
Generic Mechanisms to Extend Object-Oriented
Programing Languages.

The Reverse Inheritance Class Relationship

Faculty of Automation and Computer Science
University "Politehnica" of Timişoara

PhD Thesis

Author: asist. univ. ing. Ciprian-Bogdan Chirilă

Scientific supervisors:
prof.univ.dr.ing. Ioan Jurca

prof.univ.dr.habil. Philippe Lahire

Scientific reviewers:
c.s. II dr. Günter Kniesel

prof.univ.dr. Alexandru Cicortaş
prof.univ.dr.ing. Vladimir Creţu

February 26, 2010

BUPT

Abstract

Reverse inheritance is a potential class reusing mechanism having capabilities of creating abstact
supertypes, factoring features from classes, redefining features, adapting features, adding an ab-
straction layer in a class hierarchy. This class relationship was not defined fully in the literature
nor implemented in a programming language. To show that reverse inheritance is a feasible class
relationship that helps class reusability, we defined its semantics for Eiffel by informal rules and
we built a proof of a concept prototype. The semantics of reverse inheritance deals with feature
signature exheritance, type exheritance, assertion exheritance, implementation exheritance, fea-
ture adaptations, feature clauses, genericity. The extended Eiffel language is modeled using Prolog
facts, factbases corresponding to object-oriented systems. The semantics of the reverse inheritance
concept is expressed through model transformations applied to the factbase. The factbase model
is transformed using conditional transformations, which can detect transformation dependencies
or can find a possible order for the transformation execution. Finally, the resulted model facts
are translated automatically into pure Eiffel compilable code, in order to build the executable
object-oriented system.

BUPT

Acknowledgements
The current thesis is part of the PhD programme developed in the context of the collaboration be-
tween University Politehnica of Timisoara, Romania and University of Nice from Sophia-Antipolis,
France, where I had several internships: three months may, june, july in 2003 and 2005, two months
july and september in 2007, one month in september 2008 and two weeks in april 2009.

I would like to thank professor Ioan Jurca for his great efforts in supervising my PhD research
activity, sustaining my research projects and elaborating the reviews for the research reports and
thesis.

I would like to thank professor Philippe Lahire for the financial and intellectual resources
invested in the thesis research. Specially, I want to thank professor Michel Riveill for financing a
working visit in Bonn 2008.

I would like also to thank professor Markku Sakkinen from University of Jyväskylä, Finland,
for showing points of interest for the developed problematics during one of my PhD internships
and for helping with the development of the semantics.

I would like to express my gratitude to dr. Günter Kniesel from the Informatics Institute
of Bonn, Germany, for the effort invested in the prototype implementation and for organizing a
working visit in june 2008 at University of Bonn, Germany.

I want to express my regards to Mathieu Acher and Jean Ledesma, former students at Univer-
sity of Nice, for releasing the first version of ETransformer prototype module.

I want to thank also to the head of our department professor Vladimir Creţu for the punctual
advices and management information given during the research activity. I would like to thank also
the dean of our faculty, professor Octavian Proştean, for granting the financial support in some of
the research internships.

1 BUPT

Contents

I Problem Analysis 12

1 Introduction 13
1.1 Motivation . 13

1.1.1 Designing in a More Natural Way . 13
1.1.2 Capturing Common Functionalities . 14
1.1.3 Inserting a Class Into an Existing Hierarchy 14
1.1.4 Extending a Class Hierarchy . 15
1.1.5 Reusing Partial Behavior of a Class . 15
1.1.6 Creating a New Type . 16
1.1.7 Decomposing and Recomposing Classes . 16

1.2 Overview on the Inheritance Class Relationship . 17
1.3 Inheritance in Object-Oriented Programming Languages 20
1.4 Thesis Objectives . 20
1.5 Document Outline . 20

2 Reuse Mechanisms in Object Technology 22
2.1 Multiple Inheritance . 22

2.1.1 Repeated Inheritance . 25
2.1.2 Implementations of Multiple Inheritance . 29
2.1.3 Delegation . 32

2.2 The Like-Type Class Relationship . 33
2.3 Mixins . 34

2.3.1 The Mixin Concept . 34
2.3.2 The Mixin Layer Concept . 35

2.4 Traits . 36
2.4.1 Motivations . 36
2.4.2 Classes and Traits . 36
2.4.3 Composing Traits Use Case . 36
2.4.4 Traits vs. Multiple Inheritance . 38

2.5 Role Programming . 38
2.5.1 Roles . 38
2.5.2 Collaborations . 39
2.5.3 Role Implementation Techniques . 39

2.6 Composition Filters . 40
2.6.1 Motivations . 40
2.6.2 The Composition Filters Model . 41

2.7 Views . 41
2.8 Aspect Oriented Programming . 42
2.9 Classboxes . 43
2.10 Expanders . 45
2.11 Summary . 47

2 BUPT

3 Towards Exheritance: Main Issues 50
3.1 Generalities About Exheritance . 50

3.1.1 Main Approaches of Reverse Inheritance . 50
3.1.2 Definition . 50
3.1.3 Intension and Extension of a Class . 50
3.1.4 Semantical Elements of Reverse Inheritance 51
3.1.5 Reuse of Object vs. Reuse of Class . 52
3.1.6 Explicit vs. Implicit Declaration of Common Features 52
3.1.7 Allowing Empty Class . 53
3.1.8 Source Code Availability . 53
3.1.9 Single/Multiple Exheritance . 53

3.2 Interface Exheritance . 54
3.2.1 Concrete vs. Abstract Generalizing Classes 54
3.2.2 The Influence of Modifiers on Exherited Features 54
3.2.3 Status of Original Methods: Abstract/Concrete 55
3.2.4 Type Conformance Between Superclass/Subclass 56
3.2.5 Common Features and Assertions . 57
3.2.6 Possible Conflicts . 57

3.3 Implementation Exheritance . 62
3.3.1 Impact of Polymorphism in the Generalization Source Class 62
3.3.2 Adding New Behavior . 66
3.3.3 Exheriting Dependencies Problem . 66
3.3.4 Type Invariant Assumptions . 66

3.4 Mixing Inheritance With Exheritance . 67
3.4.1 Fork-Join Inheritance . 67
3.4.2 Reusing Common Behavior . 68
3.4.3 Dynamic Binding Problems . 69
3.4.4 Architectural Restrictions . 71

3.5 Summary . 71

II The Design of an Exheritance Relationship 74

4 Creating a Class by Reverse Inheritance 76
4.1 Reverse Inheritance: Definition and Notations . 76

4.1.1 Definitions . 77
4.1.2 Text and Graphical Syntax . 78

4.2 Single/Multiple Reverse Inheritance . 82
4.2.1 Single Reverse Inheritance . 82
4.2.2 Multiple Reverse Inheritance . 84
4.2.3 Several Independent Reverse Inheritance Relationships 84

4.3 Feature Factorization . 85
4.3.1 Implicit Rules Regarding Feature Exheritance 85
4.3.2 Allowing Implicit and Explicit Common Feature Selection 88
4.3.3 Influence of the Nature of Common Features 91
4.3.4 Factoring Implementation . 94

4.4 Type Conformance . 96
4.4.1 Conforming Reverse Inheritance . 97
4.4.2 Non-conforming Reverse Inheritance . 97
4.4.3 Genericity and the Foster Class . 98
4.4.4 Argument, Result Type and the Foster Class 100
4.4.5 Expanded vs. Non-expanded Foster Classes 100

4.5 Type Exheritance . 101
4.5.1 Exheriting Class Types . 101

3 BUPT

4.5.2 Exheriting Expanded and Separate Types 103
4.5.3 Exheriting Like Types . 104
4.5.4 Exheriting Bit Types . 107
4.5.5 Exheriting Various Types . 108

4.6 Behavior in the New Created Class . 110
4.7 Use of Exheritance Clauses for Factoring Features 110
4.8 Summary . 111

5 Adaptation of Exherited Features 113
5.1 Adaptations for Ordinary Inheritance Applied to Reverse Inheritance 113

5.1.1 Feature Redefinition . 113
5.1.2 Feature Undefinition . 114
5.1.3 Feature Renaming . 115
5.1.4 Conclusions . 115

5.2 Special Signature and Value Adaptations . 116
5.2.1 Scale Adaptation . 117
5.2.2 Parameter Order Adaptation . 119
5.2.3 Parameter Number Adaptation . 119

5.3 Generic Type Adaptation . 121
5.3.1 Unconstrained Genericity . 123
5.3.2 Constrained Genericity . 126

5.4 Redefining Preconditions and Postconditions . 128
5.4.1 Eliminating Non-Exherited Variables . 129
5.4.2 Combined Precondition and Combined Postcondition 133

5.5 Summary . 134

6 Coupling Exheritance with Inheritance 135
6.1 Combining Reverse with Ordinary Inheritance . 135

6.1.1 Inheriting From a Foster Class in an Ordinary Class 136
6.1.2 Exheriting from a Descendant . 136
6.1.3 Inheriting from an Ancestor and Exheriting from a Descendant 137
6.1.4 Restricted Inheritance in a Foster Class . 142
6.1.5 Exheriting from a Foster Class . 142
6.1.6 Exheriting from a Hierarchy . 143

6.2 Considering the Time Stamp When Defining a Class 143
6.2.1 Sharing Features . 145
6.2.2 Replicating Features . 146
6.2.3 The "Select" Approach Does Not Solve All Ambiguities 148

6.3 Constraints on Exherited Features . 148
6.3.1 Using the Frozen Keyword for Features . 148
6.3.2 Impact of the precursor Keyword . 150
6.3.3 Export and Exheritance . 151
6.3.4 Exheriting Creation Procedures . 152
6.3.5 Exheritance of an Attribute with Assign Clause 152
6.3.6 Exheritance When There is an Alias . 153
6.3.7 Exheriting Obsolete Features . 154
6.3.8 Exheriting Once Features . 154

6.4 Constraints on Foster Classes . 156
6.4.1 Using the Frozen Keyword . 156
6.4.2 Using the Obsolete Keyword . 156

6.5 Summary . 156

4 BUPT

III Implementation 158

7 Description of the Implementation 159
7.1 Eiffel Reverse Inheritance Reification in Prolog . 160

7.1.1 Reification of the RIEiffel Language . 161
7.1.2 Reification of the Exheritance Branch and Feature Selection Clauses 161
7.1.3 Metamodel Validity Rules . 163

7.2 Software Instrumentation . 166
7.2.1 The Eiffel to Prolog Translator . 166
7.2.2 The Prolog to Prolog Translator . 167
7.2.3 The Prolog to Eiffel Translator . 167

7.3 Model Transformations . 167
7.3.1 Conditional Transformations . 168
7.3.2 Main Conditional Transformation Diagram 169
7.3.3 Feature Exheritance . 170
7.3.4 Exherited Feature Signatures Creation . 175
7.3.5 Type Exheritance . 177
7.3.6 Combined Assertion Generation . 184
7.3.7 Implementation Exheritance . 184
7.3.8 Adapt Transformation . 185
7.3.9 Feature Clauses Generation . 197
7.3.10 Hierarchy Transformations . 198
7.3.11 Reverse Inheritance Elements Removal . 198

7.4 Summary . 200

8 Evaluation of the Approach 202
8.1 Reverse Inheritance vs. Ordinary Inheritance . 202
8.2 Reverse Inheritance and Design Patterns . 202
8.3 Reverse Inheritance and Abstract Superclass Creation by Refactorings 206
8.4 Reverse Inheritance and Other Class Reuse Mechanisms 209
8.5 Experimenting with Reverse Inheritance on Eiffel Kernel Library 210

9 Conclusions and Perspectives 215
9.1 Contributions . 215
9.2 Future Work . 219

Bibliography 220

A Eiffel Reverse Inheritance BNF Grammar Rules 226

B Eiffel Reverse Inheritance Reification in Prolog 233
B.1 Reification of Class Header . 233
B.2 Reification of Formal Generics . 235
B.3 Reification of Inheritance . 235
B.4 Reification of Creators . 237
B.5 Reification of Features . 237
B.6 Reification of Types . 241
B.7 Reification of Instructions . 242
B.8 Reification of Expressions . 248
B.9 Reification of Exheritance . 250
B.10 Reification of Feature Adaptation . 252

5 BUPT

List of Examples

1 Multiple Inheritance Name Clashes . 23
2 Multiple Inheritance Conflict Resolution in C++ 24
3 Multiple Inheritance Conflict Resolution in Java 24
4 Repeated Inheritance in C++ . 26
5 Virtual Base Classes in C++ . 26
6 Deferring Multiple Inherited Features . 27
7 Replicating Multiple Inherited Features . 28
8 Multiple Inheritance Dynamic Binding Case (1) . 28
9 Multiple Inheritance Dynamic Binding Case (2) . 28
10 Multiple Inheritance Dynamic Binding Case (3) . 29
11 Disabling Polymorphism . 29
12 Delegation Example in C++ . 32
13 Delegation Usage in C++ . 32
14 General Form of Mixin in C++ . 34
15 Graph Counting Mixin Example in C++ . 35
16 Using Mixins Example in C++ . 35
17 General Form of Mixin Layers in C++ . 35
18 Role Implementation . 40
19 Crosscutting Concerns Example . 43
20 An Expression Class Hierarchy . 45
21 Expander Example . 46
22 Expander Usage Example . 46
23 Examples in Java . 55
24 Examples in C++ . 56
25 Name Conflicts (1) . 58
26 Name Conflicts (2) . 58
27 Name Conflicts (3) . 59
28 Scale Conflicts . 60
29 Parameter Order Conflicts . 60
30 Parameter Number Conflict . 61
31 Parameter Type Conflicts (1) . 62
32 Parameter Type Conflicts (2) . 62
33 Impact of Polymorphism . 63
34 Selective Method Exheritance . 64
35 Adaptive Approach . 65
36 Type Invariant Assumptions . 66
37 Exheritance Dynamic Binding Problem . 70
38 Reverse Inheritance Example . 79
39 Ordinary Inheritance Equivalent Example . 79
40 Syntax for Exheriting Features . 80
41 Dequeue Class . 83
42 Implicit Rules for Attribute Exheritance (1) . 86
43 Implicit Rules for Attribute Exheritance (2) . 87

6 BUPT

44 Implicit Rules for Attribute Exheritance (3) . 87
45 Implicit Rules for Method Exheritance (1) . 88
46 Implicit Rules for Method Exheritance (3) . 89
47 Implicit All Common Feature Selection . 89
48 Explicit Common Feature Selection . 90
49 Implicit Common Feature Selection . 91
50 No Feature Selection . 92
51 Factoring Features Represented By Attributes . 92
52 Factoring Features Represented by Attributes and Methods 93
53 Factoring Features Represented by Effective and Deferred Methods 94
54 Factoring Implementation . 95
55 Unsafe Type Moveup Example . 96
56 Conforming Reverse Inheritance . 97
57 Non-conforming Reverse Inheritance . 98
58 Non-conforming Reverse Inheritance (2) . 98
59 Genericity and the Foster Class . 99
60 Argument, Result Type and the Foster Class . 100
61 Expanded vs. Non-expanded Foster Classes . 101
62 Exheriting Class Types Referring Class Declarations 102
63 Exheriting Class Types Referring Formal Generics 102
64 Exheriting Class Types Referring Class Declarations and Having Actual Generics . 103
65 Expanded and Separate Type Exheritance . 104
66 Exheriting Anchored Features (1) . 105
67 Exheriting Anchored Features (2) . 105
68 Exheriting Anchored Features (3) . 106
69 Exheriting Anchored Features (4) . 107
70 Exheriting Bit Types . 108
71 Exheriting Various Types . 109
72 Feature Redefinition . 114
73 Feature Renaming . 115
74 Adaptation Grammar Rules . 117
75 Scale Adaptation (1) . 118
76 Scale Adaptation (2) . 120
77 Parameter Position Adaptation . 120
78 Using the Adaptation . 121
79 Parameter Number Adaptation . 122
80 Unconstrained Genericity (1) . 123
81 Unconstrained Genericity (2) . 124
82 Unconstrained Genericity (3) . 125
83 Unconstrained Genericity (4) . 126
84 Constrained Genericity (1) . 127
85 Constrained Genericity (2) . 128
86 Constrained Genericity (3) . 129
87 Exheritance and Assertions: The Syntax . 131
88 Exheriting the “only” Clause . 132
89 Inheritance from Foster Class . 136
90 Exheriting From a Foster Class (1) . 143
91 Exheriting From a Foster Class (2) . 144
92 Selection of Replicated Features From a Foster Class 147
93 Select Like Approach . 149
94 Catcall Example . 151
95 Exportation and Exheritance . 151
96 Exheriting Creation Procedures . 152
97 Exheritance of an Attribute with Assign Clause . 153

7 BUPT

98 Exheriting Features of Type once . 155
99 RIEiffel Type Rules . 164
100 Single Selection Rule . 164
101 Unparsing Feature Declarations . 168
102 Conditional Transformation Structure . 168
103 Conditional Transformation Example . 169
104 Creating the Exherited Features in the Foster Class 172
105 Computing Candidate Features . 172
106 Computing the Selected Features . 173
107 Concatenating Feature Signature Type Lists . 174
108 Creating Formal Arguments . 175
109 Creating Formal Argument List . 176
110 Updating Formal Arguments . 176
111 Creating Return Types . 177
112 Exheriting Types Having The Same Identifier . 178
113 Exheriting Class Types Having Actual Arguments (1) 178
114 Exheriting Class Types Having Actual Arguments (2) 179
115 Exheriting Expanded Types . 180
116 Exheriting Separate Types . 181
117 Exheriting Like Types (1) . 181
118 Exheriting Like Types (2) . 182
119 Exheriting Like Types (3) . 183
120 Exheriting Bit Types . 183
121 Method Adaptation Example . 187
122 Method Adaptation Use Example . 188
123 Method Adaptation Implementation Solution . 190
124 Attribute Adaptation Example . 192
125 Attribute Adaptation Use Example . 193
126 Attribute Adaptation Solution (1) . 195
127 Attribute Adaptation Solution (2) . 196
128 Adapter Using Reverse Inheritance (Eiffel Code) 204
129 Template Method Using Reverse Inheritance (Eiffel Code) 205
130 Initial Matrix Class . 207
131 Abstract Matrix Class . 207
132 Sparse Matrix Class . 208
133 Excerpt of Eiffel Library . 210
134 Implementation of the Case Study . 211
135 Foster Classes for Adapting the Library . 212

8 BUPT

List of Figures

1.1 Capturing Common Functionalities . 14
1.2 Inserting a Class Into an Existing Hierarchy . 15
1.3 Extending a Class Hierarchy . 15
1.4 Reusing Partial Behavior of a Class . 16
1.5 Creating a New Type . 17
1.6 Decomposing and Recomposing Classes . 18

2.1 Multiple Inheritance . 23
2.2 Direct Repeated Inheritance . 25
2.3 Indirect Repeated Inheritance . 25
2.4 Replicated and Shared Features in Repeated Inheritance 26
2.5 Redefined Features in Repeated Inheritance . 27
2.6 Multiple Inheritance Class Hierarchy . 30
2.7 Emancipation . 30
2.8 Composition . 31
2.9 Expansion . 32
2.10 Variant Type . 33
2.11 Incremental Modification by Inheritance . 33
2.12 Traits Model . 37
2.13 Traits Use Case . 37
2.14 Role Object . 39
2.15 Composition Filters Model . 41
2.16 Aspect Oriented Programming Main Principle . 42
2.17 Classbox Example (1) . 44
2.18 Classbox Example (2) . 44

3.1 Dequeue Example . 53
3.2 Fork-Join Inheritance Example . 67
3.3 Terminal Example . 68
3.4 Terminal Enhancement (1) . 69
3.5 Terminal Enhancement (2) . 69
3.6 Exheritance Dynamic Binding Solution . 71

4.1 Reverse Inheritance . 78
4.2 Dequeue Example . 82
4.3 Dequeue Class Diagram . 83
4.4 Multiple Reverse Inheritance . 84
4.5 Two Independent Reverse Inheritance Relationships 84
4.6 Several Independent Reverse Inheritance Relationships 85

5.1 Exheritance and Assertion Redefinition . 131

6.1 Exheriting from a Descendant . 137

9 BUPT

6.2 Getting the Implementation for Source Features from the Exherited Class 138
6.3 Inheriting from an Ancestor and Exheriting from a Descendant 138
6.4 Getting the Implementation in Amphibious Features (1) 140
6.5 Getting the Implementation in Amphibious Features (2) 141
6.6 Restricted Inheritance in Foster Classes . 142
6.7 Exheriting from a Hierarchy . 144
6.8 Fork-Join Inheritance Example . 144
6.9 Sharing Features (case 1) . 145
6.10 Sharing Features (case 2) . 145
6.11 Sharing Features (case 3) . 146
6.12 Select Problem . 148
6.13 Main Configuration When Using the Precursor Keyword 150
6.14 Adding an Alias When Exheriting . 154

7.1 Generating Eiffel Source Code . 160
7.2 Software Instrumentation Overview . 167
7.3 Main CT Diagram . 170
7.4 Feature Exheritance CT Subtree . 171
7.5 Combined Assertion Generation CT Subtree . 184
7.6 Implementation Exheritance CT Subtree . 185
7.7 Adapt Transformation CT Subtree . 186
7.8 Feature Clauses Generation CT Subtree . 198
7.9 Hierarchy Transformations CT Subtree . 199
7.10 Reverse Inheritance Elements Removal CT Subtree 199

8.1 Adapter Using Reverse Inheritance . 203
8.2 Template Method Using Reverse Inheritance . 204
8.3 Adaptation of the Eiffel Library . 212
8.4 Eiffel Library after Transformation . 213

10 BUPT

List of Tables

2.1 The Four Incremental Mechanisms . 34
2.2 Comparison of Class Reuse Mechanisms . 49

5.1 Semantics of Inheritance and Exheritance Clauses 116

6.1 Possible Combinations of Ordinary Inheritance and Reverse Inheritance 135

11 BUPT

Part I

Problem Analysis

12 BUPT

Chapter 1

Introduction

1.1 Motivation
One of the most important factors on which the software quality depends is reusability. The
benefits of reusability are increased speed of executing projects, decreased maintenance effort,
reliability [Mey97]. In object-oriented technology, one way to achieve reusability is by organizing
the classes in hierarchies. Currently, class organization is done by inheritance, which is considered
one of the basic concepts in the object-oriented paradigm. Inheritance is an incremental modifi-
cation mechanism which allows the transformation of the ancestor class into a descendant class
by augmentation [Fro02]. In practice it has several uses, it can be used for subtyping as well as
for subclassing. From the modeling point of view inheritance can be used either for classifica-
tion or for implementation. A very close concept to the concept of inheritance is the reverse
relationship, namely reverse inheritance.

The idea of reverse inheritance seems to have appeared in the world of objectual database
[SN88], where the main goal is object reuse. Then it was integrated in the context of object-
oriented programming languages as generalization [Ped89], in order to reuse classes. After that,
some ideas of integrating it in Eiffel language can be found in [LHQ94], which we admit to be the
most advanced approach at the moment. Finally, the same concept is discussed in several aspects
related to multiple programming languages in the work of [Sak02].

