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1. INTRODUCTION

1.1. Multi-core Processors for Real-Time Systems

Not a very long time ago, the main way of facing the increasing demand for
computational power consisted in processor clock acceleration. But higher clock speed
results also in higher power consumption. One way out of this dilemma is believed
to be multi-core processors or chip multiprocessors. Even if this trend affected at
first the server and PC systems, multi-core processors will eventually be common-
place for many categories of devices. For example, nowadays mobile devices have
become true mobile computation platforms that handle graphics, videos and many
more applications, occasionally interrupted by a phone call.

The advent of the multi-core revolution can be placed around May 2004, when
Intel canceled two single-core designs as they realized that these designs require a
significant engineering effort to deal with the excessive heat dissipated by such chips.
Instead, they started work on Intel Smithfield, the first dual-core Intel processor,
released on the 25th of May 2005. Intel was also rushed by the need to respond
to Advanced Micro Devices (AMD) plans with the dual-core Opteron processor, also
launched in May 2005. Nowadays, processors with eights cores can be found in
low-cost desktop systems while at the same time, prototypes with up to 48 cores are
developed [97].

In the last years, this multi-core revolution affected also the world of em-
bedded processors and many hardware producers spend considerable amounts of
resources for designing such parallel architectures. An example is given by the ARM
Cortex A15 MPCore processor consisting of up to four cores [7], designed for mo-
bile phones and other embedded systems. Furthermore, on December 16, 2010, LG
Electronics launched LG Optimus 2X, the first dual-core smartphone [6].

Once the computational power and energy saving problem is solved, for applic-
ations to fully benefit of the power provided by multi-cores, they must be redesigned
and special care must be paid to scheduling and processor allocation issues of these
applications. For throughput-oriented applications this area has been widely covered,
but there remains an important class of applications – namely real-time applications
– where processor allocation is still an obstacle, as these applications require not only
high performance but also timing correctness. Without these, that occasional phone
call would be missed.

The issue of ensuring timing correctness is strongly related to the real-time
scheduling problem, which can be split in two subproblems:
(1) the run-time scheduling problem: find a schedule for the tasks of each application

in the system such that all timing constraints are met,
(2) the schedulability problem: given a set of tasks, find if the tasks will meet their

deadlines if executed on a given processor platform.
Both these problems have been thoroughly researched for uniprocessor sys-

tems, producing a considerably variety of publications and applications. However,
there are still many open problems related to multiprocessor and multi-core schedul-
ing. In this thesis, we focus on the schedulability problem of applications running
on multi-core and identical multiprocessor platforms, in which all processors have the
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same speed.
Another key aspect that appears when referring to real-time systems is that

real-time applications must not be interfered by other applications sharing the same
processing platform. The solution out of this dilemma is given by virtualization, which
provides partitioning capabilities on top of multi-core processors.

Basically, virtualization ensures temporal and spatial isolation between differ-
ent applications. In real-time scheduling theory, temporal isolation is ensured through
hierarchical scheduling techniques. These techniques offer flexibility as they are able
to enforce scheduling policies at runtime.

When choosing what kind of scheduler to use on a real-time multi-core/mul-
tprocessor system, there are two main options, each with its advantages and dis-
advantages. One can either use a partitioned approach and statically assign tasks to
processors, scheduling each set of tasks using some uniprocessor algorithm, or he can
use a global scheduler. Such a global scheduler assumes that each task can execute
on any processor and can migrate from one processor to another. In this work we will
devise new strategies for improving the global scheduling analysis for virtualized or
hierarchical real-time systems, strategies that will significantly increase the number
of detected schedulable tasksets.

1.2. Model-based Analysis of Real-Time Systems

Lately, model-driven engineering (MDE) has emerged as a major research
area in software engineering as it promises to move the focus of the development
process from writing source code to a more abstract world where the central point
is the model of the system. From the model, the source code can be obtained to
a chain of model transformations. Using MDE for real-time systems is still at the
beginnings. One issue to be solved is how schedulability analysis can be encompassed
within the models. Several solutions that bring closer these two domains have been
proposed [106, 51, 149]. An analysis of these solutions showed that they are based
either on classical scheduling theory, either use formalisms like timed automata [13].
In this work, we will also concentrate on the use of timed automata as a formalism
for analyzing real-time schedulability.

Furthermore, multiprocessor/multi-core scheduling is the main focus in clas-
sical scheduling theory but until now it provided mostly results which lead to poor
usage of the processor. In this context the use of formal methods for real-time
scheduling is appealing. Moreover, verification of timing guarantees in hierarchical
systems has been hardly studied.

1.3. Thesis Objectives

In order to be able to give timing guarantees in modern systems where real-
time applications coexist with other performance demanding applications and, at the
same time exploit efficiently the multi-core processor, accurate schedulability tests
must be developed. Therefore, a rigorous study and analysis of the real-time schedul-
ing theory for multiprocessor systems is required. Furthermore, as we aim to apply
formal methods to solve the multi-core schedulability problem, we analyze the chal-
lenges that must be overcome and then look at how the problem has been tackled in
related work.

One of the main objectives of the thesis is to propose a methodology for mod-
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el-based real-time schedulability analysis. For this, we choose the timed automata
formalism and transform the schedulability problem into a reachability one solved
through model checking. The developed method addresses component-based sys-
tems, where the resource requirements of each component are specified in a service
contract. The hierarchy of components in these systems is mapped to a scheduling
hierarchy where each level is analyzed individually. The advantage of this approach
is that schedulability can be analyzed incrementally, simplifying model checking. We
give an exact schedulability analysis method for simple task models with periodic in-
dependent tasks, whereas in the classical theory only sufficient tests exist. Further,
we also propose a method which provides a sufficient test for task models with preced-
ence constraints, solving a problem that has not been tackled in classical scheduling
theory.

Another objective of this thesis is to devise a new protocol for resource shar-
ing in multi-core systems which will improve the state-of-the-art in the field. The
protocol will address the problem of scheduling real-time tasks using a global pree-
mptive fixed-priority algorithm with mutual exclusion constraints. At the same time, in
order to determine if each task from an application meets its deadline, a schedulability
test for the protocol will be provided.

Regarding resource sharing in hierarchical systems, another goal of this thesis
is to propose a synchronization protocol that can be used in hierarchical multi-core sys-
tems, does not restrict application-level parallelism and can be applied when sched-
ulers at all levels of the hierarchy use a global multiprocessor scheduling approach.
Also, one of the objectives of this thesis will be to carry out a performance analysis of
the proposed protocols.

1.4. Organization

The rest of this thesis is organized as follows.
Chapter 2. gives an overview of the multiprocessor real-time scheduling do-

main. The task models used mostly in classical real-time scheduling theory are presen-
ted and the main scheduling classes of scheduling algorithms are analyzed. Further-
more, we take a look at the anomalies that affect multiprocessors scheduling and the
processor virtualization techniques engaged for ensuring temporal isolation between
applications.

Chapter 3. is concerned with the challenges brought by the multi-core sys-
tems in the real-time schedulability analysis based on model checking and outlines
how the solution proposed in this thesis improves on related work.

Chapter 4. describes the proposed scheduling analysis methods. First, a
motivation of the usefulness of our methods is given. Further, detailed descriptions
and analysis of the proposed methods are presented.

Chapter 5. proposes a method for generating multi-core time partitions in a
two-level scheduling hierarchy. The chapter starts by giving the reasons why such a
method is necessary. Further, the method is detailed and an empirical evaluation of it
shows performance of the method.

Chapter 6. proposes a resource sharing protocol for periodic and sporadic
task systems globally scheduled on a multiprocessor platform with fixed task priorit-
ies. The presented result improves over related works on the same topic. For the
proposed protocol, we also give a schedulability test based on response time analysis.
To prove the performance of the protocol we run a set of simulations, for various
system configurations.
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Chapter 7. handles the problem of resource sharing in virtualized or hierarch-
ical real-time systems. We extend the protocol in Chapter 6. to cover the issues
specific to hierarchical systems. In order to see if real-time constraints are met under
the proposed protocol, we give a schedulability test for it and use this test to analyze
the performance of the new protocol.

The final chapter concludes this thesis with a short summary, a list of the
contributions of the thesis and a presentation of the problems that need to be tackled
in the future.
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2. SCHEDULABILITY ANALYSIS OF REAL-TIME
MULTI-CORE SYSTEMS

Unlike other computing systems, real-time embedded systems must face tim-
ing and safety constraints, which means that the correctness of their behavior depends
not only on performing well the operations they were designed for, but also on the
time when those operations are performed. Examples of timed constrained system
operations include processing an image in television between two successive frames
or performing a control operation between successive rotations of an engine. Any
error that may appear in the functioning of a flight control system for avionics or in
computing the trajectory of an automobile is critical from a safety point of view.

However, real-time embedded systems include not only systems used in avion-
ics or automobiles, but also devices like mobile phones or car navigation systems
which also have features resembling more and more non-real-time systems. For
example, on a mobile phone, along with real-time software, there may be various
multimedia applications or the phone can have internet access which also posses se-
curity problems. Such security problems must not have any impact on the real-time
components of the system. The solution to escape this dilemma comes from the use
of virtualization techniques.

Guaranteeing correct real-time behavior and performance of a system is highly
dependent on the efficiency of the scheduling algorithms used and the accuracy of
the schedulability analysis methods backing up the algorithms. Multi-core processors
closely resemble symmetric multiprocessors, therefore existing experience with multi-
processors real-time scheduling is valuable. The interest for multiprocessor real-time
scheduling research became visible in the late 60’, early 70’. In 1969, Liu [122] noted
that

“few of the results obtained for single processors scheduling generalize dir-
ectly to the multiple processor case; bringing in additional processors adds

a new dimension to the scheduling problem”.

Almost ten years later, in 1978, the paper of Dhall and Liu [73] determined greatly the
course of the research in this field for the next twenty years. They identified what is
known in the literature as the “Dhall effect” (detailed in Section 2.1.3.) that appears
in global multiprocessor scheduling. As a consequence research has focused mostly
on partitioned scheduling approaches.

However, research in the multiprocessor scheduling field gained momentum
only after the year 2000, when the fact that increasing processor performance only
with higher clock speeds will soon become impossible and hence the need for increas-
ing the number of processor cores as a solution for increasing processing speed.

This chapter covers the main issues related to multi-core/multiprocessor sched-
ulability analysis. The first section defines the terminology and concepts used further
in this thesis. A classification of multiprocessor algorithms is presented in Section 2.1.
Next, Section 2.3. is devoted to presenting the main performance metrics used in
classical schedulability analysis. As a set of scheduling anomalies have been identi-
fied for multiprocessor systems [22, 18, 113], we devote Section 2.2. to presenting
these anomalies. The solutions proposed in classical real-time scheduling analysis for
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enabling virtualization are discussed in Section 2.4. Section 2.5. analyzes current
research results related to protocols for accessing mutually exclusive shared resource
in multiprocessor real-time systems, as well as in virtualized real-time systems. The
chapter ends with a set of concluding remarks on the topics included in it.

2.1. Concepts and Terminology

2.1.1. Task Models

The majority of the research in multiprocessor real-time scheduling assumes that
the system has to deal with repeatedly executing processes modeled as tasks which
generate jobs. Therefore a real-time task is the basic unit of work that must be
executed by the system and each task is a sequence of one or more jobs, where each
job is an executing process. The purpose of multiprocessor real-time scheduling is to
plan the execution of a set of tasks belonging to a real-time application such that all
tasks meet their timing constraints. The taskset is assumed to be static.

Each task has an associated deadline and the correct functioning of the system
depends on whether all jobs of the task complete execution before their deadline.
Also, each task is characterized by at least two other parameters - a release time and
a worst case execution requirement (or computation time) - meaning that each job of
the task must execute for at most an amount equal to task’s execution requirement
between its release time and its deadline. However, in the case of multiprocessor
scheduling, a task executing for less than its worst case computation time can make
the taskset unschedulable, and therefore an accurate task model must also consider
the best case computation time for each task.

Most of the research in the multiprocessor real-time scheduling area is con-
centrated on two simple task models: the periodic task model and the sporadic task
model.

The periodic task model was first defined by Liu and Layland in 1973 [123] and
is still extensively used [19, 86]. In this model, each recurring process in the real-time
system is considered a periodic task τi = (Ti, Ci, Di), with the following meaning: task
τi with period Ti and worst case execution time Ci generates a job at each time

instant t representing a multiple of Ti which needs at most Ci processing units and

must complete in a period of time equal to Di. Therefore the real-time system is
modeled as a collection of n periodic tasks τ = {τ1, τ2, ..., τn}.

Periodic tasksets can be synchronous if there is a time point when all tasks
in the set are released simultaneously, or asynchronous, if task arrivals are always
separated by a time offset.

If we lessen the requirement that the jobs of a task must start exactly at
the beginning of the period and consider that Ti represents the minimum interval
between two job releases, the model above becomes a sporadic task model. This
model was formally described by Mok [135]. Each task is defined by three integers
τi = (Ti, Ci, Di) - the minimum separation between two consecutive jobs of τi, the
worst case computation time and the deadline as a value relative to the job release
time.

Further, in all cases for both task models it is assumed that a job may be
released only at a time instant t such that a successive job release must not occur
before t+ Ti time units.

Both models discussed above make the assumption that both tasks and jobs
allow no parallelism. Allowing either type of parallelism means fulfilling the potential
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of a multiprocessor or multi-core system. There are two levels at which parallelism
would be possible [65]. First, in a system it could be allowed for multiple jobs of the
same task to arrive simultaneously and each job could run on a different processor
enabling thus task parallelism. Another possibility is constituted by job parallelism,
where each job can be executed on several processors or cores at the same time.

Collete et al. [65] give a definition of a task model including job parallelism
for sporadic tasks running on m identical processors. They consider a system of
n sporadic tasks τ = (τ1, τ2, ..., τn) where each task τi, 1 ≤ i ≤ n is defined by a
period Ti, a worst-case execution deadline Ci and a m-tuple of real numbers Γ =
(γi,1, γi,2, ..., γi,m) with the interpretation that if task τi executes for t time units on j
processors it completes γi,j × t units of execution. All tasks have an implicit relative
deadline equal with the task period. Their model also includes the limitation defined by
Amdahl’s law which states that the maximum degree of parallelism in any application
is limited by the size of its serial components. Consequently, executing a job on k
processors will not make the job run k/j times faster as executing it on j processors
and also the number of processors on which a job may be executed in parallel is upper
bounded. Once the bound is reached, using more processors leads to job performance
degradation.

The deadline constraints on the tasks have been divided in three coarse cat-
egories:
• implicit deadline: tasks have deadlines equal to their periods (Di = Ti),
• constrained deadline: tasks have deadlines smaller or equal to their periods
(Di ≤ Ti),

• arbitrary deadline: there is no order relation enforced between task deadline and
period.
From the task parameters defined above, several others were derived, all used

extensively in the analysis of multiprocessor real-time scheduling:

• Ui - processor utilization factor, i.e. how much time spends the processor execut-
ing task τi:

Ui
def
= Ci

Ti
,

• load(τi) - the computational demand of task τi:

load(τi) =
Ci

Di
.

• nominal laxity (slack time): the maximum delay allowed before starting task τi
assuming only this task is using the processor

li = Di − Ci

• residual laxity: the maximum delay allowed for resuming the execution of task
τi assuming only this task is using the processor

li(t) = (Di − t)− Ci(t), 0 ≤ Ci(t) ≤ Ci

For the multiprocessor real-time system model to be complete we need a
model of the multiprocessor platform accompanying the model of the tasks execut-
ing in the system. Scheduling theory distinguishes between three different kinds of
multiprocessor machines [86]:

BUPT
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Identical parallel machines All processors are considered to have the same com-
puting capacity. This is the most used model in the research of multiprocessor
scheduling [141, 82, 65] and includes also multi-core systems.

Uniform parallel machines In this model, each processor has its own computing ca-
pacity s (i.e. if the computing capacities of all processors are equal this becomes
the previous model). A job i with computation request pi running on a processor
with computing capacity sj will complete in pij = pi/sj units. This model can be
considered more realistic since it is possible for some processors to reserve a
certain capacity for executing non real-time tasks.

Unrelated parallel machines In this model the computing capacity of each pro-
cessor depends on the job using it. Thus, a job i will need pij = pi/sij units
to complete when executing on processor j.

The relation between these types of machines is depicted in Figure 2.1.
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Figure 2.1: Multiprocessor machines taxonomy

2.1.2. Feasibility and Schedulability

A taskset τ = (τ1, .., τn) is feasible with respect to a multiprocessor platform π if there
exists at least one scheduling algorithm which can schedule all possible job sequences
generated by the tasks in the system and no job misses its deadline. A task is
schedulable if all its jobs complete their execution before their deadlines. A taskset
is schedulable under a given scheduling algorithm if the algorithm provides a feasible
schedule for the taskset. In other words, a taskset is schedulable if all its tasks are
schedulable.

A scheduling algorithm is optimal with respect to a multiprocessor platform π
and a specific task model M if it can schedule all tasksets which comply with the task
model M and are feasible on the platform π.

A scheduling algorithm is work conserving if the algorithm never idles a pro-
cessor while there is some job ready for execution and which may legally execute on
that processor.

A schedulability test checks whether a given scheduling algorithm can provide
a feasible schedule for a specific taskset. A schedulability test is said to be sufficient
with respect to a scheduling algorithm and a system if all tasksets deemed schedulable
by the test are indeed schedulable. A scheduling test is termed as necessary if all
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tasksets which fail the schedulability test are indeed unschedulable. A schedulability
test is exact if it is sufficient as well as necessary.

For a given taskset τ = (τ1, .., τn) and multiprocessor platform π we can define
the feasibility interval as a finite interval such that if all tasks in the taskset meet
their deadline in this interval then they will always meet their deadline (no deadline
miss will ever occur). The existence of a feasibility interval for a given task and
system model is crucial for schedulability analysis since it simplifies it by allowing to
perform the schedulability test only during that interval and being able to provide a
valid verdict on the taskset schedulability.

2.1.3. Taxonomy of Multiprocessor Scheduling Algorithms

A multiprocessor scheduling algorithm determines which jobs should execute at the
current time and on what processor. Therefore the scheduling algorithm must solve
two problems:
• the priority assignment problem: determine an execution ordering of the jobs of
the tasks, and

• the processor allocation problem: determine the processor on which a job must
execute.
For the first problem several scheduling approaches are defined based on

whether the schedulability of a system is performed statically or dynamically or whether
it results in a plan according to which tasks are dispatched at run-time [144].

The most simple way to schedule tasks in a real-time system is through a
static table with explicit start time and execution place for each task. This approach is
known as static table-driven scheduling and although the resulting schedule is predict-
able it presents the drawbacks that it is inflexible since any change in the parameters
of the tasks determines the reconstruction of the whole scheduling table and that no
job preemption is allowed. The technique is applicable to periodic tasks for which the
start and completion times can be identified using heuristic algorithms.

Current scheduling algorithms assign priorities to tasks and choose the task
with the highest priority for dispatching next assuming that priorities were assigned
such that the resulting schedule meets all deadlines. Depending on whether the
priority of the jobs of a task can change from one job to another, we can distinguish
fixed and dynamic priority algorithms. With fixed priority-driven algorithms a unique
priority is assigned to each task and all jobs of the task will execute with that priority.
Static priority assignment is appealing as once the task priority is assigned we do
not have to reevaluate it. An example of fixed priority-driven algorithm is the Rate
Monotonic (RM) scheduling [123].

When task priorities are assigned to individual jobs of a task we discuss about
dynamic priority scheduling [150]. We can distinguish between two kinds of dynamic
priority scheduling [58]: fixed within a job, or fully dynamic. With priorities fixed
within a job, for every pair of tasks τi and τj, if at some moment t job Ji of task τi has
higher priority than job Jj of task τj than Ji will always have higher priority than Jj, but
it is possible that for some other pair of jobs J ′i of task τi and J ′j of task τj, J

′
j to have

higher priority than J ′i. An algorithm that falls in this category is the Earliest Deadline
First (EDF) scheduling [123]. In the fully dynamic approach, the relative priorities of
two jobs can change over time: if at moment t for a job pair (Ji, Jj) corresponding to
the task pair (τi, τj), Ji has higher priority than Jj, it is possible that at moment t

′ job
Jj will have higher priority than Ji. The Least Laxity First (LLF) [135] algorithm can
be included in this class.
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10 Schedulability Analysis of Real-Time Multi-core Systems - 2.

Table 2.1: A parallel between advantages and disadvantages of partitioned and global ap-
proaches for multiprocessor real-time scheduling

Partitioned Global

Advantages

• a missed deadline affects
only tasks allocated to the
same processor

• better resource utilization as
most of the times tasks ex-
ecute for less than their worst
case execution time

• no penalties due to task mi-
gration (lower context switch
costs, lower cache miss costs)

• it is possible to have fewer
context switches / preemp-
tions than in the partitioned
case [21]

• any of the well-known
uniprocessor scheduling al-
gorithms can be used for tasks
allocated to a processor

• more appropriate for open
systems when tasks can come
at any time

Disadvantages
• allocation of tasks to pro-
cessors is a NP-hard problem

• optimal scheduling al-
gorithms exist only for peri-
odic task models

• if tasks can enter and leave
the system dynamically, it is
necessary to reallocate tasks
to processors

• maintaining a single lengthy
global queue available to all
processors may be cumber-
some

If we refer to the way the processor allocation problem is solved, scheduling
algorithms can also be classified as partitioned or global. In partitioned scheduling,
each processor is scheduled independently and each task is assigned to one processor
and it is allowed to execute only on that processor. In global scheduling, tasks com-
pete for all processors. Global scheduling can be further classified according to when
migration is allowed [58]:
• task level migration: different jobs of a task can execute on any of the available
processors but once a job has started on a processor it can execute only on that
processor,

• job level migration: a job can migrate from one processor to another, with the
limitation that the job is not permitted to run in parallel.
For many years, the global scheduling strategies have received little atten-

tion, mainly because it was believed that they suffer from the “Dhall effect” [73],
a scheduling paradox which makes that tasksets with low processor utilization are
unschedulable on a multiprocessor platform. More specifically, in [73] Dhall and Liu
showed that for a set of m + 1 periodic tasks scheduled on m processors using global
EDF the utilization bound for schedulable tasksets is just 1 + ǫ for an arbitrary small
ǫ. This “Dhall effect” led to the conclusion that global multiprocessor scheduling is
inferior to partitioned multiprocessor scheduling. Moreover, it has been proved that
no global online scheduling algorithm is optimal for scheduling tasks with distinct
deadlines on multiprocessor systems [100]. Only in late 1990’ and early 2000 it was
shown that algorithms like EDF or LLF which provide pessimistic evaluations of the
schedulability tests, can be improved if “resource augmentation” is used [141, 86]
(i.e. the processing speed of available resources is increased). The effect of this is
twofold. First it was proved that the “Dhall effect” has impact only on tasksets with
certain particularities which may never appear in real systems (e.g. tasksets with m
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2.1. - Concepts and Terminology 11

low utilization tasks and one task with utilization close to 1). Secondly, it changed
the course of multiprocessor schedulability analysis and the majority of the research
focused on providing taskset utilization bounds dependent on the maximum task util-
ization [19, 45, 25, 26, 82, 28]. Today, with the advent of multi-core processors, the
interest in the global scheduling algorithms has increased considerably [16, 17, 55].
Table 2.1 draws a parallel between the advantages and disadvantages of the parti-
tioned and global multiprocessor real-time scheduling algorithms. Global scheduling
can be difficult to apply on any multiprocessor architecture due to migration costs but
experiments have shown that on some architectures these costs can be smaller than
preemption costs [35], which affect both global and partitioned scheduling. On the
other hand, modern real-time systems are open systems, where tasks are created
and destroyed dynamically, and global scheduling is the best approach to follow in
such cases.

Recently, in order to cope with the disadvantages of both partitioned and
global algorithms, namely to achieve better resource usage with fewer migrations,
a third class of algorithms appeared: the hybrid ones. In the hybrid approach it is
possible either to split a task and partition its jobs between processors [20] or to
allocate some tasks similar to the partitioned approach, while a subset of the tasks
are scheduled in a global fashion [105, 111, 132]. Another mixed approach, which
aims to alleviate the drawbacks of the partitioned and global approaches, is clustered
scheduling [56]. In this case, the multiprocessor platform is partitioned into clusters
of processors. The taskset is statically divided in task subsets, with each subset
statically allocated to a cluster. Within each cluster, the tasks are scheduled globally.
This approach is especially suited for multi-core systems were cores can be clustered
around the different levels of shared caches. A study [36] performed recently on an
implementation of partitioned, global and clustered EDF in a real-time Linux extension
called LITMUSRT [57, 92], showed that the clustered approach performs best for soft
real-time tasks for any platform size and is suitable for scheduling hard real-time tasks
on small and medium-sized platforms.

Figure 2.2 sums up the possible relationships between the presented multipro-
cessors scheduling taxonomies. The work in this thesis focuses on global scheduling
with job level migration and addresses both dynamic and fixed-priority tasksets (the
grayed boxes in Figure 2.2).

An analysis [58] of the nine classes of global and partitioned algorithms based
on the tasksets that can be scheduled by each class, has shown that global dynamic
priority scheduling with job-level migration dominates all other classes. This means
that any taskset that is deemed schedulable by an algorithm in any of the other classes
is also schedulable by algorithms in this class, but there are also tasksets deemed
schedulable by algorithms in this class but which are not schedulable according to
other algorithms. Algorithms in the fixed-priority class are incomparable, meaning
that tasksets schedulable according to some algorithm in one of these classes may
be unschedulable according to some other fixed-priority algorithm. Also, the three
partitioned classes are incomparable.

Moreover, while for partitioned algorithms, online optimal scheduling algorithms
exist for both periodic and sporadic tasksets, the class of global algorithms lacks such
online optimal algorithms. The impossibility of finding an optimal online scheduling
algorithm for periodic tasksets with multiple deadlines has been proven first by Hong
and Leung in 1992 [100]. This result was recently generalized for sporadic task
sets [85]. Only for periodic tasks optimal global dynamic scheduling algorithms are
known: Pfair [29], LLREF [62] or Deadline Partitioning Fair (DP-FAIR) [118]. Although
these algorithms offer a processor utilization bound of 100%, they are not priority-
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Figure 2.2: Multiprocessor real-time scheduling algorithms taxonomy

based and incur significant runtime overhead. Moreover, both Pfair and LLREF are not
work-conserving algorithms.

Table 2.2 gives an overview of existing global and partitioned schedulability
tests for sporadic tasksets scheduled on multiprocessor platforms. The schedulability
tests are referred by the corresponding priority assignment policies. It must be noted
that, because partitioned multiprocessor scheduling can be reduced to uniprocessor

Table 2.2: The main schedulability tests for different classes of multiprocessor real-time schedul-
ing considering only sporadic tasksets

Partitioned Global

Fixed priority

RM [123] (exact) RM-US[ζ] [19] (sufficient)
DM [123] (exact) TkC [21] (sufficient)

DM [123] (sufficient)
Fully dynamic EDF (exact) EDF [28, 31, 27], EDF-US[ζ] [155],

EDF-DS[ζ] [43], EDZL [115] (sufficient)
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2.2. - Multiprocessor Scheduling Anomalies 13

scheduling, there exist exact tests for this class of algorithms. However, for global
scheduling only sufficient schedulability tests are known until now.

2.2. Multiprocessor Scheduling Anomalies

It is very important to stress that for multiprocessor scheduling, unlike for
the uniprocessor one, apparently positive changes in the parameters of the taskset
to be scheduled can transform a schedulable taskset into an unschedulable one. For
example, one would expect that an increase in the period of a task leading to a lower
processor utilization for that task, would improve schedulability, while in fact it can
make it unschedulable. This kind of phenomena are called scheduling anomalies.
Based on the “positive change” that can occur on the taskset, several anomalies have
been identified [18, 22].
Period anomalies: The positive effect of increasing the period of a task is the de-
crease of the processor utilization for the task in cause. However, on the negative
side, this change will modify the arrival times of the task. This leads to a different
distribution over time of processor load and can determine a missed deadline of a
lower priority task or of the same task.

Anomaly 1. [22] For any fixed-priority preemptive global multiprocessor scheduling,

there exist schedulable tasksets such that if the period of a task τi increases, either a
task τj with lower priority (see Example 1) or the same task τi will be unschedulable
(see Example 2).

Example 1. Consider the following taskset τ = (τ1, τ2, τ3) scheduled using RM: τ1 =
(T1 = 5, C1 = 4, D1 = 5), τ2 = (T2 = 6, C2 = 3, D2 = 6) and τ3 = (T3 = 18, C3 = 10, D3 = 18).
If we increase T1 with one unit the taskset becomes unschedulable (see Figure 2.3).
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(b) Task set unschedulable

Figure 2.3: Period anomaly in global fixed-priority scheduling: increasing the period of τ1 with 1
makes τ3 unschedulable.

Example 2. Consider the following taskset τ = (τ1, τ2, τ3) scheduled using RM: τ1 =
(T1 = 6, C1 = 3, D1 = 6), τ2 = (T2 = 10, C2 = 6, D2 = 10) and τ3 = (T3 = 10, C3 = 7, D3 = 10).
If we increase T3 with one unit task τ3 becomes unschedulable (see Figure 2.4).
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Figure 2.4: Period anomaly in global fixed-priority scheduling: increasing the period of τ3 with 1
makes τ3 unschedulable.
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Priority ordering anomalies: A low priority task τi can be delayed only by higher
priority tasks. One would expect that this interference of higher priority tasks is the
same no matter what the priority ordering of these tasks is. This assumption is true in
the uniprocessor scenarios. However, in multiprocessor scheduling, different priority
orderings give different schedules for the lower priority task.

Anomaly 2. [22] For any fixed-priority preemptive global multiprocessor scheduling,

there exist tasksets for which the response time of a task depends not only on the

periods and execution requirements of its higher priority tasks, but also on the priority

ordering of those tasks (see Example 3).

Example 3. Consider the following taskset τ = (τ1, τ2, τ3, τ4) scheduled using RM:
τ1 = (T1 = 5, C1 = 2, D1 = 5), τ2 = (T2 = 5, C2 = 2, D2 = 5), τ3 = (T3 = 5, C3 = 3, D3 = 5)
and τ4 = (T4 = 6, C4 = 3, D4 = 6). If we consider the priority ordering is τ1, τ2, τ3, τ4
with τ1 having the highest priority, the taskset is schedulable (see Figure 2.5(a)).
If we switch the priorities of tasks τ2 and τ3, task τ4 becomes unschedulable (see
Figure 2.5(b)).
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Figure 2.5: Priority anomaly in global fixed-priority scheduling: switching between the priorities
of τ2 and τ3 makes τ4 unschedulable.

Execution time anomalies: The positive effect of decreasing the execution time of
a task is the decrease of the processor utilization for the task in cause. However,
on the negative side, this change may modify the allocation of tasks to processors.
This leads to a different distribution over time of processor load and can determine a
missed deadline of a lower priority task.

Anomaly 3. [91] If a task set is optimally scheduled on a multiprocessor with some

priority assignment, a fixed number of processors, fixed execution times, then in-

creasing the number of processors, or reducing computation times can increase the

schedule length (see Example 4).

Example 4. Consider the following taskset τ = (τ1, τ2, τ3, τ4, τ5) scheduled using DM
with parameters given in Table 2.3. If we consider the priority ordering is τ1, τ2, τ3, τ4, τ5
with τ2 executing for 9 time units the task set is schedulable (see Figure 2.6(a)). If we
decrease the execution time of task τ2 to 3 time units then the taskset becomes un-
schedulable (see Figure 2.6(b)). We assume task preemption is possible but migration

is not allowed.

Absence of critical instance: In uniprocessor scheduling, the critical instant is when
a task arrives simultaneously with its higher priority tasks. This instant represents the
worst case execution scenario for uniprocessor real-time scheduling. However, for
the multiprocessor case no worst case job arrival pattern could have been identi-
fied [113, 26]. The critical instant effect can be seen in Figure 2.4(b) where, on the
first invocation all tasks meet their deadlines, but in the second one, task τ3 misses
its deadline.
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Figure 2.6: Execution time anomaly: decreasing the execution time of τ2 makes τ4 un-
schedulable.

Table 2.3: Taskset to highlight the execution time multiprocessor scheduling anomaly

Task Release time Computation time Deadline

τ1 0 5 6
τ2 0 [3,9] 15
τ3 4 9 18
τ4 0 10 20
τ5 5 50 100

2.3. Performance Metrics

In order to evaluate the effectiveness of a scheduling algorithm or a schedulab-
ility analysis method, some performance metrics are needed. Two categories of such
metrics can be identified: theoretical and empirical measures.

Theoretical metrics

M1. Utilization bounds In 1974, Horn [101] observed that U(τ) ≤ m (U(τ) is the
worst case utilization of a taskset) is a sufficient and necessary condition for the
feasibility of implicit-deadline periodic tasksets. Horn’s condition implies that if
the condition is met, then there exists some scheduling algorithm which can plan
the taskset. For a specific algorithm A the bound UA on the taskset utilization is
usually lower:

U(τ) ≤ UA (2.1)

This condition says that all tasksets with utilization lower or equal to UA are
schedulable with algorithm A. The condition is only sufficient, not also necessary,
which means that there may be tasksets deemed unschedulable by A which are
in fact schedulable [19, 25].

M2. Approximation ratio Another way to prove the efficiency of an algorithm is to
compare it with an optimal algorithm. This comparison can be made from several
points of view. For example, one could estimate the efficiency of an algorithm
based on the number of processors it uses compared to the number used in the
optimal algorithm [73]. If mo is the number of processors used by the optimal
algorithm when scheduling a taskset τ and mA is the number of processors used
by algorithm A, then the approximation ratio is defined as:

RA = lim
mo→∞

(max
∀τ

(
ma

mo
)) (2.2)

Note that the smaller the value RA ≥ 1, the better is the algorithm.

M3. Resource augmentation Instead of comparing an algorithm A with the optimal
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16 Schedulability Analysis of Real-Time Multi-core Systems - 2.

algorithm based on the number of processors required, this metric considers
the increase of processor speed that would be necessary (assuming task exe-
cution times decrease linearly with the increase of processor speed) to make a
taskset schedulable with algorithm A [30]. The resource augmentation rA of an
algorithm A is defined as the maximum factor by which the speed ofm processors
must be increased such that all taskset are schedulable with A:

rA = max
∀m, ∀τ

(rA(τ)) (2.3)

Note that a smaller rA ≥ 1 means a better algorithm.

The theoretical metrics presented above are based on some pathological classes
of tasksets, which may never occur in some applications. Conversely, empirical meas-
ures can help understanding the performances of an algorithm in real-life scenarios.

Empirical measures Different scheduling algorithms can be evaluated experiment-
ally by comparing the number of randomly generated tasksets that each of them
deems schedulable. Ideally, this number would have to be compared with the number
of tasksets schedulable by an optimal algorithm but for many types of task models
and classes of algorithms, such an optimal algorithm is not known yet. Through ex-
perimentation, the effects of different system parameters on the scheduling efficiency
can be determined easily. Such parameters include number of tasks, number of pro-
cessors, taskset utilization, various ranges for task parameters.

2.4. Virtualization Techniques in Real-Time Scheduling

Currently, real-time research puts considerable efforts on designing and im-
plementing open real-time environments [70]. Such systems allow building systems
from independently designed, implemented and validated applications, which must ex-
ecute concurrently on a shared platform. A key requirement for these open systems
is that any application that meets its timing constraints when running in isolation,
must also meet its timing constraints when running on the shared platform. This
requirement is called temporal isolation.

Applications in a real-time system can consist of tasks with a broad range of
timing requirements. Typically these tasks can be classified as:
• hard real-time tasks: it is considered a fatal error if the task does not complete
before its deadline,

• soft real-time tasks: the task should complete before its deadline but occasion-
ally missing it is not critical,

• non-real-time tasks: tasks do not have a deadline associated with them.
Temporal isolation ensures that all three types of tasks can coexist on a single system
without jeopardizing each other.

The typical approach for providing such temporal isolation is the resource re-
servation paradigm introduced in [133]. Under this paradigm, the processing capacity
provided by the multiprocessor or multi-core platform is divided into a set of resource
partitions, effectively forming a smaller number of virtual processors to which applic-
ation tasks are allocated.

The advantages of using a design approach based on virtual processors are
twofold. First, any violation of a timing constraint in an application executing on
the shared platform will not affect any other application on the platform. Second,
decisions of whether the system can guarantee the correct behavior of an application
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Figure 2.7: A three-level scheduling hierarchy

can be taken based only on the requirements of the application and on the allocated
virtual processors, independently of the other applications.

Usage of resource reservation techniques is appropriate for systems composed
of applications with hard-, soft- and non-real-time constraints [52], as through tem-
poral isolation, one can be sure that hard deadlines will not be endangered by any of
the other kinds of tasks.

Real-time scheduling supports resource reservation schemes through the use
of hierarchical schedulers with two or more levels. On the top level, a scheduler al-
locates resources to each application on the shared platform and, on another level,
each application has a local scheduler responsible for scheduling the tasks of the
application on the virtual processors. Furthermore, as another trend in real-time
embedded systems is building applications from independently designed and imple-
mented components, for each of the components there could be a distinct scheduler
for the component’s tasks, introducing several supplementary scheduling levels. Such
a scheduling hierarchy with three levels is depicted in Figure 2.7.

2.4.1. Virtual Resource Models

A resource partition is typically modeled as a pair (Qi, Pi), meaning that the resource
partition will provide Qi units of execution every Pi units of time, otherwise said, the
virtual processors have a bandwidth Ui = Qi/Pi. Bandwidth reservation strategies
may be accomplished through the use of two categories of resource models: time
partitions and bandwidth or execution time servers.
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18 Schedulability Analysis of Real-Time Multi-core Systems - 2.

Time Partitions

In a uniprocessor system, a time partition is implemented as a fixed-length major
time frame composed of several scheduling windows. A scheduling window is defined
by its offset to the beginning of the major time frame and by its length. The schedul-
ing scheme of the major time frame repeats during the execution of the system such
that all scheduling windows are essentially periodic (see Figure 2.8). The applica-
tion associated with a time partition gains access to the processor whenever one of
the scheduling windows becomes active and is preempted when the window termin-
ates [104].

