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Abstract—Power transformer is one of the more important 

equipment in a power system. It is very essential to keep the 

equipment in good health at all points of time. Dissolved Gas 

Analysis (DGA) is a tool   used in monitoring power 

transformers. National and international standards provide 

guidelines for interpreting DGA data and discerning the nature 

of fault. In many cases, the suggested guidelines are not able to 

classify the faults precisely. Soft computing tools such as Support 

Vector Machine Method and Extreme Learning Machine 

methods seem to offer more exact classification and hence are 

recommended in such cases. This paper proposes to apply these 

relatively new methods in fault classification. In an earlier 

contribution, the Authors considered only one data base, 

reported by the IEC was considered. However, a comparison of 

the applicability of the computational techniques over several 

data bases was found necessary. Also, a need was found to 

include combined electrical and thermal faults as a parameter in 

the classification. This contribution expressly considers in this 

aspect in some detail. To demonstrate the application of these 

computational techniques, IEC TC10 database (DB1) and a local 

database (DB2) are considered. Fault classification based on gas 

concentration as the input, as also the enthalpy of the 

corresponding gases are compared. The fault classification based 

on enthalpy is found to identify the fault more precisely.  

Keywords—transformer; dissolved gas analysis; machine 

learning 

I.  INTRODUCTION 

Mineral oil impregnated cellulose is an insulation of choice 
in power transformers. Over a period of time, the insulation   
undergoes slow chemical decomposition due to temperature 
rise and possible low energy electrical discharges within the 
equipment. As a consequence of these effects, the insulation 
evolves hydrocarbon and carbon oxide gases. The gases so 
generated dissolve in the transformer oil. The gases can be   
extracted from the oil in a noninvasive manner and analyzed   
using gas chromatography.  Alternately, they are measured 
through sensors fitted on the transformer. Dissolved gas 
analysis is one of the oldest and reliable methods for detecting 
abnormalities inside a transformer. However, in view of 
possible uncertainties or erroneous prediction, a need arises of 
exploring alternate methods. As a matter of fact, DGA 
techniques are time intensive besides being expensive. Also, 

due to direct human involvement at every step, detection and 
interpretation of faults often become inaccurate. In some cases, 
due to inaccurate gas sampling methods, conventional methods 
are not able to provide correct fault classification [1,2]. 

It is in this backdrop that soft computing methods are 
increasingly being applied. This results in a completely   
automated method of classification of faults in transformer.  

Artificial neural network (ANN) is one such possibility.  
The ANN’s are essentially 'black box' models and hence, 
present difficulties in interpretation. [3]. Also, a considerable 
size of data is required for proper training.  Support Vector 
Machine (SVM) is an improvised method and is   widely used 
in transformer diagnosis.  Yan and Zhang [4] reports the use of 
online DGA data using SVM. Further to this work, the current, 
state of art, Extreme Learning Machine (ELM) method can 
give high performance in multifaceted problems and takes 
comparatively less computational time [5].  The model 
proposed by Huang et al [6] is seen to be even faster 
particularly when large data sizes are involved since there is no 
need for iterative tuning as in other neural networks. ELM 
based model is used with great advantage in medical 
applications for classification of images. [7]. The ELM is 
successfully applied to face recognition on two databases 
namely Yale face database and Carnegie Mellon University 
face images database [8]. State preserving extreme learning 
machine applied to face recognition gives best performance in 
comparison with other classifiers. Guang-Bin et al [9] modeled 
a single layer feed forward neural network with activation 
functions and hidden neurons. Application of Extreme learning 
machine with RBF (Radial Basis Function) network gives 
faster results. Huang et al [10] showed that a combination of 
single layer feed-forward neural network with randomly 
assigned input weights. Hidden layer biases with nonzero 
activation function can approximate any continuous functions. 

      Thermodynamic approach to fault severity estimation of 
transformers is suggested in [11].  It essentially relates the fault 
energy dissipated inside the transformer to it enthalpy. Thermo 
dynamic approach is based on the calculation of enthalpy of 
forming a substance from another substance. As is known, a 
change in enthalpy occurs when a physical system undergoes a 
thermodynamic transformation [12]. Application of ELM 
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Toolbox for analyzing large volumes of data is detailed by 
Anton Akusok [13]. IEC TC 10 database is used for 
Transformer fault diagnosis using adaptive neuro-inference 
system [14]. 

