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Chapter 1

Introduction

The introductory chapter presents the motivation of the work and ends with a short
outline of the thesis.

1.1 Motivation

Wavelet theory is one of the most modern areas of mathematics. Masterfully developed
by French researchers, such as Yves Meyer, Stephane Mallat and Albert Cohen, this
theory, is now used as an analytical tool in most areas of technical research: mechanical,
electronics, communications, computers, biology and medicine, astronomy an so on. In
the field of signal and image processing, the main applications of wavelet theory are
compression and denoising.

In the context of denoising, the success of techniques based on the wavelet theory
is ensured by the ability of decorrelation (separation of noise and useful signal) of the
different discrete wavelet transforms [FBB01, ICN02]. Because the signal is contained in
a small number of coefficients of such a transform, all other coefficients essentially contain
noise. By filtering these coefficients, most of the noise is eliminated. Thus, each method
of image denoising based on the use of wavelets follows the classic method, in three
steps: computing a discrete wavelet transform of the image to be denoised, filtering in
the wavelet domain and the computation of the corresponding inverse wavelet transform.

Throughout recent years, many wavelet transforms (WT) have been used to operate
denoising. The first one was the discrete wavelet transform, [DJ94]. It has three main
disadvantages [Kin01]: lack of shift invariance, lack of symmetry of the mother wavelet
and poor directional selectivity. These disadvantages can be diminished using a complex
wavelet transform [Kin01, Kin00]. More than 20 years ago, Grossman and Morlet [GM84]
developed the continuous wavelet transform [SBK05]. A revival of interest in later years
has occurred in both signal processing and statistics for the use of complex wavelets
[BN04], and complex analytic wavelets, particularly in [Kin99, Sel01]. It may be linked
to the development of complex-valued discrete wavelet filters [LM95] and the clever dual
filter bank [Kin99, SBK05]. The complex WT has been shown to provide a powerful
tool in signal and image analysis [Mal99]. In [OM06], the authors derived large classes
of wavelets generalizing the concept of 1-D local complex-valued analytic decomposition
introducing 2-D vector-valued hyperanalytic decomposition.

1
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2 CHAPTER 1. INTRODUCTION

The present work is situated in this context, and, by introducing a new version of
the Hyperanalytic Wavelet Transform and by combining this transform with various
parametric and non-parametric filtering techniques attempts to provide a solution to the
denoising problem. The new transform, by allowing the use of all the mother wavelet
families that are usually used with the discrete wavelet transform, while achieving the
desirable properties of complex wavelet transforms, such as quasi shift-invariance and
a good directional selectivity, in association with different filters selected has provided
good denoising results both when applied to images affected by additive noise or by
multiplicative noise, as is the case of SAR images.

1.2 Thesis outline
The current thesis is organized as follows:

• Chapter 1, Introduction, is made of a short presentation of the context the present
work relies in, and an overview of the structure of the thesis.

• Chapter 2, Wavelet Transforms, introduces the discrete wavelet transform (one-
dimensional and two-dimensional), the undecimated wavelet transform and the
wavelet packet transform (one-dimensional and two-dimensional), explaining the
concept of multiresolution analysis and the limitations of the discrete wavelet trans-
form (shift sensitivity, reduced directional selectivity).

• Chapter 3, Complex Wavelet Transforms, constitutes a sequel of the previous chap-
ter by introducing the complex wavelet transforms. The Hyperanalytic Wavelet
Transform (HWT) is introduced, this representing the thesis’ main contribution
and a parallel is drawn between this transform and the dual-tree complex wavelet
transform, DTCWT. A special attention is given to the quasi shift-invariance and
to the good directional selectivity of the HWT.

• Chapter 4, Denoising, is a thorough presentation of denoising. The noise is con-
sidered to be additive in this case. The wavelet-based denoising techniques are
emphasized. A distinction is being made between the non-parametric and para-
metric methods, emphasizing the second category. I have insisted on the maximum
a posteriori (MAP) parametric methods. The importance of the coefficients’ inter-
scale dependency is highlighted. Starting from the Gaussian mixture model for
characterizing different scales (GSM), the bishrink filter is introduced. The as-
sociation of the HWT with the bishrink filter is studied and compared with the
denoising performances of other methods.

• Chapter 5, Speckle Reduction, is a continuation of chapter 4 and its goal is the re-
duction of multiplicative speckle-type noise, affecting the SAR and SONAR images.
I have developed a homomorphic denoising method based on the association of the
HWT with the bishrink filter. This method is then compared with the classical
despecklisation methods and with other methods proposed in the literature.

• Chapter 6, Conclusions, presents the conclusions drawn and future perspectives.
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Chapter 2

Wavelet Transforms

2.1 Introduction

2.1.1 Wavelet Definition

The term ‘wavelet’ refers to an oscillatory vanishing wave with time-limited extend, which
has the ability to describe the time-frequency plane, with atoms of different time supports
(see fig. 2.1). Generally, wavelets are purposefully crafted to have specific properties that
make them useful for signal processing. They represent a suitable tool for the analysis of
non-stationary or transient phenomena.

Figure 2.1: Wavelet

2.1.2 Wavelet Characteristics

Wavelets are a mathematical tool, that can be used to extract information from many
kinds of data, including audio signals and images. Mathematically, the wavelet ψ, is a
function of zero average, having the energy concentrated in time:∫ ∞

−∞
ψ (t) dt = 0, (2.1)

3
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4 CHAPTER 2. WAVELET TRANSFORMS

In order to be more flexible in extracting time and frequency informations, a family of
wavelets can be constructed from a function ψ (t), also known as the ‘Mother Wavelet’,
which is confined in a finite interval. ‘Daughter Wavelets’, ψu,s (t) are then formed by
translation with a factor u and dilation with a scale parameter s:

ψu,s (t) =
1√
s
· ψ
(
t− u
s

)
(2.2)

2.1.3 Wavelet Analysis

The wavelet analysis is performed by projecting the signal to be analyzed on the wavelet
function. It implies a multiplication and an integration:

〈x (t) , ψu,s (t)〉 =

∫
x (t)ψu,s (t) dt.

Depending on the signal characteristics that we want to analyze, we can use different
scales and translations of the mother wavelet. The particularity of the wavelet analysis
is that it allows us to change freely the size of the analysis function (window), to make
it suitable for the needed resolution, in time or frequency domain. For high resolution
in time-domain analysis we want to ‘capture’ all the sudden changes that appear in the
signal, and we do that by using a contracted version of the mother wavelet. Conversely,
for high-resolution in the frequency-domain we will be using a dilated version of the same
function.

2.1.4 Wavelet History

The development of wavelets can be linked to several works in different domains, starting
with the first wavelet introduced by Haar in 1909. In 1946, Denis Gabor, introduced
the Gabor atoms or Gabor functions, which are functions used in analysis, a family of
functions being built from translations and modulations of a generating function. In 1975,
George Zweig, former particle physicist who had turned to neurobiology, has discovered
the continuous wavelet transform (named first the cochlear transform and discovered
while studying the reaction of the ear to sound). Morlet, studying reflection seismology
observed that, instead of emitting pulses of equal duration, shorter waveforms at high
frequencies should perform better in separating the returns of fine closely-spaced layers.
Grossmann, who was working in theoretical physics, recognised in Morlet’s approach some
ideas that were close to his own work on coherent quantum states. In 1982, Grossmann
and Morlet have given the formulation of the Continuous Wavelet Transform. Yves Meyer
recognized the importance of this fundamental mathematical tool and developed this
theory with collaborators as Ingrid Daubechies (who introduced the orthogonal wavelets
with compact support (1988) [Dau88]) and Stéphane Mallat (who proposed the filter-bank
implementation scheme of the Discrete Wavelet Transform).

2.1.5 Wavelet Terminology

Due to Mallat’s implementation of the Wavelet transform, the filter-bank theory is closely
related to the wavelet theory. Also, the concept of ‘Multiresolution Analysis’ (MRA) is
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2.2. Evolution of Wavelet Transform 5

connected to the wavelet theory. Besides the classic wavelet transforms (Continuous
Wavelet Transform and Discrete Wavelet Transform) we have more ‘evolved’ transforms
connected with the wavelet theory, such as the Complex Wavelet Transform and the
Wavelet Packets Transform.

2.2 Evolution of Wavelet Transform
For many years, classical signal processing was concentrated on the characterization of
signals and on the designing of time-invariant and space-invariant operators that modify
stationary signal properties. But the biggest amount of information is concentrated in
the transients rather than in stationary signals. In the following, the evolution of the
Wavelet transform will be described, having as departure point the Fourier Transform.

2.2.1 Fourier Transform (FT)

In the first part of the 19th century, Joseph Fourier, a French mathematician and physi-
cist, showed that any periodic function can be decomposed in a series of simple oscillating
functions, namely sines and cosines (or complex exponentials). The generalization to the
non-periodic signals has come only a century later, and took the name of Fourier Trans-
form (FT), a tribute brought to the original idea. The FT decomposes a signal in complex
exponential functions at different frequencies. The equations used in the decomposition
and reconstruction part are the following:

X (ω) =

∫ ∞
−∞

x (t) · e−jωtdt, (2.3)

x (t) =
1

2π

∫ ∞
−∞

X (ω) · ejωtdω. (2.4)

In the above equations, t stands for time, ω = 2πf for frequency, x denotes the signal
in the time domain and X denotes the signal in the frequency domain (also known as
the spectrum of the original signal). As can be seen from eq. 2.3, the computation of the
FT is done over all times, making no distinction between signals’ stationary parts and
transient ones (whether the frequency component ‘ω’ appears at time t1 or t2, it will have
the same effect at the output of the integration). The scaling property of the FT states
that if we have a scaled version of the original xs (t):

xs (t) = x (st) , (2.5)

then, its corresponding FT will be Xs (ω):

Xs (ω) =
1

|s|
X
(ω
s

)
. (2.6)

We can observe from the last two equations that if we reduce the time spread of x by
s (if s>1) than the FT is dilated by s, meaning that if what we have gained in time
localization, we have lost in frequency localization. Projecting the signal on complex
exponentials leads to good frequency analysis, but no time localization. The poor time
localization is the main disadvantage of the Fourier transform, making it not suitable for
all kind of applications.
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6 CHAPTER 2. WAVELET TRANSFORMS

2.2.2 Short Time Fourier Transform (STFT)

To see how the frequency content of a signal changes over time, we can cut the signal into
blocks and compute the spectrum of each block. This is the base concept of the Short
Time Fourier Transform (STFT) introduced in 1946 by Gabor [Gab46], and again in 1977
by J.B. Allen [All77], the latter giving it a filterbank interpretation. For computing STFT
we simply multiply the original signal by a window function, which is non-zero for only a
short period of time, and then we compute the Fourier Transform of the obtained signal.
The result is a two-dimensional representation of the signal, that can be mathematically
written as:

STFT {x (t)} ≡ X (τ, ω) =

∫ ∞
−∞

x (t)w (t− τ) e−jωtdt, (2.7)

where w (t) is the window function, commonly a Hann window or a Gaussian centered
around zero, and x (t) is the signal to be analyzed. This equation can be interpreted as
an analysis of the signal by a sliding window in time or by a sliding bandpass filter in
frequency. A particularity of this transform is the fact that the window is of constant
length throughout the whole analysis process, meaning that the transform has a fixed
resolution in time and frequency.

Time and frequency energy concentrations are restricted by the Heisenberg uncer-
tainty principle. If we consider a finite energy function, f ∈ L2 (R) (

∫
|f (t)|2 dt < ∞)

and we consider it centered around zero in time and its Fourier transform, F (ω) cen-
tered around zero in frequency, then the temporal variance, σ2

t (given in eq. 2.8) and the
frequency variance, σ2

ω (given in eq. 2.9) of the wave function satisfy the condition (2.10):

σ2
t =

1

‖f‖2

∫ ∞
−∞

t2 |f (t)|2 dt, (2.8)

σ2
ω =

1

8π3 ‖f‖2

∫ ∞
−∞

ω2 |F (ω)|2 dω, (2.9)

σ2
t σ

2
ω ≥

π

2
. (2.10)

By ‖f‖ we have denoted the norm of the function f , computed as:
√∫∞

−∞ |f (t)|2 dt.
Depending on the time localization that is more suitable for our application, we can

choose the width of the analysis window, namely a short window for a good time but
poor frequency localization (suitable for signals with a high frequency content) or a wide
window for good frequency localization with the price of poorer time localization.

2.2.3 Wavelet Transform (WT)

Having in mind the limitations of the Fourier Transform (poor time localization) and
of the Short-Time Fourier Transform (fixed time and frequency localisation), Grossman
and Morlet gave in 1984 ([GM84]) the formulation of the Continuous Wavelet Transform.
Unlike the first two, who were decomposing the signal into a basis of complex exponentials,
the Wavelet Transform decomposes the signal over a set of dilated and translated wavelets.
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2.2. Evolution of Wavelet Transform 7

This difference confers to the WT the advantage of performing a multiresolution analysis,
meaning that it processes different frequencies in a different way (in contrast with the
STFT which analyses in the same way all frequencies). By using this technique, the
time resolution is increased when we analyse a high frequency portion of the signal,
and the frequencial localisation is increased when analysing a low-frequency part of the
same signal. This type of analysis is suitable for signals that have both low-frequency
components with long time duration and high-frequency components with short time
duration, which is the case of most signals.

If we consider a function x ∈ L2 (R) and for analysis we use the mother wavelet ψ
(2.1), with its scaled and translated versions in (2.2), we can write the wavelet transform
of x (t) at time u and scale s as:

Wx (u, s) = 〈x, ψu,s〉 =

∫ ∞
−∞

x (t)
1√
s
ψ∗
(
t− u
s

)
dt (2.11)

By looking at eq. 2.11 we can conclude that the Wavelet Transform can be seen as
a convolution between the signal to be analyzed and the reverse function , 1√

s
ψ∗
(
− t
s

)
derived from the Mother Wavelet.

2.2.4 Comparative Visualization

In the following, we will make a visual comparison of the time-frequency resolution cell
for the three transforms we have previously mentioned. In fig. 2.2 is represented the
Fourier Transform, and it can be observed the very good frequency localization and the
non existing time localization of this transform.

Figure 2.2: Time-frequency representation of the Fourier Transform.

Figure 2.3 presents the time-frequency localization of the Short-Time Fourier Trans-
form. As the Heisenberg principle states, the time and frequency localization are limited
to a certain bound which leads to the fact that the time-frequency atoms (the rectangles
in our representation) will be of equal surfaces. In 2.3(a) we present a transform that is
better localized in frequency, while in fig. 2.3(b) we have a transform with better time
localization.

In the case of the Wavelet Transform, we are also limited by the Heisenberg Un-
certainty, meaning that the time-frequency atoms will have the same constraints as in
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8 CHAPTER 2. WAVELET TRANSFORMS

(a) STFT with good frequency localiza-
tion

(b) STFT with better time localization

Figure 2.3: Time-frequency representation of the Short Time Fourier Transform

the case of the STFT but, instead of using a uniform splitting of the time-frequency
plane, it uses a different approach, resulting in a good frequency localization and poor
time localization for low-frequencies, and reduced frequency localization with better time
localization as the frequency increases (as can be seen in fig. 2.4).

Figure 2.4: Time-frequency representation of the Wavelet Transform.

Because of this particular approach, the Wavelet Transform is suited for most signal
and image applications.

2.3 Theoretical Aspects of Wavelet Transform

After we have made a brief presentation of the origins of the Wavelet Transform, we will
continue with a more thorough presentation of the theoretical aspects of this transform.

2.3.1 Continuous Wavelet Transform (CoWT)

Let x (t) be the finite energy signal that we want to analyze. The wavelet transform
basically decomposes the signal over dilated and translated wavelets. This is why, in
order to compute the continuous wavelet transform, we must choose the mother wavelet
to be used (in this case denoted by ψ (t)). ψ ∈ L2 (R) has a zero average, it is normalized
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2.3. Theoretical Aspects of Wavelet Transform 9

(‖ψ‖ = 1) and centered in the neighborhood of t = 0. A scaled and translated version
of the mother wavelet, ψu,s (t) can be written as in eq. 2.2, where s denotes the scale
parameter (s = 1

f
, where f represents the frequency) and u is the translation parameter.

The forward Continuous Wavelet Transform of the signal x (t), using ψ (t) as mother
wavelet can be written as:

Wx (u, s) = 〈x, ψu,s〉 =

∫ ∞
−∞

x (t)
1√
s
ψ∗
(
t− u
s

)
dt = x ∗ ψs (u) (2.12)

and can be seen as a convolution product between the signal to be analyzed and ψs (u),
where:

ψs (t) =
1√
s
ψ∗
(
−t
s

)
. (2.13)

ψ∗ represents the complex conjugate of the function ψ. The Fourier transform of ψs (t)
is

Ψs (ω) =
√
sΨ∗ (sω) . (2.14)

Because the continuous component of this function is 0, we can say that Ψ is the transfer
function of a band-pass filter. Thus, we can say that the wavelet transform is being
computed by filtering the original signal with a series of dilated band-pass filters. A
wavelet transform is invertible if the mother wavelet satisfies a condition, called the
admissibility condition, as results from the following theorem [Mal99]:

Theorem 2.3.1. (CALDERON, GROSSMAN, MORLET) Let ψ ∈ L2 (R) be a real
function such that

Cψ =

∫ +∞

0

|Ψ (ω)|2

ω
dω < +∞ (2.15)

Any x ∈ L2 (R) satisfies

x (t) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wx (u, s)

1√
s
ψ

(
t− u
s

)
du
ds

s2
, (2.16)

and ∫ +∞

−∞
|x (t)|2 dt =

1

Cψ

∫ +∞

0

∫ +∞

−∞
|Wx (u, s)|2 duds

s2
. (2.17)

This theorem also states that the wavelet transform preserves the energy of the original
signal (eq. 2.17), if the admissibility condition (eq. 2.15) is fulfilled.

As the Continuous Wavelet Transform is computed for a large number of values both
for the scale and for the translation, we can conclude that it is a very redundant transform.

2.3.2 Discrete Wavelet Transform (DWT)

Wavelet Frames

Because the CoWT is very redundant, a discretization of the scale and translation vari-
ables was introduced. This version of the CoWT is named the ‘(Continuous Time)
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10 CHAPTER 2. WAVELET TRANSFORMS

Wavelet Series (WS)’ by some authors ([XPZP96], [You93]) but also the ‘Discrete Wavelet
Transform’, and in particular ‘Wavelet Frames’ by others ([Mal99], [Dau92]).

A wavelet transform that uses the frames, yields a countable set of coefficients in the
transform domain. The coefficients correspond to points on a two-dimensional grid or
lattice of discrete points in the scale-translation domain. This lattice will be indexed by
two integers: the first integer, j, will correspond to discrete scale steps while the second
integer, n, corresponds to discrete translation steps (the grid is indexed by j and n). The
dilation parameter, s is now s = sj0 and the translation, u, is now u = nu0s

j
0, where s0

and u0 are the discrete scale and translation steps, respectively,

ψj,n (t) =
1√
sj0

ψ

(
t− nu0s

j
0

sj0

)
. (2.18)

The necessary conditions imposed on ψ, s0 and u0 for ψj,n, j, n ∈ Z2 to be a frame of
L2 (R) is to fulfill the admissibility condition given in eq. 2.15 and theorem 2.3.2, while
the sufficient conditions are given by another theorem (that provides the lower and upper
bound for the frame bounds A and B, depending on ψ, s0 and u0) introduced also by
Daubechies in [Dau92].

Theorem 2.3.2. (DAUBECHIES) If ψj,n, j, n ∈ Z2 is a frame of L2 (R) then the frame
bounds satisfy

A ≤ Cψ
u0loges0

≤ B, (2.19)

∀ω ∈ R− {0} , A ≤ 1

u0

+∞∑
j=−∞

∣∣Ψ (sj0ω)∣∣2 ≤ B. (2.20)

The condition (2.20) imposes that the Fourier axis is completely covered by wavelets
dilated by

{
sj0
}
j∈Z .

The WS transform is defined with respect to a continuous mother wavelet, ψ. The
wavelet transform maps continuous finite energy signals to a 2-D discrete grid of coeffi-
cients, Wψ : L2 (R)→ l2 (Z2). The WS transform of a signal x (t) is:

Wx (j, n) = 〈x, ψj,n〉 =

∫ ∞
−∞

x (t)
1√
sj0

ψ∗

(
t− nu0s

j
0

sj0

)
dt (2.21)

These wavelet coefficients represent the original signal but, as in the continuous case,
the representation is sensitive to the chosen mother wavelet. Unlike the CoWT, this
transform is defined only for positive values of s0. This constraint is not restrictive as
the reflected mother wavelet (a scale of -1) can be used as the new mother wavelet and
effectively cover negative scales as well. Wavelet frames offer good localization both in
time and frequency but they do not necessary form an orthonormal basis.

The most commonly used values for s0 and u0 are 2 and 1, respectively, meaning that
the scale is discretized, forming a dyadic sequence while the translation parameter is not
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2.4. Implementation of DWT 11

discretized. The transform resulting from this particular case of discretization is called
the Dyadic Wavelet Transform. DWT of a signal x (t) can be written as:

DWTx
(
2j, u

)
=

∫ ∞
−∞

x (t)
1√
2j
ψ

(
t− u

2j

)
dt (2.22)

When a dyadic wavelet transform is discretized in time with a constant interval, u = 2jT ,
it leads to the classic Discrete Wavelet Transform (DWT).

In addition, Meyer showed that there exist wavelets ψ (x) such that(√
2jψ

(
2jt− k

))
(j,k)∈Z2

is an orthonormal basis of L2 (R). Actually, if the frame bounds A and B (from theorem
2.3.2) are equal, that the frame is, in fact, an orthonormal basis. The wavelet orthonormal
bases provide an important tool in functional analysis; before them it has been believed
that no construction could yield simple orthonormal bases of L2 (R) whose elements had
good localization properties in both the spatial and Fourier domains.

2.4 Implementation of DWT
In order to take advantage of the Wavelet Transform’s properties, an computation algo-
rithm and an implementation scheme were needed. Mallat [Mal89] solved these problems
by discussing the Multi-Resolution Analysis (MRA) which is linked to the Perfect Re-
construction (PR) filterbank structures [SB86].

2.4.1 Multiresolution Analysis (MRA)

A signal’s approximation at resolution 2−j is defined as an orthogonal projection on a
space Vj ⊂ L2 (R). The space Vj groups all possible approximations at the resolution 2−j.
The orthogonal projection of x on Vj is the function xj that minimizes distance ‖x− xj‖.
The details of a signal at resolution 2−j are the difference between the approximations at
the resolutions 2−j+1 and 2−j.

Multiresolution Approximations

A multiresolution analysis consists of a sequence of successive approximation spaces
{Vj}j∈Z , presented in fig. 2.5, satisfying the following properties:

∀ (j, k) ∈ Z2, x (t) ∈ Vj ⇔ x
(
t− 2jk

)
∈ Vj, (2.23)

∀j ∈ Z, Vj+1 ⊂ Vj, (2.24)

∀j ∈ Z, x (t) ∈ Vj ⇔ x

(
t

2

)
∈ Vj+1, (2.25)

limj→+∞Vj =
+∞⋂
j=−∞

Vj = {0} , (2.26)
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12 CHAPTER 2. WAVELET TRANSFORMS

limj→−∞Vj = Closure

(
+∞⋃
j=−∞

Vj

)
= L2 (R) , (2.27)

There exists θ such that {θ (t− n)}n∈Z is a Riesz basis of V0.

Figure 2.5: Approximation Spaces (Vj) and Detail Spaces (Wj)

For a given multiresolution approximation {Vj}j∈Z , there exists a unique function

φ (t), called a scaling function, such that
(
φj,n (t) =

√
2−jφ (2−jt− n)

)
n∈Z

is an orthonor-
mal basis of Vj .

The orthogonal projection on Vj can be computed by decomposing the signal x (t) in
the scaling orthonormal basis. Specifically,

∀x (t) ∈ L2 (R) , pVjx (t) =
+∞∑

n=−∞

〈x, φj,n〉φj,n. (2.28)

The inner products
aj [n] = 〈x, φj,n〉 (2.29)

represent the discrete approximation of the signal x (t) at scale 2j. It can also be written
as:

aj [n] =

∫ +∞

−∞
x (t)

1√
2j
φ

(
t− 2jn

2j

)
dt = x ∗ φ̄j

(
2jn
)

(2.30)

where φ̄j (t) =
√

2−jφ (−2−jt). It can be easily proved that φ̄j (t) is the impulse response
of a low-pass filter, so, the discrete approximation aj [n] is a low-pass filtering of x,
sampled by a factor of 2j.

The orthonormality condition of the elements of V0 is:

〈φ0,0(t), φ0,n(t)〉 = δ[n] ⇔ Γφ[−n] = δ[n].
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2.4. Implementation of DWT 13

The Detail Signal

The difference of information between the approximation of a signal x (t) at scales 2j−1

and 2j is called the detail signal at scale 2j. It was shown in the previous paragraph
that the approximations of a signal at scales 2j−1 and 2j are, respectively equal to its
orthogonal projection on Vj−1 and Vj. It can be easily proved that the detail signal at
the scale 2j is given by the orthogonal projection of the original signal on the orthogonal
complement of Vj in Vj−1, denoted here by Wj (see fig. 2.5). If Wj is the orthogonal
complement, then

Wj is orthogonal to Vj, and

Wj ⊕ Vj = Vj−1.

Mallat proves in [Mal89] that there exists a function ψ (t), called an orthogonal wavelet,
such that, if we denote

ψj,n (t) =
1√
2j
ψ

(
t− 2jn

2j

)
,

for any scale 2j, {ψj,n}n∈Z is an orthonormal basis ofWj and {ψj,n}(n,j)∈Z2 is an orthonor-
mal basis of L2 (R), for all scales.

The orthonormality condition of the elements of W0 is:

〈ψ0,0(t), ψ0,n(t)〉 = δ[n] ⇔ Γψ[−n] = δ[n].

Let pWj
be the orthogonal projection on the vector space Wj. The detail signal of

x (t) at the resolution 2j is equal to:

pWj
x (t) =

+∞∑
n=−∞

〈x, ψj,n〉ψj,n. (2.31)

The inner products
dj [n] = 〈x, ψj,n〉 , (2.32)

represent the wavelet coefficients (or the detail coefficients), calculated at scale 2j. Anal-
ogous to the approximation signal, the detail signal can be implemented as a high-pass
filtering of x (t) followed by a sampling at rate 2j. A signal x (t) can be fully characterized
by its wavelet decomposition, and can be written as a sum between the projection on the
approximation space at level L and the projections on the detail spaces at all the other
levels, as in eq. 2.33

x (t) = pVLx (t) +
0∑

j=L

pWj
x (t) . (2.33)

2.4.2 Filter-bank Implementation of the Discrete Wavelet Trans-
form

As previously mentioned, both approximation and detail coefficients can be obtained by
filtering and sub-sampling of the original signal. It is proved that any scaling function
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14 CHAPTER 2. WAVELET TRANSFORMS

is specified by a discrete filter called a ‘conjugate mirror filter’. Its impulse response is
given by:

h [n] =

〈
1√
2
φ

(
t

2

)
, φ (t− n)

〉
, (2.34)

where φ (t) denotes the scaling function. Its Fourier transform, denoted by H (ω) is given
by:

H (ω) =
+∞∑

n=−∞

h [n] e−jωn.

With the definitions from above, the following theorem can be introduced:

Theorem 2.4.1. (MALLAT, MEYER) H (ω) satisfies the following conditions:

∀ ω ∈ R, |H (ω)|2 + |H (ω + π)|2 = 2, (2.35)

|H (0)| =
√

2, and h [n] = O
(
n−2
)
at infinity. (2.36)

Conversely, let H (ω) be a Fourier transform satisfying 2.35 and 2.36 and such that

|H (ω)| 6= 0 for ω ∈ [0, π/2] . (2.37)

The function defined by

Φ (ω) =
+∞∏
p=1

H
(
2−pω

)
(2.38)

is the Fourier transform of a scaling function.

The filters that satisfy property 2.35 are called conjugate mirror filters. Relation 2.37
implies that H (ω) is a low-pass filter.

As {φj,n}n∈Z is an orthonormal basis of Vj (see 2.4.1), any φj+1,p ∈ Vj+1 ⊂ Vj can be
decomposed as follows:

φj+1,p =
∞∑

n=−∞

〈φj+1,p, φj,n〉φj,n. (2.39)

The inner products can be further processed and, taking into account relation 2.34, we
obtain:

〈φj+1,p, φj,n〉 =

〈
1√
2
φ

(
t

2

)
, φ (t− n+ 2p)

〉
= h [n− 2p] . (2.40)

Hence

φj+1,p =
∞∑

n=−∞

h [n− 2p]φj,n. (2.41)

Using 2.29 we can write:

aj+1 [p] = 〈x, φj+1,p〉 =
∞∑

n=−∞

h [n− 2p] 〈x, φj,p〉 =
∞∑

n=−∞

h [n− 2p] aj [n] = aj [p] ∗ hd [2p] ,

(2.42)
where hd [n] is the reverse filter associated to h [n], hd [n] = h [−n].
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2.4. Implementation of DWT 15

From equation 2.42 we can observe that the approximation coefficients from one it-
eration can be computed from the approximation coefficients from the previous iteration
through low-pass filtering and subsampling with a factor of 2.

As previously discussed, orthonormal wavelets carry the details necessary to increase
the resolution of a signal approximation. Theorem 2.4.2 proves that one can construct
an orthonormal basis of Wj by scaling and translating a wavelet.

Theorem 2.4.2. (MALLAT, MEYER) Let φ be a scaling function and h the correspond-
ing conjugate mirror filter. Let ψ be the function whose Fourier transform is

Ψ (ω) =
1√
2
G
(ω

2

)
Φ
(ω

2

)
, (2.43)

with
G (ω) = e−jωH∗ (ω + π) . (2.44)

let us denote

ψj,n (t) =
1√
2j
ψ

(
t− 2jn

2j

)
.

For any scale 2j, {ψj,n}n∈Z is an orthonormal basis of Wj. For all scales, {ψj,n}(j,n)∈Z2

is an orthonormal basis of L2 (R).

The necessary and sufficient conditions imposed on G for designing an orthogonal
wavelet are:

|G (ω)|2 + |G (ω + π)|2 = 2, (2.45)

and
G (ω)H∗ (ω) +G (ω + π)H∗ (ω + π) = 0. (2.46)

From theorem 2.4.2 we can prove that G (ω) is the Fourier transform of:

g [n] =

〈
1√
2
ψ

(
t

2

)
, φ (t− n)

〉
, (2.47)

which are the decomposition coefficients of

1√
2
ψ

(
t

2

)
=

∞∑
n=−∞

g [n]φ (t− n) ,

and
g [n] = (−1)1−n h [1− n] . (2.48)

Because H is a low-pass filter we can state that G is a high-pass filter (see relation
2.44). Also, due to relation 2.45, G can be called conjugate filter.

Let us consider ψj+1,p ∈ Wj+1 ⊂ Vj. We can write:

ψj+1,p =
∞∑

n=−∞

〈ψj+1,p, φj,n〉φj,n. (2.49)
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16 CHAPTER 2. WAVELET TRANSFORMS

It can be proved that:

〈ψj+1,p, φj,n〉 =

〈
1√
2
ψ

(
t

2

)
, φ (t− n+ 2p)

〉
= g [n− 2p] , (2.50)

and, consequently,

ψj+1,p =
∞∑

n=−∞

g [n− 2p]φj,n. (2.51)

But, the detail coefficients from scale j + 1 can be computed with (see also 2.32):

dj+1 [p] = 〈x, ψj+1,n〉 . (2.52)

By replacing 2.51 in 2.52 and having in mind relation 2.29, we get:

dj+1 [p] =

〈
x,

∞∑
n=−∞

g [n− 2p]φj,n

〉
=

∞∑
n=−∞

g [n− 2p] 〈x, φj,n〉

=
∞∑

n=−∞

g [n− 2p] aj [n] = aj [p] ∗ gd [2p] . (2.53)

Analyzing 2.53 we can conclude that the detail coefficients from one scale can be
computed from the approximation coefficients from the previous scale by convolution
with the high-pass reverse filter gd, gd [n] = g [−n], followed by a subsampling with a
factor of 2.

To resume the previous results we present in figure 2.6, the decomposition scheme
corresponding to one-level decomposition.

Figure 2.6: One-level DWT decomposition scheme

If we consider level 0 as the starting level, namely x [n] = a0 [n], we obtain for a
three-level decomposition the ‘tree’ in figure 2.7.

Figure 2.7: DWT decomposition tree

The implementation presented above was first proposed by Stephane Mallat and is also
called ‘Mallat’s implementation’. Due to the downsamplers, the number of coefficients
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2.4. Implementation of DWT 17

from one scale is equal to the number of approximation coefficients from the previous
scale, (length (aj+1) + length (dj+1) = length (aj)). It is defined the ‘orthogonal wavelet
representation’ of x as all the wavelet coefficients at scales 1 < 2j < 2J plus the remaining
approximation at the largest scale 2J :[

{dj}1<j≤J , aJ

]
. (2.54)

It can be easily observed that the size of the orthogonal wavelet representation (2.54) is
equal to the size of the original signal, implying that this implementation of the Discrete
Wavelet Transform is non-redundant.

2.4.3 Perfect Reconstruction

In the reconstruction stage we want to synthesize the original signal from the coefficients
obtained in the decomposition stage. This transform is also known as the ‘Inverse Discrete
Wavelet Transform’ (IDWT).

