
 

Reactive Power Cost Optimization Using Improved Particle Swarm Optimization 

M.Manzeera 

PG Student, Dept. of EEE, VRSEC–Vijayawada, India, 

Phone no: 9052422030, E-mail: manzeera28@gmail.com. 

 K.Srikanth 

Associate professor, Dept. of EEE, VRSEC – Vijayawada, India, 

Phone no: 9491419809E-mail: ksrikanth@vrsiddhartha.ac.in.

Abstract—Reactive power optimization (RPO) has an 

important role to play in the operation of power system. In 

this paper, the objective is to minimize the real power losses 

of the network along with the minimization of the investment 

cost associated with the reactive power sources. Lately, 

particle swarm optimization (PSO) is gaining more 

attention due to its convergence properties and ability to 

attain global optimal solution. In this paper, to solve the 

RPO problem an improved particle swarm optimization 

(IPSO) is used. The proposed approach is tested for RPO 

problem on standard IEEE 14-bus system and IEEE 30-bus 

system, proves that the improved PSO algorithm used in this 

paper for0 reactive power optimization gives better results. 

The proposed algorithm is simple, have higher convergence 

and thus suitable for solving reactive power optimization 

problems in the power system network. 

 
Key words— Particle swarm optimization, improved particle 

swarm optimization and Reactive power optimization 

1 INTRODUCTION 

Main objective of a power system is to meet the load 

demand to the maximum extent with the available 

generation in an economic, secure and reliable manner. The 

load consists of both active and reactive elements, even the 

transmission of power over AC circuits also involves 

reactive elements and the generation of power also have the 

reactive participation. Therefore it is very important to 

monitor and control the reactive power sources and reactive 

power consuming elements to maintain proper voltages in 

the grid within their permissible limits. Voltage is an 

important factor for measuring the security and economy of 

the power system, while the reactive power is an important 

measure in affecting the voltage level. The reactive power 

should be reasonably distributed in the network to ensure 

the voltage quality. The rational flow of reactive power in 

the system helps in maintaining the reactive power balance 

to ensure the voltage quality improves the system stability 

and security, reduces the power loss, access to economic 

benefits. Thus reactive power optimization has a prime 

concern in power systems. 

   Reactive power optimization of power system is the 

structure of system parameters and load conditions under 

given Conditions; in order to meet the system operation 

mode constraint as a precondition through the optimization 

system   variables to maximize system voltage stability to 

improve the voltage quality and reduce network losses [1].  

As a part of power system’s planning, reactive power 

optimization utilizes the voltage to control power system 

network, improves grid stability, reduces the network loss 

and through reactive power compensation it ensures a wider 

operating margin. 

  For solving different optimization problems, there is no 

particular optimization method available. In recent years 

plenty of optimization techniques have been established for 

solving different kinds of optimization problems. Linear 

programming (LP) [2-3], Non-linear programming (NLP) 

[4] and gradient based techniques are the traditional 

optimization techniques for solving Reactive Power 

optimization problems. But these traditional solution 

strategies suffer from algorithmic complexity, slow 

convergence rate, less accuracy and they converge to a local 

optimal solution instead of the global one. Hence 

evolutionary techniques are recommended for solving 

optimization problem. These methods include Evolutionary 

Programming (EP) [5], Genetic Algorithm (GA) [6], Neural 

Networks, Ant Colony Optimization (ACO) [7], Particle 

Swarm Optimization (PSO) [8-9] are used for setting the 

optimal reactive power limits.  

 Particle Swarm Optimization (PSO) was introduced by 

Kennedy and Eberhart [10]. PSO is an evolutionary 

computation method, which is inspired by social behavior 

of bird flocking and fish schooling. PSO provides a 

population based search procedure in which particles 

change their position with time. Each particle stores its best 

position and global best position obtained from its 

neighbors in its memory. Processing optimization problem 

with continuous variables and discrete variables with this 

method has more advantages comparatively. PSO is a very 

effective method for solving RPO problem. But PSO 

algorithm converges too fast, which gives access to a local 
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optimal solution. Hence the accuracy of getting a global 

optimal solution is not high. 