A time partition can also contain scheduling window sets, where the offset of
the set is the offset of the first scheduling window in the set and the period of the
windows in the set is a divisor of the length of the major time frame.
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Figure 2.8: Uniprocessor time partitions: partition A contains the gray scheduling windows SW1
and SW3 and its major major time is 100 and partition B contains the white scheduling window
SW2 and its major time frame is also 100.

In a multiprocessor system, we can define a time partition assuming there
is a major time frame for each processor, but frames on all processors will have
equal length and will be synchronized. The scheduling windows of frames on dif-
ferent processors can have different parameters and the time partition can contain
scheduling windows on any processor [60]. Such a time partitioning scheme is used
in PikeOS [104], a proprietary operating system. Figure 2.9 illustrates an example of
two multiprocessor time partitions, both having the length of the major time frame
equal to 100.
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Figure 2.9: Multiprocessor time partitions: partition A contains the gray scheduling windows
SW1, SW3 and SW4 and its major major time is 100 and partition B contains the white scheduling
windows SW2 and SW5 and its major time frame is also 100.
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One of the disadvantages of time partitioning is its inefficient resource usage.
This comes as a consequence of the fact that the time partitions are defined off-line,
based on worst case application analysis, and its configuration cannot be changed at
run-time. They are appropriate for use mostly in a hard real-time context as they
guarantee that deadlines are meet even in worst case conditions. Another drawback,
deriving from their static structure, is that they can only be scheduled using a non-
preemptive scheduler.

Bandwidth servers

In real-time scheduling theory, a bandwidth server or execution time server is defined
as an abstract entity used by a scheduler to reserve a fraction of processor time to a
particular task or set of tasks. Each server Sk is characterized by a pair of parameters
(Pk, Qk) where Pk is the period of the reservation and by Qk we denote the reserved
execution time per period. For each server we define the utilization factor Uk = Qk/Pk

representing the fraction of CPU-time reserved by server σk.
Initially, servers were used for scheduling soft- and non-real-time tasks along

with tasks having hard deadlines, but they can also be used to provide temporal
isolation in hierarchical systems as each application can be encapsulated in one or
several servers. When the server is selected for execution, the application scheduler
will choose one of the tasks in the application and that task is executed. If the
application consists of several components, each with its own scheduler, then the task
selected for execution by the application scheduler may actually represent another
server.

While there are many design solutions for servers in uniprocessor systems,
only a few results deal with the multiprocessor/multi-core case. The higher schedulab-
ility bound of multiprocessor dynamic scheduling algorithms influenced also the course
of the research in this area.

The Multiprocessor Constant Bandwidth Server (M-CBS) [32, 33] is an al-
gorithm based on the principles of the Constant Bandwidth Server (CBS) for the uni-
processor case. In CBS the server is characterized by a pair of parameters - (Qs, Ps) -
where Qs is the server’s maximum budget and Ps is its period (the server will execute
at most Qs time units in every interval of length Ps). The server is also character-
ized by its current budget and a dynamic deadline. The CBS server was designed for
serving aperiodic tasks along with hard real-time periodic tasks without jeopardizing
their deadlines. Every aperiodic task is assigned to a server task with the constraint
that at most one task can be assigned to a server task. The task will have associ-
ated a deadline equal to the server’s current deadline. The server’s budget varies at
runtime. The initial budget is set to Qs and each time an aperiodic task is served,
the execution time of the task is decreased from the server’s current budget. When
the current budget reaches zero or becomes negative it is recharged to the maximum
value Qs and the deadline is postponed by Ps. Server tasks are scheduled along with
other kinds of tasks using EDF scheduling. In M-CBS a real-time system of σ1, σ2, ..., σn

servers are scheduled on m processors using an EDF algorithm. Each server σs is
characterized by its processor share Us and its period Ps. The priority of each server
σs is given by a variable deadline Ds. The algorithm also keeps track of how much of
server σs’s current bandwidth has been consumed. When the whole bandwidth has
been consumed the deadline Ds is incremented by Ps changing also the priority of the
server. M-CBS chooses for execution m servers that have jobs awaiting for execution
and have higher priorities. Due to the deadline-postponing approach used by this
kind of server, the EDF algorithm used together with M-CBS is work-conserving, as
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no processor will be idle while there are jobs ready for execution. On the other side,
the same approach brings also a drawback as the job assigned for execution may be
delayed indefinitely many times.

Another bandwidth server solution for the multiprocessor case is presented
in [34]. They extend one of the most efficient algorithms for scheduling aperiodic
tasks along with hard real-time tasks on uniprocessors machines, namely the Total
Bandwidth Server (TBS) and introduce the Multiprocessor Total Bandwidth Server
(M-TBS) algorithm. For each aperiodic task the worst-case execution time and the
deadline are considered known only at its arrival time. The M-TBS schedules the hard
real-time tasks and the servers using the EDF algorithm and handles aperiodic jobs
through a server. The set of aperiodic jobs J1, J2, ... with Ji = (Ai, Ci), i ≥ 1, where
Ai represents the job arrival time and Ci is the execution requirement, is scheduled
by the server in the order of jobs arrival. The algorithm assigns to each aperiodic
job a deadline which considers the overall aperiodic server load, the job computation
requirement and the deadline associated with the previously arrived aperiodic job.
After that the job can be scheduled by the EDF scheduler responsible for scheduling
the hard real-time jobs. Further, the algorithm is extended for the case when the
aperiodic jobs present real-time constraints, i.e. response time. In this situation the
server performs an admission control test and if it is not possible to guarantee the
required response time, the job is not accepted. The main advantage of M-CBS is that
it fully exploits all capacity available on the multiprocessor platform.

One of the most complex scheduling solutions for multi-core platforms is in-
troduced in [52]. A feasible scheduling algorithm for modern multi-core systems
must bear hard sporadic real-time tasks along with soft sporadic real-time tasks and
best-effort aperiodic jobs and for all these must guarantee deadlines or minimum
deadline tardiness or minimum response times respectively, all with maximum effi-
ciency of processors utilization. Again, they refer to a server approach for solving
these problems. Basically, tasks are partitioned among “server tasks” which schedule
their constituent tasks and, at another level, server tasks are scheduled on available
processors using a global EDF algorithm. With each processors in the system a server
for hard real-time tasks is associated. These servers have higher priority than any
other server in the system and dispatch jobs using an EDF algorithm. Secondly, for all
soft real-time tasks a single migratory server is created and a number (equal to the
number of processors) of migratory servers will handle best-effort jobs. Best-effort
jobs are placed in a global queue and when a server dedicated to serving this type
of jobs is scheduled it will service jobs from the queue until either the queue empties
or the server exhausts its capacity. For a better use of processor, hard real-time jobs
that finish earlier than expected donate the unused capacity to a global queue. This
solution addresses only systems where the number of hard real-time tasks is small
due to the need to statically assign them to servers and considers that all jobs are
independent. A server-based approach has also been used in [158] and [157] for
scheduling applications with different criticality levels on a modern smartphone.

Periodic Resource Model

Besides time partitions and bandwidth servers, several other periodic resource mod-
els have been considered in the context of uniprocessor systems (e.g. bounded-delay
resource model [136] or the periodic resource model [153]). As shown in [77] simply
replicating these resource models to multiprocessor systems is inflexible and leads
to wasted processor utilization. Therefore, a new model [152, 77] was introduced,
a Multiprocessor Periodic Resource (MPR) model, where the contribution of each pro-
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cessor to an application resource supply is not the same. Their work addresses a
multi-level containment hierarchy where components have hard real-time timing re-
quirements and consist of sporadic tasks. The MPR model is represented as a triplet
(Π,Θ,m′) meaning that the resource provides Θ units of computational power on a
multiprocessor platform with m′ processor every Π time units. They also provide
an optimal condition for component schedulability under the global EDF scheduling
policy and the MPR model based on resource supply bound function and component
workload. Even if the algorithm is optimal, it is quite pessimistic. Moreover they intro-
duce a technique for transforming a MPR model into a set of periodic tasks which are
scheduled by the parent component, but since all these tasks have the same period,
driven by the smallest period in any application task, the obtained taskset will result
in wasted computing capacity. Moreover, the procedure for computing Θ uses the
highest possible workload such that all application tasks meet their deadlines and the
system can get to this workload only when the maximum possible number of tasks are
running in parallel. A more optimist algorithm and model could guarantee all timing
constraints with a smaller Θ.

In [116], the problem of scheduling multi-level component hierarchies on
multiprocessor resource partitions is also considered but is mostly restricted to soft
real-time sporadic tasks and assumes that only a small number of tasks have hard
timing constraints. They manage to reduce the resource usage by allowing minimum
parallelism and using first the maximum utilized processors and only a small fraction
of a less utilized processor. As the authors themselves show, it is possible for some
hard deadline to be missed and, consequently, their scheme is more appropriate for
soft real-time tasks.

The resource model proposed in [152, 77] is highly dependent on the multi-
processor platform, and, consequently any application designed using such a model of
the underlying platform is tightly coupled with the modeled platform. A more general
interface of the resource layer is given in [48]. The Multi-Supply Function introduced
in [48] describes the exact amount of resources provided to the application. This
model gives a solution for the pessimistic approach in [152, 77] and is applicable
even when the physical multiprocessor platform is already allocated to other applic-
ations and, consequently, is not fully available to the currently analyzed application.
However, the schedulability tests presented for this model give only sufficient con-
ditions and are quite pessimistic. The pessimism originates from the fact that the
possibility of task migration is not well covered by the model. This flaw was corrected
by the Parallel Supply Function introduced in [47].

2.4.2. Contract-based Real-Time Scheduling

In the last years, real-time embedded software development has focused more and
more on building flexible and extensible applications. Component-based software sys-
tems achieve these objectives by gluing individually designed, developed and tested
software components, each component having different timing requirements. There-
fore, when building such a component-based system one must ensure that compon-
ents can coexist without jeopardizing each other’s execution.

Starting from a hierarchical scheduling scheme, Harbour has introduced the
concept of service contracts [95]. In Harbour’s model, every application or application
component may have a set of service contracts describing its minimum resource re-
quirements. This contract is acting like an interface of the component or application.
The goal of this interface specification is to abstract out and encapsulate the salient
features of the components‘ resource requirements. The system uses this informa-
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tion during admission control, to determine whether the component can be supported
concurrently with other already admitted components; for admitted components, this
information is also used by the open environment during run-time to make scheduling
decisions. Therefore, these contracts are used in online or off-line negotiations to
determine if the resource requirements can be guaranteed or not.

Research is undertaken also for extending the service contract model for com-
ponent-based multiprocessor real-time systems. Chang et al. [60, 160] proposed a
two-level resource contract model. First, each application has a contract specifying
the resources to be reserved for its execution. This is called an external contract.
Next, every component of the application has its own contract, called internal con-
tract, describing the portion of the resources specified in the external contract that
must be distributed to the component. Each component consists of one or more tasks
which may require parallel execution. Internal contracts are mapped to abstract serv-
ers which are further divided in execution time sub-servers in order to support parallel
execution of the components. In this case the sub-servers are handled as simple peri-
odic tasks. On the other hand, external contracts are mapped to multiprocessor time
partitions [104] (see Figure 2.10). As each application will be mapped to a separate
time partition, a specific scheduling policy may be associated with it.
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Figure 2.10: Contracts and hierarchical scheduling [60]

The schedulability analysis of the sub-servers and of the tasks in Chang’s
model, is based on a strategy introduced in [26], extended for usage in a hierarchical
scheduling scheme and a fixed-priority algorithm. The outline of the strategy is as
follows:
• consider a critical duration from the arrival to the deadline of a server, at the end
of which a deadline is missed,

• compute the total workload of higher or equal priority servers during the critical
duration,

• using this workload, define a necessary condition for the server to miss its dead-
line,

• derive an upper bound on the maximum interference of other servers on the
analyzed server, such that the server meets its deadline,
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• establish a necessary un-schedulability test as a inequality between the previ-
ously computed workload and maximum interference,

• negate the inequality and get a sufficient schedulability test.

2.5. Resource Sharing

Most of real-time scheduling research focused on applications consisting of
independent tasks. However, real applications include tasks that share resources like
shared data structures or I/O devices that have to be accessed in mutual exclusion,
such that only a single task uses the resource at all times.

Static and dynamic priority-driven scheduling algorithms are susceptible to
priority inversions due to blocking. When a high priority task blocks waiting for a
resource held by a lower priority task, if the low priority task is repeatedly preempted
by tasks with intermediate priority, it will not be able to complete and release the
resource, causing the high priority task to remain blocked for a very long time.

For uniprocessor real-time systems, there is an extensive set of scheduling
theories handling the priority inversion problem. The family of PIPs [151] handle
priority inversion by temporarily changing task priorities: if at least one high priority
task is blocked waiting for a low priority task to release a resource, the low priority
task will execute with the highest priority of all tasks blocked by it. However, PIP does
not prevent deadlock. The Priority Ceiling Protocol (PCP) [151] solves this problem
by associating a priority ceiling with each shared resource. The priority ceiling is the
highest priority of any task that may access the resource and behaves like a lock
required for accessing the resource. PCP works similar to PIP but in order to prevent
deadlocks, a task may access a resource only if its priority is greater than the highest
priority ceiling of all resources locked by other active tasks in the system. This implies
that any job of a task will block at most once. An alternative to PCP is the Stack
Resource Policy (SRP), a protocol proposed by Baker et al. [24].

One of the first proposed resource sharing protocols for multiprocessor real-
time systems was the Multiprocessor Priority Ceiling Protocol (M-PCP) [143], a variant
of PCP for partitioned multiprocessor scheduling with fixed task priorities. M-PCP, as
well as all the other protocols for partitioned multiprocessor scheduling, makes dis-
tinction between resources shared by tasks assigned to different processors (called
global resources) and resources used only by tasks on a single processor (called local
resources). For local resources, the uniprocessor PCP is applied, while for global re-
sources the priority ceiling is computed based on task priorities on all processors (i.e.
task priorities are assigned independently on each processor) and the resource is
granted similar to PCP but using this priority ceiling. Later, Chen and Tripathi [61] ex-
tended M-PCP for systems with dynamic task priorities but the protocol can be applied
only for periodic tasks and nested resource accesses are allowed only for resources of
the same type (local or global). Gai et al. [87] introduced the Multiprocessor Stack
Resource Policy (M-SRP) by extending the SRP for multiprocessors. As with M-PCP, in
M-SRP tasks are partitioned between processors, but in M-SRP a blocked task spins
while waiting for a resource request to be granted and this may lead to inefficient use
of the processors. Moreover, globally shared resource accesses cannot be nested and
their critical sections are executed non-preemptively.

One of the first contributions on resource sharing in real-time systems sched-
uled under preemptive global EDF belongs to Devi et al. and is described in [71].
However, they do not focus on finding a new protocol for task synchronization, but
rather assume that lock requests are granted in FIFO order with critical sections ex-
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ecuting non-preemptively and extend global EDF scheduling to account for non-pree-
mptive critical sections. The approach is suitable only for short, non-nested resource
accesses. Moreover, because tasks waiting for a resource to be granted, spin or imple-
ment waiting with retry-loops, the parallelism provided by a multiprocessor platform
is not fully exploited.

The first protocol suitable for both global and partitioned scheduling approaches
is Flexible Multiprocessor Locking Protocol (FMLP), proposed by Block et al. in [50].
FMLP uses EDF for assigning priorities to jobs, which also bounds the interference on
high priority tasks from the lower priority ones. Here, deadlock is avoided by grouping
resources for which nested requests can be issued. Resources are considered to be
long or short based on how long they can be held. The resources are grouped based
on the following principle: if there is a job that issues a request for resource R1 nested
within a request for resource R2 then R1 and R2 are in the same group. Resources
in a group are either all short or all long. When a job needs to access a resource it
will lock the whole group of the resource. Further, short resource access is controlled
using spin locks and critical sections are non-preemptive, while long shared resources
are guarded by semaphores and granted according to PIP. The advantage of this syn-
chronization scheme is that it allows unrestricted critical sections nesting. However,
a schedulability test is not given for the protocol and this complicates the problem of
finding out if a given set of tasks is schedulable under FMLP or not.

The first schedulability test for a global multiprocessor synchronization pro-
tocol is given by Easwaran and Andersson in [74]. They propose the Parallel Priority
Ceiling Protocol (P-PCP) and develop schedulability tests for it and for global PIP.
P-PCP uses a fixed-priority preemptive scheduling policy and uses a set of taskset-
level configuration parameters αi (one for each task) to control when a task is allowed
to enter a critical section. Based on the values of the αi parameters, one can either
improve the efficiency of the processor usage or reduce the lower priority interfer-
ence. However, lower priority interference is reduced only for the class of reasonable
priority assignments (i.e. which assumes higher priority tasks have lower deadlines
than lower priority tasks, similar to EDF or DM) and the protocol lacks a quantitative
analysis which would have lent some insight into its efficiency.

Another approach for bounding the blocking time suffered by any high priority
task is proposed by the Bounded Blocking with High Parallelism (BHP) [75] protocol.
BHP is designed for nested resource accesses and controls tightly the execution of
critical sections. Basically, whenever a task requests access to a resource and the
resource is available, the request is granted only if during the time the resource will be
in use, there is no possibility for a higher priority task to be prevented from executing
due to priority inversions. Unfortunately, the time-complexity of BHP is rather large
and this makes its implementation rather difficult.

2.5.1. Resource Sharing in Virtualized Systems

Resource sharing and task synchronization in virtualized or in Hierarchical Scheduling
Frameworks (HSFs) has been studied extensively for uniprocessor platforms. Part of
the existing results are extensions of the basic uniprocessor resource sharing proto-
cols. Consequently, the SRP protocol has been extended for HSFs by Davis and Burns
in [68] where the Hierarchical Stack Resource Policy (HSRP) is proposed. HSRP can
be applied for applications scheduled using fixed-priority preemptive algorithms and
allows mutually exclusive access to resources shared either locally within the same
application, or globally, between different applications in the system. The problem
of server budget depletion inside global critical sections is handled by adding extra
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budget to the server until the critical sections end. To see if all tasks in an application
meet their deadlines, Davis and Burns also give a schedulability test for HSRP, based
on computing the worst case response time of each server and task in the system.

Another protocol based on SRP is Subsystem Integration and Resource Alloca-
tion Policy (SIRAP), proposed in [39], with an improved schedulability test in [38].
SIRAP is applicable for applications consisting of periodic tasks and, unlike HSRP
which allows a server to overrun while the task inside accesses a global resource,
SIRAP uses a skipping mechanism, preventing a task to enter a critical section unless
enough server capacity is available for its execution.

Both HSRP and SIRAP require prior knowledge of critical sections lengths.
This limitation is dropped in [121] where the Bandwidth Inheritance (BWI) protocol is
introduced. However, BWI comes with another limitation as for each task a distinct
server is used. Later, Bertogna et al. [43] proposed a new synchronization protocol
for HSFs where it is not required to know a-priori the length of the critical sections
but, instead this length is estimated at runtime. However, global critical sections are
executed non-preemptively and only when there is enough server budget to complete
them. The possibility to execute global critical sections with preemptions allowed and
an accurate schedulability analysis are presented in [46].

The Bounded-delay Resource Open Environment (BROE) protocol [83] handles
resource sharing in a hierarchical framework where each application is executed within
a CBS [10]. BROE is suitable for open environments. Each application is admitted in
the system based on its interface specifying its maximum processor demand trans-
lated in server speed, its maximum delay tolerance and the resource holding times
for each global resource. Access to global resources is managed actually through SRP
and, like SIRAP, BROE also uses a skipping mechanism along with application deadline
postponing to prevent server depletion. A limitation of the protocol is that servers can
be scheduled only using the EDF algorithm. Moreover, the protocol cannot guarantee
hard deadlines.

Nemati et al. extended FMLP for hierarchical frameworks in [137, 139]. How-
ever, the first level of the framework consists just of virtual processors with the same
capacity as the physical ones, the only scheduling problem at this level consisting
only of mapping virtual processors to actual ones. Furthermore, resource sharing is
handled only within a component and not within different components.

Nemati et al. also proposed another synchronization protocol for multipro-
cessor HSFs, namely Multiprocessor Hierarchical Synchronization Protocol (MHSP)
[138]. The protocol is based on SRP and can be used with either global or parti-
tioned scheduling. However, instead of handling separately each application, MHSP
groups all tasks that are directly or indirectly dependent under a single component to
which a single server is assigned. Hence, no actual resource sharing happens between
different servers and resource sharing within each component can be handled using
uniprocessor SRP.

The only known protocol which allows inter-application resource sharing in
HSFs is the Multiprocessor Bandwidth Inheritance (M-BWI) protocol [78], an extension
of the BWI protocol. M-BWI can be applied for both global and partitioned scheduling
algorithms with either dynamic or static priorities. It allows co-existence of hard
real-time, soft real-time and best-effort tasks, but for hard real-time tasks requires
a-priori knowledge of task parameters. One of the limitations of M-BWI is that each
task is assigned to a separate server. Furthermore, tasks waiting for a resource
are waked up in FIFO order which may cause large delays to some tasks. This aspect
makes the protocol less suitable for systems consisting of mostly hard real-time tasks.
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2.6. Concluding Remarks

This chapter aimed at providing an introduction to some of the complex topics
of multiprocessor real-time scheduling. The main task models analyzed in current
research, namely the periodic and sporadic task models, were described and the most
important concepts were introduced. Next, a taxonomy of the multiprocessor schedul-
ing algorithms was presented. For each class in this taxonomy, an analysis of the
current algorithms showed that for a very important class, the global algorithms, on-
line optimal algorithms exist only for periodic tasks. Moreover, for sporadic tasks only
sufficient schedulability tests are known. The following topic is that of the anomalies
that emerge during scheduling of tasks on multiple processors. These anomalies bur-
den the schedulability analysis for multiprocessors since it is very hard to identify a
worst execution case and more task parameters must be considered for an accurate
analysis.

Section 2.4. outlined the scheduling techniques for ensuring temporal isol-
ation of multiple real-time applications running on a shared platform. Important
resource models, like time partitions, execution time servers and some other cur-
rent periodic resource models were briefly introduced. While time partitions are most
suited for highly critical applications like avionics, the latest models try to mould on
the application designer needs and to ease design by giving an abstraction of a mul-
ti-core platform. Section 2.4.2. introduced the concept of application contract as an
interface specifying the resource requirements of the application. These contracts are
used later in a sufficient schedulability test to see if the application can be executed
on a resource partition represented by one of the presented resource models. It is im-
portant to note that, for all presented virtual resource platforms, most schedulability
algorithms known in classical real-time multiprocessor theory are either only sufficient
or are quite pessimistic. Because of these limitations, it is important to study the feas-
ibility of other approaches for schedulability analysis than the ones presented in this
chapter.

Lastly, Section 2.5. presented the protocols used for handling mutual exclus-
ive access to shared resources. First, the protocols for single-level multiprocessor
systems were analyzed. This analysis highlighted the imbalance between the amount
of research undergone for developing protocols for partitioned versus global multipro-
cessor scheduling. Next, the issue of resource sharing was covered for hierarchical or
virtualized systems. In this case, the analysis revealed that only one actual protocol
exists for resource sharing in multiprocessor HSFs.
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3. MODEL-BASED DESIGN OF REAL-TIME
SYSTEMS

When building real-time systems it is vital to ensure that the timing con-
straints are satisfied by the system under construction. In this thesis we focus on
the rigorous verification of timing requirements of multi-core real-time systems by
using model checking and schedulability analysis. Examining the timing behavior of a
system requires construction of a model of such behavior. The model is then checked
for safety as we want to make sure that no undesirable state can be reached by the
system. Second, the feasibility of the model is checked in order to assert that all
deadlines are met.

As we have shown in Chapter 2., the analytical methods used for multipro-
cessor schedulability analysis provide only sufficient conditions, which lead to inher-
ent pessimism. During the recent years, model checking emerged as an attractive ap-
proach to schedulability analysis providing absolute guarantees: if a system is deemed
schedulable through model checking then is guaranteed that no deadlines will be
missed during system execution. For single processor systems, several schedulability
analysis tools [15, 64] are well-established. However, these tools are now challenged
by the rapid spread of multi-core processors in the real-time systems realm. This
chapter focuses on the challenges brought by the multi-core systems in the real-time
schedulability analysis based on model checking and on how the solution proposed in
this thesis improves on related work.

The chapter is organized as follows: Section 3.1. outlines the main challenges
faced by real-time formal schedulability analysis in the context of multi-core systems.
Furthermore, in Section 3.2., a presentation of the results obtained until now using dif-
ferent formalisms applied for real-time schedulability analysis is given. As this thesis
focuses on the use of timed automata [13] for schedulability analysis, Section 3.3.
presents the syntax and semantics of timed automata and Section 3.4. gives an over-
view of existing timed automata frameworks for schedulability analysis. In the end of
the chapter, a few concluding remarks on the presented topics are made.

3.1. Formal Verification Challenges

Analyzing the schedulability of a set of tasks running a multiprocessor platform
faces several challenges:
(1) State space explosion - The factor that limits mostly the applicability of formal

verification and model checking is the often excessive size of the state space. The
state space size generally grows exponentially with the size of the problem. This
exponential growth of the state space is referred to as the state-space explosion
problem. For continuous (dense) time models the state space is infinite because
of the real-valued clocks. The key idea that facilitates model checking on such
models is to introduce some equivalence relation between states, which leads
to a finite number of groups of states. Assuming that all clocks in the model
increase at the same constant rate, the states in a group can be described using
linear inequations which can be represented as matrices [41]. The state space
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explosion problem appears also in models with discrete time semantics, although
the state space in this case is finite.

(2) Number of clocks - The number of state groups generated while transforming a
continuous time model into a system with a finite number of states grows ex-
ponentially with the number of clocks in the model and the number of constants
with which clocks are compared. Consequently, in order to build a scalable system
model, one must address this issue by maintaining a minimum number of clocks
and constants used in clock constraints.

(3) Clock rate - Accurate modeling of multiprocessor systems requires the possibility
to model the different speeds at which the processors may work. Linear Hybrid
Automata may be used to model such systems as the dynamic evolution of vari-
ables in these is specified in each location by a differential equation. The problem
of these models is that reachability is undecidable and schedulability analysis
based on them can be only approximative [12].

(4) Preemption modeling - Preemptive scheduling policies, where the execution of a
task can be suspended and resumed at a later time, require the possibility to stop
and resume clocks. For dense-time models, one solution for modeling such clocks
is the stopwatch automata formalism [59], a subclass of Linear Hybrid Automata.
As the reachability problem is undecidable for Linear Hybrid Automata, it is also
undecidable for stopwatch automata.

3.2. Formal Modeling Approaches

Formal modeling and verification of time constrained embedded software re-
quires appropriate consideration of the time features employed by each formalism. In
this section, we take a look at the most important time dependant formalisms used
for real-time systems verification with focus on their applicability for schedulability
analysis. Almost all these formalisms have been obtained as extensions of untimed
ones.

The correct functioning of a real-time embedded system depends on qualitat-
ive as well as quantitative properties. A formalism widely used for verifying qualitative
properties, like absence of deadlock or eventual occurrence of some event, is rep-
resented by finite-state automata and temporal logic. Timed automata [13] extend
finite-state automata with real-valued clocks and enable specification of quantitative
timing properties relating to occurrences of events. Due to their simplicity, several
verification tools for timed automata have been developed to model and verify real-
time systems, among them UPPAAL [112], Kronos [161] or HyTech [98].

Model-based schedulability analysis using timed automata has been intro-
duced in [81] where timed automata are used for modeling task arrival patterns.
In timed automata models, schedulability analysis is reduced to reachability analysis
and, therefore, proving that a system is schedulable is reduced to showing that a given
state of the timed automata system model is reachable or not. As a consequence,
the ability to check schedulability of a system depends on whether the reachability
problem is decidable or not. For uniprocessor systems, the schedulability checking
problem for non-preemptive tasks is decidable [81, 109]. In the area of non-pree-
mptive scheduling, timed automata have been used for job-shop scheduling [8] or for
schedulability and compatibility checking of real-time objects [102]. For preemptive
tasks with fixed execution time, scheduled on uniprocessor systems using any schedul-
ing policy, schedulability is decidable by translating it into a reachability problem for
another class of automata called timed automata with subtraction [81, 80, 79]. Unfor-
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tunately, the number of clocks used in the model is proportional with the number of
tasks, which influences the scalability of the model. An alternative would be to model
preemptive tasks assuming a dense time model using stopwatch automata which can
be stopped and resumed but the reachability of these automata is undecidable [59]
in the general case [99]. Moreover, it is demonstrated that the schedulability problem
is undecidable if the following conditions hold simultaneously [109, 79]:
(1) the execution times of tasks are intervals,
(2) the precise finishing time of a task influences the release of another task (feed-

back), and
(3) a task can be preempted by another task.

Partitioned multiprocessor scheduling can be seen as a superclass of unipro-
cessor scheduling and, consequently, the above result on undecidability is also true
for partitioned multiprocessor schedulability. On the positive side, the schedulab-
ility of partitioned multiprocessor systems remains decidable for the following two
cases [108]:
(1) tasks have variable execution time and the finishing time of a task influences the

release of some other task but a non-preemptive scheduler is used,
(2) a preemptive scheduler is used and feedback on task execution is allowed but

tasks have fixed execution requirements.
On the other side, schedulability is not decidable if tasks have variable execution times
and a preemptive scheduling policy is used.

In global multiprocessor scheduling a task can be preempted from one pro-
cessor and resume execution on any available processor. The solution used in [81, 80,
79] for keeping track of current execution time of the task cannot be applied anymore,
and the only possibility would be to use stopwatches. Nevertheless, reachability for
stopwatch automata is undecidable [99]. To address this issue a discretized preemp-
tion scheme can be used instead, since any computer control system is essentially
discrete (e.g. for a CPU, the cycle time of the CPU can be seen as the discrete time
step) and therefore it can be modeled using a discrete time assumption.

A special class of timed automata models which can also be used for schedulab-
ility analysis is the parametric timed automata. The methods for fixed-priority pree-
mptive uniprocessor schedulability analysis introduced in [80] were extended using
parametric timed automata with the goal of representing and analyzing the region of
the task parameter space that corresponds to feasible schedules [162, 63].

Petri nets were developed as an untimed formalism for specifying concurrent
systems. In the Petri net model the dynamics of the system is modeled by moving
tokens. A Petri net consists of four components: places, transitions, directed arcs and
tokens. The arcs can connect only a place to a transition or a transition to a place.
Each place can contain zero or several tokens. The assignment of tokens to the places
is called marking. Given a marking, a transition is enabled if it has at least a token in
each of its input places. An enabled transition can fire consuming a token from each
of its input places and adding a token in each of its output places. Over the time,
several timed versions of Petri nets have been proposed differing from one another in
the association of components with time constructs:
• Timed Petri Nets are derived from Petri nets by associating a finite firing time to
each transition [145].

• Time Petri Nets (TPN) are Petri nets with labels: two values of time expressed as
real numbers, x and y, are associated with each transition where x < y. x is the
delay after which an enabled transition can fire and y is the deadline by which to
fire the enabled transition [134]. TPNs are dense time models.
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A number of authors propose extensions of time Petri nets especially designed
to account for scheduling issues like task preemption:

Scheduling-TPN [146, 119] is an extension of TPN for analysis of task scheduling
over a multiprocessor platforms where tasks are associated with places and each
place has associated two supplementary parameters: one for the processor on
which the task shall execute and one for the task priority. However, the Schedul-
ing-TPNs introduced [146] can be used only for partitioned multiprocessor pree-
mptive or non-preemptive scheduling with statically assigned priorities. The
Scheduling-TPNs were extended in [120] to include the possibility of modeling
dynamic scheduling policies like EDF. Automated support for analysis and visual
editing of Scheduling-TPNs is given by the ROMEO tool [89].

Preemptive-TPN [53] also extends TPN and, in order to ease schedulability ana-
lysis, associates the set of requested resources and access priorities with trans-
itions instead of places. Just like Scheduling-TPNs it can handle only fixed-pri-
ority, partitioned scheduling policies. Analysis methods for Preemptive-TPNs are
implemented by the ORIS tool [159], which supports visual editing and interact-
ive animation of Preemptive-TPN models, symbolic state space enumeration and
interactive trace analysis.

Inhibitor Hyperarc TPN [147] introduce special inhibitor arcs that control the pro-
gress of transitions. Each transition has an associated stopwatch which can be
paused and resumed by using inhibitor hyperarcs. An inhibitor arc between a
place and a transition means that the transition can only be fired if the place
is unmarked. Inhibitor Hyperarc TPNs are a superclass of Scheduling-TPNs and
Preemptive-TPNs and consequently are also appropriate for modeling real-time
tasks scheduling.

It has been shown that reachability of all above types of TPNs is undecid-
able [42]. For all types of TPNs exact computation of the state space is expensive and
consequently state space over-approximation methods are available. These methods
produce a linear hybrid automaton, bisimilar to the TPN, and exact analysis is per-
formed on the automaton using available model checkers. Another disadvantage of
TPNs is that it cannot model dynamic task creation as the number of tasks is set in
advance and encompassed in the net. Even so, TPNs are still attractive due to their
intuitive graphical representation and the wealth of available tools [96], although rel-
atively new, with limited features.

The timing behavior of a system can be modeled also with the help of a pro-
cess algebra. A process algebra is a concise language for describing the possible
execution steps of computer processes. The Algebra of Communicating Shared Re-
sources (ACSR) [115, 114] is a process algebra enhanced with the notion of time,
such that it enables the analysis of real-time systems. ACSR is a discrete real-time
process algebra and provides a set of timed operators that can be used to bound the
execution time of a sequence of actions, to delay the execution of the sequence by a
number of time units, and to timeout while waiting for specific actions to occur.

One way to check that the system satisfies some safety properties using the
ACSR approach is to verify that a design specification of the system is correct with re-
spect to a requirements specification by showing that the two processes representing
respectively these two specifications are equivalent. To determine equivalence of the
two specifications in ACSR, the behaviors of the system’s processes are first translated
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Table 3.1: Summary of multiprocessor real-time scheduling related features of timed automata
(TA), TPN and ACSR formalism

Priority assignment Processor allocation Pre-
emp-
tion

Time model Decid-
abilitystatic dynamic parti-

tioned
global continu-

ous
discrete

TA
√ √ √ √ √ √ √

(only
parti-
tioned)

TPN
√ √ √ √ √

×
ACSR +
ACSR-VP

√ √ √ √ √ √

into a prioritized labeled transition system which is basically a state space graph used
also in timed automata and which also suffers from the state-explosion problem.

Compared to other formalisms, like timed automata or Petri nets, writing and
understanding the system specification in ACSR seem to be more difficult. ACSR
like most real-time process algebra employs an implicit global clock which means that
time progresses for all processes simultaneous and is not possible to model distributed
systems with proper clocks advancing at different rates. Another major drawback is
that ACSR cannot handle dynamic priorities of tasks and can handle only a discrete
time model. However, ACSR is still attractive for its ability to express compactly
several timing constraints which have to be explicitly written in other formalisms.

An extension of ACSR, called Algebra of Communicating Shared Resources
with Value Passing (ACSR-VP) [40, 110], a process algebra with value-passing and
parameterized processes, is able to model real-time systems with variable timing
attributes and dynamic priorities. Using ACSR-VP it is possible to model preemptive
or non-preemptive, periodic or aperiodic, independent or dependent task systems
running on a uni- or multi-processor platform, scheduled by various static-priority
and dynamic-priority scheduling disciplines. Through schedulability analysis of these
systems one can determine values for the system parameters that make the system
schedulable [110].

Table 3.1 presents a summary of the features each of the above discussed
formalisms presents regarding real-time multiprocessor schedulability analysis.

In addition to the formal approaches for schedulability analysis presented
above, several works explore the possibility of formalizing the real-time schedulab-
ility problem using some other, not so well established, formalisms.

Timed modules [14], a modular modeling language for continuous time sys-
tems, was used for encoding the functional and timing behavior of real-time tasks
accessing shared resources [148]. Schedulability of real-time systems modeled us-
ing timed modules can be verified using model checking of Alternate-time Temporal
Logic formulas which has been proved to be decidable. Using timed modules, static
and dynamic priorities can be encoded for both partitioned and global multiprocessor
scheduling strategies. However it is not possible to cope accurately with task preemp-
tion.

Currently, model-driven engineering is one of the major research areas in soft-
ware engineering, but for it to be fully accepted by the real-time community, a fair
amount of research is still required. A modeling language suitable for schedulabil-
ity analysis must recognize elements like processes, shared resources or scheduling
policy and ensure some consistency between different views of the system in order to
guarantee that the model used for schedulability analysis is consistent with the one
used for code generation. A proof-of-concept modeling tool is presented in[51], but
the schedulability analysis employed by the tool is based on analytical methods like
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the ones resented in Chapter 2. and, consequently, inherits their drawbacks. Another
approach, based on Message Sequence Charts (MSC) is introduced in [103]. MSC
specifications denote an execution scenario of the system and capture the ordering of
the tasks. The schedulability analysis in [103] is based on annotating each message
or event in an MSC with lower and upper bounds on their execution times and then,
using these bounds, the response times of various events is checked against their
deadlines.

After the examination of above presented time-dependent formalisms we can
conclude that the main advantage that schedulability analysis based on formal verific-
ation has over the analytical methods presented in the previous chapter is that it sup-
ports description and analysis of complex tasking models running under preemptive
or non-preemptive scheduling. In particular, the task model can be periodic, sporadic
and aperiodic, with nondeterministic execution times, with semaphore synchronization
and precedence relations deriving from interprocess communication. Furthermore,
for some task models like the periodic one, the multiprocessor schedulability analysis
gives exact answers while analytical methods provide, in most cases, only sufficient
conditions. However the applicability of all the formal techniques is limited by the
state space explosion problem.

3.3. Timed Automata Preliminaries

After the analysis on the formal verification approaches for real-time schedulab-
ility analysis in the previous section, we decided that the formalism that most suites
our modeling needs is timed automata. Motivated by this reason, in this section we
give basic descriptions and definitions related to the timed automata used in our work.