Since Wj+1 is the orthogonal complement of Vj+1 in Vj, the union of the two bases
{ψj+1,n}n∈Z and {φj+1,n}n∈Z is an orthonormal basis of Vj. Consequently, any φj,p can
be decomposed in this basis:

φj,p =
∞∑

n=−∞

〈φj,p, φj+1,n〉φj+1,n +
∞∑

n=−∞

〈φj,p, ψj+1,n〉ψj+1,n. (2.55)

Inserting 2.40 and 2.50 in 2.55 yields:

φj,p =
∞∑

n=−∞

h [p− 2n]φj+1,n +
∞∑

n=−∞

g [p− 2n]ψj+1,n. (2.56)

Using 2.56 and the properties of the inner product, we can write the approximation
coefficients at level j, aj [n] as:

aj [p] = 〈x, φj,p〉 =

=
∞∑

n=−∞

h [p− 2n] 〈x, φj+1,n〉+
∞∑

n=−∞

g [p− 2n] 〈x, ψj+1,n〉

=
∞∑

n=−∞

h [p− 2n] aj+1 [n] +
∞∑

n=−∞

g [p− 2n] dj+1 [n]

= ăj+1 ∗ hr [p] + d̆j+1 ∗ gr [p] (2.57)

where, hr = h, gr = g, and with x̆ [n] we have denoted the signal:

x̆ [n] =

{
x [p] ,if n = 2p,
0 ,if n = 2p+ 1.

This reconstruction can be seen as an interpolation with a factor of 2, that inserts
zeros to expand aj+1 and dj+1, followed by a filtering of these signals.
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18 CHAPTER 2. WAVELET TRANSFORMS

In order to achieve perfect reconstruction, one can use orthogonal filters, that satisfy:

|H(ω)|2 + |G(ω)|2 = 2,

or biorthogonal filters, satisfying the condition Vetterli ([KV92]) gave in 2.4.3:

Theorem 2.4.3. (Vetterli) The filter bank performs an exact reconstruction for any input
signal if and only if

H∗ (ω + π)Hr (ω) +G∗ (ω + π)Gr (ω) = 0, (2.58)

and
H∗ (ω)Hr (ω) +G∗ (ω)Gr (ω) = 2. (2.59)

A one-level reconstruction scheme is presented in figure 2.8.

Figure 2.8: One-level DWT reconstruction scheme

A three-level reconstruction tree can be seen in figure 2.9, where we have considered
the approximation at level zero equal to the signal to be reconstructed.

Figure 2.9: Three-level DWT reconstruction scheme

2.5 Extensions of DWT

The DWT transform, to which we will refer to as ‘classical DWT’, presented in section
2.3.2, is the most commonly used as it is fast, non-redundant and assures the perfect
reconstruction. Despite all these properties, classical DWT might not be good enough
for some specific applications. In the following, we will present some transforms, derived
from DWT, that can be encountered in practical applications.

2.5.1 Two Dimensional DWT (2D DWT)

DWT is largely used for one-dimensional discrete signals. If we want apply the discrete
wavelet transform to two-dimensional signals (images, for instance), we need to use the
DWT’s extension to two dimensions, namely the 2D DWT.

BUPT



2.5. Extensions of DWT 19

At the base of the 2D DWT’s implementation relies the concept of separable mul-
tiresolutions and of two-dimensional wavelet bases, notions that we will define further.

Let {Vj}j∈Z be a multiresolution of L2 (R). A separable two-dimensional resolution
is composed of the tensor product spaces

V 2
j = Vj ⊗ Vj.

The space V 2
j is a set of finite energy functions x (t1, t2) that are linear expansions of

separable functions

x (t1, t2) =
∞∑

m=−∞

a [m] fm (t1) gm (t2) with fm, gm ∈ Vj.

If {Vj}j∈Z is a multiresolution approximation of L2 (R), then
{
V 2
j

}
j∈Z is a multiresolution

approximation of L2 (R2).
A separable wavelet orthonormal basis of L2 (R2) is constructed with separable prod-

ucts of a scaling function φ and a wavelet ψ, being associated to a one-dimensional mul-
tiresolution approximation {Vj}j∈Z . Let W

2
j be the detail space equal to the orthogonal

complement of the lower resolution approximation space V 2
j in V 2

j−1,

V 2
j−1 = V 2

j ⊕W 2
j

To construct a wavelet orthonormal basis of L2 (R2), the following theorem builds a
wavelet basis of each detail space W 2

j .

Theorem 2.5.1. Let φ be a scaling function and ψ be the corresponding wavelet, gener-
ating a wavelet orthonormal basis of L2 (R). We define three wavelets:

ψ1 (t1, t2) = φ (t1)ψ (t2) ,

ψ2 (t1, t2) = ψ (t1)φ (t2) ,

ψ3 (t1, t2) = ψ (t1)ψ (t2) . (2.60)

and denote for 1 ≤ k ≤ 3

ψkj,(n1,n2) (t1, t2) =
1

2j
ψk
(
t1 − 2jn1

2j
t2 − 2jn2

2j

)
.

The wavelet family {
ψ1
j,n, ψ

2
j,n, ψ

3
j,n

}
n∈Z2 ,

with n = (n1, n2) is an orthonormal basis of W 2
j and{

ψ1
j,n, ψ

2
j,n, ψ

3
j,n

}
(j,n)∈Z2

is an orthonormal basis of L2 (R2).
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20 CHAPTER 2. WAVELET TRANSFORMS

The orthonormality condition of the elements of W 2
0 (the orthogonal complement of

V 2
0 ) is: 〈

ψk0,0,0(t1, t2), ψ0,n1,n2(t1, t2)
〉

= δ[n1, n2] ⇔ Γψk [n1, n2] = δ[n1, n2].

The separable wavelet expressions (2.60) imply that, in frequency, we will have the
following relations:

Ψ1 (ω1, ω2) = Φ (ω1) Ψ (ω2) ,

Ψ2 (ω1, ω2) = Ψ (ω1) Φ (ω2) ,

Ψ3 (ω1, ω2) = Ψ (ω1) Ψ (ω2) . (2.61)

If we have images in mind, where lines represent the horizontal component and
columns represent the vertical component, by analyzing relation 2.61 we can affirm that
|Ψ1 (ω1, ω2)| is large at low horizontal frequencies ω1 and high vertical frequencies ω2,
|Ψ2 (ω1, ω2)| is large at high horizontal frequencies and low vertical frequencies, whereas
|Ψ3 (ω1, ω2)| is large at high horizontal and vertical frequencies.

The approximation and details coefficients can be computed with:

aj [n] =
〈
f, φ2

j,n

〉
and dkj [n] =

〈
f, ψkj,n

〉
for 1 ≤ k ≤ 3.

Let h [n] and g [n] be the conjugate mirror filters associated to the wavelet ψ. We
denote with fd [n] the mirror filter associated to f [n], fd [n] = f [−n].

The wavelet coefficients at the scale 2j+1 are calculated from the approximation co-
efficients at scale 2j, aj, with two-dimensional separable convolutions and subsamplings.
The decomposition formula are obtained by applying the one-dimensional convolution for-
mula 2.42 and, respectively, 2.53, to the separable two-dimensional wavelets ans scaling
functions:

aj+1 [n1, n2] = aj [n1, n2] ∗ hd [2n1]hd [2n2]

d1
j+1 [n1, n2] = aj [n1, n2] ∗ hd [2n1] gd [2n2]

d2
j+1 [n1, n2] = aj [n1, n2] ∗ gd [2n1]hd [2n2]

d3
j+1 [n1, n2] = aj [n1, n2] ∗ gd [2n1] gd [2n2] . (2.62)

The convolution equations form 2.62 are computed with only six groups of one-
dimensional convolutions. The rows of aj are first convolved with hd and gd and subsam-
pled by 2. Then, the columns of these two output images are convolved with hd and gd
and subsampled, resulting four subsampled images aj+1, d1

j+1, d2
j+1 and d3

j+1. Figure 2.10
illustrates one level 2D DWT decomposition.

Similar to classical DWT, 2D DWT is a non-redundant transform, the wavelet image
representation of x, at resolution J :[

aj,
{
d1
j , d

2
j , d

3
j

}
0<j≤J

]
having the same size as the original two-dimensional signal, x. In the coefficients image,
the coefficients’ repartition is presented in figure 2.11, where ‘LL’ (a) are the approxima-
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Figure 2.10: One-level 2D DWT decomposition scheme

Figure 2.11: 2D DWT coefficients’ image

tion coefficients, ‘LH’ (d1) the horizontal details, ‘HL’ (d2) the vertical details and ‘HH’
(d3) the diagonal details. A second order statistical analysis of 2D DWt is presented in
[NII+10].

An example of a wavelet 2D DWT two-level decomposition is presented in figure
2.12(b), having as input image the one presented in fig 2.12(a).

In what concerns the reconstruction part, the 2D DWT, same as the DWT, ensures
perfect reconstruction if the conditions given by theorem 2.4.3 are fulfilled. The recon-
struction formula for the approximation coefficients at level j, aj from the coarser scale
approximations aj+1 and the wavelet coefficients dkj+1, 1 ≤ k ≤ 3 is:

aj [n1, n2] = ǎj+1 [n1, n2] ∗ h [n1]h [n2] + ď1
j+1 [n1, n2] ∗ h [n1] g [n2] +

+ď2
j+1 [n1, n2] ∗ g [n1]h [n2] + ď3

j+1 [n1, n2] ∗ g [n1] g [n2] , (2.63)

where, with x̌ [n1, n2] we have denoted the image twice the size of x [n1, n2], obtained by
inserting a row of zeros and a column of zeros between pairs of consecutive rows and
columns.

The corresponding implementation scheme is presented in fig. 2.13
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(a) Original Image (b) 2-Level 2D DWT’s coefficients

Figure 2.12: Example of a 2D DWT decomposition

Figure 2.13: One-level 2D DWT reconstruction scheme

2.5.2 Wavelet Packet Transform

Different types of time-frequency structures are encountered in more complex signals
such as speech recordings and real images. This motivates the design of bases whose
time-frequency properties may be adapted. Wavelet bases are one particular family of
bases that represent piecewise smooth signals effectively. Other bases are constructed to
approximate different types of signals, such as highly oscillatory waveforms.

Wavelet packets were introduced by Coifman, Meyer and Wickerhauser [RC92] by
generalizing the link between multiresolution approximation and wavelets.

In section 2.5.2.1 we will introduce one-dimensional packets and we will define the
main notions that characterize the packets, while in section 2.5.2.2 we will briefly intro-
duce the two-dimensional wavelet packets.

2.5.2.1 One-Dimensional Wavelet Packet Transform (1D WPT)

In section 2.4.1 we have seen that a space Vj of a multiresolution approximation can
be decomposed in a lower resolution space Vj+1 plus a detail space Wj+1. This is done

BUPT



2.5. Extensions of DWT 23

by dividing the orthogonal basis {φj (t− 2jn)}n∈Z of Vj into two new orthogonal bases:
{φj+1 (t− 2j+1n)}n∈Z of Vj+1 and {ψj+1 (t− 2j+1n)}n∈Z of Wj+1. The decompositions
2.41 and 2.51 of φj+1 and ψj+1 in the basis {φj (t− 2jn)}n∈Z are specified by a pair of
conjugate mirror filters, h and g (see 2.48).

The following theorem generalizes this result to any space Uj that admits an orthog-
onal basis of functions translated by n2j, for n ∈ Z:

Theorem 2.5.2. (COIFMAN, MEYER, WICKERHAUSER) Let {θj (t− 2jn)}n∈Z be
an orthonormal basis of space Uj. Let h and g be a pair of conjugate mirror filters.
Define

θ0
j+1 (t) =

∞∑
n=−∞

h [n] θj
(
t− 2jn

)
and θ1

j+1 (t) =
∞∑

n=−∞

g [n] θj
(
t− 2jn

)
. (2.64)

The family {
θ0
j+1

(
t− 2j+1n

)
, θ1
j+1

(
t− 2j+1n

)}
n∈Z

is an orthonormal basis of Uj.

Theorem 2.5.2 proves that conjugate mirror filters transform an orthogonal basis
{θj (t− 2jn)}n∈Z in two orthogonal families:

{
θ0
j+1 (t− 2j+1n)

}
n∈Z and, respectively,{

θ1
j+1 (t− 2j+1n)

}
n∈Z . Let U

0
j+1 and U1

j+1 be the spaces generated by each of these fami-
lies, they are orthogonal and

U0
j+1 ⊕ U1

j+1 = Uj.

Computing the Fourier transform of 2.64 we obtain:

Θ0
j+1 (ω) = H

(
2jω
)

Θj (ω) and Θ1
j+1 (ω) = G

(
2jω
)

Θj (ω) . (2.65)

Since the transfer functions H (2jω) and G (2jω) have their energy concentrated in differ-
ent frequency intervals, this transform can be interpreted as a division of the frequency
support of θj.

Binary Wavelet Packet Tree

Instead of dividing only the approximation spaces Vj to construct the detail spaces Wj

and wavelet bases, theorem 2.5.2 proves that we can set Uj = Wj and divide these detail
spaces to derive new bases. The recursive splitting of vector spaces is represented in a
binary tree. If the signals are approximated at the scale 2L, to the root of the tree we
associate the approximation space VL. This space admits an orthogonal basis of scaling
functions

{
φL
(
t− 2Ln

)}
n∈Z , with φL (t) = 2−L/2φ

(
2−Lt

)
.

Any node of the binary tree is labeled by (j, p), where j − L ≥ 0 is the depth of the
node in the tree, and p is the number of nodes that are on its left at the same depth
j − L. Such a tree is presented in figure 2.14. To each node (j, p) we associate a space
W p
j , which admits an orthonormal basis

{
ψpj (t− 2jn)

}
n∈Z , by going down the tree. At

the root, we have W 0
L = VL and ψ0

L = φL. The two wavelet packet orthogonal bases at
the children nodes are defined by the splitting relations (see 2.64):

ψ2p
j+1 (t) =

∞∑
n=−∞

h [n]ψpj
(
t− 2jn

)
, (2.66)
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Figure 2.14: Binary tree of wavelet packet spaces

and

ψ2p+1
j+1 (t) =

∞∑
n=−∞

g [n]ψpj
(
t− 2jn

)
. (2.67)

Since
{
ψpj (t− 2jn)

}
n∈Z is orthonormal,

h [n] =
〈
ψ2p
j+1 (u) , ψpj

(
u− 2jn

)〉
, g [n] =

〈
ψ2p+1
j+1 (u) , ψpj

(
u− 2jn

)〉
. (2.68)

Theorem 2.5.2 proves that
{
ψ2p
j+1 (t− 2j+1n)

}
n∈Z and

{
ψ2p+1
j+1 (t− 2j+1n)

}
n∈Z are or-

thonormal bases of two orthogonal spaces W 2p
j+1 and W 2p+1

j+1 such that

W 2p
j+1 ⊕W

2p+1
j+1 = W p

j . (2.69)

This recursive splitting (2.69) defines a binary tree of wavelet packet spaces where each
parent node is divided in two orthogonal subspaces.

Admissible Tree

It is called ‘admissible tree’, any binary tree where each node has either zero or two
children, as shown in figure 2.15.

Figure 2.15: Example of admissible wavelet packet binary tree
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Let {ji, pi}1≤i≤I be the leaves of an admissible binary tree. By applying the recur-
sive splitting 2.69 along the branches of an admissible tree we verify that the spaces{
W pi
ji

}
1≤i≤I are mutually orthogonal and add up to W 0

L:

W 0
L = ⊕Ii=1W

pi
ji
.

The union of the corresponding wavelet packet bases
{
ψpiji (t− 2jin)

}
n∈Z,1≤i≤I thus defines

an orthogonal basis of W 0
L = VL.

Number of Wavelet Packet Bases

The number of different wavelet packet orthogonal bases of VL is equal to the number of
different admissible binary trees. It can be proved that there are more than 22j−1 different
wavelet packet ortonormal bases included in a full wavelet packet binary tree of depth j.

Time-Frequency Localization

Time support If the conjugate mirror filters h and g have a finite impulse response
of size K, it can be proved ([Mal99]) that φ has a support of size K − 1, so ψ0

L = φL
has a support of (K − 1) 2L. Due to the decomposition relations 2.66 and 2.67, one can
show that the size of the support of ψpj is (K − 1) 2j, where j specifies the scale 2j of the
support.

Frequency localization The Fourier transform of 2.66 and 2.67 proves that the
spectra of wavelet packet children are related to their parent’s spectrum by:

Ψ2p
j+1 (ω) = H

(
2jω
)

Ψp
j (ω) , Ψ2p+1

j+1 (ω) = G
(
2jω
)

Ψp
j (ω) .

The energy of Ψp
j is mostly concentrated over a frequency band and the two filters H (2jω)

and G (2jω) select the lower and, respectively, the higher frequency component within
this band.

Best bases

Particular wavelet bases are the ‘best bases’. Application of orthogonal bases often rely on
their ability to efficiently approximate signals with only a few non-zero vectors. Choosing
a wavelet packet basis that concentrates the signal energy over a few coefficients also
reveals its time-frequency structures. The best basis algorithm finds a set of wavelet
bases that provide the most desirable representation of the data relative to a particular
cost function, chosen to best fit the application the wavelet packet decomposition is used
for.

Wavelet Packet Filter Banks

Wavelet packet coefficients are computed with a filter bank algorithm that generalizes
the fast discrete wavelet transform. Let us take the signal to be decomposed x [n] equal
to d0

L [n].
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At the decomposition we will have:

d2p
j+1 [k] = dpj ∗ hd [2k] and d2p+1

j+1 [k] = dpj ∗ gd [2k] . (2.70)

The reconstruction formula is:

dpj [k] = ď2p
j+1 ∗ h [k] + ď2p+1

j+1 ∗ g [k] . (2.71)

We have denoted with xd [n] = x [−n] and by x̌ the signal obtained by inserting a zero
between each two consecutive sample of x.

From 2.70 we observe that the coefficients of the wavelet packet children d2p
j+1 and

d2p+1
j+1 are obtained by subsampling the convolutions of dpj with hd and gd. Iterating these

equations along the branches of a wavelet packet tree computes all wavelet coefficients,
as illustrated by fig. 2.16. From the wavelet packet coefficients at the leaves {ji, pi}1≤i≤I

Figure 2.16: One-dimensional Wavelet Packet Decomposition

of an admissible tree, we recover x [n] = d0
L [n] to the top of the tree by computing 2.71

for each node inside the tree as illustrated in 2.17.

Figure 2.17: One-dimensional Wavelet Packet Reconstruction

2.5.2.2 Two-Dimensional Wavelet Packet Transform (2D WPT)

As for the two-dimensional discrete wavelet transform, the concept of separable wavelet
bases, or two-dimensional wavelet packet bases in this case, was used when the two-
dimensional wavelet packets were introduced. There can be constructed wavelet packet
bases of L2 (R2) whose elements are separable products of wavelet packets that can be
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written ψpj (x1 − 2jn1)ψqj (x2 − 2jn2) having the same scale along x1 and x2. These sepa-
rable wavelet packet bases are associated to quad-trees (the generalization to binary trees
in the two-dimensional case), and divide the two-dimensional Fourier plane (ω1, ω2) into
square regions of varying sizes.

If images are approximated at the scale 2L, to the root of the quad-tree we associate
the approximation space V 2

L = VL ⊗ VL ⊂ L2 (R2). The two-dimensional wavelet packet
quad-tree is composed of separable wavelet packet spaces. Each node of this quad-tree
is labeled {j, p, q}, where 2j represents the scale and the two integers 0 ≤ p < 2j−L and
0 ≤ q < 2j−L correspond to a separable space:

W p,q
j = W p

j ⊗W
q
j (2.72)

that can be written as the direct sum of the four orthogonal subspaces corresponding to
the four children nodes in the quad-tree:

W p,q
j = W 2p,2q

j+1 ⊕W
2p+1,2q
j+1 ⊕W 2p,2q+1

j+1 ⊕W 2p+1,2q+1
j+1 . (2.73)

An example of a quad-tree is presented in figure 2.18

Figure 2.18: Example of a wavelet packet quad-tree

The filter-bank implementation of the 2D WPT is straightforward, the decomposition
coefficients being computed by iterating equation 2.74 along the branches of the quad-
tree.

d2p,2q
j+1 [n1, n2] = dp,qj [n1, n2] ∗ hd [n1]hd [n2]

d2p+1,2q
j+1 [n1, n2] = dp,qj [n1, n2] ∗ gd [n1]hd [n2]

d2p,2q+1
j+1 [n1, n2] = dp,qj [n1, n2] ∗ hd [n1] gd [n2]

d2p+1,2q+1
j+1 [n1, n2] = dp,qj [n1, n2] ∗ gd [n1] gd [n2] (2.74)

The calculations are performed with separable convolutions along the rows and columns
of the image, as illustrated in figure 2.19.

The reconstruction relation is:

dp,qj [n1, n2] = ď2p,2q
j+1 [n1, n2] ∗ h [n1]h [n2] + ď2p+1,2q

j+1 [n1, n2] ∗ g [n1]h [n2] +

+ď2p,2q+1
j+1 [n1, n2] ∗ h [n1] g [n2] + ď2p+1,2q+1

j+1 [n1, n2] ∗ g [n1] g [n2]

(2.75)

The original image x [n1, n2] = d0,0
L is reconstructed from the wavelet packet coeffi-

cients stored at the leaves of any admissible quad-tree, by repeating the partial reconstruc-
tion 2.75 in the inside nodes of the quad-tree. The reconstruction scheme is presented in
figure 2.20.

BUPT



28 CHAPTER 2. WAVELET TRANSFORMS

Figure 2.19: One Level 2D WPT Decomposition Scheme

Figure 2.20: One Level 2D WPT Reconstruction Scheme

2.5.3 Undecimated Discrete Wavelet Transform (UDWT)

A particular wavelet transform is the Undecimated Wavelet Transform (UWT), also
known as the ‘Stationary Wavelet Transform’ and can be implemented using the ‘Al-
gorithme à Trous ’. The Undecimated Discrete Wavelet Transform (UDWT) refers to the
discrete implementation of this transform.

The ‘Algorithme à Trous’, first introduced by Holschneider et al. [HKMMT89] in
1989 for music synthesis applications, is similar to a nonorthonormal multiresolution
algorithm for which the discrete wavelet transform is exact.

The dyadic wavelet decomposition coefficients at level j > 0 of a continuous-time
signal x (t) are:

aj [n] = 〈x (t) , φj,n (t)〉 (2.76)

and
dj [n] = 〈x (t) , ψj,n (t)〉 (2.77)

For any filter f it is denoted by fj the filter obtained by inserting 2j−1 zeros between
each sample of f [n], this zero-insertion leading to holes (‘trous’ in French) in the filter.
The Fourier transform of fj [n] is F (2jω), so that if f is of finite bandwidth, fj has a
bandwidth 2j times narrower. Let fdj [n] = fj [−n].

The filter-bank decomposition formula of the UDWT, considering the original signal
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x [n] = a0 [n], are presented in eq. 2.78:

aj+1 [n] = aj [n] ∗ hdj [n] ,

dj+1 [n] = aj [n] ∗ gdj [n] , (2.78)

whereas the reconstruction will be given by eq. 2.79:

aj [n] =
1

2

(
aj+1 [n] ∗ hrj [n] + dj+1 [n] ∗ hrj [n]

)
, (2.79)

where hr and gr satisfy the conditions given in theorem 2.4.3.
The decomposition implementation scheme is presented in fig. 2.21, while the relation

between the filters from one level and those from the previous one is illustrated in fig.
2.22.

Figure 2.21: Three-Level UDWT Decomposition Scheme

Figure 2.22: Relation between the filters corresponding to two consecutive levels of
UDWT decomposition

Due to the absence of downsamplers in the UDWT’s implementation, each coefficient
sequence from any level of decomposition has the same length as the original, in other
words, if the original signal has N samples, the UDWT L-level representation{

aL [n] , dj [n]0<j≤L

}
,

is of size N · (L+ 1), making from the UDWT a highly redundant transform.
In the reconstruction stage we will have the implementation scheme in figure 2.23, the

Figure 2.23: Three-Level UDWT Reconstruction Scheme

relation between the filters in this case being presented in fig. 2.24.
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Figure 2.24: Relation between the filters corresponding to two consecutive levels of
UDWT reconstruction

Two-Dimensional UDWT

In what concerns the images’ undecimated wavelet decomposition and reconstruction, the
separable wavelet bases are, again, the starting point for the filter-bank implementations,
presented in figure 2.25 and figure 2.26.

Figure 2.25: One Level 2D UDWT Decomposition Scheme

Figure 2.26: One Level 2D UDWT Reconstruction Scheme

2.6 Applications of Wavelet Transforms
Wavelet Transforms are adopted for a vast number of applications, often replacing con-
ventional Fourier Transform.

Due to DWT’s lack of redundancy and to the property to concentrate important data
in a small number of coefficients (also known as ‘sparsity’), it is very appropriate for
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signal and image compression. Compared to techniques previously used in compression,
such as those using the Discrete Cosine Transform, wavelet-based coding [VK95] provides
substantial improvements in picture quality at higher compression rates. One example of
image compression is JPEG 2000, which uses biorthogonal wavelets.

Another use is that of denoising data based on wavelet coefficients filtering [DJ94]. By
adaptively thresholding the wavelet coefficients that correspond to undesired frequency
components smoothing and/or denoising operations can be performed.

Besides compression and denoising, we can also use wavelets in image watermarking
([Naf08]).

Apart from signal and image processing, wavelet transforms are starting to be used
in communication applications where traditional FFT OFDM systems are loosing field
in favor of newer, more performant, Wavelet OFDM systems ([Olt09]).

2.7 Limitations of Wavelet Transforms

The wavelet transform comes in many forms. The most common of them, the Discrete
Wavelet Transform, provides the most compact representation, but has several limita-
tions. We will further discuss only about two of them: shift-sensitivity and poor direc-
tional selectivity [Kin01].

2.7.1 Shift Sensitivity

Shift sensitivity, the opposite of ‘translation invariance’, implies that an input signal
change (or translation) causes an unpredictable change in the output coefficients. In
other words, small shifts in the input signal can cause major variations in the distribution
of energy between DWT coefficients at different scales [Kin01]. This is an undesirable
property, making DWT not suited for some applications (e.g. pattern recognition).

Continuous Wavelet Transform and Short-Time Fourier Transform provide shift in-
variant representations, while the uniform sampling of the translation parameter destroys
this translation invariance [Mal99]. The shift-sensitivity of the DWT is a consequence of
the aliasing introduced by the down-samplers followed by up-samplers from the DWT’s
filter-bank implementation [Kin01].

In order to illustrate the shift-sensitivity of the DWT, we have taken an input signal
consisting of 16 different step-functions, each at one-sample delay from the others (2.27).
We have pursued with a 3-level decomposition, using as mother wavelet a function from
the Daubechies family, having 5 vanishing moments, and have taken the detail coefficients
from the three levels and the approximation coefficients from the 3rd level and plotted
them. In figure 2.27(a) we have used classical DWT, while in figure 2.27(b) we have used
the UDWT. By analyzing the two figures we can observe that the DWT is far from being
shift-invariant, whereas UDWT reaches translation invariance with the cost of higher
redundancy.

In the following chapter we will discuss this aspect and other methods to improve a
transform’s shift sensitivity with a lower redundancy cost.

BUPT



32 CHAPTER 2. WAVELET TRANSFORMS

(a) DWT (b) UDWT

Figure 2.27: Shift-sensitivity

2.7.2 Directional selectivity

In section 2.5.1 we have introduced the two-dimensional Discrete Wavelet Transform and
we have seen that separable filtering along the rows and columns of an image produces
four images at each level. The LH and HL bandpass subimages can select mainly hor-
izontal or vertical edges respectively, but the HH subimage contains components from
diagonal features of either orientation. This means that the separable real DWT has
‘poor directional selectivity’. This is illustrated in fig. 2.28, figure generated by prof.
Selesnick by applying the inverse 2D DWT to an image of coefficients, where each type of
coefficients were considered 2D unit pulses. From left to right we can observe the vertical
details (HL), the horizontal details (LH) and the diagonal details (HH).

Prof. Kingsbury, in [Kin99] explains this limitation by the fact that real highpass row
filters select both positive and negative horizontal high frequencies and, consequently,
the combined HH filter must have passbands in all four quadrants of the 2-D frequency
plane. On the other hand, a directionally selective filter for diagonal features with positive
gradient must have bandpass filters only in quadrants 2 and 4 of the frequency plane, while
a filter for diagonals with negative gradient must have passbands only in quadrants 1 and
3. The poor directional properties of real separable filters make it difficult to generate
steerable or directionally selective algorithms, based on the separable real DWT.

The two-dimensional Wavelet Packet Transform manages to have better directional
selectivity due to the different bandwidth filters have but, as it is implemented with real
filters, it still can not distinguish between diagonal directions.
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Figure 2.28: DWT’s Directional selectivity

2.8 Summary
Wavelet analysis is a powerful tool in signal and image processing, and due to its time-
frequency localization it gained over the Fourier transform, being preferred in many
applications from signal and image compression to image denoising and even commu-
nications. Its most common form is the Discrete Wavelet Transform (2.3.2), being the
most compact as well. Due to its filter-bank implementation it offers a high flexibility in
implementation, offering the possibility of using a wide number of wavelet families.

Besides all the benefits of this transform, it has also a series of limitations such as its
shift-sensitivity and its poor directional selectivity. These limitations can be somewhat
overcome by using some of DWT’s extensions, such as the UDWT which is translation
invariant or the Discrete Wavelet Packet Transform, that offers a better directional se-
lectivity. Another way of overcoming these limitations is given by the use of complex
mother wavelets, or complex wavelet transforms. We will discuss in detail about this
type of transforms in the following chapter.
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Chapter 3

Complex Wavelet Transforms (CWT)

3.1 Introduction

As discussed in the previous chapter, multiscale transforms are powerful tools for signal
and image processing. One-dimensional wavelet transform, which acts as a multiresolu-
tion version of an Nth-order derivative operator, where N is the number of vanishing
moments of the wavelet ([Mal99]), is a prominent example in this direction. Its extension
to multiple dimensions, and to 2D, in particular, is typically achieved by forming tensor-
product basis functions (see 2D DWT). However, it was observed that such separable
wavelets are not well matched to the singularities occurring in images, such as lines and
edges which can be arbitrarily oriented and even curved.

The Complex Wavelet Transforms (CWT) were introduced in the attempt to solve
this problem and also to overcome the limitations of the classical DWT (see Limitations
of DWT).

In this chapter I will present the early work performed in this field (section 3.2)
and I will mention also some of the recent developments (section 3.3). I will continue
with some examples of CWTs, including the Dual-tree based CWT (DT CWT) and the
Hyperanalytical Wavelet Transform (HWT), the latter representing my contribution to
this field. A presentation of the advantages and the applications of Complex Wavelet
Transforms will conclude this chapter.

3.2 Earlier Work

A review of the work in the domain of complex wavelets can be found in [VU08], [Shu03]
and [SBK05].

Over more than twenty years ago, Grossman and Morlet [GM84] developed the Con-
tinuous Wavelet Transform (CoWT) [Mal99], using complex-valued mother wavelets. The
Morlet’s mother wavelet has the expression:

ψM (τ) =
cM
4
√
π

(
ejω0τ − e−

ω2
0
2

)
· e−

τ2

2 (3.1)

35
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where the normalization constant is:

cM =
1√

1 + e−ω
2
0 − 2e−

3
4
ω2

0

.

Generally ω0 ≥ 5 to assure a sufficient temporal localization. Initial analysis based on
wavelet decompositions was implemented using such mother wavelets. Both magnitude
and phase descriptions of non-stationary signals were determined, and an early example
of analysis includes wavelet ridge methods proposed by Delprat et al. [DEG+92].

Lawton [Law93] gives a method for constructing complex valued linear phase FIR con-
jugate quadrature filters and the associated wavelet bases. He achieves this by replacing
certain zeros of a real valued FIR conjugate filter by their reciprocal conjugates.

Lina and Gagnon [LG95], [GLG] propose the use of some complex symmetric Daube-
chies wavelets that provide a natural way to calculate zero-crossings because of a hidden
‘Laplacian operator’, in the imaginary part of the scaling function. They propose the
use of such wavelets in the context of a multiscale sharpening enhancement algorithm.
In [LM95] are presented other complex mother wavelets that can be used to implement
complex DWT. A possible implementation of a complex wavelet transform is the one
presented by Kingsbury in [Kin99] (fig. 3.1). In this figure are presented four levels of

Figure 3.1: Complex wavelet tree

the complex wavelet tree for a 1-D input signal x. The real and imaginary parts (r and
j) of the inputs and outputs are shown separately. Where there is only one input to a
block, it is a real signal.

The extension of complex wavelets to 2-D is achieved by separable filtering along rows
and then columns. In fig. 3.2 are presented two levels of the complex wavelet tree for a
2-D input image x, giving six directional bands at each level (the directions are shown
for level 1). Components of 4-element ‘complex’ vectors are labeled r, j1, j2 and j1j2.

However, subsequently, for many years interest focused on the Discrete Wavelet Trans-
form (DWT) and signal estimation. As seen in section 2.7, DWT has a number of limi-
tations. If we take a closer look to the Fourier Transform (sec. 2.2.1), we will see that it
does not suffer from the same problems. First, the magnitude of the Fourier transform is
perfectly shift invariant, with a simple linear phase offset encoding the shift and secondly,
the sinusoids of the M-D Fourier basis are highly directional plane waves. This difference
in behavior between the DWT and the FT comes from the fact that, unlike the DWT,
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Figure 3.2: 2-D Complex wavelet tree

which is based on real-valued oscillating wavelets, the FT is based on complex-valued
oscillating sinusoids:

ejΩt = cos (Ωt) + jsin (Ωt)

with j =
√
−1. The oscillating cosine and sine components (the real and imaginary

parts, respectively) form a Hilbert transform pair; i.e., they are 90 ◦ out of phase with
each other. Together they constitute an analytic signal ejΩt that is supported on only
one half of the frequency axis (Ω > 0).

Mallat, in his book [Mal99], has a section dedicated to analytic wavelets and analytic
wavelet transform.

Analytic Signal and Analytic Wavelet Transform

We can associate an analytic part fa (t) to every real signal f (t) with:

fa (t) = f (t) + jH {f (t)} (3.2)

where, we have denoted with H {f (t)} the Hilbert transform of the signal f (t).
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A possible definition of the analytic signal can be done in relation to its spectrum.
A function fa ∈ L2 (R) is said to be analytic if its Fourier transform is zero for negative
frequencies:

Fa (ω) = 0 if ω < 0. (3.3)

An analytic function is necessary complex but it is entirely characterized by its real
part:

Fa (ω) =

{
2F (ω) if ω ≥ 0
0 if ω < 0

(3.4)

When talking about discrete-time signals, the analytic part fa [n] of a discrete signal
f [n] of size N is obtained by setting to zero the negative frequency components of its
discrete Fourier transform. The spectrum’s values at k = 0 and k = N/2 must be
carefully adjusted so that Real {fa} = f :

Fa [k] =


F [k] if k = 0, N/2,
2F [k] if 0 < k < N/2,
0 if N/2 < k < N

(3.5)

fa [n] is obtained through the computation of the inverse discrete Fourier transform.
An analytic wavelet transform is equivalent to a continuous wavelet transform (eq.