 In this paper, an improved PSO [11-12] has been 

presented, where inertia weight, shrinkage factor [13], 

neighbourhood model [14] are added into the traditional 

PSO algorithm and the improved PSO have a tendency to 

jump out of local optimal solution than the basic PSO , thus 

converge to a better solution, and improves the accuracy of 

convergence. Therefore, it is tested on standard IEEE 14 

and IEEE 30 bus systems and its results shows that this 

method is effective. 

2 MATHEMATICAL MODEL OF POWER SYSTEM 

REACTIVE POWER OPTIMIZATION 

2.1 Objective function 

2.1.1 Minimization of reactive power cost and active 

power   loss cost 

The objective of RPO is to minimize the real power loss 

in the transmission lines and the cost related to reactive 

power generation and the system active power loss. The 

cost of reactive power in the entire system includes the 

amount paid to generator units for their VAR support, the 

amount paid to reactive power compensators and the total 

cost of system real power loss. Mathematically, the RPO 

problem can be expressed as [15]: 

 

𝑀𝑖𝑛 𝑓 = ∑ 𝐶𝑔𝑞𝑖(𝑄𝑔𝑖) + ∑ 𝐶𝑐𝑗(𝑄𝑐𝑗) + ℎ. 𝑃𝑙𝑜𝑠𝑠

𝑗∈𝑁𝑐𝑖∈𝑁𝐺

 (1) 

Where, 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐺𝐾(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠𝜃𝑖𝑗)
𝐾∈𝑁𝑙

𝐾=(𝑖,𝑗)

 

𝑃𝑙𝑜𝑠𝑠  represents the mathematical model of active power 

loss. In eq. 1 the first part represents the cost paid to 

generator units for their VAR support, the second part 

represents the cost paid to the VAR support of the reactive 

power compensators and the last part represents the cost of 

system real power losses. h  is a constant. 

 

Reactive power cost of generators: 

Genertors provide reactive power support by consuming 

or supplying it with leading or lagging power factors.The 

reactive power production cost of generators is the 

opportunity cost of generator . For example, if a generator 

has to decrease its active power production inorder to 

produce more reactive power, which reduces the 

opportunity of obtaining profits from the active power 

market. The opportunity cost is represented by the 

following equation [16]. 

 𝐶𝑔𝑞𝑖(𝑄𝑔𝑖) = [𝐶𝑔𝑝𝑖(𝑆𝑔𝑖
𝑚𝑎𝑥) − 𝐶𝑔𝑝𝑖(√𝑆𝑔𝑖

max 2 − 𝑄𝑔𝑖
2 )]𝐾𝑔𝑖 (2) 

Where, 

𝑄𝑔𝑖  – the reactive power output of generator i; 

 𝑆𝑔𝑖
𝑚𝑎𝑥 - maximum apparent power of generator i; 

 𝐾𝑔𝑖  - the assumed profit rates for active power generation 

at bus i; 

𝐶𝑔𝑝𝑖 - the active power production cost, which is modelled 

as a quadratic function  

 

 𝐶𝑔𝑝𝑖(𝑃𝑔𝑖) = 𝑎𝑃𝑔𝑖
2 + 𝑏𝑃𝑔𝑖 + 𝑐 (3) 

Here 𝑃𝑔𝑖  is the active power output of generator i; in eq.3 it 

is assumed that the generator is running at its full capacity. 

