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Abstract: The proposed work presents a novel approach 

using Discrete Wavelet Transform (DWT) and Neural 

Pattern Recognition (NPR) technique for the detection and 

classification of the Power Quality (PD) disturbances. 

Various PQ related events were simulated including single 

and combined events and the generated signals were treated 

with DWT for feature extraction. For classification purpose 

the signal parameters were trained with Neural Pattern 

Recognition (NPR) tool. Eleven types of PQ disturbances 

were considered for classification. The simulation results 

depicted that the combined process of DWT and NPR can 

effectively detect and classify different PQ disturbances 

effectively. Compared to the conventional methods available 

on the literature this method needs less computations and 

works faster. 

Key Words: Power Quality, Discrete Wavelet Transforms, 

Neural Pattern Recognition Technique, Confusion Matrix 

 

1. Introduction  
Continuous monitoring of PQ is a necessary 

service for many industries and large commercial 

customers. Identifying and classifying the voltage and 

current disturbances in a distribution system is 

essential in monitoring and protection. Knowledge 

based approaches along with signal processing 

techniques makes it possible to detect and classify the 

PQ related events which will be further helpful in 

choosing the appropriate mitigation method. The power 

supply quality and related problems are the 

consequences with the usage of solid state switching 

devices in larger scale applications like computer and 

data processing equipment as well as industrial plant 

rectifiers and inverters. A PQ problem usually 

associated with the variation in the quality of electric 

service voltage or current, such as voltage dips, 

fluctuations, momentary interruptions, harmonic 

distortion and oscillatory transients which results in 

malfunctioning or failure of any sensitive electrical 

equipment. The critical aspect of PQ studies is the data 

analysis and the classification of PQ events. The 

important and initial step in improving the power 

quality of a power system is to know the sources and 

causes of the issues from the event that caused. 

Various methodologies have been discussed in 

the literature to detect and classify the type of PQ 

disturbance occurred in a power system or a 

distribution system. A detailed study of signal 

processing techniques has been discussed and analyzed 

[1-3]. The use of Short Time Fourier Transform 

(STFT) for specific PQ disturbances have been 

analyzed and concluded it works well [4]. And further, 

the shortfalls of Discrete Fourier Transform (DFT) are 

given elaborately in [5]. It is found that the transforms 

like DFT and STFT are not suitable for the non-

stationary waveform, whose frequency is varying with 

time. For the classification of such non-stationary 

issues, the Wavelet Transform (WT) has been 

introduced [6] and found to be working well. A neural 

network approach for the classification of power 

system disturbances is introduced [7] with a time-delay 

neural network and feed-forward neural network. 

Further, the classification of PQ issues with WT [8-10] 

has been implemented and compared with  Fourier 

Transform (FT) and [11] concluded that WT works 

well.    

In recent works the signal processing 

techniques like the WT and S Transforms (ST) have 

been appended with the soft computing techniques like 

Neural Network (NN), Artificial Neural Network 
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(ANN),SupportVectorMachines(SVM) to improve the 

effectiveness of classification procedure[12]-[18]. And 

a detailed comparative study of the merits and demerits 

of many of the 

recent techniques have been presented [19].   

An optimal feature selection technique with a 

probabilistic neural network is carried over [20]. Later 

the soft computing techniques were combined with the 

signal processing transforms for identifying and 

classifying the disturbances in a better way [21]-[23]. 

All these techniques involve a training process with the 

database of the known disturbances and utilized for 

further testing and classifying. A new approach with 

the fuzzy expert system with Kalman filter [21], WT 

with SVM [22] have been considered and found to be 

fruitful.  

A novel dual neural-network-based 

methodology to detect and classify single and 

combined PQ disturbances has been proposed [24] 

which compares the previous approaches and justifies 

that neural network training is found to be a better 

choice against the conventional methods. The neural 

network plays a vital role in the classification 

procedure and there are many types of neural network 

tools available and the choice can be based on the 

application of the user. A Radial Basis Function Neural 

Network along with the wavelet transform has had 

been utilized for the detection and classification 

process [26]. 

  Summarizing all the above works done, on 

identifying and categorizing the PQ disturbances in a 

power system can be effectively done with the signal 

processing tools and any one of the soft computing 

techniques. The review of various methods followed 

clearly reveals that performance with WT and NN 

gives good results so far. In the proposed work the 

parameters of the PQ disturbance signal are treated 

with DWT and further trained with NPR and it found 

to be effective and the results are tabulated.  