2.11) computed with an analytic wavelet, ψ:

Wf (u, s) = 〈f, ψu,s〉 =

∫ ∞
−∞

f (t) · 1√
s
ψ∗
(
t− u
s

)
dt. (3.6)

An analytic wavelet transform of f depends only on its analytic part, fa:

Wf (u, s) =
1

2
Wfa (u, s) .

An analytic wavelet can be constructed with a frequency modulation of a real and
symmetric window g. The Fourier transform of

ψ (t) = g (t) ejηt (3.7)

is
Ψ (ω) = G (ω − η) .

If G (ω) = 0 for |ω| > η, then Ψ (ω) = 0 for ω < 0, resulting that ψ (t) is analytic.
A Gabor wavelet is a particular type of such an analytic wavelet (presented in eq.

3.7), obtained with a Gaussian window:

g (t) =
1

(σ2π)1/4
e−

t2

2σ2 .

The Fourier transform of this window is G (ω) = (4πσ2)
−1/4

exp (−σ2ω2/2). If σ2η2 >> 1,
then G (ω) ≈ 0 for |ω| > η. Such Gabor wavelets are thus considered to be approximately
analytic.
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Auscher, in [Aus92] proved that compact discrete wavelet filters cannot be exactly
analytic.

In [Hig84], the author provides a way to build new complete orthonormal sets of the
Hilbert space of finite-energy band-limited functions with a bandwidth of π, named the
Paley-Wiener (PW) space. He proved the following proposition:

Proposition 3.2.1. Let χ denote the characteristic function of the interval [−π, π] and
let µ (x) be real valued and piecewise continuous there. Then, the integer translations of
the inverse Fourier transform of χejµ constitute a complete orthonormal set in PW.

Following this proposition, some new orthonormal complete sets of integer translations
of a generating function can be constructed in the PW space. The scaling function and the
mother wavelets of the standard multiresolution analysis of PW generate through integer
shifts such complete orthonormal sets. Proposition 3.2.1 was generalized in [Isa93] to
give a new mechanism of mother wavelet construction. In this reference, the following
two propositions were formulated.

Proposition 3.2.2. If Am = {αm,n (t)}n∈Z is a complete orthonormal set generating a

Hilbert space Hm, then the set Âm =
{(

1√
2π

)
α̂m,n (ω)

}
n∈Z

is a complete orthonormal set

of Ĥm and vice versa.

We have denoted with α̂, the FT of α.

Proposition 3.2.3. If µ (ω) is a real-valued and piecewise-continuous function and Âm ={(
1√
2π

)
α̂m,n (ω)

}
n∈Z

is a complete orthonormal set of Ĥm, then

µÂm =

{(
1√
2π

)
ejµ(ω)α̂m,n (ω)

}
n∈Z

is another complete orthonormal set of the same space.

These two propositions can be used to build new mother wavelets if we identify the
subspaces of an orthogonal decomposition of the Hilbert space L2 (R), Wm, m ∈ Z, with
the Hilbert spaces Ĥm. With respect to this, the function µ (ω) must satisfy the following
constraint: µ (ω) = µ (2mω), ∀m ∈ Z. An example of a function that satisfies this
constraint is µ (ω) = π

2
(sgnω + 1). In this case, ejµ(ω) = sgn (ω). Therefore, the function

generating the set µAm (which corresponds to the new mother wavelets) is obtained by
applying the Hilbert transform to the function generating the set Am (which corresponds
to the initial mother wavelets) multiplied by j. Consequently, if the function ψ is a mother
wavelet, then the functions jH {ψ} and ψa = ψ+jH {ψ} are also mother wavelets. Using
the analytical mother wavelets we can implement an analytical DWT (ADWT). The pair
(ψ, jH {ψ}) defines a complex DWT (CDWT), presented in fig. 3.3.

3.3 Recent Developments
The revival or interest in complex wavelets may be linked to the development of complex-
valued discrete wavelet filters [LM95] and the clever dual filter bank [Kin99]. The complex
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Figure 3.3: Implementation of an analytical DWT

wavelet transform has been shown to provide a powerful tool in signal and image analysis
[SBK05], where most of the properties of the transform follow from the analyticity of the
wavelet function. In [OM06] were derived large classes of wavelets generalizing the concept
of 1-D local complex-valued analytic decomposition to 2-D vector-valued hyperanalytic
decomposition.

Recent research in the development of CWTs follows, mainly, two directions. One di-
rection regards the redundant transforms, meaning that if the input signal has N samples,
then we will obtain M output coefficients, with M > N . From this class of transforms
the most important are those relying on the dual-tree implementation. In this case, the
original signal is passed through 2 real DWT filter-bank trees, the resulting coefficients
being complex, having for real part the output values of the first tree and for imaginary
part the output values of the second tree. From this type of transform we can mention
Kingsbury’s Dual-Tree Complex Wavelet Transform (DT CWT) [Kin99], [Kin01] and
another, quite similar, named as Selesnick’s DT CWT [Sel04].

Another class of transforms includes the non-redundant ones, meaning that if the
input signal has N samples, the transformation will provide us N output coefficients.
This non-redundancy is achieved by mapping the signal into a complex-function space.
An example of such a transform is given in [FvSB03] and will be further presented in this
chapter.

3.4 Examples of Complex Wavelet Transforms

In the following I will present in detail some complex wavelet transforms, starting with
the DT CWT, continuing with projection-based complex wavelet transform and finishing
with my own contribution to this field, namely the Hyperanalytical Wavelet Transform.

3.4.1 Dual-Tree based Complex Wavelet Transforms

For many applications it is important that the transform be perfectly invertible. Some
authors, including Lawton [Law93], have experimented with complex factorization of
the standard Daubechies polynomials and obtained perfect reconstruction (PR) complex
filters, but these do not give filters with good frequency selectivity properties. DT CWT
comes with a different approach in order to overcome this drawback.
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3.4.1.1 One-dimensional DT CWT

In 1998, Kingsbury first introduced the DT CWT [Kin98], that relies on the observation
that approximate shift invariance can be achieved with a real DWT by doubling the
sampling rate at each level of the tree. For this to work, the samples must be evenly
spaced. The sampling rates can be doubled by eliminating the down-sampling by 2 after
the level 1 filters. This is equivalent to having two parallel fully-decimated trees a and
b, like in fig. 3.4, provided that the delays of H0b and H1b are one sample offset from
H0a and H1a. Kingsbury found that, to get uniform intervals between samples from the
two trees below level 1, the filters in one tree must provide delays that are half a sample
different (at each filter input rate) from those in the other tree. This statement is also
supported by Selesnick who, in [Sel01], gives an alternative derivation and explanation of
the same result.

The implementation of such a transform is done using two mother wavelets, one for
each tree, one of them being (approximately) the Hilbert transform of the other. On
one hand, the dual-tree DWT can be viewed as an overcomplete wavelet transform with
a redundancy factor of two. On the other hand, the dual-tree DWT is also a complex
DWT, where the first and second DWTs represent the real and imaginary parts of a single
complex DWT.

The first implementation proposed had the constraint of linear phase, and to ac-
complish this, the implementation required odd-length filters in one tree and even-length
filters in the other. Greater symmetry between the two trees occurs if each tree uses odd
and even filters alternately from level to level, but this is not essential.

In another implementation proposed in [Kin01], the condition of linear phase is
dropped, resulting the so-called Q-shift dual tree. In this case all the filters beyond
level 1 are even length and are designed to have a group delay of approximately 1

4
sample

(+q). The required delay difference of 1
2
sample (2q) is then achieved by using the time

reverse of the tree a filters in tree b so that the delay then becomes 3q. Furthermore,
because the filter coefficients are no longer symmetric, it is now possible to design the
perfect-reconstruction filter sets to be orthonormal, resulting that all filters beyond level
1 are derived from the same orthonormal prototype set. The design of such Q-shift filters
and of odd/even filters is quite complicated; it can be done only through approximations
and is largely presented in [Kin01] and, respectively [Kin98].

In order to have a visual aspect of the DT CWT, we present in figure 3.4, the Q-shift
version of the DT CWT as it is given in [Kin01].

Shift Invariance

In order to examine the shift invariance properties of a transform, Kingsbury [Kin01]
proposes a method based on the retention of just one type (details or approximations),
from just one level of the decomposition tree. For example one might choose to retain only
the level-3 detail coefficients and set all the others to zero. If the signal y reconstructed
from just these coefficients, is free of aliasing then it can be said that the transform is
shift invariant at that level.

The degree of shift invariance of two implementation schemes (one for the DT CWT
and the other for the classical DWT) is presented in fig. 3.5.
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Figure 3.4: The Q-shift version of the DT CWT, giving real and imaginary parts of
complex coefficients from tree a and tree b respectively.

In each case the input is a unit step, shifted to 16 adjacent sampling instants in
turn. Each unit step is passed through the forward and inverse version of the chosen
wavelet transform. The figure shows the input steps and the components of the inverse
transform output signal, reconstructed from the wavelet coefficients at each of levels 1 to
4 in turn and from the scaling function coefficients at level 4. Summing these components
reconstructs the input steps perfectly. Good shift invariance is shown when all the 16
output components from a given level have the same shape, independent of shift. It
is easily observed that the DT CWT has outstanding performances in this direction
compared to the severe shift dependence of the normal DWT.

3.4.1.2 Two-dimensional DT CWT

Extension of the DT CWT to two dimensions is achieved by separable filtering along
columns and then rows. However, if column and row filters both suppress negative fre-
quencies, then only the first quadrant of the 2-D signal spectrum is retained. It is well
known, from 2-D Fourier transform theory, that two adjacent quadrants of the spectrum
are required to represent fully a real 2-D signal. Therefore in the DT CWT it is also
filtered with complex conjugates of the row (or column) filters in order to retain a second
(or fourth) quadrant of the spectrum. This then gives 4:1 redundancy in the transformed
2-D signal.

A schematic representation of the 2D DT CWT based on the even-odd implementation
was given by Jalobeanu et. al. [JBFZ03]. At level m = 1, the 2D DT CWT is simply
a non-decimated wavelet transform (using a pair of odd-length filters ho and go) whose
coefficients are re-ordered into 4 interleaved images by using their parity. This defines
the 4 trees T = A, B, C and D. If a and d denote approximation and detail coefficients
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Figure 3.5: Detail and approximation components at levels 1 to 4 of 16 shifted step
responses of the DT CWT (a) and real DWT (b)

(a0 = x, the input image), we have:

Tree T A B C D
(a1
T )x,y (a0 ∗ hoho)2x,2y (a0 ∗ hoho)2x,2y+1 (a0 ∗ hoho)2x+1,2y (a0 ∗ hoho)2x+1,2y+1(

d1,1
T

)
x,y

(a0 ∗ goho)2x,2y (a0 ∗ goho)2x,2y+1 (a0 ∗ goho)2x+1,2y (a0 ∗ goho)2x+1,2y+1(
d1,2
T

)
x,y

(a0 ∗ hogo)2x,2y (a0 ∗ hogo)2x,2y+1 (a0 ∗ hogo)2x+1,2y (a0 ∗ hogo)2x+1,2y+1(
d1,3
T

)
x,y

(a0 ∗ gogo)2x,2y (a0 ∗ gogo)2x,2y+1 (a0 ∗ gogo)2x+1,2y (a0 ∗ gogo)2x+1,2y+1

For all other scales (m > 1), the transform involves an additional pair of filters,
even-length, denoted he and ge. There must be a half-sample shift between the trees to
achieve the approximate shift invariance. Therefore, different length filters are used for
each tree, i.e. it is necessary to combine he, ge with ho, go, the 4 possible combinations
corresponding to the 4 trees:

Tree T A B C D(
am+1
T

)
x,y

(amA ∗ hehe)2x,2y (amB ∗ heho)2x,2y+1 (amC ∗ hohe)2x+1,2y (amD ∗ hoho)2x+1,2y+1(
dm+1,1
T

)
x,y

(amA ∗ gehe)2x,2y (amB ∗ geho)2x,2y+1 (amC ∗ gohe)2x+1,2y (amD ∗ goho)2x+1,2y+1(
dm+1,2
T

)
x,y

(amA ∗ hege)2x,2y (amB ∗ hego)2x,2y+1 (amC ∗ hoge)2x+1,2y (amD ∗ hogo)2x+1,2y+1(
dm+1,3
T

)
x,y

(amA ∗ gege)2x,2y (amB ∗ gego)2x,2y+1 (amC ∗ goge)2x+1,2y (amD ∗ gogo)2x+1,2y+1

BUPT



44 CHAPTER 3. COMPLEX WAVELET TRANSFORMS (CWT)

The trees are processed separately, as in a real transform. The combination of odd and
even filters depends on each tree. The transform is achieved by a fast Filter Bank (FB)
technique, of complexity O (N). The reconstruction is done in each tree independently, by
using the dual filters. To obtain a0, the results of the 4 trees are averaged. This ensures
the symmetry between them, thus enabling the desired shift invariance. The complex
coefficients are obtained by combining the different trees together. If the subbands are
indexed by k, the detail subbands dm,k of the parallel trees A, B, C and D are combined
to form complex subbands zm,k+ and zm,k− , by the linear transform:

zm,k+ =
(
dm,kA − dm,kD

)
+ j

(
dm,kB + dm,kC

)
zm,k− =

(
dm,kA + dm,kD

)
+ j

(
dm,kB − dm,kC

)
(3.8)

Shift Invariance

The main property of the 2D DT CWT is the quasi shift invariance, as shown by Kings-
bury [Kin01] i.e. the magnitudes |z±| are nearly invariant to shifts of the input image.
The shift invariance is perfect at level 1, and approximately achieved beyond this level:
the transform algorithm is designed to optimize this property.

In fig. 3.5, the shift-dependence properties of the DT CWT were compared with the
DWT for one-dimensional step functions. A similar comparison in the 2-D is presented
in fig. 3.7. The input is now an image of a light circular disc on a dark background (see
fig. 3.6). This circular form is suited for the analysis of the shift dependence in 2D as
neighbor pixels from the contour of the disc can be interpreted as obtained through 2D
shifts. The upper row of images, from left to right in fig. 3.7, show the components of the
output image, reconstructed from the DT CWT wavelet coefficients at levels 1, 2, 3 and
4 and from the scaling function coefficients at level 4. The lower row of images show the
equivalent components when the fully decimated DWT is used instead. In the lower row,
we see substantial aliasing artifacts, manifested as irregular edges and stripes that are
almost normal to the edge of the disc in places. Contrast this with the upper row of DT
CWT images, in which artifacts are virtually absent. The smooth and continuous images
here demonstrate good shift invariance because all parts of the disc edge are treated
equivalently; there is no shift dependence.

Directional Selectivity

Complex filters in multiple dimensions can provide true directional selectivity, despite
being implemented separably, because they are still able to separate all parts of the
m-D frequency space. For example a 2D DT CWT produces six bandpass subimages
of complex coefficients at each level, which are strongly oriented at angles ±15◦, ±45◦,
±75◦, as illustrated by the level 4 impulse responses in fig. 3.8(a). In order to obtain
these directional responses, it is necessary to interpret the scaling function (lowpass)
coefficients from the two trees as complex pairs (rather than as purely real coefficients at
double rate) so that they can be correctly combined with wavelet (highpass) coefficients,
which are also complex, to obtain the filters oriented at ±15◦ and ±75◦ (see 3.8). The
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Figure 3.6: Input image used for the 2D shift sensitivity test

2D DT CWT is directionally selective because the complex filters can separate positive
and negative frequency components (due to the analyticity of the transform) in 1D, and
hence separate adjacent quadrants of the 2D spectrum.

In figure 3.9 is presented an example of directionally selective subbands obtained at
four decomposition levels of the 2D DT CWT applied on the image ‘Lena’. The positive
orientations are grouped in the left part while the negative orientations are in the right
part. The decomposition levels are represented in the 2D DWT’s traditional manner;
at each decomposition level there are three detail subbands for positive orientations and
other three detail subbands for negative orientations. The similarity between the subim-
ages corresponding to the same type of details of a given orientation from successive
decomposition levels can be observed. The increasing of the absolute value of the details
with the decomposition level can be also noticed. The image Lena is not symmetrical, the
orientation of 45◦ being better represented than the orientation −45◦ due to the contours
of the hat. This asymmetry can be observed analyzing the corresponding subbands in
figure 3.9.

Rotational Invariance

The directionality of the 2D DT CWT renders it nearly rotation invariant in addition to
nearly shift invariant. Figure 3.7 illustrates the image obtained by reconstruction from
only one level coefficients of the real DWT and of the DT CWT for a test image with
a sharp edge on a hyperbolic trajectory. The ringing and aliasing artifacts in the DWT
coefficients that change with the edge orientation are not present in the CWT coefficients.
This may be due also to the fact that each image in 3.7 is using coefficients from all six
directional subbands at the given wavelet level. The only rotational dependence is a slight
thinning of the rings of the bandpass images near orientations of ±45◦ and ±135◦, due
to the diagonal subbands having higher center frequencies than the others.
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Figure 3.7: Wavelet and scaling function components at levels 1 to 4 of an image using
the 2D DT CWT (upper row) and 2D DWT (lower row). Only half of each wavelet image
is shown in order to save space.

3.4.2 Projection-based CWTs

Another class of Complex Wavelet Transforms is represented by the set of projection-
based non-redundant complex wavelet transforms (NRCWT), introduced by Fernandes
et. al., [FvSB03].

The projection (mapping) represents the conversion of a real signal to an analytic
(complex) form through digital filtering. NRCWT is basically the DWT of the complex-
valued projection. While this type of transforms are restricted to IIR filters, they produce
orthogonal solutions. Fernandes’ projection-based CWT (PCWT) uses flexible design
techniques to trade-off between redundancy and shift-invariance. The implementation
of the mapping-based complex wavelet transform is presented in fig. 3.10. The forward
CWT consists of an arbitrary DWT filter-bank preceded by a mapping stage. The CWT
is then inverted by appending an inverse-mapping stage after an inverse-DWT filterbank.
The independence of the two stages in the PCWT implementation (the complex mapping
and the DWT) allows them to be performed separately and alternatively, leading toward
a greater flexibility through the implementation.

In true sense, all of the class of NRCWT, which are designed to mitigate all three
disadvantages of standard DWT, are not exactly non-redundant CWT. For instance,
Fernandes’ implementation has a redundancy factor of 2.67 in two dimensions. These
complex wavelet transforms are considered NRCWTs because of their two main design
constraints. The first condition that must be fulfilled by these transforms is to offer
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(a) DT CWT

(b) DWT

Figure 3.8: Basis functions of 2D Q-shift complex wavelets (top) and 2D real wavelet
filters (bottom), all illustrated at level 4 of the transforms. The complex wavelets provide
6 directionally selective filters, while real wavelets provide 3 filters, only two of which have
a dominant direction

controllable redundancy, equal or less to the redundancy of the DT CWT, while preserving
all the benefits introduced by the DT CWT. Second constraint is to offer improved
directionality and phase information with perfect non-redundancy at the cost of increased
shift-sensitivity. Unlike other redundant complex wavelet transforms, such as DT CWT,
that also mitigate DWT shortcomings, the decoupled implementation of PCWT (from a
class of NRCWT) (see fig. 3.10) has two important advantages. First, the controllable
redundancy of the mapping stage offers a balance between the degree of shift sensitivity
and the transform’s redundancy. The second advantage of PCWT is the flexibility to use
any DWT in the transform implementation.

Analyzing the DT CWT, Magarey and Kingsbury [KM97] showed that the complex
coefficient obtained at the output of this transform can also be obtained using a single
DWT tree based on a quasi-analytic wavelet. Fernandes et al. [FvSB03] pointed out that
there is yet another interpretation for the DT CWT coefficients: they may be interpreted
as the DWT of the analytic signal associated with the input signal. For an L2 (R) input,
the analytic signal is defined in this case as the Hardy-space image of the input signal.

The classical Hardy-space H2 (R→ C) is defined by:

H2 (R→ C) ≡
{
f ∈ L2 (R→ C) : F (ω) = 0 for a. e. ω < 0

}
.

Let the superscript ‘H’ denote the isomorphic Hardy-space image (or Hardy-space map-
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Figure 3.9: Components from each subband of the reconstructed output image for a
4-level 2D DT CWT decomposition of Lena (central part (128x128) only)

Figure 3.10: Projection-based CWT and its inverse

ping) of an L2 (R) function. Then, the Hardy-space image of a function f is given by

FH (ω) = F (ω)χ[0,∞) (ω) ,

resulting that fH has half the bandwidth of f .
The other important term related to this complex mapping is ‘unitary map’. The

unitary map is a linear, bijective, inner-product preserving map. The function spaces
that are related through unitary map are called isomorphic to each other. The unitary
map or isomorphism is realizable if it can be implemented through digital filter. Thus,
complex or Hardy space projection of a real signal is said to be realizable if it is possible
to use some form of digital filtering for the mapping.

If we consider f to be the projection of an L2 (R) function onto the scaling space
V1 so that f (x) =

∑
n c (n)φ (x− n) or, equivalently, F (ω) = C (ω) Φ (ω) then, the

Hardy-space image fH is given by FH (ω) = χ[0,∞) (ω)C (ω) Φ (ω). Unfortunately, since
χ[0,∞) (ω) is not 2π-periodic, it cannot be applied to the scaling-coefficient sequence c using
a digital filter, meaning that the Hardy-space mapping of an L2 (R) signal is impossible
to compute.
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To circumvent this obstacle, Fernandes [FvSB03] defined a new function space called
the Softy-space, S+. The Softy-space is an approximation to Hardy-space and, moreover,
the Softy-space mapping of an L2 (R) signal may be computed using a digital mapping
filter h+ with magnitude response shown in fig. 3.11.

Figure 3.11: |H+ (ω)|, the magnitude response of the mapping filter h+

By suppressing the negative frequencies of an input signal, h+ maps the signal onto
the Softy-space. The triangle in fig. 3.12 depicts the relationship between these function
spaces.

Figure 3.12: Relationship between L2 (R), Hardy-space and Softy-space

The PCWT is defined to be the DWT of the Softy-space image of an L2 (R) function,
as shown in fig. 3.13. The mapping-filter h+ is used to project an L2 (R) function f onto
the Softy-space. Since h+ is a complex-coefficient filter, it introduces a redundancy factor
of two when applied to a real-valued scaling-coefficient sequence. It is then computed the
DWT of the Softy-space mapping f+ to obtain the CWT coefficients that will undergo
application-specific processing. After the IDWT, an inverse-mapping filter g+ computes
the L2 (R) processed function f . Since f+ ≈ fH , the CWT will have approximate
shiftability.

In order to eliminate the data redundancy, the non-redundant mapping scheme shown
in fig. 3.14 is proposed. As depicted in the figure, the non-redundant mapping is defined
as the concatenation of a mapping filter and a downsampler (elimination of odd-indexed
scaling coefficients). The downsampler eliminates the redundancy created by the mapping
filter that generates complex scaling coefficients from real scaling coefficients. It can be
observed that the scaling-coefficient sequences c and c̃+ can both be represented by N
real numbers within a digital computer; therefore, there is no data redundancy in the
scaling-coefficient sequence and c̃+.
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Figure 3.13: PCWT

Figure 3.14: Non-redundant mapping

3.4.3 Hyperanalytic Wavelet Transform

In this section, a very simple implementation of the HWT is introduced. I will begin by
presenting the 1D case, highlighting the shift-invariance properties and I will continue
with the 2D case and insist both on the quasi shift-invariance and directional selectivity.

3.4.3.1 Analytical Discrete Wavelet Transform (ADWT)

As discussed in the previous chapter, a 1D wavelet transform (WT), is shift-sensitive if
an input signal shift causes an unpredictable change of the transform coefficients. Shift-
sensitivity is an undesirable property because it implies the impossibility to distinguish
between wavelet transform coefficients corresponding to input signal shifts. The shift-
sensitivity of the DWT is generated by the down-samplers used for its computation.

Throughout time, there were numerous attempts to overcome this disadvantage. A
straight-forward solution is to remove the downsamplers from the DWT’s implementation,
resulting the UDWT [Mal99], [LGO+96]. Although the UDWT is shift-insensitive, it has
high redundancy (equal to 2J , where J denotes the number of iterations), caused by
the absence of down-samplers. Unfortunately, the high redundancy incurs a massive
storage requirement that makes the UDWT inappropriate for most signal processing
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applications. Another disadvantage of the UDWT comes from the fact that it requires
the implementation of a large number of different filters.

Lang, Guo, Odegard, Burrus andWelles [LGO+96] have proposed a new shift-invariant
but very redundant wavelet transform, named Shift Invariant Discrete Wavelet Trans-
form, SIDWT. Their proposition is based on a translation invariant algorithm proposed
by Coifman and Donoho [CD95]. The computation of this transform implies the consid-
eration of all circular shifts of the input signal. After the computation of the DWT of
every shifted version of the signal, this method requires the shifting back (or unshifting)
and averaging over all results obtained.

The method introduced by Coifman and Donoho in [CD95] and called Cycle Spin-
ning (CS) was conceived to suppress the artifacts in the neighborhood of discontinuities
introduced by the classical DWT in denoising applications, and it implies the rejection
of the translation dependence. For a range of shifts, data (time samples of a signal) is
shifted (right or left as the case may be), the DWT of shifted data is computed, and
than the result is un-shifted. Doing this for a range of shifts, and averaging the several
results so obtained, a quasi shift-invariant discrete wavelet transform is obtained. The
degree of redundancy of this transform is proportional to the number of shifts of the input
signal produced. Cycle spinning over the range of all circular shifts of the input signal is
equivalent to SIDWT.

Abry [Abr94], first demonstrated that approximate shiftability is possible for the
DWT with a small, fixed amount of transform redundancy. He designed a pair of real
wavelets such that one is approximately the Hilbert transform of the other. This wavelet
pair defines a CWT. For explaining that such a transform is complex, consider the pair
of DWT trees associated with the wavelet pair already mentioned. A complex wavelet
coefficient is obtained by interpreting the wavelet coefficient from one DWT tree as being
its real part, whereas the corresponding coefficient from the other tree is interpreted as
its imaginary part. This transform is represented in figure 3.15(a).

(a) Previous ADWT implementations

(b) Proposed ADWT implementation

Figure 3.15: Equivalent implementations of the ADWT

In 3.15(b) we propose a new implementation of the complex wavelet transform, sim-
ilar to the DTCWT but easier to implement, [AOB06]. It involves computing a single
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DWT but, instead of applying it to the original signal we apply it to the analytical signal
associated with our input signal. The analytic signal is defines as in 3.2. These im-
plementations of the ADWT, presented in fig. 3.15 are equivalent because, taking into
consideration the properties of the inner product and the ‘anti-self adjointness’ of the
Hilbert transform, namely

〈H {u} , v〉 = 〈u,−H {v}〉 with u ∈ Lp (R) and v ∈ Lq (R),

we can write the wavelet coefficients of the ADWT, at level m, dmADWT as follows:

dmADWT [n] =
〈
x (t) , ψma,n (t)

〉
= 〈x (t) , ψmn (t) + jH {ψmn (t)}〉
= 〈x (t) , ψmn (t)〉 − j 〈x (t) , H {ψmn (t)}〉
= 〈x (t) , ψmn (t)〉+ j 〈H {x (t)} , ψmn (t)〉
= 〈x (t) + jH {x (t)} , ψmn (t)〉
= 〈xa (t) , ψmn (t)〉 (3.9)

In fact neither the DTCWT, nor the proposed implementation of ADWT correspond
to perfect analytic mother wavelets, because the exact digital implementation of a Hilbert
transform pair of mother wavelets with good performance is not possible in the case
of the first transform (due to the fractional delay between the two trees required) and
because the digital Hilbert transformer is not a realizable system in the case of the second
transform, in practice this transformation being done only through approximations. Our
proposal requires a implementation of the Hilbert transformer acting in the domain of
the Fast Fourier Transform, as in figure 3.16. In simulations we have used the processing

Figure 3.16: The implementation of the Hilbert transformer

scheme in 3.17.

Figure 3.17: The use of the Hilbert transform in simulations

The DTCWT requires special mother wavelets but can assure a higher degree of shift
invariance whereas the implementation of the ADWT proposed in figure 3.15(b) can use
any classical mother wavelets (e.g. those from the Daubechies family, Symmlet family
and others). Both transforms have in the 1D case a redundancy of 2.
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Shift Invariance

In order to evaluate the shift-invariance performance of ADWT, two types of simulations
are performed. First, we make a visual evaluation of the degree of shift invariance by
taking the same test prof. Kingsbury has proposed in [Kin01]. We have used this test to
make a comparison between ADWT, DT CWT, and the classical DWT. As can be seen,
we obtain results comparable with those obtained by Kingsbury, even though we have
used Daubechies, 10-taps filter. From fig. 3.18 it can be observed that the DWT is not

Figure 3.18: A visual comparison ment to illustrate the shiftability of ADWT, DT CWT
and DWT

shift-invariant; the lines of coefficients corresponding to different shift are not parallel,
while the ADWT and DT CWT are quasi shift-invariant.

The second series of tests involves the computation of a ‘degree of shift-invariance’
that I have introduced. In [SFAH92], Simoncelli has defined a new measure of the shift-
invariance, called ‘shiftability’. According to their definition, a transform is shiftable if
and only if any subband energy of the transform is invariant under input-signal shifts.
Although weaker than shift invariance, shiftability is important for applications because it
is equivalent to interpolability, which is a property ensuring the preservation of transform-
subband energy under input-signal shifts. Based on this observation, we introduced a new
criterion: the degree of shift invariance. In order to calculate this measure, we compute
the energies of every set of detail coefficients (at different decomposition levels) and of
the approximation coefficients, corresponding to a certain delay (shift) of the input signal
samples. This way, I obtain a sequence of energies at each decomposition level, each

BUPT



54 CHAPTER 3. COMPLEX WAVELET TRANSFORMS (CWT)

sample of this sequence corresponding to a different shift. Then the mean m and the
standard deviation d of every energy sequence are computed. My degree of invariance is
defined as:

Deg = 1− d/m (3.10)

I perform the normalization with respect to the mean of the energy sequence because I
want the values of the degree of invariance to be within the interval [0, 1], in order to
facilitate its interpretation.

If the transform is shift-invariant, then the value of its degree of invariance is 1 because
the standard deviation of the energy sequence is zero in this case. The reciprocity is not
guaranteed. There are quasi shift invariant wavelet transforms with the degree of shift-
invariance equal to 1 that are not perfectly shift-invariant. However, generally, when the
transform is not shift-invariant the value of this degree of invariance is smaller than 1.
This observation is also sustained by experimental work.

We consider that the degree of shift invariance is an objective way of analyzing the
shift invariance of a transform.

In simulations, I have used as input signal a unitary step, like in 3.18. In fact, 16
different unitary steps were used. They were generated one from another by delaying
with a sample. The number of iterations used for the computation of the DWT was 3.
I repeated the simulations for several mother wavelets commonly used in the literature
(Daubechies, Symmlet and Coiflet). In order to isolate the coefficients corresponding to
each level, after the computation of the corresponding forward WT, all the coefficients
corresponding to the other levels are set to zero, by applying a ‘mask’ on the sequence
obtained. For a better understanding of this procedure, I illustrate in figure 3.19 the
system used for the analysis of the shift invariance at the 3rd decomposition level of the
ADWT.

Figure 3.19: The system used for the shift-invariance analysis of the third level of the
wavelet decomposition. In this example is considered the case of the proposed implemen-
tation of ADWT

The inverse ADWT (IADWT) can be implemented using the systems proposed in
[FIB09], [ANBI07b], [FIBI09] and [FNBI09].

In the first test involving the values of the degree of shift invariance I have compared
its values obtained for our transform with the values obtained in the case of the CS with
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a various number of cycle spins and for a variety of spinning steps (a spinning step is the
number of samples the signal is shifted once). In table 3.1 I present a comparison between
my transform and the CS. This comparison is based on the values of the degree of shift
invariance calculated for the approximation coefficients obtained after the 3rd iteration
of the corresponding WT computation algorithm (Scaling fn., level 3), for the detail
coefficients obtained after the 3rd iteration (Wavelets level 3), for the detail coefficients
obtained after the 2nd iteration (Wavelets level 2) and for the detail coefficients obtained
after the 1st iteration (Wavelets level 1). It can be observed, analyzing this table, that the
ADWT is equivalent to the CS with redundancy 64, from the degree of shift-invariance
point of view.

Symmlet, 10 ADWT CS step=1,64 delays CS step=1, 512 delays
Redundancy 2 64 512

Scaling fn. level 3 0,8594 0,7551 0,7551
Wavelets level 3 0,9962 0,9962 0,9995
Wavelets level 2 0,9963 0,9965 0,9996
Wavelets level 1 0,9992 0,9985 0,9998
Daubechies, 10 ADWT CS step=1, 64 delays CS step=1, 512 delays

Scaling fn. level 3 0,8594 0,7551 0,7551
Wavelets level 3 0,9981 0,9965 0,9996
Wavelets level 2 0,9982 0,9968 0,9996
Wavelets level 1 0,9992 0,9985 0,9998

Table 3.1: A comparison between two quasi shift-invariant WTs, the ADWT and the CS

Another test involved the dependency of the degree of shift invariance of the proposed
WT with respect to the regularity of the mother wavelet used for its computation. I
investigated the Daubechies family, each element being indexed by its number of vanishing
moments. As the curve illustrated in figure 3.20 indicates, the degree of shift-invariance
increases with the regularity of the mother wavelets used.