Formal syntax. Assume a finite set of real-valued clocks C and B(C) the set
of constraints on the clocks in C. The clock constraints (guards) are conjunctions of
expressions of the form x ⊲⊳ N and x− y ⊲⊳ N where x, y ∈ C, N ∈ N and ⊲⊳∈ {<,≤,=,≥
, >}. A timed automaton over the set of clocks C is a tuple 〈L, l0,Σ, C, I, E〉 where
• L is a set of finite locations,
• l0 is the initial location,
• Σ is a set of actions,
• C is the set of clock variables,
• I : L→ B(C) associates invariants to locations,
• E ⊆ L×B(C)×Σ×2C×L is the set of transitions, where transition 〈l, g, a, r, l′〉 from
location l to location l′, labeled with action a is executed only if guard g is true
and resets clocks in r ⊆ C.
All timed automata models presented in this thesis are based on the UP-

PAAL [112] model of timed automata which is extended with constructs such as con-
stants, integers, committed and urgent constraints on locations, networks of timed
automata and events transmitted between automata. An urgent location is similar to
a location with all incoming transitions resetting a clock x and having associated an
invariant x ≤ 0 (i.e. time cannot pass while the automaton is in an urgent location).

Semantics. For a timed automaton we can define a clock valuation function
v : C → R+ assigning positive real values to clocks in C. A state s in the timed
automaton is a pair (l, v) where l ∈ L and v is a clock valuation. The automaton can
stay in state s as long as the invariant associated to l is true or can execute transitions
outgoing from l when the guard of these transitions is true. Therefore, two types of
transitions can be defined:
• delay transitions: (l, v)

d−→ (l, v′) where v′(x) = v(x) + d, ∀x ∈ C and v′ preserves the
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invariant of location l,
• action transitions: (l, v)

a−→ (l′, v′) if there exists a transition 〈l, g, a, r, l′〉 ∈ E and
guard g is true for clock valuation v and v′ is obtained from v by resetting all
clocks in r ⊆ C and leaving all others unchanged.
In UPPAAL, each timed automaton has an associated set V of integer variables.

These variables can be included in guards and can be updated when transitions are
taken. This modifies the above presented semantics as follows. Besides location and
clock assignments, a state s in a UPPAAL timed automaton also includes the current
values of the variables, i.e. s is a triple (l, v, u) where u : V → Z is a variable assignment

function. This also changes the semantics of action transitions as transition (l, v, u)
a−→

(l′, v′, u′) requires additionally for variable assignments u and u′ to be considered in
evaluating guard g.

Networks of timed automata. A network of n timed automata Ai = 〈Li, l
0
i ,Σ,

C, Ii, Ei〉, 1 ≤ i ≤ n over a common set of clocks and actions is a parallel composition of
Ai, describing a timed automaton obtained from its component automata. Semantic-
ally, the network of timed automata requires joint execution of delay transitions and
synchronization over complementary action transitions.

For networks of timed automata, UPPAAL introduces the concept of committed
locations. A committed location is more restrictive than an urgent location, as a state
containing a committed location cannot delay and the next transition of the system
must involve an outgoing edge from one of the committed locations in the state.

3.4. Timed Automata Frameworks

This section compares the proposed model-based schedulability analysis frame-
work for component-based systems with existing timed automata based frameworks
and describes how the proposed model-based analysis framework improves on these
frameworks.

One of the first tools that makes use of real-time model checking for schedulab-
ility analysis is TIMES [15]. TIMES uses timed automata to model the tasks and the de-
pendencies between them using a time-triggered architecture and verifies schedulab-
ility using the UPPAAL engine. However, until now the tool only offers support for
analyzing uniprocessor systems. This thesis considers the problem of using formal
methods for real-time multiprocessor hierarchical schedulability analysis.

TAXYS [64] produces a timed automata model capturing the temporal beha-
vior of a whole application, including the external environment. The model is gener-
ated from the application program annotated with timing constraints and afterwards,
model checking is done in Kronos. However, TAXYS’ features are limited as the frame-
work considers that the program consists of a single, non-preemptable thread.

Formal verification of component-based systems is addressed by several frame-
works for various purposes. The Save Integrated Development Environment (Save-
IDE) [149] offers support not only for design of component based systems, but also
allows specification of the behavior of each component using timed automata, trans-
formation of each component to tasks and setup of execution parameters, like priority
and periodicity. Using UPPAAL and the timed automata models, it is possible to check
if the components satisfy their requirements specified as formulas in a subset of timed
CTL. In contrast to the work in this thesis, the verification features of the IDE do not
allow specification of component-level scheduling strategies based only on component
interfaces.

Ke et al. [106] also propose a methodology for formal verification of the timing
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and reactive behavior of component-based systems. Unlike the work presented in
this thesis, their approach assumes that tasks associated to a component execute
on a single processor and each task is modeled by a separate timed automaton. In
contrast, in this thesis the timed automata network which models a component uses a
different approach in which a single automaton is used for all tasks of the component
and the tasks are scheduled on a multiprocessor resource partition.

The global multiprocessor schedulability analysis using model-checking has
been investigated for tasks with static priorities in [93]. The models in [93] allow
restricted and full migration of task instances and use the discrete time semantics.
Every task is modeled separately and the schedulability of tasks is checked in de-
creasing order of their priority which limits the applicability of the analysis to static
scheduling policies. This also implies that for a task set with N tasks, model checking
has to be performed N times in order to determine the schedulability of the entire
set. With this approach a maximal number of N +1 clocks are necessary for a task set
of size N. Unlike this model checking solution, this thesis addresses both static and
dynamic scheduling policies. Moreover, the solution in this thesis requires just a single
run of the model checking for the entire task set using a single clock in a setting with
resources that are not continuously available and multiple levels of scheduling.

The MOVES analysis framework [140] proves the ability to apply UPPAAL to
verify schedulability for real-time applications executing on Multiprocessor System-on-
Chip (MPSoC) platforms where tasks are statically partitioned across processing ele-
ments. The applications can consist of periodic, sporadic and aperiodic tasks with
hard, firm or soft deadlines and non-deterministic execution times, in an interval
between a best and worst case. The framework uses the discrete time model and sim-
ulates different clock frequencies on processing elements by specifying the execution
times of tasks as number of clock cycles and the other task parameters (i.e. period,
deadline) as seconds. Each application is modeled as a task graph, i.e. a directed
acyclic graph of tasks where edges indicate causal dependencies and, each task in the
application is modeled as a distinct timed automaton. In contrast, this thesis assumes
global multiprocessor scheduling is used and all tasks of a component or application
are modeled as a single timed automaton.

The open-source DREAM [5, 129] model-based verification framework allows
schedulability analysis of event-driven distributed real-time systems. The computa-
tional model in DREAM defines tasks, timers, event channels and schedulers. Tasks
are triggered either by a timer or external aperiodic events and tasks communicate
among themselves by means of an event channel. Each of the elements of the com-
putational model is modeled using a timed automaton and schedulability analysis is
transformed in reachability checking using the UPPAAL model checker. The sched-
ulers in the DREAM framework assume that a fixed-priority preemptive scheduling
policy is used. Just like the work in this thesis, a discrete time semantics is used for
modeling preemption but, compared to our work, a partitioned scheduling scheme is
used and task migration between processors is not allowed. Also, the processors are
fully available to the tasks under analysis. DREAM also introduces model checking for
schedulability analysis of preemptive event-driven asynchronous real-time systems
with execution intervals [130]. Starting from the approach in DREAM, we propose
a method for schedulability analysis of hierarchical based multiprocessor systems,
where the tasks can migrate from processor to another, issue that is not addressed at
all in DREAM.
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3.5. Concluding Remarks

In this chapter the main issues related to multiprocessor schedulability ana-
lysis based on formal verification methods were addressed. First of all, there are
several challenges posed by these methods, challenges which may limit their broad
acceptance. The greatest challenge that must be overcome is the state space explo-
sion and, although it can not be completely beaten for problems like schedulability
analysis, it can be diminished by following some guiding rules like reducing the num-
ber of clocks in the model. A better and more general solution would be to improve
the model checker in terms of less memory usage which would increase the size of
systems that can feasibly be verified. Another challenge, specific to schedulability
analysis, is modeling task preemption and it seems that the only method which guar-
antees to terminate and give a feasibility verdict is based on the use of a discrete time
model instead of a dense one.

Furthermore, the most used formalisms for verifying real-time schedulability
were analyzed and compared based on the multiprocessor scheduling features they
possess. The analysis shows that, compared to Petri nets and ACSR, timed auto-
mata are the most suited for modeling real-time systems using a dense time model.
However, this time model can be used only for scheduling partitioned multiprocessor
systems, while for global scheduling, reachability on timed automata models is decid-
able only if discrete time semantics are employed. The same discrete time model is
used by ACSR, but this process algebra cannot model global scheduling strategies.
Despite of all their weaknesses, the presented formalisms allow simple analysis of
different task models, inter-task interactions and timing constraints, while classical
analytical methods for multiprocessor scheduling analysis are mostly limited to inde-
pendent periodic or sporadic tasks.

During the recent years several scheduling frameworks based on timed auto-
mata have been developed. While some of them are dedicated to uniprocessor real-
time systems, other handle the multiprocessor case assuming a partitioned scheduling
policy. Few of them are dedicated to component-based systems but those do not aim
multiprocessor hierarchical schedulability analysis, like the method proposed in this
thesis.
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4. MODEL CHECKING FOR VIRTUALIZED
REAL-TIME MULTI-CORE SYSTEMS

4.1. Motivation

In the recent years, real-time embedded software development has focused
more and more on building flexible and extensible applications. Component-based
software systems achieve these objectives by gluing individually designed, developed
and tested software components, each component having different timing require-
ments. Therefore, when building such a component-based system one must ensure
that components can coexist without jeopardizing each other’s execution.

For single processor systems, Harbour [95] proposed a solution for temporal
isolation of component-based applications based on service contracts. Contract-based
scheduling is a hierarchical scheduling scheme in which every application or applica-
tion component may have a set of service contracts describing its minimum resource
requirements. These contracts are used in online or offline negotiations to determine
if the resource requirements can be guaranteed or not. The contract-based scheduling
model was extended for multiprocessor systems by Chang et al. [60].

In the contract-based scheduling solution for multiprocessors, each applica-
tion has a contract with the underlying operating system specifying the application’s
resource requirements. Furthermore, each component of the application also has a
contract. The contracts of the components specify how to distribute the resources
requested by the parent application among the components. The multi-core/multipro-
cessor time partitions (see Section 2.4.1.) are used to support the contracts for the
application level, while components contracts are facilitated by execution time servers.
While scheduling windows are bound to a processor or core, servers can migrate from
one processor to another. Consequently, the contract-based scheduling model falls in
the class of hierarchical multiprocessor global scheduling algorithms with preemption
and full migration.

The analysis in [60] starts from the minimum computation time provided dur-
ing a time interval by the time partition to the execution time servers and, respectively
by the servers to the tasks of the components. This is used as an upper bound on the
maximum workload of the servers and tasks such that the system is schedulable. The
workload of the servers and tasks is computed assuming a fixed scheduling policy
is employed. The result of the analysis gives only sufficient and quite pessimist
schedulability conditions. Other drawbacks of the analysis are the assumption that
tasks are independent and the limitation of the scheduling policy to the fixed priority
class.

This chapter describes how we apply timed automata theory to analyze the
schedulability of real-time component-based applications running on multi-core plat-
forms. The resource requirements of each application or application component are
specified in a service contract resulting a hierarchy of contracts like the one used in
contract-based scheduling. We use model checking and transform the schedulability
analysis problem into reachability checking on a timed automata model of the service
contracts.

Because the reachability problem for timed automata with dense time se-
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mantics is undecidable for our schedulability problem, we use a discrete time model.
We do not consider this a limitation since on a real processing element, execution of
instructions is carried out in clock cycles. In our model of the execution platform,
time is divided into clock cycles as well and each task takes a number of clock cycles
to complete. Between clock cycles, the operating systems only runs, if there is any
change (ready or finished tasks), and schedules a task to run in the next clock cycle.
The overhead time for the operating systems decisions on the execution platform is
assumed be zero.

4.2. Exact Schedulability Analysis for Independent Tasks

4.2.1. Problem Formulation

The analytical or utilization-bound schedulability tests for multi-core contract-based
scheduling give only sufficient and quite pessimistic conditions and, as a consequence,
components, which may in fact be schedulable by the system, will be rejected. This
can lead to poor utilization of the multi-core platform. Moreover, the analytical meth-
ods assume only a rather simple periodic or sporadic task model and are bound to a
rather specific scheduling policy. Any change in any of these hypothesis requires re-
sumption of the analysis process and results in a new testing methodology, completely
different from the previous.

In view of these drawbacks of analytical methods, we consider that a more
flexible methodology is required for the analysis of contract-based scheduling, provid-
ing more accurate results than analytical methods. In this section, we propose an
exact schedulability method for hierarchical multi-core global scheduling with fixed
or dynamic task priorities and preemption enabled by using model checking and
transforming the schedulability problem into a reachability problem on a timed auto-
mata model [126]. Besides the quite flexible way of dealing with different scheduling
policies, the proposed method has the additional benefit of being easy extensible in
order to handle different types of task interactions, as we will show in Section 4.3.

Using model checking on timed automata models for global multiprocessor
preemptive scheduling has to overcome a series of challenges:
(1) Preemption and migration modeling: Schedulability analysis using timed auto-

mata has been applied successfully for non-preemptive scheduling policies. How-
ever, in timed automata models as defined in [13] time elapses at the same rate
for all components and therefore they cannot be used for preemptive schedul-
ing policies where execution of tasks can be suspended and resumed later. One
possible solution, proposed in [81, 80], is to use a subclass of timed automata,
Bounded Timed Automata with Subtraction. Unfortunately, this solution can be
used only for uniprocessor or partitioned multiprocessor preemptive scheduling
because it can not handle task migration. Stopwatch automata [59], a subclass of
Linear Hybrid Automata, have been proposed as a solution for modeling preempt-
able tasks, but only approximative methods for reachability checking are known
for these automata [59].

(2) Decidability: This problem refers to whether it is possible to say if a certain state
in the timed automata model is reachable or not. Assuming a dense time model,
the schedulability checking problem has been shown to be decidable for non-pree-
mptive tasks. Preemptive uniprocessor scheduling is decidable only if tasks have
either variable execution times and there is no dependence between them or tasks
have precedence constraints between them but fixed execution times [109, 79].
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This result is partially true for partitioned multiprocessor scheduling in the sense
that schedulability is not decidable if tasks have variable execution times and a
preemptive scheduling policy is used. Using stopwatch automata for modeling
task preemption is undecidable [99], no matter the scheduling policy. For global
preemptive multiprocessor scheduling, schedulability is decidable only if a discrete
time model is used.

(3) Scalability: The major source of skepticism in adopting model checking for schedul-
ing analysis is its rather limited scalability. Until now, even assuming a simple task
model, only systems with few tasks have been successfully tested.
In this section we propose an exact schedulability method for hierarchical

multi-core global scheduling policies. We use the timed automata formalism for our
method and in order to overcome the preemption and decidability challenges, the
model employs a discrete time semantics. In order to improve the scalability of our
model, we make use of only one continuous clock and use a minimal number of
constraints for that clock.

Our exact schedulability analysis method is based on a model and that model
has its own assumptions. We start in this section with a simple model, which we
extend in the next section to become closer to a realistic system. In this section of
the thesis, we will make the following assumptions:

a1. The characteristics of the tasks (arrival times, periods and execution times) and of
the resources (offset, budget, replenishment period, length or scheduling window
period) are given as requirements to the scheduling algorithm and do not change
at scheduling time.

a2. All tasks are periodic.

a3. The scheduling algorithm has succeeded only if all task deadlines are met. If a
task misses its deadline it is considered a failure.

a4. The only shared resource in the system is the processor.

a5. The speed of the multi-core processor does not change.

a6. A task cannot execute on two or more cores simultaneously, and a core cannot
execute two or more tasks simultaneously.

a7. Preemption is permitted at any time but we do not consider any overheads.

a8. Task and server migration is allowed at any time and no overhead is associated
with migration.

a9. Components of an application are independent of each other. They share only the
time partition supplied to the parent application.

a10. The priorities of the tasks can be fixed or dynamically assigned.

a11. The tasks of each component are independent, that is tasks do not share any
resource other than processor and the arrival time of any task is not conditioned
by the end of another task.

a12. The execution time of a task is a constant and does not variate within an upper
and lower bound.
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4.2.2. Contract-based Scheduling Model

This section presents the formal model of the service contracts. As explained in
Section 2.4.2. there are two levels of such contracts. The first level specifies the
resource requirements of a single application while the second level describes the
requirements of each individual component of the application. Corresponding to the
two levels of contracts there are two scheduling levels. At the upper level, each
component of an application has a scheduler for scheduling its tasks, while at the
lower level there is an application scheduler which manages the servers associated
with each component of the application. This hierarchical contract-based scheduling
model is depicted in Figure 4.1. Each of the blocks in the figure are detailed in the
following subsections.
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Figure 4.1: Contract-based scheduling model

Component Contracts

A component consists of a set of tasks, which may execute in parallel. Each task
is characterized by a worst case execution time, a relative deadline, a period and is
independent of the other tasks.

Definition 1 (Component). A component C consists of a finite set of n tasks T and a
timed automaton AC where:

• a component task τi ∈ T is a tuple τi = (Ci, Ti, Oi, Di), with Ci being the worst case

execution time of the task, Ti the inter-arrival time between different instances

of the same task, Oi the first release of the task and Di is the deadline of the

task where Ci ≤ Di ≤ Ti,

• tasks may execute in parallel and are independent of each other,
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• AC models the execution of tasks in set T by taking transitions labeled with
actions tReadyi, tF inishi and tOverruni, ∀ 1 ≤ i ≤ n representing the release and
ending of task τi, and actions tGoi and tPreempti through which the component
scheduler notifies task execution start/restart and suspension.

The tasks of the component will be executed according to a component specific
scheduling policy implemented by a scheduler associated with the component. The
parameters of the tasks along with the task arrival pattern determine the resource
requirements for the component. These resource requirements can be supported
using one or more execution time servers, depending whether the tasks must execute
in parallel or not. The period, deadline and budget of the servers associated with a
component are specified in the component contract.

A server is defined by a tuple (Q,P,O) where Q is the capacity of the server,
P is its replenishment period (i.e. the server becomes active every P time units) and
O is the time of its first release. Each server may also have a deadline equal to its
period. It is assumed there is a finite set of servers S containing the servers for all
the components of an application.

Definition 2 (Component contract). A component contract CC supported by a set of
ns execution servers SC ⊆ S is a timed automaton ACc over the set of actions ΣC such
that:

• ACc specifies the activation pattern of servers σi ∈ SC, 1 ≤ i ≤ ns.

• ΣC is split in two sets:
– output actions: ΣO

C = {sReadyi, sF inishi, sOverruni, sActivei, sInactivei
| 1 ≤ i ≤ ns}

– input actions: ΣI
C = {sGoi, sPreempti | 1 ≤ i ≤ ns}.

The ACc automaton sends the output action sReadyi to the scheduler asso-
ciated with the application as soon as server σi is ready for execution and sends
sF inishi or sOverruni to the same scheduler to notify it that the server has finished
its execution, respectively missed its deadline. As a response to its actions ACc can
receive from the application scheduler sGoi, telling it that server σi can start its exe-
cution, or sPreempti which results in server σi being suspended from execution until
the next sGoi action. Actions sActivei and sInactivei are used to announce the com-
ponent scheduler that server σi has consumed all its budget, respectively that it has
replenished its budget and can be used again to execute tasks.

Application Contracts

As proposed in [60] the application contracts are supported by a multi-processor time
partition model. Each application is associated with a time partition which has a local
scheduler to execute the execution time servers assigned to the components of the
application.

In a single processor system a time partition is implemented as a fixed-length
major time frame composed of several scheduling windows. A scheduling window
is defined by an offset to the beginning of the major time frame and by its length.
The scheduling scheme of the major time frame repeats periodically during the ex-
ecution of the system such that all scheduling windows are periodic. In a uniform
multiprocessor or multi-core system, we assume there is a major time frame for each
processor, but frames on all processors will have equal length and will be synchron-
ized. The scheduling windows of frames on different processors can be different.

From the above specification we derive next a formal definition of the multi-
processor time partition.
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Definition 3 (Time partition). A time partition T P in a uniform multiprocessor or
multi-core system is described by a set of major time frames {Fi | 1 ≤ i ≤ m,
length(Fi) = L}, one for each of the m processors/cores in the system, where Fi is

a set of scheduling windows with periods that are an exact divisor of L.

In our setting the time partition is used to facilitate application contracts. In a
simple scenario, the application contract could specify a few pairs of period and length
values which upon successful negotiation of the contract could be mapped to a set of
scheduling windows.

Definition 4 (Application contract). An application contract CA is a pair (T P,
ACa) where:
• T P is the multiprocessor time partition supporting the contract, and
• ACa is a timed automaton over the action set ΣSW modeling the scheduling

scheme of the major time frame:

– ΣSW = {swActivek, swInactivek}, where k is a scheduling window in T P.
– action swActivek signals to the application scheduler that the scheduling win-
dow k is now active, while swInactivek signals its deactivation.

4.2.3. Timed Automata Model

As shown in the previous section both component and application levels include three
automata - one for generating tasks or servers according to a given release pattern,
one for generating the resource partitions (servers or scheduling windows) on which
the tasks and servers, respectively shall be executing and one for scheduling. Notice
that servers can be both schedulable entities (i.e. when referring to the application
scheduler) and resources (i.e. for the component scheduler). For this reason in the
rest of this section they are referred simply as tasks and, respectively as resources.
Also, this plurality of roles implies that the timed automaton generating tasks for the
application level is the same with the one generating resources for the component
level. Therefore, this automaton can be deduced immediately from the task generator
and the resource generator automaton types. The rest of the section is dedicated to
given detailed descriptions of each of the three types of automata. In addition to the
three types of automata, the model also includes a Timer automaton (see Figure 4.2)
which uses a single continuous clock t and each time this clock ticks sends a tick signal
to the task generator and the resource generator automata.
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Figure 4.2: The Timer automaton

We first introduce some notations. Let C(i), T (i), D(i), R(i) and E(i) denote
the worst case execution time, the period, the deadline, the next release time and the
current execution time, respectively for each task τi. For each task τi it is defined a
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status variable status(i) that is initialized to idle meaning that a task instance has not
been released yet. The value status(i) = ready is used to denote that a task instance
of τi is ready for execution (i.e. it has just been released or was preempted). Let
status(i) = running stand for the fact that a task instance of τi is currently running on
one of the active resources. To denote that an instance of task τi has finished or has
missed its deadline we use status(i) = finish and status(i) = overrun, respectively.

Task Generator Automaton

Model checking of preemptive scheduling algorithms could be done using a stopwatch
model but it has been proved that schedulability of these models is undecidable [59].
Therefore, in order to address task preemption a discrete time formalism is adopted
for the model proposed in this paper. This leads to a limitation as all task parameters
(i.e. worst case execution time, period, deadline, release time) must have integer
values.

In order to be able to determine the actual execution time of a task, a variable
E(i) is used for keeping track of the time task τi has executed since its last release.
Each time the task is released E(i) is set to 0 while R(i) is set to the time of its next
release. When the task generator automaton receives a tick signal from the Timer
automaton it increases E(i) for tasks with status(i) = running and decreases R(i) for
all tasks with a value MIN representing the minimum between the time for the next
release of a task or of a resource and the time for the next termination of a task or
deactivation of a resource. In other words, E(i) acts like a discrete clock which can be
suspended and resumed.

Instead of using a task generator for releasing all n tasks of a component
according to some pattern, it would have been possible to define a timed automaton
for each of the n tasks, each automaton with a clock, leading to a total of n clocks.
Since the state space of timed automata grows exponentially with the number of
clocks in the model, the approach taken in this paper is superior to this one.

Figure 4.3 shows the main locations and transitions in the task generator
automaton, leaving out some self-loop transitions. All white locations in the figure
have the semantics that the system cannot delay in those locations and the next
transition must involve an outgoing edge from one of them.
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Figure 4.3: The task generator automaton
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The task generator automaton uses a variable t_next_release to remember the
time until the next task is released. At start-up this variable is initialized with the
smallest R(i) and, if after that, t_next_release = 0 the automaton goes to the Ready
location and selects a task τi for which R(i) = 0, updates t_next_release, sets the
shared variable ready_task = i and sends the ready signal to the scheduler automaton.
Once t_next_release becomes greater than 0, the generator moves to the Idle location
where it waits for the next tick of the Timer. When the tick signal arrives the transition
to the Increment location is taken and inc_time() updates the values status(i), E(i) and
R(i) as follows:
• for all tasks τi with status(i) = running, E(i) = E(i) +MIN and if E(i) = C(i) then

status(i) = finished,
• for all tasks τi R(i) = R(i)−MIN and t_next_release = min(R(i)),
• for all tasks τi running or ready for execution with E(i) < C(i) and T (i)−D(i) = R(i)
sets status(i) = overrun.
Next, for all tasks τj that have finished, the variable finished_task is set to

j and the finished signal is sent to the scheduler which will free the resources used
by these tasks. If any task τj has missed its deadline an overrun signal notifies the
scheduler which as a result will go to an Error location. After signaling all task finish
events the generator checks to see if there is any task ready for execution and goes
back to the Ready location.

Resource Generator Automaton

The task generator automaton presented above can be used to generate servers which
act as resources for the component level. By adding just two signals - active and inact-
ive - to notify the scheduler about the availability of the resources the task generator
automaton becomes a resource generator automaton with the property that those
resources are preemptable. If resources are not preemptable (i.e. the scheduling
windows of a time partition) the resource generator automaton is a simplified version
of the task generator.

Figure 4.4 presents the non-preemptive version of the resource generator
automaton. The automaton keeps a discrete clock RE(k) for each resource rk. Also
RR(k) is used to remember the time until the next activation of resource rk and two
variables named r_next_release and r_next_finish hold the time until the next resource
activation and, respectively deactivation. When resource rk is activated RE(k) = L(k)
where by L(k) we denote the length of the resource’s activation period. At every
tick signal received from the Timer, for all active resources rk, RE(k) is decreased
with the value MIN and variables r_next_release and r_next_finish are also decreased
with the same value. When r_next_release reaches 0 all resources rk with RR(k) = 0
are activated. If r_next_finish becomes 0 than all resources rk with RE(k) = 0 are
deactivated.

Scheduler Automaton

As it can be seen from the definitions in the previous sections, the component sched-
uler and the application scheduler have rather similar behavior. Both of them must
schedule a set of periodic tasks/servers with deadlines less or equal to their period.
The component tasks are scheduled on execution time servers which may be active
or inactive. It is possible for two or more servers to be active simultaneously which
implies that two or more tasks may run in parallel. For the application scheduler the
tasks to be scheduled are actually the servers used by the component scheduler as
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Figure 4.4: The non-preemptive resource generator automaton
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Figure 4.5: The scheduler automaton

resources. The servers are scheduled for execution on the scheduling windows of a
time partition. The scheduling windows represent the resources allocated to the ap-
plication by the system. As more scheduling windows can be active simultaneously,
parallel execution of the servers is also possible.

A scheduler automaton for a service (i.e. application or component) contract
has the following characteristics:
• has a queue holding the tasks ready for execution,
• implements a preemptive scheduling policy Sch representing a sorting function
for the task queue,

• maintains a map between active resources (servers or scheduling windows) and
tasks using those resources, and

• has an Error location which is reached when a task misses its deadline.
To record the status of a resource, let rt_map(j) be a map where rt_map(j) =

inactive denotes that resource j is inactive, rt_map(j) = active means that resource j
is active but no task is executing on it, and rt_map(j) = i denotes that resource j is
active and is currently used by task τi.

Figure 4.5 shows the scheduler automaton. The locations of the automaton
have the following interpretations:
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1. Idle - denotes the situation when no task is ready for execution or no resources
are active,

2. Prepare - a task has been released and a resource is active after a period during
which either there were no tasks to schedule or no active resources,

3. Running - at least one task is currently executing,
4. AssignTask - a task has just finished and as a result an active resource can be
used to schedule another ready task,

5. AssignResource - a task has just been released or a resource has just become
inactive leaving its assigned task with no resource on which to execute; con-
sequently the task has to be enqueued and if it has the highest priority in the
queue according to Sch then an active resource is assigned to it,

6. Check - a resource has become inactive,
7. Error - the task set is not schedulable with Sch.

The scheduler enters the Idle location when either there are no ready tasks,
no active resources or both of these conditions hold. As long as new tasks are released
for execution but there are no active resources on which the tasks to be executed (i.e.
task_no > 0 and res_no = 0) or as long as there are available resources but no ready
tasks (i.e. task_no = 0 and res_no > 0) the scheduler stays in the Idle location. If the
scheduler receives a ready signal meaning that task τready_task has been released and
res_no > 0 the scheduler goes to the Prepare location. Leaving the Prepare location
for the Running location, it assigns the task to one of the active resources by setting
rt_map(j) = ready_task, sets the variable activated_task = ready_task and sends a go
signal to announce the task generator automaton that task τactivated_task is running.
After the scheduler has reached the Running location, it will leave this location if one
of the following situations happen:
• the resource rk becomes active (signaled by the active signal and ready_res =

k): this is marked by updating rt_map[k] = ACTIV E on the transition to the
AssignTask location. If tasks are ready for execution than the scheduler will
assign the highest priority task τj to resource rk by setting rt_map[k] = j and will
notify the task generator with the signal go on a transition back to the Running
location.

• a new task τi has been released (signaled by the ready signal and ready_task =
i): the task is enqueued by setting status(i) to ready on the transition to the
AssignResource location. If task τi is the highest priority released task and there
are active resources, then τi must start executing. If there is a free active
resource then task τi is assigned to it, otherwise the lowest priority task is chosen
from the running tasks, preempted and the automaton goes to the AssignTask
location. On the transition from AssignTask to Running the resource is assigned
to τi and a go signal is sent to the task generator to notify it that task τi has
started running.

• the resource rk becomes inactive (signaled by the inactive signal and finished_res
= k): this is marked by updating rt_map[k] = INACTIV E on the transition to
the Check location. If the deactivated resource was free and there are still
running tasks but no tasks in the queue then the transition back to Running
location is taken. If a task τi was using resource rk then the scheduler must
set status(i) = ready and go to AssignResource location. Should the resource rk
be the last active resource the scheduler would simply preempt task τi and go
back to the Idle location, otherwise an active resource is searched analog to the
situation when a new task is released.

• the task τj finishes (signaled by the finish signal and finished_task = j): the
resource used until now by τj can be assigned to the highest priority task waiting
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in the queue, if there is such a task.
• the task τi misses its deadline (signaled by overrun): the scheduler automaton
goes into the Error location.

4.2.4. Performance Evaluation

This section presents an evaluation of the performance and scalability of model check-
ing the contract-based scheduling model with independent tasks. The experiments
were run on a machine with Intel Core 2 Quad 2.40 GHz processor and 4 GB RAM
running Ubuntu. The analysis of the model was automated using UPPAAL and the
utility program memtime [3] was used for measuring the model checking time and
memory usage. Although the proposed model addresses scheduling at two levels,
namely task level and server level, experiments were conducted only for the server
level as we consider the analysis of the task level is just a replica of the server level
due to the similarities between the two levels. In all experiments, to verify schedulab-
ility we checked if property A[] not Error holds meaning that the Error location is never
reached.

We measured the performance of our method with two metrics: scalability of
the model checking process in terms of running time and peak memory usage and
accuracy of the schedulability analysis decisions when compared with the analytical
method of Chang et al. [60].

First, the model-based schedulability analysis was compared to the method
based on schedulability bounds proposed in [60]. In the experiment 200 server sets
with 30 servers and 200 server sets with 20 servers were used. Each server period
was chosen randomly in the interval [10, 200], server utilization was a randomly
generated number between 1 and 4.5 and server offset was set to 0 for all tasks. All
servers had deadline equal to their period. The time partition used in the experiment
had 9 scheduling windows with a total utilization of 4.5 and a major frame length equal
to 50. The priorities of the servers were assigned according to the RM policy. In the
experiment, from the 200 server sets of size 30, the model-based analysis accepted
182, while the classical method accepted only 83. For the server sets with 20 servers,
the model-based method accepted 155 sets and the classical method accepted 75
sets (see Table 4.1). It can be seen that the results of the classical method are clearly
pessimistic as it rejected a large number of server sets that are actually schedulable.

In order to observe the behavior of the model for different number of applic-
ation servers we have used randomly generated sets of servers with periods in the
range [10, 100] and utilizations (i.e. budget/period) generated with a uniform distribution
in the range [0.05, 1]. The offset of each server was set to a value equal to the period
multiplied with a randomly generated number in the interval [0, 0.3]. Also, the servers
sets were accommodated by a time partition with 9 scheduling windows and a total
utilization of 4.5. Figure 4.6 shows how the model checking time and memory usage

Table 4.1: Comparison of schedulability analysis results using the analytical method in [60] and
the proposed method using reachability checking

No. of schedulable servers

20 servers/set 30 servers/set

Analytical method [60] 75 83

Reachability checking 155 182
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Figure 4.6: Influence of server set size on model checking performance
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Figure 4.7: Influence of time partition size on model checking performance
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Figure 4.9: Schedulability of server sets
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increase with the number of servers in the set. Also it can be noticed that for the
same size of the server set the performance of the model checking can vary between
rather larger limits (e.g. for sets of 30 servers the model checking time grows from 7
seconds to approximatively 25 seconds). This is due to the size of the hyper-period of
the server sets, larger the hyper-period larger the model checking time and memory
consumption.

Next, we analyzed the scalability and performance of model checking when
the number of scheduling windows in the time partition accommodating the servers
varies. For this, sets with 25 servers each and parameters in the same limits as for
the previous experiment were generated and time partitions with 2, 3, 5, 7 and 9
scheduling windows were tested. In Figure 4.7 it can be seen that both the time
for checking the model and the memory usage grow with the number of scheduling
windows in the time partition.

In the previous two experiments the server sets were scheduled using the
RM priority scheduling policy. The goal of our next experiment was to determine the
impact of the scheduling policy on the model checking time and peak memory usage.
The same time partition configuration as in the first experiment was used and sets of
5, 10, 15, 20, 25 and 30 servers were scheduled using both the RM, the EDF and the
(T-C) (i.e. the higher the difference between the period and the budget of a server
the lower its priority) scheduling policies. As can be seen in Figure 4.8 the scheduling
policy has little influence on the performance of the model checking.

In the last experiment we are interested in seeing what is the influence of
the server set utilization on the schedulability analysis. We have used the same time
partition as in the second experiment with a total utilization of 4.5 and server sets of
10, 20 and 30 tasks with utilizations between 1 and 4.5 scheduled using the RM policy.
Figure 4.9 depicts the number of schedulable server sets identified by our analysis. It
can be noticed that even if the total utilization of a server set is maximal with respect
to the available resources, our analysis is able to determine its schedulability, which
is a clear advantage over the pessimist schedulability bounds presented in [60].

4.3. Approximative Schedulability Analysis for Task Graphs

4.3.1. Problem Formulation

Providing formal guarantees on the schedulability of component-based systems run-
ning on multi-core platforms becomes even more important if these components con-
sist of interacting tasks, represented as task graphs, and if each component can have
a different scheduling strategy. Until now, no analytical method for schedulability
analysis of such systems has been developed.

Stopwatch automata [59] have been proposed for modeling of preemptive
tasks with or without precedence constraints between them [9], but reachability of
composition of these automata is decidable only for a single initialized stopwatch
automaton [99] and undecidable [107] in the rest of the cases. Moreover, it has been
shown that many preemptive multiprocessor scheduling algorithms suffer of schedul-
ing anomalies when there is a change in their execution time [91]. Therefore, an
accurate analysis of systems using these algorithms must consider variable task ex-
ecution times. Moreover, it has been demonstrated in [108] that the schedulability
analysis problem for multi-processor systems is undecidable if (1) the tasks are sched-
uled using a preemptive scheduling strategy, and (2) the tasks have execution times
ranging over a continuous time interval.
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We propose a formal method for checking the schedulability of real-time com-
ponent-based applications running on multi-core platforms. Although the analysis
method is based on the same essential idea as the work in [130], there are several
significant differences. First, we assume a hierarchical scheduling model which means
that the execution of tasks is constrained by the availability of the temporal partitions
or execution servers and we consider also this resource aspect in our method. Second,
unlike [130], task migration is allowed in our model. Last, instead of modeling just the
tasks of an application individually, we model a whole scheduling level. We assume
that the multi-core contract-based scheduling model described above is used and we
adapt the previous timed automata model to encompass a new task model allowing
task precedence constraints. The timed automata model is actually the model of a
level in a multi-core scheduling hierarchy. The proposed method is an approximation
method for schedulability verification and uses a discrete time formalism, while at the
same time is able to capture continuous task execution times by approximating the
stopwatch automata model. We show that our model approximates the stopwatch
model by proving that the formal language accepted by the timed automata model is
included in the language accepted by the stopwatch automata and we evaluate the
approximation errors. Also we show how our model can be applied iteratively to check
the entire scheduling hierarchy [127].

Besides the changed task model, the analysis method presented in this section
considers that all service contracts, either for an application or for a component, are
mapped to a set of execution time servers which mark the limits of the resources
allocated to the components. This is not a major change, since any scheduling window
in a time partition can be seen as a non-preemptable periodic server.

The model used in the approximative schedulability analysis method is based
on a set of assumptions:

a1. The characteristics of the tasks (arrival times, periods and execution times) and of
the execution time servers (offset, budget and replenishment period) are given as
requirements to the scheduling algorithm and do not change them at scheduling
time.

a2. All tasks are periodic.

a3. The scheduling algorithm has succeeded only if all task deadlines are met. If a
task misses its deadline it is considered a failure.

a4. The only shared resource in the system is the processor.

a5. The speed of the multi-core processor does not change.

a6. A task cannot execute on two or more cores simultaneously, and a core cannot
execute two or more tasks simultaneously.

a7. Preemption is permitted at any time but we do not consider any overheads.

a8. Task and server migration is allowed at any time and no overhead is associated
with migration.

a9. Components of an application are independent of each other. They share only the
time partition supplied to the parent application.
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a10. The tasks of each component are grouped in so called Multi-threaded Tasks
(MTTs). MTTs are independent, that is MTTs do not share any resource other
than the servers supplied to the component and the arrival time of any MTT is not
conditioned by the end of another MTT.

a11. The tasks within a MTT can be independent or there can be precedence con-
straints defined between them. That is, the release of a task may be dependent
on the finishing time of another task.

a12. All tasks within a MTT have the same period and deadline.

a13. The execution time of a task in a MTT is defined as a continuous interval between
an upper and lower bound.

a14. Tasks have fixed priorities.

