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Abstract 

 This work proposes a two stage prediction 

approach for the estimation of non-stationary machine 

variables through an optimum and generalized model 

imbibing real time data uncertainties.  The prediction of 

machine speed and controller set point has been made 

using the proposed model for a three-phase induction 

motor operating on a single loop speed control with AC 

drive and PI controller.  The trend of the machine 

variables has been extracted and added upon the Auto 

Regressive Moving Average (ARMA) time series 

prediction at stage one. ARMA prediction has been 

carried out using different combinations of Auto 

Regressive (AR) and Moving Average (MA) methods in 

order to obtain prediction results with less Mean 

Squared Error (MSE).  The resulting prediction error 

indicates the inadequacy of the model to estimate the 

data characteristics which has been resolved at the 

subsequent stage by cascading an adaptive Least Mean 

Square (LMS) FIR filter to the time series model. The 

adaptive filter receives the predicted output including 

training data and iteratively adjusts its coefficients for 

zero error convergence. This has been tested for 

different parameter settings of step size and iterations 

at a specified filter length. The inclusion of adaptive 

filter in cascade also models the unknown real time 

factors influencing the system operation in an optimum 

and adaptive manner from the data available rather 

than the physical or fixed assumptions.  The prediction 

accuracy of the model proposed has been compared 

with the existing technique of linear adaptive filter 

prediction using MSE as a comparison index. The wide 

difference in the MSE values of the prediction results 

obtained from the proposed and existing methods 

substantiates the efficiency of the proposed model in 

predicting time varying machine variables for better 

maintenance. 
Key words: Electrical Machine, Data Prediction Model, 

Time Series, Adaptive LMS, Predictive Maintenance. 

1.  Introduction 

 Predictive maintenance employed in industries 

is focused to detect the problems of the system ahead 

to the occurrence of failures through data prediction 

so as to take corrective measures for prolonged life 

through prevention of unexpected process failures. 

The condition monitoring and predictive maintenance 

techniques, which entail continuous acquisition of 

physical and operational parameters and application 

of analysis techniques, have significant impacts in 

bringing out reliable machine maintenance in the 

industries.  The condition of the electrical machines 

interpreted from the analysis is used to reduce the 

downtime and improve their performance.  The 

predictive analysis applied for machine condition 

monitoring leads to assertive decision making in 

automation and control of processes in industrial 

applications and effective machine maintenance, 

which rely primarily on prediction accuracy.  The 

prediction and analytics models in combination with 

data mining have high influence in the forecast of 

variables significant for preemptive and profitable 

enterprise decisions.  NASA has listed the widely 

adopted predictive maintenance techniques for 

inferring the overall status of the system [1].  In this 

work, deriving an effective prediction model for 

univariate machine data of dynamic nature has been 

primarily focused.  The precision in prediction 

enhances the probability of identifying the failures 

and deterioration and hence maximize the 

performance. This paper has been organized in 

sections of which the literature survey in Section 2 

covers the aspects of predictive maintenance, 

predictive models and their applications in electrical 

machines.  Section 3 introduces the proposed model 

for short term prediction of machine data.  The 

experimental set up and procedure of data modeling 

have been explained in Section 4.   
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 The prediction of machine data using ARMA 

(Auto Regressive Moving Average) model for 

different selection of AR and MA methods and 

orders has been illustrated with results in Section 5. 

The modeling of adaptive component using adaptive 

filtering technique and its effects on prediction 

accuracy have been discussed in Section 6 with a 

comparative analysis of adaptive linear prediction. 

The overall inference and scope of advantages that 

the componentized model can bring in predictive 

maintenance have been outlined in Section 7 as 

conclusion.  

2.  Literature Survey 

 Various hybrid models based on time series, 

mathematical transforms and artificial intelligence 

with supervised or unsupervised learning have been 

cited in literature for predictive modeling. It 

encompasses statistical, optimization, machine 

learning and data mining techniques based on the 

nature of data to develop predictive models.   C.V. 

Apte et al. [2] have elaborated about data mining 

algorithms and specified that accurate determination 

of the functional relationship between explanatory 

variables and target variables is found to be a key 

challenge in the development of predictive models.  

