convergence
test is applied to values for utilization, throughput and response time obtained in consecutive
iterations: the relative change should be lower than a predefined constant. In case of the sim-
ulated submodel, which also has a convergence test for iterations within the simulation step,
it has a different meaning: intervals of values are computed continuously for each parameter
and model node, so it is checked whether the intervals for each parameter are narrow enough,
in order to be able to consider the mean value relevant.

The value of the simulation level is configurable before starting hybrid solving: from
3 (the system workload is on level 1 and the use cases are on level 2) or 2 (for sequence
diagrams, no use cases are needed) to the maximum level in the performance model. Choosing
this maximum value for the simulation level leads to pure analytical solving.

After the original approach and the reasons for improvements are presented, the
iteration structure for the current approach is described for two types of system models:
hierarchical (modeled by LQN) and sequential (modeled by QN).

Approach Refinement

The initial hybrid solving process is based on model layering: each submodel on a certain
layer is solved using results from analysis of submodels on other layers (higher layers or lower

BUPT

64 Hybrid Analytical/Simulation Model and Solver - 4

layers, depending on the result propagation direction). This idea was successfully applied
in LQNS [48] and is appropriate for LQN input models, having multiple layers. In case of
Closed Queueing Networks (CQN), Franks proves there is a two-way dependency between
levels, so performance parameter values need to be propagated both downwards (think time)
and upwards (response time).

Based on the previously presented model decomposition strategy (section 4.1.2), a
simulation step is inserted from the simulation level downwards between two analytical steps
(top-down and bottom-up). The pseudo-code of these three-step iterations, as presented by
the author in [30], is depicted in figure 4.7.

Figure 4.7: Initial hybrid iterative approach: three step iterations applied on fine-grained
analytical submodels

The LQN oriented approach was subject to further experimentations and proved to
have problems when applied to UML MARTE input models based on activity diagrams to
describe the system behavior, because of the mostly sequential nature of such diagrams, as
already explained in subsection 4.1.2. This is the reason for keeping the fine granularity only
for input models described by sequence diagrams.

Another addressed problem of the initial approach is the difference between the way
input data is specified for the analytical solver, compared to the simulator. While the analytical
solver based on Mean Value Analysis (MVA) needs mean input values for request distributions,
the simulator includes pseudo-random number generators in order to cover larger fluctuations.
The initial top-down solving step propagates mean values to be used as input for the simula-
tion, whose accuracy thus becomes useless.

The solution is to keep only the bottom-up analytical solving step, applied after the
simulation. The input parameter values are generated according to request distributions and
propagated down to the simulation level considering branches and probabilities.

Hierarchical Approach

Each iteration starts with initializing resource performance parameters, where results of simula-
tion and analytical computations will be stored. Workloads are usually defined as distributions,

BUPT

4.2 - Hybrid Solver 65

since exact values cannot be known for arrival rates (throughput) and external delays (think
time). Distributions are specified as tagged values in the annotated UML input model. Each
iteration will have different values for these input parameters, as provided by random number
generators in Generate (Z1,R1).

Requests are then propagated to the simulation level, k, by following the transitions in
each scenario, so that the simulated submodel will have clearly defined actors for the remaining
scenarios.

The simulator runs model Mk , which consists of all submodels starting from level k
down to the lowest level, and receives as input the set of propagated think time values and
population count for closed requests, and the arrival rates for open requests.

Results from the simulation are saved in the performance model entities, such as
resources and steps.

Prior to the analytical solving, mean values are computed for think time and arrival
rate distributions, in order to obtain deterministic results.

Results are propagated both ways between the analytical solver and the simulator.
The requests for the simulated submodel have parameters propagated from the model input
along the scenario control flow: throughput (for open requests) and population count (for
closed requests) are multiplied by transition probabilities, and think time is increased for each
encountered processing step (analytical results for host resource response time are added to
the think time value). A task that acts as a server in the submodel on a certain level l may
become a client in the submodel on level l + 1, if it relies on tasks on lower levels.

Ri ,l+1 = Σj (Rj ,l ·Pi ,j) (4.1)

Ci ,l+1 = Σj (Cj ,l ·Pi ,j) (4.2)

Zi ,l+1 = ΣPSRTPS .Host + Zi ,l (4.3)

where j iterates over the collection of clients on level l belonging to the server i on
level l + 1, Ri ,l is the arrival rate (throughput) of an open request chain i on level l , Ci ,l , and
Zi ,l are the population count and external delay of a closed request chain i on level l . PS
denotes a processing step on level l , and RTPS .Host refers to the response time of the active
resource required by the processing step.

Service times are propagated upwards: they are computed from waiting times of
servers from lower level submodels, as shown in section 2.1.2 equation 2.1: values are aggre-
gated from the submodel immediately below the current submodel or the simulation submodel
(see figure 4.8).

The pseudo-code is presented in figure 4.8, in order to provide a clear high-level
description of the solving technique. The following notations are used:

Zl = {Zi ,l |1 ≤ i ≤ c} denotes the external delay values, where c is the number of
requests at level l , level 1 means pure clients (request generators).

Cl = {Ci ,l |1 ≤ i ≤ c} denotes the population count values, where c is the number
of requests at level l , level 1 means pure clients (request generators).

Rl = {Ri ,l |1 ≤ i ≤ c} denotes the arrival rate values, where c is the number of
requests at level l , level 1 means pure clients (request generators).

ρl = {ρil |1 ≤ i ≤ r} denotes the utilization values, where r is the number of resources
(service centers) of the submodel on level l .

BUPT

66 Hybrid Analytical/Simulation Model and Solver - 4

λl = {λil |1 ≤ i ≤ r} denotes the throughput values, where r is the number of
resources (service centers) of the submodel on level l .

wl = {wmj |m ∈ Sl} denotes the response time values, where Sl is the set of server
tasks from the submodel on level l .

Sl = {si ,l |1 ≤ i ≤ t} denotes service time values, where t is the number of server
tasks from level l .

Pk =
⋃

l∈L,l≥k ρl includes all utilization values for tasks on level k and lower levels.
Λk =

⋃
l∈L,l≥k λl includes all throughput values for tasks on level k and lower levels.

Tk =
⋃

l∈L,l≥k{RTmj |j ∈ Sl ,m ∈ Si ,∀i < k, i ≥ 1} includes all response time values
for tasks on level k and lower levels, which provide service to tasks on higher levels.

Figure 4.8: Hybrid iteration hierarchical pseudo-code [31]

BUPT

4.2 - Hybrid Solver 67

Sequential Approach

The hybrid iteration structure is different for sequential models deduced from activity diagrams.
Since such models have maximum two layers, the hierarchical approach is replaced by a
sequential one. Levels are assigned following the control flow and their main purpose is to
separate the simulation submodel.

Workload parameters are propagated the same way for simulation, the only difference
is that they need not be propagated for the analytical solver, since the solver will analyze the
entire system (not consecutive submodels in a bottom-up manner, as presented earlier). The
difference is highlighted in figure 4.9.

Service times are aggregated at use case level from all service times on lower levels
and response times from simulation, in order for the analytical solver to address the entire
system model, as shown in figure 4.9.

Figure 4.9: Hybrid iteration sequential pseudo-code

4.2.2 Analytical Algorithm Extensions

The algorithm is based on MVA extensions for multi-class mixed system models, accepting
both open and closed requests, described in [68, 77] and is modified by the author of the
thesis, after comparing computed values to simulation results. Both the open model solver
and the closed model solving algorithm (Chandy-Neuse) are also adapted by the author to
consider multiplicity of resources, by using a correction factor [117] for closed models and
adjustments in input parameters for open models. The pure analytical algorithms (formulae)
are presented in appendix A.

The Open Queueing Network (OQN) is solved first and the results are used to elongate
the service demands of service centers that accept both closed and open requests, and then the
resulting closed model is solved. A factor is computed using formula (4.4), and then this factor

BUPT

68 Hybrid Analytical/Simulation Model and Solver - 4

is multiplied with the service time in the formula for response time from the Bard-Schweitzer
approximation.

Fj = 1
1− Uj

, (4.4)

where Uj is the utilization for resource j, corresponding to all open requests.
This factor is used in the following expression for response time of resource j to closed

requests of type i [68]:
RTi ,j = Fj ·Si ,j · (1 + Qi ,j) , (4.5)

where Si ,j is the service time for resource j and requests of type i, and Qi ,j is the queue
length for one less request in each type of closed request as computed in the Chandy-Neuse
estimation.

The same factor is used in [68] to compute the response time for open requests, after
the Chandy-Neuse algorithm has been applied to closed requests:

RTi ,j = Fj ·Vi ,j ·Si ,j ·
(
1 + Qclosedj

)
, (4.6)

where Vi ,j is the visit rate of requests of type i to resource j, Si ,j is the service time for resource
j and requests of type i, and Qclosedj is the queue length of resource j for all closed requests
as computed in the Chandy-Neuse algorithm (already adjusted by Fj).

Tests were performed for open models and the values obtained by applying formula
(4.6), where Qclosedj = 0, are far from values obtained by simulation. The reason is simple, Fj

has the same value regardless of the considered request type i , while the formula for response
time should be elongated by the wait time caused by other requests being serviced by the
same resource. The wait time depends on the resource, but also on the type of request. This
observation led to a change in the formula for response time of open requests.

RTi ,j = Wi ,j + Vi ,j ·Si ,j ·
(
1 + Qclosedj

)
,Wi ,j = Σk 6=iλk ·Vk,j ·S2

k,j , (4.7)

where Wi ,j is the wait time for requests of type i at resource j, and λk is the arrival rate for
each open request type.

The formula for wait time was deduced by the thesis author as a result of observations
on simulated behavior and by applying probability theory. The proof starts from the interval
between two requests of the same type, Tk , and assumes that the service time for a certain
request type has to be lower than this interval, otherwise the resource would be saturated by
a single request type and no analysis would further be needed. The probability that resource
j is busy servicing a request of type k is given by the following formulae:

Pk = Vk,j ·
Sk,j

Tk
,Tk = 1

λk
. (4.8)

The wait time value is the weighted sum of service times for requests that may be occupying
resource j when a request of type i arrives, the weights being the previously mentioned
probabilities. Only requests of other types are considered in the formula, since requests of the
same type should have already been serviced by the time this request arrived.

Wk = Σk 6=iPk ·Sk,j . (4.9)

BUPT

4.3 - Summary 69

Thus, the wait time expression in formula (4.7) is derived from formulae (4.8) and (4.9).
The formula for response time in closed systems was also altered, by considering

the effects of resource multiplicity. Closed Queueing Networks (CQNs) with multiple-server
stations were studied in [117] and a correction factor, denoted by Yi ,j , was defined:

RTi ,j = Fj ·Si ,j · (1 + Yi ,j ·Qi ,j) ,Yi ,j = 1
Cj
·U4.464·(C0.676

j −1)
i ,j , (4.10)

where Cj is the multiplicity of resource j, and Ui ,j is the utilization of resource j by requests
of type i.

4.3. Summary

This chapter introduces a novel hybrid analytical/simulation model, from which both
a simulation submodel, and a Queueing Network model are derived in a straightforward man-
ner. According to the classification in [108], the performance model belongs to class III: the
analytical model of the entire system is solved using results from the simulation of a submodel.

The simulated submodel is delimited from the performance model by using a de-
composition strategy adapted from the LQNS approach, in order to fit both hierarchical and
sequential system models.

A new hybrid solving approach is defined, inserting simulation results into analyt-
ical formulae. The analytical solver is applied to a QN model of a sequential flow model
or to layered hierarchical submodels. The hierarchical approach is based on the technique
used in LQNS [48], but brings significant changes: the top-down pass is skipped, only the
upwards pass is performed, after the simulation. The analytical solving step uses formulae
from MVA extensions [77]. Two approximation techniques are considered: Bard-Schweitzer
(Approximate-MVA) and Chandy-Neuse [25], the latter being an improved estimation. The
formulae for solving open systems have been adapted by the thesis author to obtain better
accuracy.

Enhanced flexibility is achieved for the solving method, by several extensions, com-
pared to existing approaches. The input system model can include mixed requests (open and
closed); LQNS and UML−Ψ only support closed models. Both active and passive resources
are modeled, and a resource multiplicity correction factor [117] is used to obtain more accurate
results.

BUPT

70 Hybrid Analytical/Simulation Model and Solver - 4

BUPT

5. TRANSFORMATION OF UML MARTE MODELS TO THE
HYBRID MODEL

5.1. UML 2.0 Diagrams and the MARTE Profile

From the multitude of ways to define a system by using UML 2.0 [92] diagrams, there
are specific combinations that cover the definition of a wide range of distributed systems. Such
system representations should also be meaningful for performance analysis.

The resources, both active and passive, are specified by deployment diagrams, and
in order to add behavior to these resources, there are two possibilities:

• use case diagram detailed with activity diagrams,

• sequence diagram.

Activity and sequence diagrams are chosen, as behavioral diagrams, because they
are already widely adopted by the modeling community and they are suitable for distributed
systems; in case of sequence diagrams, use cases are no longer needed, since the workload is
already included in the diagram. Other behavior related diagrams, such as state machine or
timing diagrams, are useful only to provide details of particular event-based systems. Commu-
nication diagrams (formerly called collaboration diagrams) do not show message sequencing
clearly, focusing on objects and interactions between adjacent objects.

In the following sections, for each of these sets of diagrams, the process of extracting
the performance model will be described, as presented by the thesis author in [28, 29].

Most of the performance annotations are compliant to the MARTE Profile, briefly
reviewed in appendix B. Since there are annotations that need to be further refined, the
profile is still subject to changes; the beta version specification is available at [89]. Workload
distributions are poorly supported: several popular types are missing, as already reported by
the community. For this reason, the workload distributions needed as inputs to the proposed
hybrid analysis method will rely on SPT annotations [91].

5.2. Transformation of Deployment Diagrams

The resources that are important for performance analysis should be stereotyped as
GaExecHost (GQAM), SchedulableResource (GRM), or just Resource (GRM) / PaLogicalRe-
source (PAM) for passive resources. An example of a deployment diagram is presented in
figure 5.1.

The performance model will include two objects of type ActiveResource: LDAPService
and dirAuthService. These entities representing software applications (services) run on specific
platforms (GaExecHost), which may be considered resources too, but they will only be used
by the previously mentioned active resources (services). In this two-layer deployment, the
two future active resources are stereotyped as both SchedulableResource and Artifact. The

71

BUPT

72 Transformation of UML MARTE Models to the Hybrid Model - 5

Figure 5.1: Deployment diagram with two layers

SchedulableResource stereotype is especially important when using sequence diagrams for
behavior specification, since references from lifelines are towards objects having this stereotype.

In order to maintain compatibility with models defined in SPT, simplified deployment
diagrams, such as the one in figure 5.2, are also considered for transformation.

Figure 5.2: Deployment diagram with one layer

In this case, each object stereotyped as GaExecHost will become an ActiveResource,
and each object stereotyped as PaLogicalResource will become a PassiveResource. The mul-
tiplicity can be specified using the "resMult" tagged value, as shown in the figure.

BUPT

5.3 - Transformation of Use Case and Activity Diagrams 73

5.3. Transformation of Use Case and Activity Diagrams

A use case diagram connects actors to use cases (behavior). An actor stereotyped
GaWorkloadEvent will become a Workload (open or closed) in the performance model, while
a use case will become a Scenario (a composite step).

The scenario can be defined either by an activity diagram, or a state machine dia-
gram. Each Activity/State stereotyped with PaStep will become a Step, while each Control
Flow/Transition will become a Transition in the performance model. Fork and Join nodes
are treated as pseudo-actions. Branch and Merge nodes need not be considered as distinct
steps, because multiple outgoing or incoming transitions may be defined for each step, and
the probability, in case of Branch, is included in the Transition object.

The ActiveResource for a step is given by tagged values of the PaStep stereotype.
In case of single-layered deployment, the "host" property indicates the GaExecHost resource,
while for double-layered deployment the "concurRes" property refers to a SchedulableResource.

An example of annotated use case and activity diagrams is presented in figure 5.3.

Figure 5.3: Annotated use case and activity diagrams

Each use case, stereotyped as PaStep, is detailed by a corresponding activity diagram.
The component steps of a scenario are stereotyped according to the performed action. The
stereotypes GaAcqStep / GaRelStep are used for passive resource acquire / release operations,
allowing specification of the required resource ("acqRes") and resource count ("resUnits").
PaStep denotes steps executed on active resources ("host"), from which a certain duration

BUPT

74 Transformation of UML MARTE Models to the Hybrid Model - 5

is required ("hostDemand"). The example refers to a system specified by a single-layered
deployment diagram, hence the usage of the "host" tagged value.

5.4. Transformation of Sequence Diagrams

A sequence diagram is a scenario itself, because it provides successive calls (steps)
among instances of resources.

UML 2.0 changed sequence diagrams significantly, the expressiveness of the language
was highly increased; the semantics are explained in [80].