4.3.2. System Model

According to the assumptions in the Section 4.3.1. we give new definitions to com-
ponents and component contracts.

Definition 5 (Component). A component C consists of a finite set MT of n MTTs
where:

• a MTT Θi ∈ MT , with 1 ≤ i ≤ n, is a tuple Θi = (Ti, Ti, Di, Ri), where Ti is the
set of ti tasks in the MTT, Ti represents the inter-arrival time between different

instances of the same MTT, Di is the deadline by which all tasks in Ti should
finish and Ri represents the time of the first release of Θi,

• each task τj ∈ Ti, 1 ≤ j ≤ ti, is characterized by a tuple (bcetj , wcetj , prioj) where
bcetj and wcetj are integer values that specify the limits of the continuous exe-
cution interval of task τj with 0 ≤ bcetj ≤ wcetj and prioj is the priority of the
task.

All numeric parameters in Definition 5 are considered integer numbers.
The tasks belonging to each component are scheduled separately using a com-

ponent-specific preemptive scheduling policy. Therefore, when building an application
based on such components one must ensure that the tasks of each component are
schedulable independent of the execution of any other component in the application.

An execution time server in a multi-core system, as considered here, is charac-
terized by a tuple (Q,P ) meaning that the component will receive Q units of execution
every P units of time. Additionally, we consider a third parameter O representing the
time when the server is first released. It is assumed there is a finite set of servers S
containing the servers for all components of an application.

In terms of the timed automata formalism we define a component contract as
follows:

Definition 6 (Component contract). A component contract CC providing a set of ns

execution servers SC ⊆ S is a timed automaton ACc over the set of actions ΣCC such
that:

• ACc specifies the activation pattern of servers σi = (Qi, Pi, Oi) ∈ SC, 1 ≤ i ≤ ns,

• ΣCC = {active, inactive}, where action active signals to the component scheduler
that a server σi ∈ SC has just become active (i.e. the processor is now available

to be used by the component), while inactive signals deactivation of the server.
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We consider that parameters Qi, Pi and Oi have integer values.
The component also has associated a scheduler which will schedule for exe-

cution the tasks of the MTTs in a component according to a preemptive scheduling
policy. We consider that a global scheduling policy is used and as such a task can run
on any processing unit. As a consequence, task migration may occur whenever a task
is preempted or suspended. The scheduler of the component is modeled by a timed
automaton with the following characteristics:
• has a queue holding the tasks ready for execution,
• implements a preemptive scheduling policy Sch representing a sorting function
for the task queue,

• maintains a map between active execution servers and tasks using the servers,
and

• has an Error location which is reached when a task misses its deadline.
A component consisting of n MTTs could have been modeled also using a

timed automaton for each of the tasks of the MTTs, each automaton with its own
clock. Since the state space of timed automata models grows exponentially with
the number of clocks in the model, we decided to build a single timed automaton
which models the execution patterns of all n MTT and reduce the number of clocks to
one as it will be shown in the following subsection. Moreover, each task could have
been modeled using stopwatch automata but the reachability analysis of composed
stopwatch automata is undecidable [107]. The same observation applies for modeling
the component as a single stopwatch automaton and consequently, we propose an
approximation of a stopwatch model using timed automata with discrete clocks to
keep track of the execution time of each task.

4.3.3. Timed Automata Model

In the timed automata formalism we consider that a component of a real-time applic-
ation is the network of timed automata obtained through parallel composition of the
automaton which models the execution pattern of the MTTs of the component, the
component scheduler automaton and the timed automaton modeling the activation
and deactivation patterns of the execution time servers (i.e. the ACc automaton in
Definition 6). In what follows we will use the names Task Generator (TGT) to denote
the timed automaton which models the MTTs’ execution and Server Generator (SG)
for the one modeling the servers. Apart from these, the network also includes a Timer
automaton (see Figure 4.2) which uses a single continuous clock t and each time this
clock ticks the automaton sends a tick signal to the TGT and the SG automata.

Before explaining in more detail the timed automata model we introduce some
notations. For each MTT Θi we use a variable R(i) to hold the time of the next release
of Θi. In order to determine the actual execution time of each task τj, we use a
variable E(j) to keep track of the time task τj has executed since its last release.
Basically, E(j) acts like a discrete clock which can be suspended and resumed. Also,
for each task τj a variable status(j) indicates its current status and is initialized to idle
meaning that a task instance has not been released yet. The value status(j) = ready is
used to denote that a task instance of τj is ready for execution (i.e. it has just been
released or was preempted). If τj is waiting for one of its predecessor tasks to finish
then status(j) = waiting. If an instance of task τj is running then status(j) = running.
A task τj which has executed for bcetj time units but for less than wcetj units will
have status(j) = can_stop. To denote that an instance of task τj has finished or has
missed its deadline we use status(j) = finished and status(j) = overrun, respectively.
The discrete clock E(j) keeps track of the overall time for which status(j) = running.
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The TGT automaton presented in Figure 4.10 uses a variable task_next_release
to remember the time until one of its MTTs must be released and the variable task_next-
_finish to keep the earliest time when one of the currently running tasks should finish.
At start-up, task_next_release is initialized to min(R(i)), i = 1, 2, .., n and the automaton
goes to the Ready location. From this location, if task_next_release = 0 and there is
at least one task τj with status(j) = idle (i.e. TGT must release a task), the auto-
maton executes the transition with the guard must_release = true and in function
get_ready_task() elects the task τj, j = 1, 2, .., ti, for which status(j) = idle, updates
task_next_release (only if this is the first task τj in the MTT that is released in the
current period) and task_next_finish, sets a shared variable task_ready to (i− 1) ·n+ j
(the global identifier of task τj of the MTT Θj) and then sends the ready signal to the
scheduler automaton which will read the task_ready variable and will add task τj to its
queue. The process is repeated until task_next_release becomes greater than 0 and
there are no idle tasks for any MTT that has just been released. At this point the
automaton goes to the Idle location where it waits for a tick signal from the Timer
automaton. On each release of the MTT Θi, R(i) is postponed with Ti.

Ready

Overrun

Finish

IncTime
fo_len>=0

Idle Start

ready!

t:task_id_t
tasks[t].status==CAN_STOP &&
tasks[t].e<=tasks[t].wcet &&
!wait_go

task_finished=t,
handle_finished_task(t,FINISHED),
task_enabled=0

overrun!

idling?
is_idle=!is_idle

idling?
is_idle=!is_idle

idling?
is_idle=!is_idle

preempt?

go?
go_task(task_activated),
task_activated=EMPTY

must_release==true
get_task_ready()

!must_release
task_enabled=1,
in_middle=false

finished_len==0 &&
task_overrun==false &&
!wait_go &&
must_release
get_task_ready()

preempt?

go?
go_task(task_activated),
task_activated=EMPTY

go?
go_task(task_activated),
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task_overrun==false &&
task_next_release>0 &&
!must_release &&
!wait_go
task_enabled=1

task_overrun==true
task_finished=get_finished_task(OVERRUN)

finish!

finished_len>0 &&
task_overrun==false

task_finished=get_finished_task(FINISHED),
finished_len--

!wait_go
tick?
inc_exec_time(),
task_enabled=0

initialize()

Figure 4.10: The Task Generator (TGT) for MTTs timed automaton

The SG automaton presented in Figure 4.11 works in a similar way with the
distinction that generated active servers are continuous (not preemptable). For each
server σk, 1 ≤ k ≤ ns, there is a discrete clock RE(k) analogous to E(j) and a variable
RR(k) is used to keep the time until the next activation of σk. Two additional variables,
server_next_release and server_next_finish hold the time until the earliest start time of
a server σk and the earliest finish time, respectively. When server_next_release = 0 a
processing unit becomes available for the component (i.e. some σk starts) and the SG
takes the transition guarded with server_next_release = 0. In function get_sever_ready()
SG determines the server σk which became active, updates server_next_release and
server_next_finish and sets a shared variable server_ready to k. Afterwards, the active
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signal is sent to the scheduler of the component to announce the activation of server
σk. Also, for the server that just started, RR(k) is set to Pk. When σk finishes and the
processing unit is no longer available, the automaton takes the transition guarded with
server_next_finish = 0 and similar to the previous scenario sets the shared variable
server_finished = k and sends the inactive signal to the scheduler.

On every tick of the timer, TGT leaves the Idle location and goes to the IncTime
location. During this transition, in function inc_exec_time(), the current execution time
E(j) of all tasks τj running (with status set to running or can_stop) at that time are
increased with a value MIN representing the minimum between task_next_release,
task_next_finish, server_next_release and server_next_finish. If, as a result of this
update, there are tasks for which E(j) reached bcetj then we set status(j) = can_stop
and if E(j) = wcetj then the task has finished its execution, status(j) becomes finished
and a variable finished_len counting the finished tasks is incremented. At the same
time, we identify any task τj that missed its deadline and set status(j) = overrun. Also,
as time passes the time R(i) of the next release of each MTT Θi is decreased with
MIN and the values task_next_release and task_next_finish are updated. When the
SG receives the tick signal from the Timer, in function update_times(), increases the
current activation length RE(k) of all active servers σk with MIN and decreases RR(k)
of all servers with the same value. Also the values of the variables server_next_release
and server_next_finish are updated.

Control
server_next_release>=0 &&
server_next_finish>=0

Start

tick?
update_times()

server_next_finish==0
server_finished=get_server_finish(),
deactivate_server(server_finished)

inactive!

active!

server_next_release==0
server_ready=get_server_ready(),
activate_server(server_ready)

initialize()

Figure 4.11: The Server Generator (SG) timed automaton

If some R(i) reaches 0 then a new instance of the MTT is released (TGT sends
the ready signal to the scheduler as explained before). When the scheduler (see
Figure 4.12) receives notification of a new task being released, checks if a server
on which to schedule the task is available and, if so, sends the go signal to the TGT
automaton and sets the entry in its server-task map accordingly. If the priority of
the newly released task is higher than the priority of one of the running tasks and
no active servers are idle, the scheduler will preempt the lower priority task and will
give the server to the higher priority task. If no server is available or the server is
deactivated while a task is running on it, the task is either scheduled on another server
(if its priority allows it) or is queued. On every tick the TGT automaton searches for all
tasks τj that finished their execution or that missed their deadline and sends finish or
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overrun signals to the scheduler. If the server used by a finished task is still active and
there are ready tasks waiting in the scheduler’s queue, a new task is started and the
go signal is sent to TGT. Moreover, when an active server σk finishes, the scheduler will
attempt to reschedule the task that was using the server on some other free server
available to the component. If no active server is free, then the lowest priority running
task may be preempted. Between all automata, data (e.g. task identifier or resource
identifier) is transmitted using shared variables.
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Figure 4.12: Timed automaton model for the scheduler of component composed of several MTTs.

In order to be able to capture task execution intervals in continuous time,
when the TGT automaton is in the Idle location, if there is at least one task τj with
status(j) = can_stop, the automaton may decide non-deterministically to finish the
task. A remark that must be made is that whenever there is at least one task with
status can_stop the value of MIN is set to 1. This implies that at the next tick signal,
the discrete clocks presented above are increased with a single time unit. If a task
τj finishes at some fraction of the time unit, another task τl that was previously
preempted or is ready to be released may take the place of τj. However, because
in this case we cannot keep track in the discrete clock E(l) of the time task τl is
executing until the first tick after it has been started/restarted, the value in E(l)
is only an approximation of the real execution time of τl. Although, this approach
represents just an approximation model of the real system, we will show in the next
section that the model preserves the properties of the system and any component
that is found schedulable with the proposed model is indeed schedulable.

It is important to notice that once each component of an application is proved
to be schedulable, by using reachability analysis on our model we can also check
the schedulability of the entire application as follows. Each execution time server
σk is basically a periodic task with hard deadlines and fixed execution requirement
Qk. Therefore it can be considered as an MTT consisting of a single task with bcet =
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Figure 4.13: Stopwatch automata model of a real-time component.

wcet and the whole application can be seen as just another component with its own
scheduler and whose MTTs are the execution servers corresponding to the service
contracts of its components. If we consider that the application also has a service
contract mapped to another set of execution servers, we can again check the proposed
model by changing only the parameters of the MTTs and of the execution servers to
reflect the new scheduling level represented by the parent application.

4.3.4. Stopwatch Automata as a Model for Real-Time Components

Stopwatch automata [59] can be defined as timed automata for which clocks can be
stopped and later resumed with the same value. These clocks are called stopwatches
and provide a simple way for modeling preemptive real-time tasks. Syntactically, a
Stopwatch automaton (SWA) is a tuple 〈L, l0,Σ, C, I, E,A〉 where L, l0,Σ, C, I, E have the
same meaning as for timed automata (see Section 3.3.) and A : L × C → {0, 1} is
a function that defines the rates of clocks ci ∈ C in locations as differential functions
v̇(ci) = ki where ki ∈ {0, 1}.

From a semantical point of view, the element that distinguishes the SWA from
the timed automaton is the clock valuation function v : C → R+ assigning positive real
values to clocks in C. In a SWA the value of a clock variable during a delay transition
(l, v)

d−→ (l, v′) is updated to v′(ci) = v(ci) +A(l, ci) · d, ∀ci ∈ C.
In our case, since the tasks belonging to the MTTs of a component are sched-

uled using a preemptive scheduling policy we could have chosen to model the com-
ponent using the SWA in Figure 4.13. The execution time of each task in each MTT is
represented as a stopwatch clock ecj , ∀j ∈ {1, 2, ..., n · ti} with 1 ≤ i ≤ n. With each MTT
we associate a clock dci, ∀i ∈ {1, 2, .., n} which will keep track of the MTT’s deadline.

In the stopwatch version of our components we only need to replace the TGT
automaton with a Task Generator Stopwatch automaton (TGS). The TGS presen-
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ted in Figure 4.13 still uses the variable task_next_release to remember the time
until one of its MTTs must be released but it is not necessary to keep the variable
task_next_finish. When the system starts, task_next_release is initialized to min(R(i)),
i = 1, 2, .., n and the automaton goes to the Ready location. From this location, it can
either go the Idle location if there are no tasks ready for release or, if there is at least
one task τj with status(j) = idle, the automaton executes the transition with the guard
must_release = true and, in function get_ready_task() elects the task τj, j = 1, 2, .., ti,
which is idle, updates task_next_release, puts the task global identifier (i− 1) · n+ j in
the shared variable task_ready and sends the ready signal to the scheduler automaton.
The scheduler will read the task_ready variable and will add task τj to its queue. On
each release of the MTT Θi, R(i) is postponed with Ti. After all tasks that are ready to
start are released, the stopwatch automaton goes to the Idle location where it waits
for a tick signal from the Timer automaton or for a running task τj to finish. Another
event which may take the automaton out of the Idle location is a missed deadline of
any MTT. The rates of the clocks ecj and dci are specified in the guard of the Idle
location: dc′i = 1 for all MTTs which contain at least one task that is not finished yet,
otherwise dc′i = 0 and ec′j = 1 for all tasks that have status(j) = running but ec′j = 0 for
the other tasks.

In the stopwatch automaton the execution time of each task τj is measured
by stopwatch ecj started at the release of the task, when the automaton sends the
ready signal to the scheduler automaton while the variable task_ready = j, until the
task finishes and the finish signal is sent with variable task_finished = j. ecj does not
include the time while the task was preempted. Therefore, for any task τj belonging
to the multi-threaded task Θi the following constraints should be true such that we
can say that τj has not missed its deadline:

0 ≤ ecj ≤ wcetj , 0 ≤ ecj ≤ dci (4.1)

Definition 7. A multi-threaded task Θi = (Ti, Ti, Di, Ri) is schedulable iff all its tasks
τj = (bcetj , wcetj , prioj) ∈ Ti finish execution before the deadline of Θi: dci ≤ Di when

ecj = wcetj , ∀j ∈ {1, 2, ..., ti}.
Definition 8. A component is schedulable iff all its multi-threaded tasks are schedul-

able.

The set of actions of the TGS is Σ = {ready,go,preempt,finish,overrun,idling, tick}.
The idling signal is sent by the scheduler automaton when goes in or out of the Idle
location. TGS stays in the Idle location as long as either there is no servers active or
there are no ready tasks to be scheduled or both of these conditions are true. The go
and preempt signals are controlled also by the scheduler. The TGS will send ready for
every new release of a task instance and finish at its end.

A timed word over the alphabet Σ is a pair (ρ, θ) where ρ = ρ1, ρ2, .. is an
infinite sequence of events in Σ and θ = θ1, θ2, .. is a timed sequence denoting the
timestamps of the events in ρ. A timed language over Σ is a set of timed words
over Σ. The timed language L(S) accepted by the stopwatch automaton is the union
of the timed languages Lj(S) where the words in each language Lj(S) refer to valid
event sequences generated during the execution of task τj. We consider that L(S) =
⋃

1≤i≤n

⋃

1≤j≤ti
Lj(S) because the semantics of task related events in Σ are established

only in correspondence with a shared variable indicating the task to which the event
refers. The untimed words in all Lj(S), and consequently in L(S), are described by the
following regular expression:

ES = (ready, go, (preempt, go)∗, finish) (4.2)

BUPT



4.3. - Approximative Schedulability Analysis for Task Graphs 59

In our case the timestamps of all events {ready,go,preempt,finish} acceptable
by the TGS have to be less than the deadline of the MTT containing the task for which
the event appeared (i.e. the task is indicated in a shared variable). This implies that
the time a task τj in Θi spends in the ready state, denoted from now as Treadyj , must
be lower or equal than Di−wcetj −Twaitj , where Twaitj is the time the task has to wait
for its predecessors to finish.

4.3.5. Approximation of Components using Timed Automata

In this section we show what are the approximation errors implied by the proposed
method for schedulability analysis of real-time component-based applications. We
also prove that any component declared schedulable by our method it would also
be declared schedulable by the stopwatch model. We do this by showing that the
language L(T ) of TGT is also accepted by TGS.

The alphabet of the TGT is similar to the one of the stopwatch automaton.
The tick and idling events in Σ are not directly related to the execution of the task and
only help in modeling the discrete time. These two signals are kept in TGS since the
activation time of the servers is still measured with discrete clocks (i.e. we see them
as non-preemptable tasks with integer parameters). Keeping the discrete clocks also
in TGS, instead of replacing them with real clocks, has no influence on the accuracy of
the model and on the schedulability analysis. Therefore, in what follows we will refer
mostly to the task-related events in Σ: ready, go, preempt, finish (overrun means the
system is not schedulable and, as we analyze the conditions under which the system
is schedulable, we assume this event does not appear).

For the proposed discrete time model we have chosen to consider a time unit
equal to 1. The approximation errors in our model arise from the following situations:
(1) a task τj starts its execution at some subdivision of the time unit and
(2) a task τj resumes its execution (after it has been preempted) at some subdivision

of the time unit.
Since we cannot measure the time from the start/restart point of τj until the beginning
of the next time unit, the subunit of execution time will not be reflected by E(j).

A task τj can be preempted either when a higher priority task τl becomes
ready for execution or the server used by task τj is deactivated and there is no other
active and free server. Activation and deactivation of servers is observed by TGT
only through task preemptions and resumptions. As for all MTTs the release time is
an integer value, a higher priority task τl can be released for execution while τj is
executing only at discrete moments. If τl does not depend on any task it means that,
in this case, τl can preempt τj only at discrete moments of time and the clocks E(j)
and E(l) will behave just like the clocks ecj and ecl. If τl depends on some task τk and
τk finishes at some time between two consecutive discrete moments then this makes
it possible for τl to preempt τj. In the later case, the clocks E(j) and E(l) will not be
increased at the next discrete time point. If task τj resumes is execution during the
same fraction of time in which it was preempted, clock E(j) will still not be increased
as in this case τj ’s role is similar to that of τl in the previous case. This implies that
no matter how many times the task is preempted between two successive discrete
time points, in the computation of E(j) this will have the same effect as a single
preemption. Since all tasks of an MTT Θi have the same deadline Di and are released
at the same time then for all tasks in Θi at most mj preemptions may influence the
value of the discrete clock E(∗) without a deadline miss occurring, where

1 ≤ mj ≤ Di − Twaitj ,mj ∈ N (4.3)
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The alphabet of TGT is the alphabet of the TGS, namely Σ = {ready,go,preempt,
finish,overrun,idling,tick}. Just like for the stopwatch automaton, in this case also we
are interested only in the events in Σ related to task execution. Therefore, for each
task τj, the timed automata has to accept timed words following the syntax of the
untimed regular expression:

ET = (ready, go, (preempt, go)∗, finish) (4.4)

We see that ET = ES.
In what follows we use vswj to denote the valuation of the stopwatch clock ecj

in TGS and vt for the valuation of the continuous clock in TGT, where vt ∈ [0, 1]. We
also consider a valuation vj = E(j) + vt for each task τj. This helps in measuring the
approximation error of the proposed model. Note that vj is an approximation of vswj .
As at most mj preemptions of a task τj can influence the value of E(j) it results that
vswj − vj ≤ mj. Also, we use vdci to denote the valuation of the clock dci in TGS and we
consider the valuation vΘi = Ti − R(i) + vt which measures the time since the release
of the MTT Θi. The valuation vΘi will grow with the same slope as the valuation vdci
and consequently vΘi = vdci at any time between the release of Θi and its finish. Also,
we consider vτj = Ti−R(i)−Twaitj + vt which measures the time since the start of task
τj. At all time instants between the start of τj until its deadline vτj ≤ vΘi and both vτj
and vΘi grow with unitary slope.

In order to establish the relationship between TGT and TGS, we must compare
the timed words that follow the syntax of ET and ES. We assume the timestamps
of these words analyzed in relation to the valuations vΘi for TGT and vdci for TGS,
respectively, are the same.

Theorem 1. For any timed word that follows the syntax of ET and ES and simulates

the execution trace of a task τj on both TGT and TGS automata, vswj −mj ≤ vj ≤ vswj

holds from the release of the task until its ending, ∀j ∈ {1, 2, ..., ti} and ∀i ∈ {1, 2, ..., n}.

Proof. Both TGS and TGT receive events related to a specific task in the same order
and with the same timestamps (related to vΘi and vdci , respectively). Whenever the
TGT receives a go signal it sets the status of the task to running and when it receives
the preempt signal the status of the task is set to ready. The behavior of the TGS
upon receiving the go and preempt events is the same.

When the status of the task is running, vswj grows with slope 1 and stays
constant when the task has status ready. The valuation vj also stays constant while
the task is in the ready state and grows with slope 1 when the task is running due to
the vt component. If the task is preempted only at discrete time points (e.g. when the
server that the task was using finished its available execution units) then at the end
of the task vj = vswj . However, if a task preemption happens between two successive
distinct time points, the valuation vt is not added to vj, whereas vswj will contain also
this fraction of time unit, and therefore vj ≤ vswj . Since the vj can stay constant for at
most mj times, each time by not being increased with at most 1 time unit, it follows
that vswj −mj ≤ vj.

The inequality in Theorem 1 shows that during the simulation of the same
word on both the TGT and TGS automata, it will take at least the same amount of
time for vj to reach a specific value as it will take to vswj , but it could also take longer.

Next we analyze possible timestamps of the finish event and show that all
tasks that finish before their deadlines in TGT also finish before their deadlines in
TGS. As this event is related to the guards in the automata that contain the best
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case execution time bcetj of a task τj and its worst case execution time wcetj we will
determine what is the relation between the actual best execution time tbcetj (the value
of vτj when vj = bcetj) and the actual worst execution time twcetj (the value of vτj when
vj = wcetj) and the valuations vj = bcetj and vj = wcetj. Note that vj does not include
those fractions of time units that we cannot measure in the TGT.

Theorem 2. For any timed word that follows the syntax of ET and simulates the

execution trace of a task τj on TGT, if vj = bcetj then tbcetj ≥ bcetj, ∀j ∈ {1, 2, ..., ti} and
∀i ∈ {1, 2, ..., n}.

Proof. If task τj is not preempted during its execution then tbcetj = bcetj. If τj is
preempted only at discrete time points then 0 < tbcetj − bcetj ≤ Treadyj + mj. If the
task is preempted between two consecutive discrete time points then the valuation
vj when the task will resume its execution will not contain the subunit of time that it
had executed before it was preempted and only an integer number of time units. In
contrast, tbcetj will contain those time fractions and the preemption time and, therefore
it will reach bcetj faster than vj which means that tbcetj > bcetj.

Theorem 3. For any timed word that follows the syntax of ET and simulates the

execution trace of a task τj on TGT, if vj = wcetj then twcetj ≥ wcetj, ∀j ∈ {1, 2, ..., ti}
and ∀i ∈ {1, 2, ..., n}.

Proof. If task τj is not preempted during its execution then twcetj = wcetj. If τj is
preempted only at discrete time points then 0 < twcetj − wcetj ≤ Treadyj + mj. If the
task is preempted between two consecutive discrete time points then the valuation
vj when the task will resume its execution will not contain the subunit of time that it
had executed before it was preempted and only an integer number of time units. In
contrast, twcet will contain those time fractions and the preemption time and, therefore
by the time vj will reach wcetj twcetj will be greater than wcetj.

From theorems 2 and 3 it follows that, if a task finishes its execution before
its deadline in TGT (twcetj ≤ Di or tbcetj ≤ Di), it will always meet its deadline in
TGS (i.e. in the TGT the task executes for a longer time that in TGS and is still
schedulable) which means that if the task is proven schedulable in TGT then it will
also be schedulable in TGS.

For a task τj belonging to a MTT Θi to be schedulable it is required for it to
finish before its deadline. If Treadyj is the time for which the task has the ready status
then we say that the task is schedulable if the following condition is satisfied:

Treadyj +mj ≤ Di − wcetj − Twaitj (4.5)

The condition 4.5 says that task τj can be preempted for at most Di−wcetj−Twaitj−mj

before its deadline. The mj term appears due to the imprecision of the model.
Next we prove that TGS accepts the timed language over Σ that TGT accepts.

Specifically we prove that L(T ) ⊆ L(S) by checking the intersection L(T )
⋂

L(S) = ∅. We
have already shown that the syntax of the timed language L(S) =

⋃

1≤i≤n

⋃

1≤j≤ti
Lj(S),

where Lj(S) is the language with words referring to valid event sequences generated
during the execution of task τj. By analogy, L(T ) =

⋃

1≤i≤n

⋃

1≤j≤ti
Lj(T ). Therefore,

if Lj(T ) ⊆ Lj(S), ∀1 ≤ j ≤ ti and ∀1 ≤ i ≤ n then also L(T ) ⊆ L(S). With this objective
we prove that Lj(T )

⋂

Lj(S) = ∅, ∀1 ≤ j ≤ ti and ∀1 ≤ i ≤ n. For a task τj to be
schedulable all words in Lj(T ) must satisfy condition 4.5. Similarly, all words in Lj(S)
must satisfy the condition Treadyj ≤ Di − wcetj − Tsw_waitj , where Tsw_waitj is the task
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Figure 4.14: The MTT for slice decoding.

waiting time in TGS and Tsw_waitj ≤ Twaitj . Then the condition Lj(T )
⋂

Lj(S) = ∅
becomes (Treadyj +mj ≤ Di−wcetj −Twaitj and Treadyj > Di−wcetj −Tsw_waitj ). As from
condition 4.3 we know that mj ≥ 1 and Treadyj cannot be at the same time higher and

smaller than a value, it follows Lj(T )
⋂

Lj(S) = ∅ is true for any task τj and, therefore
L(T )

⋂

L(S) = ∅ holds.

4.3.6. Case Study for the H.264 Decoder

Using the proposed method for schedulability analysis, in this section we present a
series of experiments in which we apply the proposed schedulability method to analyze
the multimedia H.264 decoder [2]. The decoder is modeled as a component.

We use the H.264 decoder for decoding 176×144 square pixel Quarter Common
Intermediate Format (QCIF) video intended for portable multimedia devices. In the
encoded video, each video frame can be divided in slices and each slice can be further
split in blocks of 16 × 16 pixels, called macro-blocks (MB). The decoding process can
be applied to several slices in parallel and consists of several steps which can be
mapped to the tasks of a MTT, one MTT for each slice. In the first stage of the
process, numerical values are recovered from the binary codes of the compressed
video (Entropy Decoding). Since a part of the data in the encoded video was computed
through prediction, in the next stage (Dequantization and Inverse Transform DQIT)
the differences between the predicted data and the real data are recovered. Next,
in the motion compensation (or Inter-prediction) or Intra-prediction stage, each MB
in the frame is decoded based on predicted data from previous frames or other MBs
in the frame. Finally, the MBs of each slice are put together (Reconstruction) and a
filtering stage is applied to improve quality of the decoded slice. Correspondingly, each
MTT will have five tasks, one for each of the above stages. The MTT corresponding to
the decoding process is presented in Figure 4.14. We consider that for each frame the
same MTT will process the same slice.

To see how we can apply our method on the H.264 decoder, we extracted
the execution parameters of the tasks in a MTT through profiling of the FFmpeg [1]
encoder using three real video files (obtained from [4]) with increasing level of spatial
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Figure 4.15: Model checking time for H.264 experiments

details and amount of movement:
• Akiyo - characterized by low spatial detail and low amount of movement,
• Foreman - characterized by medium spatial detail and low amount of movement,
• Mobile - characterized by high spatial detail and medium amount of movement.

After profiling we have obtained the [bcet, wcet] intervals shown in Figure 4.14. The
execution time for the Entropy Decoding stage depends on the input data and hence
its large variation.

We have checked the schedulability of the component model using the UPPAAL
model checker by issuing the verification of the A[] not Error property (i.e. the Error
location is never reached). We ran experiments considering that for each frame of the
video 2 (experiment 2-S), 3 (3-S), 4 (4-S) or 5 (5-S) slices are processed in parallel,
where for each slice we have a MTT. The number of actual tasks in each experiment is
five times the number of slices used for the experiment. First, for each task in a MTT,
we have considered the [bcet, wcet] intervals shown in Figure 4.14 and for the period
and deadline of the MTT we have chosen the value 100. Since we noticed that the
difference between the wcet and the bcet of each task and between execution times
of different tasks influences the scalability of our method (the maximum number
of supported MTTs), we then ran experiments in which all these time values were
doubled (experiments 2-SD, 3-SD, 4-SD, 5-SD). In the last series of experiments
(2-SD1, 3-SD1, 4-SD1, 5-SD1) we doubled only the execution time of the first task
in the MTTs. We have chosen only this task since it has the greatest execution time,
which varies along the largest interval. For all experiments we have used a set of
three execution servers, one on each processor, with periods equal to 50 and a total
processor utilization of 2.0 meaning that every 50 time units the servers provide 100
execution units to the decoder. The experiments were executed on a machine with
Intel Core 2 Quad 2.40 GHz processor and 4 GB RAM running Ubuntu. The model
checking time of all experiments is presented in Figure 4.15.

We can see in Figure 4.15 that although the number of tasks gets up to 25
the model checking time is rather small (maximum 310 seconds). Also it can be
seen that the complexity is a factor of the number of tasks, but is influenced also by
the difference between the best and worst case execution time. Also, from the last
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four experiments (2-SD1 - 5-SD1) it can be observed that by increasing the difference
between parameters of different tasks, the model checking time also grows even more
than when we double all task parameters. We believe this is due to the fact that the
change in these experiments has increased the non-determinism of the model.

4.4. Concluding Remarks

This chapter presents the proposed schedulability analysis method for mul-
ti-core contract-based scheduling, which assumes that the real-time system runs a
set of component-based applications, each with its own timing constraints. We have
shown in the first section that the utilization-bound methods used in classical real-time
scheduling give only pessimistic and sufficient tests for deciding whether a system us-
ing service contracts is schedulable or not.

The proposed method uses the timed automata formalism and transforms
the schedulability problem into a reachability one solved through model checking.
The timed automata model of the system employs discrete time semantics. The
contributions of this chapter are focused on the following areas:

c1. We formalize the problem of deciding the schedulability of multi-core contract-
based systems [60] utilizing timed automata.

c2. We introduce model checking as a technique for analyzing the global preemptive
multi-core schedulability of an hierarchy of system components consisting of inde-
pendent tasks with fixed execution time, each with its own timing constraints. Un-
like the analytical schedulability method described in [60], the method proposed
here is exact and can use any scheduling policy, not just fixed priority policies.

c3. We extended the schedulability method proposed for independent tasks (see c2.)
to a more realistic system, where the components can consist of tasks with pre-
cedence constraints between them and can have variable execution time. For this
model we give a method for schedulability checking using timed automata that
approximates the behavior of a stopwatch automata. The approximation is con-
servative, in the sense that any component deemed schedulable by our method
would also be schedulable in the stopwatch automata model.
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5. MODEL CHECKING FOR MULTI-CORE TIME
PARTITIONS DESIGN

5.1. Problem Formulation

Contract-based scheduling is tightly connected with resource temporal parti-
tioning according to which a resource (e.g. the processor) is shared by several com-
ponents, each composed of a set of schedulable entities (i.e. tasks). In this context,
two problems must be solved:
(1) making real-time guarantees to components running in a temporal partition, and
(2) designing the temporal partition that fulfills the timing constraints of a component.

In the previous chapter we have used model checking to derive real-time
guarantees for the components running within a processing resource partition (i.e.
time partition or execution time server). Conversely, in this chapter we propose a
model checking method for designing a multi-core time partition for a given system
component so that it fulfils the component requirements with the minimum resource
utilization.

Generation of time partitions is an important problem. Such partitions are
used in critical systems like avionics. For example, ARINC-563 [23] – a specification
used in digital avionics domain – defines a software interface between applications and
the operating system of the avionics computer where each application is assigned a
distinct time partition. The operating system supports a two-level hierarchical schedul-
ing framework: a system-level scheduler which schedules the time partitions and ap-
plication-level schedulers within those partitions. Recently, an extension of the time
partitions for multi-core systems has been defined as part of the PikeOS operating
system [104]. However, currently time partitions are designed manually. This is not
only time consuming but, more important, can lead to over approximations of the
application’s resource requirements and under utilization of processing resources.

In this chapter we use the model described in Section 4.2. to develop a
method for generating multi-core time partitions for a two level hierarchical scheduling
system based on the parameters of the components that will execute in those time
partitions. The block scheme of this hierarchy is depicted in Figure 5.1: the tasks
of each system component are assigned to a different multi-core time partition and
are scheduled on it using a component-level scheduler. Further, all time partitions are
scheduled on the multi-core platform using a system-level scheduler.

Although, the proposed method uses the model in the previous chapter (see
Section 4.2.), we impose a few restricting assumptions on it:

a1. The characteristics of the tasks (arrival times, periods and execution times) are
given as requirements to the scheduling algorithm and do not change at schedul-
ing time.

a2. All tasks are periodic and independent of each other. They share only the time
partition supplied to the parent component.

a3. System components are independent of each other.
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Figure 5.1: A two-level scheduling hierarchy with multi-core time partitions

a4. The scheduling algorithm has succeeded only if all task deadlines are met. If a
task misses its deadline it is considered a failure.

a5. The only shared resource in the system is the processor.

a6. The speed of the multi-core processor does not change.

a7. A task cannot execute on two or more cores simultaneously, and a core cannot
execute two or more tasks simultaneously.

a8. Preemption is permitted at any time but we do not consider any overheads.

a9. Task migration is allowed at any time and no overhead is associated with migra-
tion.

a10. The priorities of the tasks are fixed.

a11. The execution time of a task is a constant and does not variate within an upper
and lower bound.

a12. The resource partitions allocated to a component are not preemptable.

5.2. Temporal Partition Design

In the recent years the real-time research community gave considerable at-
tention to hierarchical scheduling. Mok et al. [136] introduced the concept of resource
model for characterizing the resource supply provided by a parent component to one
of its child components. This resource model enables child components to have dif-
ferent schedulers and allows independent schedulability analysis for each component.
Several resource models have been considered in the context of uniprocessor systems
(e.g. bounded-delay resource model [136] or the periodic resource model [153]). As
shown in [77] simply replicating these resource models to multiprocessor systems is
inflexible and leads to wasted processor utilization.
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Designing a resource model for a given application so that it fulfils the applic-
ation requirements with the least resource utilization is a problem that until now has
been tackled only for uniprocesor systems. Almeida and Pedreiras [11] introduced a
technique for computing the parameters of an execution time server from the task
parameters using the worst case response time of each task. Automatic scheduling
of time partitions for an ARINC-653 platform has been the focus of the work in [76].
Here, they model ARINC-653 as a two-level hierarchical system, and develop com-
positional analysis techniques for it. A merit of the work in [76] is the fact that
preemption and migration costs are considered. However they compute the time par-
titions as simple component interface, characterized by a computational request and
a period. Based on this, temporal partitions is transformed into tasks with offset zero,
scheduled based on a fixed-priority policy.

Easwaran et al. [77] introduced a MPR model where the contribution of each
processor to a component resource supply is not the same. Their work addresses
a multi-level containment hierarchy where components have hard real-time timing
requirements and consist of sporadic tasks. They provide a sufficient condition for
component schedulability under the global EDF scheduling policy and the MPR model
based on resource supply bound function and component workload. We also use a
periodic resource model but unlike the work in [77] we test schedulability of a com-
ponent using reachability checking of the timed automata model of the system which
is not altered by the pessimism of a workload-based condition. Moreover they intro-
duce a technique for transforming a MPR model into a set of periodic tasks which are
scheduled by the parent component, but the examples presented in the paper show
that the difference between the processor utilization of these tasks and the resource
requirements of the child component grows with the period of the resource. In [116]
the problem of scheduling multi-level component hierarchies on multiprocessor re-
source partitions is also considered but is mostly restricted to soft real-time sporadic
tasks and assumes that only a small number of tasks have hard timing constraints.

5.3. System Model

A multi-core time partition is implemented as a set of fixed Major Time Frames
(MTFs), one for each core. The length of the MTF on all cores must be the same and
the frames must be synchronized (i.e. they all start simultaneously). Each MTF
consists of several scheduling windows. A scheduling window is defined by an offset
relative to the beginning of the MTF and a length. The length of the major time frame
identifies the frequency with which its scheduling window execute, i.e., it represents
the period of the time partition. Therefore all scheduling windows are periodic. It
is also possible for the period of a scheduling window to be chosen from one of the
divisors of the length of the MTF. The component associated with a time partition gains
access to the processor whenever one of the scheduling windows becomes active and
is preempted when the window terminates [104]. As it is possible for two or more
active scheduling windows in different MTFs to overlap, the partition allows concurrent
execution of two or more tasks. From this specification we derive next a formal
definition of the multi-core time partition.