The works of [SN88, Ped89, LHQ94, Sak02] argue about the idea that the reverse inheritance
concept favors software reusability in the case of object-oriented systems. The creation of a gener-
alized class which plays the role of supertype and contains all the common features of subclasses
is a way of achieving class homogeneity and a better reuse[SN88]. The interest for such a class
relationship can grow when we are dealing with subclasses which belong to a library and have
read-only source code or even worse, the source code is not available [Sak02]. The reason for
which a library is read-only may vary: copyright reasons, maintenance reasons. We can mention
also that this class relationship was neither completely developed in the literature, nor integrated
in a programming language[Sak02]. Next, several ways in which reverse inheritance can be useful
in class hierarchy reorganization are presented in more details [CCL05a, CCL07a, CCL07b].

1.1.1 Designing in a More Natural Way
In [Ped89] it is stated that reverse inheritance is a more natural way for designing class hierarchies.
When modeling classes, it is considered that it is more natural to design each class with its own
features and only then to notice commonalities and factor them in a common superclass. This
will lead to avoidance of data and code duplication, which in object-oriented philosophy is error
prone.

13 BUPT

Figure 1.1: Capturing Common Functionalities

1.1.2 Capturing Common Functionalities
In some applications classes belonging to different contexts need to be used together. Sometimes
they have even common functionalities which could be factored in one place to avoid duplication.
There are several ways to achieve class adaptation and reuse. When the source code of classes is
available and modifications are allowed, inheritance is the right choice1. An abstract superclass
can be created by ordinary inheritance and all common code can be placed in the newly created
superclass. One of the benefits of this solution is the type polymorphism and dynamic binding of
common features. Any instance of the subclass can be referred using references of the superclass
type. Common features can be called using superclass references and the code which will be
executed is chosen at runtime.

We will address the situation of dealing with read-only code or precompiled class libraries
where no modifications are possible. In this case reverse inheritance could be one solution for
the unified management of the reused classes. In figure 1.1 we present the case of having three
classes Rectangle, Ellipse, Triangle which were supposed to be developed in different contexts. A
new abstract class AbstractShape was created which contains an abstract common feature draw().
The benefits discussed in the previous paragraph are still available in this solution, too. The
programmer can manipulate instances of shapes through AbstractShape references. Of course, in
practice, common features may exhibit different signatures, so they may need adaptations.

1.1.3 Inserting a Class Into an Existing Hierarchy
In this subsection is discussed the typical case of a class hierarchy which originally had two
abstraction layers and later on was decided that a new middle abstraction layer is necessary. One
choice is to affect the original classes and to make the modifications in order to reflect the new
hierarchy. Of course, if other clients are already depending on the old class hierarchy, another
solution must be considered. The use of reverse inheritance in such cases is recommended because
it implies no modification of the original classes.

In the use case of figure 1.2 we present a class hierarchy which at design time had only two
classes Shape and Rectangle in a subtype relationship. Later it was decided that a new class
Parallelogram had to be added to the hierarchy. As it is known that any parallelogram is a shape
and any rectangle is a parallelogram, so hierarchically class Parallelogram has to be between Shape
and Rectangle. The solution proposed is to inherit the new class Paralelogram from Shape and to
reverse inherit from Rectangle. This way the natural subtyping relations are preserved.

1Even if the reused classes have superclasses, in Eiffel multiple inheritance is allowed and should be used in this
case. In programming languages like Java where no multiple inheritance between classes is allowed, the solution
would be more complicated.

14 BUPT

Figure 1.2: Inserting a Class Into an Existing Hierarchy

Figure 1.3: Extending a Class Hierarchy

1.1.4 Extending a Class Hierarchy
In some applications the integration of a class hierarchy into a more general one could be of real
help. The idea of connecting two (or more) class hierarchies together under a common superclass
without affecting any of existing classes is achievable by reverse inheritance. The part of the system
which is newly developed can use ordinary inheritance but the link to the read-only hierarchy has
to be made through reverse inheritance.

In the use case depicted in figure 1.3 we have a situation of class hierarchy modeling shapes.
Initially only the hierarchy rooted by class Parallelogram existed and it could not be modified. As
a first step of the redesign process, an abstract superclass named AbstractShape is created using
reverse inheritance. Afterwards, the evolution of the hierarchy comes naturally using ordinary
inheritance for classes like Ellipse, Circle and Triangle.

1.1.5 Reusing Partial Behavior of a Class
Some classes in object-oriented systems exhibit a great quantity of behavior. Maybe in some
contexts only a subset of them needs to be reused. This could be useful in situations where binary

15 BUPT

Figure 1.4: Reusing Partial Behavior of a Class

code size is critical or a supertype, containing a subset of features, is needed. On the other hand
it could be good that clients are restricted to use only a part of the interface of an object and not
all the features from it.

In the example located in figure 1.4, a Dequeue class is analyzed. Originally it was designed
as a double ended queue, having operations for each end: push, pop, top (for one end) and push2,
pop2, top2 (for the other end). A new class Stack is created which is interested only in the
operations related to one end of the Dequeue class. A new class Queue is then created to get the
operations related to queue abstract data type. In conclusion, the programmer has the choice of
reusing several parts of the code written in a class.

1.1.6 Creating a New Type
Another facility offered to the programmer by the use of reverse inheritance and like-type class
relationship (which will be presented in section 2.2) is the creation of a new type starting from
existing classes. Using reverse inheritance we can create a common superclass for the existing
classes, like it was presented in subsection 1.1.2. Ordinary inheritance allows only direct inheritance
of all features from the superclass while a like-type class relationship allows importing features
selectively from other classes. In figure 1.5 starting from two terminal classes Terminal1 and
Terminal2, it was built a TerminalANSI class which gathers all common behavior and data. Later
on, a new type is created, named Terminal3. This new type is created by ordinary inheritance from
class TerminalANSI. It can be noticed that class Terminal3 may import directly some features
from Terminal1 and Terminal2 through the like-type class relation.

1.1.7 Decomposing and Recomposing Classes
Sometimes, in object-oriented systems a part of a class could be used to create a new class. This
idea was presented also in subsection 1.1.5 where the reuse of the partial behavior of a class was
discussed. In this use case it is proposed to facilitate better class design by decomposing classes
and creating new ones by recomposing with the decomposed parts. In figure 1.6 it is presented
such a situation where class CalculatorWatch was decomposed into two abstract classes Calculator,
which contains the mathematical functions and Watch, which includes the list of clock function-
alities. It was decided to exherit just the feature signatures into the abstract classes but not the
implementation because in the two abstract classes there cannot be added new functionalities. It
is more natural to extract the behavior using the like-type class relationship into classes Calcu-

16 BUPT

Figure 1.5: Creating a New Type

latorImplementation and WatchImplementation. Each implementation class is a subclass of the
corresponding abstract exherited class: CalculatorImplementation is the subclass of Calculator
and WatchImplementation is the subclass of Watch. Next, class Watch is combined with class
Cronograph using multiple inheritance. Thus we showed a way of decomposing a class and recom-
posing it back with another class. It can be noticed that any eventual new features required in
classes Calculator or Watch can be added in CalculatorImplementation or WatchImplementation.
Adding new functionalities directly in classes Calculator or Watch would be inherited in class
CalculatorWatch affecting its original behavior.

1.2 Overview on the Inheritance Class Relationship
The origin of inheritance dates from 1960 and was introduced in the Simula language where it
was known under the name of concatenation [BDMN79]. The inheritance concept cannot exist
without the concept of class through which the objects are defined. The class is considered to
be the building brick of every object-oriented system having the role of both type and module
[Mey97]. Classes are organized in hierarchies representing the backbone of almost every object-
oriented system. They contain the state and the behavior of objects. There is no final definition
for inheritance and its implementing mechanisms. Next, several informal definitions of inheritance
are provided from the literature.

Inheritance is a class relationship where one class shares the state and behavior defined in one or
more classes, so classes can be defined in terms of other classes. A subclass redefines or restricts the
existing structure and behavior of the superclass [Boo94]. Inheritance in [Mey97, Int06] is defined
as module extension mechanism because it makes possible to define new classes from existing ones
by adding or adapting features, and as a type refinement mechanism which allows the definition
of new types as specializations of already existing ones. Inheritance is commonly regarded as the
feature that distinguishes object-oriented programming from object based programming or other
modern programming paradigms [Tai96]. It supports the construction of reusable and flexible
software. In the sense of object-oriented programming, inheritance is an incremental modification
mechanism that transforms an ancestor class into a descendant class by augmenting it in various
ways [Fro02]. The ancestor class is known also as base class, parent class or superclass and the
descendant class as derived class, child class, heir class or subclass. A class is abstract if it
has a partial implementation and as a consequence it can have no instances. Such a class may
contain abstract and concrete members. In Eiffel language [Mey02], an abstract class is known
also as a deferred class, an abstract feature as a deferred feature and a concrete feature as an
effective feature.

Inheritance brings several benefits like code and data reuse, class hierarchy conceptual or-
ganization, rapid prototyping. There are also some drawbacks of inheritance class relationship.
Execution speed is affected because object-oriented programs must include code implied by sev-

17 BUPT

Figure 1.6: Decomposing and Recomposing Classes

18 BUPT

eral supporting mechanisms like: constructors, method calling mechanism (polymorphism and
parameter transmission), garbage collectors, run-time type checkers. Another consequence of the
supporting mechanisms in object-oriented systems is program size. All of the mechanisms men-
tioned earlier imply routines which will be executed at runtime. So their code is added to the
object-oriented system. The complexity of the object-oriented systems is higher compared to other
systems designed using non object-oriented based paradigms. The complexity of the software sys-
tems is managed by the complexity of the object-oriented paradigm concepts.

In [Mey97] a taxonomy of inheritance uses is presented. Each possible purpose of inheritance
is individually analysed.

Subtype inheritance is applied when: i) the heir classes represent sets of external objects; ii)
heir classes correspond to subsets of ancestor class; iii) all heir classes must be mutually disjunctive.
In this case the parent class has to be deferred. This kind of inheritance is very close to hierarchical
taxonomies of botany, zoology and other natural sciences.

View inheritance is the type of inheritance that is used to manage the multiple criteria of
classification between objects. The classes will represent non-disjoint partition sets. This kind of
inheritance is based on multiple inheritance mechanism that enables an object having multiple
views. All involved classes must be deferred.

Restriction inheritance where the heir class instances have additional constraints expressed
through parts of the invariants. The ancestor and heir classes have to be both abstract or both
concrete.

Extension inheritance involves adding new features to the superclass, thus creating a new
enhanced subclass.

Variation inheritance (functional or type variation) involves either providing new implemen-
tations in the subclasses keeping the signatures intact or changing the signatures in a covariant
way, but no other features in the subclasses should be added.

Uneffecting inheritance happens in the case when effective features from the superclass are
redefined as deferred in the subclass.

Reification inheritance applies to cases in which the deferred superclass defines the specifi-
cation of a data structure and the subclass implements it completely or partially. The superclass
is deferred in this case and the subclass can be effective or deferred.

Structure inheritance applies between a deferred superclass defining a property and a sub-
class which models an object having that property. For instance a class COMPARABLE will be
the superclass of all classes which support the comparing functionality.

Implementation inheritance facilitates the subclass to obtain a set of features (except
constant attributes2 and once functions3) from the superclass in order to implement the abstraction
of the subclass.

Facility inheritance involves constant inheritance and machine inheritance. The purpose is
to provide to the subclass a set of logically related features. Machine inheritance means that the
set of features are routines viewed as operations on an abstract machine.

In [AAS01] it is considered that inheritance has mainly two different viewpoints: extension
and specialization. The class relation is used by programmers in modeling, to express conceptual
relations between classes and to share code between classes. It is presented a new abstraction
mechanism named component, a solution that integrates both views of inheritance in an object-
oriented language. The component is a non-instantiable collection of data and related operations.
Classes can be composed of such components. Inheritance works at two levels: at component level
for code-reuse and at class level for subtyping.

Inheritance represents an important reason for divergence in the community of researchers
because of its different uses and implementations in the programming languages. There are a lot
of works showing positive and negative examples of how inheritance must be used [LW94, Tai96].

2Constant attributes are those attributes that hold a read-only value.
3A once function differs from an ordinary function in the sense that it’s body is executed only once on an

instance, no matter how many times it is called.

19 BUPT

1.3 Inheritance in Object-Oriented Programming Languages
In this section we will discuss about how the features of the inheritance mechanisms are imple-
mented in several programming languages. In C++ [Str97, Sch98] there are mainly two kinds of
inheritance: public and private (protected). The public inheritance is allowing the inheritance of
superclass members with their default visibilities. Private inheritance hides the public and pro-
tected inherited members making them private in the subclass. Protected inheritance affects only
the visibility of the public members, being protected in the subclass. On the other hand private
inheritance involves that the subclass will be no longer a subtype of the superclass. That means
that the type conformance relationship between the classes is disabled. In the case of multiple
inheritance there is a special kind of inheritance called virtual inheritance. This is due to the vir-
tual declarations of the base class which imply a special sharing behavior of the inherited features
when multiple inheritance paths are available. These aspects will be detailed in a later section.

In Eiffel [Mey02, Int06] there are two kinds of inheritance: conforming and non-conforming.
The feature inheritance mechanism is the same in both kinds of inheritance. The difference appears
related to the subtyping relationship between the superclass and subclass. With conforming
inheritance the subtyping relationship holds, while with non-conforming it doesn’t. A special
capability in the context of inheritance in Eiffel is the feature redeclaration. This may imply
feature renaming, since it is considered that in the subclass, a new name may increase clarity,
or redefinition, meaning change of signature or implementation. Of course, signatures may be
changed in conformance with the rules of covariance. For this, a set of keywords are used: rename,
undefine, redefine, select.

In Java [AG00] the inheritance mechanism always involves subtyping. The inheritance mecha-
nism involves single subclassing and multiple subtyping. In other words, classes may have only
one superclass while interfaces can have multiple superinterfaces. On the other hand, classes may
implement multiple interfaces. By interface we refer to a special concept, which behaves like a pure
abstract class and has only abstract methods. This approach avoids all problems encountered in
some of the complex cases of multiple inheritance. In C# [FPB+02] we will find the same behavior
as in Java, but some concepts may be named differently.

In the context of inheritance we can discuss also about inherited features or members. In an
Eiffel class a feature has an unique name, which cannot be overloaded. In C++ and Java it is
possible to define several methods with the same name but they are required to have different
signatures. By signature it is meant member name, parameter number and types. Return types
do not belong to the signature.

1.4 Thesis Objectives
The main goal of this thesis is class reuse. In order to achieve our goal we have to fulfill several
objectives. The first objective is the design of a class reuse mechanism in order to facilitate reuse
of already existing class libraries, by defining its semantics informally by principles, rules and
examples. Afterwards we intend to implement it in an industrial strength language in order to
experiment with it. The final objective is to show that the newly designed mechanism has the
necessary features in order to help in the evolution and adaptation of class hierarchies.

1.5 Document Outline
In part I we propose to analyze the features of reverse inheritance class relationship from the
conceptual point of view. Chapter 2 presents the most important reuse mechanisms of object-
oriented technology. In section 3.1 we discuss generalities regarding reverse inheritance, like basic
principles, notations in different approaches. Section 3.2 deals with exheritance at class interface
level. We analyze which features from the class interface can be exherited and what major problems
are encountered. In section 3.3 implementation exheritance issues are discussed. In section 3.4,

20 BUPT

some interesting combinations of ordinary and reverse inheritance are studied. Section 3.5 points
out the conclusions of our analysis.

In part II we define the semantics of reverse inheritance for Eiffel programming language.
Chapter 4 presents the basic elements of our approach of reverse inheritance. Aspects like cardi-
nality, feature factorization, type conformance are discussed in detail. In chapter 5 are presented
main mechanisms through which feature adaptations can be performed. In chapter 6 are discussed
dynamic binding aspects in the context of ordinary and reverse inheritance and constraints which
must be imposed on foster classes. In section 6.5 the approach is reviewed.

In part III we present an implementation of the Eiffel reverse inheritance class relationship in
Prolog. In chapter 7 we will present the Prolog reification of Eiffel and of the reverse inheritance
extension and the architecture of the implementation prototype. Section 7.3 presents the model
transformations in Prolog that expresses the semantics of reverse inheritance in a formal manner.
Main aspects referring to feature exheritance, type exheritance, assertion composition, feature
redefinition, feature adaptation, feature migration and exheritance facts removal are presented
in the containing sections. Chapter 8 evaluates the approach by comparing it to other reuse
mechanisms and describes an adaptation experiment on the Eiffel Kernel Library. In chapter 9
we draw the conclusions and we set the perspectives.

21 BUPT

Chapter 2

Reuse Mechanisms in Object
Technology

In this chapter we will tackle the principles behind the most significant reuse mechanism in object-
oriented programming. The discussed aspects are mechanism design, encountered problems, pos-
sible compromising solutions and their supporting motivation. Implementation issues are also a
goal for this section, as they could be reused or similar ideas could be developed starting from
them. The proposed mechanism for analysis refer to central concepts of object-oriented technol-
ogy like inheritance, mixins, traits, roles, separation of concerns with its object paradigms (aspect
oriented programming, composition filters), classboxes and expanders. The main focus is set on
several design criteria offered by these mechanisms:

i) to create new abstract supertypes;
ii) to factor features from classes;
iii) to combine the implementations of features;
iv) to redefine the implementation of features;
v) to adapt the implementation of features;
vi) to cancel the implementation of features;
vii) to add an abstraction layer into a class hierarchy.

2.1 Multiple Inheritance
In this subsection we will discuss several issues about multiple inheritance since it is a special form
of inheritance, which is the base concept of the object-oriented paradigm. Multiple inheritance is
one of the most powerful facilities offered for the software development allowing to combine several
concepts in one abstraction. Disallowing inheritance to accept multiple parents would limit the
potential of inheritance in general [Mey02]. Like single inheritance, multiple inheritance is used
to extend the module (class) and to create a powerful type system in applications. Inheritance is
single if the subclass has one parent or multiple if the subclass has multiple parents. Because
a class can inherit parents in more than one way, the case of repeated inheritance occurs. We
will focus on the implementations of Eiffel, C++, Java and C# statically typed programming
languages, analyzing the problems and the existing solutions. The interesting points of discussion
are name clashes, duplicating and sharing features, dynamic binding issues.

In Eiffel, multiple inheritance occurs even when the same parent class is inherited twice by
the same subclass. This is also known as the repeated inheritance case [Mey02]. If a class has
no parents declared, implicitly is considered that it inherits from class ANY, which is the base
class of any user defined class. In practice multiple inheritance is used in describing the basic
data structures implemented in the base library of the Eiffel language. Some researchers sustain
the idea that multiple inheritance is a dangerous and destructive concept [Mey02]. This is not
a justified opinion, but in practice it results from imperfect implementations and its improper

22 BUPT

Figure 2.1: Multiple Inheritance

Example 1 Multiple Inheritance Name Clashes
class LONDON
feature foo:INTEGER;

end
class NEW_YORK
feature foo:REAL;

end
class SANTA_BARBARA inherits
LONDON
NEW_YORK

feature
...

end

uses. When using it properly, it permits combining abstractions, being a key technique in object-
oriented development. As graphical convention, multiple inheritance can be represented like in
figure 2.1. We used the UML notation to show that class C has two parents A and B.

In C++ this kind of multiple inheritance is named also as independent multiple inheritance
[Str02], because there is no dependency between the superclasses. This name allows separating
from the case of repeated inheritance.

In multiple inheritance one technical problem is the name clash. This happens when several
features with the same name are inherited from different parents. In the Eiffel philosophy, features
cannot be overloaded within a class [Mey02], each feature has a unique name, but even in languages
which support overloading (like C++ or Java) the conflict persists for features with identical
signatures. Such a name clash situation is represented in example 1, taken from [Mey97].

Name clash is produced if both classes LONDON and NEW_YORK have a same named
feature foo, for example. Because the problem appeared in the descendant class, it is motivated
that the solution’s place is also in the descendant. So the renaming mechanism can be used to solve
such a conflict. There are several solutions for the problem of the example: to rename the feature
inherited from LONDON, to rename the inherited feature from NEW_YORK or to rename both
inherited features. Of course, the new names chosen have to be unique at the subclass visibility
level, otherwise another name conflict could be caused. It is worth mentioning that as long as the
conflicting features are not used there is no conflict declared by the compiler.

In C++, multiple inheritance presents the same problem of name clashes, but a different
solution is used, the one of explicit designation [Str02, Str97]. The individual selection of one or
another inherited feature with the same name, is made with the help of the full qualification. So,
the resolution operator “::” is used in this sense. We will revisit the same example in the context
of C++ (example 2):

It can be noticed that in the subclass, using the name of the superclass for the inherited

23 BUPT

Example 2 Multiple Inheritance Conflict Resolution in C++
class London
{
int foo;

};
class NewYork
{
double foo;

};
class SantaBarbara: public London, NewYork
{
// access example London::foo;
// access example NewYork::foo;

};

Example 3 Multiple Inheritance Conflict Resolution in Java
interface BaseColors
{

int RED = 1, GREEN = 2, BLUE = 4;
}
interface RainbowColors extends BaseColors
{

int YELLOW = 3, ORANGE = 5, INDIGO = 6, VIOLET = 7;
}
interface PrintColors extends BaseColors
{

int YELLOW = 8, CYAN = 16, MAGENTA = 32;
}
interface LotsOfColors extends RainbowColors, PrintColors
{

int FUCHSIA = 17, VERMILION = 43, CHARTREUSE = RED+90;
}

features, they can be distinguished without any problems. In case of a more complex hierarchy
the resolution operator can be used repeatedly.

In Java[AG00] multiple inheritance is possible for types but not for classes. In other words this
means that interfaces can be multiply inherited while classes cannot. For classes there can be used
only single inheritance, this being a way of avoiding the multiple inheritance problems. In the case
of interfaces conflicts may appear. If two superinterfaces declare a field1 with the same name in
each of them, then in the common subinterface any reference to that field causes ambiguity errors
[AG00]. Multiply inherited interface fields through different inheritance paths are unified into a
single feature [AG00].

We took an example from Java Language Specification book [AG00] in order to exemplify
the two possible conflict situations that may arise. Fields RED, GREEN, BLUE are multiply
inherited by both interfaces RainbowColors and PrintColors from BaseColors interface. Then they
are inherited into LotsOfColors interface through multiple paths. The access "CHARTREUSE =
RED+90" will not create ambiguities since RED member is unified at the subinterface level. It
is not the same case for YELLOW member defined in RainbowCollors and in PrintColors with
different values. A potential reference to YELLOW member in the subinterface will determine a
name conflict. It is not clear which features should be taken into account: the one with value 3

1In Java all fields declared in interfaces are public, static and final, meaning that they behave like constants.

24 BUPT

Figure 2.2: Direct Repeated Inheritance

Figure 2.3: Indirect Repeated Inheritance

or the one with value 8.