 The remaining section of this paper discusses 

about the generation of various PQD events, feature 

extraction from the raw signal with DWT, parameter 

calculations and finally classification with NPR 

technique and Energy Difference (ED) plots. The 

proposed techniques found to give effective 

classification accuracy.   

 

2. Wavelet Transform 
  Wavelet Transform and multi-resolution 

analysis provides a short window for high-frequency 

components and a long window for low-frequency 

components and hence, provides an excellent time-

frequency resolution. This allows WT for signal 

analysis with localized disturbances components and 
also for classifying low and high-frequency power 

quality problems. Using the properties of WT and the 

feature of the decomposed waveforms along with the 

neural pattern recognition technique, it is possible to 

extract important information from a disturbance signal 

and determine the type of disturbance. The energy of 

the distorted signal is partitioned at different resolution 

levels and in different ways depending on the event 

available.   

Wavelet Transform analysis is an effective 

signal-processing technique that can give better results 

on the analysis of no stationary signals. Waves are 

oscillating functions of time or space or both. Wavelets 

are small waves with oscillating wave-like 

characteristics whose energy is concentrated in time 

over relatively small intervals. These wavelets possess 

zero mean and fast decaying characteristics at both 

sides of the peak value. Each wavelet is associated with 

a scaling function. The scaling function provides the 

scaling characteristic to the wavelet and the choice of 

the scaling function depends on the wavelet chosen. 

The DWT can be implemented using a 

multistage filter bank with the wavelet function as the 

low-pass (LP) filter and its duals the high-pass (HP) 

filter, as shown in Fig.1 which represents a three level 

decomposition tree. Down sampling by two at the 

output of the LP and HP filters scales the wavelet by 

two for the next stage. g(n) and h(n)  are the outputs of 

the HP  filters, respectively, and represent the detailed 

version of the high-frequency components of the signal 

and the approximation version of the low-frequency 

components. Most of the analysis purpose we make use 

of the detailed coefficients because, with the 

approximate coefficients it is found to be too difficult 

to estimate advanced features, other than the basic 

feature like mean, max etc. And, a number of 

orientations are needed for a single event with the 

approximate coefficients, which will be a time-

consuming task. Whereas with the detailed coefficient 
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we can group or classify the events at the initial stage 

itself.  

The DWT is the discrete form of the WT and 

it does the one-dimensional decomposition of the given 

signal with respect to the specifications provided by the 

user. The specifications include the type of mother 

wavelet and a number of level of decomposition to be 

done for the input signal. After the decomposition, the 

DWT will result in approximate and detailed 

coefficients of the signal to be analyzed, as in fig.2. 

The decomposition was performed for various scales 

and translations which will be based on the choice of 

the mother wavelets. 

There are many types of families of mother 

wavelets available in the wavelet toolset namely, 

Daubechies, Coiflets, Symlets, Discrete Meyer, 

Biorthogonal wavelets etc. In this work, the familiar 

Daubechies (Db) was used for decomposition. The 

wavelets should have the annotation with the number 

of coefficients like Db4, Db6, Sym2, Coif5 etc. 

wavelets.   

  

Fig.1 The wavelet decomposition tree 

 

 

Fig.2 Wavelet decomposition for sag up to level 7  
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3. Classifying PQ events with NPR 
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(k) 

 

Fig.3(a)Sag(b)Swell(c) Momentary Interruption(d) Harmonics (e) Voltage fluctuation(f)Transients(g) Sag and 

swell(h)Momentary Interruption and harmonics (i)Sag and  Momentary Interruption (j)Sag and Voltage 

fluctuation(k)Sag and harmonics 

   

Fig 4. Block Diagram 
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Fig.5 Confuion matrix for individual disturbance signals 

 

 

• 1. sag and swell

• 2. sag and voltage fluctuation

• 3. sag and momentary interruption

• 4. Harmonics and momentary interuption

• 5. sag and harmonics

 

 

Fig.6    Confusion matrix for 5 mixed disturbance cases 

 