A lifeline belongs to an item stereotyped as PaRunTInstance, having a tagged value
called "instance" that points to a SchedulableResource (in case of double-layered deployment),
and also a "host" property that specifies a GaExecHost resource (for single-layered deploy-
ment). Each message is attached to an operation stereotyped as PaStep executed on the
resource of the target lifeline. The workload is usually defined by the first message in the
sequence, stereotyped as GaWorkloadEvent.

An example of a sequence diagram designed in RSA is presented in figure 5.4.

Figure 5.4: Annotated sequence diagram

A message is connected to an operation through the "SendEvent" property, as shown
in figure 5.5. For each resource the list of operations should be defined and then they should
be assigned to messages. When editing the "Operation" sub-property of a message (using the
Browse button), the model tree is displayed, so the appropriate operation is selected.

In order to illustrate the way steps are annotated in RSA, several windows are displayed
in figure 5.6. The PaStep stereotype is applied to an operation of a SchedulableResource
object, operation that can be accessed from the Project Explorer. After selecting an existing
operation of a resource, in the Properties view at least the "concurRes" (or "host" in case
of single-layered deployment) and "hostDemand" values should be set. For "concurRes" the

BUPT

5.5 - Summary 75

Figure 5.5: Connection between messages and operations in sequence diagrams: SentEvent
attribute

value is chosen from the list of available SchedulableResource items. The "hostDemand"
attribute is edited using the windows shown in the top right corner of figure 5.6.

In the example, variables are used instead of constant values, since the tool that
implements the proposed hybrid approach allows definition of variables in a separate configu-
ration file, specified as input additionally to the system model. More details on the tool are
presented in the next chapter: chapter 6.

5.5. Summary

Applying the hybrid proposed approach (chapter 4) does not require learning a new
specific modeling language, as other approaches do. It relies on the widely adopted UML
notation, with extensions for performance analysis: the MARTE Profile (or SPT Profile).

The complete performance model is obtained by applying the mapping rules presented
in this chapter to diagrams. The guidelines are summarized in Table 5.1, as previously shown
in [28, 29]; stereotypes are mapped, without details on tagged values, for brevity purposes.

In conclusion, the proposed approach is flexible in two ways:

• Several sets of input diagrams are supported: behavior can be described either by
sequence or by activity diagrams;

• Performance annotations from both the most recent MARTE profile and the previous
SPT profile are considered.

BUPT

76 Transformation of UML MARTE Models to the Hybrid Model - 5

Figure 5.6: Annotations for steps in sequence diagrams

BUPT

5.5 - Summary 77

Table 5.1: Transformation rules from UML diagrams to the performance model
Diagram Type UML Element Stereotype Performance Model Element

Deployment Diagram

GaExecHost ActiveResource
SchedulableResource ActiveResource

Resource PassiveResource
PaLogicalResource PassiveResource

Use Case Diagram
WorkloadEvent Workload(Open or Closed)
GaScenario Scenario

Activity / State PaStep Step
Machine Diagram ControlFlow or Transition Transition

Sequence Diagram
WorkloadEvent Workload(Open or Closed)

PaStep Step

BUPT

78 Transformation of UML MARTE Models to the Hybrid Model - 5

BUPT

6. PERFORMANCE HYBRID MODEL SOLVER AND
SIMULATOR

6.1. Tool Overview

PHYMSS (Performance Hybrid Model Solver and Simulator) [30] is a tool that has
been developed by the thesis author and intends to encompass as much as possible from
the performance analysis process and provide flexible analysis options. It implements two
performance analysis techniques: a simulation approach and the proposed hybrid method.

The tool accepts XMI files with the UML representation of the system model, an-
notated using the MARTE Profile. Both a simulator and a hybrid solver are available for
performance analysis. The hybrid approach is based on a simulation model that can be
treated as a LQN model during the high-level analytical solving process. Performance results
are inserted into the UML model and can be exported as an XMI file. The tool is developed
in C#, using Microsoft .NET Framework 3.5. The block diagram of the system is presented
in figure 6.1.

Figure 6.1: PHYMSS block diagram [30]

Tool input is represented in XMI format and can be obtained as output from visual
design editors for UML diagrams. Papyrus UML [5] is such an editor; it is open-source and
supports extensions for the MARTE profile. However, Papyrus UML doesn’t fully support UML
2.0 sequence diagrams, so Rational Software Architect (RSA) is an alternative for defining
such diagrams; MARTE annotations for RSA are supported by means of a plugin [3].

PHYMSS supports two types of input model specification:

79

BUPT

80 Performance Hybrid Model Solver and Simulator - 6

• Deployment diagrams for resources, and sequence diagrams for behavior (including both
clients and scenarios).

• Deployment diagrams for resources, and use case diagrams for scenarios and client
behavior with scenario details presented in activity diagrams.

Simulation and analytical solving parameters, such as duration, confidence interval
relative width for the convergence test or iteration count are specified in a JavaScript configu-
ration file; this language has been chosen in order to be easily adopted by users and interpreted
by the application. This configuration file is also useful in order to parameterize the system
model description: variables, such as arrival pattern, can be left unassigned inside the XMI
file, and their values specified in the configuration file. Hence, the effects of different values
for system parameters on system performance can be evaluated without changing the UML
model, only the configuration file needs to be modified.

Inside the system, which is illustrated as a brown box, the UML model is stored with
all performance annotations. This is where performance results are stored too, after applying
simulation or the hybrid approach, as shown by the two highlighted alternative paths. The
hybrid approach requires building the performance model, based on the hybrid meta-model
presented in section 4.1.1: the hybrid model instance creates a simulation submodel that is
run. The simulation results are then propagated upwards by solving the submodels in the
higher levels of the performance model. The pure simulator builds the simulation model from
the UML model and executes it, inserting the results into the UML model as statistics while
the simulation runs.

After having applied one of the two approaches, performance analysis results can be
exported into an XMI file, with the same structure as the input file: each UML element will
have values specified for parameters such as response time, throughput or utilization.

6.2. Performance Prediction Process with PHYMSS

In order to highlight the ease of analysis, the steps of the prediction process when
using PHYMSS are shown in figure 6.2.

Most of the process is automated; the user will provide annotated system models and
will decide whether improvements are needed, after viewing the performance analysis results.

The tool can be used in two main types of situations:

• An existing distributed application (legacy system) needs to be optimized and several
re-design alternatives are analyzed in order to select the best of them for implementation.

• A new system is designed, and it has important performance requirements that need to
be ensured, so performance analysis is used to study the feasibility of the system before
spending time on implementation.

In the first case, UML diagrams are extracted by reverse engineering from the existing
system and are edited to obtain re-design alternatives, in the second case they are created
directly in a UML visual diagram editor.

The diagrams are annotated with arrival rate information and service time distribu-
tions: they are estimations in case of a new system and measurements in case of a re-design

BUPT

6.2 - Performance Prediction Process with PHYMSS 81

Figure 6.2: Role of PHYMSS in the prediction process [31]

BUPT

82 Performance Hybrid Model Solver and Simulator - 6

operation. By arrival rate information, several parameters are referred to, depending on the
type of system workload:

• open workload: arrival rate (in fact, distribution of inter-arrival time is used, to avoid
fluctuations, as explained in the following section);

• closed workload: population count and think time distribution.

The annotated diagrams exported in XMI format by the visual editor are inputs
for PHYMSS which applies one of the three available analysis methods (Pure simulation,
hybrid analysis, analytical solving) and provides feedback into the diagrams: mean values for
performance results inserted as MARTE annotations in the original diagrams (they can be
saved as a different XMI file).

The output diagrams can be visualized using UML diagram editors and if the per-
formance results are not satisfactory, the diagrams are improved and the analysis process is
repeated.

6.3. Implemented Performance Analysis Methods

PHYMSS implements the proposed hybrid approach, and a multi-threaded simulator
in order to validate the hybrid method results by comparison. Pure analytical solving is
possible when selecting the maximum value for the level where the simulation would begin
(the simulation will be bypassed).

The component packages, each implementing a specific methodology and their de-
pendencies are illustrated in figure 6.3.

Figure 6.3: PHYMSS components

The pure simulator is based on the simulation model defined by Marzolla in UML−
Ψ [74]. The implementation in PHYMSS by the author does not rely on single-threaded
coroutines, as in the original approach, but is improved by using thread pools, and thus
allowing for multiple threads to be run simultaneously.

The parser for the input model could not be reused since the UML − Ψ relied on
UML SPT diagrams and a configuration file written in Perl. It has been implemented by

BUPT

6.3 - Implemented Performance Analysis Methods 83

the thesis author considering UML diagrams with MARTE performance annotations (or SPT
annotations where needed) and JavaScript syntax for the configuration file.

The simulation model of UML − Ψ was subject to several extensions, in order to
obtain more flexibility.

Firstly, the input model range includes open models, additionally to closed models
supported in the original implementation. In order to achieve this, the open workload was
implemented and used in an efficient way from the simulation point of view by specifying its
inter-arrival time instead of the usual arrival rate. The motivation is simple: when specifying
arrival rates (frequency), they have to be inverted for the simulator to work with durations
and this leads to large fluctuations when distributions are given for arrival rates. Instead, it
is better to use the distribution of inter-arrival time directly, to avoid unwanted fluctuations
due to intermediate computations.

Secondly, the simulation model was improved to cover nested calls inside scenarios,
since the original model only supported transitions. The simulation engine was adapted so
that each step is able to perform both nested calls and transitions to other steps during the
simulation.

The analytical approach presented in [30] uses a QN model and a MVA (layered)
solver. It was improved by changing the granularity level, using the Chandy-Neuse estimation
and resource multiplicity correction factor, extending the input model range to mixed requests
and modeling of passive resources, as shown in [31].

The Process Simulator Module, developed by Claudiu Rad as Bachelor’s Degree
Project [103] under the supervision of the thesis author, is based on the libcppsim library [72]
and provides three types of functionality to the simulation model, as shown in figure 6.3:

• Process Model: the simulator is a process oriented approach, and relies on coroutines;
the current implementation replaces single-threaded coroutines with a multi-threaded
approach, based on the C# ThreadPool [103].

• Random Number Generators: used to simulate request arrivals according to workload
inter-arrival time distributions.

• Statistics: compute mean values and variance for different types of data (performance
parameters) collected during simulation.

An additional property was implemented by the thesis author for the random number
generators: mean value. This is needed in order to ensure reproducible results for the analytical
solver. For exponential and constant distributions, the mean value was already available as
an input parameter. Uniform distributions (both discrete and continuous) have an intuitive
formula for the mean value: min+max

2 . In case of Gamma and Erlang distributions, the mean
value is computed from input parameters:

meanGamma = k·θ,meanErlang = k

λ
(6.1)

where k is the shape (Gamma) or integer (Erlang), θ is the scale, and λ = 1
θ is the rate.

For Weibull distributions, defined by the shape k and the scale λ, the mean value is

BUPT

84 Performance Hybrid Model Solver and Simulator - 6

computed using the Gamma function, Γ, as shown in (6.2).

meanWeibull = λ·Γ
(

1 + 1
k

)
, (6.2)

A numeric approximation for the Gamma function was found in [82], for z ∈ R, z ≥ 1:

Γ(z) ≈
√

2π
z
·
(z
e

)z
·
(

1 + 1
15z2

) 5
4 z

, (6.3)

For the normal distribution, the mean value is given in the distribution definition.
However, for truncated normal distributions, the mean value needs to be deduced by using
integral calculus and variable substitution. For brevity, only the results of the calculus are
presented in (6.4, 6.5, 6.6).

meanLRT = S2· f (K1)− f (K2)
Φ(K2)− Φ(K1) + M, (6.4)

meanLT = S2· f (K1)
1− Φ(K1) + M, (6.5)

meanRT = −S2· f (K2)
Φ(K2) + M, (6.6)

where LRT means truncated at both ends, LT means left truncated, and RT means right
truncated, K1 is the left bound, K2 is the right bound, M and S are the input mean and
variance respectively.

Characteristics of the LT Normal Distribution are presented in [61]. RT and LRT
formulae were deduced accordingly.

Functions f and Φ are the probability distribution function and cumulative distribution
function and have the following formulae:

f (x) = 1√
2πS2

·e−
(x−M)2

2S2 , (6.7)

Φ(k) = 1
2

[
1 + erf

(
k√
2

)]
, (6.8)

where erf (x) is the error function defined by 6.9 and approximated by 6.10, as shown in [124].

erf(x) = 2√
π

∫ x

0
e−x

2
dx (6.9)

erf(x) ≈
[
1− exp

(
−x2

4
π + ax2

1 + ax2

)] 1
2

, (6.10)

where the constant a has the following formula:

a = 8
3π ·

π − 3
4− π . (6.11)

BUPT

6.4 - User’s Guide 85

6.4. User’s Guide

The Graphical User Interface (GUI) is designed to be user-friendly: Microsoft’s Win-
dows Presentation Foundation (WPF) [79] was used to provide a better user experience.

PHYMSS provides two interaction patterns:

• menu with submenu options, as shown in figure 6.4;

• toolbar with buttons (intuitive symbols) for each available option; when hovering over
a button, an explicit tooltip is also displayed (see figure 6.5.

The options (toolbar items) are enabled only when they can actually be used. Hence, the order
in which the steps should be performed is obvious by restricting the set of allowed options.

Figure 6.4: PHYMSS menu

Figure 6.5: PHYMSS toolbar

The options are grouped in two main categories:

• File

– Import parameters (JS file)
– Import UML model (XMI file)
– Export results (XMI file)

• Run

– Run Simulation
– Solve (Hybrid or pure analytical method)
– Cancel

The initial operation flow is presented in figure 6.6, where each operation is preceded
by its symbol on the application toolbar. At application startup, the only available option is
Import Parameters; after importing the JS configuration file, the Import UML Model button
is enabled. After importing the model, the Run Simulation and Solve buttons are active.

BUPT

86 Performance Hybrid Model Solver and Simulator - 6

Figure 6.6: PHYMSS operation flow

During simulation or hybrid analysis, the only active button is Cancel. When clicking the
Cancel button, the process stops after the current iteration finishes, in order for the algorithm
to reach a stable state.

After normal termination of simulation or hybrid solving or after cancelling one of
these operations, all operations are active except Cancel (which is active only during simulation
or solving). The Export button can be used even before the analysis, but there are no
performance results, so it would only create a copy of the input XMI model; that’s why the
arrow from Import UML Model to Export Results is dashed: this is not a useful transition.

The main window is divided in two panels:

• Configuration Parameters

– Imported parameters are displayed (read-only)
– Simulation or hybrid analysis settings can be set/reset

• Simulation Status

– Simulated entities to be monitored can be selected
– For each monitored entity, an embedded panel is displayed with statistical infor-

mation on performance parameters (min, max, average and confidence interval).

The only simulation related setting available in the Configuration Parameters panel is
the Show Simulation Progress check box: unchecking it leads to an empty Simulation Status
panel.

The solver parameters are editable after clicking the Solve button (or Hybrid Method
option from the Run menu):

• Show Simulation Progress check box refers to the submodel that is simulated

BUPT

6.4 - User’s Guide 87

Figure 6.7: PHYMSS Simulation Status Panel

BUPT

88 Performance Hybrid Model Solver and Simulator - 6

• Simulation Start Level allows choosing the simulation level as defined in chapter 4; the
range starts from 2 (in case of input sequence diagrams) or 3 (for use case and activity
diagrams, since the use cases insert an additional unused layer)

• Enhanced Accuracy check box selects the analytical approximation: A-MVA if unchecked
[104] and Chandy-Neuse if checked [25].

Figure 6.8: PHYMSS Configuration Parameters Panel

When all parameters are set, the Go button starts the simulation / solver and the
Configuration Parameters becomes read-only during the analysis; the only active button or
option from the menu is Cancel. After the simulation / solving ends or is cancelled by the user,
the Go button transforms into Clear All: the data resulting from the analysis (performance
parameters) must be reset before starting a new analysis. Of course, the results should be
first exported (if needed) and afterwards reset.

6.5. Summary

PHYMSS and the methodology it implements have been considered relevant and with
potential by experts in the field of SPE: the paper describing PHYMSS [30] was published at
the 1st Joint WOSP/SIPEW International Conference on Performance Engineering.

The application provides two performance analysis approaches:

• Simulator: multi-threaded version of UML − Ψ, extended to support both open and
closed workloads, and also nested calls, in addition to transitions inside scenarios.

• Hybrid Solver: novel approach combining layered (where possible) analytical solving with
simulation of a submodel from a certain level downwards, level determined hierarchically,
or sequentially when there are too few layers. The pure analytical approach can be
obtained by skipping the simulation step.

BUPT

6.5 - Summary 89

Input XMI files are supported, a specific parser has been implemented to interpret
both MARTE and SPT annotations, where MARTE annotations are not defined yet. Two
sets of diagrams can be used to describe the input model:

• Deployment diagrams for resources, and sequence diagrams for behavior (including both
clients and scenarios)

• Deployment diagrams for resources, and use case diagrams for scenarios and client
behavior with scenario details presented in activity diagrams

The GUI is user-friendly, the imported configuration is displayed and several options
are available at run-time:

• Hybrid solver:

– Level k where simulation starts is customizable
– The analytical solver allows two approximations: A-MVA [104] and a better esti-

mation technique, Chandy-Neuse [25].