Charles Nyce has stated that the predictive models 

need not always be 100 percent accurate and are 

prone to errors due to exclusion of significant factors 

or inclusion of insignificant factors or incorrect 

assumptions [3].   IBM has stated that predictive 

maintenance is widely replacing other methodologies 

used for Maintenance, Repair and Overhaul (MRO) 

in production industries.  while designing a 

predictive maintenance application, the 

implementation of a mathematical model, continuous 

monitoring and control, selection of the best 

predictors for faults and accuracy validation have 

been identified as the important criteria [4].  Emerson 

Process Management has highlighted the methods of 

vibration analysis and infrared thermography for 

detection of impending failures and emphasized that 

the measurement of physical signals and information 

gathering through proper data interpretation methods 

have major role in health monitoring, priority 

fixation and predictive maintenance of electrical 

systems [5].  As cited by Frank Buytendijk and Lucie 

Trepanier, predictive analytics shall be carried out by 

modeling the system in three aspects: i) Predictive 

model, defining the relationship pattern between 

explanatory variables or events and predicted 

variables ii) Descriptive model, which segments the 

data based on observed characteristics and iii) 

Decision model, which provides solutions for 

optimal prediction [6].   Reza Askari Moghadam et 

al. [7] have used a hybrid model of linear ARIMA 

and non-linear neural network as prediction model in 

wireless sensor networks.  The reduced data 

communication rate and power consumption have 

been highlighted as advantages resulting out of 

prediction. Mehdi Khashei et al. have combined 

SARIMA model with computational intelligence 

techniques for accurate forecast of non-linear data by 

overcoming the large input data requirements and 

linear dependence [8].  P.W.Tse et al. [9] have 

presented that the rate of machine deterioration can 

be determined by forecasting of non-stationary 

vibration signal using Recurrent Neural Networks 

(RNN).  L.Karthikeyan et al. [10] have predicted the 

non-stationary time series by decomposing it into 

orthogonal components using the methods of 

Wavelet Transform and Empirical Mode 

Decomposition (EMD). The ARMA model is applied 

on the decomposed components independently to 

predict the results that have been compared to find 

the forecasting suitability of each method.  

 The mathematical model of a system is 

generally derived from the system dynamic equations 

or from the stochastic model using the probabilistic 

distribution of the input and output parameters. This 

requires deep insight of system mechanics, 

environmental factors and inclusion of all the 

necessary conditions as predictors in the forecast 

model.  However, the mathematical equations of 

system mechanics and type of disturbances are often 

unknown in the field implementation. In such case, 

predictive models derived from the experimental data 

will be an effective solution in real time and such a 

model has been proposed for the estimation of future 

states of non-stationary real time machine data.  At 

stage one, the short term prediction results are 

estimated as addition of trend and time series 

prediction.  The mismatch in the data prediction is 

minimized by cascading of adaptive FIR filter, which 

acts as an adaptive component that adjusts the 

disparity in the time series prediction. 

3.  Proposed Prediction Model 

 A generalized short-term prediction model using 

time series analysis with additive trend and cascaded 

adaptive filter, which encompasses significant 

prediction factors for optimum online prediction of 

the machine variables, has been proposed. In this 

work, development of a reliable prediction model 
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that gives more accuracy and suits the practical 

conditions has been instigated for non-stationary data 

of three phase induction motor.  The proposed data 

prediction model shown in Figure 1 converts the non-

stationary data into stationary data through the 

process of data detrending. 

 

 

Fig. 1. Proposed Prediction Model for Non-Stationary       Z 

           Machine Data 

 The type of time series suitable for the 

representation of detrended data has been identified 

from the auto correlation and partial auto correlation 

responses.   The stage one uses the combination of 

additive trend and linear time series for prediction.  

The adaptive model proposed in stage two receives 

the predicted time series and training data for 

iterative adjustment of its coefficients for zero error 

convergence at different parameter settings. The 

model has been tested on the three-phase induction 

motor operating on a single loop speed control with 

AC drive and PI controller for prediction of speed 

and controller set point data behaviour.  Since the 

acquired data fits for Auto Regressive Moving 

Average (ARMA) model, the prediction has been 

made for different combination of Auto Regressive 

(AR) and Moving Average (MA) algorithms to 

perceive the accuracy of the predicted results.  The 

model proposed, by cascading of adaptive FIR filter, 

uses Least Mean Square algorithm for error 

minimization and has been experimented to analyze 

the prediction behavior of adaptive component.   

4. Experimental Set up and Modeling  Procedure  

 The layout of experimental setup shown in 

Figure 2 consists of a PI controller, three phase AC 

drive, three phase squirrel cage induction motor and a 

data acquisition system (compact RIO – cRIO9068) 

operating in a closed loop.  The reference speed of 

the induction motor has been set as a continuously 

varying pattern (as given in the pseudocode shown in 

Figure 3) by generating analog reference voltage of 

(4-10)V through analog output module NI9263 

connected to cRIO9068.  