This paper focuses on six segment classification model with 
dissolved gas analysis data of IEC TC10 database. One 
approach based on SVM method and the other based on ELM 
are used in this work.   

  Sections II deals with theoretical aspects of SVM and ELM 
methods. Fault classification based on SVM is detailed in 
section III. ELM based fault classification is given in section 
IV. Section V analyzes the results and broad conclusions are 
presented in section VI. 

II. SOFTCOMPUTING TOOLS 

The SVM method is a relatively new method for the 
classification of linear and non- linear data.   

A. SVM Method 

 The basic principle of SVM is based on establishing an 
optimal hyper-plane to separate different classes of data. 
Figure.1 shows a notional optimal hyper-plane separating two 
classes of data. A1 and A2 are the input attributes.  

 

 

Fig. 1. Optimal Hyperplane with linearly separabe data 

A typical classification problem involves separating data 
into training and testing sets. Each data in the training set 
contains class label with many “attributes”. Given the test data 
attributes, the goal of SVM is to create a model based on the 
training data to predict target values of the test data. Given a 
training set containing label pairs (xi , yi ), i=1,--,l where xi ϵ 
Ɍ

n
  , i= 1,...., N and a class label yi ϵ {+1,-1}for each vector. 

The SVM require the solution of the following optimization 
problem: 

min ɸ(w,ξ) = 
 

 
(w.w) + C    

 
                            

Subject to         [(w.ɸ (xi)) + b] ≥ 1 -                   

Where slack vector        ≥ 0 , i= 1, 2,.... l       

Where w is the weight vector and b is the bias term. 

In many problems the data is not linearly separable. Hence 
a kernel function is applied for mapping data into a Vapnik-
Chervonek is n- dimensional space. Within this space, a hyper-

plane is identified for the separation of classes as shown in 
Fig.1. Here the training vectors xi, are mapped into higher 

dimensional space by the function ɸ. SVM finds a linear 
separating hyper-plane having a maximum margin in the higher 

dimensional space.     K (xi , xj ) =  ɸ (xi) in which, ɸ (xj) is  the 
kernel function. The kernel of the Radial Basis Function, RBF, 
is considered as an exponential function thus.   

 K (xi , xj ) =  exp(-γ|| xi - xj ||
2
 ), γ > 0.  

 This kernel function nonlinearly allocates samples into a 
higher dimensional space and can solve the problems of non-
linear attributes. As a matter of fact, a linear kernel can also be 
used, however with a loss of classification accuracy.  C in 
Eqn.1 and γ are the SVM parameters.  

In MATLAB implementation, hold out cross validation is 
used for validation of N observations. This returns logical 
index vectors during cross validation of N records by randomly 
selecting P X N records to hold out for the evaluation set.in 
which, P is a scalar with a range between 0 and 1. 

B. ELM METHOD 

Extreme Learning Machine is a single-layer feed -forward 
neural network (SLFN). It randomly selects input weights and 
biases of hidden neuron without training [6]. The norm least-
square method and Moore-Penrose inverse method are used to 
get the output weights. This approach allows a significant 
training time reduction. Activation function used are unipolar, 
bipolar and radial basis function for hidden layer neuron and 
linear activation functions for the output neurons .The SLFN 
evaluated here uses additive neuron design instead of kernel 
based, hence random parameter selection. SLFNs are 
considered as a linear system. 

For N arbitrary distinct samples (xi,ti), where xi = 

[xi1,xi2,…., xin]
T∈R

n 
and ti = [ti1, ti2, . . . , tim ]T ∈ Rm

 . SLFNs 

with hidden neurons and activation function g(x) are 

mathematically modelled as [9]: 

   
  
   g(wi . xj+ bi ) = oj, j = 1,......N           (1)                

     
Where wi= [wi1,wi2, . . , win ]

T
 is the weight vector 

connecting the ith hidden neuron and the input neurons, βi = 

[βi1, βi2, . .. , βin ]
T
 is the weight vector connecting the     

hidden neuron and the output neurons, and bi is the threshold 

of the     hidden neuron. wi・xj denotes the inner product of 

wi and xj .  