• Simulation: intermediate performance results can be viewed during the simulation in a
dedicated panel.

BUPT

90 Performance Hybrid Model Solver and Simulator - 6

BUPT

7. CASE STUDIES

7.1. Input Models

The proposed methodology is flexible, so that the implementation in PHYMSS ac-
cepts open, closed or mixed system models as input models. Observing analysis results on a
single input model does not suffice for a thorough validation. Two kinds of systems have been
considered for modeling as application inputs:

• Open systems:

– Help Desk, described in [77] as an application of analytical methods.
– Authentication System, based on a real online system, the model being built by

the author of this thesis and described in [31].

• Closed system:

– Airport Air-Traffic Control (AATC), whose model was built by the author of this
thesis in [27, 26], in order to study the benefits of simulation approaches in per-
formance analysis.

Each of the above mentioned models will be described in the following sections.
Results are obtained by using PHYMSS 1.7, installed and run on Windows 7, the

computer system having an Intel Core 2 DUO CPU, at 2.93 GHz and with 4 GB RAM.

7.2. Validation of Implementation and Improvements for Pure Analysis
Methods

7.2.1 Help Desk System

The open system is presented in detail in [77]: a help desk application that would provide
assistance to employees of a large company in solving problems related to their computing
environments. Three main functions are defined:

• access to a database of Frequently Asked Questions (FAQ);

• creation of a help ticket;

• viewing of open help tickets.

Each scenario is described in [77] using database language (SQL-like) pseudo-code and then
database management specific formulae and empirical studies are presented in order to derive
the global demand of each use case for each resource. A programming-oriented pseudo-code
of activity flow within scenarios is shown in figure 7.1.

91

BUPT

92 Case Studies - 7

Figure 7.1: Help Desk System model: pseudo-code for scenarios

The pseudo-code is made of SELECT and UPDATE operations on the database
tables, tables referred to using identifiers with the âĂĲTâĂİ suffix. The database model is
described in detail in [77]: tables, indexes and relationships between tables. The tables mapped
to entities are: QuestionT, KeywordT, EmployeeT, and TicketT; the relationships between
entities are modeled as tables with pairs of IDs: KeywordQuestionT, TicketEmployeeT, and
TicketKeywordT. The identifiers in italics are parameters that were deduced from system
specifications: KeywordsPerQuery = 2, QuestionsPerKeyword = 20, ProbValidEmployee =
0.9, KeywordsPerTicket = 5, TicketsPerEmployee = 80.3. Arrival rates and computed service
demands for each scenario and service center (resource) are presented in Table 7.1. The case
study assumes a bottleneck has been solved by multiplying a disk into 4 identical instances,
designated by Dj .

Table 7.1: Input performance parameters for Help Desk System
FAQ New Ticket Status View

Arrival Rate [tps] 1.92 0.41 0.27
CPU Demand [sec] 0.237 0.046 0.607
Dj Demand [sec] 0.316 0.0617 0.809

7.2.2 Simulation Model Validation

The simulator from the tool is an extension of UML − Ψ [74], but instead of sequential
coroutines, it relies on multithreaded servers. It will be validated first, in order to be able to
consider it as reference for the validation of the hybrid approach.

BUPT

7.2 - Validation of Implementation and Improvements for Pure Analysis Methods 93

Several techniques, used in model verification and validation, are described by Sargent
in [106], methods that apply either to the conceptual model, or to the computerized one:

• Animation: operational behavior through time

• Comparison to other valid models: analytical models may be used for simple cases

• Degenerate tests: degeneracy of behavior for certain values of input and internal pa-
rameters

• Face validity: opinion of individuals

• Historical data validation: data collected on a real system

• Internal validity: variability in several runs of a stochastic model

• Operational graphics: values of parameters shown graphically as the model runs

• Parameter variability-sensitivity analysis: effect of variations in values of input and
internal parameters on model behavior or output

• Predictive validation: compare predictions based on the model with real system behavior

• Traces: behavior of entities is traced to check the model logic and accuracy.

A conceptual model is turned into a computerized model in order to be run, by imple-
menting it in a specific simulation dedicated language or a high-level programming language.
The former would provide error free behavior and pseudo-random generators, while the latter
needs more development and testing efforts. Verification of a computerized model versus the
conceptual model is usually performed by structured walkthroughs (static testing) and traces
(dynamic testing) [106].

In case of the simulation model in PHYMSS, traces were used in early validation to
observe model behavior over simulated time. Variability was also monitored by computing
variance for value ranges of each output parameter.

In order to present quantitative aspects of validation, the previously described input
model was subject to simulation. The step by step behavior of the open model is presented
in appendix C.

The resulting mean values are compared to simulation results (expressed as simulated
time units [stu]) in Table 7.2. The comparison between these quantities is possible since the
values of input parameters expressed as seconds ([sec]) and transactions per second ([tps])
were used as input values for the simulator. Therefore, in the following tables, the simulation
results will be considered as follows: response time in [sec] and throughput in [tps].

For each simulation response time value, variance is specified between parentheses.
Variance is computed differently for response time (7.1) and for other parameters (utilization,
throughput) (7.2).

Variance (RT) = Interval .width

MeanValue
, (7.1)

where Interval .width is the width of the interval including all measured values.

BUPT

94 Case Studies - 7

Table 7.2: Help Desk simulation results compared to computed mean values
CPU Disk CPU Disk CPU Disk CPU Resp. Disk Resp.

Req. Queue Queue Wait Wait Resp. Resp. Time Time
Type Length Length Time Time Time Time (Variance) (Variance)

[sec] [sec] [sec] [sec] [stu] [stu]

T1 0.27 0.6 0.05 0.17 0.29 0.49 0.32 (0.030) 0.52 (0.027)
T2 0.67 1 0.09 0.26 0.14 0.33 0.19 (0.090) 0.38 (0.092)
T3 1.5 1.5 0.12 0.2 0.72 1.01 0.66 (0.099) 0.91 (0.097)

Variance (U,Thr) =
Σix

2
i −

(Σixi)2

n

n − 1 , (7.2)

where xi are measured values and n is the total number of measurements.
The offset values between simulation results and step-by-step calculus are shown in

Table 7.3. As it can be observed from both Tables 7.2 and 7.3, variance and offset values are
lower than or equal to 0.1.

Table 7.3: Offset between simulation results and step-by-step calculus
CPU Resp. Time Offset [sec] Disk Resp. Time Offset [sec]

0.03 0.03
0.05 0.05
0.06 0.1

7.2.3 Analytical Enhancements Validation

The improved analytical solver was validated by comparing results to simulation results used
as reference values. In order to maintain the semantics of the model, use cases are not de-
composed into steps, they are seen as atomic operations. When held by a use case, a resource
should be blocked for the entire duration of that use case, not only a step duration. Oth-
erwise, interleaved execution of steps from distinct use cases leads to a significantly altered
waiting time distribution among steps, compared to the wait time at use case level. The pre-
viously described open system model has the following behavior: multiple resources accessed
simultaneously by the steps in the three scenarios. When applying analytical formulae to the
matrix of resource demands per type of input request, results are obtained in a straightforward
manner.

Modeling of simultaneous multiple resource possession is hard to achieve, since the
MARTE UML annotations allow defining only one host resource per step. Dividing one
step into parts corresponding to each held resource would be an alternative, but then the
interconnection of these sub-steps has to be decided. Connecting them in sequence, would
insert dependencies that are not present in the analytical formulae, which treat the acquisition
of each resource as an independent activity. The correct approach is to connect the sub-steps

BUPT

7.2 - Validation of Implementation and Improvements for Pure Analysis Methods 95

in parallel, using a Fork-Join structure to replace the initial multiple-resource step. The
configuration file with analysis settings and the model input parameters is shown in figure 7.2
and the model is presented in figure 7.3.

Figure 7.2: Help Desk configuration file for analytical method validation

Figure 7.3: Help Desk one-step scenarios for analytical method validation

Results of analytical solving are compared to values obtained by simulation (reference
values). The relative error [%] is computed as |Ranalytical − Rsimulation|/Rsimulation ∗ 100.

The relative error for most parameters is below 5%, and for a few it is around 10%
which deems the analysis correct, as accepted in the field papers, such as [117]. The total
response times for use cases could not be obtained directly by simulation because of the Fork-
Join structure that returns the maximum time of the branches; the use case response times
were computed by adding response times obtained by simulation for sub-steps corresponding
to resources. For example, RFAQ = RFAQ_CPU +RFAQ_D1 +RFAQ_D2 +RFAQ_D3 +RFAQ_D4.

In order to compare response times at resource level, unit tests were implemented
to have access to intermediate results, before exporting them to the output file; results are

BUPT

96 Case Studies - 7

Table 7.4: Analytical solver results validation
Simulation Analytical Solver Offset Relative Error [%]

CPU Utilization 0.637 0.64 0.003 0.47
Dj Utilization 0.849 0.85 0.001 0.12

RFAQ [sec] 2.4 2.31 0.09 3.75
RNew [sec] 1.78 1.97 0.19 10.67
RView [sec] 4.3 4.72 0.42 9.77

Mean Throughput [tps] 2.59 2.6 0.01 0.38

investigated and decomposed, in order to check the offset from the simulation results. The
comparison is presented in Table 7.5.

Table 7.5: Analytical solver validation: detailed response time comparison [sec]
Simulation Analytical Solver Offset

RFAQ [CPU] 0.31 0.34 0.03
RFAQ [Dj] 0.52 0.49 0.03

RNew [CPU] 0.20 0.25 0.05
RNew [Dj] 0.39 0.43 0.04

RView [CPU] 0.66 0.71 0.05
RView [Dj] 0.91 1 0.09

7.3. Real Distributed System for PHYMSS Validation

Hybrid solver validation will be performed by considering the model of a real system,
in order to be able to perform measurements: a typical authentication system that allows for
role impersonation in accessing a database.

7.3.1 System Model

UML deployment and sequence diagrams for this scenario have been defined, by reverse
engineering. The sequence diagram depicting the authentication scenario is presented in
figure 7.4. The diagrams were designed using RSA 7.0 extended with a plugin for MARTE
[3].

The entry point is the database authentication service (dbAuthService) which per-
forms authentication and authorization (AandA) of a given user account. The first step
consists in password authentication (AuthPwd) delegated to the directory authentication ser-
vice (dirAuthService) which relies on the central LDAPService to validate the user account in
the domain. After the account is validated, the credentials are sent to the database server
for authorization: checking access rights of the account (DbLookup). A user having a valid
account might be granted access only to specific databases, based on predefined database
roles. In case the corresponding role is found, the database will be accessed by impersonation,

BUPT

7.3 - Real Distributed System for PHYMSS Validation 97

Figure 7.4: Authentication System sequence diagram [31]

using the role credentials. The above mentioned services are usually deployed on different
machines.

Input model MARTE annotations are parameterized and the values are set in the
configuration file. Arrival rates and service time distributions, have been derived based on
measurements on the real online system, as shown in Table 7.6.

Table 7.6: Measured input parameters for the Authentication System
Input Parameter Distribution Type Distribution Parameters [msec]

Arrival rate Exponential λ = 10000

Authentication Demand Normal µ = 1290
σ = 4.31

Authorization Demand Constant 15.6

Samples have been collected during the busy hour of each day within one week (five
working days) by using code instrumentation and log files, both on servers and client ma-
chines. Histograms have been built from measurements in order to deduce the distribution
types (exponential, normal), and then specific parameters were extracted for each distribution
(mean, variance). As an example, in order to find the median for service demands of the au-
thentication step, several histograms have been built; each of these was subject to a filtering
process (keeping only the relevant, centered, data) followed by building a finer-grained his-
togram for the remaining data. The final histogram is shown in figure 7.5. The configuration
file used for the authentication case study in presented in figure 7.6.

BUPT

98 Case Studies - 7

Figure 7.5: Authentication step demand (msec) distribution histogram

Figure 7.6: Authentication System configuration file

BUPT

7.4 - Improving System Design: Early Problem Detection by Performance Analysis 99

7.3.2 Performance Results

The models were analyzed using three methods, for comparison: pure analytical, hybrid ap-
proach, and pure simulation. The results are shown in Table 7.7.

Table 7.7: Response time values comparison
Step Analytical [msec] H[4] H[3] Simulation Measured [msec]

Authorization 15.6 15.6 15.6 15.6 1.36 (4.42)
LDAPLookup 1287.67 1391.54 1378.79 1363.36

DirAuth 1287.67 1391.54 1378.79 1363.36
AandA 1303.27 1407.14 1394.39 1378.96 1403.71 (344)

Duration <1" 0’31" 1’55" 1’10" -

Analysis duration is also presented in the table (in minutes and seconds) because
there is no direct correspondence between simulated time and real time: the simulated time
progresses several units at a time, between consecutive processes as defined by the scheduler.

For the hybrid approach, the level is specified between square brackets. Analytical
solving is obtained by choosing the maximum available value for the simulation level (meaning
no simulation is performed). For the measured values, the mean value is followed by the
standard deviation between parentheses.

Response time mean values for steps are compared, and the analysis time is also
presented. The discrepancy in case of the measured Authorization time comes from not
modeling the caching at server side. The response times are either 15 or 0 msec, as it can be
seen from the high standard deviation (4.42 msec) compared to the mean value (1.36 msec).

For k = 3, the simulation submodel includes a large part of the performance model,
which leads to more accurate results, but also to a long analysis duration (because of the
iterative process, which repeats the simulation and analytical solving at least twice).

For k = 4, the simulation submodel is smaller, leads to an improvement in speed
(compared to pure simulation) and to precise results. The precision is not the same as for
k = 3, but still more accurate compared to the pure analytical approach.

7.4. Improving System Design: Early Problem Detection by Performance
Analysis

A case study has been built and several design alternatives are evaluated, in order to
test the ability of PHYMSS to detect design flaws. The Airport Air Traffic Control (AATC)
system manages incoming and outgoing flights for a certain airport. For simplicity, the aircraft
is viewed as an external autonomous entity, interacting with the airport software system.
The AATC system will be modeled with closed requests and activity diagrams, leading to a
sequential layering, instead of the hierarchical approach applied previously.

Several improvements of both the analytical and the hybrid solver can be observed
in the context of this case study: extending the input model range (by using both closed
and open models as inputs), modeling of passive resources and resource multiplicity, and the
improvements of Chandy-Neuse compared to A-MVA estimations for closed models.

BUPT

100 Case Studies - 7

7.4.1 Initial Design

The software system includes a MainModule which performs computations, validations and
coordinates the activities. The database is split in two sections, in order to facilitate access:
LocalDB, with airport local information, such as weather conditions and runways’ status;
FlightsDB, with flight plans (FP) of the aircrafts that are about to arrive; the flight plan
should be sent by the preceding control center to the airport before the aircraft enters the
airport airspace (usually when the aircraft passes by the control center).

The CommunicationModule is used for radio transmissions to and from the aircrafts
flying in the airport airspace, or even on the ground, before departure. It uses a finite set of
RadioChannels (each flight must be allocated a different channel, so that collisions do not
occur, since consequences could be devastating). Another resource of the Communication-
Module is a Buffer, used to store incoming or outgoing messages, until they can be processed
or sent respectively.

Each scenario in the use case diagram is detailed by an activity diagram, involving
queries on the databases, computations and communication with aircrafts by using radio
channels. Use case, deployment and activity diagrams for landing and departure are presented
in figure 7.7. The UML model was defined using Papyrus UML [5] with its extension for
MARTE, in order to have access to performance annotations and specific stereotypes (such
as PaStep and GaScenario). In the diagrams, notes were attached to a few relevant activities,
in order to illustrate the tagged values used for performance annotations; also, levels assigned
to each entity when the model is built are displayed between square brackets, after each entity
name.

Landing is guided from the control tower at the airport; for each aircraft, a radio
channel is allocated on demand and released after the necessary information has been com-
municated. The Buffer associated to the CommunicationModule is acquired before sending
or receiving a message and released afterwards.

The aircraft first sends its ID to the AATC system; it is assumed that the flight
plan (FP) of the aircraft had been previously received from the last control center reached
by it and the airport monitoring system stored the FP in FlightsDB. Thus, the system can
retrieve information about the aircraft, based on its ID. AATC also needs to check the weather
conditions and if there are any free runways, by consulting LocalDB, in order to decide whether
to allow the aircraft to land or not. The two databases, LocalDB and FlightsDB, are queried in
parallel, to save time. The decision on landing permission is performed by the LValidation step
in the diagram and is followed by one of the three alternative branches; PHYMSS allocates
default equal probabilities to them when no values are provided as annotations in the input
model (0.33 for each branch, in this case).

In case of landing approval, a runway is selected and landing parameters are computed
(direction, descent rate) for the aircraft to follow the correct trajectory to the runway. These
parameters are sent to the aircraft using the allocated radio channel, which is released after
this operation.

Another equiprobable option is for the aircraft to wait, in a queue, flying over the
airport; it will repeatedly ask for permission to land, until it is approved.