Definition 9. A multi-core time partition mTP is described by a tuple 〈SW, P 〉 where:
• P is the length of the Major Time Frame (MTF) or the period of the time partition
and SW is the set of scheduling windows swk during which the cores are available

to a system component,
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• each scheduling window swk ∈ SW is a tuple (ck, ok, lk, tk) where ck indicates the
core which is available, ok defines the offset of swk to the beginning of the MTF,

lk specifies the length of the window, while tk gives its period with the restriction
that the period is an exact divisor of P .

Example 5. Figure 5.2 shows two time partitions mTP1 = 〈SW1, 100〉 and mTP2 =
〈SW2, 100〉 scheduled on a dual-core processor. mTP1 contains three scheduling win-

dows, SW1 = {SW1, SW2, SW4}, where SW1 = (1, 0, 10, 100), SW2 = (1, 50, 20, 100) and
SW4 = (2, 0, 25, 100). mTP2 also contains three scheduling windows, SW2 = {SW3, SW5,
SW6}, where SW3 = (1, 25, 25, 100), SW5 = (2, 40, 20, 100) and SW6 = (2, 80, 20, 100). It
can be seen that all scheduling windows are periodic with period equal to 100 (i.e.

the length of MTF). Note that both partitions contain overlapping scheduling windows

allocated to different cores which means that different tasks of the corresponding

components can run in parallel.

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

	
���

	
���

��� ���

� �� �� �� �� �� �� �� 	� 
� ��� ��� ��� ��� ��� ��� ��� ��� �	� �
� ���

time

Figure 5.2: An example of two time partitions scheduled on a dual-core processor

The method proposed in this thesis for designing mTP uses model checking
on the timed automata model of a scheduling level introduced in Section 4.2.. We
remind that the model consists of three timed automata: one for the component
(see Figure 4.3), one for the component-level scheduler (see Figure 4.5) and one
for the resource level (see Figure 4.4). Therefore it is necessary to associate the
time partition with a timed automaton which models the activation of the scheduling
windows.

Definition 10. In the timed automata formalism a multi-core time partition model

mTPM is a pair 〈mTP,AmTPM 〉 where:
• mTP is the multi-core time partition defined previously, and
• AmTPM is a timed automaton over the action set ΣSW modeling the activation
scheme of the scheduling windows in the time partition where:

– ΣSW = {active, inactive},
– action active signals to the component scheduler that a processor is now
available to the component, while inactive signals that a processor can no
longer be used to schedule the tasks of the component.

To satisfy the time demands of a component, the time partition must supply
sufficient computational resources. For example, time partition mTP1 in Example 5
provides 55 units of resource every 100 units of time and the ratio 55

100
represents the

resource bandwidth or average processor supply provided over time.
Furthermore, we assume that the components hosted by these multi-core

time partitions consist of a finite set of n tasks T = {τ1, τ2, ..., τn}, where each task
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τi ∈ T is specified as a tuple τi = (Ci, Ti, Oi, Di), with Ci being the worst case execution
time of the task, Ti the inter-arrival time between different instances of the same task,
Oi the first release of the task and Di is the deadline of the task where Ci ≤ Di ≤ Ti

(i.e. tasks have constrained deadlines). The tasks of the component are scheduled
on the associated time partition using a fixed priority global multi-processor scheduler
with preemption enabled. Without loss of generality, we assume tasks in T are ordered
in decreasing order of their priority.

5.4. Multi-core Time Partition Generation

In this section we propose a model-checking based technique for generating
the multi-core time partition that provides the least resource supply satisfying the de-
mands of a component consisting of a set T = {τ1, τ2, ..., τn} of hard real-time periodic
tasks scheduled under a global fixed-priority scheduling policy. More specifically, we
determine the multi-core time partition mTP = 〈SW, P 〉 of the mTPM model defined
in Section 5.3.

Our generation method is based on the diagnostic traces given by the UPPAAL
model checker when verifying a temporal logical property on the timed automata net-
work composed of the three automata composing a scheduling level in the hierarchy
of schedulers. A trace is a sequence of states and transitions representing a possible
execution path of the modeled system. UPPAAL can generate such traces either by
using the simulation feature or through its model checker. The model checker gener-
ates a diagnostic trace witnessing a submitted property or a counterexample trace if
the checked property is not satisfied.

The proposed method uses both kind of traces. This leads us to a problem as
we have to simulate the model for a specified amount a time. In a previous chapter
we introduced the notion of feasibility interval: a finite interval such that if all tasks in
a taskset meet their deadline in this interval then they will always meet their deadline
(no deadline miss will ever occur) as, after that, the schedule is periodic. Therefore,
we could use the feasibility interval also as a simulation interval. This feasibility inter-
val is computed as a function of the parameters in the taskset and of the scheduling
policy. For single processor, it has been proved that such a feasibility interval ex-
ists for all task models and scheduling policies. However, in global multiprocessor
real-time scheduling, this interval has been computed only for independent periodic
tasksets scheduled according to a fixed-priority policy [66, 67]. However, until now,
the problem has not been tackled for multiprocessor hierarchical systems. In the next
section, starting from the results in [66] we prove that a feasibility interval can also be
computed for hierarchical scheduling with fixed-priority component-level schedulers.

5.4.1. Periodicity of Hierarchical Scheduling Algorithms

A taskset T = (τ1, .., τn) is feasible with respect to a multiprocessor platform π if there
exists at least one scheduling algorithm which can schedule all possible job sequences
generated by the tasks on the system and no job misses its deadline.

Definition 11. [66] If A is an algorithm which schedules T upon a multiprocessor
platform to meet the deadlines, then the system T is said to be A-feasible.

It has been proved in [66] that any feasible schedule of a set of asynchronous
constrained deadline periodic tasks using a fixed-priority preemptive scheduling policy
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on a uniform multiprocessor platform is periodic from a specific point in time. Accord-
ing to [66] the feasibility interval is [0, Sn + LCM(p1, p2, ..., pn)) where Si is defined
inductively as follows:

Si =

{

Oi, if i = 1,

max{Oi, Oi + ⌈Si−1−Oi

Ti
⌉Ti}, ∀i ∈ {2, ..., n}. (5.1)

This result is presented in [66] as the following theorem.

Theorem 4. [66] For any preemptive fixed-priority algorithm A, if an asynchronous

constrained deadline system T is A-feasible, then the A-feasible schedule of T on m
uniform processors is periodic with a period P from instant Sn where Si is defined

inductively as in Equation 5.1.

We extend now the above result assuming the tasks are scheduled on a re-
source partition using a hierarchical global multiprocessor fixed-priority scheduler with
preemption. In what follows we use H(T ) to denote the Least Common Multiple (LCM)
of the task periods in T . Without loss of generality we assume the tasks in T are
ordered in decreasing order of their priority. Let Text denote the task set obtained
by extending T with m tasks with offset 0 and period P and m being the number of
processors: Text = {τ ′1, ..., τ ′m, τ1, τ2, ..., τn}. The tasks in Text are ordered in decreasing
order of their priority.

Theorem 5. For any preemptive fixed-priority scheduling algorithm A, if the asyn-

chronous periodic deadline constrained taskset Text is A-feasible on m uniform pro-

cessors and P is an exact divisor of H(T ), then the subset T ⊂ Text is A-feasible on
a multiprocessor time partition with period P and the A-feasible schedule is periodic
with a period equal to H(T ) from instant Sn, defined by Equation 5.1. (Assuming that

the execution time of each task is constant.)

Proof. For a set of m processors we use σj(t) = i to indicate that task τi is scheduled
on processor j at time t and σj(t) = 0 to show that processor j is idle at time t. The
availability a(t) of the processors is then defined as a(t) = {j | σj(t) = 0} ⊆ {1, ...,m}.

If Text is A-feasible on the m processors and P is a divisor of H(T ) then
H(Text) = H(T ) and according to Theorem 4, the schedule is periodic with period H(T )
from instant Sn.

We denote by σ′(m) the schedule of the m highest priority tasks τ ′1, ..., τ
′
m and

by am the corresponding availability of the processors. Since S′m = 0, it results that
σ′(m) is periodic with period P from 0. Since tasks in Text − T have higher priorities
than any task in T , then the scheduling of tasks in T will not interfere with tasks in
Text − T that are already scheduled. Moreover, for all t ≥ 0 we have am(t) = am(t + P )
meaning that the availability of the processors repeats and forms a periodic resource
partition with period P . Only at these moments we can schedule tasks in T . Therefore,
the task set T is schedulable with algorithm A on a m multiprocessor time partition
with period P .

5.4.2. Time Partition Generation

The first parameter of the multi-core time partition mTP that shall be defined is the
length of the MTF or the period. Based on Theorem 5, in the first phase of our method,
we choose the period of the mTP as the first randomly generated exact divisor of H(T )
greater or equal to a given threshold value. This threshold value is left to the choice
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of the system designer. For example, a possible criteria which can be used when
specifying this threshold value could be the preemption overheads.

Besides the threshold value for the period, our method takes as input a set of
constraints, in the form of a set of scheduling windows in time partitions which may
have been previously determined for other components in the system. If this set is
empty then the next phase determines the minimal number of cores required by the
component. In order to generate the mTP with utilization as small as possible, we
must use the smallest number of cores m. If U(T ) denotes the total utilization of the
set of tasks in the component, then ⌈U(T )⌉ is clearly a lower bound on m. As we
assume that the maximum number mavail of available cores is known, this number
can be considered as an upper bound for m. For each possible value of m in the range
[⌈U(T )⌉,mavail] we follow the steps described below:

(1) we build a multi-core time partition where the set of scheduling windows is SW =
{〈ck, 0, P, P 〉 | ck = 1, ..,m},

(2) the component automaton and the time partition automaton AmTPM are augmen-
ted with a Stop state which will be reached when the clock of the system hits the
end of the feasibility interval,

(3) we test if the tasks are schedulable with the current value of m by asking UP-
PAAL to check the property φoverrun ≡ (A [] not Error); if the verification fails we
increment m and if m ≤ mavail we go back to step 1, otherwise the tasks are
not schedulable on the available cores with the chosen algorithm and the time
partition generation fails.

If a set of scheduling windows is received as input, then we will consider
the period P of the time partition to be computed as the LCM of the periods of the
scheduling windows received as input constraints. Next, we derive a set of scheduling
windows, encompassing the free time intervals on the multi-core platform. These
scheduling windows will be considered as an initial time partition for the following
phase of the method, instead of the time partition defined in step 1 above.

After the minimum number of necessary cores is determined, the next phase
of our method consists in finding the scheduling windows of the mTP when those cores
should be available for scheduling the tasks of the component. As these scheduling
windows have the same characteristics as periodic tasks, scheduling on the parent
level will not need to worry about any constraints on the tasks of the child component.
We generate a set TPinitial of scheduling windows as follows:

(1) we get an initial schedule for the tasks of a component using the diagnostic trace
generated by the UPPAAL model checker for the reachability property φstop ≡ (E
<> Stop),

(2) afterwards, we parse the trace and search for the period Pmin with the minimum
workload,

(3) using the partial schedule of tasks during the period Pmin, we build the set TPinitial

containing only scheduling windows that overlap exactly the intervals in which
there are tasks running on the m processors,

(4) since we want to keep the number of scheduling windows on each processor as low
as possible, we further do a cleanup procedure in which subsequent scheduling
windows separated by an inactive interval smaller than a given threshold value
are merged into a single time interval.
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After getting the initial configuration for the time partition TPinitial, we ask
UPPAAL to check the property φoverrun on the resulting model of the system in order
to find out if any of the tasks misses a deadline. If the property is not satisfied a
counterexample trace will be generated by UPPAAL and we use this trace to adjust
the current configuration and get a new configuration TP . In order to obtain a new
configuration of the scheduling windows from the current one we identify the task
that missed its deadline (the problem task) and adjust the scheduling windows active
between the task’s last release and the moment when the deadline miss occurred by
extending them with the time required by the problem task to not miss its deadline
anymore. For example, if the problem task needed to execute for 3 more time units
but no scheduling window in T Pinitial provided these 3 units during the task’s last
release time and its deadline, we try to extend one or more windows in T Pinitial such
that we get these additional 3 units. A scheduling window can be extended by starting
earlier or finishing later only if by doing this operation it does not overlap with another
scheduling window on the same core (in the same or another time partition). Also the
missing time units are added in sequence (i.e. it is not useful to add 2 execution units
to 2 windows on different cores such that the 2 units overlap).

After computing the new T P, we insert it in the model and repeat the previ-
ous step until the result of the verification is positive. Since, in the second phase of
our method, when the minimum number of necessary cores was determined, we have
checked if the tasks are schedulable with the full capacity of the processor available to
them, it is guaranteed that the loop in this final phase will finish. Moreover, although
a single possible schedule is used for the adjustment of T P (i.e. the one in the dia-
gnostic trace) since the adjustment phase finishes when there are no more schedules
that miss a deadline, the final T P guarantees that all tasks of the application will meet
their deadlines.

5.5. Experimental Evaluation

In this section we present the results of our investigations into the influence
of different parameters on the time partition generation. In order to observe the
behavior of the proposed method in different circumstances, we performed a series of
experiments on randomly generated tasksets with different parameters.

Consequently, investigations on the efficiency of the proposed model required
a mean for generating task sets. As mentioned above, the proposed model uses
a discrete time formalism. In the model, along with a real-valued clock, another
integer-valued clock is utilized for keeping track of the time until the end of the feas-
ibility interval. In UPPAAL the maximum value of an integer variable is 32767. This
limitation imposes 32767 as an upper bound on the end of the feasibility interval for
the tasksets used in the model. For this reason it is necessary to have an algorithm
that randomly generates the periods of tasks as general as possible but with the re-
striction that the LCM of the periods remains under a specified threshold value. The
task period generator we have used was proposed by Goossens and Macq in [90] and
generates periods as divisors of a specified value. The task generation algorithm must
also allow setting a target utilization U(T ) of the task set. In order to generate the
task utilization values we have used a version of the UUnifast [49] algorithm, adapted
for multiprocessors, in which we consider only generated utilization values that are in
a specified interval. The procedure for generating all task parameters for a component
is presented in Figure 5.3.
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Modified UUnifast(n, U(T )) procedure
sumU = U(T ); totalU = 0; i = 1;
while (i ≤ n− 1)

nextSumU = sumU ∗ random()
1

n−i ;
u(i) = sumU − nextSumU;

if (minU ≤ u(i) ≤ maxU and
U(T ) − totalU − u(i)

n − i
≥ minU)

totalU = totalU + u(i);
sumU = nextSumU;
i = i+ 1;

u(n) = min(MAX_U, sumU, U(T )− totalU);
return u;

GenerateTasks(n, U(T )) procedure
u = UUnifast(n,U(T ));
for(i = 1 to n)

ti = generatePeriod(); // as in [90]
wi = max(1, ⌊ u(i) ∗ ti ⌋);
oi = round(rand(minO, maxO) ∗ ti);
di = round(rand(minD, maxD) ∗ (ti − wi)) + wi;

Figure 5.3: Task generation procedure

The experiments were run on a machine with Intel Core 2 Quad 2.40 GHz
processor and 4 GB RAM running Ubuntu and the utility program memtime [3] was
used for measuring the model checking time and memory usage.

As one of the major concerns related to model checking is state space explo-
sion, in the first experiment we analyzed the scalability of our model. The results
presented for this experiment were obtained for the model in which the component
and resource generator automata contain the Stop states. Since the proposed time
partition generation method implies checking repeatedly the property A[] not Error
for the system model we measured the model checking time and memory usage for
this operation for tasksets of different size. In order to do this we have used ran-
domly generated sets of tasks with periods in the range [10, 300] and utilizations (i.e.
executiontime/period) generated in the range [0.05, 1]. The offset of each task was set
to a value equal to the period multiplied with a randomly generated number in the in-
terval [0, 0.3]. The deadline of each task was set by multiplying a randomly generated
number in the interval [0.7, 1] with the period of the task. Task priorities are assigned
according to the RM scheduling policy. Also, the task sets were accommodated by a
resource partition with 9 active time intervals and a total utilization of 4.5. Figure 5.4
shows how the model checking time and memory usage increase with the number
of tasks in the set. It can be noticed that for the same size of the task set the per-
formance of the model checking can vary between rather larger limits (e.g. for sets
of 50 tasks the model checking time grows from 10 seconds to approximatively 115
seconds). This is due to the size of the hyper-period of the task sets (i.e. the LCM of
the task periods), larger the hyper-period larger the model checking time and memory
consumption.

Since our method assumes that the period of service contract is chosen as
the smallest divisor of the LCM of the task periods greater or equal to a threshold
value and we let the system designer specify this threshold value, the goal of our
second experiment is to see what are the effects of different periods on the final
service contract utilization. Using the same parameters as for the first experiment,
we have generated three sets of 20, 30 and 40 tasks, respectively. For all sets the
LCM of the task periods is the same. The total utilization for each of these task
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Figure 5.4: Influence of task set size on model checking performance
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Figure 5.5: Influence of task set size and time partition period on multi-core time partition
utilization

sets is approximately 3.0. The results in Figure 5.5 show that although there are
values of the period for which the utilization (bandwidth) of the time partition for the
component presents higher values, there are also large intervals for which the time
partition utilization is almost constant. We believe the higher values are due to the fact
that we start our service contract generation procedure by choosing the period with
minimum workload in the UPPAAL trace. On the other hand, one may have noticed
that an increased number of tasks in the set does not necessary determine a higher
resource utilization. The set with 40 tasks always gets a higher resource utilization
only because its total utilization is slightly over 3.0 (i.e. 3.16), while for the sets with
20 and 30 tasks, which have equal total utilization (2.88), there are cases in which
the service contract for 30 tasks has lower utilizations than the one for 20 tasks.

In the next experiment we tested what happens if more than the minimum
number of required cores is used. For this purpose we have generated two task
sets with 20 and 40 tasks, respectively and total utilization approximately 2.0. The
individual parameters of the tasks were generated using the same limit values as for
the other experiments. It can be seen in Figure 5.6 that the minimum bandwidth loss
is guaranteed only when using the minimum necessary number of cores, although for
certain values of the time partition period the resource utilization is the same even
when more cores are used. A higher number of used cores may determine a tendency
to increase the concurrency level in the initial phase of our method when the period
with the minimum utilization is determined and since the maximum concurrency will
lead to a higher workload, the chosen period will not cover this high concurrency and
as a consequence we will get a higher number of missed deadlines in the next phase
of the proposed method.
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Figure 5.6: Influence of core number on multi-core time partition utilization

5.6. Concluding Remarks

In this chapter, we have presented a technique for generation of multi-core
time partitions. The problem of determining the time partition hosting a system com-
ponent was formulated as a reachability problem and a technique based on verifica-
tion of two temporal logic formulas was proposed. The experiments performed on the
model have shown that the method is rather scalable as it can be used for systems
consisting up to 100 tasks. Moreover, the experiments have also shown that although
the targeted systems have hard real-time constraints, the solution proposed here is
capable of generating time partitions with low utilization loss.

The contributions of this chapter are focused on the following areas:

c1. We show that any feasible schedule of a set of periodic independent tasks ex-
ecuted in a multiprocessor time partitioned system repeats itself after some period.
This result has not been proved before.

c2. We introduce model checking as a technique for designing the multi-core tem-
poral partition that fulfills the timing constraints of a component. Such temporal
techniques are currently designed manually and therefore are subject to human
error.
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6. RESOURCE SHARING IN MULTI-CORE
REAL-TIME SYSTEMS

6.1. Motivation

Over the years, the real-time research community put considerable efforts for
developing multiprocessor scheduling algorithms assuming real-time applications con-
sist only of independent tasks. However, typical applications include tasks that share
resources like data structures or I/O devices which require appropriate techniques for
ensuring mutual exclusion, such that only a single task uses the resource at all times.

In the previous chapters we focused on the problem of scheduling a set of
real-time applications consisting of independent or interacting tasks on a multi-core
platform. However, task interactions issues were limited only at the various preced-
ence constraints that can appear between tasks. In what follows the focus shifts on
issues resulted from coordinating task access to shared data structures (e.g. queues,
stacks, lists).

Mutual exclusion mechanisms work by enforcing a task to block while waiting
for the release of a resource. The time spent by a task waiting for a resource is critical
for hard real-time systems where a missed deadline can cause irreparable damage.
Therefore this waiting time must be bounded. Schedulers based on priority-driven
scheduling algorithms, either static or dynamic, are susceptible to priority inversions
due to blocking. When a high priority task blocks waiting for a resource held by
a lower priority task, if the low priority task is repeatedly preempted by tasks with
intermediate priority, it will not be able to complete and release the resource, causing
the high priority task to remain blocked for a very long time.

For single processor real-time systems, there is an extensive set of scheduling
theories handling the priority inversion problem, among these the family of Priority
Inheritance Protocols (PIPs) [151], the Priority Ceiling Protocol (PCP) [151] or the
Stack Resource Policy (SRP) [24].

In multiprocessor systems, the priority ceiling protocols are affected by the
parallel execution of tasks and consequently, they need considerable revisions. For
partitioned multiprocessor scheduling, there are a number of extensions of the uni-
processor resource sharing protocols (e.g. [61, 87, 88, 124, 143], but for global mul-
tiprocessor scheduling the research is just in initial phase (e.g. [50, 74]). We believe
this gap is due to the so called “Dhall effect” [73], a scheduling paradox which makes
that tasksets with low processor utilization are unschedulable on a multiprocessor plat-
form. Only in late 1990s and early 2000 it was proved that this effect occurs only for
particular sets of tasks which may never appear in real applications [86, 141]. After
this moment, global multiprocessor real-time scheduling became a major research
area.

Furthermore, global multiprocessor scheduling under PIP suffers of a major
limitation. On uniprocessor systems, a low priority job can block a higher priority
job, directly or indirectly, only once and only if it has been released prior to the
latter. However, on multiprocessor systems under PIP, a low priority task can interfere
multiple times with the same higher priority job and increase significantly its blocking
time [74]. Existing protocols have tackled this issue in various ways. First, there was
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the FMLP, a protocol for global and partitioned scheduling, designed for tasksets with
priorities assigned based on the EDF policy. According to this priority ordering, at most
two jobs of a low priority task will interfere with any job of a higher priority task. A
more recent protocol, the P-PCP [74], controls the lower priority interference by tight
control of the moment when a task is allowed to use a shared resource. However, in
P-PCP, reducing the interference comes at the cost of reducing also parallelism and
thus, the efficiency of the multi-core platform.

In this chapter, we improve the state-of-the-art in resource sharing proto-
cols for global multiprocessor real-time scheduling by designing a new protocol called
Limited Blocking Priority Ceiling Protocol (LB-PCP). This protocol will be extended in
the next chapter for virtualized real-time systems. LB-PCP can be applied for syn-
chronizing non-nested resource accesses between sporadic real-time tasks scheduled
according to any global fixed-priority preemptive scheduling policy. The protocol al-
lows one to control the number of blockages suffered by each task from lower priority
tasks executing critical sections, without forbidding totally the execution of such tasks.
This way, LB-PCP can limit the interference on a higher priority task from lower prior-
ity tasks no matter what priority assignment policy is used and does not restrict the
ability to exploit the parallelism provided by the multi-core platform.

Moreover, since a protocol should also have a schedulability test to check
pre-runtime deadline guarantees, we also give a schedulability test based on respon-
se-time analysis of our protocol. While in previous chapters, we employed model
checking to derive schedulability tests for virtualized real-time systems, in this chapter
and the following one we develop analytical schedulability tests and leave model check-
ing as part of future work. The schedulability analysis in the present chapter extends
the state-of-the-art response-time analysis of Guan et al. [94] to include resource
sharing based on LB-PCP.

6.2. System Model

We focus on the problem of scheduling a set of real-time tasks, T = {τ1, .., τn},
which are released either periodically, at fixed time intervals, or sporadically with a
minimum inter-arrival time between two successive releases. We use τ j

i to denote
the jth job of task τi. The tasks are scheduled on a multi-core or a multiprocessor
platform comprised of m identical processors using a global fixed-priority preemptive
scheduling policy, i.e. a task is not assigned a-priori to a specific processor. Further,
we make the following assumptions about the task model:

a1. Each task τi (1 ≤ i ≤ n) is characterized by a tuple (Ci, Ti, Di), where Ti denotes
the minimum inter-arrival time (or period) between two successive jobs of the
task, Ci its worst-case execution time and Di its relative deadline.

a2. All tasks are periodic or sporadic.

a3. We consider only constrained-deadline tasks with Di ≤ Ti, ∀i.

a4. Each task τi has a unique base priority equal to i.

a5. Tasks are sorted in decreasing order of their priority, i.e. for every pair (τi, τl) if
i < l then the priority of τi is higher than the priority of τl.

a6. During the execution of a job τ j
i its priority may be increased at level h. We call

this elevated priority level effective priority.
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a7. The priorities of the tasks are assigned statically.

a8. A job cannot execute on two or more cores/processors simultaneously, and a
core/processor cannot execute two or more jobs simultaneously.

a9. Preemption is permitted at any time.

a10. Task migration is allowed at any time.

a11. It is considered that the costs of preemption and migration are included in the
execution time.

a12. Besides the processor, the tasks also share a set of resources which can be
accessed only non-preemptively, in mutual exclusive manner.

Shared resources. The jobs of any task can issue requests for exclusive
access to a set of shared resources R1, R2, ..., Rr. A request issued by a job τ j

i for
a resource Rk is granted as soon as the job holds the resource. After the job has
executed for the amount of time that it requires Rk, the resource is said to be released.
If a request by job τ j

i for resource Rk cannot be granted immediately then τ j
i is said

to be blocked on Rk. When the resource access to Rk will be granted, τ j
i will be

unblocked.
A request for a resource Rl can be nested within the request for another

resource Rk if and only if the request for Rl is issued after the request for Rk is
issued and completes before the request for Rk completes. Here, we consider only
non-nested resource accesses but nested accesses could be handled by using resource
groups and group locks as in FMLP [50]. Furthermore, we assume that a task can be
preempted while it holds the lock of a resource and that the task will hold the lock
until it explicitly releases it.

We assume that for each task τi the worst case resource usage among all
requests for a resource Rk by a job of τi is Ci,k. Further, we use CTi,k to denote the
worst-case total resource usage time for Rk by any single job of τi. We use R(τi) to
denote the set of resources used by τi.

Definition 12. The worst-case response time RTi of task τi is the longest time from
the arrival of any job τ j

i of τi until the job completes executing. In terms of worst-case
response time, a task τi is schedulable if RTi ≤ Di.

Interference and workload. For uniprocessor systems, the common ap-
proach to analyze the schedulability of constrained-deadline sporadic tasks is to search
for a few worst-case job arrival sequences and test if the considered scheduling al-
gorithm can successfully schedule all these worst-case sequences. However, for global
multiprocessor scheduling of sporadic tasks there is no known worst-case job arrival
sequence. This means that we cannot determine exactly the interference suffered by
a task during a time interval as a result of the execution of the other tasks during that
interval and instead, we can only derive an upper-bound [26].

Formally, the interference Ii(x) on task τi over a time interval of length x is
the sum of all intervals in which τi is ready for execution but cannot be scheduled due
to the execution of higher priority tasks. We can also define the interference Ii(a, x) of
task τa on task τi as the sum of all intervals in which τi cannot execute because τa is
executing.

The work done by a task τi in an interval of length x is denoted by the workload
Wi(x). In terms of task workload, the interference Ii(a, x) denotes the part of the
workload Wa(x) that can prevent task τi from running. The workload Wi(x) is divided
in three parts (depicted in Figure 6.1) as follows:
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• carry-in: the contribution of at most one job with release time prior to the begin-
ning of the analyzed time interval and deadline in the analyzed time interval.

• body: the contribution of all jobs that are released and have deadline in the
analyzed time interval.

• carry-out: the contribution of at most one job that is released prior to the end of
the analyzed time interval but has deadline after the analyzed time interval.
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Figure 6.1: Workload components of task τi in an interval of length x

6.3. Schedulability Tests for Global Multiprocessor Systems

In this section we outline a sufficient schedulability test for global multipro-
cessor scheduling based on response time analysis (RTA) of the system under test,
developed by Guan et al. [94]. In the following sections we extend this Response
Time Analysis (RTA) schedulability test to handle mutually exclusive access to shared
resources using LB-PCP. The test in [94] is based on a technique for global multipro-
cessor schedulability analysis proposed by Baruah [26], which can be summarized as
follows:

(1) Consider the interval from the arrival ri of some task τi until its deadline di,
referred as the problem window, at the end of which the task misses its deadline.

(2) After ignoring tasks with lower priorities than τi, extend the problem window to
an earlier time instant t0 which is the latest time instant before ri at which at least
one processor is idle.

(3) Identify a condition necessary for the deadline miss to occur, for example during
the interval [ri, di) all m available processors execute higher priority tasks for more
than Di − Ci.

(4) Derive an upper bound on the maximum interference on task τi from higher prior-
ity tasks in interval [t0, di).

(5) Form a schedulability test by negating the unschedulability test given by the in-
equality between the upper bound on interference and the amount of execution
necessary for τi to miss its deadline.

By using Baruah’s technique, the number of tasks which contribute with carry-
-in work is reduced to (m − 1) since at time t0 at least one processor is idle. In [94],
Guan et al. use this observation to improve the response time analysis proposed by
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Bertogna and Cirinei [44] which derive an upper bound on the response time of a task
in a globally scheduled system using upper bounds on the interference but assume
that all higher priority tasks have carry-in. The upper bound on the response time of
a task can be derived by the following fixed-point iteration (see Theorem 7 in [44]):

RTi = Ci +

⌊

1

m

∑

∀τh∈hp(i)

Ii(h,RTi)

⌋

, (6.1)

where hp(i) denotes the set of tasks with priorities higher than τi and Ii(h,RTi) is the
interference on τi from task τh in a time interval of length RTi. The iteration starts
with RTi = Ci and continues until either RTi converges or RTi > Di which means that
the system is unschedulable.

Guan et al. derived a RTA-based schedulability condition by considering the
upper bounds for workload and interference of the higher priority tasks in a problem
window of length x. In what follows, Guan’s RTA is detailed. Since only m − 1 tasks
do carry-in, they define two kinds of workload and interference bounds: one for when
the task does not have carry-in (NC) and one for when it does have (CI). The upper
bounds on the workload of a task τh with higher priority than τi during the problem
window are defined by WNC

h (c, x) and WCI
h (c, x), computed for the scenario depicted in

Figure 6.2 where c = Ch. In what follows we will use the notation ‖E‖up as shorthand
for max(E, up) and ‖E‖lo as shorthand for min(E, lo).

WNC
h (c, x) =

⌊

x

Th

⌋

c+ ‖x mod Th‖c (6.2)

WCI
h (c, x) =

⌊‖x− c‖0
Th

⌋

c+ c+ α(h, c, x), (6.3)

where α(h, c, x) represents the carry-in:

α(h, c, x) =
∥

∥‖x− c‖0 mod Th − (Th −RTh)
∥

∥

c−1

0
. (6.4)

Note that the carry-in is limited to c − 1. This is a result of the way time is
represented in [94] and [44]. Time is represented as non-negative integer values
where each values t represents the whole interval [t, t+ 1).

If task τi is schedulable then an upper bound on the interference of the higher
priority task τh can be derived as:

INC
i (h, c, x) = ‖WNC

h (c, x)‖x−Ci+1 (6.5)

ICI
i (h, c, x) = ‖WCI

h (c, x)‖x−Ci+1 (6.6)

Note that the interference in Equation (6.1) can be computed just as ICI
i (h,Ch,

RTi) (i.e. Ii(h,RTi) = ICI
i (h,Ch, RTi)).

Using Equations (6.5) and (6.6) the total interference Ωi(x) on task τi is com-
puted as the maximal value of the sum of all higher-priority tasks’ interference among
all possible cases:

Ωi(x) = max
(τNC ,τCI )∈Z

(

∑

τh∈τ
NC

INC
i (h,Ch, x) +

∑

τh∈τ
CI

ICI
i (h,Ch, x)

)

, (6.7)

where Z is the set of all partitions of the set of tasks with priority higher than τi into
tasks with carry-in (τCI) and tasks without carry-in (τNC) such that τNC ∩ τCI = ∅ and
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(b) WCI
i (h, x)

Figure 6.2: Worst-case workload of τh in problem window of length x

|τCI | ≤ m− 1.
Using the total interference defined by Equation (6.7), Guan et al. derive a

new expression for the fixed-point iteration in Equation (6.1) and derive an upper
bound on the response time RTi by doing iterative fixed-point search on the following
expression (see Theorem 1 in [94]):

RTi = Ci +

⌊

Ωi(RTi)

m

⌋

. (6.8)

Iteration starts with RTi = Ci and continues until the value of RTi does not
change anymore, in which case RTi gives the worst-case response time of τi, or when
RTi > Di in which case the task is unschedulable.

6.4. The Limited Blocking Priority Ceiling Protocol

In this section we present in detail the Limited Blocking Priority Ceiling Pro-
tocol (LB-PCP) proposed by us for resource sharing in global fixed-priority preempt-
ively scheduled systems.

Global multiprocessor scheduling under PIP suffers a major limitation. Whenever
a job τ j

l holds a shared resource Rk, its priority may be raised from l to h as a result

of a higher priority job τ j′

h directly blocking on Rk (requesting Rk). While τ j
l runs at

priority h it may prevent another high priority job τ j′′

hl (l > hl > h) from running. We
call such situations indirect blockage. On uniprocessor systems, a low priority job
can block a higher priority job, directly or indirectly, only once and only if it has been
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released prior to the latter. As pointed out in [74], on multiprocessor systems under
PIP, a lower priority task can interfere multiple times with the same higher priority job
and increase significantly its blocking time.

With LB-PCP we provide the possibility of reducing the indirect blockage of
a task. For each priority level i (task τi), we define a parameter IBTi (1 ≤ i ≤
n) indicating the number of times jobs with priority higher than i can be indirectly
blocked. This way we control the lower-priority interference on jobs on these priority
levels. A higher value for IBTi increases parallelism but also implies that more jobs
with base-priority lower or equal to i will be allowed to execute at higher effective
priority. On the other hand, by lowering IBTi we may decrease the level of parallelism
but, the lower-priority interference will also be decreased.

Notations. We introduce first some notations that are used in the description
of the protocol. Each of the values bellow are updated at each scheduling event (job
release, job finish, resource request, resource release):

• ⌈Rk⌉: Denotes the highest priority of any task that uses resource Rk (1 ≤ k ≤ r).
⌈Rk⌉ is therefore the priority ceiling of resource Rk.

• EPi: The effective priority of the current job of task τi. This is equal to i when
τi does not hold any resource and can be increased up to ⌈Rk⌉ when τi holds
resource Rk (1 ≤ k ≤ r).

• IBCi: The current number of times that jobs with priority higher than i can be
indirectly blocked. Note that a job is indirectly blocked if it is ready for execution
but cannot execute (not enough processors available) and there is another job
with base priority lower than it, but running with effective priority higher or equal
to i while it holds the lock of a resource. Initially, this number is equal with IBTi

and is decreased every time a job with base priority higher than i gets indirectly
blocked.

• LPRi: The number of jobs with base priority lower than i but potential effective
priority higher than i. Actually, this is the number of tasks with base priority
lower than i that currently hold a resource with priority ceiling greater than i.
Thus, at any moment the priority of these tasks could increase.

• LBTi: The base priority of the job that indirectly blocks the current job of task
τi.

In order to control the amount of indirect blockage affecting a task LB-PCP
enforces at all times the following rule:

A job τ j
i (1 ≤ i ≤ n) is not granted a shared resource Rk unless the

following condition remains true for all priority levels lv, i > lv > ⌈Rk⌉:
the number of jobs with base priority lower than lv using a resource
with priority ceiling higher than lv is at most IBClv+1.

Otherwise job τ j
i is suspended, even if Rk is not locked. In order for the

condition to hold is is also required that the IBTi configuration parameters satisfy the
property IBT1 ≤ IBT2 ≤ ... ≤ IBTn. Furthermore, since the m highest priority tasks
can never be indirectly blocked, we have IBT1 = ... = IBTm+1 = 0. Note that the
difference IBTi+1 − IBTi gives the maximum number of times a job of task τi can be
indirectly blocked by a lower priority job.

The global fixed-priority scheduling algorithm supporting resource sharing
based on LB-PCP is described in Algorithm 1 along with Algorithm 2. Before going into
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the details of the algorithm, several facts, not visible in the description of algorithms 1
and 2, must be mentioned:

(1) The IBCi (1 ≤ i ≤ n) counter is initialized with the value of IBTi.

(2) Whenever a job with base priority i finishes, for all priority levels l, i < l ≤ n, IBCl

is incremented with [(IBTi+1 − IBTi) − (IBCi+1 − IBCi)] (the number of indirect
blockages suffered by the finished job of τi). This way we set again IBCi+1 −
IBCi = IBTi+1 − IBTi.

(3) For all priority levels i the LPRi counter is decremented by 1 whenever a job with
base priority lower than i releases a resource with priority ceiling higher than i.

(4) For all priority levels i the LBTi is cleared when either the current job of task τi
finishes or the job that was blocking τi releases the resource that determined the
increase of its effective priority.

We assume that point (1) above is executed at system initialization, while points
(2)–(4) are performed whenever a job is released or finishes its execution and when-
ever a job requests or releases a resource. Afterwards, the scheduling algorithm 1 is
executed. Algorithm 1 evaluates the current status of each task in decreasing order of
their effective priority. For each task that has a job ready for execution or executing,
the algorithm checks if it can schedule it in the next time slice.