The standard SLFNs with   hidden neurons each with 
activation function g(x) can approximate these N samples with 
zero error mean    

              =0 , i.e., there exists βi,wi,  

and bi such that  

   
  
   g(wi . xj+ bi ) = tj, j = 1,......N                                 (2) 

 

The above N equations can be written compactly as  

 

Hβ = T                                                                                (3) 

 

Where,  
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H(w1, · · · ,   ,, b1, · · · ,    , x1, · · · , xN) = 

 

 
                        

   
                        

 

    

 

 

β= 

 
 
 
 
   

 

 
 
 

   
  
 
 
 
 

    

,  T = 

 
 
 
 
 
  

 

 
 
 

  
  
 
 
 
 

   

                                       (4)                 

H is called the hidden layer output matrix of the neural 

network; the     column of H is the     hidden neuron output 

with respect to inputs x1, x2….. xN. 

The SLFN solved by using a gradient based solution by 

finding suitable values of    ,   and             satisfying 

the model as :  

 

|| H (   ,... ,    ,   ,....,    )    - T || = 

                                                       
                        (5)   

 
A gradient based learning algorithm can be used to 

minimise the Hβ = T by adjusting the parameters,   ,    and β 
, when the H hidden layer matrix is unknown iteratively . 
Studies carried out by Huang et al [10] proved that single layer 
feed-forward neural network with randomly assigned input 
weights and hidden layer biases and with almost any nonzero 
activation function can universally approximate any 
continuous functions on any input data sets. Huang et al [5] 
suggested an alternate way to train a SLFN by finding a least 

square solution    of the linear system represented by (3). 

The unique minimum norm least square (LS) solution is 
modelled as: 

  = H†T                                                                              (6)             

where H † is the MP generalized inverse of matrix H. As 

analysed by Huang, ELM using such MP inverse method 

tends to obtain good generalization performance with 

dramatically increased learning speed. The summarization of 

the ELM algorithm can be as:  

Given a training set, N, then, 

 

 N = { (  ,   )|   ∈  ,   ∈  , i = 1, .... ,N },  

 

kernel function f(x), and hidden neuron . 

Step 1: Select an appropriate activation function and number 

of  hidden neurons for the given problem.  

Step 2: Assign arbitrary input weights,     and bias    , i= 1, . . 

.  .H 

Step 3: Calculate the output matrix H at the hidden layer  

 H = f. (w x+ b)  

Step 4: Calculate the output weight β.                      

  = H†T. 

C. DAFABASE FOR SOFT COMPUTING TOOLS 

The DB1 database with 151 dataset showing training and 
testing is shown in Table I. The output features are partial 
discharge (PD), Discharge of low energy    (D1), Discharge of 
High Energy (D2), Thermal faults ≤ 700 °C   (T1 and T2), 
Thermal faults >700 °C   (T3), Normal (NF) etc.  

TABLE I.  DB1 DATABASE 

Sr.No 
Output features Training 

Dataset 

Testing 

Dataset 

Total 

(Fault types) Dataset 

1 Partial Discharge (PD) 6 3 9 

2 Discharge of low 

energy    (D1) 

18 8 26 

3 Discharge of High 

Energy (D2) 

33 15 48 

4 Thermal faults ≤ 700 

°C   (T1 and T2) 

12 4 16 

5 Thermal faults >700 

°C   (T3) 

13 5 18 

6 Normal (NF) 24 10 34 

Total dataset 106 45 151 

The DB2 database containing 219 dataset showing training 
and testing is shown in Table II. The output features considered 
are Partial Discharge (PD), Over Heating (OH), Arcing (A), 
Electrical &Thermal (E&T) etc. 

TABLE II.  DB2 DATASET 

 

Sr.No 

Output features Training 

Dataset 

Testing 

Dataset 

Total 

(Fault types) Dataset 

1 Partial Discharge (PD) 24 5 29 

2 Over Heating (OH) 99 21 120 

3 Arcing (A) 47 11 58 

4 Electrical &Thermal (E&T) 9 3 12 

Total dataset 179 40 219 

III. FAULT CLASSIFICATION BASED ON SVM 

A. Database DB1 with gas concentration and enthalpy 

The five models developed with gas concentration as input 
feature is shown in Fig.2. Model1 classifies fault from normal 
state. Electrical fault is classified from thermal fault in Model2. 
Low thermal fault is distinguished from high thermal fault in 
Model3. Model4 classifies PD from other discharges. 
Discharge of low energy is classified from discharge of high 
energy in Model5. 