The third option is that the landing is denied, meaning no runway is free and also the
waiting queue is full, so the aircraft will be redirected to another airport; the FP is updated
accordingly and sent back to the aircraft and to the next control center, on the route to the
new destination.

BUPT

7.4 - Improving System Design: Early Problem Detection by Performance Analysis 101

«gaExecHost»

FlightsDB [9]

«gaExecHost»

LocalDB [13]

«gaExecHost»

MainModule [14]

«gaExecHost»

CommunicationModule [17]

«paLogicalResource»

Buffer [18]

«paLogicalResource»

RadioChannels [19]
«gaWorkloadEvent»

Aircraft [1]

«paStep»

LandingUC [2]

«paStep»

DepartureUC [2]

*
*

*

*

LGetChannel [3]

LGetBufferInit [4]

LReceiveAircraftID [5]

«gaAcqStep»

acqRes=RadioChannels

resUnits=["assm","dist", ["constant", 1]]

«gaAcqStep»

acqRes=Buffer

resUnits=["assm","dist", ["constant", 1]]

«paStep»

host=CommunicationModule

hostDemand=["assm","dist",["exponential",5.0]]

LReleaseBufferInit [6]
«gaRelStep»

relRes=Buffer

resUnits=["assm", "dist", ["constant", 1]]

LGetFlightPlan [8] LGetLocalInfo [8]

LValidation [10]

LGetFreeRunway[11]

LGetBufferWait[11]

LRoutingToNewDestination[11]LUpdateRunwayInfo[12]

LSendWaitMessage[12]

LComputeLandingParameters[13]

LUpdateFlightPlan[12]

LGetBufferApprove [14]

LSendLandingInfo [15]

LGetBufferDeny [13]

LSendFlightPlan [14]

LGoodbye [16]

LReleaseBufferFinal [17]

LReleaseChannel [18]

DGetChannel [3]

DGetBufferInit [4]

DReceiveAircraftID [5]

DReleaseBufferInit [6]

DGetFlightPlan [8] DGetLocalInfo [8]

DValidation [10]

DGetFreeRunway[11] DGetBufferDeny[11]

DSendDenyMessage[12]
DUpdateRunwayInfo[12]

DComputeDepartureParameters[13]

DGetBufferApprove[14]

DSendDepartureParameters[15]

DGoodbye [16]

DReleaseBufferFinal [17]

DReleaseChannel [18]

«paStep»

host=MainModule

hostDemand=["assm","dist",["exponential",1.0]]

«paStep»

host=CommunicationModule

hostDemand=["assm","dist",["exponential",5.0]]

«gaRelStep»

relRes=Buffer

resUnits=["assm", "dist", ["constant", 1]]

«gaRelStep»

relRes=RadioChannels

resUnits=["assm","dist", ["constant", 1]]

«gaAcqStep»

acqRes=Buffer

resUnits=["assm","dist", ["constant", 1]]

«paStep»

host=MainModule

hostDemand=["assm","dist",["exponential",2.0]]

resMult=numChannels resMult=1

[7][7]

[9][9]

Figure 7.7: AATC initial use case, deployment and activity diagrams

BUPT

102 Case Studies - 7

The Departure scenario also involves communication between the aircraft and the
AATC system by using a radio channel. Similarly to the Landing scenario, the system retrieves
information from FlightsDB, based on aircraft ID.

Depending on the weather and runway availability, the aircraft is allowed to take
off or not. In case of approval, the system sends the appropriate parameters to the aircraft.
Otherwise, the aircraft will repeat the same scenario later, waiting for approval.

The system model also has configuration parameters, such as aircraft arrival pat-
tern, probabilities of scenarios, number of available radio channels; they are defined in the
configuration file, presented in figure 7.8.

Figure 7.8: AATC configuration file for the closed model

The value for simDuration was chosen as the minimum number of simulation time
units (multiple of 1000) for which all output parameters have enough collected measurements
in order for the statistical engine of the simulator to compute significant mean values. This
condition is important both for the simulation of the entire model, and for the hybrid method,
since this method inserts values obtained by simulation into the analytical solving procedure.

The first experiment was performed for numChannels = 1, and the results were pre-
dictable: a bottleneck was detected, by obtaining values of RadioChannels utilization higher
than 0.9 by simulation and higher than 1 with hybrid and analytical approaches. However,
two more entities had utilizations higher than 1 (or close to 0.9 by simulation): Communica-
tionModule and Buffer.

The number of radio channels was increased to 100 and the experiment repeated
with the results of simulation (Sim[simDuration/1000]), hybrid analysis for different values of
the simulation level (H[k]), and pure analytical solving (Ana[k = 19]) presented in Table 7.8.

While the analytical solver converges in 2 iterations (because the computed mean
results are always the same), the simulation and the hybrid solver yield different results each
time they are run: if the run is convergent, the results are slightly different according to the
previously defined confidence interval, and if it is not convergent, then larger differences may
occur. However, the simulator compensates for this problem by dividing the predefined run
duration into 10 intervals and running the simulation 10 times, so that mean values and con-
fidence intervals of output parameters are computed for values obtained over 10 simulations,
instead of only one. Because simulation does not converge, higher values for simDuration
were considered more relevant when simulating the entire model: a longer simulation will
provide more accurate results.

As anticipated, the RadioChannels utilization problem was solved, but analysis results
show the other two entities (CommunicationModule and Buffer) still have poor performance,
having analytical and hybrid utilization values higher than 1. While simulation measurements
for utilization values are always lower than 1 (but close to it, in case of a bottleneck), analytical

BUPT

7.4 - Improving System Design: Early Problem Detection by Performance Analysis 103

Table 7.8: Performance analysis results for initial design.
S[10] S[5] S[3] H[3] H[4] H[5] H[11] H[13] H[14] A[19]

UMM 0.16 0.17 0.15 0.18 0.18 0.2 0.18 0.18 0.19 0.17
UFDB 0.15 0.18 0.14 0.2 0.2 0.22 0.19 0.19 0.21 0.19
ULDB 0.37 0.37 0.31 0.42 0.42 0.48 0.42 0.42 0.44 0.42
UCM 0.89 0.86 0.88 1.01 1.01 1.12 1.01 1 1.04 1.01
URC 0.04 0.03 0.04 0.02 0.02 0.04 0.01 0.01 0.02 0.01
UBuf 0.89 0.85 0.88 1.01 1.03 2.74 1 0.96 1.21 1.01
Resp.
Time 69.2 67.1 72.3 64.0 63.3 49.5 60.1 59.7 50.6 52.9
Avg λ 0.11 0.11 0.1 0.068 0.072 0.099 0.062 0.06 0.069 0.065
Time 1’1" 0’31" 0’18" 1’30" 1’35" 1’24" 1’6" 0’24" 0’8" 0.1"
Iter.

Count - - - 6 5 5 7 3 2 2

methods, and consequently the hybrid approach, can lead to values higher than 1, the result
showing the degree of resource overloading. Such a result may be used to fix design issues,
it indicates resource multiplication: how many resources of a certain type should be in the
system, in order for the requests to be properly handled and the bottleneck removed.

Not all possible values for the simulation level, k, between 3 and the maximum level
yield valid results – this depends on the logic of the particular system being modeled. In
case of AATC, levels ranging from 7 to 10 are not valid, since in that section of the diagram
there are fork and join nodes, which create problems when they are not covered by the same
model (simulation or analytical). Also, in the final section of the diagram, simulation does not
make sense when starting between an acquire step and a release step, so 14 is the maximum
considered value for k in the experiments, because no resources are acquired on lower levels.

Highlighted values for k = 3, k = 4, k = 11, k = 13 are closer to simulation results
than to analytically computed values.

Parameter values that differ significantly from simulation results (reference values)
are explained below.

In case k = 5, the simulation submodel does not include the first acquisition of
Buffer, so the bottleneck is no longer situated at buffer level, but at CommunicationModule
level, since the submodel includes all usages of this active resource by processing steps. This
leads to high values for response time of such steps using CommunicationModule, which in
turn leads to high values for resource demand and consequently resource utilization for passive
resources (RadioChannels, Buffer), because the analytical solver computes resource demand
as resource requested units multiplied by step response time (obtained by simulation).

In case k = 14, the simulation submodel starts below acquire steps LGetBufferDeny,
LGetBufferWait, and DGetBufferDeny, so the bottleneck at Buffer is not observable in the
submodel, and leads to high values of response time for steps involving CommunicationMod-
ule (which is intensively used below level 14); these values are then used by the analytical
solver in computing resource demand for passive resources (Buffer) held during these steps
(LSendLandingInfo, LSendFlightPlan, DSendDepartureParameters), so that utilization has a
high value both for the active (CommunicationModule) and the passive resource (Buffer).

BUPT

104 Case Studies - 7

7.4.2 Design Improvements

In order to remove the bottleneck, the communication buffer should be split in two buffers:
one for sending messages and one for receiving messages, so that the load is shared. The
improved design is illustrated in figure 7.9, the use case diagram remains the same, while
changes in activity diagrams are highlighted as notes with a dark-shaded background, since
the referred entities are only visible as tagged values. In this case, the bottleneck is only
moved from the buffer to calls to the module. This can be observed in Table 7.9.

«gaExecHost»

FlightsDB

«gaExecHost»

LocalDB

«gaExecHost»

MainModule

«gaExecHost»

CommunicationModule

«paLogicalResource»

ReceiveBuffer

«paLogicalResource»

RadioChannels

LGetChannel

LGetBufferInit

LReceiveAircraftID

«gaAcqStep»

acqRes=RadioChannels

resUnits=["assm","dist", ["constant", 1]]

«gaAcqStep»

acqRes=ReceiveBuffer

resUnits=["assm","dist", ["constant", 1]]

«paStep»

host=CommunicationModule

hostDemand=["assm","dist",["exponential",5.0]]

LReleaseBufferInit

«gaRelStep»

relRes=ReceiveBuffer

resUnits=["assm", "dist", ["constant", 1]]

LGoodbye

LReleaseBufferFinal

LReleaseChannel

DGetChannel

DGetBufferInit

DReceiveAircraftID

DReleaseBufferInit

DGetFlightPlan DGetLocalInfo

DValidation

DGetFreeRunway
DGetBufferDeny

«gaRelStep»

relRes=TransmitBuffer

resUnits=["assm", "dist", ["constant", 1]]

«gaRelStep»

relRes=RadioChannels

resUnits=["assm","dist", ["constant", 1]]

«paLogicalResource»

TransmitBuffer

«gaAcqStep»

acqRes=TransmitBuffer

resUnits=["assm","dist", ["constant", 1]]

Figure 7.9: AATC improved deployment and activity diagrams

In case k = 3 and k = 4, values of utilization for ReceiveBuffer are more accu-
rate (closer to simulation results) because resource demand is computed using response time
values for steps LReceiveAircraftID and DReceiveAircraftID, which are part of the simulated
submodel. In fact, all highlighted values for cases k = 3, k = 4 and k = 5 are closer to sim-
ulation results. Utilization values for TransmitBuffer should theoretically be lower than 1.00,
since now the load should be divided between the two buffers; this explains the analytical and
hybrid results for k = 11 and k = 13. However, simulation results show higher utilization
values, both for TransmitBuffer and for ReceiveBuffer, because these resources are used in
correlation with CommunicationModule, which still acts as a bottleneck.

In case k = 14, the previous explanation holds, with TransmitBuffer as the passive
resource, instead of Buffer.

BUPT

7.4 - Improving System Design: Early Problem Detection by Performance Analysis 105

Table 7.9: Performance analysis results for improved design.
S[10] S[5] S[3] H[3] H[4] H[5] H[11] H[13] H[14] A[19]

UMM 0.16 0.16 0.23 0.18 0.18 0.18 0.19 0.19 0.2 0.19
UFDB 0.18 0.21 0.26 0.2 0.2 0.2 0.21 0.21 0.22 0.21
ULDB 0.42 0.37 0.47 0.43 0.43 0.42 0.45 0.46 0.48 0.46
UCM 0.92 0.91 0.85 1.04 1.04 1.02 1.07 1.08 1.11 1.08
URC 0.04 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02
URB 0.56 0.55 0.47 0.59 0.6 0.33 0.35 0.36 0.37 0.36
UTB 0.89 0.82 0.76 1 0.96 0.96 0.7 0.74 2.04 0.71
RT 66.3 57.1 53.9 61.4 61.3 62.4 49.7 49.0 42.6 42.3

Avg λ 0.1 0.1 0.12 0.063 0.062 0.068 0.066 0.061 0.086 0.071
Time 1’4" 0’32" 0’21" 1’43" 1’48" 2’2" 0’40" 0’20" 0’26" 0.06"
Iter.

Count - - - 5 5 6 5 2 4 2

The real solution to remove the bottleneck is to also split CommunicationModule,
so that, in activity diagrams, incoming messages will be hosted by ReceiveModule and use
ReceiveBuffer, while outgoing messages will be hosted by TransmitModule and be stored in
TransmitBuffer. The changes in deployment and the Landing activity diagram can be seen
in figure 7.10, the Departure diagram has similar changes. The resource contention being
solved, enough values of output parameters are collected in fewer simulation time units:
simDuration = 1000. Analysis results are presented in Table 7.10.

Table 7.10: Performance analysis results for best design.
S[10] S[5] S[1] H[3] H[4] H[5] H[11] H[13] H[14] A[19]

UMM 0.21 0.18 0.15 0.19 0.19 0.19 0.19 0.19 0.19 0.19
UFDB 0.19 0.23 0.21 0.22 0.22 0.22 0.22 0.22 0.21 0.22
ULDB 0.45 0.39 0.48 0.46 0.46 0.46 0.46 0.46 0.45 0.46
URM 0.36 0.34 0.39 0.36 0.36 0.36 0.36 0.36 0.35 0.36
UTM 0.7 0.65 0.74 0.72 0.72 0.72 0.72 0.72 0.71 0.72
URC 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
URB 0.36 0.33 0.37 0.34 0.36 0.36 0.36 0.36 0.35 0.36
UTB 0.7 0.65 0.73 0.73 0.7 0.72 0.74 0.73 1.47 0.72
RT 42.1 40.9 50.7 56.9 57.0 57.3 48.0 47.5 47.9 40.5

Avg λ 0.1 0.1 0.1 0.077 0.075 0.086 0.073 0.065 0.074 0.072
Time 1’14" 0’38" 0’7" 0’47" 1’10" 0’43" 0’32" 0’9" 0’7" 0.06"
Iter.

Count - - - 5 8 5 9 4 5 2

In case k = 14, the previous explanation holds with TransmitModule as the active
resource, instead of CommunicationModule; since splitting the CommunicationModule solved
the global resource bottleneck, TransmitModule is no longer affected, only TransmitBuffer is
locally intensively utilized in the simulation submodel.

BUPT

106 Case Studies - 7

«gaExecHost»

FlightsDB

«gaExecHost»

LocalDB

«gaExecHost»

MainModule

«gaExecHost»

ReceiveModule

«paLogicalResource»

ReceiveBuffer

«paLogicalResource»

RadioChannels

LGetChannel

LGetBufferInit

LReceiveAircraftID

«gaAcqStep»

acqRes=RadioChannels

resUnits=["assm","dist", ["constant", 1]]

«gaAcqStep»

acqRes=ReceiveBuffer

resUnits=["assm","dist", ["constant", 1]]

«paStep»

host=ReceiveModule

hostDemand=["assm","dist",["exponential",5.0]]

LReleaseBufferInit
«gaRelStep»

relRes=ReceiveBuffer

resUnits=["assm", "dist", ["constant", 1]]

LGetBufferApprove

LSendLandingInfo

LGetBufferDeny

LSendFlightPlan

LGoodbye

LReleaseBufferFinal

LReleaseChannel

«paStep»

host=TransmitModule

hostDemand=["assm","dist",["exponential",5.0]]

«gaRelStep»

relRes=TransmitBuffer

resUnits=["assm", "dist", ["constant", 1]]

«paLogicalResource»

TransmitBuffer

«gaExecHost»

TransmitModule

«gaAcqStep»

acqRes=TransmitBuffer

resUnits=["assm","dist", ["constant", 1]]

Figure 7.10: AATC best diagrams: deployment and Landing activity diagram

BUPT

7.4 - Improving System Design: Early Problem Detection by Performance Analysis 107

7.4.3 Validation of Improvements to Analytical Estimations

In order to compare the accuracy of Bard-Schweitzer (A-MVA) and Chandy-Neuse estimations,
results of the hybrid solver for the best system design and several values of the simulation
level, k, are presented in Table 7.11. Simulation results for 10000 time units are used as
reference values.