2.1.1 Repeated Inheritance
In the context of multiple inheritance we encounter the case of repeated inheritance, because a
class can be the descendant of another in several ways [Mey02]. There are two cases of repeated
inheritance: direct repeated inheritance and indirect repeated inheritance, like in figures
2.2 and 2.3:

Repeated inheritance arises when two or more parents of D have a common parent A. We have
to state that direct repeated inheritance is not allowed in all languages. For example in Eiffel it
is possible but in C++ it is not. Class D is the repeated descendant of A and A is the repeated
ancestor of D. There are two problems about repeated inheritance which must be solved: the fate of
the repeatedly inherited features and the solutions in the resolution of dynamic binding ambiguities
[Mey02]. The repeatedly inherited features could be replicated meaning that there will be one
copy for each inheritance path or shared meaning that one unique copy will be inherited. The
solution proposed in Eiffel [Mey02] is to be able to decide for each feature independently how to
deal with it. This can be done using the renaming mechanism in the following way: shared features
will have the same name in the subclass and replicated features will have different names. If we
want to replicate repeatedly inherited features we have to change their names using the renaming
mechanism. The implicit behavior is the sharing of repeatedly inherited features. In [Mey02] there
is an example about a situation where one feature should be replicated and one should be shared
(see figure 2.4). Class HOUSE has two members street_address and insured_value. Then two

25 BUPT

Figure 2.4: Replicated and Shared Features in Repeated Inheritance

Example 4 Repeated Inheritance in C++
class L {...};
class A: L {...};
class B: L {...};
class C: A, B {...};

subclasses are created BUSINESS and RESIDENCE. Later a class HOMEBUSINESS is built as
a subclass of both BUSINESS and RESIDENCE. It is a natural fact that one person can have a
business at his residence so the street_address can be unique in the HOMEBUSINESS subclass
but insured_value should be duplicated since two insurance policies have to be made one for the
residence and one for the business. In order to obtain such an effect feature insured_value will be
renamed, using names as business_value and home_value, in both BUSINESS and RESIDENCE
classes.

In C++ there is one global selection possibility for the multiply inherited features [Sch98,
Str97]. Implicitly multiple sub-objects are created when such a subclass is instantiated. Example
4 presents such a situation where class L is the superclass of A and B. Later class C is created as
a subclass of A and B. Under these circumstances an instance of C will contain a sub-object L
corresponding to A and another sub-object L corresponding to B.

C++ offers also the other possibility of sharing features. This can be done by declaring the base
classes as virtual, so any virtual base class will generate a single sub-object [Str02]. In example 5
we studied the behavior of the virtual base classes mechanism. In this case we decided to obtain
in class C only one copy of the features from the base class L and in class D two copies: one
inherited from C and the other directly inherited from L.

This mechanism has two particularities. One is related to the lack of flexibility because it is
not possible to have at the same time features which are replicated and features which are shared.
The second observation is the fact that in order to obtain the sharing behavior in the subclass it is
necessary to affect the superclasses by declaring them as inherited virtually. The problem is that

Example 5 Virtual Base Classes in C++
class A : virtual L {...};
class B : virtual L {...};
class C : A, B {...};
class D : L, C {...};

26 BUPT

Figure 2.5: Redefined Features in Repeated Inheritance

Example 6 Deferring Multiple Inherited Features
class D inherit
B undefine f end
C

end

not always such a decision can be foreseen.
Dynamic binding problems occur in situations like the one presented in figure 2.5 where

the redefinitions of a repeatedly inherited features are made. In Eiffel features can be redeclared
[Mey02], this can imply redefinition or effecting. Redefinition means that a feature which lives in
the superclass, gets a new implementation or a new covariant signature or a new set of assertions
in the subclass. Redeclaration happens even if a deferred feature in the superclass is effected in
the subclass. The problem of dynamic binding appears when on an instance of class D, referenced
through a variable of type A, the feature f is called. Because feature f is redefined in B and C
classes it means that there are two implementations available and name conflict arises. There can
be analyzed two cases: one in which features are intended to be shared and one in which features
are intended to be duplicated. When sharing features the only possibility to eliminate the name
conflict is to deffer (make abstract) all conflicting features except maybe one. In this way only
one implementation will be available for feature f in class D.

In example 6 we show one possibility of deferring feature f at the level of class D. It is undefined
the feature coming from class B, while in class D the implementation of class C will be used. So,
any call to feature f on a D instance will be linked to the implementation of its non-undefined
version. The choice of undefining all f features makes the class valid, but if there are at least two
implementations of feature f propagating in class D, it will be invalid. Of course, as an alternative,
we could undefined feature f on the branch of class C.

The second case, the one of duplication implies the renaming of the different implementations
of feature f in D subclass (see example 7). In class D, the implementations written in classes B
and C are renamed as fb, respectively as fc. Thus there are no name clashes at the level of class
D.

Let’s analyze all the possible dynamic linking possibilities depending on the reference used on
the D typed instance. Example 8 uses the same reference type as the type of the object. In this
case the possible calls are to fb and fc features which will be linked to the versions of class B and
respectively C.

Example 9 uses references of type B and C, so the versions called on the D object are determined

27 BUPT

Example 7 Replicating Multiple Inherited Features
class A
feature f

end
class B inherit
A redefine f
...

end
class C inherit
A redefine f
...

end
class D inherit
B
rename f as fb end

C
rename f as fc end

end

Example 8 Multiple Inheritance Dynamic Binding Case (1)
d:D;
create d;
d.fb; -- calls the version of f from class B
d.fc; -- calls the version of f from class C

by the type of the reference.
Example 10 uses an A typed reference on a D typed object. The call to the f feature will be

ambiguous.
The dynamic binding problem is more severe in this case since there are two versions of the

feature in the subclass. A call to the f feature on a D typed object will remain ambiguous unless
some criteria is used in favouring one of the implementations. Several solutions are discussed in
[Mey02]. The first solution is to use the implementation of the class which is the first listed in the
inheritance clause. This approach would change the semantics of a class when changing the order
of the inheritance clauses. On the other hand when dealing with more complicated class hierarchies
having several features it will lead to impossible situations of selecting different implementations
from different superclasses. The second solution is to use a special select keyword in the language,
which allows to declare directly the choice in the favor of one implementation. The third approach
comes with the idea of disabling polymorphism on the several inheritance paths, except one from
where the implementation will be achieved. In example 11 on the inheritance path corresponding
to class C the polymorphism is disabled using the expanded keyword. This means also that the
subtyping class relationship between instances of D and C are cut.

Example 9 Multiple Inheritance Dynamic Binding Case (2)
d:D;
create d;
b:B;c:C;
b=d;c=d;
b.f; -- calls the version of f from class B
c.f; -- calls the version of f from class C

28 BUPT

Example 10 Multiple Inheritance Dynamic Binding Case (3)
d:D;
create d;
a:A;
a=d;
a.f; -- this call is ambiguous

Example 11 Disabling Polymorphism
class D inherit
B
rename f as fb end

expanded C
rename f as fc end

end

2.1.2 Implementations of Multiple Inheritance
Several implementation techniques of the multiple inheritance concept in different types of pro-
gramming languages are presented in [CMR02]. These techniques involve class hierarchy trans-
formations in order to integrate this concept in languages with single inheritance and even with
no inheritance. These transformations intend to maintain as much as possible the model of the
original class hierarchy, to respect the polymorphic behavior of strongly typed languages and to
avoid excessive code repetition.

There are several basic transformations available for different kinds of inheritance models. For
languages having no inheritance there can be performed translations like emancipation, variant
types or simulation using flags, composition. When dealing with a language having single inheri-
tance there are possible techniques of expansion or mixed techniques. In case of single subclassing
and multiple subtyping (which is the case of Java [AG00] and C# [FPB+02]) a mixed strategy
has to be used. In the case of languages with multiple inheritance the only concern is the conflict
resolution mechanism. Of course, the techniques presented in the context of languages with no in-
heritance can be applied also to languages with single inheritance, single subclassing and multiple
subtyping, multiple inheritance. These basic transformations will be exercised on a demonstrative
multiple inheritance class hierarchy.

Figure 2.6 presents a representative hierarchy which will be transformed using each of the
transformations previously enumerated. It can be noticed that there is a complex case of repeated
inheritance with multiply inherited features through several inheritance paths. Attribute atrA is
inherited from A to D through B and C classes. On the other hand method methA is overridden
and has different implementations in each subclass of the hierarchy. We have to mention also
that from the typing system point of view there are some subtyping class relationship in this class
hierarchy: B and C are subtypes of A, and class D is a subtype of both classes B and C.

Emancipation

The strategy of emancipation [CMR02] involves cutting all inheritance links between classes and
including all exhibited features as own resources. This strategy is also known as flattening [Mey97].
A special attention has to be given to the several versions of a method and its “super” like calls.
All these have to be renamed in order to keep the behavioral consistency of the methods. In figure
2.7 we can see the effects of the transformation. Each class is independent, it has no inheritance
links, inherited attributes are duplicated for each class. Inherited methods are included in the
subclasses as own resources and renamed at the same time. The delegation of the “super” like calls
are not visible in this representation. One can notice that the natural subtyping class relationship
between the classes is lost by using such a transformation.

29 BUPT

Figure 2.6: Multiple Inheritance Class Hierarchy

Figure 2.7: Emancipation

30 BUPT

Figure 2.8: Composition

Composition

A different approach to transform multiple inheritance into something more simple is to use com-
position [CMR02]. This approach is based on the fact that if a class needs some services from
another class it is either a subclass or it is a client of that class [Mey97]. The transformation
consists in transforming all inheritance links in composition links. The former subclass will be
composed out of references to instances of the former superclass. Obviously, all “super” like calls
have to be delegated to the corresponding component objects. The subtyping relationships be-
tween classes is lost also with this kind of transformation. In figure 2.8 it can be noticed that each
inheritance link is replaced with a composition link. This transformation is based also on the fact
that a class can have an unlimited number of composition links while the inheritance links could
be limited to one (in single inheritance based language) or even zero (in the case of procedural
languages). Class D is exhibiting all inherited methods from superclasses implementing them by
delegation. The advantage of this transformation is that there will be no code or data duplication,
subtyping being lost though.

Expansion

The idea of this transformation is to use the benefits of single inheritance and to transform the
multiple inheritance DAG (directed acyclic graph) into a tree or forest in the general case. Each
inheritance path is isolated by duplicating the multiply inherited class. In figure 2.9 the hierarchy
is transformed using expansion. Class D is duplicated into D1 and D2 on each inheritance paths.
It can be noticed that features which should be inherited normally from the other branch are
added as a own resource into the subclass. It is the case of method metC and metB of class C
and respectively B which has to be added into class D1 respectively D2. The other features are
inherited using the single inheritance: atrB, metA, metB for class D1 and atrC, metA, metC for
class D2. In conclusion we can say that some of the subtyping class relations are kept, naming
the ones between D1 and B or D2 and C, but the others not.

Variant Type

The variant type idea or simulation of variant type comes from procedural programming languages
where no polymorphism is available. Simulation is made using a single monitor class which has
all the features of all classes and by switching a flag the different types can be achieved [CMR02].
Depending on the current object type a certain set of features is exhibited. The obtained structure

31 BUPT

Figure 2.9: Expansion

Example 12 Delegation Example in C++
class B { int b; void f(); };
class C : *p { B* p; int c; };

is relatively complex and it involves no data or code duplication. In figure 2.10 we have the
transformation applied and a monitor class is created instead of the whole multiple inheritance
hierarchy. There has been added a flag called whoAmI which can set the difference between
the several object types simulated by this class. All the attributes and methods (including all
variants) of the hierarchy are centralized in this class. In order to emulate the original behavior
of the multiple inheritance hierarchy the set of exhibited methods metA, metB, metC, metD will
call the appropriate versions depending on the state flag.

2.1.3 Delegation
As a similar concept with the concept of inheritance, we will discuss about the delegation class
relationship in C++ [Agh86, Str02]. The idea is that in the base class list of a class declaration
there can be specified a pointer to some other class. Example 12 shows such a mechanism.

Class C is defined as having superclass class B, but this link is expressed using a pointer to the
superclass sub-object. Example 13 explains that any call to an inherited member of the subclass
instance will be treated as if it would be defined in that subclass.

The advantage of this technique is the possibility of changing the superclass sub-object at
runtime. With normal inheritance there is no such facility, the superclass sub-object can be
referred using the this pointer which cannot be assigned with the address of the new sub-object.
Because of the bugs and confusion encountered by the users of this mechanism, it was never
included in the C++ language.

Example 13 Delegation Usage in C++
C* q;
q->f(); // is equivalent with q->p->f();

32 BUPT

Figure 2.10: Variant Type

Figure 2.11: Incremental Modification by Inheritance

2.2 The Like-Type Class Relationship
Incremental modifications can be used in reusing conceptual or physical entities and in the con-
struction of new similar ones [WZ88]. As natural and computational systems evolve, incremental
mechanisms controls their evolution. Inheritance class relationship is a particular kind of incre-
mentation mechanism which transforms the parent P with the help of a modifier M into a result
entity R=P+M.

The “+” composition operator is asymmetrical since P and M have different roles in this class
relationship. The features of M may overlap the features of P.

Compatibility rules can be set between subclass and superclass [WZ88].
Cancellation allows operations from the superclass to be deleted from the subclass.
Name compatibility allows changing the names of features but no features are deleted.
Signature compatibility guarantees the compatibility between superclass and subclass in-

terfaces.
The behavioral compatibility assumes that the subclass will not define a radically different

behavior from the one in the superclass.
The first three rules refer more to the syntactical part of inheritance and can be easily checked.

This form of inheritance is known as non-strict inheritance. The fourth rule cannot be easily
guaranteed. Some assumptions regarding the subclass behavior can be issued, but not an ab-
solute verification. Assertion mechanism is a step in this direction of guaranteeing behavioral
compatibility. This form of inheritance is known as strict inheritance.

Table 2.1 presents the four incremental mechanisms and their corresponding class relations

33 BUPT

Incremental Mechanism Class Relations
behavioral compatibility R subtype P or R is-a P
signature compatibility R subsig P

name compatibility R subclass P
cancellation R1 like R2

Table 2.1: The Four Incremental Mechanisms

Example 14 General Form of Mixin in C++
template<class Super>
class Mixin : public Super
{
/* body of the mixin */

};

[WZ88]. It can be noticed that like is the most general relation which includes all the rest.
Types which are related by the like relationship are called liketypes, as subtypes is the name for
types related by the subset relation. The subtype relation is asymmetrical while the liketype is
symmetrical. If any type R1 like R2 then R2 will be like R1.

2.3 Mixins
Software complexity gave birth to methodologies which divide the problem in solvable parts, after
they have to be composed in the final software product[SB00]. The mixin mechanism is based on
two other concepts: inheritance and genericity. Mixins are derived from generic programming
and they are generic classes which have as generic parameter types their superclasses. The basic
idea was to specify an extension without being obliged to specify the unit to be extended. This is
equivalent to specifying the subclass letting the superclass as a parameter which will be specified
later.

Mixin in C++ is a high power technique for using multiple inheritance with abstract virtual
base classes to enable incremental development of both interfaces and implementations of classes
[Ska93]. Mixins are considered a great achievement in C++, although it was not intended to
enable it in the language.

The advantage of this approach is in the fact that there is only one class used for a valid
incremental extension specification for a variety of classes. In [VN96] it is shown how mixins are
used to create a role based design. Mixin layers is a derived mechanism from the mixin concept
and it was made for concern modeling. They are nested mixins in which the parameter of the
external mixin will determine the parameters of the internal mixin [SB02].

2.3.1 The Mixin Concept
In this subsection we will focus on the implementation of mixins in the C++ programming lan-
guage. The basic idea is to define an extension without knowing a priori what is extended. This
implies the specification of a subclass while the superclass will be specified later as a generic pa-
rameter [SB00]. Mixins can be implemented using parameterized inheritance. The superclass of
the mixin will be specified as a parameter which will be specified at the instantiation moment. In
C++ such a mechanism can be expressed like in example 14.

We will exemplify the counting operation on a graph data structure. The operation involves
counting how many nodes and edges were visited during the execution of the example.

Example 15 shows how the operations of the designed mixin interfere with the operations of
the graph modeling class. The counting operations from the mixin in the example can be applied

34 BUPT

Example 15 Graph Counting Mixin Example in C++
template <class Graph>
class Counting : public Graph
{
int nodes_visited,edges_visited;
public:
Counting():nodes_visited(0),edges_visited(0),Graph(){}
node succ_node(node n)
{
nodes_visited++;
return Graph::succ_node(n);

}
edge succ_edge(edge e)
{
edges_visited++;
return Graph::succ_edge(e);

}
...

};

Example 16 Using Mixins Example in C++
Counting <UGraph> counted_ugraph;
Counting <DGraph> counted_dgraph;

to all classes having the same interface (see example 16).
In example 16 there are instantiated two graph objects: one undirected and the other directed.

Both objects have the facility of counting nodes and edges. These counting facilities were not
included originally in the graph modeling classes but were achieved by setting the actual parameter
of the Counting mixin to UGraph and DGraph classes. The mixin is suitable to all classes which
have the same interface as the graph modeling classes.

2.3.2 The Mixin Layer Concept
In this subsection we will focus on the implementation of mixin layers in the C++ programming
language. Mixin layers are a particular form of mixins. They are designed to encapsulate refine-
ments for multiple classes [SB00]. They are nested mixins so the parameters of the external one
will determine the parameters for the internal mixin. The general form of a C++ mixin layer is
presented in example 17.

The conceptual unit here is not the object or parts of it. The mixin layer can specify refinements
for more than one object. Inheritance is used in order to compose extensions. Mixin layers are
used for implementing roles. Each layer will capture one collaboration. The roles for all the

Example 17 General Form of Mixin Layers in C++
template <class NextLayer>
class ThisLayer : public NextLayer
{
public Mixin1:public NextLayer::Mixin1{...};
public Mixin2:public NextLayer::Mixin2{...};

};

35 BUPT

participant classes are represented by the internal classes of the mixin layer. Inheritance works
at two levels. First the layer inherits all the inner classes from the superclass. Then, the internal
classes inherit attributes, methods and even classes from the internal classes of the corresponding
mixin layer superclass. In this context the layer behaves like a name space.

2.4 Traits
Traits are simple mechanisms for object-oriented systems organization based on mixin components.
A trait is a parametric set of methods, which can be assembled in classes, representing the primitive
entity of reuse. Using traits, classes can be organized in hierarchies based on single inheritance
and can be used also in specifying the incremental difference between subclass and superclass. For
this mechanism, inheritance is not the composing operator like for multiple inheritance or mixins,
because it has its own composition operators.

2.4.1 Motivations
Motivations around this concept attack the weaknesses of the concept of inheritance [SDN02].
First of all inheritance cannot factor common features from complex class hierarchies. This gave
birth to the multiple inheritance class relationship. Mixins, discussed in subsection 2.3, are a
way of composing classes incrementally starting from sets of members. It is admitted in [SDN02]
that in practice there are a lot of problems with these mechanisms. One cause are the conflict
resolutions when inheriting the same feature on several inheritance path. As it was presented
in subsection 2.1, the solutions involve linearizing or renaming which makes the desired behavior
hard to achieve. It is stated also that reusable artifacts are hard to design without conflicts. Class
hierarchies based on inheritance suffer also from the fragile base class problem [MS98]. Changes
in the class hierarchies affect the conflict resolution mechanisms causing anomalies.

2.4.2 Classes and Traits
In [SDN02, SDNB03] is presented a solution to the earlier invoked problems. There is a separation
between the concepts of traits and the concept of class. Traits offer a set of services (methods)
which implement the behavior but not state (attributes). Traits can depend further on other
traits. Traits have no direct access to state, but using accessor methods. In conformance with
this model, a class can be built starting from a set of traits and providing the necessary state and
the missing services. The missing services represent the linking code which specifies how traits are
connected and how possible conflicts have to be solved.

The traits model can be applied to several types of programming languages. The traits de-
scription will be made in the context of a single inheritance programming language. The model of
traits is presented in figure 2.12. In this model, traits are designed to be the most primitive reuse
code unit. Traits are designed to offer and to request services. The requested services are named
connectors, while the offered services are named sockets. The sockets in the example are area,
bounds, scaledBy, and the connectors are center, center:,radius, radius:.Between traits there is no
inheritance allowed. Connectors have to be connected in the moment of using the trait. A class
can be obtained by the composition of zero or several traits. The class will have to offer the state
plus the extra functionality in order to assimilate such a trait.

From the semantical point of view the whole trait functionality will be incorporated in the
interior of the class as if it would be declared there initially. There are exceptions in the case of a
method which is implemented in a class and in a trait, the method implemented in the class has
the priority. It was decided that all traits have the same priority in case of name collisions.

2.4.3 Composing Traits Use Case
In figure 2.13 is analyzed an example from [SDN02] of how traits can be composed. Also, the case
of a conflicting feature is considered.

36 BUPT

Figure 2.12: Traits Model

Figure 2.13: Traits Use Case

37 BUPT

In the example depicted in figure 2.13 a class is built starting from three traits: TCircle,
TVisual, TColor. Each trait has embedded the necessary functionality to produce a ColoredVi-
sualCircle class. Trait TCircle has three sockets: area, bounds, scaledBy and three connectors
center, center:, radius, radius:. The center and radius related connectors will be plugged into
the class defined features. Trait TVisual has three sockets draw, refresh, scaledBy which are also
exhibited at the class level. In exchange, it needs services like bounds, which are provided by
the TCircle trait and a drawOn: method which is implemented in the class. The TColor trait
connects only with the class features rgb and rgb:. Separately from the already presented features,
class ColorVisualCircle has two features scaledBy: and initialize. There can be noticed that the
scaledBy: glue feature is provided by two of the traits TCircle and TVisual so in the composing
class there will be defined a new version, thus eliminating the name conflict.

2.4.4 Traits vs. Multiple Inheritance
In this subsection we compare the traits mechanism with another reuse mechanism of the object-
oriented technology: multiple inheritance. Traits and inheritance can be combined together in
a constructive way. Since there is no inheritance between traits, any “super” like call from one
of its methods, is linked to the method of the composing class parent. Comparing the traits
mechanism with multiple inheritance it can be admitted that there are some similarities and some
differences. The starting point for both mechanisms is the combination of reuse entities. The
composing mechanism is semantically the same: feature reunion. It was admitted that features
from traits will be incorporated in the composing class. With multiple inheritance, which involves
subtyping and also subclassing, the same feature composition can be obtained. There can be
noticed a difference from the technical point of view. A class in order to be valid is obliged to have
all its external calls resolved, while a trait will be connected in the moment of composition. A
potential problem of traits model is that it implies developing from scratch all the reuse artifacts,
there is no decomposition mechanism for the already existing classes. The “diamond problem” of
multiple inheritance analysed in subsection 2.1 appears in the case of traits model. The authors of
[SDN02] claim that since there are no attributes in the structure of traits, there are no conflicts.
The possible method conflicts are solved by declaring the conflicted method in the composing class
or allows the programmer to favor one mixin to implement a certain service [SDN02].

2.5 Role Programming
In this section are presented the main concepts of role programming: roles and collaborations.
Several implementation techniques are discussed also.