 

Cost of reactive power compensators:  

The reactive power compensators used here are 

assumed as static capacitors, owned by private 

investors, installed at some selected buses. The amount 

charged for using reactive compensators is assumed to 

be proportional to the amount of the reactive power 

output purchased and can be expressed as [16]: 

 𝐶𝑐𝑗(𝑄𝑐𝑗) = 𝑟𝑗𝑄𝑐𝑗  (4) 

Where, 

𝑟𝑗 - The reactive cost 

𝑄𝑐𝑗  – The reactive power purchased 

 

The depreciation rate of the capacitors can be set as the 

reactive price. The production cost of a capacitor is assumed 

as its capital investment return, which can be expressed as 

its depreciation rate. For example, if the investment cost of 

a capacitor is $11600/MVA and their average working rate 

and life span are 2/3 and 15 years, respectively, the cost or 

depreciation rate of the capacitor can be calculated by [17]: 

 

𝑟𝑗 =
investment cost

operating hours
 

=
$11600

15 ∗ 365 ∗ 24 ∗ 2/3
= $0.1324 𝑀𝑉𝐴ℎ⁄  

2.2 Constraints 

The objective function in eq.1 is subjected to the 

following equality and inequality constraints [18]: 

 

Real power balance equation 

 

𝑃𝑖 − 𝑉𝑖 ∑ 𝑉𝑗[𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗] = 0

𝑁𝐵

𝑗=1

 (5) 

 

𝑖 = 1,2 … … 𝑁𝐵−1 
 

Reactive power balance equation 

 

𝑄𝑖 − 𝑉𝑖 ∑ 𝑉𝑗[𝐺𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗] = 0

𝑁𝐵

𝑗=1

 (6) 

𝑖 = 1,2 … . . . 𝑁𝑃𝑄 

 

Slack bus real power generation limit 

 
𝑃𝑠

𝑚𝑖𝑛 ≤ 𝑃𝑠 ≤ 𝑃𝑠
𝑚𝑎𝑥  (7) 

 

Generator reactive power generation limit 
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𝑄𝑔𝑖

𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖
𝑚𝑎𝑥  (8) 

𝑖 ∈ 𝑁𝑝𝑣 

Bus voltage limits 

 
𝑉𝑖

𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖
𝑚𝑎𝑥  (9) 

𝑖 ∈ 𝑁𝐵 
 

 Transformer tap limit  

 
𝑡𝑘

𝑚𝑖𝑛 ≤ 𝑡𝑘 ≤ 𝑡𝑘
𝑚𝑎𝑥  (10) 

𝑖 ∈ 𝑁𝑇 
 

 Line flow limits  

 
𝑆𝑙 = 𝑆𝑙

𝑚𝑎𝑥  (11) 

𝑙 ∈ 𝑁𝑙 

 

Shunt compensator limits  

 
𝑄𝑠ℎ𝑖

𝑚𝑖𝑛 ≤ 𝑄𝑠ℎ𝑖 ≤ 𝑄𝑠ℎ𝑖
𝑚𝑎𝑥  (12) 

𝑖 ∈ 𝑁𝑠ℎ 

Where, 

 

𝑃𝑠
𝑚𝑎𝑥 And 𝑃𝑠

𝑚𝑖𝑛 are maximum and minimum real power 

limits of slack generator. 

𝑄𝑔
𝑚𝑎𝑥 And 𝑄𝑔

𝑚𝑖𝑛 are maximum and minimum reactive 

power limits of generators except slack generator. 

𝑉𝑚𝑎𝑥 And 𝑉𝑚𝑖𝑛 are maximum and minimum voltage limits 

of bus. 

𝑡𝑚𝑎𝑥 And 𝑡𝑚𝑖𝑛 are maximum and minimum tap setting 

limits of transformer. 

𝑄𝑠ℎ
𝑚𝑎𝑥 And 𝑄𝑠ℎ

𝑚𝑖𝑛 are maximum and minimum shunt 

compensator limits. 

𝑆𝑚𝑎𝑥 is Maximum transmission line thermal limit. 

From the mathematical formulation of the RPO problem, 

it is found that it is a non-linear optimization problem. 

Conventional optimization techniques are not efficient in 

solving this complex optimization problem.  The details of 

the PSO and IPSO-based approach for solving this complex 

optimization problem are presented in next sections. 