Table 7.11: Performance analysis results for best design, using A-MVA
S[10] H[3] H[4] H[5] H[11] H[13] H[14] A[19]

UMM 0.21 0.18 0.18 0.18 0.18 0.18 0.18 0.18
UFDB 0.19 0.2 0.2 0.2 0.2 0.2 0.2 0.2
ULDB 0.45 0.43 0.43 0.43 0.43 0.43 0.43 0.43
URM 0.36 0.34 0.34 0.34 0.34 0.34 0.34 0.34
UTM 0.7 0.67 0.67 0.67 0.67 0.67 0.67 0.67
URC 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02
URB 0.36 0.33 0.33 0.34 0.34 0.34 0.34 0.34
UTB 0.7 0.67 0.64 0.64 0.67 0.71 2.01 0.67
RT 42.11 65.38 65.23 64.9 56.04 55.83 53.95 48.62

Avg λ 0.1 0.07 0.07 0.083 0.065 0.065 0.076 0.067
Time 1’14" 1’12" 0’55" 0’56" 0’23" 0’7" 0’20" 0.08"
Iter.

Count - 8 6 8 6 3 8 2

In conclusion, analytical results, and consequently hybrid solving results are less ac-
curate than results obtained by using the Chandy-Neuse estimation (see Table 7.10).

7.4.4 Heuristic Rules for Choosing the Simulation Level

After studying the experimental results and finding explanations based on the hybrid algorithm,
the following heuristic rules for choosing the simulation level can be extracted:

• The simulation submodel should include at least one resource.

• The simulation submodel should not start between fork and join nodes.

• The simulation submodel should not start between acquire and release nodes (as proven
by cases k = 5 for the initial design and k = 14 for all design alternatives).

Solving for k = 3 and k = 4 is a bit slow because most of the model is simulated, so the
optimal value for k in this application is 13.

7.4.5 Performance Results

The hybrid method results depend on the simulation level k. For low values, the solver is
accurate but time-consuming (since a large part of the system model is simulated); simulation
at high levels is very expensive: the number of possibilities to be experimented is greater than
at lower levels. For large values, resources are outside the simulation submodel.

BUPT

108 Case Studies - 7

Intermediate values (such as 11 and 13, in the considered system model) are accurate
and the solution time is low (most values below 1 minute). For k = 13, solving time is
comparable to simulation for the same number of iterations, because MVA is fast, even with
the simulated submodel being evaluated several times. The hybrid solving time is lower than
more accurate simulations (run for more iterations).

In all cases, the hybrid method was convergent after only a few iterations, which led
to low solving times for high values of k, because only a small submodel was simulated.

7.5. Summary

The order of validating the implemented approaches is very important:

• First, the simulator is validated, in order to consider it as a reference when validating
the hybrid approach.

• The improved analytical approach is then validated, compared to classical analytical
calculus and also to simulation results. This step is necessary, so the comparison of the
hybrid analysis to pure analytical results can be trusted.

• Finally, hybrid analysis results are compared to both simulation and analytical solving,
and also to measurements on a real online system.

The simulator validation results show that it follows the behavior of the system,
according to performance annotations of the input models.

The analytical solver is obviously improved for open systems, by using the formula
modified by the author of this thesis. Other improvements to the analytical solver can be
observed only in the context of a more complex system, such as the case study in section 7.4.

In case of the Authentication System, the analysis results show that for higher levels
(low values for the simulation level k) the results accuracy increases, they are closer to simu-
lation results. Hence, the hybrid solver is more accurate than analytical methods. The thesis
author defined and implemented the measurement strategy, based on code instrumentation,
and also performed post-processing of data samples.

The proposed hybrid method proved to be faster than simulation and yielded results
that are more accurate than the analytical approach (in case k = 4 for the considered case
study). Measurements on the real online system were very close to results of the hybrid
approach.

The AATC system model is an original case study built by the thesis author after
reviewing behavioral aspects of existing systems. Additionally to obtaining complex activity
diagrams, the purpose of this case study was mainly to illustrate how the system design can
evolve based on the performance analysis feedback loop.

The accuracy of performance results for AATC system models depends on the simula-
tion level, so that several heuristic rules on how to choose this level were deduced. Intermediate
values of k proved to be the best options, yielding accurate results with low analysis durations
(k = 13).

BUPT

8. CONTRIBUTIONS AND FUTURE WORK

8.1. Contributions

This thesis addresses performance analysis based on models of distributed systems,
an important research direction of a timely domain, SPE. An adjacent field also covered in
the thesis is analysis automation and standardization of modeling techniques for distributed
systems. In order to propose innovative approaches, thorough knowledge is required concerning
both the foundations and the latest developments in the field.

The main contributions of the thesis author are:

• Comprehensive study and systematization of publications in the SPE field and related
areas.

– A wide range of papers are organized according to the contributions they bring
to a certain research direction; some of them have several contributions, both to
performance analysis and to model transformation and standardization.

• New hybrid performance model defined by the thesis author.

– Scenario oriented meta-model: straightforward mapping to UML items (with per-
formance annotations).

– Class III hybrid model: an analytical model of the system uses results from simu-
lation of a submodel.

– First time a class III hybrid model is applied to distributed software systems.
– Generality: model break down strategy (to separate the submodel) implemented

both hierarchically and sequentially (in case there are too few hierarchical layers,
or the hierarchy is not specified at all).

• Hybrid solver approach created, implemented and validated by the thesis author.

– New approach in combining simulation results with analytical calculus.
– Flexibility: mixed open and closed requests are supported.
– Enhanced formulae for analytical computations in case of open models.
– Good understanding, implementation and integration of existing techniques in the

analytical solver: A-MVA, Chandy-Neuse, resource multiplicity correction factor.

• Standardization of input model specification

– Wide range of analyzable models: either activity, or sequence diagrams are sup-
ported to specify input model behavior.

– Flexibility: SPT annotations are interpreted where the MARTE profile lacks clarity.

109

BUPT

110 Contributions and Future Work - 8

• PHYMSS tool built by the author to implement the proposed hybrid approach and an
improved simulator.

– XMI model parsing: UML MARTE annotations.
– Simulation model enhancements: multithreaded implementation and nested calls.
– Pure analytical approach made possible, by skipping the simulation step.
– Enhanced user experience: not only a proof-of-concept tool, but a user-friendly

(GUI toolbar, simulation monitoring panel) and robust application (exception han-
dling techniques).

• Hybrid method validation

– Validation sequence: simulator first, used as a reference in analytical method
validation and later for comparison with the hybrid approach.

– Measurements: code instrumentation in client and server of the authentication
system; deduction of distributions, by building histograms of the samples.

• Original case study design: AATC

– Realistic: based on studying the behavior of real air-traffic control systems.
– Complexity: various control flow structures are included in the activity diagrams.
– Model evolution: step-by-step improvements guided by performance analysis re-

sults.

8.2. Publications

The PhD research activity is described in two PhD Reports:

• PhD Report #1: "A Hybrid Approach to Performance Evaluation of Distributed Sys-
tems", presented in 2009.

• PhD Report #2: "Performance Hybrid Model Solver and Simulator. Novel Approach
to Hybrid Method Composition.", presented in 2010.

Several papers were published in proceedings of international symposiums and con-
ferences; they are presented below in chronological order:

• "Simulation-based performance evaluation of distributed software systems. A case
study". In 8th International Conference on Technical Informatics, CONTI’2008, June
5-6, Vol. 2 Computer and Software Engineering, CONTI ’08, pages 85–90, 2008.

– The paper presents the benefits and methodology of performance prediction using
an existing simulator, called UML−Ψ; the design of an air-traffic control system
is evaluated and improved based on simulation results.

• "Towards early performance assessment based on UML MARTE models for distributed
systems". In 5th International Symposium on Applied Computational Intelligence and
Informatics, SACI 2009, May 28-29, SACI ’09, pages 521–526. IEEE, 2009. (ISI Pro-
ceedings)

BUPT

8.2 - Publications 111

– An initial performance meta-model is defined starting from input UML MARTE
deployment, use case and activity diagrams; the meta-model allows straightforward
transformation into either a simulation or an analytical model.

• "Phymss: performance hybrid model solver and simulator based on UML MARTE di-
agrams". In Proceedings of the first joint WOSP/SIPEW international conference on
Performance engineering, WOSP/SIPEW ’10, pages 243–244, New York, NY, USA,
2010. ACM. (International Database, ACM Sponsored)

– A first approach to the hybrid solving algorithm and a tool that implements it,
PHYMSS, are presented.

• "Hybrid analytical-simulation model used to evaluate and improve system performance".
In Proceedings of the 10th International Symposium on Parallel and Distributed Com-
puting (ISPDC 2011), ISPDC 2011, 2011. (International Database, IEEE Sponsored)

– The hybrid meta-model and solving algorithm are extended to allow nested calls,
as given in input UML sequence diagrams with MARTE annotations. A real
online system is modeled to validate to accuracy of performance prediction results
obtained with PHYMSS.

• "Performance prediction for UML MARTE models with a hybrid model solver". In
Proceedings of the 6th International Conference "Zilele Academiei de Ştiinţe Tehnice
din Romania" (Zilele ASTR 2011), 2011.

– Summary of the entire research activity, implementation in PHYMSS and validation
results.

The author also published papers in the Scientific Bulletin of "Politehnica" University
of Timişoara, Romania, Transactions on Automatic Control and Computer Science:

• "Improving Distributed Systems Design by Simulation-Based Performance Analysis. A
Case Study.", BS-UPT TACCS Volume 53(67) No. 3 / September 2008.

– The air-traffic control system case study is presented in detail, showing how sim-
ulation results can be used for performance analysis and design improvements.

• "Automation of Performance Assessment Applied to UML MARTE Models for Dis-
tributed Systems", BS-UPT TACCS Volume 55(69) No. 2 / June 2010.

– The transformation rules from UML MARTE diagrams to the proposed hybrid
meta-model are stated and PHYMSS, the tool that implements the hybrid solver
based on the meta-model is described.

For all previously mentioned papers, Cosmina Chişe is the first author and the scien-
tific advisor, Prof. Dr. Eng. Ioan Jurca is the second author.

BUPT

112 Contributions and Future Work - 8

8.3. Future Work Directions

• Extended range of input diagrams.

– Communication diagrams (formerly called collaboration diagrams) that illustrate
object interaction from a different perspective than sequence diagrams; however,
the messages are numbered, so the sequencing can be extracted, even if it is not
obvious.

– Interaction Overview diagrams that combine activity and sequence diagrams by
using interaction fragments (referencing various other diagrams) as part of the
control flow.

• PHYMSS GUI: configuration editor.

– The configuration information is currently read from the JS file and displayed by
the tool.

– The usage would be improved by having the possibility to edit the settings directly
from the tool and saving the changes in the JS file.

• Heuristically detect the appropriate value for the simulation level.

– A set of heuristic rules have already been extracted for the case studies used during
validation.

– In order to generalize the rules, more experiments should be performed.
– These rules can be implemented in the tool, in order to assist the user in choosing

an appropriate simulation level: a restricted set of values could be indicated by the
tool.

• Extensions to the hybrid meta-model and solver.

– The meta-model could be extended to include domain-specific performance pa-
rameters, such as Quality of Service attributes, and a solver could be developed to
check conformance to SLAs (Service-Level Agreements).

– An alternative to MVA as part of the hybrid solver is assessment of worst-case
scenarios, which is widely used for analysis of real-time systems: the analytical
solver and the propagation rules may be adapted in order to obtain worst-case
values instead of mean values for performance parameters.

• Dissemination of future research results.

– The author will publish papers to describe methodology evolution and correspond-
ing validation results, and also attend conferences in the field of SPE or other
related domains.

BUPT

A. PURE ANALYTICAL SOLVING TECHNIQUES

A.1. Bard-Schweitzer Algorithm for Closed Queueing Networks (A-MVA)

The main parameters involved in the calculus and their formulae are the following:

• Ni is the population count for requests of type i , Nk
i is the population count for requests

of type i when there is one less request of type k:

Nk
i =

{
Ni , i 6= k
Ni − 1, i = k

;

• Qi ,j is the queue length for resource j , j = 0..M − 1, and request type i , i = 0..K − 1,
Qk

i ,j is the queue length when there is one less request of type k:

Qk
i ,j =

{
Qi ,j , i 6= k
Ni−1
Ni
·Qi ,j , i = k

;

• Fi ,j is the fraction of requests of type i which require service from resource j , F i , jk is the
fraction of requests at a resource, when there is one less request of type k: Fi ,j = Qi ,j

Ni
;

• Di ,j ,k is the difference in the fraction of requests of type i resulting from the removal of
one request of type k : Di ,j ,k = F k

i ,j − Fi ,j .

In conclusion, the formula that relates all above mentioned parameters is:
Qk

i ,j = Nk
i · (Fi ,j + Di ,j ,k).

Algorithm Inputs:

• K = number of request types,

• M = number of resources (service centers),

• Ni ,

• Qi ,j ,

• Di , j , k ,

• Si ,j = demand by requests of type i from resource j ,

• Vi ,j = visit rate for requests of type i at resource j .

Algorithm Outputs:

• Ri ,j = response time for requests of type i at resource j ,

• Thri ,j = throughput for server j and requests of type i ,

113

BUPT

114 Pure Analytical Solving Techniques - A

• Ui ,j = utilization of resource j by requests of type i ,

• Qi ,j is propagated between iterations and used in the convergence test.

The algorithm is iterative and a typical iteration is described below.
Initially Qi ,j = Ni

M , meaning that requests are equally distributed among resource
queues.

Fi ,j = Qi ,j

Ni
,Qk

i ,j = Nk
i · (Fi ,j + Di ,j ,k), Di ,j ,k = 0 (A-MVA) ⇒ Qk

i ,j = Nk
i

Ni
·Qi ,j

Ri ,j =
{

Si ,j ·
(

1 + Q i
j

)
, for a single-server resource

Si ,j , for delay centers ;

Qk
j = ΣM−1

i=0 Qk
i ,j ;

Qi ,j = Ni · Vi ,j ·Ri ,j

ΣM−1
m=0 Vi ,m·Ri ,m

;

Thri ,j = Qi ,j

Ri ,j
= Ni ·Vi ,j

ΣM−1
m=0 Vi ,m·Ri ,m

;
Ui ,j = Thri ,j ·Si ,j .

Convergence condition: |Q
new
i ,j −Q

previous
i ,j

|
Qprevious

i ,j

< δ, where δ is a predefined constant that
enforces solution accuracy.

A.2. Chandy-Neuse Algorithm for Closed Queueing Networks (Linearizer)

The fraction Fi ,j is assumed to be a linear function of population, so that Di ,j ,k =
Dp

i ,j ,k .
Dp

i ,j ,k is the difference of fractions caused by removal of a request of type k, for an
input population that has one less request of type p.

Di ,j ,k is the difference of fractions caused by removal of a request of type k, when
the population of type p is complete.

Algorithm Inputs: K, M, Ni , Qi ,j , Di ,j ,k , Si ,j , Vi ,j .
Algorithm Outputs: Ri ,j , Thri ,j , Ui ,j , Qi ,j .
The algorithm is iterative and a typical iteration is described below.
Initially Di ,j ,k = 0 and Qi ,j = Ni

M , meaning that requests are equally distributed among
resource queues.

Apply A-MVA algorithm with Di ,j ,k and Fi ,j propagated from previous iterations.
For each request type p, apply A-MVA for the system with one less request of that

type: A-MVA is applied K times using as inputs Dp
i ,j ,k and Qp

i ,j computed in previous iterations
(Dp

i ,j ,k = Di ,j ,k).
Compute Fi ,j , F k

i ,j , Di ,j ,k .

Convergence condition: |Q
new
i ,j −Q

previous
i ,j

|
Qprevious

i ,j

< δ, where δ is a predefined constant that
enforces solution accuracy.

BUPT

A.3 - MVA Algorithm for Mixed Queueing Networks 115

A.3. MVA Algorithm for Mixed Queueing Networks

Open requests are handled first and the Open Queueing Network (OQN) is partially
solved, then an inflate factor, Fj , is computed and passed to the Closed Queueing Network
(CQN) solver; results (queue length values) from the CQN solver are then used to adjust the
output parameter values.

Algorithm Inputs: Kclosed (number of closed requests), Kopen (number of open re-
quests), M, Ni , Qi ,j , Di ,j ,k , Si ,j , Vi ,j , λi = arrival rate (throughput) of open requests of type
i .

Algorithm Outputs: Ri ,j , Thri ,j , Ui ,j , Qi ,j .
The algorithm starts with the calculus of utilization and throughput for the OQN:
Uj = Σ

Kopen−1
i=0 (λi ·Vi ,j ·Si ,j), Thri ,j = λi ·Vi ,j .

Fj = 1
1−Uj

is the inflate factor; it is passed to the CQN (Chandy-Neuse or Bard-
Schweitzer) solver, to be used when computing the response time:

Ri ,j = Fj ·Vi ,j ·Si ,j · (1 + Qi ,j).
After solving the CQN, the parameter values are aggregated, so they can be used in

the final response time and queue calculus:
Qclosed ,j = ΣKclosed−1

i=0 Qi ,j ;
Ri ,j = Fj ·Vi ,j ·Si ,j · (1 + Qclosed ,j);
Qi ,j = λi ·Ri ,j .