Since LB-PCP allows only a given number of indirect blockages for each task,
every time a job requests a resource the algorithm has to check that by granting
the access will not violate this constraint. Thus, if the job τ j

i is not requesting any
resource and a processor is available then the job is scheduled immediately (Lines 3
& 4 in Algorithm 1). If there is no available processor but there is a job with lower
base priority than τ j

i currently running with effective priority higher than i, then this
job indirectly blocks τ j

i and we decrease by 1 the IBC counter for all priority levels
lower than i (Lines 25–30 in Algorithm 1). The counter is decremented only the first
time the indirect blockage is detected, that is, if we detect the blockage of job τ j

i

at time t and between time t and t + t′ the job does not execute at all and the job
that is blocking it does not finish its critical section, we will decrement the counter
only at time t. To make sure that we count only once the blocking of τ j

i by a certain

lower priority job τ j′

l using a specific resource, we set LBTi to the base priority of
that blocking job (Line 29 in Algorithm 1) and reset it only when τ j

i finishes or the
blocking job finishes the current resource access. This is all right since the response
time analysis described in Section 6.5., considers that a task indirectly blocks another

task for the whole duration of the resource access. Moreover, if another job τ j′

l1 with

l1 < l would start running while τ j
i is blocked by τ j′

l then that job will be counted as
blocking τ j

i only if the duration for which its priority is raised above i is longer than

the duration of the resource access of τ j′

l .
If τ j

i requests a resource Rk and the resource is not locked by another job,
then we run Algorithm 2 to make a decision about whether the request should be
granted or not. While τ j

i holds Rk, its effective priority could be increased to ⌈Rk⌉. This
means that τ j

i could indirectly block any job with priority lv, ⌈Rk⌉ < lv < i. Moreover,
the job with base priority level lv could also be indirectly blocked by other jobs with
priority lower than lv which already locked a resource with ceiling greater than lv. The
number of such jobs is accounted by LPRlv. Therefore the resource requested by τ j

i

is granted only if, for each priority level lv between i and ⌈Rk⌉ (not including these
limits), the number of allowed indirect blockages is greater than the number of jobs
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Algorithm 1 Resource sharing under LB-PCP

1: for each job τ j
i in decreasing effective priority order do

2: if there are unassigned processors then
3: if τ j

i is not requesting a resource then
4: assign processor to τ j

i

5: else

6: Let Rk be the resource requested by τ j
i

7: if Rk is locked then
8: Let τl be the task currently holding resource Rk

9: if l > i then
10: EPl = i
11: end if

12: else

13: if τ j
i is one of the m highest priority jobs then

14: assign processor to τ j
i

15: else if Rk can be granted to τ j
i according to rules in Algorithm 2 then

16: assign processor to τ j
i

17: for ind = max(m, ⌈Rk⌉) + 1 to i− 1 do
18: LPRind = LPRind + 1
19: end for

20: else

21: suspend τ j
i

22: end if

23: end if

24: end if

25: else if τ j
i is one of the m highest base priority ready jobs and there is a lower

base priority job τ j′

l running with priority EPl < i then
26: for ind = i+ 1 to n do
27: IBCind = IBCind − 1
28: end for

29: Set LBTi to the base priority of the job blocking τ j
i

30: end if

31: end for

with lower base priority that currently hold a resource with priority ceiling greater than
the analyzed level lv. The access will be allowed only if (IBClv+1− IBClv)−LPRlv > 0,
∀ lv, ⌈Rk⌉ < lv < i, which means that each task τlv can be indirectly blocked at least
one more time. If the resource cannot be granted because this could lead to the
outrunning of the maximum allowed indirect blockages of at least one higher priority
job, the job requesting Rk is suspended.

Remember that the number of blockages allowed on a priority level is de-
creased by 1 only when the job that indirectly blocks the job on level lv changes,
which means that the same job cannot block twice another job while continuously

holding a given resource. In order for a given job τ j′

l to be considered as blocking

more than once a job τ j
lv (l > lv), τ j′

l should make another request for a resource and
that will require reevaluation of condition in Algorithm 1.

Theorem 6. At all time instants and for all priority levels i, 1 ≤ i < n, LPRi ≤ IBCi+1.

Proof. Whenever a job of a task τl with l > i requests access to a resource Rk with
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Algorithm 2 Access rules to Rk by job τ j
i

1: for ind = ⌈Rk⌉+ 1 to i− 1 do
2: if (IBCind+1 − IBCind)− LPRind ≤ 0 then
3: return false

4: end if

5: end for

6: return true

⌈Rk⌉ < i, the resource is granted only if, for all priority levels i, l > i > ⌈Rk⌉, it is true
that IBCi+1 − IBCi > LPRi (see Algorithm 2). It follows that, Rk is granted only if
the number of indirect blockages allowed on each level i is higher than the number of
tasks with potential effective priority higher than i (task with lower base priority that
currently hold a resource with priority ceiling higher than i).

Each of the LPRi jobs can cause a single block of the current job of task τi.
Therefore, once IBCi+1 − IBCi = LPRi for at least one level i (l > i > ⌈Rk⌉), no other
jobs with base priority l > i can run at effective priority higher than i, so LPRi cannot
increase. At this time, the number of potential indirect blockages on all levels higher
or equal to i can be pessimistically computed as

∑i
h=1 LPRh ≤

∑i
h=1(IBCh+1−IBCh) =

IBCi+1 − IBC1 = IBCi+1. Since LPRi ≤
∑i

h=1 LPRh it follows that LPRi ≤ IBCi+1.

Example 6. Consider a set τ = (τ1, .., τ6) comprised of six sporadic tasks and two
shared resources R1 and R2. The tasks execute on a multiprocessor platform consist-

ing of 3 processors (m = 3). Tasks τ2 and τ5 request resource R1 and tasks τ3 and
τ6 request resource R2. Note that tasks request the resources immediately after they

start executing and use the resources for their entire execution time. Tasks τ1 and τ4
do not use any shared resources. Figure 6.3 shows the schedule of this taskset under

PIP, while the schedule under LB-PCP is shown in Figure 6.4.

Under PIP, when task τ6 requests R2 at time t0, the request is granted. Later,
at time t1, a new job of task τ3 arrives and requests R2 and gets directly blocked. As

a result, the priority τ6 is increased to level 3. At time t2 a new job of τ1 arrives and
also a job of τ2. The job of τ2 directly blocks because it requests R1 which is held by

τ5. Consequently the priority of τ5 is raised to effective level 2. At the same time,
the current job of τ4 will be preempted and, because we have two jobs of lower base
priority running, we say that τ4 is indirectly blocked. In fact, τ4 will be able to run
again only after the job of τ2 finishes, but this is not enough and the job of τ4 will miss
its deadline.

In contrast, under LB-PCP the request of τ6 for R2 is not granted at time t0
and instead, the job of τ6 is suspended until the job of task τ4 finishes. Therefore,
the interference on the job of task τ4 will be lower and it will not miss its deadline
anymore.

6.5. Schedulability of Limited Blocking Priority Ceiling Protocol

In this section we compute the worst-case response time RTi of a task τi
scheduled using a global fixed-priority preemptive scheduler with resource sharing
under LB-PCP. This RTA is done for each task in decreasing order of their priority.
There are five parameters that influence the value of RTi: (1) the task’s worst-case
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Figure 6.3: Example under PIP (m = 3)
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Figure 6.4: Example under LB-PCP (m = 3)
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execution time Ci, (2) the amount of time task τi is blocked waiting for the resources it
requests to be granted, (3) the amount of execution that lower priority tasks execute
at a priority higher than that of τi, (4) the amount of time τi is suspended when
condition on Line 15 in Algorithm 1 is violated, and (5) the amount of execution that
tasks with priority higher than τi can perform.

Therefore, under LB-PCP there are two possible sources of blocking for τi:

(1) Direct blocking occurs when τi is one of the m highest priority ready tasks and
requests resource Rk but the lock for Rk is locked by some other task. We denote
the maximum total amount of time τi can be directly blocked as DBi.

(2) Indirect blocking occurs when τi cannot execute because a lower base priority task
τl executes with an effective priority higher than i while it accesses a resource.
We denote the maximum total amount of time task τi can be indirectly blocked as
IBi.

In the worst case, a job of task τi requests a resource Rk just after the re-
source has been granted to a lower priority task and all higher priority tasks also
request access to the resource. Therefore, the worst case direct blocking time can be
expressed as follows:

DBi(RTi) =
∑

Rk∈R(τi)

(

Ni,k · ( max
τl∈lp(i)

{Cl,k} − 1) +
∑

τh∈hpk(i)

ICI
i (h,CTh,k, RTi)

)

(6.9)

where Ni,k denotes the maximum number of times an instance of τi requires access
to resource Rk. ICI

i (h,CTh,k, RTi) is the interference due to higher priority tasks re-
questing the same resource Rk during RTi and is computed using Equation (6.6) but
considering only the set of higher priority tasks that use Rk and assuming that the
interference produced by a task τh is due to CTh,k units of work:

ICI
i (h,CTh,k, RTi) = ‖WCI

h (CTh,k, RTi)‖RTi−Ci+1 (6.10)

In the equations above we used lp(i) to denote the set of tasks with priorities
lower than τi and hp(i) to denote the set of higher priority tasks. Also hpk(i) denotes
the set of all tasks with priority higher than i that use resource Rk.

The indirect blocking time IBi for task τi states that a lower priority task
τl may interfere with τi multiple times and may delay the execution of τi just as
much as any higher priority task. This is why it is desirable to limit the set of lower
priority task instances that may execute while τi is ready for execution or is executing.
Under LB-PCP, the number if indirect blockages for the job of priority i is limited to
IBTi+1 − IBTi. Therefore IBi may be upper bounded as follows:

IBi(RTi) =

⌊
(IBTi+1 − IBTi)max τl∈lp(i)∧

Rx∈R(τl)∧⌈Rx⌉<i

(Cl,x)

min(m, IBTi+1 − IBTi)

⌋

(6.11)

Note that, in the worst case, a job of τi may be indirectly blocked by IBTi+1 − IBTi

complete executions of critical sections of jobs with lower base priority.
Every time a job τ j

i requests a resource Rk, it may be suspended if the con-
dition on Line 15 in Algorithm 1 is violated. In the worst case the job has to wait
for shared resource executions of every job with priority between i and ⌈Rk⌉ + 1 (not
including the margins of the interval) and every resource, different from Rk, with pri-
ority ceiling higher than their base priority. Note that we do not consider interference
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from lower priority jobs holding resources with priority ceiling higher than i since this
interference is already considered in the IBi component of the response. Further-
more, since the tasks currently executing with effective priority higher than their base
priority may lead to the scenario where indirect blocking is not allowed anymore for
some higher priority jobs (IBCh+1 − IBCh = 0), job τ j

i will also have to wait until the
last of these jobs finishes its execution. Therefore, suspension time can be bounded
by:

suspi(RTi) =

⌊

Ωsus
i,hp(RTi)

m

⌋

+
∑

Rk∈R(τi)

Ni,k max
τh∈hp(i)∧
i>h>⌈Rx⌉

(Ch) (6.12)

with

Ωsus
i,hp(RTi) = max

(τNC ,τCI )∈Z⌈Rk⌉

(

∑

τh∈τ
NC

INC
i (h, βh, RTi) +

∑

τh∈τ
CI

ICI
i (h, βh, RTi)

)

(6.13)

where Z⌈Rk⌉ denotes the set of all task partitions with base priority between i and
mink with mink = minRk∈R(τi)⌈Rk⌉+ 1. Further,

βh =
∑

Rx∈R(τh)∧Rx /∈R(τi)∧⌈Rx⌉<h

CTh,x. (6.14)

Although the set partitioning problem is a NP-complete problem, in this situ-
ation, Ωsus

i,hp(RTi) and all total interference values that will be defined bellow can be
computed in linear time by computing the m − 1 maximal values of the difference
ICI
i (h, c, x) − INC

i (h, c, x) and adding the sum of these difference values to the sum of
the INC

i (h, c, x) values, as pointed out by Baruah [26].
Another factor that must be considered in the response time analysis of task

τi is the interference from higher priority tasks executing outside critical sections
considered in the suspension time evaluation. This includes (1) tasks with priority h,
i > h > mink, executing outside critical sections or using resources with priority ceiling
equal to h, and (2) tasks with priority h ≤ mink executing outside critical sections of
resources also used by τi:

Ωi(RTi) = max
(τNC ,τCI )∈Z

(

∑

τh∈τ
NC∧

i>h>mink

INC
i (h, θh, RTi) +

∑

τh∈τ
NC∧

h≤mink

INC
i (h, γh, RTi)

+
∑

τh∈τ
CI∧

i>h>mink

ICI
i (h, θh, RTi) +

∑

τh∈τ
CI∧

h≤mink

ICI
i (h, γh, RTi)

) (6.15)

where

θh = Ch − (
∑

Rx∈R(τh)
∧Rx∈R(τi)

CTh,x + βh) (6.16)

and
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γh = Ch −
∑

Rx∈R(τh)
∧Rx∈R(τi)

CTh,x (6.17)

From the discussions above, we can determine the worst-case response time
of a task scheduled under LB-PCP by incorporating the blocking and suspension factors
into the recurrence relation defined by Equation (6.8):

RTi = Ci + suspi(RTi) +DBi(RTi) + IBi(RTi) +

⌊

Ωi(RTi)

m

⌋

(6.18)

The recurrence starts with RTi = Ci and ends when RTi converges in which
case RTi gives the worst-case response time of task τi or when RTi > Di which means
that the task is unschedulable.

Example 7. Consider a system consisting of the taskset τ = {τ1, ..., τ8} with task para-
meters given in Table 6.1, shared resources R1, R2, R3 and R4 and m = 2 processors.
The tasks are ordered in decreasing order of their priority and their total utilization

is 113.59%. Under LB-PCP each instance of a task can be indirectly blocked at most

once. Columns 7 to 9 of Table 6.1 show the worst case response times of each task

when resource sharing is handled according to PIP, P-PCP and LB-PCP, respectively.

Note that for all protocols the taskset is schedulable. For tasks with low priority, PIP

and P-PCP give smaller response times than LB-PCP. This is due to the larger suspen-

sion time suffered by these tasks under LB-PCP. However, for some of the medium

priority tasks, the response time under LB-PCP is better than P-PCP due to the smaller

suspension from lower priority tasks. At first sight, it seems that PIP would be better

than both P-PCP and LB-PCP. This is because the effect of decreasing the lower pri-

ority interference is more visible on tasksets of larger cardinality than what is used in

this example.

Table 6.1: Numeric example for task response times (task set schedulable)

Task C T D U Resource
RT

PIP P-PCP LB-PCP

τ1 8 17 17 47.06% R1 10 10 10
τ2 2 46 33 4.35% R1 10 10 10
τ3 30 79 72 37.97% R3 36 47 41
τ4 1 78 55 1.28% R2 24 38 29
τ5 4 65 58 6.15% R3 40 51 51
τ6 10 71 66 14.08% R4 38 39 44
τ7 1 64 63 1.56% R2 29 30 55
τ8 1 89 85 1.12% R4 34 34 57

Example 8. Consider a system consisting of the taskset τ = {τ1, ..., τ8} with task para-
meters given in Table 6.2, shared resources R1, R2, R3 and R4 and m = 4 processors.
The tasks are ordered in decreasing order of their priority and their total utilization

is 125.74%. Under LB-PCP each instance of a task can be indirectly blocked at most

once. Columns 7 to 9 of Table 6.2 show the worst case response times of each task

when resource sharing is handled according to PIP, P-PCP and LB-PCP, respectively.

Note that the taskset is schedulable only when LB-PCP is used. Task τ5 is the first to
miss its deadline under both PIP and P-PCP. Under PIP and P-PCP τ5 can be indirectly
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blocked by both tasks τ7 and τ8 and as a result it becomes unschedulable. By contrast,
under LB-PCP τ5 is indirectly blocked only once and hence, the lower response time
and the positive schedulability result.

Table 6.2: Numeric example for task response times (taskset not schedulable)

Task C T D U Resource
RT

PIP P-PCP LB-PCP

τ1 1 76 54 1.32% R4 34 34 34
τ2 85 180 175 47.22% R3 86 86 86
τ3 3 82 75 3.66% R3 44 44 44
τ4 268 495 434 54.14% R2 291 291 291
τ5 1 105 84 0.95% R1 108 164 78
τ6 9 163 132 5.52% R1 - - 79
τ7 65 882 735 7.37% R4 - - 514
τ8 51 917 882 5.56% R2 - - 576

6.6. Performance Evaluation

To characterize the performances of the schedulability test presented in Sec-
tion 6.5., there are various metrics which can be used. A presentation of these metrics
can be found in Section 2.3. For evaluating the performance of LB-PCP we follow a
simulative approach that considers the number of schedulable tasksets detected by
the schedulability test detailed in Section 6.5. among a randomly generated distribu-
tion of tasksets. Such a ratio is called acceptance ratio. Computing it mathematically
is possible only for simple cases and consequently, the performance of a schedulabil-
ity test is evaluated through extensive simulations, where a huge number of synthetic
tasksets are generated using random parameters [49].

For evaluating the performance of the LB-PCP protocol, we implemented a
tool capable of determining if a set of tasks sharing a specified set of resources is
schedulable under LB-PCP or under P-PCP. The tool is platform independent Java code
and can be used as a stand-alone application or as a library, providing an interface
which can be used by other applications. Basically, the tool receives as input the path
of a file containing the set of tasks, the path of a file containing the definitions of
the shared resources and describing which tasks use which resources, the number of
processors on which the tasks shall be scheduled and the name of the protocol to be
used of arbitrating access to shared resources. Using this information, the tool tests if
the taskset is schedulable using the equations presented in Section 6.5., for LB-PCP,
and the ones presented in [74], for P-PCP respectively.

In what follows we present a set of experiments to analyze and compare the
performance of global fixed-priority scheduling with LB-PCP and with P-PCP, the other
major resource sharing protocol for which a schedulability test is defined.

6.6.1. Task and resource generation

To properly compare the two schedulability tests, the first issue is how to generate a
distribution of tasksets that is representative of the general behavior of a real-time
system. The way in which task parameters are selected influences greatly the meas-
ured performance [49]. Bini and Buttazzo propose the UUnifast algorithm to generate
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tasksets with a uniform distribution of task utilization and a desired total utilization.
The algorithm has been employed for evaluations of many uniprocessor schedulability
tests, e.g. [142, 84, 72, 163, 131]. The algorithm generates unbiased tasksets (the
distribution of tasksets is equivalent to selecting tasksets at random from the set of
all possible tasksets and discarding the ones that do no meet some parameter con-
straints). However, the method proposed by Bini and Buttazzo is suitable only when a
single processor platform is used because on a multiprocessor system it will generate
tasks with utilization larger than one. A multiprocessor version of the method has
been proposed by Davis and Burns [69]. The basic idea of their method is that if a
task with utilization above one is generated, then the whole taskset generated up to
that point is dropped and task generation is restarted. Instead of dropping the whole
taskset, we use a slightly modified method and drop only the faulty task.

For each experiment we generate 1000 tasksets. Every task is generated as
follows:

• Task utilization is generated randomly using the UUnifast algorithm [49] adapted
for generating tasksets with total utilizations greater than 1 and task utilizations
in some specified interval. In our case, the task utilization Ui is between 0.001
and 1.0 and the taskset utilization increases from 0.025 to 0.950 times m, in
steps of 0.025.

• Task period Ti (1 ≤ i ≤ n) is generated according to a log uniform random distri-
bution, in the time interval 1ms and 1000ms.

• The execution time Ci is computed as Ci = Ui ∗ Ti.

• Task deadline Di is generated using a uniform random distribution, in the range
[Ci + 0.7 ∗ (Ti − Ci), Ti].

In the experiments, the priorities of the tasks are determined using several
priority assignments policies:

p1) DM [117]: tasks with earlier deadlines have priorities higher than tasks with later
deadlines,

p2) RM [123]: tasks with smaller periods have priorities higher than tasks with large
periods,

p3) TkC [21]: assigns priorities based on the value of the difference Ti − kCi, where
k is computed based on the number of processors m:

k =
m− 1 +

√
5m2 − 6m+ 1

2m
(6.19)

p4) DkC [69]: assigns priorities based on the value of the difference Di − kCi, where
k is computed using Equation (6.19),

p5) T-C: assigns priorities such that tasks with lower Ti − Ci have higher priority.

For each experiment we generate sets of resources, such that each resource
is shared by a given number of tasks, selected randomly according to a uniform
distribution. For all experiments, except the last one, we assume that a task accesses
a resource for a time equal to its execution requirement.

The configuration elements of the two resource sharing protocols are set as
follows:
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Figure 6.5: Percentage of schedulable tasksets for different priority assignment policies (m=2)

• For LB-PCP, we assume that a job can be indirectly blocked at most once:
IBTi+1 − IBTi ≤ 1, ∀ i.

• For P-PCP, we configure the tasksets such that the αi factor (which controls the
degree of parallelism) is n for the m highest priority tasks and αi = m for the
other tasks (as recommended in [74]).

6.6.2. Experiment 1: Priority Assignment

In the first experiment, we investigated the effect of different priority assignment
policies on the performance of global preemptive fixed-priority scheduling with re-
source sharing under P-PCP and under LB-PCP. We tested the priority assignment
policies mentioned above and for each test we considered a number of tasks equal to
5× the number of processors. Figures 6.5, 6.6 and 6.7 show the number of tasksets
deemed schedulable for the selected priority assignment policies for 2, 8 and 16 pro-
cessors. Each task shares a single resource with another task and uses it for its whole
execution.

From the figures we can see that selected priority assignment policies have
similar performance with respect to the schedulability of the tasksets. Only RM per-
forms slightly better in the case of LB-PCP but the difference is not significant. This
observation is valid for the case when 2 processors are used, as well as for the 8
and 16 processors cases. We can conclude from this, that the selection of a given
priority ordering it is not very significant for the analyzed scenario. Moreover, from all
three figures it can be noticed that LB-PCP performs significantly better than PCP with
respect to number of schedulable tasksets, but we will analyze this aspect in later
experiments.
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Figure 6.6: Percentage of schedulable tasksets for different priority assignment policies (m=8)
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Figure 6.7: Percentage of schedulable tasksets for different priority assignment policies (m=16)
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6.6.3. Experiment 2: Processor Number

With this experiment we investigate the influence of the number of processors avail-
able in the system on the number of tasksets deemed schedulable when resource
sharing is following the rules of LB-PCP compared to when using P-PCP, based on the
corresponding response time analyses. We assume that all shared objects are used
by exactly two tasks. Figure 6.8 shows the results for 2, 4, 8, 12 and 16 processor
platforms. Since in the previous experiment we saw that the priority assignment
policy does not influence greatly the schedulability results, for this experiment we
have chosen to use the DkC and the DM policies (a reasonable assignment according
to the definition in [74]). The figure, however, presents the results only for DkC as the
results for DM are similar. Also, the number of tasks was increased proportionally with
the number of processors such that we always had a ratio of five tasks per processor.
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Figure 6.8: Percentage of schedulable tasksets for different number of processors

From the graph, we can see that the number of processors has an import-
ant impact on the performance of LB-PCP and also that the higher the number of
processors is, the more important is the impact. This does not seem to be valid for
P-PCP, which behaves almost the same, no matter the number of processors.

For 2 processors the two algorithms have quite similar performance, but as
the number of processors grows, LB-PCP distances itself from P-PCP. Furthermore,
in all tests almost 100% of the tasksets are unschedulable according to P-PCP at
a utilization level of 1.2 and a little more than 69% of the tasksets with utilization
0.4 are schedulable when using 2 processors. There is a slight improvement of the
situation for the 0.4 utilization tasksets when the number of processors increases:
73.7% for 4 processors, 77.10% for 8 processors and finally, 84% for 16 processors.

Comparatively, for LB-PCP with only 2 processors, 82.2% of the tasksets with
utilization 0.4 are schedulable, although for 1.0 utilization, we have identified just
0.2% of the tasksets schedulable according to LB-PCP. However, the performance
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gap between P-PCP and LB-PCP gets bigger for a greater number of processors. For
m = 4, approximately 73.7% of the tasksets with utilization 0.4 are schedulable with
P-PCP. When using LB-PCP, 73.6% of the tasksets with utilization 0.6 are schedulable.
Hence, for m = 4 LB-PCP determines 50% better utilization of the processor than
P-PCP. Moreover, P-PCP leads to 0% schedulability for a utilization of 1.4, while
LB-PCP reaches 0% schedulability at 1.7 utilization.

For m = 12 the maximum schedulability achieved with P-PCP is approxim-
atively 49% for 0.6 utilization. By contrast, with LB-PCP we achieve almost 78%
schedulable tasksets with 0.6 utilization and reach 48% schedulability only for tasksets
with 1.5 utilization. Therefore, in this scenario, LB-PCP determines 150% better util-
ization than P-PCP.

For 16 processor systems, in all tests 100% of the tasksets with 1.2 utilization
where unschedulable under P-PCP. Under LB-PCP, the 100% unschedulability step
was reached only at almost 4.0 utilization.

It is clear from the graph and from the discussions above that the difference
in performance between P-PCP and LB-PCP increases also as the taskset utilization
increases.

6.6.4. Experiment 3: Number of Tasks

In this experiment, we examine the effect of varying the number of tasks on the
performance of LB-PCP and P-PCP. Figure 6.9 shows the percent of tasksets that
were deemed schedulable on a 4 processors system, for tasksets with 16, 32, 64
and 96 tasks using the DkC priority assignment. Each task shares a single resource
with another task. Figure 6.10 shows similar data for tasksets with cardinality 100,
120, 140, 180 and 200. For each configuration of taskset cardinality we increased the
taskset utilization from 0.1 up to 3.8 in steps of 0.1.

There first thing to be noted in Figure 6.9 is that, while P-PCP deems less
tasksets schedulable as the cardinality of the taskset increases, LB-PCP behaves ex-
actly the opposite. However, if we look at Figure 6.10 this effect seems to diminish
as under P-PCP, the number of schedulable tasksets is almost the same no matter
the cardinality of the taskset. The behavior can be explained based on the following
facts. With a small number of tasks, the interference from higher priority tasks is
smaller in both cases. Moreover, a suspended task will have to wait for fewer tasks
to finish their critical sections. As the number of tasks increases, the indirect block-
ing time for tasks scheduled using P-PCP will increase significantly. This is not valid
also for LB-PCP, where the indirect blocking time changes only depending on effect-
ive task parameters. For a specific taskset utilization, an increase of the number of
tasks in the set results in lower task utilization, which also implies lower execution
requirements. Under LB-PCP the suspension time depends greatly on the worst case
execution requirement of the tasks and this is why the schedulability results improve
with the increasing of the taskset cardinality.

Numerically, under LB-PCP 58.1% of the tasksets with 96 tasks and utilization
0.9 are schedulable, while under P-PCP 55.5% of tasksets with utilization of only 0.3
are schedulable. Hence, for 96 tasks per taskset and 4 processors, LB-PCP determines
200% better utilization of the processor than P-PCP. For 16 tasks per taskset, this
improvement diminishes. Only 51.3% of tasksets with 0.8 utilization are schedulable
under LB-PCP and 53.3% of tasksets with utilization 0.5 are deemed schedulable with
P-PCP. This means an improvement of only approximatively 60% in this situation.

Another thing to note is that, as the number of tasks per taskset increases,
the performance gap between successive cardinality values decreases. This is more
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Figure 6.9: Percentage of schedulable tasksets for different number of tasks (4 processors) -
taskset cardinality from 16 to 96
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Figure 6.11: Percentage of schedulable tasksets for different number of tasks (8 processors) -
taskset cardinality from 16 to 96
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Figure 6.12: Percentage of schedulable tasksets for different number of tasks (8 processors) -
taskset cardinality from 100 to 200
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Figure 6.13: Percentage of schedulable tasksets for various taskset cardinalities with each re-
source being shared by 12 tasks - taskset cardinality from 24 to 96 (4 processors)

visible for LB-PCP and is the effect of the higher priority interference which increases
and becomes a dominant component of the task response time.

For a 8 processor system (see Figures 6.11 and 6.12) we can also see a
considerable performance gap between the protocols. Furthermore, Figure 6.11 shows
that for 16 tasks per taskset, the performance of P-PCP is comparable to that of
LB-PCP. This is because in P-PCP, the larger number of processors will determine a
lower suspension time for half of the tasks, while the other half will not be suspended
at all.

6.6.5. Experiment 4: Number of Tasks Requesting the Same Resource

In this experiment, we investigate the effect of increasing the number of tasks re-
questing the same resource on the performance of LB-PCP and its competitor P-PCP.
For the graphs presented in this section, the priorities of the tasks were assigned us-
ing DkC. We first show what happens when we keep fixed the number of tasks using
the same resource and increase the taskset cardinality. Further, for a fixed taskset
cardinality, we investigate what happens when the number of tasks sharing the same
resource increases. We carry all these investigations for tasksets comprised of 24 up
to 96 tasks, but also for larger tasksets with 100 up to 200 tasks. For all the above
test cases, we assume that 4, 8 and 16 processors platforms are used.

In the 4 processors case (Figures 6.13 and 6.14), the results for both low
taskset cardinality and high taskset cardinality follow a pattern. In both cases we fixed
the number of tasks sharing the same resource to be half the minimum considered
cardinality, namely 12 and 50 tasks per resource. It can be noted that, in both
cases and for both protocols, the percent of tasksets deemed schedulable increases
as the taskset cardinality increases, but only until some limit is reached: 32 tasks
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Figure 6.14: Percentage of schedulable tasksets for various taskset cardinalities with each re-
source being shared by 50 tasks - taskset cardinality from 100 to 200 (4 processors)

and 140 tasks, respectively. After this limit is reached the number of schedulable
tasksets starts to decrease as the cardinality increases. When half of the tasks in a
taskset use the same resource, the direct blocking time becomes an important term
in the response time computation, while the influence of indirect blocking decreases.
With LB-PCP each task will be suspended only while a part of the higher priority
tasks execute critical section, while with P-PCP a task is suspended while all higher
priority tasks execute their critical sections. Based on this observations and on the
fact that when the number of tasks in the taskset increases, the utilization of each
task decreases, we get a higher percent of schedulable tasksets for 32 or 140 tasks
per taskset. However, as we increase the number of tasks further, although the task
utilization decreases, the interference from both lower and higher priority tasks using
shared resources increases and fewer tasks manage to meet their deadlines.

The same pattern can be noticed in Figures 6.15 and 6.16 when a 8-processor
platform is used. Again, as in the previous experiments, it can be noted that for 8
processors, LB-PCP gives better performance than when 4 processors are used. This
performance improvement is not as significant for P-PCP, for which, for 200 tasks and
very low taskset utilization (0.2) the percentage of successfully scheduled tasksets
increases to 84.6% while for 4 processors it was approximatively 76%.

In the second phase of this experiment we keep the taskset cardinality fixed
and vary the number of tasks using the same resource. Figure 6.17 shows the results
of the experiment for a 4-processor platform with 24 tasks per taskset. Figure 6.18
depicts the situation for tasksets of 200 tasks. The number of tasks using the same
resource is increased from a ratio of 1

12
up to 1

2
of the taskset cardinality. It can

be observed that for both LB-PCP and P-PCP, the percentage of schedulable tasksets
decreases as the number of tasks sharing the same resource increases. A large ratio
leads to more tasksets deemed unschedulable. For example, in the test with half of
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Figure 6.15: Percentage of schedulable tasksets for various taskset cardinalities with each re-
source being shared by 12 tasks - taskset cardinality from 24 to 96 (8 processors)
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Figure 6.16: Percentage of schedulable tasksets for various taskset cardinalities with each re-
source being shared by 50 tasks - taskset cardinality from 100 to 200 (8 processors)
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Figure 6.17: Percentage of schedulable tasksets for various number of tasks requesting the same
resource - taskset cardinality 24 (4 processors)
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Figure 6.18: Percentage of schedulable tasksets for various number of tasks requesting the same
resource - taskset cardinality 200 (4 processors)

BUPT



6.6. - Performance Evaluation 103

���

���

����

P
e
rc

e
n

ta
g

e
 o

f 
s
c
h

e
d

u
la

b
le

 t
a
s
k
s
e
ts

P-PCP 24t, 2t/r

LB-PCP 24t, 2t/r

P-PCP 24t, 4t/r

LB-PCP 24t, 4t/r

P-PCP 24t, 8t/r

��

���

���

��� ��� ��� ��� ��� ��� ��� ��� 	�� 	�� ��� ��� ���

P
e
rc

e
n

ta
g

e
 o

f 
s
c
h

e
d

u
la

b
le

 t
a
s
k
s
e
ts

Utilization

LB-PCP 24t, 8t/r

P-PCP 24t, 12t/r

LB-PCP 24t, 12t/r

Figure 6.19: Percentage of schedulable tasksets for various number of tasks requesting the same
resource - taskset cardinality 24 (8 processors)

the tasks sharing the same resource, for LB-PCP approximatively 11% of the tasksets
with 24 tasks are schedulable at utilization level 0.7. For the same test case, with
P-PCP, 13% of the tasksets with utilization 0.5 are schedulable. Therefore, in this
test case, for LB-PCP we get a 40% performance gain. If the ratio decreases such
that 1

12
of the tasks use the same resource, the performance gap between the two

algorithms increases. With LB-PCP, 57% of the tasksets with 24 tasks and utilization
0.8 are schedulable, while with P-PCP the same percent is achieved only for tasksets
with utilization 0.4, which means a performance gain of 100% with LB-PCP. For
large tasksets, the performance difference between the two protocols is maintained.
Moreover, for a large number of tasks sharing a resource, the performance of P-PCP
drops rapidly as we increase the utilization of the tasksets with 0% schedulability
already at 0.3 utilization, while with LB-PCP we reach 0% schedulability only at 1.0
utilization (230% better utilization).

However, for small tasksets, as we increase the number of processors to 8
and 16 we note that the performance difference decreases and even inverts (for 16
processors). We can see in Figure 6.19, when half of the tasks use the same resource
in an 8-processor system, LB-PCP gives the same schedulability results as P-PCP. For
the test with only 2 tasks sharing the same resource, with P-PCP 52% of the tasksets
with utilization 0.6 are schedulable and for LB-PCP 50% of tasksets with utilization
1.0 are schedulable which means almost 70% performance gain with LB-PCP. Thus,
for 8 processor the performance improvement is maintained as long as the number of
tasks using the same resource is small and drops when we increase this number. For
16 processors (see Figure 6.21), P-PCP proves to be better than LB-PCP no matter
the ratio of tasks sharing the same resource. By increasing the number of processors
to a value closer to the taskset cardinality, the chances for a task to be indirectly
blocked decrease. In P-PCP the α configuration parameter of P-PCP will also increase
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Figure 6.20: Percentage of schedulable tasksets for various number of tasks requesting the same
resource - taskset cardinality 200 (8 processors)

(remember that for tasks with priority lower or equal to the number of processors,
α equals to n and with m for the rest of the cases) and lower priority tasks will be
seldom suspended, where the duration of the suspension will decrease proportionally
with the increase in processor number. On the other side, in LB-PCP the suspension
time has a component not influenced by the number of processors, namely the last
term in the right hand side of Equation (6.12).

The situation is not the same for large tasksets. For 200 tasks per taskset
running on a 8 (Figure 6.20) or 16 (Figure 6.22) processor platform, LB-PCP is always
better than P-PCP.

6.6.6. Experiment 5: Multiple Resource Accesses per Task

In the previous experiments we assume each task uses a single resource. In this
experiment, we investigate the effects of doubling the number of resources accessed
by a task. Therefore, each task in a taskset uses two resources for a total amount
equal to its execution requirement. Each resource is shared by two or more tasks. Like
in experiment 4, we first show what happens if we keep fix the number of tasks sharing
the same resource and increase the taskset cardinality and then, we investigate the
effects of increasing the number of tasks sharing a resource for small and large taskset
cardinalities. The results presented here use DkC for assigning task priorities.

In Figure 6.23, we can note that for P-PCP and 4 processors, the pattern
identified in the previous experiment is still present: the schedulability increases until
taskset cardinality reaches 32 tasks and decreases for larger cardinality values. For
LB-PCP, this effect occurs only for small taskset utilizations. For utilization values
greater than 1.0, the schedulability for tasksets with 64 and 96 tasks is greater than
for the ones with 32 tasks. This is the effect of the fact that larger taskset utilization

BUPT



6.6. - Performance Evaluation 105

���

���

����

P
e
rc

e
n

ta
g

e
 o

f 
s

c
h

e
d

u
la

b
le

 t
a

s
k

s
e

ts

P-PCP 24t, 2t/r

LB-PCP 24t, 2t/r

P-PCP 24t, 4t/r

LB-PCP 24t, 4t/r

P-PCP 24t, 8t/r

��

���

���

��� ��� ��� ��� ��� ��� ��� ��� 	�� 	�� ��� ��� ��� 
�� 
�� ���

P
e
rc

e
n

ta
g

e
 o

f 
s

c
h

e
d

u
la

b
le

 t
a

s
k

s
e

ts

Utilization

LB-PCP 24t, 8t/r

P-PCP 24t, 12t/r

LB-PCP 24t, 12t/r

Figure 6.21: Percentage of schedulable tasksets for various number of tasks requesting the same
resource - taskset cardinality 24 (16 processors)
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Figure 6.22: Percentage of schedulable tasksets for various number of tasks requesting the same
resource - taskset cardinality 200 (16 processors)
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Figure 6.23: Percentage of schedulable tasksets for various taskset cardinalities with each task
using two resources and each resource being shared by 12 tasks - taskset cardinality from 24 to
96 (4 processors)

for identical taskset cardinality means smaller individual task utilization.
Smaller task utilization may be obtained by reducing the execution time and

therefore the length of the critical sections. This results also in reduced suspension
time. Since each task uses two resources, it means that it can get suspended twice
and hence, the higher the suspension time, the higher the chances for the task to
miss its deadline. However, for very large tasksets (see Figure 6.24), the utilization
threshold is much greater than 1.0 and since taskset schedulability decreases faster,
we cannot make the same observation.

The same pattern is noticed in Figures 6.25 and 6.26 for an 8 processor sys-
tem. Furthermore, we can see that for 8 processors, as taskset utilization increases,
P-PCP outperforms LB-PCP for taskset with low cardinality (24 and 32). This is caused
by the higher suspension time in case of LB-PCP. Also, it can be noted that for 8
processors, both LB-PCP and P-PCP give better performance than when 4 processors
are used.

In the second phase of this experiment, we keep the taskset cardinality fixed
and vary the number of tasks using the same resource. Figure 6.27 shows the results
of the experiment for a 4-processor platform with 24 tasks per taskset. Figure 6.28
depicts the situation for tasksets of 200 tasks. The number of tasks using the same
resource is increased from a ratio of 1

12
up to 1

2
of the taskset cardinality. It can

be observed that for both LB-PCP and P-PCP, the percentage of schedulable tasksets
decreases as the number of tasks sharing the same resource increases. A large ratio
leads to more tasksets deemed unschedulable.

