

 A NOVEL CODE COMPRESSION APPROACH FOR EMBEDDED RISC

PROCESSOR

Ramani.G1 and Dr.K.Geetha2

1Department of Electrical and Electronics Engineering Nandha Engineering college, Erode.

ramani.govindasamy@nandhaengg.org
2Department of Electronics and Communication Engineering,Karpagam college of Engineering, Coimbatore

geetha.arulmani@gmail.com

Abstract: Now a days most of the processors are high

performance RISC processors .This paper introduces a

novel code compression approach for embedded RISC

processor, which reduces the code size and improves the

compression ratio. Code compression is the technique to

reduce the program size using various code compression

algorithms to original instruction sets. There are two

methods of compression is used in this paper. One is

Dictionary based and the other is statistical compression.

Our implementation is assessed through various

benchmarking performed on embedded programs. In this

approach, an efficient code compression is achieved using

lookup table and Canonical Huffman decoder.

Key words:RISC processors, Statistical compression,
Dictionary based compression, Code compression.

1. Introduction

Code compression: In general, the efficiency of any

compression technique is measured using Compression

ratio. Compression ration is defined as the ratio

between the compressed code size and the original

code size. Basically there are two typres of

compression techniques. First one is Dictionary based

compression and the second is Statistical compression.

These two methods were Applied for RISC processors

to improve the code compression efficieny.

Dictionary based compression: In this method, the

entire sequences of common instructions are selected

and replaced by a single new code word and then,

which is used as an index to the dictionary that

contains the original sequence of instructions. In both

the methods look up tables are used to store the

original instructions and the compressed instructions

serve as indices to the tables.

Statistical compression: In statistical compression

technique, the frequency of the instruction is used to

select the size of the code words and replaces the

original. Hence, the shorter code are used for the most

frequent sequences of instruction and the longer code

words are replaced by less frequent sequences. The

look up tables are used.

Look up table: The table, which is generated from

statistical and dictionary compression methods by

sorting the table entries to reduce the number of bit

toggles between every two sequential instructions and

then it is optimized to improve code compression ratio.

2. Related Work

Dictionary based compression Method

In existing system, the Dictionary was created

using dynamic frequency algorithm.Here,first the

profile creation, which is used to identifying the basic

blocks. In second step, program codes are compressed

and stored in dictionary. The look up table indicates the

starting address, End address and new address of the

dictionary as shown in (Figure1)

Figure.1

In this system, the look up table minimization

scheme is used to generate look up table ,which is used

in dictionary based compression. The table is used to

minimize the number of bit transitions per column and

used to save the indices. In figure 1 shows the look up

table with number of entries 7 and the instruction word

length of WL=8.The size of the original table is

56bits.By using compression algorithm(Yoshidha) the

size of the lookup table is reduced to 47 bits. With the

help of sorting the table with more number of columns

 were compressed. The higher table compression is

achieved by compressing more table columns and that

is basically depends on the way of sorting entries.The

sorting of entries is carried in two phases. In phase I,

the gray code is generated for the word length WL,

BUPT

then we locate each table entry in its corresponding

position in the generated gray code. In phase II, the

Lin-kernihnan algorithm is used to sort the table

entries. The sorting of table entries are based on the

distance between two entries. Here ,the distance

between two entries is the number of positions for

which the corresponding bits are different. This

method of sorting have no impact on the compressed

instructions, because all of them have same code

length. This will decrease the of the lookup table and

there by increases the compression ratio.

Procedure:

 Un compressed binary code ,the entire instruction

word is arranged

 All the unique instruction words are stored in

lookup table

 In the original code, the every unique instruction

word with a binary index to the lookup table in

ascending order starting from 0

 The index has a fixed length and it is equal to log2

of the number of unique instructions

Unused bits in the compressed column

Figure-2

The code compression efficency is calculated as

follows,

Where,

WL: Instruction word length (Fixed)

Io : Number of original instructions

Iu : Number of table entries

Ci: Size of table column i in bits

For WL=8, Iu=7, Ci where i=1 to 8 and original

code table size=56 bits, The compressed table using

entry sorting followed by the table compression gives

better compression ratio of 62.5%. But, the direct table

compression method gives 83.9% of compression ratio.

The following table1 gives the difference between two

methods.
Table.1

Statistical Code Compression method:

In this method, the lookup table is generated using

Canonical Huffman coding and the generated lookup

table is equal to the number of different instruction

code lengths.Here,the table compression method is

used to reduce the table column. Most frequently used

instructions are encoded with shortest codes and others

vice versa. In Huffman coding method ,the variable

length codes can’t be decoded, it is difficult when

implementing the hardware. But in canonical Huffman

,the code words with the same length are binary

representations of consecutive integers(Figure-3)

BUPT

Figure .3

The decoder has two shift registers i.e. 32 bit and L

bit registers. The compressed instructions to keep the

L-bit register filled each time its content is reduced by

shifting the compressed instruction word serially into

it. The L-bit shift register transfers the L bit code words

to the comparator. The incoming L bit is and the length

of the encoded instruction is decoded with the help of

comparator. All the comparators compares the

incoming L bits with minimum index of the table, the

Comparator outputs as either “1” or “0”.The table

selector find outs the smallest comparator which

outputs “1”.This comparator refers the code word

length and compressed lookup table. The compressed

lookup tables are decoded using lookup table decoder.