BUPT

116 Pure Analytical Solving Techniques - A

BUPT

B. THE UML MARTE PROFILE

MARTE is a replacement for the SPT profile. The latter provides a grammar for
powerful concepts (symbolic variables and time expressions), but does not support user-defined
NFPs and specialized domains. The MARTE NFP (NonFunctional Properties) modeling
framework reuses structural concepts in QoS&FT (Quality of Service & Fault Tolerance), but
reduces the usage complexity; also, it introduces VSL (Value Specification Language) which
extends and formalizes concepts from TVL (Tag Value Language, defined in SPT).

Besides the NFP, Time and Core Elements, there is a package which provides notions
to define the execution platform: Generic Resource Modeling (GRM).

The basis for all analysis packages is the Generic Quantitative Analysis Modeling
(GQAM) package that defines basic modeling concepts and NFPs. Many stereotypes defined
in this package are useful for performance analysis, the most important are listed below:

• GaWorkloadEvent used to describe the system workload, with the "pattern" tagged
value.

• GaExecHost used to refine the Resource definition (from the GRM package).

• GaStep provides most tagged values inherited by PaStep (in the Performance Anal-
ysis Modeling sub-profile): rep (repetitions), prob (probability), hostDemand, respT
(response time).

• GaAcqStep, GaRelStep, used to define resource acquire/release steps.

The Performance Analysis Modeling (PAM) sub-profile comes with a few specific
stereotypes and tagged values. This package provides means to express the input and output
of performance analysis methodologies. As input, UML diagrams are used, with well-defined
extensions for performance related annotations (parameters, such as request arrival rate, mean
execution time for external operations). These are called parameterized NFPs and are used to
define variations that may occur in the studied system, defined in a certain AnalysisContext.
The AnalysisContext consists of system behavior (scenarios), resources and workload. Also,
platform specific (environment) information should be provided as input in order to allow for
certain analysis methods (like simulation) to be carried on accurately. There are predefined
libraries with models for middleware or operating systems and they can be integrated into the
system model. Output can also be expressed as NFPs of the UML model elements: response
time of scenarios, utilization of resources, throughput (especially for communication resources,
expressed in operations/second). The main extensions in the package are illustrated in figure
B.1, along with the basic types defined in GQAM from which they are derived.

117

BUPT

118 The UML MARTE Profile - B

Figure B.1: MARTE performance extensions for workload, behavior and time observations
[89]

BUPT

C. OPEN MODEL BEHAVIOR DESCRIBED STEP BY STEP

The computation of performance parameters for the Help Desk open system described
in chapter 7.1 is illustrated by the table with intermediate values in figure C.1. Microsoft Excel
was used to derive each row from the previous one, based on automatically applied formulae.

Figure C.1: Computation of performance parameters for the Help Desk system

119

BUPT

120 Open Model Behavior Described Step by Step - C

BUPT

Bibliography

[1] ArgoUML object-oriented design tool with cognitive support, URL http://argouml.
tigris.org/.

[2] GreatSPN GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets, URL
http://www.di.unito.it/~greatspn/index.html.

[3] MARTE Profile for Rational Software Architect (RSA) 7.0, URL http://www.
omgmarte.org/node/31.

[4] NS-2 network simulation tool, URL http://www.isi.edu/nsnam/ns/.
[5] Papyrus UML diagram editor, URL http://www.papyrusuml.org/.
[6] F. Andolfi, F. Aquilani, S. Balsamo, and P. Inverardi, Deriving performance models

of software architectures from message sequence charts, in Proceedings of the 2nd
international workshop on Software and performance, WOSP ’00, pp. 47–57, ACM,
New York, NY, USA, 2000, ISBN 1-58113-195-X, URL http://doi.acm.org/10.
1145/350391.350404.

[7] F. Aquilani, S. Balsamo, and P. Inverardi, Performance analysis at the software archi-
tectural design level, Perform. Eval., vol. 45: pp. 147–178, July 2001, ISSN 0166-5316,
URL http://portal.acm.org/citation.cfm?id=383224.383229.

[8] L. B. Arief, A Framework for Supporting Automatic Simulation Generation from Design,
Ph.D. thesis, Dept. of Computer Science, University of Newcastle Upon Tyne, UK, 2001.

[9] L. B. Arief and N. A. Speirs, A UML tool for an automatic generation of simulation
programs, in Proceedings of the 2nd international workshop on Software and perfor-
mance, WOSP ’00, pp. 71–76, ACM, New York, NY, USA, 2000, ISBN 1-58113-195-X,
URL http://doi.acm.org/10.1145/350391.350408.

[10] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, Model-Based Performance Pre-
diction in Software Development: A Survey, IEEE Trans. Softw. Eng., vol. 30: pp. 295–
310, May 2004, ISSN 0098-5589, URL http://0-portal.acm.org.millennium.
lib.cyut.edu.tw/citation.cfm?id=987527.987640.

[11] S. Balsamo, P. Inverardi, and C. Mangano, An approach to performance evaluation of
software architectures, in Proceedings of the 1st international workshop on Software
and performance, WOSP ’98, pp. 178–190, ACM, New York, NY, USA, 1998, ISBN
1-58113-060-0, URL http://doi.acm.org/10.1145/287318.287354.

[12] S. Balsamo, R. Mamprin, and M. Marzolla, Performance Evaluation of Software Archi-
tectures with Queuing Network Models, in Proceedings of the European Simulation and
Modelling Conference 2004, ESMc ’04.

[13] S. Balsamo and M. Marzolla, A simulation-based approach to software performance
modeling, in Proceedings of the 9th European software engineering conference held
jointly with 11th ACM SIGSOFT international symposium on Foundations of software
engineering, ESEC/FSE-11, pp. 363–366, ACM, New York, NY, USA, 2003, ISBN 1-
58113-743-5, URL http://doi.acm.org/10.1145/940071.940122.

[14] S. Balsamo and M. Simeoni, Deriving Performance Models from Software Architecture
Specifications, in Proceedings of the European Simulation Muticonference 2001, ESM
2001.

121

BUPT

http://argouml.tigris.org/
http://argouml.tigris.org/
http://www.di.unito.it/~greatspn/index.html
http://www.omgmarte.org/node/31
http://www.omgmarte.org/node/31
http://www.isi.edu/nsnam/ns/
http://www.papyrusuml.org/
http://doi.acm.org/10.1145/350391.350404
http://doi.acm.org/10.1145/350391.350404
http://portal.acm.org/citation.cfm?id=383224.383229
http://doi.acm.org/10.1145/350391.350408
http://0-portal.acm.org.millennium.lib.cyut.edu.tw/citation.cfm?id=987527.987640
http://0-portal.acm.org.millennium.lib.cyut.edu.tw/citation.cfm?id=987527.987640
http://doi.acm.org/10.1145/287318.287354
http://doi.acm.org/10.1145/940071.940122

122 BIBLIOGRAPHY

[15] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete-
Event System Simulation, Prentice Hall, 5th ed., 2010, ISBN
0136062121, URL http://www.pearsonhighered.com/educator/product/
Discrete-Event-System-Simulation-5E/9780136062127.page.

[16] S. Becker, H. Koziolek, and R. Reussner, Model-Based performance prediction with
the palladio component model, in Proceedings of the 6th international workshop on
Software and performance, WOSP ’07, pp. 54–65, ACM, New York, NY, USA, 2007,
ISBN 1-59593-297-6, URL http://doi.acm.org/10.1145/1216993.1217006.

[17] S. Bernardi, S. Donatelli, and J. Merseguer, From UML sequence diagrams and state-
charts to analysable petri net models, in Proceedings of the 3rd international workshop
on Software and performance, WOSP ’02, pp. 35–45, ACM, New York, NY, USA, 2002,
ISBN 1-58113-563-7, URL http://doi.acm.org/10.1145/584369.584376.

[18] M. Bernardo, Theory and Application of Extended Markovian Process Algebra, Ph.D.
thesis, University of Bologna, Italy, 1999.

[19] M. Bernardo, P. Ciancarini, and L. Donatiello, ÆMPA: a process algebraic description
language for the performance analysis of software architectures, in Proceedings of the
2nd international workshop on Software and performance, WOSP ’00, pp. 1–11, ACM,
New York, NY, USA, 2000, ISBN 1-58113-195-X, URL http://doi.acm.org/10.
1145/350391.350394.

[20] A. Bertolino and R. Mirandola, Towards Component-based Software Performance
Engineering, in Proceedings of the6th ICSE Workshop on Component-Based Soft-
ware Engineering, CBSE ’03, Carnegie Mellon University, USA, and Monash Uni-
versity, Australia, 2003, URL http://www.csse.monash.edu.au/~hws/cgi-bin/
CBSE6/Proceedings/papersfinal/p8.pdf.

[21] A. Bertolino and R. Mirandola, CB-SPE tool: putting component-based perfor-
mance engineering into practice, in Proceedings of the 7th International Sym-
posium on Component-Based Software Engineering, CBSE ’04, pp. 233–248,
Springer, 2004, URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.103.9563&rep=rep1&type=pdf.

[22] A. Bertolino and R. Mirandola, Software performance engineering of component-based
systems, in Proceedings of the 4th international workshop on Software and performance,
WOSP ’04, pp. 238–242, ACM, New York, NY, USA, 2004, ISBN 1-58113-673-0, URL
http://doi.acm.org/10.1145/974044.974081.

[23] J. P. Buzen, Computational algorithms for closed queueing networks with exponential
servers, Commun. ACM, vol. 16: pp. 527–531, September 1973, ISSN 0001-0782, URL
http://doi.acm.org/10.1145/362342.362345.

[24] S. Chakraborty, S. Künzli, L. Thiele, A. Herkersdorf, and P. Sagmeister, Performance
evaluation of network processor architectures: combining simulation with analytical
estimation, Comput. Netw., vol. 41: pp. 641–665, April 2003, ISSN 1389-1286, URL
http://portal.acm.org/citation.cfm?id=765784.765791.

[25] K. M. Chandy and D. Neuse, Linearizer: a heuristic algorithm for queueing network
models of computing systems, Commun. ACM, vol. 25: pp. 126–134, February 1982,
ISSN 0001-0782, URL http://doi.acm.org/10.1145/358396.358403.

[26] C. Chişe and I. Jurca, Improving distributed systems design by simulation-based perfor-
mance analysis. A case study., BS-UPT TACCS, vol. 53(67): pp. 157–164, September
2008.

BUPT

http://www.pearsonhighered.com/educator/product/Discrete-Event-System-Simulation-5E/9780136062127.page
http://www.pearsonhighered.com/educator/product/Discrete-Event-System-Simulation-5E/9780136062127.page
http://doi.acm.org/10.1145/1216993.1217006
http://doi.acm.org/10.1145/584369.584376
http://doi.acm.org/10.1145/350391.350394
http://doi.acm.org/10.1145/350391.350394
http://www.csse.monash.edu.au/~hws/cgi-bin/CBSE6/Proceedings/papersfinal/p8.pdf
http://www.csse.monash.edu.au/~hws/cgi-bin/CBSE6/Proceedings/papersfinal/p8.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.9563&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.9563&rep=rep1&type=pdf
http://doi.acm.org/10.1145/974044.974081
http://doi.acm.org/10.1145/362342.362345
http://portal.acm.org/citation.cfm?id=765784.765791
http://doi.acm.org/10.1145/358396.358403

BIBLIOGRAPHY 123

[27] C. Chişe and I. Jurca, Simulation-based performance evaluation of distributed soft-
ware systems. A case study., in 8th International Conference on Technical Informatics,
CONTI’2008, June 5-6, Vol. 2 Computer and Software Engineering, CONTI ’08, pp.
85–90, 2008.

[28] C. Chişe and I. Jurca, Towards early performance assessment based on UML MARTE
models for distributed systems, in 5th International Symposium on Applied Compu-
tational Intelligence and Informatics, SACI 2009, May 28-29, SACI ’09, pp. 521–526,
IEEE, 2009, URL http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%
3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5089334%2F5136205%2F05136304.
pdf%3Farnumber%3D5136304&authDecision=-203.

[29] C. Chişe and I. Jurca, Automation of performance assessment applied to UML MARTE
models for distributed systems, BS-UPT TACCS, vol. 55(69): pp. 59–66, June 2010.

[30] C. Chişe and I. Jurca, Phymss: performance hybrid model solver and simulator based
on UML MARTE diagrams, in Proceedings of the first joint WOSP/SIPEW interna-
tional conference on Performance engineering, WOSP/SIPEW ’10, pp. 243–244, ACM,
New York, NY, USA, 2010, ISBN 978-1-60558-563-5, URL http://doi.acm.org/10.
1145/1712605.1712643.

[31] C. Chişe and I. Jurca, Hybrid analytical-simulation model used to evaluate and improve
system performance, in Proceedings of the 10th International Symposium on Parallel
and Distributed Computing (ISPDC 2011), ISPDC 2011, 2011.

[32] C. Chişe and I. Jurca, Performance prediction for UML MARTE models with a hybrid
model solver, in Proceedings of the 6th International Conference Days of the Academy
of Technical Science from Romania (Zilele ASTR 2011), vol. 1, Zilele ASTR 2011, pp.
116–121, Editura Politehnica, Bd. Republicii, Nr. 9, 300159 Timişoara, 2011, ISSN
2066–6586.

[33] V. Cortellessa, A. Di Marco, P. Inverardi, F. Mancinelli, and P. Pelliccione, A Framework
for the Integration of Functional and Non-functional Analysis of Software Architectures,
Electron. Notes Theor. Comput. Sci., vol. 116: pp. 31–44, January 2005, ISSN 1571-
0661, URL http://dx.doi.org/10.1016/j.entcs.2004.02.088.

[34] V. Cortellessa and L. Frittella, A framework for automated generation of architectural
feedback from software performance analysis, in Proceedings of the 4th European per-
formance engineering conference on Formal methods and stochastic models for perfor-
mance evaluation, EPEW’07, pp. 171–185, Springer-Verlag, Berlin, Heidelberg, 2007,
ISBN 3-540-75210-2, 978-3-540-75210-3, URL http://portal.acm.org/citation.
cfm?id=1779905.1779923.

[35] V. Cortellessa and L. Frittella, A framework for automated generation of architectural
feedback from software performance analysis, Tech. rep., Dipartimento di Informatica,
Universitá degli Studi dell’Aquila, L’Aquila, Italy, 2007.

[36] V. Cortellessa, M. Gentile, and M. Pizzuti, XPRIT: An XML-Based Tool to Translate
UML Diagrams into Execution Graphs and Queueing Networks, in Proceedings of the
The Quantitative Evaluation of Systems, First International Conference, pp. 342–343,
IEEE Computer Society, Washington, DC, USA, 2004, ISBN 0-7695-2185-1, URL http:
//portal.acm.org/citation.cfm?id=1025129.1026113.

[37] V. Cortellessa and R. Mirandola, Deriving a queueing network based performance model
from UML diagrams, in Proceedings of the 2nd international workshop on Software and
performance, WOSP ’00, pp. 58–70, ACM, New York, NY, USA, 2000, ISBN 1-58113-
195-X, URL http://doi.acm.org/10.1145/350391.350406.

BUPT

http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5089334%2F5136205%2F05136304.pdf%3Farnumber%3D5136304&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5089334%2F5136205%2F05136304.pdf%3Farnumber%3D5136304&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5089334%2F5136205%2F05136304.pdf%3Farnumber%3D5136304&authDecision=-203
http://doi.acm.org/10.1145/1712605.1712643
http://doi.acm.org/10.1145/1712605.1712643
http://dx.doi.org/10.1016/j.entcs.2004.02.088
http://portal.acm.org/citation.cfm?id=1779905.1779923
http://portal.acm.org/citation.cfm?id=1779905.1779923
http://portal.acm.org/citation.cfm?id=1025129.1026113
http://portal.acm.org/citation.cfm?id=1025129.1026113
http://doi.acm.org/10.1145/350391.350406

124 BIBLIOGRAPHY

[38] V. Cortellessa and R. Mirandola, PRIMA-UML: a performance validation incremen-
tal methodology on early UML diagrams, Sci. Comput. Program., vol. 44: pp. 101–
129, July 2002, ISSN 0167-6423, URL http://portal.acm.org/citation.cfm?id=
607036.607042.

[39] V. Cortellessa, P. Pierini, and D. Rossi, Integrating Software Models and Platform
Models for Performance Analysis, IEEE Trans. Softw. Eng., vol. 33: pp. 385–401, June
2007, ISSN 0098-5589, URL http://portal.acm.org/citation.cfm?id=1263152.
1263532.

[40] V. Cortellessa, P. Pierini, R. Spalazzese, and A. Vianale, MOSES: MOdeling Soft-
ware and platform architEcture in UML 2 for Simulation-based performance anal-
ysis, in Proceedings of the 4th International Conference on Quality of Software-
Architectures: Models and Architectures, QoSA ’08, pp. 86–102, Springer-Verlag,
Berlin, Heidelberg, 2008, ISBN 978-3-540-87878-0, URL http://dx.doi.org/10.
1007/978-3-540-87879-7_6.