  

 

Fig.2. Experimental set up 

 The PI controller compares the set point with 

motor speed and generates control output that acts on 

the AC drive to achieve the speed as specified by the 

set point.  The PowerFlex70 AC drive takes the 

speed reference as control input and actuates the 

induction motor by generating variable voltage and 

frequency corresponding to the PI controller output. 

The speed developed by the motor in response to the 

stimulus signal of the controller set point is measured 

by acquiring the speed feedback reference value from 

the AC drive through universal analog input module 

NI9219 interfaced with cRIO.  

 

Fig.3. Functional Block Diagram of Experimental Setup 

 The values of speed references generated as 

controller set points, the corresponding speed 

developed in the induction motor and output of the PI 

controller are logged in real time controller of 

cRIO9068 and plots of all the specified variables are 

as shown in Figure 4.  A set of 630 samples of 

controller set points is generated at the sampling 

interval of 2 seconds and the values of corresponding 

motor speed and controller output have been logged 

in the spread sheet.   
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Fig.4. Data Characteristics (Actual Speed, Reference  

   Speed, Controller Output) 

  

 A subset of 420 values from the recorded data 

set of 630 samples has been extracted to form the 

univariate time series of Set Point and Speed.  These 

are taken as in-sample data for the prediction of 

subsequent unknown values.  Time Series analysis 

widely used in economical, statistical, biological and 

environmental studies has been applied in this work 

to build a dynamic model that predicts the 

operational parameters of a three phase induction 

motor.  The distribution of a physical variable using 

time series demands the stationarity of the series. 

Hence the logged univariate time series of speed and 

set point are tested for stationarity by mean and 

variance. A time series can possess deterministic or 

stochastic periodicity and trend. The trends of 

deterministic and stochastic nature can be 

represented as linear, exponential, cyclic, quadratic, 

cubic or polynomial expression.  Since both the time 

series of speed and set point did not meet the 

stationarity conditions, the time series is 

preprocessed by removing the trend identified as 

cubic nature.  The detrended time series having 

satisfied the stationarity conditions, their auto-

correlation and partial auto correlation plots are 

obtained for a lag of 105 (Figures 5 and 6).  

 

Fig. 5. Data Preprocessing of Speed 

 

Fig. 6. Data Preprocessing of Set Point 

 The auto-correlation and partial auto-correlation 

plots of the detrended time series of speed and 

controller set point show a decaying pattern after 

certain lags. As per the model selection criteria 

specified by NIST, the type of time series is found to 

be Auto-Regression and Moving Average (L, N). The 

procedure of implementing the proposed model for 

prediction of non-stationary speed and set point using 

LabVIEW platform has been illustrated in the flow 

chart given in Figure 7.   
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Fig. 7. Procedure for Prediction of Univariate Non-Stationary Machine Variables 

 

5.    Time Series Prediction of Machine Data 

 In order to develop the time series of machine 

data, ARMA(L,N) model has been constructed with 

the values of the machine physical variables, speed 

and controller set point (Xk) with respect to time 

sequence k, as represented by equation 1.  The Auto 

Regression model coefficients up to the order L i.e.,  

1 to L are computed using various AR methods 

namely Yule-Walker, Burg-Lattice, Least-Squares 

and Forward Backward.  The Moving Average model 

coefficients of order N, 1 to N are calculated using 

Yule-Walker method. 

 

𝑋𝐾 = ∑ 𝜌𝑂𝑂=𝐿
𝑂=1 𝑋𝐾−𝑂 + ∑ 𝜃𝑚𝑚=𝑁

𝑚=0 𝜀𝐾−𝑚             (1) 

where εK is zero-mean white noise coefficient and  0  

= 1.  The values of the ARMA time series Xk are 

evaluated as weighted summation of L recent values 

of X and N recent values of white noise.  The values 

of L and N are empirically chosen from lag values of 

partial auto correlation and auto correlation of the 

stationary speed and set point data.  The prediction 

models for set point and speed are developed in 

LabVIEW using time series ARMA prediction model 

as described above.  The estimated AR and MA 

model coefficients are used for data prediction of 

subsequent 50 to 250 steps with the time duration of 

2 seconds per step.  The Trend causing non-

stationarity in the data, identified as cubic nature has 

been added to the linear ARMA prediction values.  