3 BASIC PARTIAL SWARM OPTIMIZATION  

Kennedy and Eberhart developed the basic Particle 

Swarm Optimization algorithm in 1995 [12] based on the 

behaviour of bird flocking and fish schooling. Particle 

swarm optimization (PSO) method a population-based 

search algorithm. In PSO, the population is called Swarm 

and the individuals are called particles. Particles fly through 

an N dimensional search space with some velocity. The 

particles need to update two extremes in each round of 

iteration, one is the individual extreme which is the 

accumulation of their own experience of the individual, and 

the other one is the global extreme which is the 

accumulation of the group experience. The velocity with 

which the particles fly and the updated position is given by  

  

 𝑉𝑖𝑗(𝑡 + 1) = 𝑉𝑖𝑗(𝑡)

+ 𝐶1𝑟1𝑗(𝑡) (𝑃𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 

+𝐶2𝑟2𝑗(𝑡)(𝑃𝑔𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 

 

(13) 

 
𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝑉𝑖𝑗(𝑡 + 1) (14) 

where i is the number of particles, j is the dimensional 

number of particles, t is the iteration number, C1 and C2 are 

the accelerating factors, they are usually between 0 to 2, r1 

and r2 are the independent random variables in the range 

[0,1], xi=(xi1,xi2,…, xin) is the current position of the i 

particle, vi=(vi1, vi2,…,vin) is the current velocity of the i 

particle, pi=(pi1, pi2,…, pin) is the best position that the i 

particle has passed in the movement, and pg=(pg1, pg2,…, 

pgn) is the best position that all the particles have passed in 

the movement. By analyzing the basic PSO algorithm in 

eqn.4 and 15, we can see the factors C1 and C2 make the 

particles move to the direction toward the individual and 

global optimal position. 

4 IMPROVEMENT OF BASIC PARTICLE 

SWARM ALGORITHM 

 

PSO algorithm convergence fast, but it has some 

shortcomings such as easy accessing to local convergence 

and low convergence precision. This is because in the 

optimal process, all particles consider the optimal particle 

as the goal, then search toward the same direction, which 

lead to lose the ability to explore unknown area. Therefore, 

basic particle swarm algorithm need to make some 

expansion and modification.. The main improvement 

measures are as follows: 

4.1 Inertia weight 

To improve the convergence performance of PSO 

algorithm, Shi and Eberhart introduced inertia weight in 

speed evolution equation: 
 𝑉𝑖𝑗(𝑡 + 1) = 𝑤𝑉𝑖𝑗(𝑡)

+ 𝐶1𝑟1𝑗(𝑡) (𝑃𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 

+𝐶2𝑟2𝑗(𝑡)(𝑃𝑔𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 

 

(15) 

Where W is called inertia weight, W is a scale factor which 

is related with the previous speed, it controls the impact of 

previous iteration speed on to the next iteration velocity. 

Higher the value of W, results in global search whereas 

lower the value of W results in local search. So if using a 

same value of W in the whole process of PSO iterations, the 

algorithm cannot be easily suitable for global search and 

local search. In this paper, W will decrease linearly from 0.9 

to 0.4 in the whole iteration process: Specific improvement 

measures are as follows: 

 

 𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

𝑘 (16) 
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𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛 are the max and min values of w and 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥  is the maximum no. of iterations where  k is the 

current iteration. 