[41] A. D’Ambrogio, A model transformation framework for the automated building of per-
formance models from UML models, in Proceedings of the 5th international workshop
on Software and performance, WOSP ’05, pp. 75–86, ACM, New York, NY, USA, 2005,
ISBN 1-59593-087-6, URL http://doi.acm.org/10.1145/1071021.1071029.

[42] P. J. Denning and J. P. Buzen, The Operational Analysis of Queueing Network Models,
ACM Comput. Surv., vol. 10: pp. 225–261, September 1978, ISSN 0360-0300, URL
http://doi.acm.org/10.1145/356733.356735.

[43] A. Deshpande, V. Apte, and S. Marathe, PerfCenter: a performance modeling tool
for application hosting centers, in Proceedings of the 7th international workshop on
Software and performance, WOSP ’08, pp. 79–90, ACM, New York, NY, USA, 2008,
ISBN 978-1-59593-873-2, URL http://doi.acm.org/10.1145/1383559.1383570.

[44] N. van Dijk, E. van der Sluis, R. Haijema, A. Al-Ibrahim, and J. van der Wal, Simulation
and or (operations research) in combination for practical optimization, in Proceedings of
the 37th conference on Winter simulation, WSC ’05, pp. 274–284, Winter Simulation
Conference, 2005, ISBN 0-7803-9519-0, URL http://portal.acm.org/citation.
cfm?id=1162708.1162760.

[45] N. M. van Dijk, On hybrid combination of queueing and simulation, in Proceedings of
the 32nd conference on Winter simulation, WSC ’00, pp. 147–150, Society for Computer
Simulation International, San Diego, CA, USA, 2000, ISBN 0-7803-6582-8, URL http:
//portal.acm.org/citation.cfm?id=510378.510403.

[46] F. Duarte, W. Hasling, W. Sherman, D. Paulish, R. M. Leão, E. S. Silva, and V. Cortel-
lessa, Extending model transformations in the performance domain with a node mod-
eling library, in Proceedings of the 7th international workshop on Software and perfor-
mance, WOSP ’08, pp. 157–164, ACM, New York, NY, USA, 2008, ISBN 978-1-59593-
873-2, URL http://doi.acm.org/10.1145/1383559.1383580.

[47] P. J. Fortier and H. Michel, Computer Systems Performance Evaluation and Prediction,
Butterworth-Heinemann, Newton, MA, USA, 2002, ISBN 1555582605.

[48] G. Franks, Performance Analysis of Distributed Server Systems, Ph.D. thesis, Depart-
ment of Systems and Computer Engineering, Carleton University, Ottawa, Canada,
1999.

[49] G. Franks, P. Maly, M. Woodside, D. C. Petriu, and A. Hubbard, Layered Queueing
Network Solver and Simulator User Manual, Department of Systems and Computer
Engineering, Carleton University, Ottawa.

BUPT

http://portal.acm.org/citation.cfm?id=607036.607042
http://portal.acm.org/citation.cfm?id=607036.607042
http://portal.acm.org/citation.cfm?id=1263152.1263532
http://portal.acm.org/citation.cfm?id=1263152.1263532
http://dx.doi.org/10.1007/978-3-540-87879-7_6
http://dx.doi.org/10.1007/978-3-540-87879-7_6
http://doi.acm.org/10.1145/1071021.1071029
http://doi.acm.org/10.1145/356733.356735
http://doi.acm.org/10.1145/1383559.1383570
http://portal.acm.org/citation.cfm?id=1162708.1162760
http://portal.acm.org/citation.cfm?id=1162708.1162760
http://portal.acm.org/citation.cfm?id=510378.510403
http://portal.acm.org/citation.cfm?id=510378.510403
http://doi.acm.org/10.1145/1383559.1383580

BIBLIOGRAPHY 125

[50] H. Gomaa and D. A. Menascé, Design and performance modeling of component inter-
connection patterns for distributed software architectures, in Proceedings of the 2nd
international workshop on Software and performance, WOSP ’00, pp. 117–126, ACM,
New York, NY, USA, 2000, ISBN 1-58113-195-X, URL http://doi.acm.org/10.
1145/350391.350418.

[51] H. Gomaa and D. A. Menascé, Performance Engineering of Component-Based Dis-
tributed Software Systems, in Performance Engineering, State of the Art and Current
Trends, pp. 40–55, Springer-Verlag, London, UK, 2001, ISBN 3-540-42145-9, URL
http://portal.acm.org/citation.cfm?id=647640.733375.

[52] V. Grassi and R. Mirandola, Towards automatic compositional performance analysis of
component-based systems, in Proceedings of the 4th international workshop on Software
and performance, WOSP ’04, pp. 59–63, ACM, New York, NY, USA, 2004, ISBN 1-
58113-673-0, URL http://doi.acm.org/10.1145/974044.974052.

[53] V. Grassi, R. Mirandola, E. Randazzo, and A. Sabetta, The Common Component
Modeling Example, chap. KLAPER: An Intermediate Language for Model-Driven Pre-
dictive Analysis of Performance and Reliability, pp. 327–356, Springer-Verlag, Berlin,
Heidelberg, 2008, ISBN 978-3-540-85288-9, URL http://dx.doi.org/10.1007/
978-3-540-85289-6_13.

[54] V. Grassi, R. Mirandola, and A. Sabetta, Filling the gap between design and per-
formance/reliability models of component-based systems: A model-driven approach,
J. Syst. Softw., vol. 80: pp. 528–558, April 2007, ISSN 0164-1212, URL http:
//portal.acm.org/citation.cfm?id=1225950.1226107.

[55] G. P. Gu and D. C. Petriu, XSLT transformation from UML models to LQN performance
models, in Proceedings of the 3rd international workshop on Software and performance,
WOSP ’02, pp. 227–234, ACM, New York, NY, USA, 2002, ISBN 1-58113-563-7, URL
http://doi.acm.org/10.1145/584369.584402.

[56] G. P. Gu and D. C. Petriu, From UML to LQN by XML algebra-based model transforma-
tions, in Proceedings of the 5th international workshop on Software and performance,
WOSP ’05, pp. 99–110, ACM, New York, NY, USA, 2005, ISBN 1-59593-087-6, URL
http://doi.acm.org/10.1145/1071021.1071031.

[57] A. Hennig, A. Hentschel, and J. Tyck, Performance Prototyping – Generating and
Simulating a Distributed IT System from UML Models, in Proceedings of the 17th
European Simulation Multiconference, ESM ’03, pp. 502–508, 2003.

[58] A. Hennig, D. Revill, and M. Ponitsch, From UML to Performance Measures – Simu-
lative Performance Predictions of IT Systems using the Jboss Application Server with
OMNET++, in Proceedings of the 17th European Simulation Multiconference, ESM
’03, pp. 509–513, 2003.

[59] E. Ignall and P. Kolesar, On Using Simulation to Extend OR/MS Theory: The Symbiosis
of Simulation and Analysis, Current Issues in Computer Simulation, pp. 223–233, 1979.

[60] P. Inverardi and A. L. Wolf, Formal Specification and Analysis of Software Architectures
Using the Chemical Abstract Machine Model, IEEE Trans. Softw. Eng., vol. 21: pp. 373–
386, April 1995, ISSN 0098-5589, URL http://dx.doi.org/10.1109/32.385973.

[61] A. C. Johnson and N. T. Thomopoulos, Characteristics and Tables of the Left-Truncated
Normal Distribution, in Proceedings of the Midwest Decision Sciences Institute, pp. 133–
139, 2002, URL http://www.stuart.iit.edu/shared/shared_stuartfaculty/
whitepapers/thomopoulos_char-left.pdf.

BUPT

http://doi.acm.org/10.1145/350391.350418
http://doi.acm.org/10.1145/350391.350418
http://portal.acm.org/citation.cfm?id=647640.733375
http://doi.acm.org/10.1145/974044.974052
http://dx.doi.org/10.1007/978-3-540-85289-6_13
http://dx.doi.org/10.1007/978-3-540-85289-6_13
http://portal.acm.org/citation.cfm?id=1225950.1226107
http://portal.acm.org/citation.cfm?id=1225950.1226107
http://doi.acm.org/10.1145/584369.584402
http://doi.acm.org/10.1145/1071021.1071031
http://dx.doi.org/10.1109/32.385973
http://www.stuart.iit.edu/shared/shared_stuartfaculty/whitepapers/thomopoulos_char-left.pdf
http://www.stuart.iit.edu/shared/shared_stuartfaculty/whitepapers/thomopoulos_char-left.pdf

126 BIBLIOGRAPHY

[62] P. Kahkipuro, UML-Based Performance Modeling Framework for Component-Based
Distributed Systems, in Performance Engineering, State of the Art and Current Trends,
pp. 167–184, Springer-Verlag, London, UK, 2001, ISBN 3-540-42145-9, URL http:
//portal.acm.org/citation.cfm?id=647640.733374.

[63] P. J. B. King and R. Pooley, Derivation of Petri Net Performance Models from UML
Specifications of Communications Software, in Proceedings of the 11th International
Conference on Computer Performance Evaluation: Modelling Techniques and Tools,
TOOLS ’00, pp. 262–276, Springer-Verlag, London, UK, 2000, ISBN 3-540-67260-5,
URL http://portal.acm.org/citation.cfm?id=647809.737825.

[64] C. Kirkegaard, Dynamic XML Processing with Static Validation, Master’s thesis, De-
partment of Computer Science, University of Aarhus, Denmark, 2003.

[65] C. Kirkegaard, A. Mller, and M. I. Schwartzbach, Static Analysis of XML Transfor-
mations in Java, IEEE Trans. Softw. Eng., vol. 30: pp. 181–192, March 2004, ISSN
0098-5589, URL http://portal.acm.org/citation.cfm?id=972216.972292.

[66] N. Knaak and B. Page, Applications and extensions of the Unified Modeling Language
UML 2 for discrete event simulation, International Journal of Simulation, vol. 7: pp.
33–43, September 2006, ISSN 1473-8031, URL http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.112.4746&rep=rep1&type=pdf.

[67] H. Koziolek, S. Becker, R. Reussner, and J. Happe, Model-Driven Software Devel-
opment: Integrating Quality Assurance, chap. Evaluating Performance of Software
Architecture Models with the Palladio Component Model, pp. 95–118, 2009, ISBN
9781605660066.

[68] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative system
performance: computer system analysis using queueing network models, Prentice Hall,
1984, URL http://www.cs.washington.edu/homes/lazowska/qsp/.

[69] Y. H. Lee and S. H. Kim, Optimal productiondistribution planning in supply chain
management using a hybrid simulation-analytic approach, in Proceedings of the 32nd
conference on Winter simulation, WSC ’00, pp. 1252–1259, Society for Computer
Simulation International, San Diego, CA, USA, 2000, ISBN 0-7803-6582-8, URL
http://portal.acm.org/citation.cfm?id=510378.510559.

[70] C. Lindemann, A. Thümmler, A. Klemm, M. Lohmann, and O. P. Waldhorst, Per-
formance analysis of time-enhanced UML diagrams based on stochastic processes, in
Proceedings of the 3rd international workshop on Software and performance, WOSP
’02, pp. 25–34, ACM, New York, NY, USA, 2002, ISBN 1-58113-563-7, URL http:
//doi.acm.org/10.1145/584369.584375.

[71] J. P. López-Grao, J. Merseguer, and J. Campos, From UML activity diagrams to
Stochastic Petri nets: application to software performance engineering, in Proceed-
ings of the 4th international workshop on Software and performance, WOSP ’04,
pp. 25–36, ACM, New York, NY, USA, 2004, ISBN 1-58113-673-0, URL http:
//doi.acm.org/10.1145/974044.974048.

[72] M. Marzolla, libcppsim: A SIMULA-like, Portable Process-Oriented Simulation Library
in C++, in G. Horton, ed., Proceedings of the 18th European Simulation Multiconfer-
ence, First International Conference, ESM ’04, SCS Europe, 2004.

[73] M. Marzolla, Simulation-Based Performance Modeling of UML Software Architectures,
Ph.D. thesis, Dipartimento di Informatica, Universitá Ca Foscari di Venezia, Italy, 2004.

[74] M. Marzolla and S. Balsamo, UML-PSI: The UML Performance Simulator, Tech. rep.,
Dipartimento di Informatica, Universitá Ca Foscari di Venezia, Venice, Italy, 2004.

BUPT

http://portal.acm.org/citation.cfm?id=647640.733374
http://portal.acm.org/citation.cfm?id=647640.733374
http://portal.acm.org/citation.cfm?id=647809.737825
http://portal.acm.org/citation.cfm?id=972216.972292
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.4746&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.4746&rep=rep1&type=pdf
http://www.cs.washington.edu/homes/lazowska/qsp/
http://portal.acm.org/citation.cfm?id=510378.510559
http://doi.acm.org/10.1145/584369.584375
http://doi.acm.org/10.1145/584369.584375
http://doi.acm.org/10.1145/974044.974048
http://doi.acm.org/10.1145/974044.974048

BIBLIOGRAPHY 127

[75] M. Marzolla and S. Balsamo, UML-PSI: The UML Performance Simulator, in Proceed-
ings of the The Quantitative Evaluation of Systems, First International Conference, pp.
340–341, IEEE Computer Society, Washington, DC, USA, 2004, ISBN 0-7695-2185-1,
URL http://portal.acm.org/citation.cfm?id=1025129.1026112.

[76] D. McMullan, Components in Layered Queuing Networks, Tech. rep., Department of
Systems and Computer Engineering, Carleton University, Ottawa, Canada, 2001, URL
http://www.sce.carleton.ca/rads/lqns/lqn-documentation/component3.
pdf.

[77] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy, Performance by Design: Computer
Capacity Planning by Example, Prentice Hall, Upper Saddle River, New Jersey, USA,
1st ed., 2004, ISBN 0-13-090673-5.

[78] J. Merseguer and J. Campos, Exploring Roles for the UML Diagrams in Software Per-
formance Engineering., in Software Engineering Research and Practice’03, pp. 43–47,
2003.

[79] Microsoft, Introduction to WPF, http://msdn.microsoft.com/en-us/library/
aa970268.aspx, URL http://msdn.microsoft.com/en-us/library/aa970268.
aspx.

[80] Z. Micskei and H. Waeselynck, A survey of UML 2.0 sequence diagrams’ semantics,
Tech. rep., Budapest University of Technology and Economics, Université de Toulouse,
2008, URL http://home.mit.bme.hu/~micskeiz/sdreport/uml-sd-semantics.
pdf.

[81] M. de Miguel, T. Lambolais, M. Hannouz, S. Betgé-Brezetz, and S. Piekarec, UML
extensions for the specification and evaluation of latency constraints in architectural
models, in Proceedings of the 2nd international workshop on Software and performance,
WOSP ’00, pp. 83–88, ACM, New York, NY, USA, 2000, ISBN 1-58113-195-X, URL
http://doi.acm.org/10.1145/350391.350411.

[82] G. Nemes, New asymptotic expansion for the γ (x) function, December 2008, URL
http://dx.doi.org/10.3247/sl2math08.005.

[83] T. Omari, G. Franks, M. Woodside, and A. Pan, Solving layered queueing networks
of large client-server systems with symmetric replication, in Proceedings of the 5th
international workshop on Software and performance, WOSP ’05, pp. 159–166, ACM,
New York, NY, USA, 2005, ISBN 1-59593-087-6, URL http://doi.acm.org/10.
1145/1071021.1071038.

[84] O. M. G. (OMG), Introduction to OMG’s Unified Modeling Language (UML), URL
http://www.omg.org/gettingstarted/what_is_uml.htm.

[85] O. M. G. (OMG), MARTE Tutorial - Part 8: MARTE and AADL, URL http://www.
omgmarte.org/node/28/.

[86] O. M. G. (OMG), Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT),
URL http://www.omg.org/spec/QVT/.

[87] O. M. G. (OMG), Meta Object Facility (MOF) Core, URL http://www.omg.org/
spec/MOF/.

[88] O. M. G. (OMG), OMG Model Driven Architecture, URL http://www.omg.org/mda/.
[89] O. M. G. (OMG), UML Profile for Modeling and Analysis of Real-time and Embedded

Systems, URL http://www.omg.org/spec/MARTE/1.0/.
[90] O. M. G. (OMG), UML Profile for Modeling Quality of Service and Fault Tolerance

Characteristics and Mechanisms, URL http://www.omg.org/spec/QFTP/1.1/.

BUPT

http://portal.acm.org/citation.cfm?id=1025129.1026112
http://www.sce.carleton.ca/rads/lqns/lqn-documentation/component3.pdf
http://www.sce.carleton.ca/rads/lqns/lqn-documentation/component3.pdf
http://msdn.microsoft.com/en-us/library/aa970268.aspx
http://msdn.microsoft.com/en-us/library/aa970268.aspx
http://msdn.microsoft.com/en-us/library/aa970268.aspx
http://msdn.microsoft.com/en-us/library/aa970268.aspx
http://home.mit.bme.hu/~micskeiz/sdreport/uml-sd-semantics.pdf
http://home.mit.bme.hu/~micskeiz/sdreport/uml-sd-semantics.pdf
http://doi.acm.org/10.1145/350391.350411
http://dx.doi.org/10.3247/sl2math08.005
http://doi.acm.org/10.1145/1071021.1071038
http://doi.acm.org/10.1145/1071021.1071038
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.omgmarte.org/node/28/
http://www.omgmarte.org/node/28/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/MOF/
http://www.omg.org/spec/MOF/
http://www.omg.org/mda/
http://www.omg.org/spec/MARTE/1.0/
http://www.omg.org/spec/QFTP/1.1/

128 BIBLIOGRAPHY

[91] O. M. G. (OMG), UML Profile for Schedulability, Performance and Time, URL http:
//www.omg.org/spec/SPTP/.