Figure 3.20: The dependency of the degree of shift-invariance of HWT on the regularity
of the mother wavelet used for its computation

Finally, in table 3.2 I have put the values of this degree computed for the signals
deployed in fig. 3.18. As it can be seen, my new implementation is comparable with the
DT CWT both from the visual point of view and by analyzing the values of the degree
of invariance.
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WT Degree of invariance
W. lev. 1 W. lev. 2 W. lev. 3 W. lev. 4 Sn. lev. 4

ADWT 0.9967 0.9995 0.9986 0.9988 0.9990
DT CWT 1.0000 0.9811 0.9749 0.9734 0.9997
DWT 0.9236 0.8265 0.7878 0.8149 0.9958

Table 3.2: A comparison of ADWT, DT CWT and DWT

3.4.3.2 Hyperanalytic Wavelet Transform (HWT)

All the 1D WTs already mentioned have simpler or more complicated 2D generalizations.
The generalization of the analyticity concept in 2D is not obvious, because there are
multiple definitions of the Hilbert transform in this case. In the following I will use the
definition of the analytic signal associated to a 2D real signal named hypercomplex signal.
So, the hypercomplex mother wavelet associated to the real mother wavelet, ψ (x, y) is
defined as:

ψa (x, y) = ψ (x, y) + iHx {ψ (x, y)}+ jHy {ψ (x, y)}+ kHx {Hy {ψ (x, y)}} (3.11)

where i2 = j2 = −k2 = −1, ij = ji = k, jk = kj = −i, ki = ik = −j and ijk = 1, [Dav].
The HWT of an image f (x, y) is:

HWT {f (x, y)} = 〈f (x, y) , ψa (x, y)〉 . (3.12)

Replacing 3.11 in 3.12, we will obtain:

HWT {f (x, y)} = 〈f (x, y) , ψ (x, y)〉+ 〈f (x, y) , iHx {ψ (x, y)}〉+

+ 〈f (x, y) , jHy {ψ (x, y)}〉+ 〈f (x, y) , kHx {Hy {ψ (x, y)}}〉 =

= 〈f (x, y) , ψ (x, y)〉 − i 〈f (x, y) , Hx {ψ (x, y)}〉 −
−j 〈f (x, y) , Hy {ψ (x, y)}〉+ k 〈f (x, y) , Hx {Hy {ψ (x, y)}}〉 =

= 〈f (x, y) , ψ (x, y)〉 − i 〈−Hx {f (x, y)} , ψ (x, y)〉 −
−j 〈−Hy {f (x, y)} , ψ (x, y)〉+ k 〈−Hx {f (x, y)} , Hy {ψ (x, y)}〉 =

= 〈f (x, y) , ψ (x, y)〉+ i 〈Hx {f (x, y)} , ψ (x, y)〉+

+j 〈Hy {f (x, y)} , ψ (x, y)〉 − k 〈−Hy {Hx {f (x, y)}} , ψ (x, y)〉 =

= DWT {f (x, y)}+ iDWT {Hx {f (x, y)}}+

+jDWT {Hy {f (x, y)}}+ kDWT {Hy {Hx {f (x, y)}}} =

= 〈fa (x, y) , ψ (x, y)〉 = DWT {fa (x, y)} . (3.13)

Based on 3.13 we can conclude that the HWT of the image f (x, y) can be computed
with the aid of the 2D DWT of its associated hyper complex image. In consequence the
HWT implementation uses four trees, each one implementing a 2D DWT, thus having
a redundancy of four. The first tree is applied to the input image. The second and
the third trees are applied to 1D Hilbert transforms computed across the lines (Hx)
or columns (Hy) of the input image. The fourth tree is applied to the result obtained
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Figure 3.21: HWT implementation scheme

after the computation of the two 1D Hilbert transforms of the input image. The HWT
implementation is presented in figure 3.21, [ANBI07a].

In what concerns the reconstruction part, a possible method would be to reverse the
Hilbert transform applied at the input (both Hilbert transforms in the last case) for each
of the three trees mentioned above, and the final result to be the mean of the four images
computed on the four trees.

Shift Invariance

To illustrate the quasi shift-invariance properties of the HWT, I have, once again, retaken
one of Kingsbury’s tests, presented in fig. 3.7, the results obtained being depicted in fig.
3.22. In this case the wavelet used in the computation of the HWT has been Daubechies
with 10 vanishing moments. Analyzing the results in 3.22 we can conclude that the two
complex WTs outperform the 2D DWT, the behavior of the HWT being quite similar to
the behavior of the 2D DTCWT.

Directional Selectivity

The enhancement of the directional selectivity of the HWT is made, as in the case of
the 2D-DTCWT, [Kin98], [SBK05], through linear combinations of detail coefficients
belonging to each subband of each of the four 2D-DWTs (see the right side of fig. 3.21).

Let us consider, for example, the case of the diagonal detail subbands, (HH), presented
in figure 3.23. I have selected a particular input image, f (x, y)) = δ (x, y), to appreciate
the frequency responses associated to different transfer functions represented in figure 3.21
[ANBI07b]. More precisely, the example in figure 3.23 refers to the transfer functions that
relate the input f with the outputs z−r and z+r.

The spectrum of the input image, F {δ (x, y)} (fx, fy) is constant. The wavelet coeffi-
cients belonging to the subband HH are obtained by lines and columns high-pass filtering.
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Figure 3.22: Comparison in the 2D case between the HWT, the DT CWT and the DWT

I have assumed ideal high-pass filters. The spectra of the wavelet coefficients d1, d2, d3,
d4 belonging to the subband HH, denoted by F {DWTHH {δ (x, y)}},
F {DWTHH {Hx {δ (x, y)}}} , F {DWTHH {Hy {δ (x, y)}}} and, respectively,
F {DWTHH {Hy {Hx {δ (x, y)}}}}, have two preferential orientations, corresponding to
the two diagonals ±π/4. These directions are the result of the fact that 2D DWT cannot
separate these two orientations.

After the linear combinations proposed, we can observe that the spectra of the coeffi-
cients so obtained, for example z−r and z−r, F

{
HHz−r

}
(fx, fy) and F

{
HHz+r

}
(fx, fy),

have only one preferential direction, namely the second diagonal, respectively the first
one. In conclusion, by using the HWT these directions can be separated. The same
strategy can be used to enhance the directional selectivity in the other two subbands:
LH and HL, obtaining the preferential orientations at ±atan (2) and ±atan (1/2).

A comparison of the directional selectivity of the 2D DWT and HWT, implemented
as proposed in figure 3.21, is presented in figure 3.24. I have conceived a special input
image, in the frequency domain, to conduct this simulation. Its spectrum, represented in
figure 3.24, is oriented following the directions: 0, ±atan (1/2), ±π/4, ±atan (2) and π.
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Figure 3.23: The strategy of directional selectivity enhancement in the HH subband
illustrated through the transfer functions of the systems used in the HWT implementation

Like the 2D DTCWT, the HWT implemented as proposed in figure 3.21, has six
preferential orientations: ±atan (1/2), ±π/4 and ±atan (2). The 2D-DWT has only three
preferential orientations: 0, π/4 and π/2, it does not make the difference between the two
principal diagonals. The better directional selectivity of the proposed implementation of
HWT versus the 2D DWT can be easily observed, comparing the corresponding detail
sub-images in figure 3.24. For the diagonal detail sub-images, for example, the imaginary
part of the HWT rejects the directions: −atan (1/2), −π/4 and −atan (2), whereas the
2D DWT conserves these directions.

3.5 Advantages and Applications of Complex Wavelet
Transforms

The advantages of the complex wavelet transforms lay in the reason they were introduced
in the first place, namely decreased shift sensitivity and increased directional selectivity.
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Figure 3.24: The absolute values of the spectra of horizontal and diagonal detail sub-
images obtained after the first iterations of 2D DWT and HWT. In the HWT case, the
real and imaginary parts of complex coefficients are separated

Although these goals might be achieved with real wavelet transforms (UDWT is shift
invariant and DWPT offers good directional selectivity), complex wavelets transforms
manage to obtain good results in these directions while preserving a reasonable amount
of redundancy.

When talking about the specific complex wavelet transforms presented above, each of
them has advantages and limitations, the latter resulting mainly from the fact that there
is impossible to compute an analytic signal using digital filters.

In what concerns the applications of the complex wavelet transforms, they cover
mainly the area of signal and image processing were the advantages introduced with the
price of increased redundancy are significant. A description of these advantages is nicely
presented in [Kin01], [Shu03] and [SBK05].

One of the most important applications in signal and image processing is denois-
ing. In what concerns signals, apparently many denoising methods perform better when
associated with shift-invariant wavelet transforms. In the case of images, the increased di-
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rectional selectivity in addition to shift-invariance leads to better performances especially
when it comes to images containing significant diagonal edges. Directional selectivity is
a desirable feature when dealing with textures, in applications like texture analysis and
synthesis and also in image segmentation and classification.

Other possible applications include motion estimation and compensation, watermark-
ing, deconvolution, coding, traffic applications [SI10] and so on.

3.6 Summary
In this chapter I have introduced the complex wavelet transform, focusing on the the-
oretical approach (the analytic wavelet transform - not realizable in practice), contin-
ued with the presentation of two classes of CWTs, namely the dual-tree based complex
wavelet transforms and the projection-based complex wavelet transforms. For each of
these classes I have taken a representative complex wavelet transform and presented it
in large. Finally I have presented my own contribution to this domain, namely the im-
plementation of the Hyperanalytic Wavelet Transform, which permits the exploitation of
the mathematical results and of the algorithms previously obtained in the evolution of
wavelets theory. This implementation has a very flexible structure, as we can use any
orthogonal or bi-orthogonal real mother wavelets for the computation of the HWT. I have
also illustrated its performances with the results of a few simulation tests.

In the following chapter I will focus on the denoising of images based on the theory
of wavelets and I will present some simulations based on the use of the HWT.
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Chapter 4

Denoising

4.1 Introduction

In common use, the word ‘noise’ refers to any unwanted sound. In both analog and digital
electronics, noise is an unwanted perturbation to a wanted signal; it is called noise as a
generalization of the audible noise heard when listening to a weak radio transmission.
Signal noise is heard as acoustic noise if played through a loudspeaker and it manifests
as ’snow’ on a television or video image. Noise can block, distort, change or interfere
with the meaning of a message in both human and electronic communication. In signal
processing or computing it can be considered unwanted data without meaning; that is,
data that is not being used to transmit a signal, but is simply produced as an unwanted
by-product of other activities.

The term ‘denoising’, also known as ‘noise reduction’ refers to the removal of noise.

4.1.1 Digital images and noise

Images taken with both digital cameras and conventional film cameras will record noise
from a variety of sources. Many further uses of these images require that the noise will
be (partially) removed - for aesthetic purposes as in artistic work or marketing, or for
practical purposes such as computer vision.

Depending on the model used to characterize the noise, we can encounter ‘salt and
pepper’ noise, gaussian noise and many others. Another possible classification takes
into consideration the way the noise affects the image, resulting in additive noise and
multiplicative noise. The case of additive noise will be presented in this chapter, while
the multiplicative noise will be discussed in chapter 5.

In Gaussian noise, each pixel in the image will be changed from its original value by a
(usually) small amount. A histogram, a plot of the amount of distortion of a pixel value
against the frequency with which it occurs, shows an estimation of the distribution of
noise. While other distributions are possible, the Gaussian (normal) distribution is usu-
ally a good model, due to the central limit theorem that says that the sum of independent
noises tends to approach a Gaussian distribution.

The case of Additive White Gaussian Noise (AWGN) will be considered. The acquired
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image is expressed in this case in the following form:

x = s+ n (4.1)

where x is the observed/acquired image, s is the noiseless input image and n is the AWGN
component.

In salt and pepper noise (sparse light and dark disturbances), pixels in the image are
very different in color or intensity from their surrounding pixels; the defining characteristic
is that the value of a noisy pixel bears no relation to the color of surrounding pixels.
Generally this type of noise will only affect a small number of image pixels. When
viewed, the image contains dark and white dots, hence the term salt and pepper noise.
Typical sources include flecks of dust inside the camera, or with digital cameras, faulty
CCD elements.

The speckle noise is modeled as multiplicative noise, the observed image having the
expression:

x = s · n (4.2)

where n represents the speckle.
In either case, the noises at different pixels can be either correlated or uncorrelated;

in many cases, noise values at different pixels are modeled as being independent and
identically distributed, and hence uncorrelated.

4.1.2 Denoising algorithms

In his book, [Mal99], Mallat stated that the estimation of signals in additive noise is
optimized by finding a representation that discriminates the signal from the noise. An
estimation is calculated by an operator that attenuates the noise while preserving the
signal.

There is a big diversity of estimators used as denoising systems. A review of such
systems can be found in [Bua07]. One may classify these systems in two categories: those
directly applied to the signal and those who use a wavelet transform before processing.
From the first category, we must mention the denoising systems proposed in [FKE07]
and [WD00]. The first one is based on the shape-adaptive discrete cosine transform (SA-
DCT), transform that can be computed on a support of arbitrary shape. The second one
is a maximum a posteriori (MAP) filter that acts in the spatial domain. Linear operators
have long predominated because of their simplicity, despite their limited performance. It
is possible to keep the simplicity while improving the performance with non-linearities in
a sparse representation.

Optimizing an estimator requires taking advantage of prior information. Bayes theory
uses a probabilistic signal model to derive estimators that minimize the average risk.
These models are often not available for complex signals such as natural images. An
alternative is offered by the minimax approach, which only requires knowing a prior
set where the signal is guaranteed to be. The quasi minimax optimality of wavelet
thresholding estimators is proved for piecewise regular signals and images.
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Performance evaluation criteria

The Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR) are the
two error metrics used to compare image processing (denoising, compression) quality.
The MSE represents the cumulative squared error between the denoised and the original
image, whereas PSNR represents a measure of the peak error. The lower the value of
MSE, the higher the PSNR.

To compute the PSNR, it is first calculated the mean-squared error using the following
equation:

MSE =

∑M,N
m=1,n=1 [Io (m,n)− Ii (m,n)]2

M ·N
(4.3)

In the previous equation, Ii is the input, noise-free image, Io is the output image (might
be noisy or already denoised) and M and N are the number of rows and columns in the
input image, respectively. Then PSNR is being computed using the following equation:

PSNR = 10log10

(
R2

MSE

)
(4.4)

In the previous equation, R is the maximum fluctuation in the input image data type.
For example, if the input image has a double-precision floating-point data type, then R
is 1. If it has an 8-bit unsigned integer data type, R is 255, etc.

4.1.3 Local averaging and PDEs

Many classical image denoising methods are based on a local average. The restored value
at a pixel is obtained as an average of its neighboring pixels. The most classical algorithm
is the Gaussian filtering. In that case, the restored value is obtained as a weighted average
where the weight at each pixel depends on the distance to the restored one. This low
pass filter tends to blur the image. This is known as the ‘local average treatment effect’.

The neighborhood filters avoid the blurring effect by restricting the average to pixels
having a similar gray level value. The idea is that gray level values inside a homogeneous
region slightly fluctuate while pixels belonging to different regions have a larger gray
level difference. The neighborhood filter takes an average of the values of pixels which
are simultaneously close in gray level value and spatial distance.

One can involve calculus to interpret more in depth the neighborhood filters and
improve them. In fact, expert photographers object to the creation of irregularities, in
particular the flat tints and false details. In general, image filters can be better understood
by establishing their asymptotic action when they are made more and more local. This
action is then described by a Partial Differential Equation (PDE).

A further inquiry has led us to discover that a very simple version of the neighborhood
filter has a well posed subjacent PDE, namely the mean curvature motion. This variant
simply consists of replacing the average by a linear regression in the formula defining the
neighborhood filter. The improvement has been accepted by professionals.
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4.1.4 The total variation minimization

Total variation (TV) based filtering was introduced by Rudin et al. [ROF92]. TV de-
noising is an effective, robust filtering method for recovering piecewise-constant signals.
Many algorithms have been proposed to implement total variation filtering.

The total-variation of a signal measures how much the signal changes between signal
values. Specifically, the total-variation of an N -point signal x (n), 1 ≤ n ≤ N is defined
as:

TV (x) =
N∑
n=2

|x (n)− x (n− 1)| . (4.5)

The total variation of x can also be written as:

TV (x) = ‖Dx‖1 (4.6)

where

D =


−1 1

−1 1
...
−1 1

 , (4.7)

is a matrix of size (N − 1)×N .
We assume we observe the signal x corrupted by additive white Gaussian noise,

y = x+ n, y, x, n ∈ RN

One approach to estimate x is to find the signal x that minimizes the objective function

J (x) = ‖y − x‖2
2 + λ ‖Dx‖1 .

This approach is called TV denoising. The regularization parameter, λ, controls how
much smoothing is performed. Larger noise levels call for larger λ. Many algorithms
have been proposed to implement total variation filtering, and it still represents an active
topic of research.

4.1.5 Properties of natural images

In this section are presented axioms and properties of images justified by the processing
of observed natural images. Structural properties are defined, enabling the description of
image contents with general statistical rules. These properties have precise consequences
on image modeling.

1. Axiom A1: self-similarity.

Natural phenomena are often self-similar, from a statistical point of view. As a
result, natural images display scale invariance. This means that changing the scale
of a signal (by studying only a small part of it for instance) does not change the
statistical properties of the signal. When studying a statistic (e.g. the expectation
of the power spectrum), the spatial shape of this statistic is not affected by scaling.
The self-similarity can be associated with the notion of fractal, widely used to model
objects such as mountains or coast lines.
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2. Axiom A2: spatial adaptivity.
Natural images generally exhibit a strong spatial adaptivity, since they are com-
posed of different textures, homogeneous areas, sharp edges and small features.
The importance of having a spatially variant model is shown by the failure of sta-
tionary approaches to correctly model images, especially when dealing with inverse
problems such as denoising or deblurring.
However, taking into account the space-varying characteristics of a natural scene
is a difficult task, since it requires the definition (followed by the estimation) of a
large number of additional parameters, at least one per pixel. This can inevitably
lead to over fitting issues, since the non stationary parameters can adapt more to
the noise than to the underlying signal, if they are not subject to any constraint.
The use of a prior probability density function helps to constrain these parameters
and take advantage of the spatial adaptivity.

3. Property P1: inter-scale persistence.
When dealing with scale invariant data, it is natural to use a multiresolution de-
composition (e.g. wavelets) to analyze them. This enables us to get a sparser
representation, and to separate the scale invariance from other properties. The
underlying spatial structure of the image persists through the different scales, i.e.
high/low value of the coefficient magnitudes often lead to high/low values at the
next scale. This can be seen as the inability of any multiscale transform to per-
fectly decorrelate natural images, since such a transform exhibits some inter-scale
redundancy.

4. Property P2: intra-scale dependencies.
Now we consider two different subbands of the same scale, but with different orien-
tations (they are generated by linear filtering with the same filter with respect to
size and shape, but oriented differently). Homogeneous areas and details are found
approximately at the same spatial location in the different subbands. Isotropic
details, such as smooth areas and round features, are naturally found at all orien-
tations. This shows again that multiscale transforms do not perfectly decorrelate
the information contained in natural images.

The best basis to represent such a process is the Karhunen-Loeve (K-L) basis. The
image coefficients in this basis are independent. It is optimal, since it provides the
minimum mean error when approximating an image by its projection on orthogonal basis
vectors chosen a priori (this relates to image denoising by thresholding).

For stationary processes, the K-L basis is the Fourier basis. However, the Fourier
basis is not well suited to the nonstationarity of natural images. In the case of natural
images a wavelet basis is the closest approximation to a K-L basis, since it provides both
a frequency and a spatial representation. The fact that it is only an approximation is
illustrated by the properties P1 and P2 (residual dependencies). The aim is not only to
diagonalize a Gaussian process, but also to provide the shortest description of the useful
signal. Modeling can be seen as finding a simple description of nature, and in this case it
can be related to image compression. It is well-known that wavelets provide a compact
representation of natural images, and are widely used in coding.
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An interesting consequence of the self-similarity is that high order statistics are scale
invariant. It means that they obey a function f of the scale, and the shape of f is not
affected by scaling (it is only multiplied by a scale factor). A generalization of this law is
the scale invariance of the wavelet subband histograms, they relate to the full coefficient
distribution instead of its order n moments.

4.1.6 Frequency domain filters

The effect of averaging the spatially closest pixels can also be achieved in the Fourier
domain. The convolution of an image by a kernel k is equivalent to the multiplication of
its Fourier transform byK. The average of the spatially closest pixels is then equivalent to
the cancellation of the high frequencies. As the analogous spatial filter, this cancellation
leads to the blurring of the image and a Gibbs effect. The optimal filter in the Fourier
domain is the Wiener filter which does not cancel the high frequencies but attenuates
them all. The coefficients with a magnitude over the noise standard deviation are nearly
untouched while the coefficients with a lower value are reduced. By the use of the Fourier
basis, global image characteristics may prevail over local ones. The presence of any
boundary makes all the Fourier coefficients to have a meaningful value and therefore
they are less attenuated. In that case, the flat zones which should be easily restored
preserve a regular amount of noise. In order to avoid these effects, the basis must take
into account more local features, as the wavelet transform and the local discrete cosine
transform (DCT) do.

David Donoho actually introduced the word denoising in association with the wavelet
theory [DJ94]. Thresholding estimators are studied in wavelet and wavelet packet bases,
where they are used to suppress additive noises and restore signals degraded by low-pass
filters. Non-linear estimations from sparse representations are also studied for operators,
with an application to power spectrum estimation.

The multi-resolution analysis performed by the WT has been shown to be a pow-
erful tool in order to achieve good denoising. In the wavelet domain, the noise
is uniformly spread throughout the coefficients, while most of the image informa-
tion is concentrated in the few largest ones (sparsity of the wavelet representation)
[FBB01, SS02, PP06, AK05, GD06, LBU07, Shu05, ZS07, Olh07]. The most straight-
forward way of distinguishing information from noise in the wavelet domain consists of
thresholding the wavelet coefficients. Soft-thresholding filter (stf) is the most popular
strategy and has been theoretically justified by Donoho and Johnstone [DJ94]. They
propose a three steps denoising algorithm:

1. the computation of the forward WT,

2. the filtering of the wavelet coefficients,

3. the computation of the IWT of the result obtained.

They use the Discrete Wavelet Transform (DWT) and the stf. Because it is not made
any explicit hypothesis on the noise-free image it results in a non-parametric method.
Their unique statistical hypothesis refers to the noise, considered additive white and
Gaussian (AWGN). The stf is used to put to zero all the wavelet coefficients with the
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absolute value smaller than a threshold. This threshold is selected to minimize the min-
max approximation error. Consequently, regarding the three steps denoising algorithm,
there are two tools to be chosen: the WT and the filter. In what concerns the first choice,
in this chapter will be used the new implementation of the HWT. In [FBB01, PP06] was
used the UDWT, in [SS02, AK05, Shu05] the DTCWT, and in [GD06, LBU07] the DWT.
Concerning the second choice, numerous non-linear filter types can be used in the WT
domain.

A possible classification is based on the nature of the noise-free component of the
image to be processed. Basically, there are two categories of filters: those built assuming
only the knowledge of noise statistics (a non-parametric approach), and those based on
the knowledge of both signal and noise statistics (a parametric approach). From the first
category can be mentioned: the hard-thresholding filter, [DJ94], the stf [DJ94, Mal99],
that minimizes the Min-Max estimation error and the Efficient SURE-Based Inter-scales
Point-wise Thresholding Filter [LBU07], that minimizes the Mean Square Error (MSE).

To the second category belong filters obtained by minimizing a Bayesian risk under a
cost function, typically a delta cost function (MAP estimation [FBB01, SS02, AK05]) or
the minimum mean squared error (MMSE estimation [PP06]). The denoising algorithms
proposed in [SS02, PP06, AK05, GD06, LBU07] exploit the inter-scale dependence of
wavelet coefficients. The method proposed in [PP06] takes into account the intra-scale
dependence of wavelet coefficients as well. The statistical distribution of the wavelet
coefficients changes from scale to scale. The coefficients of the WT have a heavy tailed
distribution. To deal with this mobility, there are two solutions. The first one assumes
the use of a fixed simple model, risking a decrease of accuracy across the scales. This
way, there is a chance to obtain a closed form input-output relation for the MAP filter.
Such an input-output relationship has two advantages: it simplifies the implementation
of the filter and it allows the sensitivity analysis. The second solution assumes the use of
a generalized model, defining a family of distributions and the identification of the best
fitting element of this family to the distribution of the wavelet coefficients at a given scale
(e.g. the family of Pearson’s distributions in [FBB01], the family of SαS distributions in
[AK05] and the model of Gauss-Markov random field in [GD06]). The use of a generalized
model makes the treatment more accurate but requires implicit solutions for the MAP
filter equation, which can often be solved only numerically.

4.1.7 Non local averaging

Non-local (NL) means algorithms are proposed in [Bua07]. The NL-means algorithm
tries to take advantage of the high degree of redundancy of any natural image. Every
small window in a natural image has many similar windows in the same image. In a very
general sense, one can define as ‘neighborhood of a pixel i’ any set of pixels j in the image
so that a window around j looks like a window around i. All pixels in that neighborhood
can be used for predicting the value at i. Given a discrete noisy image x = {x (i) |i ∈ I},
the estimated value, NLx (i) is computed as a weighted average of all the pixels in the
image,

NLx (i) =
∑
j∈I

β (i, j)x (j) ,
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where the weights {β (i, j)}j depend on the similarity between the pixels i and j and
satisfy the usual conditions 0 ≤ β (i, j) ≤ 1 and

∑
j β (i, j) = 1. In order to compute the

similarity between the image pixels, a neighborhood system on I is defined.
While producing state-of-the-art denoising results, this method is computationally

impractical [MS05]. Its high computational complexity is due to the cost of weights
calculation for all pixels in the image during the process of denoising. For every pixel
being processed, the whole image is searched, and differences between corresponding
neighborhoods are computed. The complexity is then quadratic in the number of image
pixels.

In [MS05] the computational complexity of the algorithm proposed in [Bua07] is ad-
dressed in a different fashion. The basic idea proposed in [MS05] is to pre-classify the
image blocks according to fundamental characteristics, such as their average gray values
and gradient orientation. This is performed in a first path in [MS05], and while, denois-
ing in the second path, only blocks with similar characteristics are used to compute the
weights. Accessing these blocks can be efficiently implemented with simple lookup tables.
The basic idea is then to combine ideas from [Bua07], namely, weighted average based
on neighborhoods similarity, with concepts that are classical in information theory and
were introduced in image denoising context.

Images with much finer texture and details will not benefit that much from the de-
noising; while reducing most of the noise, this type of processing will inevitably degrade
important image features [GSZ06]. The first problem is to distinguish between good and
bad candidates for denoising. Many natural images exhibit a mosaic of piecewise smooth
and texture patches. This type of image structure calls for position (spatial)-varying
filtering operation. Textured regions are characterized by high local variance. In order
to preserve the detailed structure of such regions, the level of filtering should be reduced
over these regions. The basic concept amounts to a reduction in the extent of filtering
in regions where signal power exceeds that of the noise. So, the solution proposed in
[GSZ06] supposes the anisotropic treatment of the acquired image taking into account
the local variance values of its regions. This procedure can be seen like an NL-means
algorithm where the classification of the image blocks is done on the basis of their local
variance.

4.2 Non-parametric Denoising

The term ‘non-parametric’ is used to define all the methods developed without an a priori
knowledge of the distribution of the signal to be processed. This non-parametric approach
is motivated by the fact that in most practical situations, the distribution of the signals
forming the observation are not known and is difficult to estimate them precisely.

4.2.1 Basic Concept

Even though we do not have any information on the distribution of the signal to be esti-
mated, it is possible to satisfactory estimate this signal if we have a basis that permits the
noise discrimination. The idea is to consider the noise additive, white and Gaussian. It is
known that the projection of this type of noise on an orthonormal basis does not change
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the nature of the noise. Let there be an observation made up of a signal perturbed by
additive white Gaussian noise. If we dispose of an orthonormal basis able to ‘concentrate’
this signal’s energy over a small number of high-amplitude coefficients, than the projec-
tion of the observation on such a basis will be made of a small class of relatively large
coefficients (containing mainly the information on the signal) and a large class of small
coefficients which are mainly due to the noise. The estimation implies recovering and,
eventually, processing the large coefficients, after setting to zero the small ones. Such an
estimation is realized with a so called ‘thresholding function’, named after the threshold
underneath which every coefficients will be forced to zero.

It is said that a basis able to concentrate a big part of the signal’s energy on a small
number of coefficients does a sparse representation of the signal [DJ94]. This definition
is not really precise as the terms ‘small’ and ‘big’ are not clearly defined, resulting in
a sparse representation in a wide sense. It can be said about a basis that it realizes
a sparse representation in a strict sense if, for a given signal, the energy of this signal
is ‘almost entirely’ contained in a small number of high-amplitude coefficients. In this
type of sparsity, almost all the coefficients qualified as ‘small’ are, in fact, almost nulls or
with very low amplitudes, consequently not containing any significant information on the
signal. In the case of the sparse representation in a wide sense, and not strictly sparse,
it might be useful to process in equal manner the small coefficients. In this case it is
being considered not a thresholding function but a so called attenuation function, in the
sense that it does not force to zero all the small coefficients but it imposes them a higher
attenuation than on the large coefficients.

4.2.2 Shrinkage Strategies

In order to realize the non-parametric estimation described before, one must choose a
sparse representation and an appropriate attenuation function. When the attenuation
function sets to zero all the coefficients inferiors to a threshold, than the function is called
thresholding. Some of the most used thresholding function are the Hard Thresholding
and the Soft Thresholding,

Soft Thresholding

The three-step denoising algorithm proposed by Donoho and Johnstone [DJ94], already
mentioned, uses the DWT and the stf. They do not make any explicit hypothesis on the
noise-free image and, consequently, this method can be considered non-parametric. Their
unique statistical hypothesis refers to the noise, considered AWGN. The stf is used to
put to zero all the wavelet coefficients with the absolute value smaller than a threshold.
This threshold is selected to minimize the min-max approximation error.

The input-output relation of the stf is given by:

Ŵs (Wx) =


Wx − t, for Wx > t
0, for |Wx| ≤ t
Wx + t, for Wx < −t.

(4.8)

where Wx = Ws + Wn and t represents a threshold. Wx represents the sequence of WT
coefficients of the noisy image, Ws represents the sequence of the WT coefficients of
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the noiseless component of the acquired image and Wn represents the sequence of WT
coefficients of the noise in the acquired image.

The interval (−t, t) is named dead zone, because all the detail WT coefficients having
the values in this interval are set to zero by the stf. Because the magnitudes of all the
detail WT coefficients are reduced by the stf, it is named shrinkage operator.

If the threshold t is chosen accordingly with the value of the noise’s standard deviation,
then this filter is called adaptive. The noise’s variance can be estimated using the relation:

σ̂2
Wn

=
median (|Wx|)

0.6745
Wx ∈ D3

1 (4.9)

In the case of the minimization of the Min-Max approximation error, the constant
that multiplies the noise’s standard deviation in order to obtain the threshold value t is
equal to

√
2lnN , where N represents the number of pixels of the observed image. Another

value, specific for the criteria that demands the minimization of the output noise power,
is 3 (having in mind the three sigmas rule, specific for the Gaussian laws).

In the following we present an experiment that associates the Diversity Enriched Dis-
crete Wavelet Transform (DE DWT - a transform whose result is the mean of 9 different
DWTs, each one corresponding to a different mother wavelet from the Daubechies fam-
ily) [IIA06] and the soft-thresholding filter. The optimization criteria (in this case the
maximization of the output peak signal-to-noise ratio) demands the use of another value
for the proportionality constant, between the threshold of the stf filter and the noise’s
standard deviation. In the following simulations the value of this constant is chosen such
that the PSNR associated to each DWT is maximum. The results obtained for the im-
age Lena are presented in the folowing table. The values in this table were obtained by
selecting each time a number of 6 iterations for the DWTs.

σn 10 15 20 25 30 35
PSNRi 28.17 24.62 22.15 20.17 18.63 17.30

P
S
N
R
o

Daub,4 30.71 28.64 26.99 25.77 24.80 23.97
Daub,6 30.96 28.77 27.10 25.87 24.88 24.11
Daub,8 30.99 28.82 27.17 25.89 24.98 24.23
Daub,10 30.96 28.90 27.22 25.91 25.03 24.24
Daub,12 30.77 28.79 27.17 25.91 25.02 24.21
Daub,14 30.70 28.65 27.12 25.86 24.94 24.16
Daub,16 30.68 28.71 27.06 25.83 24.92 24.16
Daub,18 30.64 28.66 27.08 25.78 24.91 24.09
Daub,20 30.72 28.64 27.07 25.76 24.84 24.07
DE DWT 31.80 29.77 28.14 26.87 25.94 25.18

Table 4.1: PSNRs obtained using the soft-thresholding filter in the 2D DWTs domain,
computed using the mother wavelets from the Daubechies family and in the DE DWT
domain, for the image Lena perturbed with AWGN with different variances
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Hard Thresholding

Another type of non-parametric filter is the hard-thresholding filter (Htf). This is also a
shrinkage operator. The input-output relation of this filter is:

hard (y, t) = (|y| − t)+ =

{
y, for |y| ≥ t
0, for |y| < t

(4.10)

where
(X)+ =

{
X, for X > 0,
0, otherwise. (4.11)

This filter also has a dead zone. Next, the results of some simulations on the association of
the DWT and ED DWT with a hard thresholding filter are presented. The optimization
criterion (in this chapter it is the PSNR maximization) demands for another value of the
proportionality constant, between the threshold value and the standard deviation of the
noise. In the following simulations the value of this constant is chosen to insure that the
PSNR value associated to each DWT is maximum. The results obtained are presented
in the following table. The values in the table correspond to a number of six iterations
for each DWT.