As a measure of assessing the goodness of fit of 

ARMA and trend combination, the prediction results 

are compared with the actual data using the error 

metric of Mean Square Error.  The MSE values 

obtained for various AR and MA methods and orders 
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used in the prediction of set point and speed have 

been furnished in Tables 1 and 2.   

Table 1. Prediction Error for Set Point (Stage 1) 

AR Method 
AR 

Order 

MA 

Method 

MA 

Order 
MSE 

Least-Squares 12 Yule -Walker 22 4.32 

Yule-Walker 10 Yule-Walker 7 3.86 

Forward Backward 10 Yule-Walker 22 3.79 

Yule-Walker 10 Yule-Walker 22 3.57 

Yule-Walker 10 Yule-Walker 9 3.37 

Yule-Walker 10 Yule-Walker 27 2.96 

Yule-Walker 12 Yule-Walker 8 2.71 

Yule-Walker 14 Yule-Walker 8 2.69 

Yule-Walker 15 Yule-Walker 8 2.65 

Forward Backward 7 Yule-Walker 72 2.56 
 

 

Table 2. Prediction Error for Speed (Stage 1) 

AR Method 
AR 

Order 
MA Method 

MA 

Order 
MSE 

Least -Squares 16 Yule -Walker 45 3.60 

Yule-Walker 10 Yule -Walker 47 3.34 

Forward Backward 12 Yule -Walker 81 3.28 

Yule-Walker 12 Yule -Walker 14 2.94 

Yule-Walker 12 Yule -Walker 10 2.91 

Yule-Walker 14 Yule -Walker 91 2.82 

Burg Lattice 18 Yule -Walker 91 2.76 

Yule-Walker 12 Yule -Walker 39 2.71 

Yule-Walker 14 Yule -Walker 102 2.67 

Least-Squares 5 Yule -Walker 102 2.41 

Least-Squares 4 Yule -Walker 91 2.07 

 

 The tabulated results thus obtained with ARMA 

and additive trend show that the methods of Yule-

Walker, Forward Backward and Least Squares fit 

more appropriately in the determination of AR model 

coefficients.  The predicted data of controller set 

point and speed have the lowest values of MSE as 

2.56 and 2.07 respectively.  

 The plots of predicted results and actual data of 

the Set Point and Speed for lower values of MSE are 

shown in the Figure 8.  For the machine data that has 

been considered, the estimated trend component 

represents the operational variations encountered by 

the machine and the ARMA prediction result shows 

the linear machine response characteristics.  The 

error obtained in the prediction results reveals the 

data characteristics that could not be modeled by 

time series predication.  

6. Application of Adaptive Filter for 

 Identification of Adaptive Component 

 An adaptive filter iteratively computes the filter 

coefficients to obtain the relationship between the 

input and output digital sequences, either as Finite 

Impulse Response (FIR) / Infinite Impulse Response 

(IIR) in case of linear systems or Volterra / bilinear 

filters with respect to non-linear systems.  The filter 

uses adaptive algorithms to adjust its coefficients as 

per the system configuration [11]. 

 

 

Fig. 8. Prediction Results of Set Point (MSE-2.56) and 

  Speed (MSE–2.07) 

   In the model proposed, an adaptive filter structure 

has been used to identify the adaptive component to 

achieve high accuracy in prediction. The adaptive 

FIR filter configuration shown in Figure 9 will 

identify the adaptive component of the prediction 

model using the time series predicted values as X(n) 
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and actual data as D(n).  The adaptive component 

that is identified and cascaded with time series 

prediction includes the unincorporated data 

characteristics and subsides the factors causing 

modeling error, thus yielding higher accuracy.     

 

 

Fig. 9. Adaptive Filter Structure for Identification of  

  Adaptive Component 

 The convergence of the error, Error(n) in 

equation 2 to zero is achieved through minimization 

of error between the known system output D(n) and 

adaptive filter output Y(n) with optimized filter 

coefficients obtained by the iterative adjustment of 

the coefficients using adaptive LMS algorithm. 

 Error(n) = D(n) – Y(n)                 (2) 

 

 The output Y(n) of the linear adaptive Finite 

Impulse Response (FIR) filter is computed using 

equation 3. 

 Y(n) = ∑ wi(n) x(n − i)𝑖=𝐿−1
𝑖=0                          (3) 

where {wi(n)} are the coefficients of the adaptive 

filter, {x(n-i)} are the input sequences and Y(n) is the 

output of the adaptive filter. 