 

 

 

 

 

 

 

 

Fig. 2. Five SVM models on transformer fault classification 
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About 2/3rd of dataset is used for testing purpose and 1/3
rd

   
dataset for validation. The Radial Basis Function (RBF) is used 
as a kernel function. Performance of all the five models is 
evaluated and the results are given in Table III.  

TABLE III.  CONFUSION MATRIX  WITH  GAS CONCENTRATION 

Model1 

from \ to Normal Fault Total 

% 

correct 

Normal 8 5 13 61.54% 
Fault 1 36 37 97.30% 

Total 9 41 50 88.00% 

Model2 

from \ to Thermal 

Electrical 

Discharge Total 

% 

correct 

Thermal 9 2 11 81.82% 
Electrical 

Discharge 0 28 28 100.00% 

Total 9 30 39 94.87% 

Model3 

from \ to 

High 

Thermal 

Low 

Thermal Total 

% 

correct 

High 

Thermal 5 0 5 100.00% 
Low 

Thermal 2 5 7 71.43% 

Total 7 5 12 83.33% 

Model4 

from \ to 

Other 

Discharges PD Total 

% 

correct 

Other 

Discharges 24 1 25 96.00% 

PD 0 3 3 100.00% 

Total 24 4 28 96.43% 

Model5 

from \ to 

Discharge 

of Low 
Energy 

Discharge 

of High 
Energy Total 

% 
correct 

Discharge 

of Low 

Energy 17 0 17 100.00% 
Discharge 

of High 

Energy 3 5 8 62.50% 

Total 20 5 25 88.00% 

 

The Radial Basis Function (RBF) is used as a kernel 
function. Table IV shows the results of the five models 
evaluated using enthalpy as input feature. 

 

 

 

 

 

 

 

 

 

TABLE IV.  CONFUSION MATRIX  WITH  ENTHALPY 

TABLE V.   

TABLE VI.   

 

 

The confusion matrix in Table II shows the fault  

From the table, fault classification accuracies are 86%,  

 

 

.44%, 83.33%, 96.43% and 92.0% for model1, model2,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the table, fault classification accuracies are 86%, 
97.44%, 83.33%, 96.43% and 92.0% for model1, model2, 
model3, model4 and model5 respectively.  

 

 

 

 

 

 

 

 

 

Model1 

from \ to Normal Fault Total 

% 

correct 

Normal 8 4 12 66.67% 

Fault 3 35 38 92.11% 

Total 11 39 50 86.00% 

Model2 

from \ to Thermal 

Electrical 

Discharge Total 

% 

correct 

Thermal 9 1 10 90.00% 
Electrical 
Discharge 0 29 29 100.00% 

Total 9 30 39 97.44% 

Model3 

from \ to 

High 

Thermal 

Low 

Thermal Total 

% 

correct 

High 

Thermal 6 1 7 85.71% 
Low 

Thermal 1 4 5 80.00% 

Total 7 5 12 83.33% 

Model4 

from \ to 
Other 

Discharges PD Total 
% 

correct 

Other 

Discharges 23 1 24 95.83% 

PD 0 4 4 100.00% 

Total 23 5 28 96.43% 

Model5 

from \ to 

Discharge 

of Low 
Energy 

Discharge 

of High 
Energy Total 

% 
correct 

Discharge 

of Low 

Energy 18 2 20 90.00% 
Discharge 
of High 

Energy 0 5 5 100.00% 

Total 18 7 25 92.00% 
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B. Database DB2 with gas concentration and enthalpy 

The three models developed with gas concentration as input 
feature is shown in Fig.3.  

 

 

Fig. 3. Three SVM models on transformer fault classification 

The SVM model1 classifies PD from other faults. The 
model2 classifies over heating from arcing, electrical and 
thermal. The Arcing fault is classified from electrical and 
thermal in SVM model3. 

TABLE V.  CONFUSION MATRIX  WITH  GAS CONCENTRATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DB2 has 219 dataset. The confusion matrix in Table V 
shows fault classification accuracies of 95.89%, 92.31% and 
91.3% for model1, model2 and model3 respectively with gas 
concentration as input feature. 