σn 10 15 20 25 30 35
PSNRi 28.17 24.66 22.11 20.21 18.62 17.29

P
S
N
R
o

Daub,4 30.46 28.02 26.39 25.22 24.20 23.49
Daub,6 30.63 28.21 26.49 25.23 24.28 23.59
Daub,8 30.69 28.20 26.61 25.33 24.49 23.73
Daub,10 30.81 28.25 26.56 25.39 24.48 23.64
Daub,12 30.77 28.21 26.53 25.34 24.51 23.75
Daub,14 30.69 28.14 26.34 25.23 24.41 23.51
Daub,16 30.56 28.04 26.29 25.20 24.24 23.58
Daub,18 30.53 28.03 26.29 25.15 24.22 23.49
Daub,20 30.58 28.04 26.35 25.26 24.25 23.47
DE DWT 33.37 30.91 29.13 27.81 26.75 25.83

Table 4.2: PSNRs obtained using the hard-thresholding filter in the 2D DWTs domain,
computed using the mother wavelets from the Daubechies family and in the DE DWT
domain, for the image Lena perturbed with AWGN with different variances

The results obtained using the hard-thresholding are better than the results obtained
using the soft-thresholding, as can be seen by comparing tables 4.1 and 4.2.

4.2.2.1 A New Class of Shrinkage Functions Based on Sigmoid

The standard WaveShrink functions considered are the hard and soft thresholding func-
tions (proposed in [DJ94]); the Non-Negative Garrote (NNG) function (proposed for
wavelet shrinkage in [Gao98]) and the Smoothly Clipped Absolute Deviation (SCAD)
function of [AF01]). The graphical representations of these functions are given in the
following figure.
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Figure 4.1: Examples of standard WaveShrink functions

On one hand, the hard thresholding function is not everywhere continuous and its dis-
continuities generate a high variance in the estimated signal; on the other hand, the soft
thresholding function is continuous, but creates an attenuation on large coefficients, which
results in an oversmoothing and an important bias for the estimated signal [Gao98]. The
NNG and SCAD functions achieve a certain compromise between the hard and the soft
thresholding functions as can be seen in figure 4.1. However, all the standard WaveShrink
functions presented above include zero-forcing. This zero-forcing induces singularities of
the thresholding function. As a consequence, it results a significant variance of the estima-
tion due to the sensitivity of the inverse wavelet transform. In addition, thresholding rules
assume that the wavelet representation is sparse. Note that smooth signals yield sparse
wavelet representations in the sense given by [DJ94]: for such signals, large coefficients are
very few in number. In contrast, wavelet representations of natural images, which tend to
be piecewise regular rather than smooth, fail to be sparse enough since large coefficients
are not very few. This justifies the introduction of more flexible WaveShrink methods for
correcting the drawbacks of thresholding rules. As an example, a WaveShrink parameter-
ization such as that proposed in [LBU07] results in non zero-forcing and is shown to be
more efficient than soft thresholding estimation. Therefore, a suitable shrinkage function
should satisfy the following two properties [APM08],

Proposition 4.2.1. Smoothness: a smooth shrinkage function induces small variability
among coefficients with close values.

Proposition 4.2.2. Penalized shrinkage: a strong (resp. a weak) attenuation for small
(resp. large) coefficients is required because small (resp. large) coefficients contain less
(resp. more) information about the signal.

In [APM08] are reported very good denoising results obtained applying a class of
shrinkage operators, called the Smooth Sigmoid-Based Shrinkage (SSBS) functions, sat-
isfying propositions 4.2.1 and 4.2.2, associated with the UDWT. This WT was preferred
for its translation invariance. The absence of translation invariance in denoising ap-
plications produces artifacts in the neighborhood of discontinuities resembling with the
manifestation of Gibbs phenomenon.
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4.2.2.2 Translation invariant wavelet thresholding

Another possibility to obtain a translation invariant denoising is to use the DWT asso-
ciated with the Cycle Spinning (CS) algorithm proposed by R. Coifman and D. Donoho
[CD95]. They improved the wavelet thresholding methods by averaging the estimations
of all translations of the degraded signal. The CS algorithm was conceived to suppress
the artifacts in the neighborhood of the discontinuities introduced by the DWT, and
it implies the rejection of the translation dependency. For a range of delays, data is
shifted, its DWT is computed, and then the result is unshifted. Doing this for a range
of shifts, and averaging the several results so obtained, a quasi shift-invariant DWT is
implemented. The degree of redundancy of this transform is proportional to the number
of shifts of the input signal produced. CS over the range of all circular shifts of the input
signal is equivalent with a translation-invariant WT.

Calling yp (i) the translated signal y (i− p), the wavelet coefficients of the original and
translated signals can be very different, and they are not related by a simple translation
or permutation,

ypB (α) = 〈y (n− p) , gα (n)〉 = 〈y (n) , gα (n+ p)〉
The vectors gα (n+ p) are not, generally, in the basis B = {gα}α∈A, and therefore

the estimation of the translated signal is not related to the estimation of y. This new
algorithm yields an estimate ûp for every translated version, yp, of the original signal,

ûp = Dyp =
∑
α∈A

ap (α) ypB (α) gα.

The translation invariant thresholding based on CS, denoted by TIWT (y), is obtained
by averaging all these estimations after being translated in the inverse sense,

TIWT (y) =
1

|I|
∑
p∈I

ûp (i+ p) .

The Gibbs effect is considerably reduced by the translation invariant wavelet thresh-
olding, since the average of different estimations of the signal reduces the oscillations.

4.2.2.3 A semi parametric denoising method using a MMSE estimator

In [LBU07] is proposed a new denoising method acting in the field of orthogonal WTs,
lying on the border between the non-parametric and parametric methods. It has the
usual structure in three steps for a denoising method based on wavelets, computation of
the direct WT, filtering in the wavelets domain and computation of the IWT.

• The MSE in the space domain is a weighted sum of the MSE of each individual
subband: 〈

|ŵ − w|2
〉

=
J∑
j=0

Nj

N

〈∣∣ŵj − wj∣∣2〉
where the expectation is denoted by

〈u〉 =
1

N

N∑
k=1

uk
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• The noise remains white and Gaussian, having the same statistics in the orthonor-
mal wavelet domain as in the spatial domain, i.e. nj ∼= N (0, σ2

n). This makes it
possible to apply a new denoising function, independently, in every high pass sub-
band, leading to a subband-adaptive solution as in the case of most of the successful
wavelet denoising approaches.

In denoising applications, the performance is often measured in terms of PSNR. Since
the noise is a random process, in [LBU07] is introduced an expectation operator E {}
to estimate the potential results obtained after processing the noisy data y. Note that
the noise-free data w is not modeled as a random process; thus, E {w} = w. This is the
reason why the proposed denoising method can be considered as non-parametric. The
aim of image denoising is naturally to maximize the PSNR and, thus, to minimize the
MSE. Such an estimator is of minimum MSE (MMSE) type. In [LBU07], the authors
have chosen to estimate wj by a point wise function of yj(

ŵjk
)
k∈[1,Nj ]

=
(
θj
(
yjk
))
k∈[1,Nj ]

.

The subband index can be dropped since a new denoising function is independently
applied in each individual subband. The goal in [LBU07] is to find a function θ which
minimizes:

MSE =
〈
|θ (y)− w|2

〉
=
〈
θ (y)2〉− 2 〈wθ (y)〉+

〈
w2
〉
.

In practice, only the noisy signal y = w+n can be accessed. So it is necessary to remove
the explicit dependence on w in the last relation. The solution taken by Luisier and al.
consists of thresholding the coefficients with a pointwise thresholding function depending
on only two parameters: a1 and a2

θ0 (y, a) =

(
a1 + a2e

− y2

12σ2
n

)
y

This denoising method is considered semi parametric, as it requires only the identification
of the coefficients a1 and a2, without any prior information about the noiseless component
of the acquired image.

4.3 Parametric Denoising
The aim of the denoising process is to improve the visual quality of the image and, ideally,
to recover the original one. Mathematically, it is necessary to minimize the error between
the restored and the original images. This section deals with the definition and the
minimization of such an error. Mathematically, this error is written as a distance and,
for simplicity, the Euclidean distance can be used. In order to optimize the restoration
process, the definition of such an error should incorporate the a priori information about
the original image and the noise, when available.

4.3.1 The Bayesian Approach

In this section we will begin by presenting the general features of the Bayesian estimation
both in the spatial and in the wavelet coefficients’ domain and we will continue with some
examples of filters using this approach.
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Spatial Domain

Let x = s + n, where s is the original signal, n is the noise and x is the received or
observed signal.The problem is to estimate s when the only available data is x.

The Bayes theorem gives the relation between one conditional probability and its
inverse. This relation can also be applied in the probability density function (pdf) domain,
for example to the probability density function of s, knowing x and the pdf of x knowing
s:

pS|X (s | x) =
pX|S (x | s) · pS (s)

pX (x)
(4.12)

In 4.12, pS (s) is the prior or marginal probability density function of s. It is ‘prior’ in
the sense that it does not take into consideration any information about x. pS|X (s | x) is
the conditional pdf of s given x, and is also called the posterior pdf because it depends
on the specified value of x. pX|S (x | s) is the conditional pdf of x given s, also known as
the likelihood of s, L (s) = pX|S (x | s). The pX (x) is the prior or marginal probability
of x and acts as a normalizing factor. However, once the observation x has been made,
it is a constant and often ignorable in applications.

If we want to take into account the noise statistics, than we can replace pX|S (x | s)
by pN |S (x− s | s) as they are equivalent.

Further more, if the noise and the signal are independent, as is the case in general,
pN |S (x− s | s) = pN (x− s) and relation 4.12 becomes:

pS|X (s | x) =
pN (x− s) · pS (s)

pX (x)
(4.13)

The estimated value of s, ŝ, is the value S which maximizes the posterior distribution,
pS|X (s | x). This is called the Maximum A Posteriori estimate. If there is a range of values
of s with high probability, then a confidence interval or ‘error bar’ can be defined.

Consequently, the MAP estimation of s based on the observation x = s + n is given
by the MAP filter equation:

ŝ = argmax
s

(
pX|S (x | s) · pS (s)

)
(4.14)

or, equivalently,
ŝ = argmax

s
(pN (x− s) · pS (s)) (4.15)

The computation of ŝ is usually based on searching the zeros of the derivative of either
the function to be maximized (eq. 4.16) or of its logarithm (eq. 4.17).

∂

∂s
(pN (x− s) · pS (s)) = 0 (4.16)

∂

∂s
(ln (pN (x− s)) + ln (pS (s))) = 0 (4.17)
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Wavelet coefficients domain

The MAP criterion can be applied in the spatial domain, as seen in the previous para-
graph, but it can be applied as well in the wavelet coefficients’ domain. If we consider
the observed signal x = s+ n, than, as the wavelet transform is a linear transformation,
we will obtain the following relations between the approximation (A) and wavelet (W )
coefficients from level j:

Ajx = Ajs + Ajn
W j
x = W j

s +W j
n. (4.18)

In the following there will be considered only the wavelet coefficients. By repeating
the same considerations previously exposed, the a posteriori probability density function
of the noise-free signal’s wavelet coefficients conditional to the observed signal’s wavelet
coefficients is pWX |WS

(Wx |Ws). Hence, by applying the Bayes rule and considering the
noise independent of the signal, we have:

pWX |WS
(Wx |Ws) =

pWX |WS
(Wx |Ws) · pWS

(Ws)

pWX
(Wx)

=
pWN

(Wx −Ws) · pWS
(Ws)

pWX
(Wx)

. (4.19)

The MAP estimate of the process Ws will be:

Ŵs = argmax
Ws

(
pWX |WS

(Wx |Ws)
)

= argmax
Ws

(pWN
(Wx −Ws) · pWS

(Ws)) (4.20)

If the pdfs pWs and pWn do not take into account the inter-scale dependency of the
wavelet coefficients, the obtained filter is called marginal. For the MAP filters that take
into account the inter-scale dependency, the pdfs are multivariate functions. Generally,
the equation 4.20 has not an analytical solution.

4.3.1.1 The Wiener Filter

The Wiener filter reduces the noise affecting the signal by comparing the observed signal
with an estimation of the noiseless signal and minimizing the mean square error, in this
sense the Wiener filter being considered an MMSE filter.

In the following I will consider, for simplicity, time-domain sequences, but the equa-
tions deduced are also available in the wavelet coefficients’ domain.

Let x = s+ n be the observed sequence applied at the input of the Wiener filter with
impulse response h. The estimation given by the filter will be:

ŝ = x ∗ h =
N∑
i=0

hix [n− i] (4.21)

and the estimation error is:

e [n] = ŝ [n]− s [n] =
N∑
i=0

hix [n− i]− s [n] . (4.22)
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The filter coefficients, namely the values of the vector h are the solutions of the
equation:

hi = argmin
{
E
{
e2 [n]

}}
(4.23)

The solution of equation 4.23 can be obtained by solving the following equation:
Rx [0] Rx [1] . . . Rx [N ]
Rx [1] Rx [0] . . . Rx [N − 1]

...
... . . . ...

Rx [N ] Rx [N − 1] . . . Rx [0]


︸ ︷︷ ︸

T

×


h0

h1
...
hN


︸ ︷︷ ︸

h

=


Rxs [0]
Rxs [1]

...
Rxs [N ]


︸ ︷︷ ︸

V

, (4.24)

where T is the Toeplitz matrix, having for elements the autocorrelation of the observed
signal, h is the Wiener filter’s vector of coefficients and V is the inter correlation vector
whose elements are the values of the inter correlation between the received and the original
signal.

Zero-Order Wiener Filter

Generally, the following assumptions are made:

1. The signal s and the noise n are not correlated, namely Rsn [k] = 0,∀k.

2. The noise, n, is a random additive white gaussian (AWG) process, with zero-mean
and variance σ2

n, N (0, σ2
n).

3. The useful signal, s, is a random AWG process with zero-mean and variance σ2
s ,

N (0, σ2
s).

Using these assumptions, we can write:

µx = E {x} = E {s+ n} = E {s}+ E {n} = 0,

σ2
x = E

{
(x− µx)2} = E

{
x2
}

= E
{

(s+ n)2} = E
{
s2
}

+ 2E {sn}+ E
{
n2
}

= σ2
s + 2Rsn + σ2

n = σ2
s + σ2

n,

Rx [k] = σ2
x · δ [k] =

(
σ2
s + σ2

n

)
· δ [k] ,∀k,

Rxs [k] = E {x [i] · s [i+ k]} = E {s [i] · s [i+ k]}+ E {n [i] · s [i+ k]}
= σ2

s · δ [k] ,∀k. (4.25)

Based on 4.25, we can rewrite 4.24 as follows:
σ2
s + σ2

n 0 . . . 0
0 σ2

s + σ2
n . . . 0

...
... . . . ...

0 0 . . . σ2
s + σ2

n

×

h0

h1
...
hN

 =


σ2
s

0
...
0

 , (4.26)

leading to the system of equations:
(σ2

s + σ2
n) · h0 = σ2

s

(σ2
s + σ2

n) · h1 = 0
· · ·

(σ2
s + σ2

n) · hN = 0

(4.27)
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Solving 4.27 we obtain the coefficients:

h0 =
σ2
s

σ2
s + σ2

n

, and h1 = h2 = . . . = hN = 0. (4.28)

As this filter has only one non-null coefficient (4.28), namely h0, it is called ‘Zero-order
Wiener filter’. Its impulse response, in the 2-dimensional case, is

h (i, j) =
σ2
s

σ2
s + σ2

n

· δ (i, j) , (4.29)

similar to the impulse response of the Kuan filter used in speckle filtering.
The filtering equation can be put in the following form:

ŝ =
σ2
s

σ2
s + σ2

n

· x =

σ2
s

σ2
n

1 + σ2
s

σ2
n

· x. (4.30)

The quantity σ2
s

σ2
n
represents the Signal to Noise Ratio (SNR) of the acquired image.

Consequently, the input-output relation of the zero order Wiener filter can be written in
the equivalent form:

ŝ =
SNR

1 + SNR
· x. (4.31)

For good quality acquired images (SNR » 1), equation 4.31 becomes:

ŝ ∼= x,

while for poor quality acquired images (SNR « 1), the input-output relation of the zero
order Wiener filter has the expression:

ŝ ∼= 0.

In conclusion, the zero order Wiener filter is not a good solution for the denoising of
images with low SNR.

Generally, the variances in eq. 4.30, especially σ2
s , vary in space. If we choose to

estimate only once σ2
s for the whole image, we can say we have a global filter. If we

estimate σ2
s locally, for each pixel using a neighborhood, we call the filter a local filter.

In order to evaluate the space domain performances of the zero-order Wiener filter we
have applied it directly to the image corrupted with additive noise and we have computed
the PSNR ratio. In table 4.3 we present the input and output PSNR values obtained
for the input image ‘Lena’ corrupted with additive white gaussian noise with variance σ2

n

presented on the first line of the table and the input PSNR value on the second line of
the table. We have estimated σ2

s locally using a square analysis window of 7x7 pixels and
the output PSNRs are presented on the bottom line of the table.

The relations deduced for time-domain signals are also available in the wavelet co-
efficients domain, under the same hypotheses, the estimated coefficient being computed
with:

Ŵs (i, j) =
σ2
Ws

σ2
Ws

+ σ2
Wn

·Wx (i, j) . (4.32)

BUPT



4.3. Parametric Denoising 81

σn 10 15 20 25 30 35 50 100
PSNRi 28.16 24.64 22.15 20.20 18.62 17.28 14.17 8.16
PSNRo 31.38 30.31 29.35 28.48 27.75 27.10 25.37 21.23

Table 4.3: Denoising using zero-order Wiener filter directly on the image

In the following set of simulations we associate 2D DWT to the zero-order Wiener
filter. In the case of the 2D DWT, the noise coefficients’ variance, σ2

Wn
is considered

equal to the variance of the detail sub-image obtained at the first level of decomposition
[DJ94].

The useful image coefficients’ variance can be estimated either globally or locally.
Globally, we compute in each subband the standard deviation, σ2

Wx
and compute

σWs =
√
max

(
σ2
Wx
− σ2

Wn
, 0
)

Then, we replace these values in 4.32 and compute the denoised coefficients.
Locally, we use an analysis window, square for instance, centered in the pixel to be

processed (i, j) and of dimension 2p+ 1, Fp (i, j). To estimate the useful image’s variance
we must compute its local mean

lµ̂Ws (i, j) =
1

(2p+ 1)2

∑
(m,n)∈Fp(i,j)

Wx (m,n) , (4.33)

and the variance of the acquired image’s coefficients inside the analysis window:

lσ̂
2
Wx

(i, j) =
1

(2p+ 1)2

∑
(m,n)∈Fp(i,j)

(Wx (m,n)−l µ̂Ws (i, j))2 . (4.34)

Using these relations, the local variance of the useful image’s coefficients is given by:

lσ̂
2
Ws

(i, j) = max
(
0,
(
lσ̂

2
Wx

(i, j)− σ̂2
Wn

))
. (4.35)

The impulse response of the filter for the considered pixel is:

ĥ (i, j) =
lσ̂

2
Ws

(i, j)

lσ̂2
Ws

(i, j) + σ̂2
Wn

· δ (i, j) . (4.36)

Next we filter the coefficient considered and we shift the center of the analysis window to
the next pixel and retake steps 4.33 - 4.36. In this way we perform an adaptive filtering.
The Wiener filter can be considered a MAP filter, based on the hypotheses that the
probability density functions of the useful image and of the noise are gaussian functions.
The input-output relation of the equivalent MAP filter is:

Ŵs (i, j) =
lσ̂

2
Ws

(i, j)

lσ̂2
Ws

(i, j) + σ̂2
Wn

·Wx (i, j) =

lσ̂
2
Ws

(i,j)

σ̂2
Wn

1 +
lσ̂

2
Ws

(i,j)

σ̂2
Wn

·Wx (i, j) . (4.37)
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This is a first example of local marginal MAP filter. The significance of the variances’
ratio lσ̂

2
Ws

(i,j)

σ̂2
Wn

is, in this case, of local SNR. The input-output relation of the local marginal
zero order Wiener filter can be put in the form:

Ŵs (i, j) ∼= Wx (i, j) ·


1, if SNR (i, j) >> 1,

SNR(i,j)
1+SNR(i,j)

, if SNR (i, j) is moderate,
0, if SNR (i, j) << 1.

(4.38)

The local marginal zero order Wiener filter has a dead zone (just like the shrinkage
filters) because the values of all the pixels with small local SNR values are set to zero.

The denoising methods based on the use of zero-order Wiener filter in the wavelet
domain can not completely remove the noise when the signal to noise ratio of the acquired
image is low.

One can observe that relation 4.35 introduced non-linearities. This is the reason why
the Wiener filter, presented in this section, is not perfectly linear.

Simulations in which the zero-order Wiener filter is associated to the 2D DWT are
presented in table 4.4. The first line of the table presents the noise standard deviation
and the second line the values of the input image’s PSNR. The third line presents the
output PSNRs obtained after a zero-order global Wiener filtering, while the fourth line
presents the PSNRs obtained after using a zero-order local Wiener filter, the analysis
window in this case being square, of 7x7 pixels. In all the cases we have performed a
4-level wavelet decomposition using Daubechies with 10 vanishing moments as mother
wavelet. The input image considered was Lena.

σn 10 15 20 25 30 35 50 100
PSNRi 28.16 24.63 22.15 20.21 18.62 17.29 14.19 8.16

PSNRo global 31.65 29.66 28.77 27.92 27.26 26.75 25.51 23.28
PSNRo local 34.40 32.36 30.90 29.76 28.84 28.06 26.25 22.46

Table 4.4: Denoising using zero-order Wiener filters, both global and local, in the 2D
DWT domain

From table 4.4 we can observe that the local estimation outperforms the global one
for almost all the cases considered, the exception being at very high noise, or, in other
words, very low SNR. By comparing the results obtained with the filter applied directly
on the image (table 4.3) and with the filter applied in the wavelet domain (table 4.4), we
can observe that the latter gives better results.

These results can be slightly improved if we replace the 2D DWT by the HWT. The
hypotheses used for the construction of the local marginal zero order Wiener filter in the
2D DWT domain can be applied in the case of the four components of the detail HWT
coefficients. The denoising is presented in figure 4.2.

The results obtained using the processing scheme in fig. 4.2, simulations performed
in the same conditions as those in 4.4, are presented in table 4.5.

4.3.1.2 The adaptive soft-thresholding filter

To highlight the heavy tailed distributions which characterize the HWT coefficients re-
sulted after the directional selectivity enhancement, as shown in fig. 4.3, the following

BUPT



4.3. Parametric Denoising 83

Figure 4.2: Denoising scheme using HWT and Zero-Order Wiener filter

σn 10 15 20 25 30 35 50 100
PSNRi 28.15 24.65 22.15 20.21 18.62 17.28 14.19 8.16
PSNRo 34.81 32.80 31.37 30.21 29.29 28.47 26.61 22.92

Table 4.5: Denoising using zero-order local Wiener filter, in the HWT domain

experiment was done. The histograms of the different subbands obtained applying the
HWT to the image Lena are computed. The results are represented in figure 4.4.

The linear dependencies of the two branches of the logarithms of the histograms
prove that the pdfs of the real and imaginary parts of the HWT coefficients correspond
to exponential laws (which are heavy tailed):

log
(
K1 · e−|x|

)
= K2 − |x| (4.39)

where K1 and K2 represent two constants. So, the hypothesis that the real and imaginary
parts of the useful HWT coefficients are distributed following Laplace laws can be made.

If Wn is Gaussian distributed and Ws has a Laplacian distribution (this is a heavy
tailed one) then the MAP filter becomes an adaptive stf [SS02]. The hypotheses for this
type of marginal MAP filter are:

pWs (Ws) =
1√

2σWs

· e−
√

2|Ws|
σWs and pWn (Wn) =

1√
2πσWn

· e
− W2

n
2σ2
Wn (4.40)

The MAP filter equation 4.20 becomes:

Ŵs = argmax
Ws

{
ln

(
1√

2πσWn

· e
− (Wx−Ws)2

2σ2
Wn · 1√

2σWs

· e−
√

2|Ws|
σWs

)}

= argmax
Ws

{
ln

(
1

2
√
πσWsσWn

)
− (Wx −Ws)

2

2σ2
Wn

−
√

2 |Ws|
σWs

}
. (4.41)

To maximize the argument of the right hand side of 4.41, the following equation must be
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Figure 4.3: The architecture of HWT with directional selectivity enhancement

solved:

d

dWs

(
ln

(
1

2
√
πσWsσWn

)
− (Wx −Ws)

2

2σ2
Wn

−
√

2 |Ws|
σWs

)
= 0 ⇔

⇔ Wx −Ws

σ2
Wn

−
√

2

σWs

· |Ws|
Ws

= 0 ⇔

⇔ Wx −Ws

σ2
Wn

−
√

2

σWs

· sgn (Ws) = 0. (4.42)

For Ws > 0, eq. 4.42 becomes:

Wx −Ws

σ2
Wn

−
√

2

σWs

= 0 ⇔

⇔ Wx −Ws

σ2
Wn

=
√

2
1

σWs

⇔

⇔ Wx −Ws =
√

2
σ2
Wn

σWs

⇔

⇔ Ws = Wx −
√

2
σ2
Wn

σWs

, (4.43)
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Figure 4.4: The histograms of some subbands of the HWT of the image Lena computed
using the mother wavelets ‘Daub, 20’ are represented semi logarithmically (on the ver-
tical axis are represented the logarithms of the values of the histograms) in blue. The
corresponding linear dependencies are represented in red.

while for Ws < 0, eq. 4.42 becomes:

Wx −Ws

σ2
Wn

+

√
2

σWs

= 0 ⇔

⇔ Wx −Ws

σ2
Wn

= −
√

2
1

σWs

⇔

⇔ Wx −Ws = −
√

2
σ2
Wn

σWs

⇔

⇔ Ws = Wx +
√

2
σ2
Wn

σWs

, (4.44)

The condition Ws > 0 implies the condition Wx >
√

2
σ2
Wn

σWs
and the condition Ws < 0

implies Wx < −
√

2
σ2
Wn

σWs
. Taking into account the fact that any real number, x can be

written as x = sgn (x) · |x|, the solution to equation 4.42 can be put under the following
form:

Ŵs =

 sgn (Wx)
(
|Wx| −

√
2
σ2
Wn

σWs

)
, |Wx| >

√
2
σ2
Wn

σWs
,

0, |Wx| <
√

2
σ2
Wn

σWs
.

(4.45)
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equivalent with the final form:

Ŵs = sgn (Wx)

(
|Wx| −

√
2
σ2
Wn

σWs

)
+

. (4.46)

Comparing the input-output relations from 4.8 and 4.46 it can be observed their
identity if t =

√
2
σ2
Wn

σWs
. So, the last MAP filter is a stf. Because the quantity σWs varies

from subband to subband, the threshold’s value is variant. In this respect the last MAP
filter can be considered adaptive. Of course the two variances in equation 4.46 must be
estimated.

If we assume all the detail coefficients of the noise component, Wn1 , Wn2 , Wn3 and
Wn4 , in fig. 4.3 are distributed following the same Gaussian law:

pWn1
(Wn) = pWn2

(Wn) = pWn3
(Wn) = pWn4

(Wn) =
1√

2πσWnd

· e
− W2

n
2σ2
Wnd ,

the pdfs of the real and imaginary parts of the detail HWT coefficients of the noise z+in ,
z−in , z−rn , z+rn can be computed by convolutions:

pz+in (Wn) = pWn2
(Wn) ∗ pWn3

(Wn) ;

pz−in (Wn) = pWn2
(Wn) ∗ pWn2

(−Wn) ;

pz−rn (Wn) = pWn1
(Wn) ∗ pWn4

(Wn) ;

pz+rn (Wn) = pWn1
(Wn) ∗ pWn4

(−Wn) ;

All these four pdfs will be Gaussians (by convolving two Gaussians a new Gaussian is
obtained) with the same standard deviation:

σWn =
√
σ2
Wnd

+ σ2
Wnd

. (4.47)

The noise’s variance σWn can be estimated using the relations 4.9 and 4.47. The local
version of this MAP filter is described by:

Ŵs (i, j) = sgn (Wx (i, j))

(
|Wx (i, j)| −

√
2

σ̂2
Wn

lσ̂Ws (i, j)

)
+

(4.48)

To estimate the local variance of the real and imaginary parts of the useful component,
the relations 4.33, 4.34 and 4.35 can be used in each subband of the form z+i, z−i, z−r,
z+r. The association of the HWT computed with the mother wavelets Daub,20 with the
adaptive stf was tested to denoise the image Lena perturbed by AWGN with different
variances. The results obtained are compared in table 4.6 with the results obtained using
the association of the real and imaginary parts of the HWT with the local marginal zero
order Wiener filter presented in table 4.5.

The superiority of the association HWT-adaptive stf, observed mainly for low PSNRi,
is justified by the fact that the Laplace law is more suited to model the repartition of the
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σn 10 15 20 25 30 35 50 100
PSNRi 28.15 24.65 22.15 20.21 18.62 17.28 14.19 8.16

PSNRo Adaptive Stf 34.81 32.97 31.64 30.55 29.67 28.98 27.28 24.01
PSNRo Wiener 0 34.81 32.80 31.37 30.21 29.29 28.47 26.61 22.92

Table 4.6: A comparison of the results obtained with the associations HWT-adaptive stf
and HWT-local zero order Wiener filter used to denoise the image Lena perturbed with
AWGN with different variances

wavelet coefficients than the Gauss law, as it is heavier tailed. The Gaussian hypothesis
holds only asymptotically.

Instead of applying filters on the real and imaginary parts of the HWT coefficient, a
filtering can be applied on the magnitudes of the HWT coefficients, but, although the
simulations results are good, they do not overtake the results previously mentioned, this
being the reason why I will not further insist on this type of filtering in this section.

4.3.1.3 Local vs global

In the previous sections were presented some marginal MAP filters. In each case there can
be considered global and local approaches. To implement the local versions, the local vari-
ances were estimated in sliding windows. For the experimental results already presented,
rectangular estimation windows with the size of 7x7 pixels were used. In each experiment
already reported, the performance of the local version were better than the performance
of the global one. The shape of the estimation windows was rectangular (isotropic) in all
subbands. So, the preferential direction of each subband was not exploited. Elliptically
estimation windows with the principal axis parallel with the preferential direction of each
subband (anisotropic) will be considered in a following section. All the pixels of the es-
timation windows already used in the simulation reported in previous sections belonged
to the same decomposition level of the WT (same scale) because the corresponding MAP
filters were marginal. Better results can be obtained using three dimensional neighbor-
hoods of the pixel which is currently estimated. Such neighborhoods will be considered
in following sections.

4.3.1.4 Inter-scale dependency

If we talk about the dependency of wavelet coefficients we can consider four types of
dependencies. This is illustrated in figure 4.5, where the coefficients, spatially located
at (n, p), (2n, 2p) and, respectively, (4n, 4p), from three consecutive decomposition levels
m = 1 : 3, are represented.

When we speak about the dependence of coefficients situated at the same scale and
in the same sub-band (represented in yellow in the figure), we have intra-scale and intra-
band dependency. When we refer at the dependency between coefficients situated at the
same decomposition level, but in two different sub-bands (in blue), we have intra-scale
inter-band dependency. If we consider coefficients from different scales but belonging to
the same sub-band (green), we have inter-scale, intra-band dependency while, in the case
when the coefficients belong to different scales and different sub-bands, we talk about
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Figure 4.5: Different types of wavelet coefficients’ dependencies

inter-scale inter-band dependency.
In the case of DWT a strong inter-scale dependency was observed. The marginal

distributions are typically long tailed with high kurtosis (fourth moment divided by the
squared variance). This shape, including the sharp peak at zero and the long tails, is the
statistical manifestation of the sparseness property of wavelet coefficients. The wavelet
coefficients of natural images display a self-reinforcing characteristic such that if one
coefficient is large in magnitude, then other coefficients in its neighborhood are also likely
to be large in magnitude (intra-scale dependence). The intuitive explanation for this is
that localized image structures such as edges have substantial power across many scales
and nearby spatial locations at a given orientation. The wavelet coefficients that represent
the image will also have large magnitudes at these scales, locations and orientations
(inter-scale intra-band dependency). However, the signs and relative magnitudes of these
coefficients will depend on the exact shape, location and orientation of the structure they
represent.

Each wavelet coefficient at level j, W j (2n, 2p), has a parentW j+1 (n, p) and four chil-
dren W j−1 (4n, 4p), W j−1 (4n+ 1, 4p), W j−1 (4n, 4p+ 1) and W j−1 (4n+ 1, 4p+ 1). As
the relation between the acquired image’s coefficients and the useful image’s coefficients
is given by: W j

x = W j
s +W j

n, if the current level is considered j = 1 then the parent level
is j = 2 and then we have the vectorial relationship Wx = Ws + Wn, where:

Wx =
(
W 1
x ,W

2
x

)
, Ws =

(
W 1
s ,W

2
s

)
and Wn =

(
W 1
n ,W

2
n

)
.

The inter-scale dependence implies that, if a parent coefficient is large, then its child
coefficient is also large. By taking into consideration the parent coefficients, we capture
the ‘persistence across scale’ characteristic.

If we want to take into account the inter-scale dependency in the construction of a
MAP filter, we must use bivariate pdf’s in equation 4.20. A technique for the construction
of such bivariate pdf’s will be presented in the following paragraph.
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Gaussian Scale Mixtures (GSM)

The construction of the bivariate pdf can be done with the aid of Gaussian Scale Mix-
tures (GSM). This simple statistical model has been used to model natural signals such
as speech and more recently the wavelet coefficients of natural images and is given in
equation 4.49. It assumes that each vector of coefficients Ws is specified by a stationary
bivariate zero mean Gaussian process u and a spatially fluctuating variance z.

Ws =
√
z · u, z ∈ R, Ws,u ∈ Rd (4.49)

The multiplier z is usually a function of the surrounding coefficient values (like the
local variance of the coefficients within the same scale or a more complex function of
the neighboring coefficients within the same and adjacent scales). The result is always
leptokurotic (kurtosis ≥ 3), its distribution having long tails. The MMSE estimate with
such priors takes the form of a locally adaptive Wiener-like estimator. The number of
elements of the vectors Ws and u, when it is considered only the parent-child dependence,
is d = 2.