6.1 Least Mean Square Adaptive Algorithm  for 

FIR Filter 

 The Error(n)MSE has been estimated as an 

average of the expected value of quadratic error 

signal as shown in equation 4. The coefficients of the 

adaptive filter given in equation 3 are modified such 

that the output of the filter gives minimized value of 

Error(n)MSE [11].  

Error(n) MSE =  (1/2) * ∫ 𝑒2(𝑛) 𝑝𝑛 
𝛼

−𝛼
[𝑒(𝑛)]𝑑[𝑒(𝑛)] 

                    =  (1/2) * E{e2(n)}                                   (4) 

where pn [e(n)] is the Probability Density Function of 

the error at time n. 

 Thus, to determine the minimum filter 

coefficients, the cost function Error(n)MSE is 

differentiated with respect to its coefficient 

parameters and has been equated to zero, by 

optimization theory. Hence it becomes, 

𝜕 Error(n)MSE 

𝜕𝑤𝑖(𝑛)
= 0                        (5) 

 

 The Least Mean Square algorithm takes the 

Err(n)LMS given in equation 6 as cost function using 

the current value of the error function instead of 

probabilistic values Error(n)MSE. 

 Err(n)LMS = (1/2)* e2(n)                                   (6) 

 

 According to the method of steepest descent 

algorithm, the filter coefficients of a particular 

iteration, wi(n) are modified according to the 

derivative of the Err(n)LMS function with respect to 

the coefficient by itself as shown in equation 7. 

𝑤𝑖(𝑛 +  1) =  𝑤𝑖(𝑛) −  µ(𝑛)
𝜕 Err(n)𝐿𝑀𝑆 

𝜕𝑤𝑖(𝑛)
       (7) 

where (n) is defined as the step size. 

 

 Thus appropriate selection of step size and 

number of iterations could bring faster convergence 

of error to zero and identifies the model of the 

unknown machine data characteristics that are not 

estimated from time series prediction.  To identify 

the adaptive model component that makes the time 

series prediction results to merge with the actual 

training data, the data predicted by the time series 

model X(n) and the actual training data D(n) are fed 

as inputs to adaptive FIR filter to obtain optimum 

prediction solution.  An analysis has been made for 

different number of iterations and step sizes for the 

adaptive filter length of 50.  The prediction accuracy 

and processing time of adaptive filter for different 

step sizes and iterations are highlighted in Tables 3 

and 4.  The tabulated results show the rate of 

convergence of the MSE pertaining to the specific 

time series model for different step sizes and number 

of iterations of the filter.  The significant 

convergence of the prediction error up to the order of 

10-6 and 10-5 have been observed for set point and 

speed respectively at higher iterations.   
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Table 3. Error Convergence of Speed Prediction using proposed model 

ARMA Prediction Model for 

Speed 

No. of 

Iterations 

Step Size = 0.0003 Step Size = 0.00035 

MSE Time 

(s) 
MSE Time 

 (s) 

AR Method – Burg Lattice 

MA Method – Yule Walker 

AR Order = 18, MA Order =91 

MSE = 2.76 

50 0.372 0.0020 0.3675 0.0020 

500 0.2663 0.0180 0.2841 0.0160 

5000 0.18031 0.1741 0.18618 0.1741 

10000 0.13811 0.3332 0.137945 0.3482 

20000 0.089796 0.7024 0.085288 0.5893 

40000 0.047418 1.3959 0.042546 1.3168 

 

Table 4. Error Convergence of Set Point using proposed model 

ARMA Prediction Model for 

Set Point 
No. of 

Iterations 

Step Size = 0.0003 Step Size = 0.00035 

MSE 
Time 

(s) 
MSE 

Time 

(s) 

AR Method – Yule Walker 

MA Method – Yule Walker 

AR Order = 12, MA Order = 08 

MSE = 2.71 

50 0.00837 0.0020 0.0057 0.0020 

500 0.001348 0.0190 0.001365 0.0180 

5000 3.837E-5 0.1721 5.005E-5 0.1731 

10000 1.892E-6 0.2982 3.007E-6 0.2961 

 

 It is observed that for a specified number of 

iterations, better zero convergence happens either 

with increase or decrease of step size, whereas for a 

fixed step size, the increase in the number of 

iterations brings closer error convergence 

consistently.  In order to evaluate the performance of 

the adaptive model component, a comparative study 

has been made by considering the time series speed 

prediction with MSE lesser by 0.69 and the 

corresponding results are shown in Table 5. 