2.5.1 Roles
Role programming allows the decomposition of the object into several roles. Roles are abstracting
the concerns and formalizing their separation. From the collaboration point of view, roles are parts
of objects which fulfill their responsibilities in the collaboration [HN96]. Roles are encountered
in many practical situations. Taking the example of a university student, sometimes he can be
a football and a basketball player. In some special situation he can became a member in the
university council. After a period he can quit this memberships. So objects in object-oriented
systems may behave the same way like real-world ones do. Dynamically, during their life time
several behaviors can be attached and detached to them [TUI05]. Roles are a volatile concept
in the implementation since they do not generally exist as an identifiable component [HN96]. In
[Kri96] the properties of roles are presented. Abstractivity facilitates the roles to be organized
in hierarchies. Aggregational composition is the property of roles which results from the fact
that roles can be composed with other roles. Dependency property states that a role cannot
exist without an object. Dynamicity refers to the fact that roles can be added or removed during
the lifetime of an object. Identity of role is the same with the identity of object. Inheritance

38 BUPT

Figure 2.14: Role Object

in the context of roles refers to the fact that a role for a class will be a role for any subclass. The
locality property gives meaning to a role only in a role model. Multiplicity property states that
several instances of a given role can exist for an object at a given time. Visibility property of
roles means that a role can restrict the access to an object.

2.5.2 Collaborations
In relation to roles, collaborations also have to be discussed. Collaborations involve the cooperation
of a group of objects which perform a task or maintain an invariant [HN96]. The main objectives
of roles are to describe the collaboration of objects and to delimit well their boundaries [TUI05].
Objects may be involved in multiple collaborations having different roles. Initially collaborations
were described by specifying use cases and observable behavior of the objects. The use case idea
originated in [JCJO92] was adopted by UML [OMG04]. In UML roles were denoting directions of
static associations (Association Roles) and afterwards they were related to collaborations (Collab-
oration Roles). Roles by a set of behavioral functions are able to delimit the boundaries of objects
and thus their granularity is smaller, being very close to the level of methods.

2.5.3 Role Implementation Techniques
In the work of [Fow97] several role representations and corresponding design patterns for imple-
mentation are presented. A design pattern, as presented in [GHJV97], is a general solution to a
class of software architectural problems. The proposed role representations are: single role type,
separate role type, role subtype, role object, role relationship. Single role type is a solution
where all features of the roles are combined in a single type. Separate role type implies that
for each role a separate type has to be created. Role subtype solution organizes the roles in a
hierarchy. Each role has its own type and common behavior can be put in the supertype. Role
object pattern involves the existence of a host object which has several sub-objects, one for each
role. The clients will ask the host object for a specific role feature. In figure 2.14 is presented
such a situation. Class Person has several roles like manager, engineer and salesman. For this
case a role class hierarchy is designed having as superclass PersonRole. Class Person will have
to use one reference of type PersonRole which will refer any role instance. The interface of the
PersonRole with polymorphism and dynamic binding will allow transparent access to different
role implementations of the person’s behavior.

In role relationship pattern the idea is to make each role a relationship with an appropriate
object. Several techniques can help in implementing a role mechanism. One implementation
uses only the ordinary features of a regular object-oriented programming language and no other
special language extensions. The implementation is based on interface, class inheritance and
polymorphism combined with dynamic binding. The proposed strategies are: internal flag, hidden
delegate, state object. Internal flag pattern, as its name suggests, the object uses the flag to do
the behavior selection upon the selected role. Hidden delegate supposes that a subobject knows
all behaviors implied by roles and can be selected using appropriate messages.

Mixin layers are another way of implementing roles [SB02]. The model of the mixin layer and

39 BUPT

Example 18 Role Implementation
template <class ChildType,

class MotherType,
class Supertype>

class FatherRole : public SuperType
{
ChildType *child;
MotherType *mother;

};

its role implementation capabilities were presented in subsection 2.3. In the approach of [HN96],
a model similar to mixins is presented. Roles are defined using parameterized types. In C++
the implementation can be made with the help of templates. In example 18 class FatherRole has
two generic parameters ChildType and MotherType denoting the two collaborating roles. The
SuperType parameter is used with the same purpose as it is used in mixins, to have a link with
the class which will contain the father role.

In [GSR96] in order to allow objectual database evolution, along with the class hierarchy of the
objectual paradigm, a role hierarchy is created. A role hierarchy is a tree of special types, named
role types. The root of the tree defines the invariant properties of an entity while the roles types
reflect refinements. An entity is represented by an instance of the root type and the instances of
every role type that the entity has at a given moment. So the traditional object-oriented concepts
are extended with the role hierarchy.

In [Ken99] roles are implemented using the AOP of AspectJ and there are shown the relations
between the role approach and the aspect-oriented technology. In the approach of [TUI05] the
role model is created on the base of some principles. One of them is the support adaptive
evolution which means that objects evolve in environments assuming their roles, the participation
can be made dynamically: objects can enter or leave environments freely, an object can belong to
multiple environments at a time. The second principle is related to the separation of concerns,
each concern is modelled by an environment. Concerns will interact using objects simultaneously
assuming roles of different collaboration environments. The third principle is the advanced reuse
of roles within environments. Environments and roles have the status of first block constructs in
EpsilonJ proposed programming language.

2.6 Composition Filters
In this section a brief presentation of composition filter mechanisms is made. They address the
separation of concerns issue. Composition filters are special objects that can be attached to the
normal instances in an application, having the role of intercepting incoming and outgoing messages.
These filters can be combined freely as they are orthogonal. The filters can change the behavior
of an object so concerns can be attached to objects using them.

2.6.1 Motivations
The concept of composition filters appeared in the context of an object-oriented language database
integration model [ABV92]. Motivations in this direction are given: duality in conception -
language and database models are kept separately, violation of encapsulation - object queries
make object structure visible and are not accessed via send messages only as the object-oriented
paradigm requires, fixed views - relational databases support views on base tables while from
the object-oriented point of view there are methods of an object which are not of interest for
any client. The integration of database like features in the object-oriented programming language
implied the extension of the object model.

40 BUPT

Figure 2.15: Composition Filters Model

2.6.2 The Composition Filters Model
In figure 2.15 the model of the composition filters mechanism is presented. It can be noted that
the object model consists in sets of methods, interface objects and states. The interface objects are
of two types: internal and external. A set of filters are a part of the object model also. The filters
are used to intercept the incoming messages and to dispatch them to the appropriate methods. By
methods are meant: a subset of own methods, or methods from the internal or external objects.
The states are used to control the behavior of filters.

Composition filters can be used as mechanism to separate concerns.

2.7 Views
A view is a description of the system relative to a set of concerns from a certain point of view
[Hil99]. The motivation for multiple views is separation of concerns. They were introduced
to manage the complexity of software engineering artifacts like: requirements, specification and
design. UML [OMG04] is the best known language which respects the point of view modeling
philosophy.

In the world of object database the notion of view has emerged from the relational view solution.
Views [KR93] in the relational model provide logical data independence and offers possibilities for
data to be repartitioned and restructured to fit particular applications. In addition, the database
object views offer the introduction of new classes (called virtual) into the class hierarchy [AB91].
Virtual classes can be populated with objects in several ways: i) the virtual class is a superclass
of certain classes (generalization); ii) the virtual class contains all objects returned by a query
(specialization); iii) the virtual class contains all objects having a certain behavior.

We will discuss from the several domains point of view how reusability can be achieved. In
the object-oriented database world, the reuse is focused intensively on objects. They try not to
reuse the structure of the object, meaning the class, but the object itself at runtime. This reuse
addresses the extension of the concept modelled through a certain object. In software design and
programming languages the tendency is to reuse the structure of the class at design time. This is
done in modeling using different concepts like generalization, specialization, and in programming
languages by mechanisms like inheritance single or multiple, genericity. So, from these two points
of view, the software reuse can be seen at two levels: reuse of class or intension and reuse of objects
or extension. The first level is encountered in object-oriented programming languages, while the
second level of reuse is exploited in object-oriented databases.

41 BUPT

Figure 2.16: Aspect Oriented Programming Main Principle

2.8 Aspect Oriented Programming
Aspect oriented programming [KLM+97] is a separation of concerns model based on object-
oriented paradigm. It deals with crosscutting concerns which cannot be well separated by pure
object technology. The majority of object-oriented systems are composed out of crosscutting con-
cerns dispersed over several modules. By concern it is meant a concept, a goal in the context of a
given domain. For example a concern in the context of debugging a software system would be the
logging operations. Another functionality, which can be viewed as a crosscutting concern, needed
in the context of objects, is persistence.

There are several concepts of object-oriented programming which facilitate the separation of
concerns. First, the abstraction principle implies the creation of separate classes for each concept
from the real world [Aks96]. On the other hand the information hiding principle allows interface
separation from implementation. Inheritance and delegation are ways of composing behavior. In
the context of inheritance, the behavior of the subclass is composed with the behavior of the
superclass [Aks96].

In figure 2.16 the main schema of aspect oriented programming is depicted [KLM+97]. Each
application has a main part where the basic functionality is captured. This part is supposed to be
written in a language that suits better to the application domain. Then each cross-cutting aspects
are described using several specialized languages. All these programs are taken by the weaver and
it produces the output code. The main property of this methodology is aspect decomposition.
Thus, the aspectually decomposed program is easier to develop and to maintain.

Generally speaking, a software system is composed out of several concerns and it is responsible
for multiple requirements. In [Lad02] the requirements are classified as core module level
requirements and system-level requirements. The system-level requirements are crosscutting
several modules. A class implementing business logic is presented in example 19 taken from
[Lad02].

The first observation is that the other data members do not belong to the core concern of
the class. The performSomeOperation method includes along with the core concern, some other
operations like logging, authentication, multithread safety, contract validation, cache management.
The two operations load and save having the role of persistence management should not be part
of the core concern.

There are two symptoms which indicate the problematic implementation of crosscutting con-

42 BUPT

Example 19 Crosscutting Concerns Example
public class SomeBusinessClass extends OtherBusinessClass
{
// Core data members
// Other data members: Log stream, data-consistency flag
// Override methods in the base class
public void performSomeOperation(OperationInformation info)
{
// Ensure authentication
// Ensure info satisfies contracts
// Lock the object to ensure data-consistency in case other
// threads access it
// Ensure the cache is up to date
// Log the start of operation
// ==== Perform the core operation ====
// Log the completion of operation
// Unlock the object

}
// More operations similar to above
public void save(PersitanceStorage ps) { }
public void load(PersitanceStorage ps) { }

}

cerns: code tangling and code scattering [Lad02]. Code tangling happens in modules which
interact simultaneously with several requirements. Code scattering refers to concerns spread over
the software system modules.

AspectJ is an implementation of the aspect oriented paradigm in Java developed by Xerox
Parc, Inc. The concepts for describing the extensions are: pointcuts, join points, advices and
aspects [Tea03]. Join points are certain well defined points in the execution of the programe.
The pointcut is a language construction that specifies several join points. Advice is a piece of code
executed when a joint point is reached, it brings together a pointcut and a body of code, to run
at each join points. The aspect is a unit of modularity for the crosscutting concern.

2.9 Classboxes
In this section we present a class adaptation mechanism, called classboxes [BDW03], which allows
adding and replacing methods in a class. The changes made by a classbox are only visible in that
classbox or other classboxes importing it. This feature is named local rebinding. Classboxes
are modules or software units that consist of imports and definitions. An import is either a class
import or a classbox import. A definition can be a class or method definition. The method
definition must specify the class it belongs to and also the implementation.

In example 2.17 taken from [BDW03] the Squeak classbox contains all the classes from the
standard library. The aim of the example is to reuse the HTML node classes from the library and
to add to check all broken links from a web page.

In the HTMLVisitor classbox each node class is augmented with the acceptVisitor method and
a new HTMLVisitor class was added to perform URL link checking on the nodes in a systematical
manner.

Finally, in figure 2.18 a new classbox is created importing the HTMLParser and Socket classes.
The LinkChecker visitor class is derived from HTMLVisitor. In the context of the newly created
classbox the HTMLParser will use the node classes accepting visitors, the LinkChecker visitor
class will visit each node and if the node is an anchor then the ping method from the Socket class

43 BUPT

Figure 2.17: Classbox Example (1)

Figure 2.18: Classbox Example (2)

44 BUPT

Example 20 An Expression Class Hierarchy
class Expr
{
abstract void display(OutputStream os);

}
class Plus extends Expr
{
Expr op1();
Expr op2();
void display(OutputStream os) {/*...*/}

}
class Value extends Expr {}
class Int extends Value
{
int intValue() {/*...*/}
void display(OutputStream os) {/*...*/}

}
class Flt extends Value
{
float fltValue() {/*...*/}
void display(OutputStream os) {/*...*/}

}

will be used to determine the broken status of a link within a certain timeout.

2.10 Expanders
The expander is an object-oriented programming language construct which supports object adap-
tation [WSM06]. Classes are adapted in a non-intrusive manner by adding new attributes, meth-
ods and superinterfaces. Each client can adapt the same class in different contexts independently
with different expanders. Expanders have several design properties in order to support object
adaptation.

In-place Adaptation An expander adds to a class new state, behavior and superinterfaces
rather than creating a new subclass. Multiple clients are allowed to view the same object in
different ways.

Statically Scoped Adaptation Expanders adapt existing classes to the needs of new client
without affecting the behavior of old clients. A client can explicitly import the expanders it needs
in order to fulfill its task. On the other hand all other expanders are out of scope and cannot affect
the client behavior. Clients can expand the same object in different ways without any conflict.

Modular Type Safety The existence of multiple versions of a class may cause undesirable
behavior at runtime. In the context of inheritance the newly added features in the subclass may
conflict with the features added by expanders. Because expanders have a static scope, it is possible
to perform modular static type checking to assure type safety.

Expander Usage Example The way expanders work in practice is presented in example 20.
A class hierarchy modelling an AST used in an expression parser is presented in example 20.

There are classes modelling expressions, plus operator, values, integers and floats. Each class of the

45 BUPT

Example 21 Expander Example
// file EX.ej
package eval;
import ast.*;
public expander EX of Expr
{
public Value eval() { throw new EvalError(); }

}
public expander EX of Value
{
public Value eval() { return this; }

}
public expander EX of Plus {
public Value eval()
{
Value v1 = op1().eval();
Value v2 = op2().eval();
// ...

}
}

hierarchy has a method display for printing node information in the output stream. The intention
is to augment somehow these classes to get value evaluation behavior of the parsed expression.

The EX expander family containing an expander for each class of the AST node hierarchy is
presented in example 21. The expander family will add an eval method to each class in order to
compute the value of the parsed expression.

In example 22 is presented a client of the nodes hierarchy parsing a string and evaluating the
expression on the AST in quite a natural manner. In order to use the EX expander it must be
imported with the special use directive. Thus, each node class will be equipped with the eval
evaluation method.

Example 22 Expander Usage Example
// file Calculator.ej
package calc;
import parse.Parser;
import ast.*;
use eval.EX;
public class Calculator
{
public void process(String s)
{
Expr e = new Parser().parse(s);
Value ans = e.eval();
ans.display(System.out);

}
}

46 BUPT

2.11 Summary
In this chapter we talked about inheritance in general and multiple inheritance in particular
focusing on crucial aspects. There are opinions that multiple inheritance is bad and dangerous
because of the resolution mechanisms which are sensible to any eventual changes in the hierarchy.
Other authors consider that the approach of Java [AG00] is the right way of implementing the
concept of multiple inheritance by letting multiple inheritance of types but single inheritance of
classes and classes can implement many interfaces. Another important issue is the resolution
mechanism which could be assisted like in the case of C++ [Str02, Str97] or Eiffel [Mey02] or
it could be automatic like in CLOS [Kee89]. In CLOS the class which appears first in the list of
superclasses is the one that has priority in the case of conflicts. In Eiffel the conflict resolution
decisions can be taken for each conflicting feature separately, while in C++ the “all or nothing”
approach is applied: one decision applies to all the features involved. It can be noticed that the
Eiffel renaming solution for multiple inheritance name clashes in fact generates the problem of
dynamic binding. Such problem does not exist in C++. In C++ to switch between replication
and sharing implies placing the virtual keyword at a higher level than the one on which the effect
occurs. It results that such conflict resolutions must be foreseen in advance, in practice this is not
always possible. In Eiffel, in the case of dynamic binding problems, the select keyword is used
in the subclass where the ambiguity arises. Implementations of multiple inheritance in several
programming languages are presented, where some semantical decisions can be learned. In each
implementation solution there is a balance between several issues like data and code duplication,
type conformance, delegation code insertion which work together for maintaining the original
semantics of reverse inheritance.

The mixin and mixin layer mechanisms are studied as possible vehicles for role programming
and collaboration based designs. The combination of inheritance and genericity of C++ leads to
a mechanism which allows the description of extensions which fit to several classes. In this me-
chanism, inheritance is the composition operator, while the class plays the role of the composable
module. The only reuse restriction for mixins is that they have to be fitted for the superclass
interface.

The trait concept which derives from mixins, adhere to the idea of eliminating attributes
from the composable modules and letting them build a class by composition. In this case the
composition operator is in fact a reunion of all the features from the composing traits. When
conflicts arise resolution is provided by redeclaring the feature in the class, thus ignoring the trait
originating conflicting features. It can be noticed that the traits based design has to be started
from scratch, reusing existing class libraries with such a mechanism is not possible. The main
advantage remains though that trait components, once defined, are simple and highly reusable.

Roles and collaborations are other issues described in this chapter. Roles are represented in
several implementations as temporary features of an object during its life time. There are no
general identifiable components corresponding to roles. They are highly used in object-oriented
systems and in object-oriented databases. As role implementations there were presented design
patterns, mixins, aspect-oriented solutions, role hierarchies and a language with special roles
semantical extension.

In the last part of the chapter the separation of concerns issue is treated. First the composition
filters are presented, explaining the basic functionality of the mechanism. Views is another me-
chanism for concern separation which has its origins in the relational databases. Aspect oriented
programming principles and concepts are presented also.

Classboxes and expanders are class reuse and adaptation mechanisms that describe class ex-
tensions which are activated only in special contexts, leaving old clients unmodified.

Finally, all reuse mechanisms are compared through several criteria of interest:

• to create new abstract types;

• to factor features from classes;

• to combine the implementations of features;

47 BUPT

• to redefine the implementations of features;

• to adapt the implementation of features;

• to cancel the implementation of a feature;

• to add an abstraction layer into a class hierarchy.

In table 2.2 we analyse several class reuse mechanisms through each proposed criteria. Creating
abstract supertypes criteria is supported only by exheritance. Factoring common features from
classes is supported also, but only by reverse inheritance and not by the other mechanisms.

Combining the implementations of features is possible in several mechanisms. In ordinary
inheritance this is possible through language constructs like super (Java), precursor (Eiffel)
where the implementation from the subclass may call the implementation from the superclass. In
the context of exheritance the exherited features from different clases can be added in the same
subclass where they may be combined. For mixins and mixin layer this criteria is central for the
reuse. Class features call methods from the actual generic arguments instances which the class
inherits. In AspectJ the join point model allows to define the dynamic structure of crosscutting
concerns. Classboxes and expanders favors the creation of special context where old and new
features can be combined.

Feature redefinitions are possible in classic and reverse inheritance. Classboxes and expanders
allow feature redefinition in separate contexts.

Cancelling the implementation of a feature can be obtained in ordinary inheritance by making
the feature deferred (Eiffel), abstract (Java, C++). In exheritance a non-selected feature from
subclasses will cancel the entire feature. The other mechanisms do not correspond to this criteria.

Adding an abstraction layer into a class hierarchy is not possible with inheritance unless the
whole hierarchy is redesigned. Exheritance helped by inheritance can achieve this goal.

In conclusion, looking at these class reuse mechanisms through the proposed criteria we can
motivate the analysis and implementation of a reverse inheritance semantics.

48 BUPT

Criteria
\ Reuse
Mecha-
nisms

Inheritance Exheritance Mixins Mixin
Layers

Traits AOP Classboxes Expanders

to cre-
ate new
abstract
types

no yes no no no no no no

to factor
features
from
classes

no yes no no no no no no

to com-
bine the
imple-
menta-
tions of
features

yes, using
super like
mecha-
nisms

yes, using
inheritance

yes yes yes yes yes yes

to rede-
fine the
imple-
menta-
tion of
features

yes yes no no no no yes yes

to adapt
the im-
plemen-
tation of
a feature

yes yes no no no yes yes yes

to cancel
the im-
plemen-
tation of
a feature

no yes no no no no no no

to add
an ab-
straction
layer into
a class
hierarchy

no yes no no no no no no

Table 2.2: Comparison of Class Reuse Mechanisms

49 BUPT

Chapter 3

Towards Exheritance: Main Issues

3.1 Generalities About Exheritance

3.1.1 Main Approaches of Reverse Inheritance
The idea of upward inheritance was born in the database world from the concept of database
schema generalization [SN88]. A type corresponding to a database schema may be a generalization
of several specialized ones. It is also the case of generalization in a global multi database view
which provides a homogeneous interface to a set of heterogeneous databases. The basic idea of
reverse inheritance class relation is the generalization abstraction [SS77], which enables a set
of individual objects to be thought generically as a single named object. It is considered to be
the most important mechanism for conceptualizing the real world. Generalization helps the goal
of uniform treatment for objects in models of the real world.

From the development point of view of a software system, direct inheritance is a top-down
approach of construction, while reverse inheritance offers the possibility of constructing software
in a bottom-up manner. We adhere to the idea that it is more natural to first create the sub-
classes, then to observe and analyze commonalities, and after that to define the super classes
[Ped89, Sak02]. The autonomous design of class hierarchies or database schema will give rise to
inhomogeneities. Their reusability depends strongly on their capabilities of adapting their local
interface to a common global interface.

3.1.2 Definition
The reverse inheritance class relationship is also known as exheritance [Sak02], adoption
[LHQ94], generalization [Ped89, OMG04] or upward inheritance [SN88]. The source class of
reverse inheritance is known as generalizing class [Sak02] or as foster class [LHQ94]. In the
state of the art there are several approaches dealing with reverse inheritance issues in domains like
object-oriented programming and design, databases, artificial intelligence.

We start from the definition of reverse inheritance given by Pedersen [Ped89, Sak02] which
states that a class G can be defined as a generalization of A1, A2, . . ., An previously defined
classes. If the value of n is 1 then we discuss about single generalization, otherwise about
multiple generalization. Informally it can be defined as another model of inheritance where
the subclass exists and the superclass is constructed afterwards.

3.1.3 Intension and Extension of a Class
In [Ped89] is presented a simplification of the object concept. The intension of a class is the set of
properties through which it is defined. An example is given in this sense. The "mammal" concept
is analyzed. The intension of this concept refers to real-world properties like: these animals have
mammae which secret milk as nourishment for their young. By extension of a class we mean all

50 BUPT

the phenomena1 that include those properties. Back to the analyzed example it can be considered
that the neighbor’s dog belong to the extension of the mammal concept.

Specialization can be defined in terms of intension and extension of a concept. A concept
Cspecial is a specialization of a concept C, if all phenomena of Cextension

special belong to Cextension

[Ped89]. Concept worker is a single specialization of concept employee, since all workers have all
properties of employees and eventually some extra. A worker can take the place of an employee
but not necessarily the other way around. Formally this can be expressed like: a concept Cspecial

is a single specialization of a concept C iff x ∈ Cextension
special ⇒ x ∈ Cextension. The notion of

multiple specialization can be defined in the same way: a concept is a multiple specialization
of a set of other concepts if it is a single specialization of each concept in the set [Ped89]. Concept
calculator-watch is a specialization of both concepts calculator and watch. Calculator-watch fulfils
the properties of calculator and watch. Formally, a concept Cspecial is a multiple specialization of
C1, ..., Cn iff x ∈ Cextension

special ⇒ ∀i ∈ 1..n : x ∈ Cextension
i [Ped89].