 

From the gas concentration, Enthalpy is calculated using 
Table VI. 

TABLE VI.  ENTHALPY OF TRANSFORMER FAULT GASES 

Sr.No Fault Gas 
Chemical 

formula 

Enthalpy 

(kJ/mol) 

1 Methane CH4 77.7 

2 Ethane C2H4 93.5 

3 Ethylene C2H6 104.1 

4 Hydrogen H2 128.5 

5 Acetylene C2H2 278.3 

 

All the three models are evaluated with enthalpy of the gas 
as input feature and the results are tabulated in Table VII.  

TABLE VII.  CONFUSION MATRIX  WITH  ENTHALPY 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Table VII shows the confusion matrix for all the three 
models. The fault classification accuracies obtained are 
97.26%, 98.41% and 91.30% for model1, model2 and model3 
respectively. 

IV. FAULT CLASSIFICATION BASED ON ELM 

Extreme Learning Machine (ELM) is used for the 
classification of faults in power transformers. 

A. Extreme Learning Machine Method 

ELM is a single layer with feed forward neural network 
(SLFNN). It randomly selects input weights and hidden layer 
biases without training. The output weights are obtained 
analytically using the norm least square solution and Moore-
Penrose inverse of a general linear system. Four models 
mentioned earlier, are analyzed using Matlab packages The 
flow charts shown in Figs. …….give the methodology in 
detail.  

The gas data are obtained from gas sensors fitted in the 
power transformer or from gas chromatograph. Out of seven 

Model 1

Other FaultPD 

Model 2

OH
Arcing and 

E&T

Model 3

Arcing E&T

Model1 

from \ to 

Other 

Fault PD Total % correct 

Other 

Fault 63 1 64 98.44% 

PD 2 7 9 77.78% 

Total 65 8 73 95.89% 

Model2 

from \ to 

A and 
E&T OH Total % correct 

A and 
E&T 24 0 24 100.00% 

OH 3 36 39 92.31% 

Total 27 36 63 95.24% 

Model3 

from \ to E&T A Total % correct 

E&T 3 2 5 60.00% 

A 0 18 18 100.00% 

Total 3 20 23 91.30% 

 

Model1 

from \ 

to 

Other 

Fault PD Total % correct 

Other 
Fault 64 1 65 98.46% 
PD 1 7 8 87.50% 

Total 65 8 73 97.26% 

Model2 

from \ 

to 

A 
and 
E&T OH Total % correct 

A and 
E&T 21 0 21 100.00% 
OH 1 41 42 97.62% 

Total 22 41 63 98.41% 

Model3 

from \ 
to E&T A Total % correct 

E&T 3 2 5 60.00% 
A 0 18 18 100.00% 

Total 3 20 23 91.30% 
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gases as shown in Fig. 4, five gases are selected as input 
features for ELM-I and ELM-II models.  

 

 

 

 

 

 

 

 

Fig. 4. hree ELM models on transformer fault classification 

ELM-I classifier displays a confusion matrix showing the 
actual and predicted class with gas concentration as input 
feature is shown in Table VII. 

TABLE VIII.  CONFUSION MATRIX OF GAS CONCENTRATION 

Actual 

Class  

Predicted Class 

PD D1 D2 T1&T2 T3 NF 

PD 2 0 0 1 0 0 

D1 0 8 0 0 0 0 

D2 0 0 13 1 0 1 

T1&T2 0 0 0 1 2 1 

T3 0 0 1 0 4 0 

NF 0 0 0 0 0 10 

 

In the table showing actual 3 cases of PD class, the 
computer classified 2 cases as PD and one case is classified as 
T1&T2 class. The actual and predicted class for other fault 
classes is shown in the table. The classification accuracy of 
EML-I model achieved with DB1 database using gas 
concentration as input feature is 84.44 %. 

The Table IX shows the confusion matrix calculated with 
enthalpy of gas as input feature. It shows the actual and the 
predicted results of PD, D1, D2, T1&T2, T3 and NF class. 