[92] O. M. G. (OMG), UML Version 2.0 Documents, URL http://www.omg.org/spec/
UML/2.0/.

[93] O. M. G. (OMG), XML Metadata Interchange (XMI), URL http://www.omg.org/
spec/XMI/.

[94] D. B. Petriu, Layered Software Performance Models Constructed from Use Case Map
Specifications, Master’s thesis, Department of Systems and Computer Engineering, Car-
leton University, Ottawa, Canada, 2001.

[95] D. B. Petriu and C. M. Woodside, Software Performance Models from System Scenarios
in Use Case Maps, in Proceedings of the 12th International Conference on Computer
Performance Evaluation, Modelling Techniques and Tools, TOOLS ’02, pp. 141–158,
Springer-Verlag, London, UK, 2002, ISBN 3-540-43539-5, URL http://portal.acm.
org/citation.cfm?id=647810.737983.

[96] D. B. Petriu and M. Woodside, Generating a performance model from a design specifi-
cation, August 2001, URL ftp://ftp.sce.carleton.ca/pub/cmw/gen-perf.pdf.

[97] D. B. Petriu and M. Woodside, A metamodel for generating performance models from
UML designs, UML 2004 The Unified Modeling Language: Modeling Languages and
Applications 7th International Conference, (3273): pp. 41–53, 2004, URL http://
www.springerlink.com/index/D92HHDB5A21VBDUX.pdf.

[98] D. B. Petriu and M. Woodside, An intermediate metamodel with scenarios and resources
for generating performance models from UML designs, Software and Systems Modeling,
vol. 6: pp. 163–184, 2007, ISSN 1619-1366, URL http://dx.doi.org/10.1007/
s10270-006-0026-8, 10.1007/s10270-006-0026-8.

[99] D. C. Petriu, Performance Analysis Based on the UML SPT Profile, 2004.
[100] D. C. Petriu, Software Model-based Performance Analysis, in Post-Proceedings of the

MDD4DRES Summer School, Hermes Science Publishing Ltd., London, UK, 2009, URL
http://portal.acm.org/citation.cfm?id=647810.737982.

[101] D. C. Petriu and H. Shen, Applying the UML Performance Profile: Graph Grammar-
Based Derivation of LQN Models from UML Specifications, in Proceedings of the 12th
International Conference on Computer Performance Evaluation, Modelling Techniques
and Tools, TOOLS ’02, pp. 159–177, Springer-Verlag, London, UK, 2002, ISBN 3-540-
43539-5, URL http://portal.acm.org/citation.cfm?id=647810.737982.

[102] D. C. Petriu and X. Wang, Deriving Software Performance Models from Architec-
tural Patterns by Graph Transformations, in Selected papers from the 6th Interna-
tional Workshop on Theory and Application of Graph Transformations, TAGT’98,
pp. 475–488, Springer-Verlag, London, UK, 2000, ISBN 3-540-67203-6, URL http:
//portal.acm.org/citation.cfm?id=645872.671531.

[103] C. Rad, BS Degree Project: C# Library for Process-Oriented Simulation, 2009.
[104] M. Reiser and S. S. Lavenberg, Mean-Value Analysis of Closed Multichain Queuing

Networks, J. ACM, vol. 27: pp. 313–322, April 1980, ISSN 0004-5411, URL http:
//doi.acm.org/10.1145/322186.322195.

[105] R. G. Sargent, A historical view of hybrid simulation/analytic models, in Proceedings of
the 26th conference on Winter simulation, WSC ’94, pp. 383–386, Society for Computer
Simulation International, San Diego, CA, USA, 1994, ISBN 0-7803-2109-X, URL http:
//portal.acm.org/citation.cfm?id=193201.194085.

BUPT

http://www.omg.org/spec/SPTP/
http://www.omg.org/spec/SPTP/
http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/
http://portal.acm.org/citation.cfm?id=647810.737983
http://portal.acm.org/citation.cfm?id=647810.737983
ftp://ftp.sce.carleton.ca/pub/cmw/gen-perf.pdf
http://www.springerlink.com/index/D92HHDB5A21VBDUX.pdf
http://www.springerlink.com/index/D92HHDB5A21VBDUX.pdf
http://dx.doi.org/10.1007/s10270-006-0026-8
http://dx.doi.org/10.1007/s10270-006-0026-8
http://portal.acm.org/citation.cfm?id=647810.737982
http://portal.acm.org/citation.cfm?id=647810.737982
http://portal.acm.org/citation.cfm?id=645872.671531
http://portal.acm.org/citation.cfm?id=645872.671531
http://doi.acm.org/10.1145/322186.322195
http://doi.acm.org/10.1145/322186.322195
http://portal.acm.org/citation.cfm?id=193201.194085
http://portal.acm.org/citation.cfm?id=193201.194085

BIBLIOGRAPHY 129

[106] R. G. Sargent, Verification and validation of simulation models, in Proceedings of the
41th Conference on Winter Simulation, WSC ’09, pp. 162–176, Winter Simulation
Conference, 2009, ISBN 978-1-4244-5771-7, URL http://www.informs-sim.org/
wsc09papers/014.pdf.

[107] H. S. Sarjoughian, D. Huang, G. W. Godding, K. G. Kempf, W. Wang, D. E. Rivera,
and H. D. Mittelmann, Hybrid discrete event simulation with model predictive control
for semiconductor supply-chain manufacturing, in Proceedings of the 37th conference
on Winter simulation, WSC ’05, pp. 256–266, Winter Simulation Conference, 2005,
ISBN 0-7803-9519-0, URL http://portal.acm.org/citation.cfm?id=1162708.
1162757.

[108] J. G. Shanthikumar and R. G. Sargent, A Unifying View of Hybrid Simulation/Analytic
Models and Modeling, OPERATIONS RESEARCH, vol. 31 (6): pp. 1030–1052, 1983,
URL http://or.journal.informs.org/cgi/content/abstract/31/6/1030.

[109] E. d. S. e Silva, A. P. C. da Silva, A. A. de A. Rocha, R. M. M. Leão, F. P. Duarte,
F. J. S. Filho, G. D. G. Jai, and R. R. Muntz, Modeling, analysis, measurement and
experimentation with the Tangram-II integrated environment, in Proceedings of the 1st
international conference on Performance evaluation methodologies and tools, valuetools
’06, ACM, New York, NY, USA, 2006, ISBN 1-59593-504-5, URL http://doi.acm.
org/10.1145/1190095.1190103.

[110] P. P. d. Silva, A. H. F. Laender, and P. B. Golgher, A Simulation Model for the
Performance Evaluation when Migrating Legacy Systems, in Proceedings of the Fifth
European Conference on Software Maintenance and Reengineering, CSMR ’01, pp. 210–
215, IEEE Computer Society, Washington, DC, USA, 2001, ISBN 0-7695-1028-0, URL
http://portal.acm.org/citation.cfm?id=794203.795298.

[111] C. U. Smith, Performance Engineering of Software Systems, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1st ed., 1990, ISBN 0201537699.

[112] C. U. Smith and C. M. Lladó, Performance Model Interchange Format (PMIF 2.0):
XML Definition and Implementation, in Proceedings of the The Quantitative Evalu-
ation of Systems, First International Conference, pp. 38–47, IEEE Computer Society,
Washington, DC, USA, 2004, ISBN 0-7695-2185-1, URL http://portal.acm.org/
citation.cfm?id=1025129.1026073.

[113] C. U. Smith, C. M. Lladó, V. Cortellessa, A. D. Marco, and L. G. Williams, From UML
models to software performance results: an SPE process based on XML interchange
formats, in Proceedings of the 5th international workshop on Software and performance,
WOSP ’05, pp. 87–98, ACM, New York, NY, USA, 2005, ISBN 1-59593-087-6, URL
http://doi.acm.org/10.1145/1071021.1071030.

[114] C. U. Smith and L. Williams, Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software, Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st ed., 2001, ISBN 0-201-72229-1.

[115] C. U. Smith and L. Williams, Best Practices for Software Performance Engineering, in
Proc. CMG, 2003, URL http://www.perfeng.com/papers/bestprac.pdf.

[116] C. U. Smith and L. G. Williams, A performance model interchange format, J. Syst.
Softw., vol. 49: pp. 63–80, December 1999, ISSN 0164-1212, URL http://portal.
acm.org/citation.cfm?id=340287.340332.

[117] R. Suri, S. Sahu, and M. Vernon, Approximate Mean Value Analysis for Closed Queuing
Networks with Multiple-Server Stations, in Proceedings of the 2007 Industrial Engineer-
ing Research Conference, IERC’07, 2007.

BUPT

http://www.informs-sim.org/wsc09papers/014.pdf
http://www.informs-sim.org/wsc09papers/014.pdf
http://portal.acm.org/citation.cfm?id=1162708.1162757
http://portal.acm.org/citation.cfm?id=1162708.1162757
http://or.journal.informs.org/cgi/content/abstract/31/6/1030
http://doi.acm.org/10.1145/1190095.1190103
http://doi.acm.org/10.1145/1190095.1190103
http://portal.acm.org/citation.cfm?id=794203.795298
http://portal.acm.org/citation.cfm?id=1025129.1026073
http://portal.acm.org/citation.cfm?id=1025129.1026073
http://doi.acm.org/10.1145/1071021.1071030
http://www.perfeng.com/papers/bestprac.pdf
http://portal.acm.org/citation.cfm?id=340287.340332
http://portal.acm.org/citation.cfm?id=340287.340332

130 BIBLIOGRAPHY

[118] M. Tribastone and S. Gilmore, Automatic extraction of PEPA performance models from
UML activity diagrams annotated with the MARTE profile, in Proceedings of the 7th
international workshop on Software and performance, WOSP ’08, pp. 67–78, ACM,
New York, NY, USA, 2008, ISBN 978-1-59593-873-2, URL http://doi.acm.org/10.
1145/1383559.1383569.

[119] T. Verdickt, B. Dhoedt, F. De Turck, and P. Demeester, Hybrid performance modeling
approach for network intensive distributed software, in Proceedings of the 6th interna-
tional workshop on Software and performance, WOSP ’07, pp. 189–200, ACM, New
York, NY, USA, 2007, ISBN 1-59593-297-6, URL http://doi.acm.org/10.1145/
1216993.1217026.

[120] R. P. Verlekar, V. Apte, P. Goyal, and B. Agarwal, PerfCenter: A Methodology and
Tool for Performance Analysis of Application Hosting Centers, in Proceedings of the
2007 15th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, pp. 201–208, IEEE Computer Society, Washington,
DC, USA, 2007, ISBN 978-1-4244-1854-1, URL http://portal.acm.org/citation.
cfm?id=1474555.1475491.

[121] R. Wagh, U. Bellur, and B. Menezes, Transformation of UML design model into per-
formance model: a model-driven framework, in Proceedings of the the 8th Interna-
tional Conference on Enterprise Information Systems (ICEIS), ICEIS (3) 2006, pp. 576–
580, 2006, URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.108.8326&rep=rep1&type=pdf.

[122] J. Westall and R. Geist, A hybrid tool for the performance evaluation of NUMA archi-
tectures, in Proceedings of the 29th conference on Winter simulation, WSC ’97, pp.
1029–1036, IEEE Computer Society, Washington, DC, USA, 1997, ISBN 0-7803-4278-
X, URL http://dx.doi.org/10.1145/268437.268736.

[123] L. G. Williams and C. U. Smith, Performance evaluation of software architectures, in
Proceedings of the 1st international workshop on Software and performance, WOSP
’98, pp. 164–177, ACM, New York, NY, USA, 1998, ISBN 1-58113-060-0, URL http:
//doi.acm.org/10.1145/287318.287353.

[124] S. Winitzki, A handy approximation for the error function and its inverse, February
2008, URL http://issuu.com/julianprice/docs/erf-approx.

[125] M. Woodside and G. Franks, Tutorial Introduction to Layered Modeling of
Software Performance, May 2002, URL http://sce.carleton.ca/rads/lqns/
lqn-documentation/tutorialg.pdf.

[126] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, and J. Merseguer, Perfor-
mance by unified model analysis (PUMA), in Proceedings of the 5th international work-
shop on Software and performance, WOSP ’05, pp. 1–12, ACM, New York, NY, USA,
2005, ISBN 1-59593-087-6, URL http://doi.acm.org/10.1145/1071021.1071022.

[127] X. Wu, D. McMullan, and M. Woodside, Component Based Performance Predic-
tion, in Proceedings of the6th ICSE Workshop on Component-Based Software En-
gineering, CBSE ’03, Carnegie Mellon University, USA, and Monash University,
Australia, 2003, URL http://www.csse.monash.edu.au/~hws/cgi-bin/CBSE6/
Proceedings/papersfinal/p24.pdf.

[128] J. Xu, M. Woodside, and D. C. Petriu, Computer Performance Evaluation. Modelling
Techniques and Tools, Lecture Notes in Computer Science, chap. Performance Analysis
of a Software Design Using the UML Profile for Schedulability, Performance, and Time,
pp. 291–307, Springer Berlin / Heidelberg, 2003.

BUPT

http://doi.acm.org/10.1145/1383559.1383569
http://doi.acm.org/10.1145/1383559.1383569
http://doi.acm.org/10.1145/1216993.1217026
http://doi.acm.org/10.1145/1216993.1217026
http://portal.acm.org/citation.cfm?id=1474555.1475491
http://portal.acm.org/citation.cfm?id=1474555.1475491
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.8326&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.8326&rep=rep1&type=pdf
http://dx.doi.org/10.1145/268437.268736
http://doi.acm.org/10.1145/287318.287353
http://doi.acm.org/10.1145/287318.287353
http://issuu.com/julianprice/docs/erf-approx
http://sce.carleton.ca/rads/lqns/lqn-documentation/tutorialg.pdf
http://sce.carleton.ca/rads/lqns/lqn-documentation/tutorialg.pdf
http://doi.acm.org/10.1145/1071021.1071022
http://www.csse.monash.edu.au/~hws/cgi-bin/CBSE6/Proceedings/papersfinal/p24.pdf
http://www.csse.monash.edu.au/~hws/cgi-bin/CBSE6/Proceedings/papersfinal/p24.pdf

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Role of Performance Analysis in Distributed Systems Development
	Performance Analysis Automation. Standardization of Distributed Systems Modeling Languages
	Thesis Objectives
	Organization

	Software Performance Engineering Approaches
	Software Performance Models and Solution Procedures
	Intermediate Performance Models
	LQN Methodology and Model Solvers
	Simulation Models and Simulators
	Methodologies for Component-Based Systems

	Interpretation of Performance Results
	Hybrid Approaches
	Summary

	Standardization of Distributed Systems Modeling Languages
	Transformation Methodology: Input Models to Performance Models
	Automation of Conversion and Performance Analysis. Input Formalisms for Tools.
	Frameworks
	UML 2 or MARTE-Compliant Methodologies and Tools
	Summary

	Hybrid Analytical/Simulation Model and Solver
	Novel Performance Model
	Hybrid Meta-Model Overview
	Model Decomposition
	Simulation Submodel
	Queueing Network Model/Submodels

	Hybrid Solver
	Iterative Process
	Analytical Algorithm Extensions

	Summary

	Transformation of UML MARTE Models to the Hybrid Model
	UML 2.0 Diagrams and the MARTE Profile
	Transformation of Deployment Diagrams
	Transformation of Use Case and Activity Diagrams
	Transformation of Sequence Diagrams
	Summary

	Performance Hybrid Model Solver and Simulator
	Tool Overview
	Performance Prediction Process with PHYMSS
	Implemented Performance Analysis Methods
	User's Guide
	Summary

	Case Studies
	Input Models
	Validation of Implementation and Improvements for Pure Analysis Methods
	Help Desk System
	Simulation Model Validation
	Analytical Enhancements Validation

	Real Distributed System for PHYMSS Validation
	System Model
	Performance Results

	Improving System Design: Early Problem Detection by Performance Analysis
	Initial Design
	Design Improvements
	Validation of Improvements to Analytical Estimations
	Heuristic Rules for Choosing the Simulation Level
	Performance Results

	Summary

	Contributions and Future Work
	Contributions
	Publications
	Future Work Directions

	Pure Analytical Solving Techniques
	Bard-Schweitzer Algorithm for Closed Queueing Networks (A-MVA)
	Chandy-Neuse Algorithm for Closed Queueing Networks (Linearizer)
	MVA Algorithm for Mixed Queueing Networks

	The UML MARTE Profile
	Open Model Behavior Described Step by Step
	Bibliography