Generalization can be defined also in terms of intension and extension of a concept [Ped89]: a
concept Cgeneral is a single generalization of a concept C if all members of Cextensionare members
also in Cextension

general . This means that all phenomena belonging to Cextension will belong also to
Cextension

general . Concept employee is a generalization of concept worker since every worker is an
employee. Formally Cgeneral is a generalization of concept C iff x ∈ Cextension ⇒ x ∈ Cextension

general .
As in the case of specialization there is multiple generalization. A concept is a multiple
generalization of a set of other concepts if it is a single generalization of every concept in the
set. For example the concept of employee is a generalization of worker, manager, security guard,
secretary, because all are employees. In formal notation Cgeneral is a generalization of C1, ..., Cn

iff ∀i ∈ 1..n, x ∈ Cextension
i ⇒ x ∈ Cextension

general .

3.1.4 Semantical Elements of Reverse Inheritance
The idea that reverse inheritance should have an appropriate symmetrical semantics in order to
produce the same class hierarchy structure, having the behavior as if it was defined by direct
inheritance, is proposed in [Sak02]. So, the foster class will include all the features (attributes and
methods) that are common to the exherited classes. Also it can be specified by the programmer
which features should be excluded from exheritance.

In [LHQ94] two rules are set for defining the semantics of reverse inheritance class relationship:
one sets the type conformance between subclasses and superclasses and the other defines the class
dependency which is oriented from superclass to subclass. The subclasses will conform to the types
of the newly designed superclass and the newly created superclass depends upon the subclasses.
Of course, the two rules are not sufficient and a set of restrictions are also defined to complete the
definition. These will be presented further.

As we already know from ordinary inheritance, subclasses depend and conform to their super-
classes. So both dependency and type conformance have the same direction from subclass to
superclass. In the analysis made in [LHQ94], the reverse inheritance concept changes their direc-
tions: the type conformance remains in the same direction, but the dependency is now oriented
from superclass to subclass.

As presented in the Unified Modeling Language description document [OMG04], which is con-
sidered the standard modeling language for the object-oriented development process, the general-
ization relationship can be applied to several model elements like classes, associations, stereotypes,
actors. By definition, the role of generalization is to relate a more general element and a more
specific element, so the instance of the specific classifier is also an instance of the general classifier.

In the work of [Pon02] an analysis is made on relation of generalization with other UML
elements and two aspects are emphasized: an incremental one and an overriding one. The former
goes along with classes and the latter fits to associations, stereotypes, signals, use cases, actors.
The incremental aspect refers to subclasses which have a richer set of messages in their interface
than their parents. Overriding happens when two methods are created, one in the superclass and

1By phenomena, in this context we refer to objects.

51 BUPT

one in the subclass, denoting the same message, but having different parameter and return types
or different behavior.

We can conclude that all semantical definitions include either the idea of intension intersection
or extension reunion of the generalized concepts.

3.1.5 Reuse of Object vs. Reuse of Class
In this subsection we will refer to different reuse cases for objects and classes.

Class hierarchies and database schema were build independently and so they achieved a degree
of inhomogeneity. The challenge is in which manner these classes or database schema can be
reused. In order to achieve the goal of reusability, a single set of messages should be available.

Some simple solutions seem to solve the uniformity problem. One is to make local changes in
the classes [SN88]. The disastrous consequence is a dramatic chain of modifications in the clients,
which will trigger a new cycle of software development [Mey97].

Another solution is to create new views for these objects. This will determine an explosion
of variants of the original ones which can differ slightly [SN88, Mey97]. So, we created a huge
configuration management problem.

Another possible solution is to create a union of the generalized class objects [SN88]. The
common messages of the generalized classes can be received uniformly by all subclass instances.
This solution involves inconsistencies when a foreign message is sent to an object which cannot
execute it, but it works immediately only for the features having the same name.

In [SN88] are discussed the several semantical relationships between classes: identity relation-
ship, role relationship, history relationship, counterpart relationship, category relationship. There
are investigated situations when two objects are equivalent: one possibility is for their classes to
model the same real-world object or their classes can model real world-objects which have some
common properties. The identity relationship between two classes stands when the real-world
objects modelled by those two classes are identical at all points of time. The role relationship
occurs when two objects may model the same real world object in different situations or context.
For example a person could be at the same time university employee and company employee. This
person has two different roles which could be modelled by different classes. These classes are an
example of role related classes. The history relationship between classes occurs when these
classes model a real-world object at two different real-world times. The counterpart relation-
ship hold between two non-equivalent objects which represent two different real-world objects.
It is necessary for them to have some common properties and to represent alternate situations
in the real world. For example two classes modeling air connections and train connections are
counterpart related because both have properties like departure city, destination city and fare.
The category relationship holds between objects which share some common properties. Two
classes modeling coal plants and oil plants are category related because both share plant common
related properties.

3.1.6 Explicit vs. Implicit Declaration of Common Features
We think that the specification of the excepted features in the definition of the reverse inheritance
relationship between two classes has a drawback, affecting clarity. If one wants to develop further
a reverse inheritance based class hierarchy, he has to know the list of all the common features
from exherited classes. Instead it would be better to have a list of them explicitly declared in
the foster class. The explicit list of features in the foster class will be of much more help to the
programmer, for example in the definition of a subclass derived directly from the foster class. One
more reason to sustain the affirmation is related to the possible adaptations to be declared around
common methods having incompatible signatures. So the syntax will be easier. The exheritance
concept comports two essential aspects: interface2 exheritance and implementation exheritance.
Each aspect will be detailed in the next chapters.

2By interface we denote the set of public features in a class. It is different from the concept of Java interface,
which technically is a pure abstract class [AG00].

52 BUPT

Figure 3.1: Dequeue Example

3.1.7 Allowing Empty Class
In [Sak02] the case of no exherited features is discussed. It can be useful in languages where there
is no default superclass for all the user defined classes. This practice fits better to dynamically
typed languages. It involves mechanisms of runtime type checking and casting operators. For
instance, in Java there is a class Object which is the absolute superclass of all classes. In the
definition of a new class, the relation with class Object is not explicit, it is implied automatically
by the semantics of the language. In Java we find two main types of classifiers3: classes and
interfaces. Analyzing the problem, we draw the conclusion that Java presents an asymmetrical
semantics regarding interfaces: there is no primordial superinterface. The problem of lacking a
super interface in Java could be solved with the help of reverse inheritance. It is the same for
Eiffel language, having an absolute super class named "ANY"4.

C++ is different from this point of view, it has no default superclass. In practice, in some
top-down developed class libraries there is defined a default class as root class of all the classes
in the library. This solution is non uniform, in such cases the name of the superclass differs from
hierarchy to hierarchy. Also different default behaviors are provided to such classes. We draw the
conclusion that such solutions are highly parochial. Another possibility is to define such a class
using the concept of reverse inheritance, without touching the target classes.

3.1.8 Source Code Availability
One important issue about reverse inheritance is the source code of generalized classes [Sak02].
There are several situations that have to be discussed. The most favorable situation is when source
code is available. This gives many choices in the implementation of a such a class relationship.
We can imagine an implementation based on the modification of the original source code and
on the equivalent source code generation, compilable by the Java/Eiffel/C++ compiler. Another
situation is when source code is available but it is read-only. It cannot be modified because of
many reasons: copyright policy, increased effort for maintenance. In this case it can be generated
equivalent source code using decoupling techniques to protect the original sources. The most
problematic case is the one where no sources are available, just the interface and the binaries of
classes. In such case byte code modification techniques should be applied.

3.1.9 Single/Multiple Exheritance
Single exheritance is the most simple case of exheritance. It involves only one target class to be
exherited. Both interface and implementation can be exherited. In [Ped89] an example of a double
ended queue is given to emphasize the semantics of single generalization. It is started from a class
named Dequeue having a set of methods which operates at one end of the dequeue: pop, push,
top; methods for operating at the other end of the dequeue: pop2, push2, and a separate method
empty.

From the dequeue a stack is created. Class Stack is declared as generalizing Dequeue and
excluding operations push2, pop2, top2 from its interface. From the point of view of interface

3We refer to the classifier defined in the sense of UML.
4We mention that special class "ANY" has internally private superclasses.

53 BUPT

exheritance there are no conflicts. Name conflicts obviously cannot occur, because initially the
generalizing class has no features. Some name changes could be necessary to give a more suggestive
meaning to methods. For instance if we generalize a class Collection from class Stack instead of
exheriting the push method with the original name we should better exherit it with another name,
like add for example.

3.2 Interface Exheritance
In this section we will discuss about the interface content of a generalizing class. Method imple-
mentations defined in subclasses are not taken into account from this point of view.

3.2.1 Concrete vs. Abstract Generalizing Classes
In [Ped89] is emphasized that this aspect of exheritance is the most simple. As mentioned in
[Sak02], the integration of interface exheritance in Java can be done with minimum of effort
because of the notion of "interface" they introduced in the language. A Java interface consists in
a set of abstract methods [AG00]. It can be considered as a pure abstract class. An abstract class
in Java may contain abstract methods having no implementation, just signature and also concrete
methods with implementation. We note also that interfaces can be created by specialization of
several multiple interfaces, they can be implemented by several subclasses and their methods are
all public. It is suggested that interfaces could be defined by generalization of classes and other
interfaces.

Not all languages possess such an interface concept like Java does, so we have to use the class
concept as generalization classifier. For those languages is proposed the idea of generalization into
fully abstract classes (e.g. Eiffel, C++) [Sak02].

3.2.2 The Influence of Modifiers on Exherited Features
When exheriting method interfaces one question arises: should we consider just the public ones
or should we consider all of them, including non-public ?

In order to answer this question we have to analyze what happens if we exherit from non-public
methods. The positive reasons are: they can be better reused from the level of the generalized
class and they can be inherited later. Negative reasons are class encapsulation violation which
implies visibility modification: clients may be affected, exposed methods can be overridden. So,
potential problems may be introduced at the implementation level too5. In [Sak02] it is advised
not to distinguish between public and non-public in the exheritance of method interfaces.

It is mentioned in [Sak02] that attribute exheritance does not involve big problems. Though,
some type and visibility problems may occur. Here we can take two cases: public and non-public
attributes. Although in the literature the use of public attributes is not encouraged, still some
programming languages allow their use like C++, Java. In Eiffel attributes can be exported but
they cannot be modified, only read, because the access to an attribute involves an execution of a
query which provides the desired result.

We will analyze from the conceptual point of view each type of modifier encountered in common
object languages. The problem of visibility consists in finding the appropriate modifiers for the
exherited features in the superclass. The main idea is that we want to preserve or to affect as
little as possible the feature’s visibility.

The most simple case is when we exherit public features because they will be treated as public
in the superclass. Any access to the exherited features is freely granted.

If we deal with package access type6 modifiers in the subclasses then it means that features
have to be available in their package. We have to discuss several cases:

5Implementations issues are not the subject of this analysis.
6This is known also as default access type and it is specific to Java language. It has no dedicated keyword,

all features having no keyword have by default package access type. C++ and Eiffel do not consider visibility at
package, cluster or subsystem level.

54 BUPT

Example 23 Examples in Java
// Java example
abstract class StaffMember {

abstract public void print();
}
class SecurityAgent {

public void print(){ System.out.println("SecurityAgent"); }
}

class TeachingAssistant extends StaffMember {
public void print() { System.out.println("TeachingAssistant"); }

}
class Professor extends StaffMember {

public void print() { System.out.println("Professor"); }
}

class Employee exherits StaffMember, SecurityAgent {
public void print() { System.out.println("Employee"); }

}

i) All classes are in the same package: the superclass and all exherited subclasses. In this case
the modifier of the exherited features in superclass can remain the package access.

ii) The superclass is in a different package than all the subclasses. In other words we can say
that the features migrates from one package to another. This case requires to change the visibility
of an inherited feature, to be accessible from the origin package. The possibilities are protected
if accesses to that feature are made from inside the class or public if other clients need access.
Unfortunately, the two choices violate encapsulation.

iii) The superclass is in the same package as some of the subclasses, but other subclasses are in
different packages. This situation is a mix of the cases described above. The visibility modifier in
this case should be computed for each feature in subclasses and the most visible modifier should
be used. The price paid for homogeneity of reverse inheritance is breaking encapsulation.

If exherited features from subclasses are protected then it means that they are available to
all their subclasses. If the feature declared in the superclass of generalization is protected, then
no possible clients are affected.

If exherited features in subclasses are private then it means that they are accessible only in
their original classes. As a consequence their modifier in the superclass of generalization should
be protected.

3.2.3 Status of Original Methods: Abstract/Concrete
When abstract methods are exherited from the generalized classes that means that they will
have to be declared abstract also in the foster class. The same should happen if we exherit both
abstract methods and concrete methods. So the foster class becomes abstract automatically. This
kind of behavior seems to be fair from reverse inheritance conceptual point of view.

If we decide that we have a sufficiently general implementation we can put it in the superclass
without affecting the potential abstract subclasses. These ideas are exemplified in two examples:
one Java, the other C++ (see examples 23 and 24).

In the two examples class StaffMember is abstract: in Java because of the abstract modifier,
moreover it has an abstract method named print(); in C++ because of the virtual and equals zero
print()=0 method declared. Class Employee generalizes two classes in the parallel hierarchies one
abstract and one concrete: StaffMember and SecurityAgent. The print method which equips all
the classes, could be either abstract or concrete. If we possess a general enough implementation
that will fit to all subclasses from now on, then we can put it in the Employee class. Conversely, we
declare the print method as abstract, obviously leaving it without implementation. In either cases

55 BUPT

Example 24 Examples in C++
// C++ example
class StaffMember {

public: virtual void print() = 0;
};

class SecurityAgent {
public: void print() { printf("SecurityAgent"); }

};
class TeachingAssistant {

public: void print() { printf("TeachingAssistant"); }
};

class Professor {
public: void print() { printf("Professor"); }

};
class Employee exherits StaffMember, SecurityAgent {

public: virtual void print() { printf("Employee\n"); }
};

subclasses like TeachingAssistant or Professor can override the print method with appropriate
behavior. If we create the same class hierarchy but using inheritance this time, then we will find
the same semantical behavior regarding the status of the print method.

In Java we can use also the final modifier for the exherited method’s status if we want to
be more imperative about the implementation put in the superclass. We remind that with ordi-
nary inheritance a method declared as final cannot be overridden in the subclasses, otherwise a
compiling error is generated.

When concrete methods are exherited there is the possibility to exherit just the interface or
together interface and implementation. This choice should be available to the programmer who
uses the reverse inheritance class relation [Sak02]. If it is chosen not to exherit implementation,
then in the foster class just the corresponding abstract method can be specified. The aspects
dealing with implementation exheritance will be discussed later, in a specially dedicated section.

3.2.4 Type Conformance Between Superclass/Subclass
Related to interface exheritance issue, in [Ped89] it is demonstrated using an experimental language
that from the type conformance point of view, there are no conflicts introduced in a class
hierarchy having subclasses/superclasses introduced by inheritance/reverse inheritance. The main
idea of the demonstration is to prove using formalisms that the feature set of the generalizing class
contains at most the intersection of the subclass features sets.

Before proof, generally speaking, some notations are necessary:

Cmethods = {m1, . . . ,mn}

denotes the set of methods of class C.
Class A is defined as generalization of classes B1, B2, . . . , Bk removing methods r1, . . . , rn. To

prove that Bi(i ∈ 1 . . . k) conforms to A, means that class A method set is a subset of those of
any instance of class Bi(i ∈ 1 . . . k). We use the following formalism:

Amethods =
k⋂

i=1

Bmethods
i \ {r1, . . . , rn}

So it is demonstrated that A is a superclass of Bi(i ∈ 1 . . . k), so the conformance rule is valid.
In the [LHQ94] definition of semantics a type conformance rule is set. The type of subclasses

have to conform to the type of superclass. From their point of view the superclass type is a

56 BUPT

generalization of the subclasses types. It can imply type intersection or type union, depending
on the type definition. In section 3.1.3 we discussed about the intension and the extension of an
object. Referring to these two conceptual aspects of an object they consider that if a type is a set
of features than the type of the superclass should be their intersection. If the type is considered
as a set of objects, then the superclass type of the generalizing class will be a least the union of
the subclass types.

3.2.5 Common Features and Assertions
In this paragraph we discuss ideas from state of the art regarding how common features are defined.
An attempt in this direction is made in [LHQ94] and two restrictions are set forth: i) common
features are those who have same name, ii) it is possible to define a common signature to which
all signatures from the subclasses conform.

We present also some ideas of how preconditions, postconditions and invariants are affected by
reverse inheritance. We remind that predicates are the main concepts around which the Design
by Contract technique was built [Mey97]. The purpose was to offer to the programmer tools to
express and validate correctness of a program. The relation between a class and its clients may
be viewed as a formal agreement expressing rights and obligations for each of the parties.

A precondition states all the predicates that have to check when a routine is called. Post-
conditions are predicates which verify the properties that must hold when a routine returns
[Mey97].

According to [LHQ94] the assertions rules defined in [Mey97] and [Mey02] should be reversed.
The precondition for a feature in the foster class should imply all the preconditions in the gener-
alized subclasses. The postcondition of a feature in the superclass should be no stronger than any
of the corespondent preconditions from exherited classes.

Possibilities of building the precondition and postcondition for the features in the superclass are
also mentioned in [LHQ94]. For example the precondition can be obtained by applying the AND
logical operator against all the preconditions from exherited subclasses. The result will be definitely
a stronger precondition. The postcondition can be obtained in the same manner using OR logical
operator against all the corresponding postconditions in subclasses. This approach assumes that
all variables involved in superclass predicates are defined in each subclass. Otherwise, for each
subclass missing variable we could choose not to evaluate the respective term of the expression.
In other words we could propose to evaluate the predicates only for the classes which have all the
variables defined.

As a conclusion regarding assertions in [LHQ94] in the definition of common features, it has to
be mentioned that they depend on the possibility to define a precondition other than False, which
is no weaker than the precondition of the feature in each class.

3.2.6 Possible Conflicts
Name Conflicts

In [SN88, Ped89, LHQ94, Sak02] name conflicts are discussed. They occur when two methods
have the same semantics but have different names. This conflict is named lost friends in [Sak02].
This kind of conflict cannot be detected automatically, so this must be set by the programmer. A
supporting syntax is suggested to be used in order to indicate which methods should be exherited
and which method name to be kept.

We think that it has to be considered not just the name of the method but its entire signature.
This involves methods name, return type, parameter name, number and type, whether they are
implicit or not, invariants, preconditions, postconditions.

In [SN88] the problem of name conflicts is discussed in object-oriented database schema. The
conflict takes place between the local and global interface of an object. Local interfaces refer to
the original interface of the object, which the object was designed with, while global interfaces

57 BUPT

Example 25 Name Conflicts (1)
class OIL_PLANT
attributes:
PlantName
Produced: MWh {energy produced}
OilFired: BARRELofOIL

methods:
FireOn
PowerOff
FillOil

class COAL_PLANT
attributes:
PlantName
Produced: MWh {energy produced}
Consumed: TONofCOAL

methods:
Start
PowerOff
PutCoal

Example 26 Name Conflicts (2)
class POWER_PLANT

metaclass: CATEGORY_GENERALIZATION_CLASSES
generalization_of: OIL_PLANT, COAL_PLANT
attributes:

consumed: MJOULE
corresponding:

OIL_PLANT.OilFired
COAL_PLANT.Consumed

methods:
PowerOn
corresponding:

OIL_PLANT.FireOn
COAL_Plant.Start

denote the common set of messages. The same semantical messages have different names in the
two interfaces.

The two classes presented in the example taken from [SN88] model two kinds of plants: oil and
coal. Each of them has a name property, produced energy property, starting method, stopping
method and charging method. All these features are common to the two classes, some of them
have the same name, like PlantName or PowerOff, and others have different names, although they
have the same semantics, like FireOn and Start. In this case name conflict situation appears.

So, they propose the solution of object coloring. It deals with the separation of the local
and global behavior. To objects is attached a color attribute which will determine which local
or global behavior should be followed at runtime. The switch between these two states is achieved
by adding an ”as” message to the object model. This modification is made by affecting the most
general class in each subsystem.

In fact the mechanism proposed resembles very much the polymorphism mechanism. The
substitution principle and the dynamic linking can be achieved by coloring an object. One can say
that the coloring practice is even closer to the type casting facility offered in most object-oriented
programming languages.

58 BUPT

Example 27 Name Conflicts (3)
deferred foster class SHAPE

adopt
BOX

rename
boundary as perimeter;

CIRCLE
rename

circumference as perimeter;
feature

perimeter: REAL;
end

At runtime a cp named object, instance of COAL_PLANT receiving an "as" message like
cp as POWER_PLANT will switch to the global behavior of POWER_PLANT . Now if this
instance will receive the PowerOn message, the instance will choose automatically the Start
method to be executed.

We think that the choice of referencing different names with a unique global name could solve
this kind of conflicts. This idea should be adapted in order to match attribute names and also
method signatures.

In [LHQ94] the renaming facility from Eiffel [Mey02] is used in solving name clashes (see
example 27).

Semantically equivalent features developed in different classes by different programmers will
have different names. In the example of example 27, boundary feature from BOX and circum-
ference feature from CIRCLE have the same semantical value, and they are mapped to a unique
name.

Value Conflicts

Value conflicts are encountered when features with different semantics have identical names. They
are referred in [Sak02] as false friends conflicts. Implicitly it is suggested that features should
not be exherited and such situations should be specified by the programmer. They cannot be
automatically detected and a syntax support for conflict declaration is needed. It is suggested not
to exherit such features because they are not the same.

There are cases when name conflicts can be detected automatically. Two classes having a same
ancestor can have renamed methods using renaming techniques like those in Eiffel. Both kind of
conflicts can happen [Sak02]. In the case of lost friends conflict, the features seem to have the
same seed but have different names because of renaming. A solution at compiler level is given:
they should be organized as the same feature by the compiler.

The Solution of Renaming in the Case of Name and Value Conflicts Renaming is
considered to be a solution in the case name and value conflicts. Also there are some negative
effects: it influences clarity in the declaration of features, through the inheritance path it can have
several names. On the other hand renaming is considered to be a good way to change the linguistic
meaning from a too restricted to a more general one. So, the names will be more suggestive in the
generalized class.

Scale Conflicts

Another type of conflicts could be considered the scale conflicts. They can appear when numerical
values are involved. This happens more in object-oriented systems. The problem is that features
representing values do not use the same scale.

59 BUPT

Example 28 Scale Conflicts
class MJOULE

metaclass: DATA_TYPE_CONVERSION_CLASSES
generalization_of: BARRELofOIL, TONofCOAL;
transformation_methods:

FromBarrelOfOil {convert from Barrels of Oil to MJoule}
FromToneOfCoal {convert from Tones of Coal to MJoule}
ToBarrelOfOil
ToTonOfCoal

Example 29 Parameter Order Conflicts
deferred foster class SHAPE
adopt

BOX
rename
zoom(center: POINT,factor: REAL) as scale(factor: REAL, center: POINT);

CIRCLE
feature

scale(factor: REAL,center: POINT) is deferred end
end

An example presented by us in section 3.2.6, about how this kind of conflict can be eliminated, is
discussed in [SN88]. We remind the reader that the common attribute named OilFired is expressed
in barrels of oil while Consumed attribute is expressed in tons of coal. In the generalizing class
the desired member should have the same name and the same scale, meaning MegaJoule.