TABLE IX.  CONFUSION MATRIX FOR ENTHALPY 

Actual Class  

Predicted Class 

PD D1 D2 T1&T2 T3 NF 

PD 3 0 0 0 0 0 

D1 0 8 0 0 0 0 

D2 0 2 13 0 0 0 

T1&T2 0 0 0 4 0 0 

T3 0 0 0 0 5 0 

NF 0 0 1 0 0 9 

 

In the confusion matrix shown above, the classifier has 
predicted all three cases correctly as PD class. The classifier 

predicted all D1. D2, T1&T2, T3 class correctly. For 10 cases 
of NF class, 9 cases are classified correctly with 1 case 
wrongly classified. The classification accuracy of EML-II 
model achieved with DB1 database using enthalpy as input 
feature is 95.55 %.  

B. DB2 with gas concentration and enthalpy 

Database DB2 contains five gases as input features and the 
output features are PD, OH, A, E&T and NF respectively. Two 
models are developed namely ELM-III and ELM-IV as shown 
in Fig.5.  

 

 

 

 

 

 

 

 

 

 

Fig. 5. Three ELM models on transformer fault classification 

Dataset used for training and testing are shown in Table IX. 
DB2 database has 29, 120, 58, 12 dataset of PD, OH, A, and 
E&T class respectively.  

Table X shows the confusion matrix with gas concentration 
as input feature. The ELM-III classifier classifies the PD, OH 
and E&T class correctly. With 10 dataset containing A class, 
the classifier predicted 10 cases correctly and 1 case wrongly 
classified. 

TABLE X.  CONFUSION MATRIX OF GAS CONCENTRATION 

Actual Class 

Predicted Class 

PD OH 
 
A E&T 

PD 5 0 0 0 

OH 0 21 0 0 

A 0 0 10 1 

E&T 0 0 0 3 

 

The confusion matrix with enthalpy of gas as input feature 
is shown in Table XI. All the classes namely PD, OH, A and 
E&T are predicted correctly. The classification accuracy of 
EML-III model achieved with DB2 database using gas 
concentration as input feature is 97.50 %. 
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TABLE XI.  CONFUSION MATRIX OF ENTHALPY 

Actual Class 

Predicted Class 

PD OH A E&T 

PD 5 0 0 0 

OH 0 21 0 0 

A 0 0 11 0 

E&T 0 0 0 3 

 

The classification accuracy of EML-IV model achieved 
with DB2 database using enthalpy as input feature is 100%. 

V. ANALYSIS OF RESULTS 

SVM and ELM methods are applied to databases DB1 and 
DB2. Input features used are gas concentration and enthalpy. 
Output features used in DB1 database are PD, D1, D2, T1&T2, 
T3 and NF. PD, OH, A and E&T are used as output features in 
DB2 database. The performance of the SVM and ELM 
classifiers are evaluated. 

A. SVM method 

The comparison of five models applied to DB1 database 
and three models used in DB2 database with gas concentration 
and enthalpy as input features are shown in Fig.6. 

 

Fig. 6. Classification accuracy (in %) of SVM models 

Classification accuracy with DB1 database with gas 
concentration and enthalpy is 90.90% and 91.55% respectively. 
Hence, SVM classifier shows more or less accuracy using DB1 
database. 

With DB2 database, classification accuracy with gas 
concentration and enthalpy is 94.96% and 96.85% respectively. 
Hence, SVM classifier shows more or less same accuracy using 
DB2 database. 

B. ELM method 

Fig.6 shows the comparison of SVM models applied to 
DB1and DB2 database using gas concentration and enthalpy as 
input feature is shown in Fig,7. 

Classification accuracy with DB1 database using gas 
concentration and enthalpy is 84.44% and 95.55% respectively. 
Hence, ELM classifier shows an improved performance on 
DB1 database. 

 

Fig. 7. Classification accuracy (in %) of ELM models 

With DB2 database, the accuracy of classification with gas 
concentration and enthalpy is 97.50% and 100.00% 
respectively. Hence, there is an Improvement with ELM 
classifier on DB2 database. 

VI. CONCLUSIONS 

This paper presents the application of SVM and ELM 
approaches to transformer fault classification. There are 5 
different models under SVM and 3 models in ELM are 
developed and validated on DB1 and DB2 databases. 
Conventional transformer fault classification based on gas 
concentration is compared with fault classification with 
enthalpy of gas.  

ELM models perform better than the SVM models for 
transformer fault classification. 

From the results, Fault classification based on enthalpy of 
gas as input feature presents a better performance of fault 
classification in power transformers. 
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