In general, LB-PCP performs better than P-PCP, but for small tasksets with
high utilization and large ratios of task cardinality/tasks using the same resource,
P-PCP is slightly better than LB-PCP. For large tasksets however, LB-PCP always
outperforms LB-PCP.
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Figure 6.24: Percentage of schedulable tasksets for various taskset cardinalities with each task
using two resources and each resource being shared by 50 tasks - taskset cardinality from 100
to 200 (4 processors)
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Figure 6.25: Percentage of schedulable tasksets for various taskset cardinalities with each task
using two resources and each resource being shared by 12 tasks - taskset cardinality from 24 to
96 (8 processors)
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Figure 6.26: Percentage of schedulable tasksets for various taskset cardinalities with each task
using two resources and each resource being shared by 50 tasks - taskset cardinality from 100
to 200 (8 processors)
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Figure 6.27: Percentage of schedulable tasksets for various number of tasks requesting the same
resource and each task using two resources - taskset cardinality 24 (4 processors)
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Figure 6.28: Percentage of schedulable tasksets for various number of tasks requesting the same
resource and each task using two resources - taskset cardinality 200 (4 processors)
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Figure 6.29: Percentage of schedulable tasksets for various number of tasks requesting the same
resource and each task using two resources - taskset cardinality 24 (8 processors)
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Figure 6.30: Percentage of schedulable tasksets for various number of tasks requesting the same
resource and each task using two resources - taskset cardinality 200 (8 processors)

For example, in the test with half of the tasks sharing the same resource,
for LB-PCP, 14% of the tasksets with 200 tasks are schedulable at utilization level
1.0. For the same test case, with P-PCP, 13% of the tasksets with utilization 0.3 are
schedulable. Therefore, in this test case, for LB-PCP we get a 233% performance gain.
If the ratio decreases such that approximately 1

12
of the tasks use the same resource,

the performance gap between the two algorithms is maintained. With LB-PCP, we get
0% schedulability for tasksets with 200 tasks at about 1.7 utilization, while with P-PCP
the same percent is achieved already for tasksets with utilization 0.9, which means a
performance gain of 88% with LB-PCP.

Again, we note that, for small tasksets, as we increase the number of pro-
cessors to 8 and 16 the performance difference decreases and even inverts (for 16
processors). We can see in Figure 6.29 that, in a 8 processor system, only if the num-
ber of tasks sharing the same resource is small, LB-PCP behaves significantly better
than P-PCP. For the test with 24 tasks per taskset and only 2 tasks sharing the same
resource, with P-PCP 33% of the tasksets with utilization 1.0 are schedulable and
for LB-PCP 30% of tasksets with utilization 1.6 are schedulable which means almost
60% performance gain with LB-PCP. Thus, for 8 processor the performance improve-
ment is maintained as long as the number of tasks using the same resource is small
and drops when we increase this number. For large tasksets, LB-PCP continues to
dominate P-PCP in all test cases (see Figure 6.30).

For 16 processors (see Figure 6.31), P-PCP proves to be better than LB-PCP
no matter the ratio of tasks sharing the same resource. Again, this is because, for
low cardinality tasksets, a high number of processors means less chances of indirect
blocking and, with P-PCP lower priority tasks will be suspended for less time. On the
other side, in LB-PCP the suspension time has a component not influenced by the
number of processors, namely the last term in the right hand side of Equation (6.12).
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Figure 6.31: Percentage of schedulable tasksets for various number of tasks requesting the same
resource and each task using two resources - taskset cardinality 24 (16 processors)

���

���

���

���

P
e
rc

e
n

ta
g

e
 o

f 
s
c
h

e
d

u
la

b
le

 t
a
s
k
s
e
ts

P-PCP 200t, 20t/r

LB-PCP 200t, 20t/r

P-PCP 200t, 40t/r

LB-PCP 200t, 40t/r

P-PCP 200t, 70t/r

��

���

���

	��

���

�
� �
� �
� �
� �
� �
� �
� �
� 	
� 	
� �
� �
� �
� �
� �
� �
�

P
e
rc

e
n

ta
g

e
 o

f 
s
c
h

e
d

u
la

b
le

 t
a
s
k
s
e
ts

Utilization

LB-PCP 200t, 70t/r

P-PCP 200t, 100t/r

LB-PCP 200t, 100t/r

Figure 6.32: Percentage of schedulable tasksets for various number of tasks requesting the same
resource and each task using two resources - taskset cardinality 200 (16 processors)
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For large tasksets and 16 processors, again LB-PCP performs better than P-PCP
If we look back at experiment 4, we can see that the situations in which

LB-PCP performs worse than P-PCP are quite similar. From this we can conclude
that LB-PCP behaves well even when each task uses several resources and can be
used with large and medium sized critical sections, but we expect that, for very short
resource access, P-PCP will outperform LB-PCP.

6.6.7. Experiments Summary

In previous sections we presented the results of a set of experiments performed in
order to give some insight on the performance of LB-PCP and, at the same time,
we compared it with one of the most recent protocols proposed for a similar system
setup. Based on all these experiments, we can draw several conclusions:

• The performance of LB-PCP, as well as that of P-PCP, is not influenced signific-
antly by the priority assignment policy.

• If a small number of tasks share the same resource for a large amount of time,
LB-PCP outperforms (i.e. deems more tasksets schedulable) P-PCP always and
the performance gap between the two increases as the number of processors
increases.

• For small task systems with high resource contention values, LB-PCP performs
better than P-PCP only if the number of processors is small and its performance
decreases as the number of processors increases.

• For large task systems with high resource contention values, LB-PCP performs
always better than P-PCP.

• For large tasksets, LB-PCP will deem more tasksets schedulable than P-PCP, no
matter the number of available processors, resources shared by each task or
number of tasks sharing each resource.

6.7. Concluding Remarks

This chapter introduced the Limited Blocking Priority Ceiling Protocol, a re-
source sharing protocol suitable for multiprocessor real-time systems scheduled with
a global preemptive fixed-priority algorithm. We have shown in Chapter 2. that, un-
til recently, resource sharing in multiprocessor systems focused more on partitioned
scheduling algorithms, and only recently, the interest for designing resource sharing
protocols for globally scheduled systems has aroused.

The motivation of our work was to improve upon the current state-of-the-art
in resource sharing protocols for global multiprocessor real-time scheduling. We star-
ted from the major limitation in applying PIP directly for multiprocessors: the large
interference of low priority jobs on the higher priority ones. The intuition behind our
work was the idea that, by finding a way to control this high interference we could
increase the benefit of parallel processing provided by the multiprocessors.

The contributions of this chapter are focused on the following areas:

c1. We introduce the Limited Blocking Priority Ceiling Protocol (LB-PCP), a protocol
for mutual exclusive resource sharing under globally scheduled real-time multi-
processor systems. The protocol can control the interference on high priority
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tasks from lower priority tasks no matter what priority assignment policy is used
and does not restrict the ability to exploit the parallelism provided by the multi-
processor platform.

c2. We give a schedulability test for LB-PCP. The test allows one to check off-line if a
given set of tasks will satisfy all its timing constraints. Based on this schedulability
test, we compare the performance of LB-PCP with the performance of P-PCP, the
only known global multiprocessor resource sharing protocol.
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7. A RESOURCE SHARING PROTOCOL FOR
VIRTUALIZED MULTI-CORE SYSTEMS

7.1. Motivation

Currently, real-time research puts considerable effort into designing and im-
plementing HSFs. Hierarchical scheduling is the mean to enforce real-time guarantees
in virtualized systems. Such hierarchical frameworks allow building systems from in-
dependently designed, implemented and validated applications, which must execute
concurrently on a shared platform. A key requirement for these systems is that any
application that meets its timing constraints when running in isolation, must also meet
its timing constraints when running on the shared platform. The basic HSF assumes
each application has a dedicated scheduler for its tasks. The processing capacity
required to schedule these tasks and the timing constraints of the application are
specified by the so-called service contract [95] or by the interface [153] of the ap-
plication. Based on the service contract, a separate execution server is allocated to
each application, a technique which enables dividing the processor capacity among all
applications. Further, each of the servers allocated to the set of applications in the
system is seen by a system-level scheduler as a task with a unique priority while,
at the next level the tasks of the same application are scheduled by the dedicated
scheduler according to an application-specific algorithm.

Until recently, the real-time research focused more on HSFs running on a pro-
cessing platform that consists of a single-core processor. The work on extending these
frameworks to multi-core architectures is still in an incipient phase. Such extensions
must allow each application to run its tasks in parallel which implies that more that
one server may need to be used by each application. Regarding this scenario, a single
schedulability test is known in the literature [60], but this test is limited to applications
consisting of completely independent tasks. For independent tasks or tasks with pre-
cedence dependency, [126] and [127] propose schedulability analysis methods based
on formal verification with timed automata. Related to the same issue of multi-core
HSFs, finding the application interface or service contract such that application parallel
execution is enabled, also dealt only with independent tasks [77, 125].

Moreover, the little work on mutually exclusive resource sharing in HSFs uses
only one server per application [138, 137, 139] or task [78] and therefore it is not pos-
sible for the tasks of the application to execute in parallel. Our goal in this chapter is
to propose a synchronization protocol that can be used in multi-core systems without
restricting application-level parallelism and that can be applied when schedulers at all
levels of the hierarchy use a global multiprocessor scheduling approach. Furthermore,
in order to enable the evaluation of the proposed protocol, an extended schedulability
test based on response time analysis is also proposed.

Motivational example. Consider the mine pump problem introduced by
Burns and Wellings [54]. A mine has several sensors which control a pump pumping
water out of the mine and a sensor to monitor the methane level in the mine. A
schematic diagram of the system is given in the left side of Figure 7.1. Two sensors
indicate the water level. When the water level is high, the pump is switched on to
pump the water out of the mine. When the water level is low, the pump is switched
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Figure 7.1: The mine pump system

off. Another sensor is used for monitoring the methane level in the mine. If the
methane level is above a certain threshold, the pump must not operate.

The scheduling hierarchy of the mine pump system is depicted in the right
side of Figure 7.1. The water level sensors raise interrupts handled by two sporadic
tasks, TH and TL, belonging to application Water Control. As in [54], the interrupt
handling routines are provided by an object IH, shared by the two tasks. The inter-
rupt handler is therefore a locally shared resource. The application Safety Control is
responsible of handling events coming from the methane sensor. A task TM of this
application periodically pulls the methane sensor. If the methane level is higher than
the threshold, the task stops the pump. Another periodic task TS supervises the pump
for safety purposes, stopping and starting the pump according to the current value of
the methane reading. Both tasks will use a locally shared data item ML representing
the value of the last reading of the methane sensor. The pump is controlled by the
Pump Controller object. This object provides operations for starting and stopping the
pump and therefore it will be accessed both by tasks of application Water Control and
by tasks of the Safety Control application.

7.2. Hierarchical System Model

In this chapter, we focus on the problem of scheduling multiple real-time ap-
plications using a multiprocessor hierarchical scheduling framework. Each application
consists of a set of real-time tasks, T = {τ1, .., τn}, which are released either periodic-
ally at fixed time intervals, or sporadically with a minimum inter-arrival time between
two successive releases. We use τ j

i to denote the jth job of task τi. The applications
are scheduled on a multi-core processor or a multiprocessor platform comprised of m
identical processors. In order to enable isolation between different applications, each
application is associated with a set of servers and its tasks execute within the capacity
of the corresponding servers. By associating a set of servers with each application
instead of just one server, we enable parallel execution of the application’s tasks.

There are two levels of scheduling in the system. At the first level, a schedul-
ing policy selects globally, among all server sets, the m servers which will access the
m processors at any time. At the next level, an application-specific scheduling policy
selects the tasks that will execute on the associated servers (see Figure 7.2). It is
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assumed that both scheduling levels employ global fixed-priority preemptive policies,
i.e. a server is not assigned to any specific processor and, similarly, a task is not
assigned to any specific server in the application’s associated set.
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Figure 7.2: A two-level hierarchical scheduling framework

Each server σs (1 ≤ s ≤ p) can be characterized by a unique priority s within
all servers in the system, a capacity or budget Cs and a replenishment period Ts.
The capacity of the server represents the maximum amount of computation time the
server can normally provide in one invocation. The replenishment period is the time
before the server’s capacity will be again fully available. Without loss of generality,
we assume that servers are also sorted in decreasing order of their priorities. Note
also that a server cannot be scheduled on more than one processor at any given time
instant.

Furthermore, the system model is also based on the following assumptions,
representing an extension of the model introduced in Section 4.2.1.:

a1. Each application task τi (1 ≤ i ≤ n) is characterized by a tuple (Ci, Ti, Di), where Ti

denotes the minimum inter-arrival time (or period) between two successive jobs
of the task, Ci its worst-case execution time and Di its relative deadline.

a2. All tasks of each application are periodic or sporadic.

a3. We consider only constrained-deadline tasks with Di ≤ Ti, ∀i.

a4. Each task τi has a unique base priority equal to i.

a5. Tasks are sorted in decreasing order of their priority, i.e. for every pair (τi, τl) if
i < l then the priority of τi is higher than the priority of τl.

a6. During the execution of a job τ j
i its priority may be increased at level h. We call

this elevated priority level effective priority.

a7. The priorities of the tasks and servers are assigned statically.

a8. A task cannot execute on two or more cores simultaneously, and a core cannot
execute two or more tasks simultaneously.
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a9. Task and server preemption is permitted at any time.

a10. Task and server migration is allowed at any time.

a11. It is considered that the costs of preemption and migration are included in the
task execution time.

a12. Besides the processor, the tasks of each application can also share a set of re-
sources which can be accessed only non-preemptively, in mutual exclusive man-
ner.

a13. Different applications can share resources which can be accessed only non-pree-
mptively, in mutual exclusive manner.

We consider applications scheduled under simple periodic server sets although
the analysis can be extended for other execution time servers algorithms like Defer-
rable Server [156] or Sporadic Server [154]. A periodic server is released with a fixed
period and executes any ready tasks until its capacity is exhausted. To fully consume
the capacity of the servers in the application’s set, we consider that each application
contains a set of idle tasks that continuously carry out some work.

Recall from Chapter 6. that the worst-case response time RTi of task τi is
defined as the longest time from the arrival of any job τ j

i of τi until the job completes
executing. Similarly, we define here the worst-case response time RTs of a server σs.

Definition 13. The worst-case response time RTs of a server σs is the longest time

elapsed from the moment when the server capacity is replenished until its capacity

is exhausted. In terms of worst-case response time, a server σs is schedulable if

RTs ≤ Ts.

Shared resources. The jobs of any task can issue requests for exclusive ac-
cess to shared resources R1, R2, ..., Rr. In order to avoid deadlock, we adopt a strategy
similar to the one in [50] and use resource groups to support nestable resource ac-
cesses. Two resource Rk and Rl are in the same group if and only if there exists at
least one job which issues a request for Rl that is nested within a request for Rk.
Resources that are non-nestable (i.e. there are no requests for them nested within
requests for other resources) will form groups by themselves. Access to a resource
group is restricted by a group lock which is a binary semaphore or a mutex. Con-
sequently, a job may block only once when requesting the first resource in the group
as nested requests will be granted immediately since the job will already hold the
group lock. Furthermore, we assume that a task can be preempted while it holds the
lock of a local resource group and that the task will hold the lock until it explicitly
releases it.

Depending on whether a resource is shared only by tasks in a single applica-
tion or by tasks in different applications, we identify two kinds of resources: local and
global. Moreover, we make distinction between local and global resource groups. Local
resource groups are comprised only of local resources while global resource groups
can contain either only global resources or both global and local resources.

We denote by G = Gl ∪ Gg the set of all resource groups, where Gl is the set of
all local resource groups and Gg is the set of all global resource groups. We assume
that for each task τi the worst case resource group usage time among all requests for
a resource group g ∈ G by job of τi is Ci,g. Also, we consider that Ci,g < Cs ∀i, g and s.
Further, we use CTi,g to denote the worst-case total resource group usage time for g
by any single job of τi.
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Figure 7.3: The supply bound function of a periodic execution server

7.3. Response Time Analysis in Hierarchical Scheduling

In this section we introduce the schedulability analysis for independent hier-
archical real-time systems scheduled on a multiprocessor platform. The schedulability
test introduced here will be extended in the following sections to handle also resource
sharing and task synchronization. In order to guarantee the schedulability of an ap-
plication, it is necessary to first make sure that all its servers are schedulable. For
this purpose we can apply the RTA-based analysis developed by Guan et al. [94] and
presented in the Section 6.3. After checking the schedulability of the servers, the
next step is to check the schedulability of the application tasks executing within those
servers. We extend the schedulability analysis in [94] for the case when the execution
of the tasks is constrained by the application servers.

To be able to analyze the schedulability of an application, it is necessary to
calculate the minimum processor supply provided by its assigned set of servers. For
a periodic server σs its supply bound function sbfs(t) gives the minimum processor
supply for any time interval of length t. In order to compute sbfs(t) we assume the
worst case, when the time interval starts right after the capacity of the server has
exhausted and, in all periods that follow, the capacity is replenished as late as possible
(see Figure 7.3):

sbfs(t) =

∥

∥

∥

∥

⌊

t− (Ts − Cs)

Ts

⌋

Cs

∥

∥

∥

∥

0

+

∥

∥

∥

∥

(

t− (Ts − Cs)
)

mod Ts − (Ts − Cs)

∥

∥

∥

∥

Cs

0

(7.1)

The supply bound function of a server is a non-decreasing step function and, in order
to decrease the time complexity of the computations, a linear approximation of it is
often used. Such a linear function is defined in [153]:

lsbfs(t) =
Cs

Ts
(t− 2(Ts − Cs)) (7.2)

Using Equation (7.1), the supply bound function of a set of servers can be com-
puted as the sum of all its server’s supply functions: sbf(t) =

∑

∀σs
sbfs(t). Although

schedulability conditions can be derived using sbf(t), in order to reduce the time-com-
plexity of the analysis, the following linear bound of sbf(t) (obtained by summing up
the servers’ linear bounds) will be used instead :

lsbf(t) = Uσ(t− δσ) (7.3)

where Uσ =
∑

∀σs

Cs

Ts
and

δσ =
2

Uσ

∑

∀σs

Cs

Ts
(Ts − Cs). (7.4)
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Figure 7.4: The supply bound of a server set and its linear bound

Example 9. Figure 7.4 depicts the supply bound function and its linear bound for a

set of two servers σ = {σ1, σ2} with σ1 = (3, 20) and σ2 = (5, 40). The figure also shows
the supply bound functions of the two servers and the corresponding linear bounds.

To analyze the schedulability of a task τi, we use the same technique as [26,
94] and consider that a release of this task is the first job to miss its deadline. We
then compute what is the total interference from higher priority tasks during a prob-
lem window of length x, as presented in Section 6.3. The job of τi that misses its
deadline is called problem job. Since the deadline of the job is missed, it means
that the total interference Ωi(x) together with the computation time requested by τi is
higher than the processor supply of the set of servers, or formally Ωi(x) > sbf(x)− Ci.
However, as pointed out in [60], because the problem job cannot execute in parallel,
it is possible to lower this bound on the total interference. If mp(Ci) represents the
maximum computation time provided by the set of servers during any Ci out of Di

than it is sufficient for Ωi(x) to be higher than sbf(x)−mp(Ci) in order for τi to miss a
deadline [60]. An algorithm for computing mp(Ci) of a set of servers is given in [60]
(see Algorithm 3). Furthermore, in order to reduce complexity we use lsbf(x) instead
of sbf(x) and get the following schedulability condition for τi:

Ωi(x) ≤ lsbf(x)−mp(Ci) (7.5)

After defining an upper bound on the total interference on the problem job of
τi during the problem window, in what follows we use this result to find the worst case
response time of the task by extending the analysis in [94] to hierarchical systems
respecting the model introduced in Section 7.2. Note that, for beginning, we assume
that tasks do not share any resource other than the processors.

In the following lemmas and theorems, fi denotes the finish time of job τ j
i

and t0 denotes the latest time instant before the release time ri of job τ j
i at which at

least one processor is idle (see Figure 7.5).

Lemma 1. For all jobs τ j
i and all x < fi − t0, the following holds:

Ωi(x) > lsbf(x)−mp(Ci). (7.6)
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Figure 7.5: The problem window for task τi

Proof. Since we assume x < fi − t0 it means that job τ j
i has executed for less than Ci

time units during interval [t0, t0 + x). This means that the higher priority tasks kept
busy the available servers for at least lsbf(x) − mp(Ci) + 1 time units. Therefore we
have Ωi(x) ≥ lsbf(x)−mp(Ci) + 1, which is equivalent to the lemma.

For each task τi the problem window starts at moment t0, which is ρi time
units before the release time ri of τi. Similar to [94] we consider t0 = ri − ρi and
express the response time analysis based on the following lemma:

Lemma 2. Given a ρi ≥ 0, let X be the minimal solution of the recursive equation

x =
Ωi(x) +mp(Ci)

Uσ
+ δσ. (7.7)

Then X − ρi is an upper bound of τi’s response time for the particular t0 = ri − ρi.

Proof. Similar to [94], lets assume that R and not X is the worst case response time
of τi for t0 = ri − ρi and that X − ρi < R. If R is the worst case response time it means
that R = fi−ri. We then have that X−ρi < fi−ri. It follows that X < fi−ri+ρi = fi−t0.

From Lemma 1 we then have that Ωi(X ) > lsbf(X )−mp(Ci) which, along with
Equations (7.3) and (7.4), contradicts the hypothesis that X is a solution of Equation
(7.7).

It is important to note that the total interference Ωi(x) depends only on the
length x of the problem window and is independent of ρi. Furthermore, from the
lemma above we know that X − ρi is the upper bound on the response time of task τi
for t0 = ri − ρi which implies that doing RTA according to the lemma for ρi = 0 (t0 = ri)
will give us an upper bound on the worst-case response time of τi.

Theorem 7. An upper bound on the worst-case response time of task τi is given
by the minimal solution X of Equation (7.8) determined by doing fixed-point search
starting with x = Ci:

x =
Ωi(x) +mp(Ci)

Uσ
+ δσ . (7.8)

Proof. From Lemma (2) by considering ρi = 0.

The recurrence relation given by Equation (7.8) ends when x converges or
when x > Di in which case the task is unschedulable.
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7.4. The Parallel Hierarchical Resource Policy

In this section we present a new synchronization protocol for multi-core/mul-
tiprocessor HSFs, called Parallel Hierarchical Resource Policy (P-HRP). P-HRP is the
first such protocol for multiprocessor HSFs which enables task parallelism and is de-
signed for global fixed-priority preemptive scheduling. Under P-HRP access to shared
resources is governed by a two-level set of rules. At the first level, we have a set of
rules controlling access to globally shared resources from tasks assigned to different
servers, belonging to different applications. A second level of rules ensures that re-
sources shared only locally by tasks in the same application are accessed in mutually
exclusive manner.

Global Resource Groups

If a task holding the lock for a local resource group is suspended, only the
suspended task and the tasks in the same application are affected. However, if a task
with a global resource group locked is suspended, then tasks in other applications
waiting to access the same group will be delayed.

In hierarchically scheduled real-time systems such task suspensions can be
caused by depletion of server capacity while the task accesses a global resource. To
prevent this problem two mechanisms have been employed previously: server overrun
(with or without payback) [68] and a skipping mechanism [39]. Under the overrun
mechanism, upon depletion of the server budget during global resource access, the
budget is temporally increased with a statically determined amount for the duration
of that access. If the supplementary budget received in one server period is deducted
from the next period, we have server overrun with payback, otherwise it is server
overrun without payback. Under the skipping mechanism, the server’s remaining
budget is checked before entering a critical section and if it is smaller than the length
of the critical section, the job requesting the resource is suspended until replenishment
of the budget. As proved by Behnam et al., the superiority of one mechanism over
the other is highly dependent on application task parameters [37].

In what follows we consider that the server overrun with payback mechanism
is employed for solving the capacity depletion problem. This overrun is limited to
the maximum resource access time. To ensure that this access time is as short as
possible, preemption of the task holding the resource group lock, by other tasks in
the same application, must be avoided. Consequently, in the proposed protocol, a
task that has locked a global resource group is non-preemptable until it releases the
resource group. The following rules govern global resource accesses:

(1) For each application we use MPa to denote the priority of the highest priority
server in its server set. Associated with each global resource group g ∈ Gg there
is a global priority ceiling GPC(g) equal to the maximum MPa of all applications
with tasks that access resources in g.

(2) When a job τ j
i issues a request for a global resource group g its server must

acquire the group lock. If at the time of the request the lock is held by another
server, the server and job τ j

i will be blocked. Blocked servers are added to a
prioritized queue and suspended and the blocked job will remain associated to the
blocked server.

(3) Whilst a job accesses a resource group the priority of its server is raised to the
highest priority of any of the servers blocked on the same group and waiting its
release.
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(4) Whilst a job access a global resource group it becomes non-preemptable.

(5) If the server capacity is exhausted whilst a job holds the lock of a global resource
group, the server continues to execute until the job inside releases the resource
group.

(6) If a server overruns its capacity then its capacity in the next period will be reduced
by the amount of the overrun.

In a Hierarchical Scheduling Framework, the Limited Blocking Priority Ceiling
Protocol can be applied as it is only for local resources. The reason for this is that in a
HSF, we must control the number of indirect blockages at application level but also at
system level. At application level (second level in the hierarchy depicted in Figure 7.2)
the number of indirect blockages due to local resource access can be directly managed
using the LB-PCP protocol as presented in Section 6.4. Indirect blockages due to global
resource accesses from tasks in the same application can be simply added to those
due to local resource accesses. However, when a task belonging to one application
uses a global resource group, it can indirectly block a task in another application.
Specifically, this happens when the server used by the task holding a global resource
group lock runs at increased effective priority and indirectly blocks a server belonging
to another application with lower effective priority, but higher base priority. Simply
applying LB-PCP at system level (first level in the hierarchy depicted in Figure 7.2)
and adding a blocking counter for servers is not useful since a server is just a virtual
processor and the tasks assigned to them can change while the server is blocked. A
possible approach for applying LB-PCP at system level is proposed in [128].

Local Resource Groups

We assume that access to local resource groups is according to the set of rules
described below:

(1) Each local resource group lg ∈ Gl has a local priority ceiling LPC(lg) associated
with it, where LPC(lg) is equal to the highest priority of any task that may access
any of the resources in the group.

(2) When a job τ j
i issues a request for a local resource group lg it must acquire the

group lock. If at the time of the request the lock is held by another job, τ j
i will be

blocked. Blocked jobs are added to a prioritized queue and suspended.

(3) While a job holds the group lock its priority will be raised to the highest priority of
any task currently blocked waiting for the lock to be released. This is in accordance
to PIP, P-PCP or LB-PCP. Another possibility would be to always execute the
critical section with an effective priority equal to the priority ceiling of the resource
group. This would avoid penalties due to dynamically changing priorities and
would reduce also the implementation costs but may increase delays of higher
priority tasks that are not blocked on the same resource group.

(4) If the capacity of the server executing the job is exhausted whilst the job is holding
a group lock the server is suspended. If another server in the application’s server
set is still available (i.e. its capacity is not finished) then it is possible for the job
to continue its execution in this server.

The set of rules above can be combined with either of the protocols PIP, P-PCP
or LB-PCP.
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In a HSF using P-HRP, for each task τi in an application there are two sources
of indirect blocking. First of all, a lower priority task using a local resource group
may run at increased effective priority, preventing τi from running if its priority is
lower than the priority ceiling of the resource group. Second, when a low priority
task uses a global resource group it becomes non-preemptable and can block any
higher priority task from running, whatever its priority. For these reasons, we need
to slightly adapt LB-PCP. These adaptations refer mostly to the way the counter
LPRi for the number of jobs with base priority lower than i but potential effective
priority higher than i is updated, but also to the update rules for the IBCi counter
which holds the current number of times that jobs with priority higher than i can be
indirectly blocked. Moreover, since in a hierarchical system, we cannot know a-priori
the number of minimum running servers at all time instants, we have to remove the
assumption that IBT1 = ... = IBTm = 0. In this case, we only know that IBT1 = 0 and
IBT1 ≤ IBT2 ≤ ... ≤ IBTn and we leave the system designer choose the values for all
IBTis, i ≥ 2.

In what follows, Algorithms 3, 4, 5 and 6 give the LB-PCP resource sharing
protocol as it should be applied by an application level scheduler in a Hierarchical
Scheduling Framework.

The major difference from Algorithm 1 lies in the way global resources are
handled. When a job τ j

i uses a global resource it runs non-preemptively and as a
result can block any higher priority job, not just the ones with priority lower than the
priority ceiling of the used group. This is why, in Algorithm 6 we check the values of
the blocking counters of all higher priority tasks and, in Lines 4–6 of Algorithm 5, we
update the LPRi counter for all higher base priority tasks.

Depending on the characteristics of each application (i.e. number of servers in
the associated set, taskset utilization, taskset cardinality), one can choose the protocol
that will give the best performance. Furthermore, the choice of one of these protocols
in one application is independent of the protocols used in the other applications in the
system. Based on the performance evaluation in Section 6.6. we make the following
recommendations:

• If the application consists of a large number of tasks, each using several local or
global resources then LB-PCP should be used no matter the number of servers in
the application’s set.

• If the number of servers in the application’s set and the number of available pro-
cessors is large but the applications consists of just a few tasks, the application
level scheduler should use P-PCP for handling resource sharing.

• If the number of servers in the application’s set and the number of available
processors is large but the applications consists of many tasks, the application
level scheduler should use LB-PCP for handling resource sharing.

7.5. Response Time Analysis under the Parallel Hierarchical
Resource Policy

In this section we calculate an upper bound on the response time of servers
and tasks in a two-level HSF. The servers and tasks are scheduled on a m processor
platform, using a global preemptive fixed-priority algorithm and resource sharing is
according to the rules of P-HRP. We will first determine these upper bounds assuming
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Algorithm 3 Resource sharing under P-HRP with LB-PCP

1: for each job τ j
i in decreasing effective priority order do

2: if there are unassigned running servers then
3: if τ j

i is not requesting a resource then
4: assign server to τ j

i

5: else

6: Let g be the resource group owning the resource requested by τ j
i

7: if g is global then
8: Run Algorithm 5
9: else if g is locked then
10: Let τl be the task currently holding resource group g
11: if l > i then
12: EPl = i
13: end if

14: else

15: if g can be granted to τ j
i according to rules in Algorithm 4 then

16: assign server to τ j
i

17: for ind = LPC(g) + 1 to i− 1 do
18: LPRind = LPRind + 1
19: end for

20: else

21: suspend τ j
i

22: end if

23: end if

24: end if

25: else if there is a lower base priority job τ j′

l running with priority EPl < i or
non-preemptively then

26: for ind = i+ 1 to n do
27: IBCind = IBCind − 1
28: end for

29: Set LBTi to the base priority of the job blocking τ j
i

30: end if

31: end for

Algorithm 4 Access rules to local resource group g by job τ j
i

1: for ind = LPC(g) + 1 to i− 1 do
2: if (IBCind+1 − IBCind)− LPRind ≤ 0 then
3: return false

4: end if

5: end for

6: return true
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Algorithm 5 Global resource sharing with LB-PCP for group g and job τ j
i

1: if g is unlocked then
2: if g can be granted to τ j

i according to rules in Algorithm 6 then
3: assign server to τ j

i

4: for ind = 1 to i− 1 do
5: LPRind = LPRind + 1
6: end for

7: else

8: suspend τ j
i

9: end if

10: end if

Algorithm 6 Access rules to global resource group g by job τ j
i

1: for ind = 1 to i− 1 do
2: if (IBCind+1 − IBCind)− LPRind ≤ 0 then
3: return false

4: end if

5: end for

6: return true

that the PIP protocol is used at both levels of the hierarchy and then, we will extend
the results for the case when LB-PCP is used at application level.

7.5.1. Notations

We define B(σs, g) as the longest time for which any task in a server σs may access a
resource in a global resource group g ∈ Gg.

B(σs, g) = max {CTi,g : τi ∈ σs ∧ τi ∈ A(g)}, (7.9)

where by A(g) we denote the set of tasks that may require access to a resource in
group g. The maximum overrun time of server σs can then be computed as:

B(σs) = max {B(σs, g) : g ∈ G(σs)}, (7.10)

where G(σs) is the set of all global resource groups accessed by a task that may
execute in σs. Note that for all servers of the same application the maximum overrun
time will be the same.

Also, we define Bx(σs) as the maximum time for which a task in σs accesses a
resource group that is not also accessed by any task in server σx:

Bx(σs) = max {B(σs, g) : g ∈ G(σs) ∧ g /∈ G(σx)}, (7.11)

We also define B(τi, g) = max {CTi,g : g ∈ G(τi)} as the longest time for which a
job of task τi may access a resource in resource group g, local or global:

B(τi, g) = max {CTi,g : g ∈ Gg(τi) ∪ Gl(τi)}, (7.12)

where by Gg(τi) and Gl(τi) we denote the sets of global and local resource groups
accessed by τi with G(τi) = Gg(τi) ∪ Gl(τi).
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7.5.2. Parallel Hierarchical Resource Policy with PIP

7.5.3. Server Response Time

In this section we calculate the worst-case response time RTs of a server σs scheduled
using a global fixed-priority preemptive scheduler with resource sharing under P-HRP.
There are four parameters that influence the value of RTs: (1) the server’s capacity
Cs, (2) the amount of time server σs is blocked waiting for the resources it requests
to be granted, (3) the amount of execution that lower priority servers execute at a
priority higher than that of σs, and (4) the amount of execution that servers with
priority higher than σs can perform.

A server may overrun if the task within holds the lock of a global resource
group. This has a negative impact on schedulability of server σs with worst case effects
when: (1) for all servers that block σs directly, the task that executes within accesses
a group for the longest time amongst all tasks of the application, (2) all lower priority
servers, that execute at higher priority, access a group for the maximum possible
amount, and (3) all releases of higher priority servers running between the release
and finish of σs overrun by their maximum amount.

Under P-HRP, a server σs can suffer blocking delays when the task that ex-
ecutes within σs issues a request for a global resource group g. There are two possible
sources of blocking for σs.

First, direct blocking occurs when σs is one of the m highest priority servers
but the lock for group g is locked by some other server. The worst case scenario occurs
when σs requests group g immediately after it has been granted to a lower priority
server and all higher priority servers also request access to the resource. Therefore,
the direct blocking time during an interval of length x can be expressed as follows:

DBσs(x) =
∑

g∈G(σs)

(

Ns,g · ( max
σl∈lp(s)

{Cl,g} − 1) +
∑

σh∈hpg(σs)

ICI
s (h,B(σh, g), x)

)

(7.13)

where Ns,g denotes the maximum number of times an instance of σs requires access
to group g and ICI

s (h,B(σh, g), x) is the interference due to higher priority servers
requesting the same resource group g and is computed using Equation (6.6) but
considering only the set of higher priority servers that use g and assuming that the
interference produced by a server σh is due to B(σh, g) units of work:

ICI
s (h,B(σh, g), x) = ‖WCI

h (B(σh, g), x)‖x−Cs+1 (7.14)

In the equations above we used lp(s) to denote the set of servers with priorities lower
than σs, hp(s) to denote the set of higher priority servers and hpg(s) for the set of all
higher priority servers that use resource group g.

The second source of blocking is indirect and occurs when σs cannot execute
because a lower priority server σl executes with a priority higher than σs while it
accesses a resource group. Under PIP, the indirect blocking time for a sever IBσs

states that a lower priority server σl may interfere with σs multiple times and may
delay the execution of σs just as much as any higher priority server. The indirect
blocking time of σs can be upper bounded as follows:

IBσs(x) =
1

m
Ωlp

s (x) (7.15)

where Ωlp
s (x) is the total interference from lower priority servers while accessing global
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resources with priority ceiling greater than s. In the computation of Ωlp
s (x) we consider

that only the θ(l, s) =
∑

g∈G(σl)∧GPC(g)<s B(σl, g) execution units are relevant:

Ωlp
s (x) = max

(σNC ,σCI )∈Zlp(s)

(

∑

σl∈σ
NC

INC
s (l, θ(l, s), x) +

∑

σl∈σ
CI

ICI
s (l, θ(l, s), x)

)

(7.16)

where Zlp(s) is the set of all partitions of the set of servers with priority lower than σs.
The worst-case effects on the response time of a server σs due to interference

on its execution from higher priority servers that execute within critical sections of
resource groups others than the ones shared with σs, occur when all releases of
such servers succeeding the release of σs overrun by their maximum amount due to
accesses to other global resources. When the overrun and payback mechanism is
enabled, the first invocation of such higher priority servers σh will execute for Ch +
Bs(σh) time units while next invocations will have an execution time of only Ch even
though they may also overrun. The interference of these servers can be expressed
as:

IXs,osh(h, β(h, s), x) =
∥

∥WX
h (β(h, s), x) +Bs(σh)

∥

∥

x−Cs+1
(7.17)

where X is a placeholder for NC and CI, β(h, s) =
∑

g∈G(σh)∧g/∈G(σs)
B(σh, g) and WX

h

can be computed as in Equations (6.2) and (6.3).
Furthermore, a job of σs suffers interference from higher priority servers when

these execute outside any critical section. The interference caused by such situations
can be computed as follows:

IXs,nsh(h, γ(h), x) =
∥

∥WX
h (γ(h), x)

∥

∥

x−Cs+1
(7.18)

where γ(h) = Ch −
∑

g∈G(σh) B(σh, g).