To model the self-reinforcing property of the coefficients, z must be slowly varying but
does not need to be symmetric in all directions. It has been shown that, for slowly varying
z, this model can successfully simulate the high kurtosis and long tails of the marginal
distributions. The stationary part of the model u is Gaussian distributed over a small
neighborhood of wavelet coefficients. It is generally assumed that z varies slowly enough
to be considered constant over that neighborhood of coefficients. Under this assumption
the model is now a particular form of a spherically invariant random process called a
GSM. For a small neighborhood of coefficients at nearby spatial locations and scale, a
GSM vector Ws is the product of two independent random variables: a positive scalar z
referred to as the hidden multiplier or mixing variable and a Gaussian random vector u.
The pdf of the Gaussian vector u is given by:

pu (u) =
1

(2πσ2)d/2
· e−

‖u‖2

2σ2 . (4.50)

Setting a =
√
z we will have Ws = a · u and the pdf of the random vector Ws is given

by:

pWs (Ws) =

∫ ∞
0

pa (a) · 1

ad
· pu

(
Ws

a

)
da. (4.51)

Taking into account the relation between a and z, the pdf of a can be expressed as a
function of the pdf of z:

pa (a) = pz (z) · dz
da

= 2a · pz
(
a2
)
. (4.52)

Substituting 4.52 in 4.51, the expression of the pdf of Ws becomes:

pWs (Ws) =

∫ ∞
0

2a · pz
(
a2
)
· 1

ad
· pu

(
Ws

a

)
da. (4.53)

It remains to specify the prior probability function of the multiplier z, pz (z).
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Bivariate probability density functions Some proposals of prior probability
functions are made in [Sel08]. The first of these models that I will further present is the
Gamma law:

pz (z) =
βα

Γ (α)
· zα−1 · e−βz with α = β =

d+ 1

2
. (4.54)

Substituting 4.50 and 4.54 in 4.53, the expression of the pdf of Ws becomes:

1pWs (Ws) =
2βα

Γ (α)

∫ ∞
0

a · a2(α−1) · e−βa2 · 1

ad
· 1

(2πσ2)d/2
· e−

‖Ws‖2

2a2σ2 da, (4.55)

or, taking into account the values of the parameters α and β:

1pWs (Ws) =
2
(
d+1

2

) d+1
2

Γ
(
d+1

2

) ∫ ∞
0

a · a2( d−1
2 ) · e−

d+1
2
a2 · 1

ad
· 1

(2πσ2)d/2
· e−

‖Ws‖2

2a2σ2 da. (4.56)

Finally:

1pWs (Ws) =
2

Γ
(
d+1

2

) · (d+ 1

2

) d+1
2

· 1

(2πσ2)d/2
·
∫ ∞

0

e−
d+1

2
a2− ‖Ws‖

2

2a2σ2 da. (4.57)

The last integral can be computed using the following identity:∫ ∞
0

e−K1a2−K2
a2 da =

1

2

√
π

K1

e−2
√
K1K2 . (4.58)

By comparing 4.58 with 4.57 we can identify the constants K1 = d+1
2

and K2 = ‖Ws‖2
2σ2 ,

and the pdf of Ws can be put in the form:

1pWs (Ws) =
2

Γ
(
d+1

2

) · (d+ 1

2

) d+1
2

· 1

(2πσ2)d/2
· 1

2

√
π
d+1

2

· e−
√
d+1
σ
‖Ws‖. (4.59)

This is a d-dimensional spherically-contoured multivariate pdf [Sel08].
For d = 2, this pdf is bivariate:

1pWs (Ws) =
3

2πσ2
· e−

√
3
σ
·
√
W 1
s +W 2

s . (4.60)

With the aid of this bivariate distribution, the bishrink MAP filter [SS02] can be con-
structed. This construction will be explained in the following section.

For d = 1, the pdf in 4.59 is univariate:

1pWs (Ws) =

√
2

σ
· e−

√
2
σ
·|Ws|. (4.61)

This univariate pdf is of the form of the Laplace law (see the hypotheses of the adaptive
stf, 4.41). In consequence the GSM hypothesis, even for the case of a unique scale, is
useful for modeling the repartition of the wavelet coefficients.
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The joint pdf from 4.60 is proportional with the product of two univariate pdfs of
Laplace type:

1pWs

(
W 1
s ,W

2
s

)
=

3

2πσ2
· e−

√
3
σ
·
√
W 1
s +W 2

s

=

√
3

2π

1

σ
e−
√

3
σ |W 1

s | ·
√

3

2π

1

σ
e−
√

3
σ |W 2

s |

= K1pW 1
s

(
W 1
s

)
·K1pW 2

s

(
W 2
s

)
, (4.62)

which can be regarded as marginal distributions of the corresponding wavelet coefficients
at the considered successive scales. K represents a constant. Because:

1pWs

(
W 1
s ,W

2
s

)
6=1 pW 1

s

(
W 1
s

)
·1 pW 2

s

(
W 2
s

)
, (4.63)

the random variablesW 1
s andW 2

s are not independent. This observation reflects the inter-
scale dependence. But it can be affirmed that the hypothesis of the univariate Laplace
law 4.41 for the marginal distribution of the wavelet coefficients already analyzed is in
accord with the model in 4.60.

Another proposition for the prior probability function, made in [Sel08], is the expo-
nential law: pz (z) = e−z for z ≥ 0. In the following, two wavelet coefficients bivariate
distribution models corresponding to different pdfs for the vector u, constructed with the
exponential prior are presented:

pu (u) =
1

2πσ2
· e−

u2
1+u2

2
2σ2 ,

2pWs (Ws) =
1

πσ2
Kλ

(√
2

σ

√
(W 1

s )2 + (W 2
s )2

)
, with

Kλ (a) =
1

2
·
(a

2

)λ
·
∫ ∞

0

t−λ−1 · e−t−
u2

4t dt (4.64)

and

pu (u) =
1

2πσ1σ2

· e
− 1

2

(
u2

1
σ2

1
+
u2

2
σ2

2

)
,

3pWs (Ws) =
1

πσ1σ2

K0


√√√√2

(
(W 1

s )2

σ2
1

+
(W 2

s )2

σ2
2

) , with

K0 (a) =
1

2
·
∫ ∞

0

t−1 · e−t−
a2

4t dt (4.65)

The model in 4.64 is also a spherically-contoured bivariate pdf. The model in 4.65
represents an elliptically-contoured bivariate pdf.

The GSM model was also used for the conception of one of the best denoising methods
[PSWS03]. The prior probability function proposed in this reference is pz (z) = 1

z
, for

z ≥ 0. It must be noticed that this is not a pdf in the strict sense. By substituting this
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function in 4.53 and supposing that the pdf of the Gaussian vector is that given in 4.50,
it can be written:

4pWs (Ws) =

∫ ∞
0

2a · pz
(
a2
)
· 1

ad
· pu

(
Ws

a

)
da, (4.66)

or:
4pWs (Ws) =

∫ ∞
0

2a · 1

a2
· 1

ad
· 1

(2πσ2)d/2
· e−

‖Ws‖2

2a2σ2 da. (4.67)

The las equation can be put in the following form:

4pWs (Ws) =
2

(2πσ2)d/2
·
∫ ∞

0

1

ad+1
· e−

‖Ws‖2

2a2σ2 da. (4.68)

By changing the variable a = 1
t
, the pdf of Ws becomes:

4pWs (Ws) =
−2

(2πσ2)d/2
·
∫ 0

∞
td+1 · e−

‖Ws‖2t2

2σ2
dt

t2
. (4.69)

For d = 2, the bivariate pdf becomes

4pWs

(
W 1
s ,W

2
s

)
=

2

2πσ2
·
∫ ∞

0

t · e−
‖Ws‖2t2

2σ2 dt. (4.70)

But:
d

dt

(
e−
‖Ws‖2t2

2σ2

)
= −‖Ws‖2 t

σ2
· e−

‖Ws‖2t2

2σ2 . (4.71)

Hence:

t · e−
‖Ws‖2t2

2σ2 = − σ2

‖Ws‖2 ·
d

dt

(
e−
‖Ws‖2t2

2σ2

)
. (4.72)

Substituting 4.72 in 4.70, this equation becomes:

4pWs

(
W 1
s ,W

2
s

)
=

2

2πσ2
·
∫ ∞

0

− σ2

‖Ws‖2 ·
d

dt

(
e−
‖Ws‖2t2

2σ2

)
dt, (4.73)

or:

4pWs

(
W 1
s ,W

2
s

)
= − 1

π ‖Ws‖2 · e
− ‖Ws‖

2t2

2σ2 |∞0 =
1

π ‖Ws‖2 =
1

π
(
(W 1

s )2 + (W 2
s )2) . (4.74)

It results in a third spherically-contoured bivariate pdf.
A last bivariate pdf for the wavelet coefficients was proposed in [AK05]:

5pWs

(
W 1
s ,W

2
s

)
=

γ

2π
(
(W 1

s )2 + (W 2
s )2 + γ2

) 3
2

. (4.75)
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4.3.1.5 The Bishrink Filter

For the construction of the Bishrink filter, the noise is assumed i.i.d. Gaussian,

pWn (Wn) =
1

2πσ2
Wn

· e
−

(W1
n)

2
+(W2

n)
2

2σ2
Wn . (4.76)

The model of the noise-free image is given in 4.60:

pWs (Ws) =
3

2πσ2
Ws

· e−
√

3
σWs
·
√

(W 1
s )2+(W 2

s )2

,

a heavy tailed distribution. Substituting these two pdfs in the equation of the MAP filter,
4.20, this equation becomes:

Ŵs (Wx) = argmax
Ws

ln
 1

2πσ2
Wn

e
−

(W1
x−W

1
s )

2
+(W2

x−W
2
s )

2

2σ2
Wn

3

2πσ2
Ws

e
−
√

3
σWs

√
(W 1

s )2+(W 2
s )2


= argmax

Ws

{
ln

3

4π2σ2
Ws
σ2
Wn

− (W 1
x −W 1

s )
2

+ (W 2
x −W 2

s )
2

2σ2
Wn

−
√

3

σWs

√
(W 1

s )2 + (W 2
s )2

}
(4.77)

The system of equations to be solved in order to obtain the values that give the maximum
of the right side of eq. 4.77 is:

d
dW 1

s

(
ln 3

4π2σ2
Ws

σ2
Wn

− (W 1
x−W 1

s )
2

2σ2
Wn

− (W 2
x−W 2

s )
2

2σ2
Wn

−
√

3
σWs
·
√

(W 1
s )2 + (W 2

s )2

)
= 0

d
dW 2

s

(
ln 3

4π2σ2
Ws

σ2
Wn

− (W 1
x−W 1

s )
2

2σ2
Wn

− (W 2
x−W 2

s )
2

2σ2
Wn

−
√

3
σWs
·
√

(W 1
s )2 + (W 2

s )2

)
= 0

,

(4.78)
or: 

W 1
x−W 1

s

σ2
Wn

−
√

3
σWs
· W 1

s√
(W 1

s )2+(W 2
s )2

= 0

W 2
x−W 2

s

σ2
Wn

−
√

3
σWs
· W 2

s√
(W 1

s )2+(W 2
s )2

= 0
. (4.79)

The system can be put in the following form:
W 1
x

σ2
Wn

=
√

3
σWs
· W 1

s√
(W 1

s )2+(W 2
s )2

+ W 1
s

σ2
Wn

W 2
x

σ2
Wn

=
√

3
σWs
· W 2

s√
(W 1

s )2+(W 2
s )2

+ W 2
s

σ2
Wn

, (4.80)

or, equivalently: 
W 1
s =

σWs

√
(W 1

s )2+(W 2
s )2

σWs

√
(W 1

s )2+(W 2
s )2+

√
3σ2
Wn

W 1
x

W 2
s =

σWs

√
(W 1

s )2+(W 2
s )2

σWs

√
(W 1

s )2+(W 2
s )2+

√
3σ2
Wn

W 2
x

(4.81)
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Computing the square of each equation it results:
(W 1

s )
2

=
σ2
Ws

(
(W 1

s )
2
+(W 2

s )
2
)

(
σWs

√
(W 1

s )2+(W 2
s )2+

√
3σ2
Wn

)2 (W 1
x )

2

(W 2
s )

2
=

σ2
Ws

(
(W 1

s )
2
+(W 2

s )
2
)

(
σWs

√
(W 1

s )2+(W 2
s )2+

√
3σ2
Wn

)2 (W 2
x )

2
(4.82)

By adding the two equations in 4.82 it can be obtained:

(
W 1
s

)2
+
(
W 2
s

)2
=

σ2
Ws

(
(W 1

s )
2

+ (W 2
s )

2
)

(
σWs

√
(W 1

s )2 + (W 2
s )2 +

√
3σ2

Wn

)2

((
W 1
x

)2
+
(
W 2
x

)2
)
⇔

(
W 1
x

)2
+
(
W 2
x

)2
=

(
σWs

√
(W 1

s )2 + (W 2
s )2 +

√
3σ2

Wn

)2

σ2
Ws

⇔√
(W 1

s )2 + (W 2
s )2 =

(√
(W 1

x )2 + (W 2
x )2 −

√
3σ2

Wn

σWs

)
+

(4.83)

Substituting the result obtained in 4.83 in the two equations of the system in 4.81, it can
be written: 

Ŵ 1
s =

(√
(W 1

x )2+(W 2
x )2−

√
3σ2
Wn

σWs

)
+√

(W 1
x )2+(W 2

x )2
·W 1

x

Ŵ 2
s =

(√
(W 1

x )2+(W 2
x )2−

√
3σ2
Wn

σWs

)
+√

(W 1
x )2+(W 2

x )2
·W 2

x

. (4.84)

Finally, the input-output relation of the bishrink filter is:

Ŵ 1
s =

(√
(W 1

x )2 + (W 2
x )2 −

√
3σ2
Wn

σWs

)
+√

(W 1
x )2 + (W 2

x )2
·W 1

x . (4.85)

It can be observed that the bishrink filter is an adaptive stf type estimator, the threshold
being t =

√
3σ2
Wn

σWs
. So, the bishrink filter has a dead zone as well.

This estimator requires prior knowledge of the marginal variance of the noise-free
image for each wavelet coefficient. To estimate the noise variance from the noisy wavelet
coefficients, a robust median estimator from the finest scale wavelet coefficients is used
[DJ94]:

σ̂2
Wn

=
median (|Wx|)

0.6745
, Wx ∈ subband HH1. (4.86)

In [SS02] the marginal variance of the kth coefficient is estimated using neighboring co-
efficients in the region N (k), a squared shaped window of 7x7 pixels, centered in this
coefficient. To make this estimation, we take into account the fact that σ2

Wx
= σ2

Ws
+σ2

Wn
,
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where σ2
Wx

represents the marginal variance of noisy observations W 1
x and W 2

x . In or-
der to estimate the marginal variance of the noisy observations, the following relation is
proposed in [SS02]:

σ̂2
Wx

=
1

M

∑
W i
x∈N(k)

(
W i
x

)2
, (4.87)

where M is the size of the neighborhood N (k). Then σWs can be estimated as:

σ̂W i
s

=

√(
σ̂2
W i
x
− σ̂2

Wn

)
+
i = 1, 2. (4.88)

For the estimation of the local standard deviation of the useful component of a parent
coefficient, σ̂W 2

s
in a given subband, we first interpolate the subband by repeating each

line and column and then we apply relations 4.87 and 4.88. Finally, the local standard
deviation of the useful component of the child coefficients taking into consideration the
parent is computed with the relation:

σ̂Ws =
σ̂W 1

s
+ 0.5σ̂W 2

s

2
. (4.89)

Sensitivity analysis of the Bishrink filter

The sensitivity of the bishrink filter with the estimation of the noise standard deviation,
σ̂Wn can be computed with the relation:

S
σ̂Wn
Ŵ 1
s

=
dŴ 1

s

dσWn

· σWn

Ŵ 1
s

. (4.90)

The input-output relation of the bishrink, 4.85, can be put in the following form:

Ŵ 1
s =


√

(W 1
x )2+(W 2

x )2−
√

3σ2
Wn

σWs√
(W 1

x )2+(W 2
x )2

·W 1
x , if

√
(W 1

x )2 + (W 2
x )2 >

√
3σ2
Wn

σWs
,

0, otherwise.
(4.91)

Taking into account 4.91, we can rewrite 4.90 as:

S
σ̂Wn
Ŵ 1
s

=


−2
√

3σ2
Wn

σWs

√
(W 1

x )2+(W 2
x )2−

√
3σ2
Wn

, if
√

(W 1
x )2 + (W 2

x )2 >
√

3σ2
Wn

σWs
,

0, otherwise.
(4.92)

The absolute value of this sensitivity is an increasing function of σ̂Wn . When the value of
the estimation of the noise standard deviation increases, the performance of the bishrink
filter decreases.

Another very important parameter of the bishrink filter is the local estimation of the
marginal variance of the noise-free image, σ̂Ws . The sensitivity of the estimation Ŵ 1

s with
σ̂Ws is given by:

S
σ̂Ws
Ŵ 1
s

=


√

3σ2
Wn

σWs

√
(W 1

x )2+(W 2
x )2−

√
3σ2
Wn

, if
√

(W 1
x )2 + (W 2

x )2 >
√

3σ2
Wn

σWs
,

0, otherwise.
(4.93)
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This is a decreasing function of σ̂Ws . The precision of the estimation based on the use of
the bishrink filter decreases with the decreasing of σ̂Ws .

The local variance of a pixel, σ̂Ws , can be interpreted in two ways.
First, it represents a homogeneity degree measure for the region to which the consid-

ered pixel belongs. This behavior can be observed in figure 4.6, where the Barbara image,
the associated local variances image and the images composed by the local variances of the
pixels of the original image belonging to a given interval (classes) are presented together.

Figure 4.6: From left to right and up to bottom: original Barbara image; the image of
local variances, the correspondent classes (obtained comparing the local variances with
decreasing thresholds) - the first four classes contain textures and contours; the last two
classes contain textures and homogeneous regions. For each of the last six pictures, the
pixels belonging to a different class are represented in yellow.

The regions with high homogeneity in the Barbara image correspond to the dark
regions in the image of local variances. All the pixels belonging to a perfect homogeneous
region have the same value. So, their local variances are equal with zero. The space
localization of a pixel belonging to a homogeneous region is not very important because
it has a value very similar with the values of its neighbors.
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The values of the pixels belonging to a textured region oscillate in space and they have
non-null local variances. The space localization of a pixel belonging to a textured region is
more important than the space localization of one from a homogeneous region because of
those oscillations (its neighbors could have different values). Finally, the pixels belonging
to an edge have the highest local variances. Their space localization is more important
than the space localization of a pixel belonging to a textured region because their values
differ from those of their neighbors. So, the bishrink filter treats the edges very well
(because their pixels have high local variance and the sensitivity of the bishrink filter
is inverse proportional with the local variance), the estimation of the textured regions
must be corrected and the worst treatment corresponds to the homogeneous regions.
The denoising quality of pixels with slightly different σs will be very different in the
homogeneous regions. The sensitivity Sσ̂Ws

Ŵ 1
s

increases with the increasing of σWn . So, the
degradation of the homogeneous and textured zones of the noise-free image is amplified
by the increasing of the noise standard deviation. Consequently the most difficult regime
of the bishrink filter corresponds to the treatment of homogeneous regions of highly
noisy images. This drawback can be diminished by the fusion of some partial results of
denoising. These partial results can be obtained through diversification.

Similar sensitivity analysis can be accomplished for the zero order Wiener filter or for
the adaptive soft-thresholding filter, concluding that their worst behavior corresponds to
the homogeneous regions of their noise-free input image component.

Secondly, the local variance of a pixel gives some information about the frequency
content of the region to which the considered pixel belongs. If the pixels of a given region
have low local variances then the considered region contains low frequencies. If these
pixels have high local variances then the considered region contains high frequencies.

In conclusion, the local variance of a given pixel could be regarded as a measure of
the space-frequency localization of that pixel.

Associating the Bishrink filter with different WTs

Some experimental results, obtained using the bishrink filter, are presented in the fol-
lowing. First the bishrink filter is associated with the 2D DWT and with the Diversity
Enhanced Discrete Wavelet Transform (DEDWT) respectively. The construction of the
DEDWT and its association with the MAP filter is presented in figure 4.7. The nine
members of the Daubechies family of mother wavelets with the shortest supports, hav-
ing a number of vanishing moments between 2 and 10, denoted with ‘Daub, par’, with
par = 2 · no. of vanishing moments are used for the computation of the DEDWT.

The denoising system makes, first, a diversification of the input image with the aid of
the N DWTs computed with different mother wavelets associated to the same bishrink
filter and with the N IDWTs, producing N partial results, ŝ1, ŝ2, ..., ŝN , and second, it
synthesizes the final result by averaging the partial results (β1 = βs = . . . = βN = 1

N
).

So, it does not make any difference between different mother wavelets. All of them are
weighted with the same weight. The results obtained after this association are presented
in table 4.7

The best results, corresponding to the use of the DE DWT, are marked with bold
fonts. The values corresponding to the second place concerning the quality of denoising
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Figure 4.7: The architecture of the denoising system based on the association of the DE
DWT with the bishrink filter

σn 10 15 20 25 30 35
PSNRi 28.15 24.65 22.15 20.21 18.62 17.28

P
S
N
R
o

Daub,4 33.92 31.93 30.58 29.51 28.62 27.91
Daub,6 34.11 32.17 30.79 29.7 28.81 28.06
Daub,8 34.17 32.21 30.87 29.75 28.90 28.18
Daub,10 34.21 32.29 30.96 29.84 28.99 28.31
Daub,12 34.23 32.29 30.96 29.83 28.96 28.28
Daub,14 34.23 32.27 30.95 29.83 28.94 28.21
Daub,16 34.19 32.26 30.94 29.83 28.97 28.22
Daub,18 34.21 32.27 30.95 29.82 28.97 28.25
Daub,20 34.21 32.28 30.95 29.82 28.95 28.25
DE DWT 35.01 33.14 31.84 30.72 29.83 29.11

Table 4.7: PSNRs obtained using the bishrink filter in the 2D DWTs domain, computed
using the mother wavelets from the Daubechies family and in the DE DWT domain, for
the image Lena perturbed with AWGN with different variances

are marked with italic fonts. The utilization of the diversification mechanism brings a
denoising gain around 0.8 dB. There is no best mother wavelet for this experiment. The
best results, given by an association 2D DWT - bishrink filter are obtained for high
PSNRs using the Daubechies mother wavelets with 6 vanishing moments and for low
PSNRs using the Daubechies mother wavelets with 7 vanishing moments. This is why a
combination of all the mother wavelets belonging to the Daubechies family like that used
in the case of the DE DWT improves the denoising.

The superiority of the DE DWT versus the 2D DWT can be also observed comparing
the values on the last column of the table with the corresponding values presented in
[SS02], where the 2D DWT was computed using a mother wavelets proposed by Kings-
bury.

The following experiments refer to the association HWT - bishrink filter. In the first
experiment the bishrink filter is applied separately to the real and imaginary parts of the
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HWT coefficients computed using the mother wavelets ‘Daub,20’.

σn 10 15 20 25 30 35 50 100
PSNRi 28.15 24.65 22.15 20.21 18.62 17.28 14.19 8.16
PSNRo DWT -
Bishrink

34.21 32.28 30.95 29.82 28.95 28.25 26.78 24.03

PSNRo HWT -
Bishrink

34.76 32.97 31.70 30.65 29.81 29.17 27.55 24.42

Table 4.8: A comparison of the performance obtained associating the bishrink filter with
the DWT and with the HWT respectively for denoising the image Lena perturbed with
AWGN with different variances. The mother wavelets ‘Daub,20’ was used in both exper-
iments.

The superiority of the HWT versus the DWT can be observed from the enhancement of
PSNR point of view. The importance of the diversification can be appreciated comparing
the last line of table 4.8 with the last line of table 4.7. Despite the superiority of the
HWT versus the DWT, the DEDWT produces better results than the HWT computed
with the mother wavelets Daub, 20.

To compare the proposed version of HWT with the 2D DWT, we applied the same de-
noising procedure based on bothWTs in similar conditions (input image, mother wavelets)
obtaining the results in fig. 4.8. Both images represent a zoom on a leg with a regular

(a) 2D DWT (b) HWT

Figure 4.8: A comparison of the directional selectivity of 2D DWT (a) and HWT (b).

texture from Barbara image. This illustrates that, compared with 2D DWT, the HWT
leads to better visual results. Fig. 4.8(a) corresponding to the 2D DWT is strongly
blurred. It clearly appears that the texture with an apparent angle of −π/4 is heavily
corrupted by patterns in the opposite direction, due to the mixing in the "diagonal" sub-
band produced in the 2D DWT case. Details are better preserved in the HWT case, fig.
4.8(b). There is much less directional mixture in the HWT case.

In the second experiment the bishrink filter is associated with the magnitudes values
of the HWT coefficients. This association can work well due to the existence of the dead
zone of the bishrink filter. The results obtained applying this association to denoise the
image Lena perturbed with AWGN with different variances are presented in table 4.9.
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σn 10 15 20 25 30 35 50 100
PSNRi 28.15 24.65 22.15 20.21 18.62 17.28 14.19 8.16
PSNRo Re + Im
HWT - Bishrink

34.76 32.97 31.70 30.65 29.81 29.17 27.55 24.42

PSNRo Abs HWT
- Bishrink

34.73 32.93 31.62 30.63 29.79 29.10 27.47 24.34

Table 4.9: A comparison of the performance obtained associating the bishrink filter with
the real and imaginary parts of HWT and with the magnitude of the HWT respectively
for denoising the image Lena perturbed with AWGN with different variances. The mother
wavelets ‘Daub,20’ was used in both experiments.

It can be observed that the results obtained from the association magnitude of HWT
- bishrink are similar to those obtained from the association of the real and imaginary
parts of HWT - bishrink filter, slightly inferior.

Another WT that can be used in denoising is the Diversity Enhanced HWT, DE
HWT. A denoising system based on this WT has the architecture from figure 4.9. The
DE HWT is a redundant WT. Its redundancy is quit high.

Figure 4.9: The architecture of the denoising system based on the association of the DE
HWT with the bishrink filter

Applying the denoising system in figure 4.9, for the particular case of the bishrink
filter, to the Lena image perturbed by AWGN with different variances, the results pre-
sented in table 4.10 are obtained. The bishrink filter was applied separately to the real
and imaginary parts of each HWT.

The results corresponding to the use of the DEHWT are marked with bold fonts. As
can be seen analyzing table 4.10, the diversification mechanism brings a denoising gain
of around 0.3 dB, compared to the results obtained using only a HWT and ‘Daub,20’
as mother wavelet. There are other mother wavelets that can provide better denoising
results, but they are dependent of the input image (if ‘Barbara’ test image would have
been used, there would have been other results).

Comparing line by line tables 4.7 and 4.10, the superiority of the HWT versus the
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σn 10 15 20 25 30 35
PSNRi 28.17 24.65 22.14 20.20 18.62 17.28

P
S
N
R
o

Daub,4 35.00 33.23 31.96 30.94 30.14 29.46
Daub,6 35.03 33.28 32.02 31.01 30.20 29.51
Daub,8 35.01 33.27 31.99 30.98 30.17 29.48
Daub,10 34.97 33.22 31.94 30.92 30.11 29.43
Daub,12 34.94 33.17 31.89 30.88 30.06 29.38
Daub,14 34.90 33.13 31.84 30.81 30.00 29.32
Daub,16 34.86 33.08 31.78 30.76 29.95 29.27
Daub,18 34.83 33.03 31.73 30.71 29.89 29.21
Daub,20 34.79 32.99 31.68 30.65 29.84 29.16

DE HWT ReIm 35.01 33.25 31.97 30.95 30.14 29.45

Table 4.10: The results obtained associating the bishrink filter with the real and imaginary
parts of HWT and DEHWT for denoising the image Lena perturbed by AWGN with
different variances. The mother wavelets: ‘Daub,4’ - ‘Daub,20’ were used.

DWT and the superiority of DEHWT versus DEDWT can be observed especially for low
PSNRi.

The magnitudes of different HWTs can be also associated with the bishrink filter
using the architecture in figure 4.9. The results presented in the following table are
obtained using this denoising strategy to process the image Lena perturbed by AWGN
with different variances.

σn 10 15 20 25 30 35
PSNRi 28.17 24.65 22.15 20.20 18.62 17.28

P
S
N
R
o

Daub,4 34.86 33.14 31.89 30.92 30.09 29.40
Daub,6 34.92 33.17 31.91 30.94 30.11 29.42
Daub,8 34.92 33.18 31.90 30.91 30.08 29.37
Daub,10 34.90 33.14 31.86 30.86 30.03 29.34
Daub,12 34.87 33.11 31.82 30.81 29.98 29.29
Daub,14 34.83 33.06 31.77 30.76 29.93 29.24
Daub,16 34.80 33.02 31.72 30.71 29.88 29.19
Daub,18 34.76 32.98 31.67 30.66 29.84 29.15
Daub,20 34.72 32.96 31.62 30.61 29.78 29.10

DE HWT Abs 34.92 33.16 31.87 30.88 30.04 29.35

Table 4.11: Results obtained applying the architecture in figure 4.9 where the magnitudes
of HWTs are associated to the bishrink filter to the Lena image perturbed by AWGN
with different variances.

Comparing the lines of the tables 4.10 and 4.11 it can be observed that the denoising
associations Real and Imaginary parts of HWT - bishrink filter and Magnitudes of HWT
- bishrink filter have very similar performances.

Other synthesis mechanisms

The association of the DEDWT with the bishrink filter presented in figure 4.7 and the
association of the DEHWT with the bishrink filter presented in figure 4.9 do not make
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any difference between the mother wavelets used. The synthesis of the final result from
partial results is realized by averaging. These partial results are affected by the sensitivity
of the bishrink filter with σ̂Ws . In the following, a new synthesis mechanism is proposed.
It exploits the same diversification mechanism, the computation of the real and imaginary
parts or the magnitudes of N HWTs using different mother wavelets, but the fusion of
those partial results is realized taking into account their space-frequency localizations.
The new synthesis mechanism also solves the problem of the sensitivity of the bishrink
filter with σ̂Ws . It represents a type of NL-means algorithm.

Taking into consideration the space-frequency localization of the DWT [Olt09] and
the results from section 2.5.1, the regions of the useful component of the input image with
the best space-frequency localization must be treated with a HWT computed using the
mother wavelet ‘Daub,4’ and the regions of the useful component of the input image with
the poor space-frequency localization must be treated with a HWT computed using the
mother wavelets ‘Daub,20’. Consequently, a segmentation of the useful component of the
image to be denoised made using as criterion the space-frequency localization could help
the synthesis mechanism. The values of the local variances could be used as a measure of
space-frequency localization because, as already said in section 4.3.1.5, the local variance
of a pixel provides some information about the importance of his space localization and
about the frequency content of the region to which the considered pixel belongs.

A first implementation of the new synthesis mechanism is presented in figure 4.10.

Figure 4.10: A first implementation of the new synthesis mechanism. It can be applied
to the association of the real and imaginary parts of the HWT coefficients or of their
magnitudes with the bishrink filter

Computing the standard deviation of each pixel of ŝ5, a pilot image (similar to the
second image in figure 4.6) is obtained. Its pixels are classified in N = 9 regions according
to their values with the aid of the block ‘Segm’. This is equivalent with the image blocks
pre-classification proposed in [MS05]. Our segmentation criterion implies the inclusion of
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the local standard deviation of the considered pixel to one of nine possible intervals

Ik = (εk−1 ·max {σ̂ŝ5} , εk ·max {σ̂ŝ5}) , k = 1, 2, . . . , 9,

where ε0 = 0, εk−1 < εk and ε9 = 1. This is the same classification criterion as that
proposed in [GSZ06]. The set of coordinates of the pixels belonging to each of these
regions will represent one of the N = 9 masks denoted by Mk, k = 1, 2, . . . , 9 in figure
4.10. These masks are used to extract from each partial result, ŝk, k = 1, 2, . . . , 9,
the corresponding class Ck, k = 1, 2, . . . , 9, of the final result ŝ. The masks represent
the indicator functions of the corresponding set of pixel coordinates. The mask M1

corresponds to the highest values of the local standard deviation, belonging to the interval
I9 while the maskM9 corresponds to the interval I1. The blocs denoted by ‘Extr’ in figures
4.10 and 4.11, multiply their inputs signals. The classes of the final estimation in figure
4.10 are generated as:

Ck = ŝk ·Mk.

By their concatenation we obtain the final estimation ŝ.
This first implementation of the new synthesis mechanism does not take into account

the sensitivity S
σ̂Ws
Ŵ 1
s
. Next, a second implementation of the new synthesis mechanism,

which completes the first implementation by adding some new blocks in the architecture in
figure 4.10, which takes into account the sensitivity Sσ̂Ws

Ŵ 1
s

is proposed. The corresponding
denoising architecture is presented in figure 4.11.

Figure 4.11: The final implementation of the new synthesis mechanism. It can be applied
to the association of the real and imaginary parts of the HWT coefficients or of their
magnitudes with the bishrink filter

In conformity with equation 4.93, the performance of the bishrink filter degrades
with the decreasing of σ̂Ws . The denoising quality of pixels with slightly different local
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variances is different. This difference is higher when the corresponding values of the local
variances are smaller. An example can be observed in the first picture of figure 4.12.
This picture represents a homogeneous region of the Lena image affected by AWGN with

Figure 4.12: A comparison between the results obtained using the association real and
imaginary parts of HWT - bishrink (up) and the denoising method proposed in this
section (bottom), for the image Lena perturbed by AWGN with σn = 35

σn = 35, denoised with the association bishrink filter - real and imaginary parts of HWT,
computed with the mother wavelet ‘Daub,20’. Some visible artifacts can be observed.
It is necessary to make the denoising more uniform. In the case of the system in figure
4.11, the data is made more uniform with respect to the values of the local variances
of the noise-free component of the acquired image, by segmenting the partial result ŝ5

according to the values of its local variances, obtaining N = 9 masks, like in figure 4.10.
Next, some new partial results are computed. To reduce the sensitivity of the bishrink
filter with σ̂Ws , some linear combinations of the partial results ŝk are computed, obtaining
the new partial results (NPRk):

NPR1 = ŝ1, NPR2 = ŝ2, NPR3 = ŝ3, NPR4 = ŝ4, NPR5 = ŝ5,

NPR6 = (ŝ1 + ŝ2 + ŝ3) /3,

NPR7 = (ŝ1 + ŝ2 + ŝ3 + ŝ4) /4,

NPR8 = (ŝ1 + ŝ2 + ŝ3 + ŝ4 + ŝ5 + ŝ6 + ŝ7 + ŝ8) /8,

NPR9 = (ŝ1 + ŝ2 + ŝ3 + ŝ4 + ŝ5 + ŝ6 + ŝ7 + ŝ8 + ŝ9) /9.