In their work [SN88], in order to solve the problem of scale differences, they proposed the
concept of object transformation. This concept is implemented with the help of conversion
classes. These classes contain a set of methods representing the necessary conversion protocol
between several scales. The main idea of the solution is to switch between the local and global
representation of an object. The local representation uses one scale, while the global one uses
another. A conversion class that solves the presented problem can be like the one presented in
example 28.

In example 28 class MJOULE encapsulates all the transformation routines between barrels,
tons and MJoules. These transformation methods represent the adaptation behavior from a scale
to another. To be more explicit, they adapt values. This technique, as it is presented in the
example, can be applied only to attribute instances which are values or maybe to methods which
return values. We think that with the help of some modifications this could be also applied to
methods not just attributes. In our opinion the place of such an adaptation behavior code should
be in the generalizing class, close to the adapted feature, because of clarity reasons.

Parameter Conflicts

Parameter Order In [LHQ94] another kind of conflict is emphasized briefly. In exherited
methods the order of parameter may vary. This conflict can be solved by a mechanism for
binding arguments dynamically. For Eiffel, an appropriate syntax is proposed:

Example 29 specifies the mapping between the method zoom(center:POINT,factor:REAL) and
method scale(factor:REAL,center:POINT). We notice that besides renaming, parameter order is
set also. In order to perform such parameter reorganization, the number of parameters in all the
exherited methods and in the superclass must be all equal.

60 BUPT

Example 30 Parameter Number Conflict
class B
{
void foo(int x,int y,int z = 0,long g = 10){}

}
class C
{
void foo(int x, int y, double t = -1, float pi = 3.14){}

}
class A exherits B, C
{
virtual void foo(int x,y);

}
B b;
C c;
A * pab=&b;
A * pac=&c;
pab->foo(1,2); // equivalent with pab->foo(1,2,0);
pac->foo(2,3); // equivalent with pbc->foo(2,3,-1,3.14);

...

Parameter Number The number of parameters is an important criteria in order to match
methods when exheriting them. Of course, the number of parameters is desired to be the same
in superclass and subclass methods. In languages like C++ which permits the declaration of
methods having implicit parameters it is possible to declare a general signature in the superclass
and a conforming signature in the subclass, in addition it can have as many implicit parameters
as needed.

As a remark, the position of the default parameters is always after the non-implicit ones. Also,
the order of the default parameter is important, because you cannot use implicit pi parameter
unless you specify firstly an actual parameter for t in method foo of class C.

Parameter Type The type of parameters can cause problems in exherited features. This kind
of conflict has similarities with the one discussed in section 3.2.6. The problem is how can we
unify two parameters having different types. First of all we start our parameter type analysis
with a small discussion about the parameter transmission mechanisms encountered in Java,
C++ and Eiffel object-oriented programming languages. So, in Java we have value transmission
mechanism for primitives and object references. The value of the actual parameter is copied into
the formal parameter. Changes on primitive typed formal parameters will not affect the actual
parameters. When dealing with object references, they cannot be affected, but the referred objects,
obviously, can be modified.

In C++ we have types like primitives, objects, pointers and references. The transmission of
primitives is the same like in Java. What is interesting in C++ is the implicit call of the copy
constructor7 when transferring object value parameters [Str97]. The situation in Eiffel [Mey02]
regarding parameter transmission is the same like in Java. There are transferred primitive values
and reference values.

Another issue which have to be discussed before trying to get to parameter unification problem
of reverse inheritance, is the variance in the analyzed programming languages. There are three
possibilities of parameter variance: covariant, nonvariant and contravariant. A programming
language is covariant if in the redefinition of a method in the subclass, the types of parameters
vary along with the type of the class in which the method is declared in.

7The copy constructor can be implicit and then byte copy of the object is performed, or the programmer can
override this default behavior by providing an explicit copy constructor.

61 BUPT

Example 31 Parameter Type Conflicts (1)
class A {}
class B extends A {}
class Parent
{
void foo(A argument){}

}
class Child extends Parent
{
void foo(B argument){}

}

Example 32 Parameter Type Conflicts (2)
class Point2D
{
void setX(double x){}

}
class Point exherits Point2D
{
void setX(int x){}

}
Point p = new Point2D();
p.setX(3);

In example 31 we can discuss covariance issues. Method foo in class Child is a redefinition of
method foo in class Parent if: i) the language is covariant and B is a subtype of A; ii) the language
is contravariant and B is a supertype of A; iii) the language is nonvariant and A and B represent
the same class.

One situation is when we deal with primitives types in object-oriented languages. If we deal
with compatible types we could perform type casting implicitly like in the example 32.

In our experiment (see example 32) we have two methods setX with two different argument
types: int in the superclass and double in the subclass. For instance if we replace in C++ or Java
a parameter’s int type with a long type, arithmetical computations are not affected. But if bit
level operations are executed, the result will not be the same. The conclusion is that primitive
type substitution implies potential risk to the affected code, a runtime casting mechanism, which
can sometimes affect values (e.g. precision loss) and knowing the compatibility rules between the
primitives. The most radical solution that can be applied is not to allow the feature exheritance,
unless parameters have the same type.

3.3 Implementation Exheritance

3.3.1 Impact of Polymorphism in the Generalization Source Class
In the state of the art are studied two different situations: when exherited methods in the superclass
are virtual or non-virtual. When no virtual methods are present in the foster class, in [Ped89] two
unsatisfactory solutions are proposed.

Principal Subclass Implementation Pedersen [Ped89] proposes that one of the generalized
classes should be chosen as main subclass. It is also motivated that the choice should be made by
the programmer because he knows better the implementations of subclasses and because in some

62 BUPT

Example 33 Impact of Polymorphism
class Rectangle
{
double a,b;
public double area(){return a * b;}

}
class Rhombus
{
double a,theta;
public double area(){return a * a * sin(theta);}

}
class Parallelogram exherits Rectangle, Rhombus
{
double a,b,theta;
public double area(){return a * b * sin(theta);}
// the most general method for area computation

}

languages interface inheritance means also implementation inheritance.

New Implementation The other proposed possibility to deal with exherited implementations is
to provide a new implementation in the foster class. Both solutions proposed by Pedersen [Ped89]
are criticized in [Sak02] because the semantics of generalization is broken. Because methods are
non-virtual or non-polymorphic, the specialized behavior of all subclasses become unusable. In
some special cases such a class construction can be useful. One of them is presented in the next
paragraph.

Non-Virtual Methods Can Be Useful Sometimes If exherited methods in superclasses
are not virtual there is no problem from technical point of view (one can build such a class
hierarchy without compiler errors), but it does not express the desired semantics of generalization.
Exceptions may occur in the situations where a more general implementation is available and the
specialized one from the subclasses can be overridden without affecting the consistency of the class
hierarchy, like in example 33.

Generally speaking a virtual method is a method that has a polymorphic behavior. Depending
on the type of the object at runtime, a polymorphic method call may exhibit different behaviors.
Here we refer only to the dynamic linking component of polymorphism. No matter if the original
method is abstract or concrete, generally, the exherited method specified in the foster class should
be made virtual [Sak02]. It is known that in any language virtual methods can be overridden in
the subclasses.

Empty Method The first solution discussed in [Ped89] is to equip the exherited method in
the foster class with empty body in the case of no common behavior. This method could be
easily overridden by specialized subclasses. In languages like Java we could define it concrete with
empty body, triggering an exception in case someone calls this method, or abstract with no body,
meaning that all the concrete subclasses are obliged to implement it. In Eiffel we can declare it
in the superclass as deferred method. In C++ we have two possibilities by declaring it abstract
or as pure virtual. A pure virtual method is a method declared with the "virtual modifier" and
having also "=0" suffix meaning that it is a pure method.

Main Class Behavior The second proposition and the default one made in [Ped89] is to ex-
herit implementation from the selected main subclass, when all implementations exhibit the same

63 BUPT

Example 34 Selective Method Exheritance
class Iterator1
{
int value=0;
void increment()
assume value >= 0
{value = value + 1;}
guarantee value > 0

}
class Iterator2
{
int value = 0;
void increment()
assume value >= 0
{value = value + 2;}
guarantee value > 0

}

behavior. In practice it seems a rare case that a set of classes are equipped with exactly the same
body.

Some Common Behavior The idea promoted in this case by [Ped89] is a manual selection
of the common behavior from subclasses and the definition of a new method in the generalizing
class. This is motivated due to the fact that later on this implementation could be inherited in
other subclasses of the generalizing class.

Selective Method Exheritance In the case of virtual methods in foster class, [Sak02] proposes
an alternative solution to method body exheritance. The idea of exheriting methods from different
subclasses is encouraged. The solution given seems more flexible and attractive. We think that
some adaptations are still necessary to provide a more advanced degree of class reuse.

In practice it does not seem probable that one subclass can provide all the suitable behavior.
Assertions, which deal with predicate abstraction, do not describe completely the behavior of a
routine. So in general we can say that even if we find a method in a subclass which has assertions,
which conforms against all the assertions from the other subclasses, is not sure that the behavior
of that method will be fit to all the subclasses.

The two classes in example 34 have the same precondition and postcondition for method
increment(), but different behaviors.

Adaptive Approach We think that in many situations an adaptive approach is more suitable.
We propose to analyze a mechanism which allows to use the code from subclasses in a more flexible
manner. Calls to the original version of the code are possible using the inferior calling mechanism,
like in Beta programming language.

In the proposed example we can find two classes modeling Alcatel, Inc and Nokia, Inc phones.
We need to treat these classes in a uniform manner, so we decided to create a foster class gen-
eralizing them. There can be noticed that the two classes have implemented ringing behavior8.
It is quite natural that the new created class, baptized GeneralizedPhone, to exhibit the ringing
behavior. So we exherit the signature of method ring() from both classes. We suppose that each
subclass has specific ringing behavior. We need to reuse this behavior but in a different way. For
example we would like to add actions before and after the each ringing operation. This can be

8For clarity and simplicity reasons we suppose that these methods have the same signature. In practice it seems
quite improbable to be so. The problem of signature adaptation is treated in a different section.

64 BUPT

Example 35 Adaptive Approach
class AlcatelPhone
{
void ring()
{
// original Alcatel implementation

}
}
class NokiaPhone
{
void ring()
{
// original Nokia implementation

}
}
class GeneralizedPhone exherits AlcatelPhone, NokiaPhone
{
void pre_ring()
{/* pre ring operations */}
void post_ring()
{/* post ring operations */}

factored void ring()
{
pre_ring();
inferior.ring();
post_ring();

}
}

65 BUPT

Example 36 Type Invariant Assumptions
class A
{
void f()
{
if (this instanceof A)
{
// do some actions

}
else
{
// do other actions

}
}

}

done with the help of a descendant access. An implementation of method ring() having a call
to the pre_ring() operations, a call to the original specific method from the subclass and a call
to the post_ring() operations can be imagined. The main drawback of this approach is that the
semantics of the original classes may be changed by adding the new features.

3.3.2 Adding New Behavior
Referring to the example 35 we showed that new behavior added into the foster class can be useful.
The pre_ring() and post_ring() methods added to the GeneralizedPhone foster class were used
to create an enhanced ringing method. Other advantages of this feature will be presented in the
section dealing with the mixing of inheritance with reverse inheritance. Still the classes are in
danger of having the semantics changed. Such a capability would be a valid option in a poten-
tial reengineering tool based on the concept of reverse inheritance, but not in the programming
language semantics.

3.3.3 Exheriting Dependencies Problem
In [Sak02] the problem of dependency exheritance is mentioned. It is stated that exherited methods
dependencies have to be exherited also in order to be usable in the foster class. There are two
possible solutions for this problem. One would be to exherit the dependencies as well. In practice
this would mean to exherit almost all the features in a class. The other approach is to provide
the missing dependencies in the class where the exherited methods were exported. Such an idea
is used in the traits mechanism presented in subsection 2.4.

3.3.4 Type Invariant Assumptions
It is noted in [Sak02] that type invariant assumptions, executed in the context of an exherited
method in the generalizing class, can be broken. This can happen not only in assertions but in
the code of a regular method. Example 36 presents such a situation. The type assumptions,
investigated in the condition of the if instruction, were designed to work in the context of the
original class. The first branch of the if instruction is taken. If the code of method f would
migrate in a potential generalizing class A, then the f method semantics would change. In this
case the second branch of if would be taken.

From this example results that a use of the reflection mechanism in the implementation of a
method would make exheritance impossible. Related to these problems the solution would be to

66 BUPT

Figure 3.2: Fork-Join Inheritance Example

choose not to exherit the methods having such assumptions. In order to do so, these assumptions
have to be detected first, so a dedicated technique would be required.

3.4 Mixing Inheritance With Exheritance
In this section we analyze some interesting combinations of inheritance and reverse inheritance in
class hierarchies, looking carefully at the restrictions which have to be considered in order to avoid
potential problems.

3.4.1 Fork-Join Inheritance
We begin with the analysis of a conceptual example from the state of the art. A case of fork-join
like inheritance scheme is presented in [Sak02]. There are considered two cases: i) class A is defined
then classes C and D are defined as inheriting from A. Class B is defined by generalization of
classes C and D ; ii) classes A and B are defined first, then class C is defined as a generalization
of the two. Class D finally inherits multiply from A and B.

The arrows with up direction denotes specialization and conversely, the down directed arrows
denote the generalization relationship.

In case 1 features from class A are propagated through inheritance into classes C and D. Then,
by reverse inheritance from C and D, they are propagated into class B. Classes A and B may have
some common features but at the same time each class may have specific features which were not
propagated from one to another. So there is no subtype relation between A and B.

In case 2 the features of class C are propagated via multiple reverse inheritance to classes A
and B, then they are inherited directly into class D by normal multiple inheritance. A subset9
from class C message set are transferred to A and B and from there, the subset is included in the
class D message set by the multiple inheritance. Again, there is no subtype relation between C
and D.

In [Sak02] two particular sub-cases are analyzed: if there are no features excluded in the
generalization and if there are no features added in inheritance. In the first sub-case features in
class B will have all the common features of C and D obtained by inheritance from A, but it will
also have specific exherited features. If both generalization and specialization have not excluded
or added new features it is created an effect of cloning class A in class B of case 1 or class C in
class D of case 2.

9It is a subset because not all the features are exherited, some may be excluded.

67 BUPT

Figure 3.3: Terminal Example

3.4.2 Reusing Common Behavior
Another interesting idea is presented in [Ped89] about how common behavior factored using re-
verse inheritance, can be reused. For exemplification, a real world case is analyzed dealing with
terminals. Given two classes Terminal1 and Terminal2, which model two different terminals, the
decision of creating a more general class of the two is taken, in order to group their commonalities
for reusing purposes.

In the given context both terminals are ANSI terminals so a generalizing class TerminalANSI is
created through generalization from Terminal1 and Terminal2. Class TerminalANSI will contain
all the common interface and implementation from the exherited classes and conform to the
standard ANSI specification. Of course there could be features specific to subclasses which are
excluded, being not subject for exheritance. A new class baptized Terminal3, modeling a new
terminal is created as inheriting from foster class TerminalANSI. Thus, all the common interface
and behavior will be inherited. Of course specific behavior can be added too.

The conclusion that can be drawn from this example is that using the two concepts together
we can benefit from already defined classes. An alternative to this approach would be to define
class Terminal from scratch and to rewrite or copy the standard behavior of ANSI terminal from
one of the two classes. This is an error-prone practice and it should be a avoided. There are two
reasons for this: it increases the entropy of the system and it is bad for the code management. We
discuss what happens when the ANSI standard evolves in a new version is released and software
components have to keep in step with the up to date modifications. We analyze the possibility
of feature adding in reverse inheritance on this example without loosing generality. The new
enhancements required by the standard will be the same for all three classes.

Specialization - The Classic Solution

One possibility is to create three subclasses for each terminal class using direct inheritance and
to equip them with the enhanced behavior. The class hierarchy describing this solution is pre-
sented in figure 3.4. The three new added classes are: EnhancedTerminal1, EnhancedTerminal2
and EnhancedTerminal3. So we created three more classes in the system which will contain the
enhancements. There are two possibilities for the enhancements to be contained: they are either
copied directly in all the subclasses or they are encapsulated in a new class, and a member of this
type will be declared in all the three subclasses. The first possibility involves code duplication
while the second one implies the creation of a new class and the usage of composition. The second
possibility can be used only if the enhancements are the same for all the three terminals, still the
code dealing with the manipulation of the component object is duplicated.

Feature Adding in Foster Class

Another possibility is to put directly the enhancements in the foster class TerminalANSI directly
and then they will be automatically inherited in all the subclasses. In other words this means the
creation of a foster class version. This solution addresses the "fragile base class problem" [MS98].
This type of problem appears when acceptable versions of the base classes are created which
damage the extensions. In [MS98] this problem is viewed as a flexibility problem and restrictions

68 BUPT

Figure 3.4: Terminal Enhancement (1)

Figure 3.5: Terminal Enhancement (2)

can be set in order to discipline inheritance. On the other hand, a conceptual drawback is noticed
because reverse inheritance should not imply feature inheritance but only feature exheritance.

Setting Superclass for Foster Class

An alternative to the previous solution is to create a new foster class having as target the Ter-
minalANSI class and containing the enhancing behavior discussed earlier. So, we can leave the
base class of the hierarchy untouched, this solution could be used in situations where source code
is not available or no class maintenance responsibilities are accepted. The idea of adding features
to a base class using reverse inheritance still suffers from semantical breaking and contamination
with fragility. In figure 3.5 such a situation is depicted.

3.4.3 Dynamic Binding Problems
It is demonstrated in [Ped89] that multiple generalization conflicts are the same as for multiple
inheritance, thus the solution to the second problem could be applied to the first. Conflict res-
olutions in multiple inheritance were analyzed in section 2.1.1. In [LHQ94] a similar problem of
accessing a unified feature, which is multiply inherited, is discussed. In this case the multiple
inheritance mechanism for Eiffel is used and combined with renaming.

In example 37 which was presented in a different manner in section 3.2.6 it is now created a
class that derives from both BOX and CIRCLE. The problem is which implementation will be used
when having a reference of class SHAPE and perimeter feature is called. This is an ambiguous
situation which has the following alternatives: boundary from class BOX or circumference from
class CIRCLE. A proposal is made in [LHQ94] to take as implementing feature the one present in
the first declared subclass. In our case it is boundary from class BOX, because class BOX is the
first in the inheriting list of class CIRCULAR_BOX. This approach is wrong because the selection

69 BUPT

Example 37 Exheritance Dynamic Binding Problem
class BOX
feature

draw is do end
height, width, area, boundary: REAL

end
class CIRCLE
feature

draw is do end
radius, circumference: REAL

end
deferred foster class SHAPE

adopt
BOX

rename
boundary as perimeter

CIRCLE
rename

circumference as perimeter
feature

perimeter: REAL
end
class CIRCULAR_BOX inherits
BOX, CIRCLE

end
s: SHAPE
cb: CIRCULAR_BOX
r: REAL
!!cb;
s := cb;
r := s.perimeter;

70 BUPT

Figure 3.6: Exheritance Dynamic Binding Solution

method does not allow any configuration of selection in more complex class hierarchies. Such an
example is given in figure 3.6 where classes A, B, C were created first and have features x, y, z.
Then the generalizing class F is created having A, B, C as subclasses. Later on the AB, BC and
AC classes are created having the first superclass in the list the class denoted by the first letter in
their name. So for class AB the first superclass is A while B is the second. In this configuration
if one wants to select feature x for AB, feature y for BC and feature z for AC it is not possible.
The first two choices are valid, while the third one is not possible. The order selection solutions
does not work in all cases.

The approach of Eiffel in the case of dynamic binding problem apparently could be used. This
implies using the select keyword for each feature we want to dynamically bind in ambiguous cases.
Such an approach has the drawback that the feature corresponding to the selected features in the
subclasses, can be non-exherited in the generalizing class.

3.4.4 Architectural Restrictions
From class relations point of view, in any common object-oriented language a class hierarchy based
on inheritance cannot be cyclic. So in reverse inheritance based hierarchies the same rule is applied.
This rule is applicable also to hierarchies containing both inheritance and reverse inheritance. Any
further architectural restrictions can be set only in the concrete context of a programming language.
The philosophy of the language will determine: if repeated reverse inheritance is possible or not
and what happens in the presence of ordinary inheritance and reverse inheritance having the same
target class.

3.5 Summary
This chapter contains all general ideas about exheritance and its semantical elements. First the
motivation is presented, the exheritance concept being found in object-oriented databases and in
class modeling of the object-oriented paradigm. Formal definitions of single/multiple specializa-
tion/generalization, based on the notion of the intension and extension of a concept, are given.
Some exheritance basic semantical elements are discussed: common features, type conformance,
generalization and specialization. The reverse inheritance concept can be located at the inter-
section of object-oriented programming and object-oriented databases. Each domain has its own

71 BUPT

interest of reuse: class reuse, respectively object reuse. Several contexts are presented in which
reverse inheritance is the main means in achieving reuse. The issue of allowing the source class
of exheritance as empty is analysed in the context of several programming languages. Then the
problem of having available the source code of the reverse inheritance affected classes is discussed.
This issue belongs more to the implementation part where such decisions have to be discussed.
The decision to include the discussion in this chapter is to suggest the several implementation
semantics possibilities.

Next, we focus on the interface content of a superclass in the reverse inheritance class rela-
tionship. The first analyzed issue is the abstract/concrete status of the exheritance source class.
Then the influence of modifiers is discussed. In this sense the protection mechanism is considered
as subject for the analysis. Abstract/concrete status of method is an important point of discus-
sions. When discussing about the interface of the generalization class, type conformance has to
be demonstrated using formalisms. Common feature and assertions problematics are discussed in
the context of Eiffel language. An extensive section is dedicated to conflicts caused by inhomo-
geneities of common features. They are classified as name conflicts, value conflicts, scale conflicts
and parameter conflicts. In this sense several possible adaptations techniques are presented.

Further on, implementation exheritance problems were discussed. The most severe problem
is the one of polymorphism impact on the generalizing class. When there is no polymorphism
implementation exheritance is problematic. In the case of polymorphic methods there is no prob-
lem since they can be very easily overridden in the subclass. The adding of new behavior in the
generalizing class is studied in the context of exheritance. This capability is a disabled option
since the semantics of reverse inheritance does not include feature inheritance and the semantics
of exherited classes is changed, which is a severe aspect. Then dependencies problems are analysed
when implementations are exherited and two solutions are discussed. A special aspect related to
type verifications is discussed in the context of implementation exheritance.

Finally, we analysed one combination of ordinary and reverse inheritance. The fork-join in-
heritance shows the benefits of using together the two class relationships. Next, was presented
an evolution problem, which was solved using reverse inheritance as the basic means in several
solutions: using specialization, adding features in the foster class and setting superclass for the
foster class. Dynamic binding problems were tackled presenting two unsatisfactory solutions. At
the end of the chapter several architectural restrictions are discussed.