These new definitions of IXs,osh(h, c, x) and IXs,nsh(h, c, x) will be used for com-
puting the total interference in the relation below (due to space considerations, we
dropped the middle parameter):

Ωs(x) = max
(σNC ,σCI )∈Z

(

∑

σh∈σ
NC

(

INC
s,osh(h, x) + INC

s,nsh(h, x)
)

+

∑

σh∈σ
CI

max
(

INC
s,osh(h, x) + ICI

s,nsh(h, x), I
CI
s,osh(h, x) + INC

s,nsh(h, x)
)

) (7.19)

Server worst-case response time can be determined by incorporating the
blocking and total interference factors into the recurrence relation defined by Equation
(6.8):

RTs = Cs +DBσs(RTs) + IBσs(RTs) +

⌊

Ωs(RTs)

m

⌋

(7.20)

The recurrence starts with RTs = Cs and ends when RTs converges, in which
case RTs gives the worst-case response time of server σs, or when RTs > Ts which
means that the server is unschedulable.
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7.5.4. Task Response Time

In HSFs, the factors that influence the worst-case response time of a task scheduled
according to a global fixed priority preemptive scheduler can be grouped based on the
level where they manifest themselves. At the first level, we identify factors such as
the availability and the response time of the servers that may execute the task, while
at application level, the worst-case load and the resource requests handled between
the release and the deadline of the task under analysis, are key factors.

The workload that must be executed before the completion of task τi is af-
fected by task accesses to local and global resource groups. When a task holds
the lock of a local resource group lg its priority may be raised to the priority ceiling
LPC(lg) which may be higher than the priority of τi. Furthermore, whenever a task
requests access to a global resource group g it becomes non-preemptable which may
also prevent higher priority tasks from executing. We call such situations indirect task
blocking. Moreover, just like in the case of servers, a task τi may also be directly
blocked by another task that requests the same local resource group lg as τi, or, in
case τi issues a request for a global resource group g, it is possible for τi to be blocked
by some task in another application using group g.

The worst case delay caused by indirect blocking to a task τi is:

IBτi(x) = Ωlp
i (x) (7.21)

Above, we assume that the lower priority tasks execute in the lowest priority server
σl0 and express the blocking as the total interference from the lower priority tasks
with increased priorities while executing local and global critical sections as follows:

Ωlp
i (x) = max

(τNC ,τCI )∈Zlp(i)

(

∑

τl∈τ
NC

INC
i (l, θτ (l, i), x) +

∑

τl∈τ
CI

ICI
i (l, θτ (l, i), x)

)

(7.22)

where θτ (l, i) =
∑

lg∈Gl(τl)∧LPC(lg)<i B(τl, lg) +
∑

g∈Gg(τl)∧g/∈Gg(τi)
B(τl, g), lp(i) is the set of

tasks with base priority lower than τi and Zlp(i) is the set of all partitions of tasks with
priority lower than τi which use local resources with priority ceiling greater than i or
use global resources. Note that |τCI | ≤ min (|σa|,m)− 1 where |σa| is the number of
servers in application’s a set.

Like in the case of servers, every request for a local group lg ∈ Gl(τi) of job τ j
i

may be directly blocked by at most one lower priority job. Moreover, in the worst case
scenario, it is possible that jobs of all higher priority tasks also request lg at the same
time with τ j

i . Therefore task direct blocking time due to access to local resources can
be defined as follows:

DBτi
L (x) =

∑

lg∈Gl(τi)

(

Ni,lg · ( max
τl∈lp(i)

{Cl,lg} − 1) +
∑

τh∈hplg(i)

ICI
i (h,B(τh, lg), x)

)

(7.23)

where ICI
i (h,B(τh, lg), x) is computed as follows:

ICI
i (h,B(τh, lg), x) = ‖WCI

h (B(σh, lg), x)‖x−Ci+1 (7.24)

In the equation above we consider the set hplg(i) of all tasks with higher priority than
τi which use local resource group lg.

Whenever a task uses a global resource it remains assigned to the server
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where it is currently running and consequently, while the server is directly blocked
by other servers, the task executing inside will also be blocked. This blocking time
represents the task direct blocking time for global resource requests and is maximum
when the task is assigned to the lowest priority server in the application’s set. The
task direct blocking time due to requests for global resource groups is equal to DB

σl0
G :

DBτi
G (x) =

∑

g∈Gg(τi)

(

(

max
σl∈lp(l0)

{Cl,g} − 1
)

+
∑

σh∈hpg(l0)

ICI
l0

(

h,B(σh, g),min{x,RTl0}
)

)

(7.25)

where ICI
l0
(h,B(σh, g),min{x,RTl0}) is computed according to Equation (7.14).

Furthermore, the worst-case response time of task τi is also influenced by
interference from higher priority tasks in the same application that either execute
outside critical sections or inside critical sections of resource groups not accessed by
τi. We compute this interference for the case when these tasks have carry-in (CI)
jobs relative to the problem window of τi and for the case when there is no carry-in
(NC). Next, we express the interference due to executions with resource groups not
shared with τi (I

X
i,osh) and executions with no shared resources (I

X
i,nsh) (again X is just

a placeholder for NC and CI):

IXi,osh(h, βτ (h, i), x) =
∥

∥WX
h (x, βτ (h, i))

∥

∥

x−Ci+1
(7.26)

IXi,nsh(h, γτ (h), x) =
∥

∥WX
h (x, γτ (h))|

∥

∥

x−Ci+1
(7.27)

where βτ (h, i) =
∑

g∈G(τh)∧g/∈G(τi)
B(τh, g) and γτ (h) = Ch −

∑

g∈G(τh) B(τh, g). We can

compute the total interference as (due to space considerations we have omitted the
middle parameter for IX):

Ωi(x) = max
(τCI ,τNC)∈Z

(

∑

τh∈τ
NC

(

INC
i,nsh(h, x) + INC

i,osh(h, x)
)

+

∑

τh∈τ
CI

max
(

INC
i,nsh(h, x) + ICI

i,osh(h, x), I
CI
i,nsh(h, x) + INC

i,osh(h, x)
)

) (7.28)

where |τCI | ≤ min (|σa|,m)− 1 (i.e. |σa| is the number of servers in application’s a set).
From the discussions above, we can determine the worst case response time

of a task scheduled under P-HRP with PIP by incorporating the blocking factors into
the recurrence relation defined by Equation (7.8):

RTi =

⌊

Ωi(RTi) +mp(Ci) + IBτi(RTi)

Uσa

⌋

+δσ+DBτi
L (RTi)+DBτi

G (RTi)+IBσl0
(RTi) (7.29)

The recurrence relation in Equation (7.29) starts with RTi = Ci and ends when the
value of RTi converges or RTi > Di in which case the task is unschedulable.

7.5.5. Parallel Hierarchical Resource Policy with LB-PCP

We derive in this section an upper bound on the response time of a task τi in an
application of the HSF, scheduled with a global multiprocessor preemptive fixed-prior-
ity scheduler with resources shared under the rules of P-HRP combined with LB-PCP.
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Note that, since we can only apply LB-PCP at application level, the RTA for servers
requires no modifications and is similar to the one in Section 7.5.3. Therefore, in this
section, only the RTA for application tasks is modified.

The local and global direct blocking time (DBτi
L and DBτi

G ) is identical to that
under PIP described by equations (7.23) and (7.25), respectively. This follows from
the fact that, under LB-PCP, as well as under PIP, when a job τ j

i requests a local re-
source group it has to wait for at most one lower priority job and for all higher priority
jobs to release the resource group. Similarly, when it requests a global resource it has
to wait the release of the group lock by at most one job, of the same or of another
application, running in a lower priority server, and by all jobs running in higher priority
servers.

Higher priority interference from no shared resource execution (IXi,nsh) is also
identical to that under PIP because LB-PCP behaves the same way as PIP when hand-
ling executions without shared resources.

Under LB-PCP a job τ j
i can be indirectly blocked at most IBTi+1−IBTi times by

any lower priority task in the same application executing with higher effective priority,
while accessing a local resource group, or non-preemptively, while holding the lock of
a global resource group. Therefore, the indirect blocking time under LB-PCP is lower
than under PIP and, in the worst case, it is upper bounded by:

IBτi(x) =

⌊

(IBTi+1 − IBTi)maxτl∈lp(i)∧((g∈Gl(τl)∧LPC(g)<i)∨
(g∈Gg(τl)∧g/∈Gg(τi)))

(Cl,g)

min(Uσa , IBTi+1 − IBTi)

⌋

(7.30)

For each request to a resource group g by a job τ j
i , the job may be suspended

when either of the Algorithms 6 or 4 deems that letting the job enter a critical section
may cause disallowed indirect blockages to one or several higher priority jobs.

For each request of job τ j
i to a local resource group lg, in the worst case

scenario, the job will be suspended during all shared resource executions lg′ ∈ Gl(τh)
of every job with priority h, LPC(lg) + 1 < h < i, with lg′ 6= lg and LPC(lg′) < h.
Therefore, the suspension time determined by local resource requests from jobs of
task τi depends on the interference from local resource accesses of tasks with priority
h, minlg∈Gl(τi)

(

LPC(lg)
)

+ 1 < h < i, and can be bounded by:

Ωlsus
i,hp (x) = max

(τNC ,τCI )∈ZLPC(lg)

(

∑

τh∈τ
NC

INC
i (h, βl

h, x) +
∑

τh∈τ
CI

ICI
i (h, βl

h, x)

)

(7.31)

where ZLPC(lg) is the set of all task partitions with higher priority h, minlg∈Gl(τi)
(

LPC(lg)
)

+
1 < h < i, and

βl
h =

∑

lg∈Gl(τh)∧lg/∈Gl(τi)∧LPC(lg)<h

B(τh, lg). (7.32)

Additionally, in the worst case scenario, τ j
i will also be suspended during all

global resource accesses of tasks with higher base priority. Hence, suspension time
due to interference from global resource accesses can be bounded by:

Ωgsus
i,hp (x) = max

(τNC ,τCI )∈Z

(

∑

τh∈τ
NC

INC
i (h, βg

hl, x) +
∑

τh∈τ
CI

ICI
i (h, βg

hl, x)

)

(7.33)
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where Z is the set of all partitions of the set of higher priority tasks, and

βg
hl =

∑

g∈Gg(τh)∧g/∈Gg(τi)

B(τh, g). (7.34)

Furthermore, since the tasks currently executing with effective priority higher
than their base priority or executing non-preemptively, may lead to the scenario where
indirect blocking is not allowed anymore for some higher priority jobs (IBCh+1−IBCh =
0), job τ j

i will also have to wait until the last of these jobs finishes its execution.
Therefore, the total amount of suspension time of job τ j

i can be upper bounded as
follows:

suspi(x) =

⌊

Ωlsus
i,hp (x) + Ωgsus

i,hp (x)

Uσa

⌋

+
∑

lg∈Gl(τi)

Ni,lg max
τh∈hp(i)∧

i>h>LPC(lg)

(Ch) +
∑

g∈Gg(τi)

Ni,g max
τh∈hp(i)

(Ch)

(7.35)
Besides the higher priority shared resource executions considered in the es-

timation of the upper bound on the suspension time, the execution of a job τ j
i is

interfered also by shared resource executions that are outside the domain considered
there. We refer here to the interference from: (1) tasks with base priority h < i,
minlg∈Gl(τi)

(

LPC(lg)
)

+1 < h < i, during shared resource executions with priority ceiling
equal to h, and (2) tasks with base priority h < i, h ≤ minlg∈Gl(τi)

(

LPC(lg)
)

+ 1, during
any local shared resource executions. The interference due to these executions can
be computed as follows:

IXi,osh(h, x) =

{

∥

∥WX
h (x, β1

τ (h, i))
∥

∥

x−Ci+1
if minlg∈Gl(τi) LPC(lg) + 1 < h < i,

∥

∥WX
h (x, β2

τ (h, i))
∥

∥

x−Ci+1
if h ≤ minlg∈Gl(τi) LPC(lg) + 1.

(7.36)

with β1
τ (h, i) =

∑

lg∈Gl(τh)∧lg/∈Gl(τi)
∧LPC(lg)=h

B(τh, lg) and β2
τ (h, i) =

∑

lg∈Gl(τh)
∧lg/∈Gl(τi)

B(τh, lg).

Summing up, the total interference on task τi from higher priority tasks can
be computed using Equation (7.28), where the IXi,nsh(h, x) term is computed according

to Equation (7.27) and the IXi,osh(h, x) term is computed according to Equation (7.36).
Using the results above, we can determine the worst case response time of a

task scheduled under P-HRP with LB-PCP by incorporating the suspension factors into
the recurrence relation defined by Equation (7.29):

RTi =
Ωi(RTi) +mp(Ci)

Uσa
+ δσ + suspi(RTi)

+ IBτi(RTi) +DBτi
L (RTi) +DBτi

G (RTi) + IBσl0
(RTi)

(7.37)

where IBτi(RTi) and suspi(RTi) are computed using Equations (7.30) and (7.35),
Ωi(RTi) is defined as explained in the previous paragraph and the rest of the terms are
similar to those defined under PIP. The recurrence relation in Equation (7.37) starts
with RTi = Ci and ends when the value of RTi converges or RTi > Di, in which case
the task is unschedulable.

Example 10. We consider two applications, A1 and A2, each scheduled using a set of

servers with parameters given in Table 7.1 (all time values are given in µs and servers
are ordered based on priority) and we assume m = 3. Tasks in both applications share
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a global resource group with one resource and a maximum access time of 350µs, a
value quite large when compared to the capacity of the first server. Table 7.1 gives

the worst-case response times of the servers for the case when P-HRP is used. For

comparison purpose we also show what is the worst-case response time assuming

that no resources are shared between applications.

Table 7.1: Numeric example for server response times under P-HRP

Server Appl. Capacity Period U
No

P-HRP
resources

σ1 A1 500 2000 25% 500 849
σ2 A2 1000 4000 25% 1000 2147
σ3 A1 2500 10000 25% 2500 5182
σ4 A1 3000 12000 25% 4000 9181
σ5 A2 4000 16000 25% 7166 14895
σ6 A2 4500 30000 15% 9500 25963

It is obvious that global resource accesses have a cumulative effect on server

response time. The response times of servers σ2 to σ5 are approximatively 2 times
greater than for the non-blocking case (6th column of Table 7.1) while for the last
server this ratio increases. This is caused by the higher direct blocking of server σ6

which leads us to the conclusion that, at least under this priority assignment, the

achieved system utilization may be quite low.

Next, we consider task response times. Table 7.2 presents the task paramet-

ers for application A1 (all time values are given in µs). Besides global resource access,
two pairs of tasks also access a locally shared resource for at most 500µs. The last
two columns of Table 7.2 give the worst-case response times for the tasks assuming

local and global resource sharing using the P-HRP with PIP and LB-PCP, respectively.

Table 7.2: Numeric example for task response times under P-HRP

Task C P D U Res.
No P-HRP

resources PIP LB-PCP

τ1 2800 40000 40000 7.00% lg1 23200 27547 27547
τ2 3500 70000 70000 5.00% lg2 26000 36879 33147
τ3 4000 85000 85000 4.71% - 28000 47446 35348
τ4 2300 100000 100000 2.30% lg2 21200 50044 33548
τ5 4500 125000 125000 3.60% lg1 30000 60611 43514

There are several conclusions to be drawn from Table 7.2. First of all, resource

access under PIP increases significantly the worst-case response time: with at least

18% for the highest priority task and with more than 100% for the lowest priority

one). For LB-PCP, resource sharing is less expensive and we get an increase of the

response time of at most 60%. These differences between the performances of the

two protocols result from the lower indirect blocking time in LB-PCP compared to PIP.

Secondly, non-preemptive execution of low priority tasks during global re-

source accesses causes large blocking times for all higher priority tasks. This is espe-

cially visible for tasks τ1 and τ2. A second issue causing high delays for high priority
tasks is the high indirect blocking time of these tasks when they request a local re-

source group. Note that indirect blocking is caused by lower priority tasks using the
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local resource but may be caused also by usage of global resources, which determines

non-preemptive execution of the tasks.

Finally, it can be seen that even when no resource sharing takes place, the

worst-case response time is quite large. This is because in Equation (7.8), used for

computing the response time in this case, we assume that servers running in parallel

with the problem job’s are idle and so the upper bound on allowed total interference

is lowered significantly.

7.6. Performance Evaluation

In this section we present the results of the tests on the effectiveness of our
protocol in scheduling workloads consisting of six hard real-time tasks scheduled on
the set of servers σA1 = {σ1, σ2, σ3}. These six tasks are part of an application A1

executing on a shared platform with 3 processors. On the same platform there is a
second application A2 using the set of servers σA2 = {σ4, σ5, σ6}. The parameters of
the servers in the two sets are summarized in Table 7.3. The servers are ordered
decreasingly by their priority.

Table 7.3: Server sets used for evaluating the performance of P-HRP

Server Application Capacity[µs] Period[µs] U

σ1 A1 500 2000 25%
σ4 A2 1000 4000 25%
σ2 A1 2500 10000 25%
σ3 A1 3000 12000 25%
σ5 A2 4000 16000 25%
σ6 A2 4500 30000 15%

For evaluating the performance of P-HRP we follow a simulative approach that
considers the number of schedulable tasksets detected by the schedulability tests
detailed in Section 7.5. among a randomly generated distribution of tasksets. The
evaluation of the protocol uses a tool capable of determining if a set of tasks sharing
a specified set of local and global resources is schedulable under P-HRP, for the cases
when either LB-PCP or PIP is used at the second level of the HSF. Similar to the tool
developed for testing schedulability under simple LB-PCP, this tool is also platform
independent Java code and can be used as a stand-alone application or as a library,
providing an interface which can be used by other applications. Basically, the tool
receives as input the path of a file containing the set of servers in the system, the
path to the file with the sets of tasks of each application running in the system,
the path of a file containing the definitions of local and global shared resources and
describing which tasks use which resources, the number of processors on which the
tasks shall be scheduled and the name of the protocol to be used of arbitrating access
to shared resources. Using this information, the tool tests if the taskset is schedulable
using the equations presented in Section 7.5.

The experiments described further use this tool and test the schedulability
of randomly generated tasksets containing six tasks each, with a variable taskset
utilization. Each tasksets is assumed to represent application A1 above.

For each experiment we generate 1000 tasksets. Every task is generated as
follows:
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• Task utilization is generated randomly using the UUnifast algorithm [49] adapted
task utilizations in some specified interval. In our case, the taskset utilization
increases from 10% to 75%, in steps of 5% and the task utilization Ui is between
1% and maximum taskset utilization.

• Depending on the exact experiment, task period Ti (1 ≤ i ≤ n) is generated ac-
cording to a uniform random distribution between minimum or maximum server
budget in the application and 100ms.

• The execution time Ci is computed as Ci = Ui ∗ Ti.

• Task deadline Di is generated using a uniform random distribution, in the range
[Ci + 0.9 ∗ (Ti − Ci), Ti].

• The priorities of the tasks were set according to the RM order.

• For LB-PCP, we assume that a job can be indirectly blocked at most once:
IBTi+1 − IBTi ≤ 1, ∀ i.

7.6.1. Experiment 1: Global Critical Section Duration

One of the main factors that influence the response time of both servers and tasks is
the duration of a global resource access. It is clear from Equations (7.20), (7.13) and
(7.17) that whenever the duration of a global critical section increases, the response
time of the servers may increase. Moreover, from Equations (7.29) and (7.37) we
can see that any increase of the length of a global critical section will also lead to an
increase in the response time of a task, no matter if it uses the global resource or not.

In this first experiment we consider that each task in application A1 and each
task in application A2 uses a global resource for an amount of time varying between
10% and 100% of the minimum capacity of any server in the application’s set. The
number of tasks using the resource is 1, 3, 4 and 6.

In Figure 7.6 we see that if a single task (the medium priority one) in each ap-
plication uses the global shared resource, the schedulability of the tasksets decreases
very little as the length of the critical section increases, when either of the PIP or
LB-PCP protocols is employed. This decrease is more visible for low taskset utilization
and almost unobserved for high utilization. The task using the resource can affect the
other tasks in the application only through indirect blocking and, if the overall taskset
utilization is small, the ratio between the blocking time and actual execution time of
each task is higher than for large taskset utilization values. For high priority tasks
with early deadlines this leads to incapacity of meeting those deadlines.

In Figures 7.7 and 7.8, we see that as the number of application tasks using
the same global resource is increased, increasing the duration of a global critical sec-
tion decreases the percent of schedulable tasksets also for higher taskset utilizations.
This is due to the additional direct blocking costs which influence the response time of
the tasks using the resource, although the overall indirect blocking costs are reduced
compared to the case in Figure 7.6.

Regarding the performance gap between the two protocols used together with
P-HRP, namely PIP and LB-PCP, we note that LB-PCP always performs better than
PIP. For example, with all tasks sharing the global resource, under PIP almost 34%
of the tasksets with utilization 0.3 are schedulable, while, under LB-PCP, 34% of the
tasksets with utilization 0.4 are schedulable. This means 33% better utilization of the
processor.
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Figure 7.6: Percentage of schedulable tasksets for different critical section durations when a
single task in each application uses the global resource
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Figure 7.7: Percentage of schedulable tasksets for different critical section durations when half
of the tasks in each application use the global resource
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Figure 7.8: Percentage of schedulable tasksets for different critical section durations when all
tasks in each application use the global resource
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Figure 7.9: Percentage of schedulable tasksets for different number of tasks sharing a global
resource
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If we analyze schedulability as a function of tasks sharing the same resource
for a time equal to the minimum capacity of any application server (see Figure 7.9),
the effects of direct blocking are more obvious, with minimum percent of schedulable
tasksets when all tasks use the resource and maximum when only one task uses the
resource.

7.6.2. Experiment 2: Task Priority

Looking at Equations (7.22), (7.25), (7.28) and (7.33) it is clear that the priority of
a task using a global resource is of great importance. A low priority task using a
global resource will execute non-preemptively and may prevent a high priority one
from running and finally may lead to at least one missed deadline. A high priority task
may also delay other tasks since it keeps a server busy while waiting for the resource,
a server which may have been used more efficiently by other tasks in the absence of
other available servers. However, the number of tasks affected in the two scenarios
is different. Another factor that influences schedulability is the lowest period of any
task in the taskset. If this period is very close to the lowest period of any server in
the application’s set then we expect a lower schedulability success rate.

The graphs in Figure 7.10 show the percent of schedulable tasksets when the
highest (HP) or the lowest (LP) priority task uses a global resource for a time equal
to the minimum capacity of any application server. Furthermore, we test the case
when the minimum task period in the taskset is equal to the minimum server period
(MIN) and also when it is equal to the maximum server period (MAX). First thing
to note is that when at least one task period is equal to the smallest server period,
the schedulability rate drops with 50% under both LB-PCP and PIP, regardless the
priority of the task using the global resource. It is fairly easy to estimate that if the
task period is small its workload is high and consequently the resource demands of
the application are high. As the resource supply provided by the server set is rather
small, the application will need a lot of extra resources to be schedulable.

Furthermore, for this length of the critical section we can not see any major
difference between the scenarios when the lowest priority task uses the global re-
source and those when the highest priority one does it. Figure 7.11 shows that even if
the highest priority task uses the global resource for less than the entire budget of the
server with the smallest period, the schedulability results do not change very much.

7.6.3. Experiment 3: Local Critical Section Duration

An important factor that influences the response time of a task is the duration of a local
resource access. It is clear from almost all equations in Sections 7.5.4. and 7.5.5.
that whenever the duration of a local critical section increases, the response time of
the application tasks may increase.

In this experiment we consider that each task in application A1 uses a local
resource for an amount of time varying between 10% and 100% of the minimum
capacity of any server in the application’s set. The number of tasks using the resource
is 3, 4 and 6.

Figure 7.12 shows the percentage of schedulable tasksets when a half of the
tasks, selected randomly, use the locally shared resource. Note that the schedulability
of the tasksets decreases very little as the length of the critical section increases, when
either of the PIP or LB-PCP protocols is employed. Comparing with the situation when
the shared resource was global, we can see that local resource sharing determines
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Figure 7.10: Percentage of schedulable tasksets when the task using a global resource has the
highest or lowest priority
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Figure 7.11: Percentage of schedulable tasksets when the highest priority task uses a global
resource and its period is close to the minimum server period in the application’s set
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lower overheads. This was expected since in this case, delays may be induced only by
tasks in the same application and are not influenced by other applications.

The effects of local direct blocking become more visible in Figure 7.13 where
all tasks use the local resource. In Figure 7.13, we see that as the number of ap-
plication tasks using the same local resource is increased, increasing the duration of
a local critical section decreases the percent of schedulable tasksets for medium and
high taskset utilization values. This is due to the additional direct blocking costs which
influence the response time of the tasks using the resource. In previous cases, the
cost of indirect blocking dominated the one of direct blocking, while in this situation
we have no indirect blocking at all.

The performance gap between the PIP and LB-PCP protocols used together
with P-HRP is similar to the global resource sharing case. Again, we note that LB-PCP
always performs better than PIP. For example, with all tasks sharing the local resource
for a small amount of time (20% of the smallest server budget), under PIP almost 39%
of the tasksets with utilization 0.3 are schedulable, while, under LB-PCP, 39% of the
tasksets with utilization 0.4 are schedulable. This means 33% better utilization of the
processor.

If we compare schedulability rates based on the number of tasks sharing the
same resource for a time equal to the minimum capacity of any application server (see
Figure 7.14), the effects of direct blocking are more obvious, with minimum percent
of schedulable tasksets when all tasks use the resource and maximum when only half
of the tasks use the resource.

7.6.4. Experiment 4: Multiple Local Critical Sections

In this experiment we compare the cases when tasks in an application access multiple
local critical sections. For this purpose we test what happens when different number
of tasks use 2, 4, 6, 8 and 10 local resources. For each task the length of each critical
section is generated as a percent of the task’s execution time such that the sum of all
critical sections durations equals the task’s execution time. Furthermore, we test the
cases when 50%, 75% and 100% of the tasks share the same resource.

Figure 7.15 shows the percentage of schedulable tasksets when 3 tasks (50%)
share the same local resource. It can be noted that for 2 up to 6 critical sections per
task, under LB-PCP the schedulability success rate is higher than under PIP, while
for 8 and 10 critical sections PIP outperforms LB-PCP for low and medium utilization
tasksets, but for higher utilization LB-PCP is still better. This is the effect of the high
suspension time for each of the tasks. If we increase the number of tasks using the
same resource to 6 (see Figure 7.16) we see that in the best case, LB-PCP is just as
good as PIP, but almost always PIP is better than LB-PCP.

If we analyze the schedulability as a function of the number of tasks using the
same resource (Figures 7.17 and 7.18), we see that for a small number of allowed
indirect blockages (1) and a large percent of tasks using the resource, with PIP we
get a higher number of schedulable tasksets than when LB-PCP is used.

In the worst case, with 8 locally shared resources and all 6 tasks using
each resource, under PIP approximatively 49% of the tasksets with utilization 0.2
are schedulable, while under LB-PCP, 49% of the tasksets with utilization 0.15 are
schedulable. This means 33% better processor utilization under PIP. In the best case,
when just half of the tasks share 4 local resources, under LB-PCP we get 33% better
processor utilization since approximatively 20% of the tasksets with 0.35 utilization
are schedulable, in opposition with just 0.3 taskset utilization achieved with PIP.
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Figure 7.12: Percentage of schedulable tasksets for different critical section durations when half
of the tasks in each application use the local resource
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Figure 7.13: Percentage of schedulable tasksets for different critical section durations when all
tasks in each application use the local resource
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Figure 7.14: Percentage of schedulable tasksets for different number of tasks sharing a local
resource
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Figure 7.15: Percentage of schedulable tasksets for different numbers of critical sections when
half of the tasks in each application use each local resource

BUPT



142 A Resource Sharing Protocol for Virtualized Multi-core Systems - 7.

���

���

P
e
rc

e
n

ta
g

e
 o

f 
s
c
h

e
d

u
la

b
le

 t
a
s
k
s
e
ts

LB-PCP CS=2, 6t

PIP CS=2, 6t

LB-PCP CS=4, 6t

PIP CS=4, 6t

LB-PCP CS=6, 6t

PIP CS=6, 6t

LB-PCP CS=8, 6t

PIP CS=8, 6t

��

���

���

���� ���� ��	� ���� ��
� ���� ����

P
e
rc

e
n

ta
g

e
 o

f 
s
c
h

e
d

u
la

b
le

 t
a
s
k
s
e
ts

Utilization

LB-PCP CS=10, 6t

PIP CS=10, 6t

Figure 7.16: Percentage of schedulable tasksets for different numbers of critical sections when
all tasks in each application use each local resource
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Figure 7.17: Percentage of schedulable tasksets for different number of tasks sharing 4 local
resources
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Figure 7.18: Percentage of schedulable tasksets for different number of tasks sharing 8 local
resources

From this experiment we can conclude that LB-PCP behaves well for tasksets
with large utilization even when several resources are shared, but for low and medium
taskset utilizations is better than PIP only if the number of critical sections is not very
high and the resource contention is not at its peek.

7.6.5. Experiments Summary

In previous sections we presented the results of a set of experiments performed in
order to give some insight on the performance of P-HRP when either LB-PCP or PIP
is used as resource sharing protocol by the application level scheduler. Based on all
these experiments, we can draw several conclusions:

• For global resource accesses, the performance of P-HRP decreases as the dur-
ation of critical sections increases and also as the number of tasks requesting
a resource increases. Further, P-HRP associated with LB-PCP always performs
better than when associated with PIP.

• The priority of the task using a global resource has little influence on the number
of tasksets deemed schedulable by P-HRP.

• In case of global resource accesses, if the period of at least one application task is
almost equal to the smallest server period in the application’s set, the number of
tasksets deemed schedulable is almost half the number of schedulable tasksets
when the minimum task period is much greater than the minimum server period.

• For local resource accesses, the performance of P-HRP decreases as the duration
of critical sections increases and also as the number of tasks requesting a re-
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source increases. Further, P-HRP associated with LB-PCP always performs better
than when associated with PIP.

• If tasks use a large number of local resources and each resource is requested by
many tasks, P-HRP associated with PIP performs better than if associated with
LB-PCP

7.7. Concluding Remarks

In this chapter we have introduced a new resource sharing protocol for multi-
core hierarchical systems, called Parallel Hierarchical Resource Policy (P-HRP), and de-
veloped the response-time analysis for it assuming that global fixed-priority preempt-
ive multiprocessor scheduling is used. The RTA shows that local and global resource
accesses have a cumulative effect on the schedulability of both tasks and servers and
that lower priority interference can lead to important increases of the response times
of high priority tasks.

The proposed protocol distinguishes itself from existing work in the research
area by the followings:

c1. It allows application tasks running in a multi-core HSF to make mutually exclusive
accesses to locally or globally shared resources.

c2. It allows parallel processing within each application and thus enables a more effi-
cient use of the processing capabilities of multi-core processors.

c3. It can be used along with existing multiprocessor resource sharing protocols like
PIP, P-PCP and LB-PCP.
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8. CONCLUSIONS AND FUTURE WORK

8.1. Summary

This thesis is structured in six main chapters.
Chapter 2. provides the background on the concepts and terminology regard-

ing real-time scheduling and shows the current status of the multiprocessor real-time
scheduling area. The presentation covers a description of the principal task mod-
els used in real-time scheduling analysis and the significant task parameters. The
notions necessary to understand the domain are defined and a taxonomy of multipro-
cessor scheduling algorithms is presented. Although one would expect that by making
the step from uniprocessor to multiprocessor systems, it would be easier to guaran-
tee systems’ timing constraints, a series of anomalies can emerge at this transition.
These anomalies along with eloquent examples are also introduced in this chapter.
Having laid the foundations, we take a further step into a more restricted area of
hierarchical real-time scheduling as a mean to attain temporal isolation in shared mul-
tiprocessor/multi-core platforms. The chapter ends with a presentation of existing
resource sharing protocols for multiprocessor systems. Most of these protocols are
designed for partitioned multiprocessor real-time systems and only few address the
issues specific to globally scheduled systems.

Most of the multiprocessor scheduling techniques presented in Chapter 2. are
not exact and may take false negative scheduling decisions. Chapter 3. proposes
formal verification as an alternative solution. In order to study schedulability analysis
using formal verification and modeling techniques, a definition of the main challenges
and problems that need to be addressed is given in the opening of Chapter 3. Further-
more, the chapter gives an overview of three main formalisms used for schedulability
analysis: timed automata, Petri nets and ACSR. The features of these formalisms
are analyzed to show how appropriate is each of them for modeling multiprocessor
real-time systems. Besides these three formalisms, several other formal approaches
are presented. As the method proposed in this thesis uses timed automata, we also
dedicated a section for introducing their syntax and semantics and also related our
methods to previous work using timed automata for real-time scheduling.

Our objective was to benefit from this experience and define a formal model
for multi-core contract-based scheduling. We introduced the concept of contract-base
scheduling as a hierarchical scheduling scheme aiming at ensuring temporal isola-
tion of real-time and non-real-time independent applications. The model was used for
providing a method for schedulability analysis using model checking for multi-core sys-
tems with preemption and migration enabled. Based on the defined timed automata
model, we give an exact schedulability test for multi-core contract-based scheduling
with applications encompassing only independent tasks and fixed execution time. Fur-
thermore, we extended the method for applications with task precedence constraints
and variable task execution requirements. This new method gives only a sufficient
schedulability test, but is based on a model closer to real applications. The methods
proposed in this chapter can be applied for testing schedulability of real-time compon-
ent-based systems. The scalability of the methods shows that they can be applied
with success for real applications. In this sense we also presented a case study for an
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H.264 decoder.
Using the formal model introduced in Chapter 4., in Chapter 5. we develop a

method for generating the time partitions necessary to guarantee timing constraints of
applications scheduled using a two-level scheduling hierarchy. The method assumes
a simple task model, with independent tasks with fixed execution requirement, and
uses fixed priorities for these tasks. The proposed method uses the simulation feature
of UPPAAL to find an initial time partition which is refined in further iterations through
model checking until the resulted time partitions satisfy the timing constraints of the
application. As the method requires a simulation stage we had to find a time limit of
the simulation. Consequently, we extended previous results in the real-time schedul-
ing theory in order to find a feasibility interval for the special case of multiprocessor
hierarchical systems.

This thesis was also dedicated to resource sharing in multi-core/multipro-
cessor real-time systems in general and, hierarchical multi-core systems, in particu-
lar. We have focused on globally scheduled systems using a fixed-priority preemptive
scheduling algorithm.

Chapter 6. proposes the Limited Blocking Priority Ceiling Protocol (LB-PCP),
a resource sharing protocol for simple, globally scheduled systems. The main idea of
LB-PCP came from analyzing the limitations of PIP in globally scheduled multiprocessor
systems, namely the potentially unbounded number of blockages of high priority tasks
due to shared resource executions of low priority ones. Consequently, LB-PCP limits
these blockages by controlling the instant when a low priority task may access a
resource. To enable the schedulability analysis under LB-PCP, we also presented a
schedulability test for it based on response time analysis of the tasks to be scheduled.
The performance evaluation presented later in Chapter 6. showed that, in many
situations, the proposed protocol is superior to the existing P-PCP protocol.

Further, Chapter 7. extends LB-PCP for a two-level hierarchical scheduling
framework. We introduced the Parallel Hierarchical Resource Policy (P-HRP), which
defines a set of rules for resource sharing at each level of the hierarchy. These rules
are based on PIP, for the first scheduling level, and on PIP or LB-PCP for the second
scheduling level. Because a protocol is not complete without a schedulability test, we
also proposed such a test. Using this test we evaluated the performance of P-HRP for
various test cases.

8.2. Contributions

One of the major research directions in this thesis focused on the usage of
model-based techniques for real-time scheduling. As a result, the thesis proposes a
model-based methodology to address a major problem in the formal analysis of con-
tract-based systems: verification of real-time properties to prove whether individual
deadlines for tasks are satisfied. The key contributions in this direction are:

• An exact model checking method using timed automata for the real-time verifica-
tion of preemptive multi-core contract-based-scheduling with independent tasks
and fixed execution time:

– it formalizes multi-core contract-based scheduling using timed automata
with discrete time semantics,

– the method is exact, while tests provided by classical scheduling theory are
only sufficient,

– the method can be used with any global multiprocessor scheduling algorithm.
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• A conservative approximation method for verification of preemptive multi-core
contract-based-scheduling with task dependence relations and variable execution
time:

– considering variable execution time improves the confidence in the proposed
method since several anomalies can affect the scheduling process,

– the method uses a model of the application where tasks have precedence
constraints between them, being closer to a real application.

• A method for generating the multi-core temporal partitions that can satisfy the
computing requirements of an application or component for a two-level hierarch-
ical system:

– the method uses the characteristics of the tasks encompassing the applica-
tion and determines low processor utilization time partitions,

– we consider that such a method is required since currently such temporal
partitions are designed manually and consequently are subject to human
error.

• We prove that a feasible schedule obtained with a preemptive fixed-priority
scheduling algorithm on periodic deadline constrained tasksets is periodic on a
multi-core time partition and we also give the feasibility interval for these sched-
ules.

A second research direction of the thesis concentrated on resource sharing in
globally scheduled multiprocessor systems. First, the thesis proposes a protocol for
resource sharing in a single level multiprocessor real-time system and then extends
the contributions to hierarchical multiprocessor systems. The key contributions in this
area are:

• A protocol for mutually exclusive access to shared data in a real-time system
scheduled according to a global preemptive fixed priority policy:

– the protocol is based on priority inheritance but reduces the negative effects
of PIP protocols on multiprocessors, as it controls the blocking time of each
task,

– the protocol is configurable, such that one can increase or decrease the
level of parallelism in the system, depending on the characteristics of the
workload,

– a schedulability test accompanies the protocol, such that one can give pre-
runtime guarantees that an application will meet its timing constraints,

– the performance evaluation shows that the proposed protocol is better than
other state-of-the-art protocols.

• A protocol for mutually exclusive access to shared data in a multi-core two-level
hierarchical real-time system which uses at each scheduling level a global pree-
mptive fixed priority policy:

– it allows parallel executions at both scheduling levels, a feature that no other
existing resource sharing protocol for hierarchical frameworks presents,

– the protocol can be used along with existing multiprocessor resource sharing
protocols like PIP, P-PCP and LB-PCP,

– two schedulability tests are given for the protocol, one for when simple PIP
is used at both levels and, one for the case when LB-PCP is employed for
controlling resource sharing at the second level of the hierarchical frame-
work.
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8.3. Next Steps

The next steps relate to the model-based analysis of the proposed resource
sharing protocols. Further, to prove the efficiency of the proposed protocols, a proto-
type implementation of them will be developed in a real operating system. Using this
implementation, through extensive benchmarking, we expect to show that they can
be employed to increase the performance of real-time applications running on multi-
core systems. Future research directions also include extending the Limited Blocking
Priority Ceiling Protocol for dynamic priority assignment policies.
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