Each new partial result is multiplied with a different mask Mk, obtaining the nine classes
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of the final result:
Ck = NPRk ·M10−k.

In figure 4.13 is presented the fusion system applied for the generation of the last four
partial results. All the weights are equal: β1 = β2 = . . . = βL. An averaging block is a

Figure 4.13: The architecture of the fusion system in the interior of one of the classes
C6 − C9 from the system with the architecture in figure 4.11.

linear low-pass filter. Its cut-off frequency is inversely proportional with the number of
partial results. The frequency content of a class corresponding to a higher value of local
variance is richer than the frequency content of a class that corresponds to a smaller value
of local variance. So, for the fusion of a class corresponding to a smaller value of local
variance an increased number of partial results are necessary. The fusion procedure uses
a different number of new partial results, from class to class. It is based on a NL-means
like algorithm.

The amount of noise reduction and the oversmoothing degree, for each of the last
four NPR, increases with the increasing of the number of partial results used. The fusion
procedure proposed prevents the oversmoothing using a different number of partial results
in regions with different local variances of the noise-free component.

Assembling the nine classes C1, C2, . . . , C9, of the system in figure 4.10, by concate-
nation, the final estimation is obtained. After intensive simulations, the following values
for εk for the intervals Ik for the local standard deviations corresponding to the class Ck,
where established: ε0 = 0, ε1 = 0.15, ε2 = 0.225, ε3 = 0.25, ε4 = 0.3, ε5 = 0.6, ε6 = 0.7,
ε7 = 0.8, ε8 = 0.9 and ε9 = 1.

The denoising results can be further improved by performing a correction on the
homogeneous areas, namely a selection of the pixels belonging to these areas (performed
on a local standard deviation basis) followed by a local averaging of these pixel values.

This denoising system was tested on the image Lena perturbed with AWGN with
different variances. The results obtained are presented in table 4.12.

The second image in figure 4.12 was obtained with the aid of this new synthesis
mechanism and has a better quality than the first image in figure 4.12 (which was obtained
using the association of the real and imaginary parts of the HWT coefficients computed
with the mother wavelet ‘Daub,20’ with the bishrink filter) especially in the uniform
regions.
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σn 10 15 20 25 30 35 50 100
PSNRi 28.16 24.65 22.15 20.21 18.62 17.29 14.19 8.16
PSNRo ReIm HWT
DE - Bishrink

35.06 33.43 32.19 31.17 30.32 29.67 28.03 24.83

PSNRo Abs HWT
DE - Bishrink

35.01 33.34 32.10 31.09 30.28 29.56 27.93 24.78

Table 4.12: Results obtained applying the new synthesis mechanism.

The new synthesis mechanism outperforms the synthesis mechanism which corre-
sponds to the DEHWT from the enhancement of PSNR point of view. The denoising
gain is the effect of the new synthesis mechanism with the architecture in figure 4.11. The
enhancement of the PSNR is not the only criterion for the appreciation of the quality of
a denoising system. Other criteria are proposed in [FNBI09]. One of them refers to the
contours treatment. The new synthesis mechanism outperforms the synthesis mechanism
which corresponds to the DEHWT from the contours treatment point of view because it
does not oversmooth them. The synthesis mechanism which corresponds to the DEHWT
oversmooths the contours because it averages the contours of nine partial results. Some
of those partial results are obtained using mother wavelets with bad space-frequency lo-
calization. In the case of the new synthesis mechanism, the contours belong to a single
partial result which is obtained using a mother wavelets with very good space-frequency
localization.

In table 4.13 we present the values of the contour errors obtained after the denoising
using a single mother wavelet, namely Daub, 6 in association with HWT and bishrink and
the new synthesis model (including the homogeneous areas correction). The simulations
were performed both using the Real and Imaginary parts of the HWT coefficients and
their magnitudes. The countour errors are computed by the sum of the pixels of the

σn 10 15 20 25 30 35
ReIm + Daub,6 -153 -530 -866 -1172 -1403 -1649

ReIm + HWT DE -26 -389 -682 -971 -1175 -1430
Abs + Daub,6 -148 -507 -896 -1229 -1523 -1827

Abs + HWT DE -30 -389 -739 -1014 -1331 -1590

Table 4.13: Contour errors obtained by applying the new synthesis mechanism.

corresponding image of contour errors. A small value of the contour errors indicates a
good-quality treatment (the denoising preserves the contours). As can be seen from the
results presented in table 4.13, the new synthesis mechanism offers a good treatment of
the contours.

In [FNBI09] is made a comparison between the contour treatment of a denoising
method based on the association HWT - adaptive soft-thresholding filter with the con-
tour treatment of a method based on the association of DWT - non-parametric filter,
emphasising the superiority of the HWT-based method.
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Directional estimation windows

The results already reported were obtained using rectangular estimation windows of size
7x7. The energy clusters in different subbands are mainly distributed along the corre-
sponding preferential directions. For this reason, the estimator using a squared window
often leads to downward-biased estimates within and around energy clusters, which is
disadvantageous for the preservation of edges and textures in images. In [Shu05] the
elliptic directional windows are introduced in conjunction with the 2D DWT to estimate
the signal variances in each oriented subband. This idea was generalized in [FNBI09] for
the case of the HWT, using constant array elliptic estimation windows with the main
axes oriented following the preferential orientations of the subbands: ±atan(1/2), ±π/4
and ±atan(2). These windows are presented in figure 4.14.

(a) + atan(1/2) (b) + atan(1) (c) + atan(2)

(d) - atan(1/2) (e) - atan(1) (f) - atan(2)

Figure 4.14: Directional elliptic windows

By applying the denoising method relying on the use of Bishrink filter in the context of
the real and imaginary parts of HWT having ‘Daub,6’ and ‘Daub,20’ as mother wavelets,
and of the HWT with enhanced diversity with homogeneous area correction (architecture
in fig. 4.11), using the directional estimation windows presented in fig.4.14 we have
obtained the PSNR values presented in table 4.14 and for the contours errors the values
in table 4.15.

σn 10 15 20 25 30 35 50 100
PSNRi 28.17 24.64 22.15 20.20 18.62 17.29 14.19 8.16
PSNRo Daub,6 35.06 33.31 32.04 31.07 30.25 29.58 27.92 24.77
PSNRo Daub,20 34.82 33.00 31.67 30.69 29.88 29.21 27.57 24.45
PSNRo HWT DE 35.10 33.45 32.19 31.21 30.39 29.72 28.06 24.92

Table 4.14: Results obtained applying the bishrink filter in association with HWT with
‘Daub,6’ and ‘Daub,20’, respectively with HWTDE, using directional estimation windows
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σn 10 15 20 25 30 35
Daub,6 -141 -539 -819 -1144 -1384 -1618

HWT DE -32 -384 -640 -950 -1164 -1404

Table 4.15: Contour errors obtained by applying the bishrink filter in association with
HWT with Daub,6 and HWT DE, using directional estimation windows

In figure 4.15 is presented the case of input σn = 35. The results obtained using both
directional and square windows have been taken into consideration.

(a) Original image (b) Noisy image (σn = 35)

(c) ‘Daub,6’, directional
windows

(d) HWT DE, directional
windows

(e) ‘Daub,6’, square win-
dows

(f) HWT DE, square win-
dows

Figure 4.15: Simulation results using both directional and square estimation windows

If we compare the results obtained using directional windows with those obtained
using square windows from the PSNR and contours error point of view, we notice that
they are similar but, from the visual point of view the directional window processing
overtakes the other one. Simulations results are presented in [FII10] too.
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In table 4.16 we compare the our results with those reported by [Shu05].

σn 10 15 20 25
PSNRi 28.17 24.64 22.15 20.20

PSNRo Daub,6 35.06 33.31 32.04 31.07
PSNRo Shui 34.7 32.8 31.5 30.4

Table 4.16: Comparison HWT - bishrink vs. those reported in [Shu05]

In the experiments already reported the size of the directional windows was kept con-
stant from a decomposition level to next decomposition level. There are references which
recommend reducing the size of the directional estimation windows from a decomposi-
tion level to the next decomposition level, [Shu05, ZS07, AF01]. Because the simulation
results using windows of different sizes did not show substantial improvements, we will
not further insist on this aspect.

4.3.1.6 Other statistical models for the wavelet coefficients

The bishrink is one of the best MAP filters. In the following some other MAP filters,
with comparable performances will be shortly presented.

MAP filter built on the basis of a bivariate Cauchy statistical model

In [AK05] a similar MAP filter is proposed, but the bivariate a priori pdf of the clean
image is that given in 4.75. It is of SαS type and is named Cauchy bivariate distribution.
So, the hypotheses of the MAP filter built on the basis of the SαS model are:

5pWs

(
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)
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) 3
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· e
−
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2

2σ2
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(4.94)
Substituting these two pdfs in the equation of the MAP filter 4.20, this equation becomes:

Ŵs (Wx) = argmax
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{
ln

(
1

2πσ2
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(4.95)

In the following the argument of the function from the right hand side of the last
equation in 4.95 will be denoted by Φ (W 1

s ,W
2
s ). The system of equations to be solved in

order to obtain the value that maximize Φ (W 1
s ,W

2
s ) is:

dΦ(W 1
s ,W

2
s )

dW 1
s

= Φ1 (W 1
s ) = 0;

dΦ(W 1
s ,W

2
s )

dW 2
s

= Φ2 (W 2
s ) = 0.
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By pursuing with the calculations, we will further get to:
W 2
s = W 2

x

W 1
x
W 1
s ,
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(4.96)

The second equation in 4.96 is a third order algebraic equation. Making the change
of variable y = W 1

s −
W 1
x

3
it becomes:(

y + W 1
x

3

)3

−W 1
x

(
y + W 1

x

3

)2

+
3σ2
Wn

+γ2

1+
(W2

x)2

(W1
x)2

·
(
y + W 1

x

3

)
− γ2W 1

x

1+
(W2

x)2

(W1
x)2

= 0 ⇔

⇔ y3 +

(W 1
x)

2

3
− 2(W 1

x)
2

3
+

3σ2
Wn

+γ2

1+
(W2

x)2

(W1
x)2

 y +
(W 1

x)
3

27
− (W 1

x)
3

9
+

(3σ2
Wn

+γ2)W
1
x

3
−γ2W 1

x

1+
(W2

x)2

(W1
x)2

= 0 ⇔

⇔ y3 +

3σ2
Wn

+γ2

1+
(W2

x)2

(W1
x)2

− (W 1
x)

2

3

 y − 2(W 1
x)

3

27
+

(3σ2
Wn

+γ2)W
1
x

3
−γ2W 1

x

1+
(W2

x)2

(W1
x)2

= 0.

(4.97)
By making the notations:
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the equation 4.97 can be written in the following form:

y3 + py + q = 0. (4.99)

Three additional notations are made:

∆ =
(q

2

)2

+
(p

3

)3

; A2 = −∆ and ρ =

∣∣∣∣∣
√
−p

3

25

∣∣∣∣∣ . (4.100)

The equation 4.97 can have three real solutions (different or a simple and a double
solution) or a real solution and two complex conjugated solutions.

First case: three real solutions: one simple and one double:

∆ = 0; y1 = 3q
p
and y2 = y3 = −1

2
y1 ⇒

⇒ Ŵ 1
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= 3q
p

+ W 1
x

3
and Ŵ 1
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= − 3q

2p
+ W 1

x

3
.

(4.101)

Finally, the right solution is selected by checking which solution, Ŵ 1
s1

or Ŵ 1
s2

verifies the
condition:

sgnΦ1

(
Ŵ 1
s − ε

)
> 0 and sgnΦ1

(
Ŵ 1
s + ε

)
< 0 for any positive, very small ε (4.102)
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Second case: a real solution and two complex conjugate solutions:
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⇒ Ŵ 1
s1

= 3

√
− q

2
+
√

∆ + 3

√
− q

2
−
√

∆ + W 1
x

3
.
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Third case: three real distinct solutions:
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(4.104)

The right solution is the one that verifies condition 4.102.
For the computation of the solutions in each of the three cases is necessary to estimate

the parameters of the two pdfs in 4.94. The standard deviation of the noise, σWn can be
estimated using the procedure given in equation 4.9. The estimation of the parameter
γ of the pdf of the noiseless image is more complicated. The denoising performance
reported in [AK05], obtained associating the DTCWT with the MAP estimator is very
good especially for its local form of the MAP estimator.

A marginal MAP filter built on the basis of a Pearson statistical model

A statistical speckle-removal method based on the association of the UDWT with a
marginal MAP filter constructed using a Pearson statistical model is proposed in [FBB01].
Both the noise and the noiseless component of the input image are modeled as Pearson
random variables:

pWs (Ws) =
(
(Ws − a+ γ)2 + δ2

)2 · e−λatan(
Ws−a+γ

δ )

pWn (Wn) =
(
(Wn − an + γn)2 + δ2

n

)2 · e−λnatan(
Wn−an+γn

δn
), (4.105)

where a, γ, δ, an, γn and δn are specific parameters.
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Substituting these pdfs in the equation of the MAP filter, 4.20, the latter becomes
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(4.106)

This equation can be written as, [FBB01]:

W 3
s + c1W

2
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This is a third order algebraic equation. Making the change of variable y = Ws + c1
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With the denotations:

p = c2 −
c2

1

3
and q =

2c3
1

27
− c1c2

3
+ c3 (4.109)

the equation 4.108 can be written as:

y3 + py + q = 0. (4.110)

The form of the MAP filter equation obtained is the same as that in 4.99 which corre-
sponds to the MAP filter constructed on the basis of the Cauchy model, described in the
previous section. As a consequence, the solving procedure already presented can be also
applied in the case of the equation 4.110.

The MAP filter obtained is associated in [FBB01] with the UDWT for images denois-
ing purposes. For the computation of the solutions in each of the three cases is necessary
to estimate the parameters of the two pdfs in 4.105. This is not a simple task because
there are six parameters to be estimated: a, γ, δ, an, γn and δn. One of the merits
of [FBB01] is the computation of the first four moments of the two random variables
constituted by the noisy and noiseless UDWT coefficients. Using these values, a local
estimation of the six parameters a, γ, δ, an, γn and δn can be realized and the MAP filter
can be applied pixel wise. The results obtained are improved with the aid of a segmen-
tation similar with that presented in section 4.3.1.5. Pixels belonging to homogeneous
regions and to textured regions are treated differently. This treatment strategy does not
take into account the type of mother wavelet used.

The denoising results obtained in [FBB01] are impressive, but their visual aspect is
quit different, being strongly dependent of the mother wavelet used.
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A marginal MAP filter built on the basis of a generalized Gaussian statistical
model

In [ABA06] is proposed a statistical speckle reduction method based on the association of
the UDWT with a marginal MAP filter constructed using a generalized Gaussian (GG)
statistical model. Both the noise and the noiseless component of the input image are
modeled with GG random variables:

pWs (Ws) =

[
ν · η (ν, σ)

2 · Γ (1/ν)

]
e−(η(ν,σ)|Ws|)ν

pWn (Wn) =

[
νn · η (νn, σn)

2 · Γ (1/νn)

]
e−(η(νn,σn)|Wn|)νn

(4.111)

where σ and σn represent the standard deviations of the two pdfs and ν and νn represent
their shape factors.

The function η is defined as:

η (a, b) =
1

b

[
Γ (3/a)

Γ (1/a)

]1/2

.

Substituting these two pdfs in the equation of the MAP filter 4.20 this equation becomes:

Ŵs (Wx) = argmax
Ws

{
ln

([
νn · η (νn, σn)

2 · Γ (1/νn)

]
e−(η(νn,σn)|Wx−Ws|)νn ·

·
[
ν · η (ν, σ)

2 · Γ (1/ν)

]
e−(η(ν,σ)|Ws|)ν

)}
= argmax

Ws

{
ln

[
ννnη (ν, σ) η (νn, σn)

4Γ (1/ν) Γ (1/νn)

]
− (η (νn, σn) |Wx −Ws|)νn − (η (ν, σ) |Ws|)ν

}
.

(4.112)

In the following the argument of the function from the right hand side of the last equation
will be denoted by Φ (Ws). The equation that gives the solution to 4.112 is:

dΦ (Ws)

dWs

= Θ (Ws) = 0,

or, more explicitly:

νn · η (νn, σn)νn
|Wx −Ws|
Wx −Ws

· |Wx −Ws|νn−1 − ν · η (ν, σ)ν
|Ws|
Ws

· |Ws|ν−1 = 0⇔

⇔ νn · η (νn, σn)νn
|Wx −Ws|νn

Wx −Ws

− ν · η (ν, σ)ν
|Ws|ν

Ws

= 0⇔

⇔ νn · η (νn, σn)νn ·Ws · |Wx −Ws|νn − ν · η (ν, σ)ν · (Wx −Ws) · |Ws|ν = 0

(4.113)

This is not an algebraic equation and it can not be solved analytically. Only numerically
solutions can be obtained.
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4.4 Summary
In this chapter we have insisted on the denoising of natural images, which are nor-
mally affected by additive noise. We have presented both non-parametric and parametric
methods, both in the spatial and wavelet domain. After a comparative analysis we can
state that the Bayesian methods overtake the non-parametric ones, that denoising in
the wavelet domain performs much better than in the spatial domain and that local pa-
rameters estimations is better than global estimation. In the wavelet domain, we have
associated both classical DWT and the Diversity-Enhanced DWT but also the HWT with
MAP filters, and have proved, by simulations, that the latter performs much better than
the real transforms.

In order to further increase its performances, we have associated our transform with
directional estimation windows and we have tried different methods to increase its diver-
sity. The results obtained are satisfactory.

In the following chapter we will talk about the reduction of speckle noise, which is a
multiplicative - type of noise.
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Chapter 5

Speckle Reduction

5.1 Introduction

Synthetic Aperture Radar (SAR) images are a particular category of images, comprising
both SONAR (originally an acronym for SOund Navigation and Ranging) and RADAR
(RAdio Detection and Ranging). In order to capture such an image, one needs a device
(sonar or radar) that emits signals (sound pulses in the case of the Sonar or microwave
signals for Radar) and then measures the strength and round-trip time of the received
signals, signals that are reflected of a distant surface or object.

As a consequence of wave coherence [UKBW86], SAR images are perturbed by a spe-
cific type of noise, called speckle noise. Each ground resolution cell is composed of a large
number of elementary reflectors backscattering the radar wave in the sensor direction.
For a rough surface in comparison with the radar wavelength, these elementary reflectors
are present in a number large enough to ensure the statistical independence in phase
and amplitude of these backscattered elementary contributions. For this type of target,
the speckle is fully developed. Elementary phases are then uniformly distributed random
variables. The total component backscattered by the resolution cell is the vectorial sum of
these elementary backscattered electrical fields. The energy recorded by the sensor from
a resolution cell can be either null or significant according to the constructive or destruc-
tive interferences between the elementary contributions. Consequently, the backscattered
energy can randomly fluctuate from one resolution cell to another independently of the
radar backscattering coefficient. The homogeneous areas within the SAR image present
a particular texture called speckle. The ground radar reflectivity proportional to the
surface backscattering coefficient cannot then be derived from a single pixel digital num-
ber. The latter is only estimated by an average of a pixel set. One way to reduce the
radiometric variability due to the speckle is the multi-look processing which consists of
taking an average of looks of the same scene produced by a signal bandwidth sub band
extraction.

Consequently, we can affirm that the speckle is a signal-dependent noise. Even though
there are many speckle scene models ([Tou02]), we chose the one that considers that
speckle can be modeled as a multiplicative noise. The expression of the acquired image
in this case is:

x = s · n, (5.1)

115
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where s is the noise-free image or reflectivity and n represents the speckle.
The aim of a speckle reduction algorithm is to reduce the noise level while preserving

the image features.

5.1.1 Speckle’s Statistics

Throughout time, many researchers have tried to model the speckle noise. Some of the
models chosen can be found in [FBB01], [ABA06], [GD06] and so on.

When the speckle is entirely developed, the hypothesis of independence of random
processes s and n can be adopted [FBB01]. The speckle that perturbs the SAR images
can be modeled as a white noise distributed following a law Gamma, whose parameter is
the number of views, L, [FBB01]:

pNΓ
(n) =

LL

Γ (L)
· nL−1 · e−Ln for n ≥ 0, (5.2)

where Γ represents the Euler’s Gamma function:

Γ (L) =

∫ ∞
0

tL−1 · e−tdt. (5.3)

The speckle’s mean is
µΓ = 1, (5.4)

and its variance is [IIA06]:

σ2
Γ = E

[
N2

Γ

]
− µ2

Γ =
L (L+ 1)

L2
− 1 =

1

L
. (5.5)

The Sonar images are a particular case of SAR images, obtained for L = 1. In this case,
the law Γ becomes a law χ2.

5.1.2 Speckle Filtering Techniques

Because the noise affecting a SAR image is multiplicative, it is difficult to design effective
noise filtering algorithms. The existing strategies rely on transforming the multiplicative
noise component into an additive one. These methods can be grouped in two major
categories: homomorphic filtering and filtering based on pixel-ratioing.

5.1.2.1 Homomorphic Filtering

Homomorphic filtering relies on the property of the logarithm, namely the logarithm of
a product of variables is equal to the sum of the logarithms of each variable:

ln x = ln s+ ln n. (5.6)

An implementation scheme for homomorphic denoising is presented in fig. 5.1. By apply-
ing the logarithm, the random variable NΓ is transformed, resulting a random variable
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Figure 5.1: The architecture of homomorphic filtering system. The mean correction
mechanism and the kernel are highlighted.

denoted Nlog−Γ, which describes the speckle noise at the input of the second block in
figure 5.1. The probability density function of this new variable is:

plog−Γ (n) =
pNΓ

(nΓ)∣∣∣ dndnΓ

∣∣∣
∣∣∣∣∣∣
nΓ=en

=

LL

Γ(L)
· nL−1

Γ · e−LnΓ

1
nΓ

∣∣∣∣∣
nΓ=en

=

=
LL

Γ (L)
· nLΓ · e−LnΓ

∣∣∣∣
nΓ=en

=
LL

Γ (L)
· eLn · e−Len . (5.7)

The value of the mean of the log-Gamma law is given by:

µlog−Γ =
L−1∑
k=1

1

k
− γ − lnL, (5.8)

where γ represents the Euler’s number. The variance is:

σ2
log−Γ =

π2

6
−

L−1∑
k=1

1

k2
. (5.9)

In conclusion, the noise that perturbs the logarithm of the useful part of a SAR image
is white and distributed following a log-Gamma law, whose statistical characteristics are
given by 5.7, 5.8 and 5.9.

In the case of the SONAR images, after the computation of the logarithm the speckle
component will follow a log − χ2 law, with the pdf:

plog−χ2 (n) = eLn · e−en . (5.10)

The value of its mean is :
µlog−χ2 = −γ, (5.11)

and the variance is:
σ2
log−χ2 =

π2

6
. (5.12)

To obtain the denoising result, the logarithm inversion is performed at the end of the
process depicted in figure 5.1. Because the homomorphic treatment could introduce a
small bias, the denoising system must contain a mean correction block. The corresponding

BUPT



118 CHAPTER 5. SPECKLE REDUCTION

block in figure 5.1 computes the mean of the acquired image which is equal to the mean
of the noise-free component because the speckle noise has unitary mean (see 5.4). In
order to correct the mean of the result, the mean of the image at the output of the block
that inverts the logarithm is extracted and the mean of the acquired image is added.

5.1.2.2 Pixel-ratioing - based filtering

Another possibility to transform the multiplicative noise into an additive one is given by
the following equation:

x = s · n = s+ s · (n− 1) = s+ n′, (5.13)

where n′ is an additive, zero-mean, signal-dependent noise term, proportional to the signal
to be estimated. Since s is, in general, non-stationary, the noise n′ will be non-stationary
as well.

5.1.3 Quality measures

In what concerns the quality measures for the speckle reduction, two are more often
encountered: the Equivalent Number of Looks (ENL) and the Signal-to-Mean Squared
Error (S/MSE), [GJ97]:

1. The ENL is usually computed using formula 5.14 using pixel values over a homoge-
nous image area:

ENL =
( mean
standard deviation

)2

= L = constant. (5.14)

Its interpretation would be that the denoised image is equivalent with the result
obtained by averaging L different ‘snapshots’ of the same area.

2. S/MSE corresponds to standard SNR and can be computed with:

S/MSE = 10log10

( ∑K
i s (i)2∑K

i (ŝ (i)− s (i))2

)
, (5.15)

where s is the original image, ŝ is the denoised image and K is the number of pixels
in the image. An alternative to S/MSE is the PSNR already introduced in the
previous chapter.

5.2 Spatial-domain Speckle reduction methods
In this section I will briefly present some classical speckle reduction methods, acting in
the spatial domain. In order to compare their performances, the image in figure 5.2,
[WD00], is used as input noisy image. It is a synthesis of six images of different nature:
optic or radar. The first image (from top-left to bottom-right) is an image acquired by
an optical sensor, the second one presents four types of texture generated using different
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Figure 5.2: Test image

statistical models, the third is obtained by zooming the well known Lena image, the forth
is a mosaic of artificial sub-images, the fifth is another optical image and the last one is
a SAR image. All the sub-images were perturbed with synthetic 3-look speckle. Tacking
the third sub-image and comparing it with the corresponding zone obtained by cropping
the clean Lena image, it was established that the mean square error produced by the
noise generation method proposed in [WD00] is of 3635.

5.2.1 Frost Filter

Frost filter is a Wiener filter adapted to multiplicative noise, proposed in [FSJ+82]. The
parameters of the Frost filter are: the size of the rectangular windows used for the es-
timation of the local standard deviation of the useful component of the acquired image
and the number of looks.

The result of processing the image in figure 5.2 with a Frost filter is presented in figure
5.3.

Figure 5.3: The image in figure 5.2 having a number of looks equal to 1 treated with a
Frost filter using a rectangular moving window of size 7x7.
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5.2.2 Kuan Filter

Kuan considered a multiplicative speckle model and designed a linear filter based on
the minimum mean square error (MMSE) criterion, optimal when both the scene and
the detected intensities are Gaussian distributed. More about this filter can be read in
[KSSC87]. The parameters of the Kuan filter are: the size of the rectangular window
used for the estimation of the local standard deviation of the useful component of the
acquired image and the number of looks. The result of processing the image in figure 5.2
with a Kuan filter is presented in figure 5.4.

Figure 5.4: The image in figure 5.2 having a number of looks equal to 1 treated with a
Kuan filter using a rectangular moving window of size 7x7.

5.2.3 Lee Filter

The Lee filter is a particular case of the Kuan filter due to a linear approximation made
for the multiplicative noise model. It was proposed in [Lee81].

The parameters of the Lee filter are: the size of the rectangular windows used for the
estimation of the local standard deviation of the useful component of the acquired image
and its number of looks.

The result of processing the image in figure 5.2 with a Lee filter is presented in figure
5.5.

An objective comparison of these filters’ performances, using the MSE criterion is
presented in table 5.1. For the computation of the MSE was considered only the sub-
image Lena, from the mosaic in figure 5.2. The parameters of the different filters were
selected to minimize the output mean square error.

Noisy Averager 7-1 Median 7-1 Lee 7-1 Kuan 9-1 Frost 5-1
3635 571.7 569.8 807.5 732.8 566

Table 5.1: Comparison of the performances of some classical speckle reduction systems
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Figure 5.5: The image in figure 5.2 having a number of looks equal to 1 treated with a
Lee filter using a rectangular moving window of size 7x7.

5.2.4 Other speckle reduction filters in the spatial domain

In the following, we will briefly analyse the performances of some MAP filters applied in
the spatial domain.

5.2.4.1 Zero-order Wiener filter

Applying the filter described in 4.3.1.1 to the logarithm of the image in figure 5.2, the
result presented in figure 5.6 was obtained.

Figure 5.6: The image in figure 5.2 treated with a zero-order Wiener filter.

Comparing the result in figure 5.6 with the results presented in previous figures, it
can be observed that the MAP filter performs slightly better than the classical speckle
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reduction filters.

5.2.4.2 A MAP filter acting in the spatial domain

As known, the zero-order Wiener type MAP filter is built on the hypothesis that both
the noiseless image and the noise are distributed following Gaussian laws. This is not
a realistic hypothesis for the noiseless image. In [AKZ06], another MAP filter, built
supposing a heavy-tailed Rayleigh model for the logarithm of the noiseless component
and a Gamma or Nakagami model for the logarithm of the noise component (depending
on whether the image to be filtered is of intensity or amplitude) used in the homomorphic
spatial domain filtering is proposed. In order to assess the quality of the filter proposed in
[AKZ06], the S/MSE was computed in four different cases, the worst case corresponding
to the input image whit the lowest quality (ENL = 1) and the best case corresponding
to the image with the highest quality, (ENL = 12).

Method S/MSE
ENL = 1 ENL = 3 ENL = 9 ENL = 12

Median 14.53 15.52 15.85 15.88
Lee 14.69 15.35 16.64 17.28

Proposed in [AKZ06] 15.86 16.83 18.00 18.68

Table 5.2: A comparison of different spatial-domain speckle reduction methods, from the
S/MSE point of view.

5.2.4.3 Model-Based Despeckling (MBD)

MBD is a statistical filter introduced in [WD00]. Applying this statistical filter on images
from figure 5.7(a) they obtained the result presented in 5.7(b).

(a) Initial image

(b) Denoised image using the MBD method

Figure 5.7: Model-Based Despecking simulation results.
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Through visual comparison with the results of the denoising methods acting in the
spatial domain already presented, it can be observed that the statistical method proposed
in [WD00] is the best.

In [FLA00] is presented a comparison of the best spatial-domain despecklisation meth-
ods introduced before 2000. More than 30 different combinations of estimators and neigh-
borhood types were tested. The basic estimators considered were:

• the Kuan filter;

• the Frost filter;

• the improved Frost filter proposed by Touzi;

• the MAP filter, which supposes Gamma distributed texture and speckle;

• the a posteriori mean (APM) filter, also based on the hypothesis of Gamma dis-
tributed texture and speckle;

• the T-linear filter, which is an approximation of the APM, with T = 0.5 and

• the MBD filter.

Each of these estimators has been associated with different ways of defining the neigh-
borhood where the local statistics are computed:

• fixed size analyzing window without structure detection;

• detection of the biggest homogeneous area within the analyzing window, which
includes the central pixel (a zone is considered to be homogeneous if the measured
coefficient of variation is below a certain threshold);

• analyzing window with local structure detection based on the generalized likelihood
ratio, which constitutes an improvement of the method based on the ratio detector
in the general case where the analyzing window is split in two unequally sized parts
(asymmetrical binary masks);

• intersection between a fixed size analyzing window and a region defined by a seg-
mentation;

• entire regions defined by a segmentation.

The comparative study in [FLA00] reveals interesting differences between the radio-
metric estimators employed by different adaptive speckle filters. However, the method
used to determine the relevant neighborhood seems to play an even more important role.
All adaptive speckle filters perform automatic analysis of the image and may introduce
artifacts leading to complicate subsequent automatic analysis or visual interpretation.
Direct automatic analysis with robust methods that takes the speckle statistics explicitly
into account, or dedicated interactive visualization tools based on non-adaptive trans-
formations of the image (e.g. different spectral weighting functions), can be better than
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speckle filtering for many applications. The radar division of the French Space Agency
CNES (CNES/DSO/OT/QTIS/SR) intends to continue the comparison of speckle filters
on a larger scale. Both a set of SAR images and the corresponding filtered images will be
made available on CD-ROM (possibly also over the Internet). Hence different research
groups can test their speckle filters on the same images, submit their results, and compare
them to the other filtered images. It must be mentioned that the image in figure 5.2 and
other images used in this chapter are taken from this CD. Next, I will present the reasons
found in [JBFZ03] to select an additive noise denoising kernel based on wavelets.

5.3 Speckle reduction in the wavelet domain
As in the case of the additive noise removal, denoising methods can be applied in the
wavelet domain as well. In the following I will continue with the presentation of some
of these methods, beginning with a non-parametric one and continuing with parametric
filters.

5.3.1 Non-parametric filters

Substituting the MAP filters in figure 4.9 with soft-thresholding filters, we obtain the
denoising association DE DWT - soft-thresholding with the architecture presented in
figure 5.8, [IMN+06]

Figure 5.8: A SAR image denoising system based on the association of the DE DWT
with the Soft-thresholding filter

For N = 9, the result obtained applying the system in figure 5.8 to the image in figure
5.2 is represented in figure 5.9.

Comparing the result in figure 5.9 with the similar results presented in previous figures,
one can observe the good treatment of the homogeneous regions (better even than the
treatment of homogeneous regions in figure 5.7(b) obtained with the aid of the MBD
algorithm). This is the effect of the use of the soft-thresholding filter which is a non-
parametric system. The drawbacks of this denoising method lie in the poor treatment of
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Figure 5.9: The output of the system in figure 5.8 when at its input is applied the image
in figure 5.2.

the contours and textured regions due to the over-smoothing produced by the uniform
use of all nine mother wavelets. Another drawback is the reduced directional selectivity
of the result caused by the use of the DWTs. Some solutions to these drawbacks are
presented in the following.

5.3.2 MAP filters

As presented in chapter 4, MAP filters are a good solution for denoising algorithms, and
I will present their performances in speckle reduction purposes.