From the study presented in this part results clearly the fact that a general semantics for
reverse inheritance to fit in all object-oriented programming languages it is not possible. Even
its counterpart, ordinary inheritance has several implementations in each programming language.
This is because every language has its own particularities and a general compromise cannot be
found.

In conformance to the ideas studied in this report we can draw conclusions related to the most
suitable programming languages to implement the reverse inheritance concept. If we decide to
implement it in Java we have to take into consideration the fact that there is no multiple inher-
itance between classes in consequence we cannot design a reverse inheritance class relationship.
Because there is multiple inheritance between interfaces we could introduce the concept of reverse
inheritance between interfaces. This decision is based on the fact that it is not a good thing to
allow the creation of class hierarchies with the help of reverse inheritance which cannot be obtained
using ordinary inheritance. In order to avoid semantical inconsistencies it is better to keep the
symmetry of the language.

C++ programming language has the advantage of having multiple inheritance, thus favoring
reverse inheritance between classes. There are no adaptation mechanisms for the features, adding
them with the new concept would break the philosophy of the language. There is a great difference
between class features: attributes and methods from the client point of view. This aspect can
introduce potential problems at the implementation level.

In Eiffel the implementation of such a concept like reverse inheritance would fit better because
of several reasons. One main reason is the fact that the language supports multiple inheritance.
Another big advantage is the philosophy of the language which includes feature adaptations.
Reverse inheritance needs such adaptation mechanisms. Another argument in favor of Eiffel is the

72 BUPT

uniqueness of the feature names. This is due to the fact that no overloading is possible. From
the client class point of view there is no difference between a method or an attribute query. In
other words a feature can be implemented by computation or by storage in a free way. A possible
problem related to the other programming languages is the existence of assertions which can easily
prevent potential features from being exherited.

In order to experiment the reverse inheritance concept it would be appropriate to define a
semantics for a certain programming language. As presented earlier the Eiffel programming lan-
guage would fit better to this research. In this direction, the definition of a reverse inheritance
semantics would imply setting rules and syntax constructions, giving examples and explanations.
The semantics has to contain all the interactions and side effects of the reverse inheritance concept
and the rest of the language mechanisms.

The implementation of a prototype will allow using the reverse inheritance class relationship
between already existing classes, thus building new class hierarchies. In fact this prototype will
implement the semantics of reverse inheritance. One way of doing this is to transform class
hierarchies using reverse inheritance in an IDE (Integrated Development Environment). From this
point of view there are several possibilities for obtaining the executable system: either by writing
a compiler capable of generating binary code for the reverse inheritance class relationship, or by
writing a translator to convert the source code using reverse inheritance extension to equivalent
pure source code.

73 BUPT

Part II

The Design of an Exheritance
Relationship

74 BUPT

In this part we propose a dual class relationship of reverse inheritance, in order to achieve
the goal of class reusability and behavior enhancement. The idea of dual relationship comes from
the fact that we use two conceptual links between classes: reverse inheritance (conforming and
non-conforming) and a feature importing, like-type class relationship. Further on we will explain
in detail each class relationship semantics.

The approach of this work is built on [LHQ94], which we consider the most advanced approach
from the state of the art, in this direction [CCL+05d]. We keep the same restrictions of not affect-
ing the behavior of exherited classes when exheriting from them. The choice of Eiffel was taken
because its philosophy is closer to the concepts required by reverse inheritance e.g. the renaming
technique, the presence of conforming and non-conforming inheritance, the lack of overloading
for features. There are some attempts to implement reverse inheritance for Java programming
language [CPc05, CRC06b] and even to adjust its semantics in order to solve a restricted set of
problems [CRC+06a], but the resulted semantics is a great deviation from the philosophy of Java.

A secondary objective of this part is to prove that the integration of the reverse inheritance
class relationship in Eiffel comes naturally, will not complicate the language semantics and will
not break any already existing language rules. Reverse inheritance is also known in literature as
upward inheritance [SN88], exheritance [Sak02], generalization [Ped89, OMG04].

75 BUPT

Chapter 4

Creating a Class by Reverse
Inheritance

4.1 Reverse Inheritance: Definition and Notations
In this chapter we intend to define the semantics of conforming reverse inheritance. In order to
do this, we will rely on the ordinary inheritance definition. Inheritance allows the definition of
new classes by adding or adapting features in subclasses without changing their semantics. Along
with inheritance, the definition of new types is supported, as specializations of the already existing
ones [Mey02]. In Eiffel there are two types of inheritance: conforming and non-conforming. Con-
forming inheritance offers feature inheritance and subtype conformance between the subclass
and superclass. Non-conforming inheritance1 does not offer type conformance as conforming
inheritance does, but only inheritance of features. So, it is more useful when data and code are
needed to be imported into a class without making it a subtype of the superclass.

In order to follow the philosophy of the language, we think that reverse inheritance should
behave in the same way. In this chapter we address conforming reverse inheritance because it
deals with all complex situations, but in section 4.4 we will point out the characteristics which are
specific to non-conforming reverse inheritance.

Reverse inheritance class relationship in general, conforming or non-conforming, has a target
class and one or more source2 classes. They will be referred further on also as the superclass and
respectively subclasses or exheritant class and respectively exherited classes.

When defining default behaviors of reverse inheritance semantics they will be defined as alter-
natives. On the other hand they should not be declared explicitly because in Eiffel most defaults
are unnamed, for instance: there are no keywords for the alternatives of deferred or frozen.

Together with the notion of reverse inheritance we will use also an alternate name: exheri-
tance, denoting the same concept. The features which are the subject to reverse inheritance will
be called factored, reverse inherited or exherited. In order to distinguish between pure Eiffel
and Eiffel with reverse inheritance we will name the extended language RIEiffel.

In the next subsections we will set the main principles of reverse inheritance class relationship
and we will propose a notation.

1We can think also about removing features in non-conforming inheritance since the subclass will not conform
to the superclass.

2By source classes we mean the classes which exist initially, and by target classes we mean the classes which are
created afterwards.

76 BUPT

4.1.1 Definitions
We want to build a class relationship which is completely interchangeable3 with its symmetrical
counterpart, namely the ordinary inheritance. This refers to both conforming and non-conforming
cases.

From this issue derives the fact that reverse inheritance is not an absolute necessity. Then the
question arises whether this class relationship is good anyway. Adaptations which are used for
merging features are good arguments for sustaining such a class relationship. Some rules will give
an intuitive definition of reverse inheritance.

Firstly, since we are designing an extension to an existing language, it is important that classes
and programs which do not use the extension will not be affected.

Rule 1: Genuine Extension Eiffel classes and programs that do not exploit reverse inheritance
must not need any modifications, and their semantics must not change.

As the target class is created the last, it should not affect the rest of the hierarchy from the
behavioral point of view. Using reverse inheritance we should not achieve structures which are
not possible to create with ordinary inheritance.

Secondly, it is very important that after a class has been defined by reverse inheritance, it can
be used just as any ordinary class. Otherwise, foster classes would be less useful and the additional
language complexity caused by reverse inheritance would not pay off.

Rule 2: Full Class Status After a foster class had been defined, it must be usable in all respects
as if it were an ordinary class. In particular, a foster class can be used as a parent in ordinary
inheritance and as an heir in further reverse inheritance.

Thirdly, in ordinary inheritance the semantics of a given class is not affected if a new class is
defined as its direct or indirect subclass (descendant in Eiffel), or if some existing descendants are
modified. In contrast, any modification to a superclass (ancestor in Eiffel) affects all its subclasses,
and can even make some existing descendants illegal unless their redefinitions are changed also.
Reverse inheritance is designed to be a mirror image of ordinary inheritance, in this respect the
dependencies between classes will be the opposite of what they are in ordinary inheritance.

Rule 3: Invariant Class Structure and Behaviour Introducing an ancestor C to one or
several classes C1, . . . , Cn using reverse inheritance must not modify the structure and
behaviour of C1, . . . , Cn, nor induce new inheritance relationships between existing classes.

The paper [Sak02] suggested that it could be possible to define also new inheritance relationships
between existing classes (if they are feasible). However, that is more confusing than useful, at
least when extending an existing language. Since we are designing an extension to an existing
language, it is important that classes and programs which do not use the extension will not be
affected.

Fourthly, the reverse inheritance relationship is intended to be symmetric with ordinary in-
heritance. This means that it should be as completely interchangeable with ordinary inheritance
as possible. In the new version of Eiffel [Int06] this would imply also that conforming and non-
conforming reverse inheritance relationships must be distinguished.

Rule 4: Equivalence with Ordinary Inheritance Declaring a reverse inheritance relationship
from class A to class B should be equivalent to declaring an ordinary inheritance relationship
from class B to class A. Of course, this does not mean that the syntactic definitions of the
two classes would be the same in both cases. As a consequence of this rule, it would be good
if all adaptation capabilities provided for reverse inheritance had their counterparts in pure
Eiffel language. However, we actually wish to have some adaptations that cannot be exactly

3By interchangeable we admit in this context that some modifications have to be made to feature clauses in
order to obtain the same behavior from the class hierarchy.

77 BUPT

Figure 4.1: Reverse Inheritance

translated to ordinary inheritance (see section 5.2). On the other hand, we did not consider
it worthwhile to implement all possible complications of Eiffel ordinary inheritance also in
reverse inheritance; rule 7 is an example of that.

Fifthly, we want reverse inheritance to leave the existing inheritance hierarchy as intact as possible.

Rule 5: Minimal Change of Inheritance Hierarchy Introducing a foster class must neither
delete direct inheritance relationships (parent-heir relationships) nor create any inheritance
relationships (ancestor-descendant relationships) between previously existing classes. Note
that, taking rule 4 into account, reverse inheritance may well create new inheritance paths
between existing classes, but only for existing ancestor-descendant pairs (section 6.1). The
paper [Sak02] suggested that it could be possible to define also new parent-heir relationships,
and even equivalence relationships, between existing classes (if they are feasible). However,
we decided not to include that possibility in our Eiffel extension, to keep things simpler.

Sixthly, we need to define which features are candidates to be exherited in reverse inheritance. The
following rule is essentially a consequence of the previous rules and the adaptation possibilities of
ordinary inheritance in Eiffel extended for reverse inheritance (as just mentioned).

Rule 6: Exheritable Features The features f1, . . . , fn of the respective, different classes C1, . . . ,
Cn are exheritable together to a feature, in a common foster class if there exists a common
signature to which the signatures of all of them conform, possibly after some adaptations.
Each of the features f1, . . . , fn can be either immediate or inherited. In pure Eiffel these
features could be similarly factored out to a common parent, but any extended adaptations
(see above) would require new or modified methods in the heir classes. Some common special
cases are simpler than the general case. In single reverse inheritance, all features are trivially
exheritable. In multiple reverse inheritance, all fi may already have the same signature, or
one of them may have a signature to which all others can be made to conform. We will
explain the possible adaptations in section 5.2.

Lastly, we want to avoid the complexity of allowing one feature in a foster class to correspond to
several features in the same exherited class, although this would be a direct equivalent of repeated
inheritance with renaming.

Rule 7: No Repeated Exheritance Two different features of the same class must not be ex-
herited to the same feature in a foster class. The definition of the semantics of reverse
inheritance in the following sections, on both the conceptual level and the concrete language
level, relies on the above six rules.

4.1.2 Text and Graphical Syntax
In figure 4.1 we present a class diagram which shows how to represent the reverse inheritance class
relation in parallel with the ordinary inheritance. The UML representation selected for reverse
inheritance is the dashed line having a downward pointing triangle arrowhead. The intention of

78 BUPT

Example 38 Reverse Inheritance Example
class RECTANGLE
end
class ELLIPSE
end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all

end

Example 39 Ordinary Inheritance Equivalent Example
class SHAPE
end
class RECTANGLE
inherit SHAPE

end
class ELLIPSE
inherit SHAPE

end

this two class diagrams is also to show that reverse inheritance is the symmetrical relationship of
ordinary inheritance, the behavior of the two class diagrams is intended to be equivalent. This
class relationship can be expressed also using a syntax extension like in the following code:

In example 38 the classes RECTANGLE and ELLIPSE already exist, and the superclass
SHAPE is created afterwards. One can notice that the keyword exherit was used in order to
reflect the reverse inheritance relationship between the classes. On the other hand class SHAPE
is a special kind of class, the source of reverse inheritance, and the foster keyword is used to mark
it with respect to normal Eiffel classes. The foster keyword was taken from [LHQ94] paper and
it is very suggestive for the adoptive status of the class. A foster class can be effective or deferred,
may have subclasses by ordinary inheritance or even superclasses by reverse inheritance. The code
from example 38 is semantically equivalent to the situation in which class SHAPE is created first,
and then subclasses RECTANGLE and ELLIPSE, like in example 39.

Reverse inheritance4 allows the programmer to create a superclass out of one or several sub-
classes and to select the common features to be factored out into that superclass.

In order to specify the common features we have several choices: either we specify them
explicitly, either we consider them implicitly selected. With features, some actions are possible
like: rename, undefine, adapt, moveup, select, export, redefine. These facts are illustrated
in the rules of example 40.

In the grammar from example 40 we provide the definition of the foster class which is the
source of reverse inheritance class relationship. We can notice that it starts with the keyword
foster which denotes the special type of the defined class for better readability. In this rule
EXHERITANT_CLASS_NAME is the name of the foster class.

Common features from subclasses can be exherited (or factored). Exheritable features in the
subclasses are those features which have either the same signature or those for which the signature
may be adapted using the clauses presented in chapter 5. In the selection clause, the exherit
keyword is then used in different combinations to select the exherited features:

4When we do not mention conforming or non-conforming it means that we discuss about reverse inheritance in
the general sense.

79 BUPT

Example 40 Syntax for Exheriting Features
foster_class_definition::=

foster class EXHERITANT_CLASS_NAME
...
exherit heir_list
exherited_feature_list
[foster_adaptation]
...

end
heir_list::= heir*
heir::=

EXHERITED_CLASS_NAME
[rename renaming_list]
[redefine feature_list]
[undefine feature_list]
[adapt feature_list]
[moveup feature_list]
[select selection_list]

end
renaming_list::=

rename identifier as new_identifier (, identifier as new_identifier)*
selection_list::=

select feature_name in class_name (, feature_name in class_name)*
exherited_feature_list::=

exherit (all | nothing | only feature_list| except feature_list)
feature_list::= feature_name (, feature_name)*
foster_adaptation::=

[export export_list]

80 BUPT

• using the all keyword denotes that all possible features from exherited classes will be selected.
If there are no common features in the subclasses the resulting foster class will be empty.
The effective list of selected features is not explicitly listed, being inferred by the compiler,
but it could be highlighted by the programming environment.

• using the nothing keyword denotes that no features from exherited classes will be selected.
This keyword can be useful for the creation of a new type.

• using the only keyword and a list of features explicitly selected from the subclasses. If
there are explicitly selected features which do not exist in all foster classes, the compiler will
consider it an error. This declaration alternative has the advantage of having an explicit list
of selected features, thus increasing clarity of foster class code for the programmer.

• using the except keyword and a list of features explicitly excluded from the selection. This
choice works better in cases where multiple features are exherited and just a few exceptions
must be stated. If non-eligible features are excluded the compiler will produce a warning.
As in the first declaration alternative, the programming environment could highlight the
effective list of the exherited features.

Rule Exheritable Features. A feature f contained in the subclasses C1.. Cn is exheritable if
one of the following assumptions is satisfied:

• The signatures of f in all Ci (1≤i ≤n) are identical;

• The signatures of f in all Ci (1≤i ≤n) may be adapted in order to conform:

– either to the signature of f in one Cj (1≤j ≤n) ;

– or to another signature to which all the signature of f in Ci (1≤i ≤n) may conform,
possibly after some adaptations.

Next, the foster class grammar contains exheritance clauses, which must be specified for each
exherited class. One exheritance clause specifies the condition for the feature exheritance from
one subclass and it has the following structure:

• EXHERITED_CLASS is the name of the exherited class;

• The rule variant rename renaming_list refers to the ordinary renaming mechanism of Eiffel.
In the context of foster class semantically equivalent features must have the same name.

• The redefine clause has the same semantics as in ordinary inheritance of Eiffel and it is
used for signature redefinitions or for implementation redefinitions.

• The undefine clause will have the same semantics as in the context of ordinary inheritance,
meaning that all exherited features will be deferred in the foster class. This is the implicit
behavior for both attributes and methods. The use of undefined keyword is not necessary
since it is the default behavior for all exherited features.

• The keyword adapt is used to list the features which need adaptations. The adaptations
will be provided in the implementation of the feature. It will be used for all adaptations that
cannot be performed by the redefine and undefine clauses. These issues are developed in
chapter 5.

• The moveup clause allows to specify the features from a subclass which come with their
implementation in the superclass. In other words, the keyword moveup is used for imple-
mentation exheritance (or concrete version exheritance).

• The select clause will be used to mark a feature to be used in special dynamic binding
situations of repeated inheritance. The semantics of select will be discussed in section 6.2.

81 BUPT

Figure 4.2: Dequeue Example

After the specification of exheritance branches with their adaptation clauses there are some other
adaptations which belong to the foster class and not to the exheritance branches. They are placed
after the exheritance branches section of the foster class because, common features will be known
to the foster class by their final names:

• The export clause specifies lists of features and lists of client classes where the features are
exported to. The semantics is the same as in ordinary inheritance.

The compatible combinations of these clauses will be studied in chapter 6, as well as their impact
on dynamic binding.

Finally, the foster class contains feature declarations using the regular Eiffel syntax. Some
features can be adapted and their body will contain special syntactical elements which will be
presented in chapter 5.

4.2 Single/Multiple Reverse Inheritance
Eiffel supports multiple inheritance, so it seems quite natural that we introduce multiple reverse
inheritance. If we deal with only one subclass, then we have single reverse inheritance, while when
having multiple subclasses we deal with multiple reverse inheritance. Single exheritance seems to
be useful especially when we already have a specialized class and we want to reuse only a part of
it, by creating a more general class. In figure 4.2 and 4.3 we will analyze the case of the Dequeue
example taken from [Ped89].

4.2.1 Single Reverse Inheritance
The example proposed in figure 4.2, shows a class DEQUEUE which has two sets of features
for the operations related to each end of the dequeue: push, pop, top for one end and push2,
pop2, top2 for the other end. There is a global method empty which conceptually belongs to the
dequeue, and equally to both ends. In figure 4.3, a new superclass STACK is created by reverse
inheritance, exheriting only the operations dedicated to one end of DEQUEUE like push, pop, top
and empty. This example shows a possible use case where single reverse inheritance can be useful.
Class STACK can be defined using the syntax extension like in example 41.

Due to the flexible syntax we can have two ways for defining the foster class. One way is to
implicitly exherit everything except a certain list of features. The other way is to explicitly list the
features which are exherited. In both cases it is necessary to specify whether the implementation
is exherited or not along with the signature of exherited features. We may even create an empty
superclass using the reverse inheritance but in practice such a class does not seem to be very
useful.

When using single exheritance, since there is only one subclass, all features of the subclass may
be exherited, even with their implementation. In such a case no signature conflict may arise, since
the exherited feature in the subclass will have the same signature, even the same implementation,
if needed.

82 BUPT

Figure 4.3: Dequeue Class Diagram

Example 41 Dequeue Class
class DEQUEUE
feature

push(p:INTEGER) is do ... end
pop: INTEGER is do ... end
top: INTEGER is do ... end
push2 (p:INTEGER) is do ... end
pop2: INTEGER is do ... end
top2: INTEGER is do ... end
empty: BOOLEAN is do ... end

end
foster class STACK -- variant 1
exherit

DEQUEUE
moveup

push, pop, top, empty
end
except push2, pop2, top2

end
foster class STACK -- variant 2
exherit
DEQUEUE
moveup

push, pop, top, empty
end
only push, pop, top, empty

end

83 BUPT

Figure 4.4: Multiple Reverse Inheritance

Figure 4.5: Two Independent Reverse Inheritance Relationships

4.2.2 Multiple Reverse Inheritance
Multiple reverse inheritance is a special case of reverse inheritance where multiple source classes
are involved. Such a class hierarchy is equivalent to several ordinary inheritance relationships
having as superclass the foster class. We will rely on the exheritance clauses in order to resolve
possible conflicts or to perform the necessary adaptations5.

In figure 4.4 we intent to show how such a target class can be designed starting from two
concrete classes using multiple reverse inheritance. We propose an example based on terminals
adapted from [Ped89], in which starting from two terminal class implementations we decide to
design an abstract superclass to abstract the behavior of an ANSI terminal. The newly created
abstract class, TerminalANSI, will contain common feature signatures declaring the behavior of
the ANSI standard terminal.

4.2.3 Several Independent Reverse Inheritance Relationships

The cases in which several superclasses exherit from a class, like in figure 4.5, are not multiple
reverse inheritance, it is just the fact that several reverse inheritance relationships which happen
to have the same target class. In figure 4.5, STUDENT is a subclass for both PERSON and
CLUB_MEMBER. This kind of architectural decision can be taken when the two different super-
classes are needed for a certain class hierarchy. This can be useful when we want to partition a
class for a better reuse or when different points of view on the same type are needed. The two
superclasses will exherit features independently from the common subclass. From the type point
of view, the two superclasses are supertypes for the subclass. The class hierarchy is equivalent to a
retroactive multiple inheritance structure. The common subclass will conform to each superclass
created by reverse inheritance. An ambiguity related to feature exheritance may arise if some
features from a subclass are multiply exherited into two or several superclasses. As we specified

5This will be studied in detail in chapters 5 and 6.

84 BUPT

Figure 4.6: Several Independent Reverse Inheritance Relationships

above, the two exheritance class relations are independent, so the same feature can be exherited
independently into several superclasses.

In order to be consistent with the semantics of ordinary inheritance we show that such a class
hierarchy has an equivalent based on ordinary inheritance. In order to do this, we will analyze a
more general case of several independent class relationships like those in figure 4.6.

In the general case of figure 4.6 we start from the initial situation in which several classes
A1, A2, . . . ,An have the same subclass X. This class hierarchy can be decomposed in multiple
reverse inheritance relationships between Ai and X where i=1..n. These reverse inheritance class
relationships can be transformed into ordinary inheritance equivalent relationships. All these
combined will form a configuration of an equivalent multiple inheritance relationship. So, we
proved that a configuration of several independent reverse inheritance relationships having the
same source class is equivalent with a multiple ordinary inheritance.

4.3 Feature Factorization
The need to exherit common features is present in both types of reverse inheritance (conforming
and non-conforming). By common features we mean the features which have the same semantics in
the context of the given class hierarchy [CCL+04c, CCL04a, CCL04b]. Common features having
the same signature can be automatically exherited, while features having different signatures have
to be adapted using a special syntax extension. Such situations which need adaptations are
discussed in chapter 5.

4.3.1 Implicit Rules Regarding Feature Exheritance
In this subsection we will show how to declare the exherited features, when these features are
exherited implicitly or explicitly and what is the nature of the features in the foster class.