4.2 Shrinkage factor and neighbourhood model 

Shrinkage factor: 

Clerc has introduced a constriction factor K, stating in 

order to improve the convergence of PSO shrinkage 

factor should be included. He developed a mathematical 

model to explain the behaviour of simple PSO model in 

its search for an optimal solution to insure the 

convergence of the PSO algorithm, the velocity of the 

constriction factor based approach can be expressed as 

follows: 

 

 𝑉𝑖𝑗(𝑡 + 1)

= K(
𝑤𝑉𝑖𝑗(𝑡) + 𝐶1𝑟1𝑗(𝑡) (𝑃𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡))

+𝐶2𝑟2𝑗(𝑡)(𝑃𝑔𝑗(𝑡) − 𝑥𝑖𝑗(𝑡))
) 

(17) 

 

Among them, the shrinkage factor is: 

 
𝐾 =

2

|2 − 𝜑 − √𝜑2 − 4𝜑|
 (18) 

 𝜑 = 𝐶1 + 𝐶2, 𝜑 > 4 (19) 

 

φ is used to control the convergence of the system and φ 

should be greater than 4 to ensure stability. Research has 

shown that introducing the shrinkage factor to control 

particle velocity evolution equation usually has better 

convergence.  

Neighbourhood model: 

In an individual social cognitive system, apart from their 

own experience and excellent information absorbed from 

the whole society, an individual generally learns from their 

best neighbourhood. Based on this idea, the neighbourhood 

mode of PSO algorithm is introduced which improves the 

social cognitive system of PSO algorithm.This approach 

results in changes in the velocity update equations, 

although the position update equations remain unchanged 

in this model. Its velocity equation is : 

 

 𝑉𝑖𝑗(𝑡 + 1) = 𝑤𝑉𝑖𝑗(𝑡)

+ 𝐶1𝑟1𝑗(𝑡) (𝑃𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 

+𝐶2𝑟2𝑗(𝑡) (𝑃𝑔𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 

+𝐶3𝑟3𝑗(𝑡)(𝑃𝑛𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 

(20) 

 

Where C3 is an accelerating constant, r3 is a random 

number in the range [0, 1]; pnj is the position vector of the 

best individual in domain. The two principals used in 

choosing a neighbourhood particle, firstly it must be 

adjacent to it and its fitness should be higher than other 

particles.   

 

Shrinkage factor+ Neighbourhood model: 

By observing the behaviour of both shrinkage factor and 

neighbourhood mode a new approach is presented in this 

paper by adding the neighbourhood features and shrinkage 

factor to the velocity of the particles to improve the 

convergence criteria and reach to a global optimal solution. 

The velocity equation of this approach is shown below: 

 𝑉𝑖𝑗(𝑡 + 1) = 𝐾(𝑤𝑉𝑖𝑗(𝑡) + 𝐶1𝑟1𝑗(𝑡) (𝑃𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 

+𝐶2𝑟2𝑗(𝑡) (𝑃𝑔𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 

+𝐶3𝑟3𝑗(𝑡)(𝑃𝑛𝑗(𝑡) − 𝑥𝑖𝑗(𝑡))) 

(21) 

Where K is the shrinkage factor shown in eq.19 and C3 is 

an accelerating constant, r3 is a random number in the range 

[0, 1]; pnj is the position vector of the best individual in 

domain. 

5  REACTIVE POWER OPTIMIZATION USING 

IMPROVED PARTICLE SWARM 

ALGORITHM 

 
 

6 RESULTS AND DISCUSSIONS 

Programs are written in MATLAB® programming 

language for the proposed method. The program is tested on 

both IEEE 14 bus test system and IEEE 30 bus test systems 
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[19] and the results obtained are presented in the tables 

below.  

 

6.1 IEEE 14 Bus system 

 
Table.1: Solution for Reactive power Optimization for IEEE 

14 bus test system. 

 