5.3.2.1 MAP filters associated with 2D UDWT

Pearson model MAP filter

The fist speckle removal method presented is the one based on the association of the 2D
UDWT with a marginal MAP filter constructed using a Pearson statistical model pre-
sented in section 4.3.1.6 as described in [FBB01]. The multiplicative noise is transformed
into additive noise on the basis of the equation 5.13. The application of a Bayesian
analysis requires models for the different probability density functions. Consequently,
in [FBB01] is proposed an application of the Pearson system of distributions in order
to approximate wavelet coefficients’ pdf, assuming Gamma distributions for both radar
reflectivity and speckle. After a brief review of the usual statistical hypothesis for SAR
images and a presentation of the 2D UDWT, in [FBB01] is described the 2D UDWT co-
efficients’ behavior using the second-order moments for a speckled image. The use of the
multiplicative model allows a segmentation of the high-frequency images which permits
different treatment of regions with different homogeneity degrees: homogeneous, textured
and contours. Before applying a MAP criterion, it is also demonstrated in [FBB01] that
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the wavelet coefficients’ pdf of a Gamma distributed image is well approximated by a
Pearson type IV distribution. Therefore, the local Bayesian estimate of the wavelet co-
efficients of the ground reflectivity is the solution of the third-degree equation solved in
section 4.3.1.6. Two types of mother wavelets were considered: orthogonal Daubechies
with four vanishing moments (D4) and biorthogonal with five vanishing moments (B5).
Results of this method are then compared to the Gamma-MAP filter with edge detection
(Touzi’s detector). In the following table are presented the experimental results reported
in [FBB01].

Denoising Method Region 1 Region 2 Region 3 Average Value
Proposed in [FBB01] with D4 34.4 49.8 15.0 33.1
Proposed in [FBB01] with B5 42.8 51.5 22.0 38.8

Gamma-MAP with edge detection 48.5 49.7 22.0 40.1

Table 5.3: A comparison of the ENLs of three regions of a SAR image obtained using the
denoising method proposed in [FBB01] with ENLs of the same regions obtained using
the association of the 2D UDWT with the Gamma-MAP filter which includes an edge
detector inside each estimation window.

In the case of the proposed denoising method the size of the windows used for the local
statistics estimation is 7x7 on the first 2D UDWT decomposition level and progressively
increases with the increasing of the number of decomposition levels.

Generalized Gaussian MAP filter

In the following we will consider the despecklisation method described in section 4.3.1.6.
It is based on the use of a marginal MAP filter built on the hypothesis of a generalized
Gaussian statistical model described in [ABA06]. The multiplicative noise is transformed
into an additive noise using equation 5.13. Starting from the assumption that both
components of the input image, the noiseless component and the noise, are distributed
following generalized Gaussians (GG) pdfs, a MAP estimator with the equation presented
in 4.3.1.6 is derived. The major novelty of the approach presented in [ABA06] is that the
parameters of the GG pdf are taken to be space-varying within each wavelet frame. Thus,
they may be adjusted to spatial image context, not only to scale and orientation. Since the
MAP equation to be solved is a function of the parameters of the assumed pdf model, the
variance and shape factor of the GG function are derived from the theoretical moments,
which depend on the moments and joint moments of the observed noisy signal and on the
statistics of speckle. The solution of the MAP equation yields the MAP estimate of the
wavelet coefficients of the noise-free image. The restored SAR image is synthesized from
such coefficients. Two types of mother wavelets were considered: orthogonal Daubechies
with four vanishing moments (8 taps) (D4) and biorthogonal with 9/7 taps (B9/7). In
table 5.4 are presented the experimental results reported in [ABA06].

Gamma Wavelet MAP filter (Γ-WMAP)

Another speckle removal filter acting in the 2D UDWT domain is proposed in [SE04]. In
this paper is introduced the homomorphic Γ - WMAP filter, a wavelet-based statistical
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Input Raw MAP
D4 B9/7

1-look 12.1 26.0 26.2
4-look 17.8 29.3 29.6
16-look 23.7 32.9 33.1

Table 5.4: PSNR performances of the proposed despeckling algorithm applied to noisy
versions of ‘Lena’ image.

speckle filter equivalent to the Γ - MAP filter. A logarithmic transformation is performed
in order to make the speckle contribution additive and statistically independent of the
radar cross section. Further, the use of normal inverse Gaussian (NIG) distribution as a
statistical model for the wavelet coefficients of both reflectance image and noise image is
proposed.

The stochastic variable X is said to be NIG distributed if it has a pdf of the form:

pX (x, θ) =
αδ

π

ep(x)

q (x)
K1 [αq (x)] (5.16)

where K1 is the modified Bessel function of the second kind with index 1, p (x) =

δ
√
α2 − β2 + β (x− µ) and q (x) =

√
(x− µ)2 + δ2. The shape of the NIG - density

is specified by the four-dimensional vector θ = [α, β, δ, µ] which is bounded: 0 ≤ β < α,
δ > 0 and −∞ < µ < ∞. The NIG distribution is an excellent statistical model for
the wavelet coefficients of synthetic aperture radar images, and in [SE04] is presented
a method for estimating the parameters. The MAP filter equation (equation 4.20 in
previous chapter) must be solved normally and the Γ-WMAP filter is obtained. The per-
formance of this filter is compared in [SE04] with the performance of Γ-MAP filter which
are both based on the same statistical assumptions. The homomorphic Γ-WMAP filter
is shown to have better performance with regard to smoothing homogeneous regions. It
may, in some cases, introduce a small bias, but it is always less than that introduced by
the Γ-MAP filter. Further, the speckle removed by the homomorphic Γ-WMAP filter has
statistics closer to the theoretical model than the speckle contribution removed with the
other filters. The experimental results obtained in [SE04] are presented in table 5.5.

Analyzing table 5.5 it can be observed that the ENL enhancement produced by the
homomorphic Γ-WMAP filter is higher than the ENL enhancement produced by the Γ-
MAP filter, with a single exception. This exception appears in region A, where the input
ENL is smaller than 1 (which indicates that region A is not perfectly homogeneous). So,
the application of the MAP filter into the wavelets’ domain improves the treatment of
homogeneous regions.

A second observation which can be made analyzing table 5.5 refers to the influence of
the analysis window’s size. This influence is higher in the case of the MAP filter applied
into the spatial domain than in the case of the MAP filter applied in the wavelet domain.
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Image ENL
Region A Region B Region C Region D

Window size 5x5
Original 0.9 1 1 1

Γ-WMAP 19.4 50.8 54.8 48.1
Γ-MAP 6.2 10.7 9.4 11.4

Window size 7x7
Original 0.9 1 1 1

Γ-WMAP 19.6 50.8 54.8 48.1
Γ-MAP 20.2 19.4 18.2 20.2

Window size 9x9
Original 0.9 1 1 1

Γ-WMAP 19.8 50.8 54.8 48.1
Γ-MAP 13.1 27.6 29.3 30.3

Table 5.5: A comparison of the performance of the homomorphic Γ-WMAP filter (which
acts in the 2D UDWT domain) with the performance of the Γ-MAP filter (which acts in
the spatial domain) for three analyzing window sizes, in terms of ENL.

5.3.2.2 MAP filters associated with 2D DWT

In [GD06] is presented another version of MAP filter. The multiplicative noise is trans-
formed into additive noise on the basis of the equation 5.13.

This method includes the step of solving the MAP filter equation into a recursive
algorithm. For the denoising of SAR images, in this reference is proposed an association
of the DWT with a MAP filter. The first level of the Bayesian inference is given by:

p (w|y, θ) =
p (y|w, θ) pw (w|θ)

p (y|θ)
, (5.17)

where y is the DWT of the noisy image, w is the DWT of the noise-free component of
the considered image and θ represents the model’s parameters. The new idea proposed
in [GD06] is to improve the estimation of the model’s parameters by maximizing the
evidence p (y|θ). It is assumed that the image model in the wavelet domain is well ap-
proximated with GG distribution, and the speckle-noise can be modeled as non-stationary
Gaussian noise with zero mean and with locally varying variance, which is estimated from
a given spatial neighborhood, P . As can be seen, from the previous sections, there are a
multitude of models for the wavelet coefficients of the speckle noise. The last hypothesis
of Gaussianity will be applied in the rest of this document. The prior pdf p (w|θ) is
defined in [GD06] as a generalized Gauss-Markov Random Field (GMRF):

p (wk|θ) =
νη (ν, σw)

2Γ
(

1
ν

) · e−[η(ν,σw)
∣∣∣wk−∑p∈P θp

(
wpk+wp

′
k

)∣∣∣]ν
, (5.18)

where σw represents the standard deviation of the approximated image model, η (ν, σw) =(
1
σw

)√
Γ(3/ν)
Γ(1/ν)

is the shape factor and Γ represents the Gamma function. The parameters
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σw and θ define the GMRF in the neighborhood P . The sum
∑

p∈P θp

(
wpk + wp

′

k

)
repre-

sents the sum of all distinct cliques of neighboring pixels at a specific sub-band. Using
the additive model, y = w + n′, the likelihood pdf can be written in the form:

p (yk|wk) =
1√

2πσn
· e−

(yk−wk)2

2σ2
n . (5.19)

The MAP estimate is found by solving equation 5.20:

d

dwk
lnp (wk|yk, θ) = 0, (5.20)

or:

d

dwk
ln

(
1√

2πσn
· e−

(yk−wk)2

2σ2
n · νη (ν, σw)

2Γ
(

1
ν

) · e−[η(ν,σw)
∣∣∣wk−∑p∈P θp

(
wpk+wp

′
k

)∣∣∣]ν)
= 0⇔

⇔ d

dwk

(
−(yk − wk)2

2σ2
n

− ην (ν, σw)

∣∣∣∣∣wk −∑
p∈P

θp

(
wpk + wp

′

k

)∣∣∣∣∣
ν)

= 0⇔

⇔ yk − wk
σ2
n

− ην (ν, σw) · ν ·

∣∣∣wk −∑p∈P θp

(
wpk + wp

′

k

)∣∣∣ν
wk −

∑
p∈P θp

(
wpk + wp

′

k

) = 0. (5.21)

For ν = 1, the last equation of 5.21 is a first order algebraic equation which can be solved
analytically. For ν = 2, the solution of this equation represents the zero order Wiener
filter:

ŵk (yk) =
σ2
w · yk + µ · σ2

n

σ2
w + σ2

n

(5.22)

where
µ =

∑
p∈P

θp

(
wpk + wp

′

k

)
.

For the other values of ν, the equation 5.21 must be solved numerically. The variable
ν is incremented with a step of 0.2 in the interval [0.8, 2]. To choose an appropriate
value for parameter ν, is taken advantage of the second level of Bayesian inference by the
maximization of the evidence

ev = p (y|θ) =

∫
p (y|w, θ) p (w|θ).

For each value of ν = νk the evidence ev (νk) is computed and, the value corresponding to
argmax

k
{ev (νk)} is selected. Next, the MAP filter equation is solved and the estimator

obtained is applied to the current pixel of the image to be denoised. The experimental
result reported in [GD06] can be seen in the figure 5.10.

Analyzing figure 5.10, the better treatment of contours realized by the method which
acts in the wavelets domain can be observed. We can also observe that the homogeneous
regions are better reproduced in image (b) than in image (c). At the end of [GD06] is
written: "All routines were written in ANSI C, and for the selected image, with 256x256
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Figure 5.10: A comparison of the results obtained despeckling the image (a) with the
algorithm proposed in [GD06] (b) and with the MBD algorithm proposed in [WD00] (c).

pixels as shown in figure, the proposed algorithm for despeckling runs for 7.6 s on a PC
with a Pentium 4 processor with a CPU clock 2.6 MHz. The MBD algorithm runs for
41.3 s (on the same computer) using first-order neighborhood and window size 3x3.".
So, the computation time required by the despeckling method which acts in the wavelets
domain is shorter.

5.3.2.3 MAP filters associated with 2D DTCWT

A possible solution for the construction of the despeckling system in figure 5.1 is to use
the additive noise denoising kernel based on the association of the 2D DTCWT with
the bishrink filter, described in section 4.3.1.5. One of the papers in which this solution
is exploited is [XXM08]. The only difference between the denoising kernel described
in 4.3.1.5 and the solution proposed in [XXM08] concerns the computation of the local
standard deviation. The estimator in equation 4.85 is replaced in [XXM08] with a Wiener
estimator.

Another paper that exploits the association of the 2D DTCWT with a version of the
bishrink filter for despecklisation purposes is [IIQ07]. This variant was named ‘mixed
bishrink filter’. After three iterations of each DWT representing one tree of a DTCWT,
the pdf of wavelet coefficients can be considered Gaussian. The mixed bishrink filter acts
for the first three iterations of each DWT as a bishrink filter with global estimation of the
local variance, for the forth iteration it acts as a local adaptive Wiener filter and for the
fifth iteration (the last one) it acts as a hard-thresholding filter with the threshold equal
to 3σ̂n. The bishrink filter with global estimation is a version of the genuine bishrink
filter, constructed to increase the precision of the estimation in 4.87. The estimation in
4.87, although based on the correct assumption that W 1

x and W 2
x are modeled as zero-

mean random variables, is not very precise as these variables’ restrictions to the finite
neighborhood N (k) are not necessarily zero-mean. The estimation proposed in [IIQ07]
uses the estimation of the mean in the neighborhood

µ̂Wx =
1

M

∑
W i
x∈N(k)

W i
x,
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followed by the estimation of the variance:

σ̂2
Wx

=
1

M
·
∑

W i
x∈N(k)

(
W i
x − µ̂Wx

)2
,

and, finally, the relation in 4.87. In the case of the bishrink filter with global estimation
of the local variance, the detail wavelet coefficients at the output of the first tree are
indexed with re and the ones at the output of the second tree are indexed with im, the
standard deviation resulted being the arithmetic mean of the values obtained at each
tree:

σ̂ =
reσ̂ +im σ̂

2
.

Using this estimation, the bishrink filter with global estimation of the local variance is
applied separately to the real detail wavelet coefficients produced by each of the two trees
composing the DTCWT.

The mixed bishrink filter was associated with the 2D DTCWT in [IIM+05]. The
experimental result reported in this paper is presented in figure 5.11.

The speckle was entirely suppressed. The good treatment of contours and textured
regions can be observed analyzing figure 5.11. The use of the 2D DTCWT, which has an
enhanced directional selectivity, allows a good representation of all the details (with any
orientation) of the noiseless input image. The input image has a good quality, taking into
account its ENL value (which is relatively high), being relatively simple to process. For
low quality input images, the despecklisation method must be improved. One way for the
improvement of the additive noise denoising kernel is to apply diversification mechanisms
obtaining some partial results and then to synthesize these partial results. Such a strategy
was applied in [IMI09]. The additive noise denoising kernel proposed in [IMI09] has the
architecture in figure 5.12.

The first stage of the algorithm is represented in red. It is composed by four blocks.
The first three blocks implement the genuine denoising method based on the use of the
bishrink filter with global estimation of local variance.

The first block of the first stage implements a DTCWT and the third one the corre-
sponding inverse transform (IDTCWT). So, a first result ŝ2A is obtained. The pilot image
is generated by the segmentation of ŝ2A, done by the block Segm. The segmentation is
done with regard to the value of local standard deviation of each pixel of the first result.
The elements of a class have a value of the local variance, belonging to one of six possible
intervals, Ip = (αpσ̂2Amax , αp+1σ̂2Amax)1≤p≤6, where α1 = 0 and α7 = 1. This way the
data contained in each class is uniform. The class selector CSp in figure 5.12 selects the
class associated to the interval I7−p. Intensive preliminary tests have led to the following
values for the bounds of the intervals Ip: α2 = 0.025, α3 = 0.05, α4 = 0.075, α5 = 0.1
and α6 = 0.25. Recording the coordinates of the pixels belonging to each class, six masks
are generated.

The second stage of the denoising system in figure 5.12 is represented in blue. To
realize the diversification required in the second stage of the proposed algorithm two types
of WT, DT-CWT A and DT-CWT F are computed, obtaining the wavelet coefficients wA
and wB. The first diversification mechanism refers to the construction of the DT-CWT.
Since an image usually consists of several regions of different smoothness, the sparsity of
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Figure 5.11: The result reported in [IIM+05]. The noisy image was acquired by IFRE-
MER, Brest, France (ENL = 7.34 - up). The denoised image (ENL = 76.64 - down)

its representation in a single wavelet domain is limited. This naturally motivates using
multiple wavelet transforms to denoise. This procedure is used for example in [CB04].
Besov balls are convex sets of images whose Besov norms are bounded from above by
their radii. Projecting an image onto a Besov ball of proper radius corresponds to a type
of wavelet shrinkage for image denoising. By defining Besov balls in multiple wavelet
domains and projecting onto their intersection using the projection onto convex sets
(POCS) algorithm, an estimate is obtained in [CB04], which effectively combine estimates
from multiple wavelet domains. There are two kinds of filters used for the computation
of the DT-CWT: for the first decomposition level and for the other levels [Kin01]. The
first diversification mechanism is realized through the selection of two types of filters
for the first level. The first one is selected from the (9,7)-tap Antonini filters pair and
the second one corresponds to the pair of Farras nearly symmetric filters for orthogonal
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Figure 5.12: The architecture of the additive noise denoising kernel proposed in [IMI09].

2-channel perfect reconstruction filter bank, [AS01]. The idea of diversification by using
multiple mother wavelets was also exploited in [IIQ07, FA05], where the bishrink filter
was associated with DWT. The same WT was used in [CB04]. The synthesis of the final
result was carried out in [IIQ07] by simple averaging and in [CB04, FA05] by variational
frameworks.

Next, three versions of bishrink filter: F1-the genuine one, F2-the adaptive bishrink
filter with global estimation of the local variance and F3-the mixed bishrink filter, are
applied in the field of each DT-CWT. These variants represent another diversification
mechanism. Six sequences of estimations of the wavelet coefficients: ŵ1A, ŵ2A, ŵ3A,
ŵ1F , ŵ2F and ŵ3F are obtained. For each one the inverse WT, IDT-CWT, is computed,
obtaining six partial results: ŝ1A, ŝ2A, ŝ3A, ŝ1F , ŝ2F and ŝ3F . This way, the redundancy
was increased because the actual volume of data is six times higher than the initial volume
of data. With the aid of the six masks generated at the end of the first stage, the six
classes of each partial result are identified. Using the class selectors CS1−CS6, the partial
results are individually treated. Each mask is used by the corresponding class selector.
These systems select the pixels of their input image with the coordinates belonging to
the correspondent mask. CS1 is associated with the class containing the highest values of
the local standard deviation and treats the image ŝ2A. It generates the first class of the
final result, ŝ1 and contributes to the generation of the classes ŝ2 ÷ ŝ6 of the final result.
CS2 corresponds to the next class of ŝ2A and treats the image ŝ3A, participating to the
construction of the classes ŝ2÷ ŝ6 of the final result. CS3 corresponds to the next class of
ŝ2A and treats the image ŝ1A. It contributes to the construction of the classes ŝ3÷ŝ6 of the
final result and so on. Finally CS6 is associated to the remaining class of ŝ2A and treats
the image ŝ3F . It participates to the construction of the sixth class of the final result,
ŝ6 (the one that contains the smallest values of the local variance). By NL-averaging (a
NL-means like methodology), the six classes of the final result are obtained. The first
class of the final result, ŝ1, is identical with the first class of the image ŝ2A and represents
the output of CS1. The second class of the final result, ŝ2, is obtained by averaging the
pixels of the outputs of CS1 and CS2 and so on. For the last class of the final result, ŝ6,
containing soft textures and homogeneous zones, all the pixels belonging to the outputs
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of CS1, CS2, . . . and CS6 are averaged. Assembling these classes by concatenation, the
final estimation is obtained.

Some simulations results reported in [IMI09] which refer to synthesized speckle are
presented in the following. In this case, the noise is generated following a Rayleigh distri-
bution with unitary mean and is of a multiplicative nature. It is generated computing the
square root of a sum of squares of two white Gaussian noises having the same variance.
For the Lena image, applying the denoising system in figure 5.1 constructed with the ad-
ditive noise denoising kernel in figure 5.12, in [IMI09] was obtained the result presented
in figure 5.13.

Figure 5.13: Synthesized speckle noise. First line, from left to right: clean image; syn-
thesized speckle; noisy image (PSNR=21.4 dB). Second line, from left to right: denoised
image (PSNR=31.4 dB); method noise; histograms of the noise (up) and method noise
(bottom).

The PSNR gain performed by the proposed method is in this case of 10 dB. An
excellent criterion for the appreciation of the quality of a denoising method conceived
for the reduction of the multiplicative noise is based on the computation of the method
noise. It represents the ratio of the noisy image by the denoising result, [AKZ06]. The
method noise must be identical with the input noise for a perfect denoising method. It
can be observed, analyzing figure 5.13, that the input noise (represented in the second
picture from the first line) has the same aspect like the method noise (represented in the
second picture from the second line). There are some fine differences between the images
of the input noise and of the method noise, noticeable especially in the dark regions of
the noise-free component of the input image (represented in the first picture of the first
line in figure 5.13).
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In the last picture from the second line is carried out a comparison between the
histograms of the input noise (up) and of the method noise (down), highlighting the
statistical differences between these two noises. Although they are distributed following
the same type of law (a Rayleigh law), the input noise has a higher variance, meaning that
the contrast of the noise-free input image is affected by the proposed denoising method.

It can be observed that the proposed method performs a good treatment of edges and
of homogeneous regions. Its drawback is the textures treatment, some of the fine textures
of the clean component of the acquired image being erased by the denoising. A better
analysis of the visual aspect of the proposed method can be carried out if it is applied to
the test image, proposed in [WD00]. In this case the speckle noise is synthesized following
the procedure presented in [WD00]. The methods from [FA05] and [WD00] are compared
in figure 5.14 with the denoising method proposed in [IMI09].

Figure 5.14: From up to bottom: noisy sub-images; results obtained in [WD00]; results
obtained applying the method proposed in [FA05]; results of the denoising method pro-
posed in [IMI09].
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The better treatment of the homogeneous regions is performed by MBD method in
[WD00] but it erases some contours and textures carrying out an over-smooth filtering.
The other two methods use the DT-CWT and treat the details better. The method
proposed in [FA05], based on the DT-CWT-genuine bishrink filter denoising association
does not eliminate all the noise. This effect is easy visible in the homogeneous regions.
The denoising method proposed in [IMI09] makes a good treatment of real scenes, com-
pletely eliminating the noise and introducing small distortions. The treatment of edges is
excellent. The denoising of rough textures is more accurate. Some distortions are visible
at the borders of homogeneous zones. In the interior of those regions residual noise can
be observed.

Finally, some results concerning real SONAR images are presented in [IMI09]. Figure
5.15 shows the original SONAR image ‘Swansea’ and the results obtained with the method
in [IIQ07] and the method proposed in [IMI09]. The visual analysis of the filtered image
proves the correctness of the assumptions made in [IMI09]. Indeed, the result of the
proposed method has a better visual aspect, the result in [IIQ07] being slightly over-
smoothed. An objective measure of the homogeneity degree of a region of a SAR image
is the ENL. The enhancement of the ENL of a denoising method in a homogeneous region
is defined by the ratio of the ENLs of the considered region computed before and after
the application of the method.

The performance obtained for homogeneous regions through the denoising method
proposed in [IMI09] is certificated by the important enhancement of the ENL obtained
considering a region of 120x1000 pixels.

Figure 5.15: Speckle removal for the sea-bed SONAR Swansea image (acquired by
GESMA). Left: acquired image (ENL=3.4), Middle: result in [IIQ07] (ENL=106), Right:
result of the denoising method proposed in [IMI09] (ENL=101.8).
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5.3.2.4 MAP filters associated with HWT

In this section I will present the association of the HWT with different MAP filters
applied on images affected by multiplicative noise. Having in mind the properties of
natural images depicted in section 4.1.5 and the fact that they are in agreement with the
second order statistical analysis of the HWT coefficients, we have selected the HWT for
denoising of SAR images, which are a class of natural images. All the methods imply
homomorphic approach to speckle filtering. Basically, we have the processing scheme in
figure 5.1 and we replace the additive denoising kernel with algorithms already presented
in chapter 4 and some improved versions of them. The tests were performed on both
synthetic images and SAR images.

The adaptive soft-thresholding filter

First, we have associated HWT with the adaptive soft-thresholding filter presented in
section 4.3.1.2. The estimation windows are directional windows. Secondly, we have
added a homogeneous-area correction block, in order to achieve an additional smoothing
of these areas. This block is basically an averager and, with respect to the value of the
standard deviation, uses a different averaging window size, e.g. the smaller the standard
deviation, the greater the size of the averaging window.

In table 5.6 we present the values obtained using the adaptive soft-thresholding filter,
both the simple version and the one with correction added, applied to the ’Lena’ input
image, using the same parameters as in [ABA06], namely noise parameters and mother
wavelets.

Input Raw HWT + Astf HWT + Astf + cor
D4 B9/7 D4 B9/7

1-look 12.1 25.4 25.1 25.6 25.4
4-look 17.8 29.9 29.9 30.0 29.9
16-look 23.7 33.2 32.9 32.9 33.2

Table 5.6: PSNR performances of HWT associated with adaptive soft-thresholding, ap-
plied to noisy versions of ‘Lena’ image

Comparing table 5.6 with table 5.4, we can observe that the results are quite similar,
although our approach is less redundant than the one using UDWT.

In figure 5.16 are presented the results on despeckling ‘Lena’ image.
The noise used in figure 5.16 to disturb the original image has a Rayleigh distribution

with unitary expectation. The acquired image was obtained through the multiplication
of the original image with the speckle noise. The speckle noise is generated computing
the square root of a sum of squares of two white Gaussian noises having same variance.
The noiseless component of the input image is shown in figure 5.16(a). The input image
can be seen in figure 5.16(b). The result of denoising using the HWT and the adaptive
soft thresholding is shown in figure 5.16(c), while the result after the homogeneous-areas
correction is presented in 5.16(d). The PSNR enhancement is relatively important, 10.5
dB. The visual aspect of the result in figure 5.16(d) is quite good, but some distortions
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(a) Original image (b) Noisy input image (PSNR
= 21.4 dB)

(c) HWT + Astf (PSNR =
32.0 dB)

(d) HWT + Astf + correc-
tion (PSNR = 31.94 dB)

Figure 5.16: HWT - Adaptive soft-thresholding denoising results applied on Lena affected
by multiplicative noise

are visible. There are some intensity variations in the homogeneous zones, some textures
of the hat are lost and some fine contours are over smoothed.

The bishrink filter

In this section I will consider the denoising kernel in figure 5.1 formed by the bishrink
filter in the HWT domain.

Properties P1 and P2 (section 4.1.5) clearly show the inability of any wavelet basis to
fully decorrelate the covariance matrices of nonstationary self-similar images. Therefore
the residual dependencies have to be taken into account. We can take advantage of these
correlations when trying to estimate the true image coefficients from noisy observations,
since the noise coefficients are decorrelated if the noise is white and stationary. These
hypotheses were made for the construction of the bishrink filter. For this reason we have
selected the denoising method which associates the HWT with the bishrink filter.

The bishrink filter is largely presented in section 4.3.1.5. In the following I have con-
sidered the bishrink filter associated with 8-tap Daubechies and Biorthogonal 9/7, both
with and without the supplementary homogeneous area correction and with the HWTDE
with the extra correction. Directional elliptic windows were used for the estimation of
local parameters, in all of these cases.
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The first test involved the speckle reduction of synthetic noise, applied in a multiplica-
tive form on the ’Lena’ input image. From the PSNR point of view, the results obtained
are presented in table 5.7.

Input Raw HWT + Bish HWT + Bish + cor HWTDE + Bish + corD4 B9/7 D4 B9/7
1-look 12.1 25.7 25.7 25.9 25.9 25.8
4-look 17.8 29.9 30.1 30.2 30.2 30.1
16-look 23.7 33.0 33.2 33.0 33.1 33.2

Table 5.7: PSNR performances of HWT, respectively HWTDE, associated with bishrink,
applied to noisy versions of ‘Lena’ image.

Analyzing table 5.7 we can observe that, from the PSNR point of view, there is
a slight increase when the additional correction is performed, and that the additional
computation burden introduced by the HWT DE does not necessarily improve the PSNR
of the result. Overall, the results are close to the ones presented in [ABA06].

A visual comparison of the results obtained with each of the versions previously men-
tioned is done in figure 5.17.

(a) Original image (b) Noisy image (PSNR =
21.4 dB)

(c) HWT (D4) + Bishrink
(PSNR = 31.9 dB)

(d) HWT (D4) + Bish +
corr. (PSNR = 32.0 dB)

(e) HWT (B9/7) + Bish +
corr. (PSNR = 32.0 dB)

(f) HWT DE + Bish + cor-
rection (PSNR = 32.0 dB)

Figure 5.17: HWT - Bishrink denoising results applied on Lena affected by multiplicative
noise

By comparing figure 5.17(c) with figures 5.17(d) and 5.17(e) we can observe that the
correction improves the visual quality of the result. Another observation, deduced by the
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analysis of figures 5.17(d), 5.17(e) and 5.17(f) is that the enhanced diversity does not
necessarily improve the visual quality of the denoising, thus not justifying the additional
computation burden introduced by the use of HWT DE.

In figure 5.18 we present a visual comparison between the results obtained with the
association HWT - bishrink and those presented in the literature, associating UDWT and
GGPDF-based MAP filter. In table 5.8 are presented the results from the PSNR point
of view.

(a) HWT + bishrink (b) UDWT + GGPDF-
based MAP

Figure 5.18: HWT + Bishrink vs. UDWT + GGPDF-based MAP

Input Raw HWT + Bish + cor GGPDF-MAP
D4 B9/7 D4 B9/7

1-look 12.1 25.9 25.9 26.0 26.2
4-look 17.8 30.2 30.2 29.3 29.6
16-look 23.7 33.0 33.1 32.9 33.1

Table 5.8: HWT + Bishrink vs. UDWT + GGPDF-based MAP from the PSNR point
of view

Another comparison refers to the image in figure 5.2. In figure 5.19 we present the
result of the bishrink filter applied in HWT domain (figure 5.19(a)), having B9/7 as
mother wavelet and the result of the denosing algorithm presented in section 5.3.1 (figure
5.19(b)). It can be observed that the edges and textures are better preserved in figure
5.19(a) than in 5.19(b).

By considering a real SONAR image, namely ‘Swansea’, the results presented in figure
5.20 are obtained.

In the case of SAR images, the results are presented in 5.21.
Analyzing figures 5.20 and 5.21 we can affirm that our method performs well in the

case of SAR images as well, making it suitable for speckle reduction applications.

5.4 Summary
In this chapter I have presented the particular case of SAR images and I have started with
an overview of speckle removal techniques both in the spatial domain and in the wavelet
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(a) HWT + Bishrink

(b) DEDWT + Soft-thresholding

Figure 5.19: HWT - Bishrink denoising results obtained for the test image

domain. In what concerns the methods used in the wavelet domain, they were classified
according to the type of the wavelet transform used: 2D DWT, 2D UDWT, 2D DT CWT
and HWT. In the case of the HWT, we have used homomorphic filtering techniques and
applied the denoising algorithms already discussed in Chapter 4 in the ‘additive noise
denoising kernel’ block, in figure 5.1. The results obtained were satisfactory, especially
those in which HWT with Biorthogonal 9/7 as mother wavelet was associated with the
bishrink filter, followed by a supplementary correction applied to homogeneous areas.
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(a) Original image, ENL = 3.32 (b) Denoised image, ENL = 155.04

Figure 5.20: HWT - Bishrink denoising results applied on SONAR image. In this case
the ENL is 50 times higher, while in the results presented in 5.15 is only about 30 times
higher
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(a) Original image

(b) Denoised image

Figure 5.21: Results of HWT - Bishrink denoising applied on SAR image
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Chapter 6

Conclusions

6.1 Contributions

In this work, I have proposed:

1. A new one-dimensional wavelet transform called the Analytic Discrete Wavelet
Transform (ADWT), introduced to overcome the shift-sensitivity of the Discrete
Wavelet Transform (DWT). It is made of two trees, both of them implementing
a DWT, one applied to the original signal and the other applied to the Hilbert
transform of the original signal. This transform is complex, the complex coefficients
having for real part the output of the first tree and for imaginary part the output
of the second tree.

2. A new one-dimensional inverse wavelet transform (IADWT). The inverse ADWT
is computed by applying 2 IDWT trees, one to the real part of the coefficients, the
other to the imaginary part and by taking the average between the output
of the first reconstruction tree and the inverse Hilbert transform of the
output of the second reconstruction tree.

3. The quasi shift-invariance of ADWT was measured in simulations both visually
and through the values of the newly introduced measure, namely the degree of
invariance.

4. The advantage of choosing ADWT over the well-known Dual Tree Complex Wavelet
Transform is the possibility to freely choose the mother wavelet from the wide
range classically associated with the DWT.

5. A new two-dimensional wavelet transform called the HWT, basically representing
the generalization in the 2D space of the ADWT. Besides the quasi shift-invariance
the HWT inherits from the ADWT, it also has a good directional selectivity, being
able to separate different angle orientations.

6. The association of the HWT with the zero-order local Wiener filter for denoising
purposes.
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7. The association of the HWT with the adaptive soft-thresholding filter, association
that outperforms the wiener 0 filter for low signal-to-noise ratios, in denoising ap-
plications.

8. I have taken into account the inter-scale dependency of the wavelet coefficients and
associated HWT with the bishrink filter in denoising.

9. Taking into account the drawbacks of the bishrink filter, it results that regions with
different homogeneity degrees must be treated using different strategies.

This task can be accomplished through diversification. Doing so, some partial
results can be obtained. The final result can be obtained starting from these partial
results using a synthesis mechanism. I have tried to propose different synthesis
mechanisms and different shapes of the analysis windows in order to increase the
quality of the result.

One of the diversification mechanisms is based on the mother wavelets selection.
Such a selection strategy could be based on the time-frequency localization of the
mother wavelets.

10. For speckle reduction purposes, I have used a homomorphic filtering, replacing the
additive denoising kernel with algorithms using the association HWT - adaptive
soft-thresholding and HWT - bishrink, the results obtained being comparable with
those in the literature.

6.2 Perspectives
The present work can be continued following a few main directions:

• in what concerns the HWT, it can be improved by finding a better implementa-
tion of the Hilbert transform, thus reducing the approximation errors the present
implementation introduces;

• a thorough research regarding the criteria to be used in choosing a mother wavelet
suitable for the denoising of a particular image.

• associating a wider range of estimators with the HWT, such as the BLS-GSM
algorithm and others.
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