 Each of these disturbances was generated at 

various levels and at various time instants. Every signal 

is passed through DWT filters.Db4 mother wavelet was 

used and decomposition consists of 7 levels. After the 

decomposition, the detailed coefficient is considered 

for further processing. For each of the disturbance case, 

parameters like standard deviation, mean, mean 

absolute deviation, median absolute deviation, and 
energy are calculated. These calculated parameters 

values are used as input data for training the neural 

network. The neural network is trained with the NPR 

toolset. The NPR trained data is used to frame a 

simulation model. This model will be used to test any 

kind of unknown disturbance and it classifies the 

power quality disturbance based on the training 

process. The training process gives us two outputs, the 

percentage values on a confusion matrix and ROC 
plots for validating the process of training. 
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4. NPR technique  
  The NPR technique results in a confusion 

matrix after it trains the set of input data.  The 

confusion matrix is a matrix plot, between the target 

and output data. On the confusion matrix plot, the 

rows correspond to the predicted class (Output Class), 

and the columns show the true class (Target Class). 

The diagonal cells showing, how many (and what 

percentage) of the samples are trained by the network 

correctly and estimates the classes of observations. 

That is, it shows what percentage of the true and 

predicted classes match. The off-diagonal cells show 

where the classifier has made mistakes. The column 

on the far right of the plot shows the accuracy for each 

predicted class, while the row at the bottom of the plot 

shows the accuracy for each true class. The cell in the 

bottom right of the plot shows the overall accuracy. 

 

 

  

Fig.7 Simulation model of the pattern recognition network 

  
Table1 Classification of disturbed signal with the NPR trained network 
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s1 0.87 0.02 0.02 0.00 0.03 0.07 0.00 0.00 0.00 0.00 0.00 

s2 0.87 0.01 0.07 0.00 0.07 0.04 0.00 0.00 0.00 0.00 0.00 

s3 0.00 0.95 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

s4 0.01 0.64 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 

s5 0.63 0.00 0.90 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 

s6 0.01 0.00 0.99 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

s7 0.00 0.00 0.01 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

s8 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

s9 0.00 0.00 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

s10 0.00 0.05 0.00 0.00 0.71 0.00 0.00 0.00 0.00 0.00 0.00 

s11 0.09 0.01 0.24 0.00 0.74 0.00 0.00 0.00 0.00 0.00 0.00 

s12 0.34 0.32 0.11 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.00 

s13 0.00 0.43 0.31 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.00 
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s14 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01 0.00 0.01 0.00 

s15 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01 0.00 0.05 0.00 

s16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

s17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

s18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.06 0.00 

s19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.00 0.40 

s20 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.92 0.00 

s21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.93 0.00 

s22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.97 

s23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.97 

 

 The disturbances were trained in two sets like 

6 cases of individual disturbances and 5 cases of mixed 

disturbances as shown in fig5 and fig.6. In this fig.5, 

the first six diagonal cells show the number and 

percentage of correct classifications by the trained 

network. For example, 5 inputs were correctly 

classified as sag. This corresponds to 3% of all 138 

inputs. Similarly, 7 cases were correctly classified as 

well. This corresponds to 4.2% of all inputs. One of the 

swell inputs was incorrectly classified as harmonics 

and this corresponds to 0.6% of all 138 inputs in the 

data. Similarly, 11 of the voltage fluctuation input 

samples were incorrectly classified as sag and this  

 

corresponds to 6.7% of all data. Out of 43 transients’ 

predictions, 69.8% were correct and 30.2 % were 

wrong. Overall, 83.6% of the predictions were correct 

and 16.4% were wrong classifications. 

The trained network for various kinds of 

power quality issues has been framed into a Simulink 

model using MATLAB. This model can be used to test 

any kind of disturbance now. For the signal to be tested 

the parameters were calculated and these values were 

fed as input to the network model and one particular 

column of the output set becomes high and hence 

indicating the classification of the   

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

0 2 4 6 8 10 12
-0.4

-0.2

0

0.2

0.4

Decomposition level

E
n
e
rg

y
 D

if
fe

re
n
c
e

 

 

0.2

0.4

0.5

0.6

0 2 4 6 8 10 12
-0.2

0

0.2

0.4

0.6

0.8

Decomposition level

E
n

e
rg

y
 D

if
fe

re
n

c
e

 

 

0.2

0.4

0.5

0.6

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

Decomposition level

E
n
e
rg

y
 D

if
fe

re
n
c
e

 