 

Table 5. Error Convergence of Speed with proposed model (MSE = 2.07) 

ARMA Prediction Model for 

Speed 

No. of 

Iterations 

Step Size = 0.0003 Step Size = 0.00035 

MSE 
Time 

(s) 
MSE 

Time 

 (s) 

AR Method – Least Square 

MA Method – Yule Walker 

AR Order = 4, MA Order =91 

 

50 0.354 0.0019 0.333 0.0010 

500 0.1214 0.0160 0.1134 0.0130 

5000 0.0079 0.1611 0.0077 0.1741 

10000 2.8E-3 0.3332 2.9E-3 0.2951 

20000 5.199E-4 0.5954 6.2175E-4 0.5954 

40000 1.833E-5 1.1860 3.0537E-5 1.9280 
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The prediction results obtained for machine speed 

and controller set point after inclusion of the 

Adaptive FIR Filter working on LMS algorithm have 

been illustrated in Figures 10 and 11 respectively 

along with the minimization of MSE. 

 

 

Fig.10.  Minimization of Prediction Error with Adaptive 

  LMS Algorithm (Speed) 

 

Fig.11. Minimization of Prediction Error with 

 Adaptive LMS Algorithm (Set Point) 

 The results of comparative analysis given in 

Tables 3 and 5 reveal that for the same number of 

iterations, the adaptive component of the proposed 

model gives better performance with huge margin of 

error convergence in a shorter duration even for the 

marginal optimization of the prediction results of the 

time series model.  The duration taken could be 

further minimized by executing the model in a 

dedicated and deterministic real-time processor.  The 

adaptive filter shown in Figure 12 is used for 

estimation of the future values of the signal X(n) 

from the actual and delayed set of samples of X(n).  

The adaptive filter performs AR model estimation by 

iterative adjustment of its coefficients in online mode 

based on the Error(n). 

 

Fig. 12. Adaptive Filter Structure for Prediction 

 The efficiency of the proposed model in 

predicting the non-stationary machine variables is 

evaluated by comparing the prediction accuracy of 

the proposed model (Table 4) with that of adaptive 

filter prediction (Table 6).  The non-stationary 

machine variable predicted using adaptive linear 

prediction for various filter lengths and step sizes 

estimates the signal with Mean Square Error (MSE) 

ranging from 2.20 to 2.86 and 2.13 to 2.99 for step 

size of 0.0003 and 0.00035 respectively.  In contrast 

to this, the results obtained from the proposed model 

show better prediction accuracy with MSE varying 

from 1.892E-6 to 0.00837 and 3.007E-6 to 0.0057 for 

step sizes of 0.0003 and 0.00035 respectively.  

Table 6. Error Convergence of Set Point with Adaptive 

  Prediction 

Filter 
Length 

Step Size = 0.0003 Step Size = 0.00035 

MSE Time (s) MSE Time (s) 

128 2.58 2.00 2.99 0.99 

64 2.25 2.00 2.20 1.00 

50 2.20 0.999 2.13 1.00 

32 2.32 1.00 2.23 1.99 

16 2.86 0.3332 2.72 1.59 

  

 This combination of trend, time series and 

adaptive system identification gives a simple and 

generalized prediction model design that improves 

prediction accuracy by facilitating the inclusion of 

relevant and unknown predictors in online through 

adaptive filter.  In addition to achieving better 

accuracy, the model also characterizes the trend of 

the data pattern which is a widely used diagnostic 

parameter in condition monitoring.  

7.   Conclusion 

 The effectiveness of predictive maintenance 

strategies adopted for machine maintenance depends 

on the optimal nature of the prediction model 

deigned.  The advanced diagnostic capabilities 

encompassing new algorithms and methodologies 

ease data driven analysis of the machine’s physical 

and operational parameters influential in condition 

monitoring and predictive maintenance of electrical 
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machines.  The proposed machine data prediction 

model is making machine failure prognosis at three 

independent levels namely Trend, Linear Response 

and Adaptive variations. The onset of machine 

failures inherently evident in the signals acquired, on 

processing with precisely designed model will 

disclose the extent of failure development in the 

system. When failure predictions have been made 

using componentized model, the impacts on 

individual model component will be clearly distinct.  

Such variations observed in the discrete components 

enable adoption of appropriate predictive 

maintenance decisions leading to an enhanced 

process coordination and fault tolerance in industrial 

environment. 
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