Compression ratio in this scheme as:

Where,

Ni : Number of instructions which have the code

length i

CLi : Code length i

Cji : The size of the column j in table i

If Ni=1 (only one lookup table),then we will obtain

the same compression ratio formula. If any instructions

are transferred from one look up table to another look

up table ,the compression ratio is calculated using the

formula given below.

Efficiency = Compressed table gain-

 Compressed code loss

Here, the compressed table gain is the difference

between the size of the compressed table before and

after transferring instructions between them

3.Conclusion & Future Scope:

Normally for the RISC processor ,the Huffman

decoders are used for the code compression. In this

paper, The lookup table compression method along

with canonical Huffman coding is used for improving

the code compression ratio. This method provide an

average compression ratio of 62% for various

application programs.

Power consumption is also a major factor during

code compression and decompression process. Power

saving is to be concentrated in future. The second

factor is speed , code compression and decompression

speed is also be considered in future.

References
[1] Ramani G & Geetha Arulmani, An efficient code

compression for MIPS32 processor using dictionary and

bit-mask based static and dynamic frequency algorithm &

COMPEL - The international journal for computation and

mathematics in electrical and electronic engineering , vol.

35, no. 5 2016.

[2] Ramani G & Geetha Arulmani, .Bitmask-based Code

Compression Technique for MIPS32 Bit Processor,

International Journal of Trend in Reasearch and

Development vol. 3, no. 4. (IF:3.025) 2016.

[3] Ramani G, Dinesh Babu N, , Combined Dictionary And

Bit-Masking Based Code Compression For Embedded

Systems, International Journal of Applied Engineering

Research (IJAER), vol. 10, no. 20, pp.17896-17899.

(IF:0.14) 2015.

[4] Y. Xie, W. Wolf and H. Lekatsas, A code

decompression architecture for VLIW Processors, In

Proceedings 34th ACM/IEEE International Symposium on

Microarchitecture, pp. 66-75, 2001.

[5] Y. Xie, W. Wolf and H. Lekatsas,Code compression for

VLIW processors using variable-to-fixed coding. In IEEE

Transactions on Very Large Scale Integration (VLSI)

System, Vol. 14, No. 5, pp. 525-536, 2006.

[6] S. Seong and P. Mishra, A Bitmask-based Code

Compression Technique for Embedded Systems,24th

IEEE/ACM International Conference on Computer-Aided

Design (ICCAD06), pp. 251254, 2006.

[7] S. Seong and P. Mishra,An efficient code compression

technique using applicationawarebitmask and dictionary

selection methods,IEEE/ACM Proc. of Design Automation

and Test in Europe Conference (DATE07), pp. 582-587,

2007.

[8] X. Kavousianos, E. Kalligeros and D. Nikolos,

Multilevel Huffman Coding: An Efficient Test-Data

Compression Method for IP Cores, IEEE Transaction on

Computer- Aided Design of Integrated Circuits and

BUPT

Systems, Vol. 26, No. 6, pp. 1070-1083, June 2007.

[9] H. Lekatsas, J. Henkel, and W. Wolf, Arithmetic

Coding for Low Power Embedded System Design,Princeton

University, NEC USA, 2000.

[10] H. Lekatsas, J. Henkel, and W. Wolf, Code

Compression as a Variable in Hardware/- Software Co-

Design. International Workshop on Hardware/Software Co-

Design, 2000.

[11] H. Lekatsas, J. Henkel, andW.Wolf, H/S Embedded

Systems: Design and simulation of pipelined decompression

architecture for embedded systems, Proceedings of the

international symposium on systems synthesis, 2001.

[12] T. Bonny and J. Henkel., LICT: Left-uncompressed

Instructions Compression Technique to Improve the

Decoding Performance of VLIW Processors, In 46th

ACM/EDA/IEEE Design Automation Conference

(DAC’09), pp. 903-906, San Francisco CA, USA, July

2009.

[13] Heikkinen, J, Takala, J & Corporaal, H, Dictionary-

based program compression on customizable processor

architectures', Microprocessors and Microsystems, vol. 33,

no. 2, pp. 139-153, 2009

[14] Thuresson, M & Stenstrom, P 2005, Evaluation of

extended dictionary-based static code compression

schemes', in Proceedings of the 2nd conference on

Computing frontiers, pp. 77-86.

[15] Yang, L, Dick, RP, Lekatsas, H & Chakradhar, S 2005,

'CRAMES: compressed RAM for embedded systems', in

Proceedings of the 3rd IEEE/ACM/IFIP international

conference on Hardware/software codesign and system

synthesis, pp. 93-98.

BUPT