 
3 cycles

5 cycles

7 cycles

9 cycles

0 2 4 6 8 10 12
0

20

40

60

80

Decomposition level

E
n

e
rg

y
 D

if
fe

re
n

c
e

 

 

3rd

5th

7th

BUPT



 
(e) 
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Fig.7(a)Sag (b)  Swell (c) Momentary Interruption  (d) Harmonics (e) Voltage Fluctuation                                                                           

(f) Transients (g) Sag and swell (h) Harmonics and Interruption (i) Sag and Interuption                                                           

(j) Sag and voltage fluctuation 

 

disturbance. This fig.7 shows the network model which 

has been trained for identifying the pattern of the given 

disturbance signal and classify it based on the trained 

data. For instance, the given disturbance was a sag and 

it has been classified correctly as [0.003 0.03 0.2 0.93] 

instead of    [0 0 0 1] which is almost closer to the 

correct classification.  

Using the above network model a set of 23 

signals has been tested and classified as in table1. The 

network model is trained to classify any of the 11 

power quality disturbances as listed the table below. 

The output set will display 11 values out of which only 

one will be highest comparatively. For example, if the 

outputs with the test signal s1 the first output value is 

0.87 while the remaining values are nearly zero and 

that shows the presence of sag.  

5. Classifying PQ events with Energy Difference 

Pattern 

 The plot drawn for energy difference between 

a pure sine wave and a disturbed signal was also used 

to classify the type of disturbance. In this work 

different kinds of disturbances like sag, swell 

momentary interruption, voltage fluctuation etc were 
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generated. The disturbance signal is passed through 

db4 wavelet and after decomposition, the energy of 

the coefficients is calculated, which was compared 

with the energy of the pure sinusoidal waveform. The 

energy difference (ED) was plotted against the level 

of decomposition for every disturbance fig.8. The 

magnitude of energy difference is the measure to 

classify the type of disturbance. 

Table 2. Classification of power quality issues with Energy Difference 
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D1 D2 D3 D4 D5 D6 

D

7 D8 D9 D10 

D1
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D1
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Type of 

disturbance  

T1  0  0  0  0  0  0  0 -0.3   0.18  0  0 Sag 

T2  0  0  0  0  0  0  0   0.4 -0.15  0  0 Swell 

T3  0  0  0  0  0  0  0 0.4 -0.9 0.6  0  0 

Momentary 

Interruption 

T4  0  0  0  0  0  0  0 20 70    0  0 Harmonics  

T5  0  0  0  0  0  0  0 0.4 -1 0.1  0  0 

Voltage 

Fluctuation  

T6  0  0  0  0  0  0  0 -0.3 0.2  0  0  0 Transient 

T7  0  0  0  0  0  0  0 0.3 -0.3  0  0  0 sag & swell  

T8  0  0  0  0  0 0.4  0 -0.6  0 0.4  0  0 

Harmonics & 

Interruption  

T9  0  0  0  0  0  0  0 0.2 -0.8 0.4  0  0 

sag& 

Interruption 

T10  0  0  0  0  0  0  0 0.2 -0.55 0.2  0  0 

Sag & voltage 

fluctuation  

 

 The classification of power quality disturbance 

with the ED plot has been tabulated in table2. From the 

energy difference pattern of sag negative deviation at 

the 8
th

 level of decomposition and positive deviation at 

10
th

 level and 8
th

 level shows the maximum deviation. 

Similarly, the deviation is maximum at 9
th
 level for 

harmonics and so on. From the above patterns, we can 

conclude the nature of power quality issue and the 

classification can be done with greater accuracy with a 

simple procedure.  

6. Conclusion 
  This paper has presented a new approach for 

the PQ disturbance classification. The approach uses 

the NPR toolset of the neural network.  The data were 

decomposed with DWT, and the details of the 

disturbed signal are confined and narrowed down to 

the point of disturbance. Because of this, the training 

process is becoming sharper. Eleven types of PQD 

issues were considered and it can be further extended 

for any number of signals. And the classification is 

also done based on the ED possessed by the respective 

disturbance signal when compared with a  undisturbed 

signal The procedure can be considered for real-time 

disturbances identification and classification too. 

Results obtained conclude that the classification using 

NPR technique is found to be more accurate when 
compared to that with the ED plots.   
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