Base  

Case 

Load 

flow 

Solution 

RPO 

using 

PSO 

RPO 

using 

PSO with 

Inertia 

weight 

RPO using 

PSO with 

Shrinkage 

Factor & 

Neighborhood 

Model 

Real loss 

(MW) 
13.386 12.507 12.489 12.472 

Loss cost 

($/hr) 
401.58 375.224 374.657 374.167 

Generator 

cost ($/hr) 
8.11 7.36 5.049 4.118 

Capacitor 

cost ($/hr) 
2.81 2.347 3.650 2.573 

Total cost 

($/hr) 
412.49 384.93 383.357 381.01 

 
Table.2: Control variables for IEEE 14 Bus system  

Control 

variable

s 

Base  

Case 

Load 

flow 

Solution 

RPO 

using PSO 

RPO using 

PSO with 

Inertia 

weight 

RPO using 

PSO with 

Shrinkage 

Factor & 

Neighborhoo

d Model 

V1 1.06 1.1 1.1 1.1 

V2 1.045 1.0825 1.077 1.075 

V3 1.01 1.0409 1.0464 1.039 

V6 1.07 1.0564 1.0572 1.059 

V8 1.09 1.0546 1.0459 1.068 

Qsh9 -21.20 -17.73 -27.57 -19.43 

T4-7 0.978 1.0170 0.9909 1.0158 

T4-9 0.969 0.9386 0.9938 0.9603 

T5-6 0.932 0.9682 0.9928 0.9732 

 

6.2 IEEE-30 bus test system 

Table.3: Solution for Reactive power Optimization for IEEE 

30 bus test system. 

 

Base 

Case 

Load flow 

Solution 

RPO 

using 

PSO 

 

RPO using 

PSO with 

Inertia 

weight 

RPO using 

PSO with 

Shrinkage 

Factor & 

Neighborh

ood Model 

Real 

power loss 

(MW) 
17.559 16.146 16.132 16.131 

Loss cost 

($/hr) 
526.76 484.376 483.95 483.92 

Genreactiv

e cost 

($/hr) 

16.353 13.452 9.247 9.259 

Capacitor 

cost ($/hr) 
3.340 5.032 5.251 5.270 

Total cost 

($/hr) 
546.45 502.861 498.45 498.45 

Table.4: Control variables for IEEE 30 bus  

 

Control  

variables 

Base 

Case 

Load 

flow 

Solution 

RPO 

using 

PSO 

RPO 

using 

PSO with 

Inertia 

weight 

RPO using 

PSO with 

Shrinkage 

Factor & 

neighborhood 

model 
V1 1.06 1.10 1.1 1.1 
V2 1.04 1.081 1.0804 1.0805 
V5 1.01 1.041 1.036 1.036 

V8 1.01 1.046 1.04 1.042 

V11 1.08 1.036 1.083 1.080 

V13 1.07 1.08 1.078 1.078 

Qsh 10 -20.74 -27.77 -27.95 -27.95 

Qsh 24 -4.49 -10.24 -11.71 -11.86 

T6-9 0.978 1.0058 1.0123 1.020 

T6-10 0.969 0.9710 1.0134 1.001 

T4-12 0.932 0.9919 0.9857 0.9854 

T28-27 0.968 0.9752 0.9667 0.9670 

  From Table 1 & 3 it can be observed that using Inertia 

weight in PSO method, better convergence of the PSO 

method in solving RPO problem for the two test systems 

considered can be felt in terms of cost and losses. The 

control variables of the two test systems are presented in 

Tables 2 & 4. The convergence characteristics prove the 

reliability and efficiency of the proposed method. 

7 CONCLUSION 

Now a day’s power system optimization problems are 

being solved using PSO techniques, due to its better 

convergence properties and robustness. It was also 

observed that variants of PSO method like the Improved 

Particle Swarm optimization are also yielding competitive 

results when compared to PSO [20]. The present work 

solved the Reactive power optimization problem using 

IPSO. From the results obtained by the developed 

programs, it is clear that the real power loss and the cost of 

reactive sources obtained by PSO and its variant are better 

than the base case results. The results also show that IPSO 

gave better result in solving Reactive power Optimization 

problem for IEEE 14 bus and 30 bus systems. This proves 

that the IPSO approach gives accurate results, has higher 

convergence and gives a global optimal solution than the 

basic PSO algorithm when used for solving RPO problem. 

This might be by virtue of its shrinkage factor and 

neighbourhood model approach, which helps to attain 

global optimal solution. 
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