Implicit Rules Regarding Attribute Exheritance

When in several subclasses we have attributes with the same signature, or attributes whose sig-
nature may be adapted in order to conform to a common signature in the superclass and, if the
attribute is marked as exherited implicitly or explicitly, then the declaration of a deferred feature
with the same name is automatically inserted. This means that implicitly the feature will be
deferred.

In example 42, attribute a has the same signature in all subclasses A and B. In class C it will
be implicitly exherited as deferred feature having the same common type T.

Rule Attribute Exheritance - The Default . When an attribute is exherited, from several
subclasses it is deferred implicitly in the foster class.

If we want to create a concrete feature from the attributes of the subclasses, then we have to
move an instance from one subclass or to redefine the exherited attribute. In example 43, we have

85 BUPT

Example 42 Implicit Rules for Attribute Exheritance (1)
class A
feature
a: T

end
class B
feature
a: T

end
deferred foster class C
exherit
A
B
all

feature
-- a: T is deferred end
-- is implicit

end

the same class configuration as in example 42, but the feature a is redefined in the foster class.
Redefinition in Eiffel serves two purposes: one is related to the attachment of an implementation to
a deferred feature and the other is for covariant signature redefinition. In our case by redefinition
we aim its first purpose.

In example 44 we present the other possibility of exheriting the concrete version of an attribute,
by ”moving up” one concrete version from the exherited classes into the foster class.

On the other hand, the rules of Eiffel do not allow to undefine an attribute neither to redefine
an attribute as a method. As a consequence in reverse inheritance we can exherit a concrete
attribute only if it is an attribute in all exherited classes.

Rule Attribute Exheritance. When an attribute is exherited from several subclasses but should
be effective in the superclass it has to be redefined in the foster class or moved up on one
exheritance branch. If we also want to adapt its signature it is necessary to provide a
conforming redefinition declaration in the foster class.

Rule Attribute Exheritance. An attribute can be exherited as concrete in the foster class if it
is a concrete attribute in all exherited classes.

Implicit Rules Regarding Method Exheritance

When there are methods which are exherited, we have to consider the signature and the body.
Because it is supposed that exherited classes are developed in different contexts, it is very likely
that methods will not have the same body. This is the reason why we decided that it is better to
exherit by default only the signature of the method. To do this we can proceed like in example 45.
Since method m has the same signature in both subclasses and it is marked as exherited in both
of them, it is implicitly exherited as deferred like it is shown in the last two commented lines.

Rule Method Exheritance - The Default . When exheriting a common method from sub-
classes implicitly the signature is exherited meaning that the corresponding feature in the
superclass is implicitly deferred.

To select the implementation from one of the subclasses for a given exherited feature6 we have
to use a moveup clause on one exheritance branch. The implicit behavior of exheriting common

6The conditions in which an implementation can be moved into the foster class are discussed in detail in chapter
6.

86 BUPT

Example 43 Implicit Rules for Attribute Exheritance (2)
class A
feature

a: T
end
class B
feature

a: T
end
foster class C
exherit
A
B
all
redefine a

feature
a: T
-- due to the redefine clause

end

Example 44 Implicit Rules for Attribute Exheritance (3)
class A
feature

a: T
end
class B
feature

a: T
end
foster class C
exherit
A
moveup a

end
B
all

feature
-- a: T
-- due to the moveup clause

end

87 BUPT

Example 45 Implicit Rules for Method Exheritance (1)
class A
feature

m(p: T1): T2 is do ... end
end
class B
feature

m(p: T1): T2 is do ... end
end
deferred foster class C exherit
A
B
all

feature
-- m(p: T1): T2 is deferred end
-- is implicit

end

features as deferred will cause the undefinition of all the exherited features except the one being
moved up in the foster class. This is illustrated in example 46. The implementation of m from
class A has been selected for method m in foster class C. This was done by using in the exheritance
branch corresponding to class A in foster class C the moveup clause for the m method and the
undefine clauses in the rest of the exheritance branches works implicitly. In this case only one
exheritance branch is left to be undefined implicitly, the one corresponding to class B.

In the case of multiple inheritance [Mey02] a conflict arises when two or more features with the
same name and different implementations are inherited from several superclasses. One solution
is to undefine all features from superclasses, thus leading to a deferred feature in the subclasses.
Another possibility is to undefine all features except the one which will provide the implementation
in the subclass. To provide a new implementation in the subclass will require to redefine all the
inherited features from the subclasses.

Rule Method Implementation Exheritance - The Default. When a method is exherited
with its implementation from one subclass, in other words when it is moved up, all the
corresponding methods from the other subclasses are undefined by default.

4.3.2 Allowing Implicit and Explicit Common Feature Selection
In this subsection we discuss about the benefits and drawbacks of explicitly or implicitly declaring
the common features. It must be noted that the selection of exherited features is made globally
at the foster class level and not on each exheritance branch.

Implicit All Common Feature Selection

The exherit ... all keyword combination will denote that all exheritable features are selected for
factorization. In example 47 foster class SHAPE will exherit features area and color from RECT-
ANGLE and ELLIPSE classes. Features boundary from class RECTANGLE and circumference
from class ELLIPSE do not belong to the set of exheritable features since they have different
names.

This selection choice is good in the case of multiple feature selection without excluding some
features. In the case of single exheritance the keyword combination will exherit all features from
the class since all are exheritable.

88 BUPT

Example 46 Implicit Rules for Method Exheritance (3)
class A
feature

m(p: T1):T2 is do ... end
end
class B
feature

m(p: T1):T2 is do ... end
end
foster class C
exherit
A
moveup m

end
B
-- undefine m
-- is implicit

all
feature

-- m(p:T1):T2 (with the body of m from class A)
end

Example 47 Implicit All Common Feature Selection
class RECTANGLE
feature

area:REAL
color:INTEGER
boundary:REAL

end
class ELLIPSE
feature

area:REAL
color:INTEGER
circumference:REAL

end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all

end

89 BUPT

Example 48 Explicit Common Feature Selection
class RECTANGLE
feature

area:REAL
color:INTEGER -- foreground color

end
class ELLIPSE
feature

area:REAL
color:INTEGER -- background color

end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
only area

end

Explicit Common Feature Selection

We state in example 48, the syntax used for the explicit declaration of a common feature subset.
Class SHAPE exherits RECTANGLE and ELLIPSE having a common attribute named area,
this attribute being explicitly selected for exheritance. According to the rules related to attribute
exheritance, the exherited attribute in the foster class will be a concrete feature, an attribute
having the same common type, like in the subclasses.

In this context the common features can be explicitly selected to be factored in the foster class
using the exherit ... only keyword combination. One of the advantages is that the explicit list of
features will increase the foster class code clarity. On the other hand, if a lot of candidate features
must be exherited the other options have to be considered since the list of features will grow, and
the exclusion of non-exherited features is simpler. All the features listed for exheritance must be
eligible candidates for exheritance otherwise the code is semantically incorrect. In such case the
compiler will generate an error.

Implicit Common Feature Selection

In the other context where the exheritance is made implicit there should exist a possibility for
the programmer to avoid the exheritance of some features using the exherit ... except keyword
combination. This can be useful when features with the same signature have different semantics.
In this case the compiler will infer automatically the actual list of exherited features. This actual
list being implicit will affect code readability. This problem can be solved by the programming
environment by highlighting the actually exherited features.

In any case the features which do not have the same signature (or an adapted/redefined one)
will not be exherited automatically. In case the exclusion list contains features which are not valid
candidates for exheritance, the compiler will issue a warning.

In example 49 we consider that common features are automatically exherited, it would be the
case for area attribute of both RECTANGLE and ELLIPSE classes. Since color attribute has
different semantics in the two classes, it should not be exherited. Attribute boundary of class
RECTANGLE will not be exherited because it appears only in class RECTANGLE. It is the
same case for the attribute circumference which is only declared in class ELLIPSE. If two features
have different names but represent the same feature (apparently boundary and circumference do
represent the same behavior let’s say perimeter) then they have to be mentioned explicitly in an
appropriate renaming clause.

90 BUPT

Example 49 Implicit Common Feature Selection
class RECTANGLE
feature

area:REAL
color:INTEGER -- it is the foreground color
boundary:REAL

end
class ELLIPSE
feature
area:REAL
color:INTEGER -- it is the background color
circumference: REAL

end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
except color

end

No Feature Selection

In some cases the creation of a new type is necessary and no common features need to be exherited.
Such a selection can be achieved using the only keyword, an empty feature list and the except
keyword and the list of all features.

In example 50 the use of nothing keyword is more intuitive, for creating a new type SHAPE.

4.3.3 Influence of the Nature of Common Features
In this subsection is analyzed the nature of common features in the process of exheritance. Com-
mon features in the exherited classes, regarding their nature, can be: attributes, methods or
deferred features.

Factoring Features Represented by Attributes

If we deal with common attributes in the subclasses they can be exherited as deferred (implicitly)
or concrete (by moving up or by redefinition) features in the superclass. As it is mentioned in
[Sak02] only some type and name conflicts may occur. Types will be discussed later, in section
5.2, while name conflicts are analyzed in section 5.1.3. A basic situation of exheriting attributes
having the same signatures is presented in example 51.

The two original existing classes RECTANGLE and ELLIPSE have one perimeter feature
each, with the same name. The case where features have different names is discussed in section
5.1.3. About constant attributes, they cannot be exherited as effective by moving one of them up
even if it happens to have the same type and the same values. This behavior is imposed because
constant features cannot be redefined in the context of inheritance.

Rule Attribute Exheritance 1 . Common attributes having the same type in the exherited
classes are exherited as a deferred feature in the foster class having the same common type.

Rule Attribute Exheritance 2 . If attributes in exherited classes do not have the same type but
a supertype for all the types in subclasses exists, that supertype will be used as type for the
implicitly exherited deferred feature in the foster class. In this case redefinition statements
must be used.

91 BUPT

Example 50 No Feature Selection
class RECTANGLE
feature

area:REAL
color:INTEGER
boundary:REAL

end
class ELLIPSE
feature
area:REAL
color:INTEGER
circumference: REAL

end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
nothing

end

Example 51 Factoring Features Represented By Attributes
class RECTANGLE
feature
perimeter: REAL

end
class ELLIPSE
feature
perimeter: REAL

end
deferred foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all

feature
-- perimeter:REAL is deferred end
-- this feature declaration is implicit

end

92 BUPT

Example 52 Factoring Features Represented by Attributes and Methods
class RECTANGLE
feature
area:REAL

end
class ELLIPSE
feature
radiusA: REAL
radiusB: REAL
area is do Result:=3.1416 * radiusA * radiusB end

end
deferred foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all

feature
-- area: REAL is deferred end
-- this feature declaration is implicit

end

Rule Attribute Exheritance 3 . If a common supertype for the exherited attributes does not
exists in the exherited classes then redefinitions must be applied using a new common su-
pertype.

Factoring Features Represented by Attributes and Methods

Attributes and methods having the same signature7 are factored implicitly as a deferred feature
in the superclass. It is only the case of methods having the same return type and no arguments.
According to the philosophy of Eiffel there should be no difference between the implementation of
a feature by memory or by computation [Mey97]. This case is illustrated in example 52. The two
original existing classes RECTANGLE and ELLIPSE have the same feature area implemented
respectively by an attribute and by a method. Both represent the same feature in the given
context, so they are factored out implicitly as a deferred feature in the superclass.

Rule Attribute and Method Exheritance. In case of attributes and methods having no
arguments but return types, thus making their signature equivalent, they are exherited in
the foster class as a deferred feature. If the types of the exherited features are not the same,
redefinitions are allowed in order to achieve a common conforming signature.

Factoring Features Represented by Effective and Deferred Methods

Another case that we consider is the one where all subclasses have a method with the same name
and a deferred or effective status. If one or more methods from subclasses are deferred and no
suitable implementation can be found among them, then the resulting method in the superclass will
be deferred, only the signature which is common, will be factored. In example 53 we illustrate the
capabilities of reverse inheritance to factor both deferred and effective features through the case of
three classes RECTANGLE, POLYGON and ELLIPSE which initially exist. Only RECTANGLE
and ELLIPSE have implemented a method draw (class POLYGON declared draw as a deferred
feature). Obviously, the two implementations of method draw seem to be different, so a deferred

7It is probable that features with the same semantics have different signatures. Some adaptations can be
performed during exheritance to get the same signature for the features. These adaptations will be presented in
chapter 5.

93 BUPT

Example 53 Factoring Features Represented by Effective and Deferred Methods
class RECTANGLE
feature
draw is do -- rectangle implementation end

end
class ELLIPSE
feature
draw is do -- ellipse implementation end

end
deferred class POLYGON
feature
draw is deferred end

end
deferred foster class SHAPE
exherit
RECTANGLE
ELLIPSE
POLYGON
all

feature
-- draw is deferred end -- is implicit

end
...
RECTANGLE r
ELLIPSE e
SHAPE s
create r
create e
s=r
s.draw -- version of RECTANGLE
s=e
s.draw -- version of ELLIPSE
...

feature should be chosen in the superclass. Further, the polymorphic behavior of all SHAPE
instances is illustrated, so the draw method can be called on any of them.

Rule Effective and Deferred Method Exheritance. The effective and deferred features from
the subclasses are exherited implicitly as a deferred feature in the foster class.

4.3.4 Factoring Implementation
Another case is where both common signature and the implementation are factored [Ped89]. If
we decide to exherit implementation, then exheritance is possible only when all methods that
are called and all attributes that are accessed, are exherited as well. Implementation exheritance
is made by selecting the feature having the implementation using the moveup keyword. The
programming environment tool could offer some help to the programmer regarding dependent
features: each time an implementation is chosen to be factored, the programmer can be informed
automatically about the dependencies. The most simple case is the one in which the methods
happen to have the same code, such cases are rare though. The most typical situation is to exherit
deferred features in the foster class.

Example 54 illustrates such an implementation exheritance situation.

94 BUPT

Example 54 Factoring Implementation
class RECTANGLE
feature
perimeter:REAL is do ... end
halfperimeter is do perimeter/2 end

end
class ELLIPSE
feature
perimeter:REAL is do ... end
halfperimeter is deferred end

end
foster class SHAPE
exherit
RECTANGLE
moveup

perimeter,
halfperimeter

end
ELLIPSE
all
feature
-- perimeter:REAL;
-- halfperimeter:REAL is
-- (RECTANGLE implementation)
-- end

end

In example 54 the two original classes have both a method halfperimeter. It is implemented in
RECTANGLE but deferred in ELLIPSE. So the decision what was taken is to exherit the body
of the RECTANGLE implementation into class SHAPE. This is possible only if all references
within this method are also exherited. In our case the only feature which needs to be exherited
is perimeter. Any potential subclass of SHAPE will benefit from the exherited behavior with
the condition of providing an implementation for feature perimeter. Of course, for ELLIPSE the
feature halfperimeter remains deferred.

In the general case implementation exheritance induces several problems. The first problem
deals with the dependency of exherited features. The dependency analysis process should not be
recursive at compile time. The selection of features which have to be exherited can be made when
analyzing each feature in the compilation process. Another issue related to this subject is whether
to import automatically by the compiler the dependencies or to let them be selected by the pro-
grammer. Dependencies must be either exherited as effective from one of the exherited classes or
provided in the foster class by redefinition. It would seem natural to implicitly exherit dependen-
cies as deferred if possible. If dependencies problem cannot be solved by another implementation
exheritance or redefinition then implementation exheritance is not allowed. Implementing a de-
pendency which is not present in all the exherited classes would change the behavior of those
classes and we do not allow such thing.

Another problem can arise when we decide to exherit several implementations from different
subclasses. From the technical point of view there is no problem. In practice, groups of methods
which belong tightly together may have been designed differently in those classes. The chance
that they can be reused in the foster class are very small.

Type Safety When exheriting the implementation a special attention must be given to the
type of current calls, argument type and return type of the features we exherit. In covariant

95 BUPT

Example 55 Unsafe Type Moveup Example
class FC

exherit
EC1
EC2
moveup f --feature f will call a.m which does not exists in T

end
all
redefine a

feature a:T
end
class EC1
feature
a:T1
f is do end

end
class EC2
feature
a:T2
f is do a.m end

end
class T end
class T1 inherit T end
class T2 inherit T
feature m is do end
end

redefinitions CAT8 calls may arise, like in example 55.
Feature f is exherited together with its implementation containing a call to method m of an

also exherited feature a of type T2. Feature a is redefined covariantly in the foster class being of
type T. But type T does not support method m, so the a.m call becomes invalid. Such cases can
be detected statically at precompile time and implementation exheritance in such cases fails.

4.4 Type Conformance
In this section we address the impact of reverse inheritance on existing regular type conformance
of Eiffel. Eiffel entities have different kinds of types which include reference type or an expanded
type [Mey02]. Implicitly a class is considered to be a reference type.

Type conformance definition can be found in [Ped89] where it is stated that a type T conforms
to a type S if instances of type T can be used as if they were instances of type S. We can also say
that instances of type T conform to S.

As ordinary inheritance has type conformance between the subclass and superclass, with reverse
inheritance we keep the same restriction, but this time all subclasses must be conform to the foster
class. As Eiffel is a covariant language, a redefined feature can have a signature in the subclass
which can have covariant types. In the signature of a feature, types can interfere as parameter
types and return types. Reverse inheritance keeps the same rules regarding covariance. All the
types used in the foster class can be supertypes of all the corresponding types in the subclasses.

8CAT means Changing Availability of Type.

96 BUPT

Example 56 Conforming Reverse Inheritance
class RECTANGLE
...
end
class ELLIPSE
...
end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all

end
...
RECTANGLE r
ELLIPSE e
SHAPE s
create r
create e
s=r
s=e
...

4.4.1 Conforming Reverse Inheritance
In particular conforming reverse inheritance ensures type conformance between the subclass types
and superclass types.

Example 56 shows that instances of the subclasses conform to the type of the superclass.
This fact is expressed by the possibility of referencing the subclass typed objects using superclass
typed references. The syntax and the examples presented until now addressed conforming reverse
inheritance.

Rule Type Conformance . Conforming reverse inheritance ensures that all subclasses conform
to the foster class.

4.4.2 Non-conforming Reverse Inheritance
In order to keep the symmetry with ordinary inheritance the reverse inheritance class relationship
will have to provide also the semantics for the non-conforming reverse inheritance.

It is known that non-conforming ordinary inheritance in Eiffel is used in the context of feature
reuse without keeping conformance between subclass and superclass. This class relationship is
known also as "facility inheritance" or "implementation inheritance". In [Mey97] the notion of
class is defined as both a software module and a type; this class relationship exploits the module
property from the class definition.

With non-conforming reverse inheritance common features are exherited into the target class
but without their types to be supertypes9 of the subclasses. Regarding the semantics of this class
relationship we have to state that all rules from the conforming reverse inheritance apply, except
those related to type conformance. Conforming and non-conforming reverse inheritance can be
combined freely together, without any side effects. Such combination can be used when we want
to organize a set of classes, but we want to restrict type conformance only to a set of them.
This could be considered as a benefit only from the design point of view. We are using the same
syntactic elements as Eiffel for specifying non-conforming inheritance:

9In fact the superclass is a subtype, but the language rules disables the conforming behavior.

97 BUPT

Example 57 Non-conforming Reverse Inheritance
foster class SHAPE
exherit
{NONE} RECTANGLE
{NONE} TRIANGLE
{NONE} ELLIPSE
all

end

Example 58 Non-conforming Reverse Inheritance (2)
foster class SHAPE
exherit
RECTANGLE
TRIANGLE
{NONE} ELLIPSE
all

end

The syntactical extension proposed implies the usage of the NONE keyword in front of every
subclass which is non-conform to the declared one. Like its conformance pair, this class relationship
can be single and multiple.

Rule Non Conforming Reverse Inheritance . Non-conforming reverse inheritance obeys
to all the rules related to conforming reverse inheritance except the rule regarding type
conformance between the subclasses and the foster class.

In Eiffel conversions work between non-conforming classes. In the case of non-conforming reverse
inheritance we preserve the same behavior, classes related with non-conforming reverse inheritance
can be the subject for conversions.

Reverse inheritance branches conforming and non-conforming can be combined easily like in
example 58 where we decided that the ELLIPSE shapes should not conform to class SHAPE, so
we specified reverse inheritance as non-conform. All other involved shapes will conform to the
foster class.

Rule Reverse Inheritance Combinations. Conforming and non-conforming reverse inheri-
tance can be used together within the same foster class.

4.4.3 Genericity and the Foster Class
In this subsection we will discuss about the relation between genericity and the foster class in the
context of type conformance. In ordinary inheritance any generic class C[U] conforms to C[T] if
U conforms to T. Class U may conform to T because of ordinary inheritance (U is a subclass
and T is a superclass in the same inheritance hierarchy), but also because of reverse inheritance
(T is foster class and U is a subclass in the same inheritance hierarchy).

In example 59 class SHAPE is the foster class for RECTANGLE and ELLIPSE. So any instance
of RECTANGLE or ELLIPSE can be referred using a reference of type SHAPE. Combining this
type conformance idea in the context of genericity, we created a generic class LIST[G] which
was instantiated three times with RECTANGLE, ELLIPSE, SHAPE generic parameters. The
instances lr and le can be referred also with ls reference, denoting that classes LIST[RECTANGLE]
and LIST[ELLIPSE] conform to LIST[SHAPE].

Rule Genericity and the Foster Class. Two instantiated, generic classes using the same base
class will conform if their generic parameters conform through reverse inheritance.

98 BUPT

Example 59 Genericity and the Foster Class
class RECTANGLE
...

end
class ELLIPSE
...

end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all

end
class LIST[G]
...

end
...
RECTANGLE r;
ELLIPSE e;
SHAPE s;
create r;
create e;
s=r;
s=e;
...
LIST[RECTANGLE] lr;
LIST[ELLIPSE] le;
LIST[SHAPE] ls;
create lr;
create le;
ls=lr;
ls=le;
...

99 BUPT

Example 60 Argument, Result Type and the Foster Class
class RECTANGLE
end
class ELLIPSE
end
class SHAPE
exherit
RECTANGLE
ELLIPSE
all

end
class A
feature f(x,y,z:SHAPE):SHAPE is
...

end
end
class B inherit
A
redefine f

end
feature f(x,y,z:ELLIPSE):ELLIPSE is
...

end
end

4.4.4 Argument, Result Type and the Foster Class
In this subsection we discuss the interaction between feature redeclaration and reverse inheritance.
To be more exact the point of interest is argument and result type redefinition in the context of
feature inheritance. Redeclaration means redefinition or effecting. Redefinition may change an
inherited feature’s implementation, signature or specification [Mey02]. Effecting means providing
a concrete implementation for a feature originally declared as deferred in the super class. By
argument we refer to procedure/function parameters and by result we refer to function return
values or attribute types10. The signature of a feature consists of name, parameter number and
type, return type. In the redeclaration of a feature, the original arguments and result types can be
replaced in the subclass with conforming ones. We intend to show that even types related through
reverse inheritance can be used in feature redefinition in a very natural way, as if they would be
designed using ordinary inheritance.

In example 60 we consider that class SHAPE exherits classes RECTANGLE and ELLIPSE.
Superclass A declares feature f having arguments and result of type SHAPE. Class B, subclass of A
redefines feature f having arguments and result type ELLIPSE. The redefinition involves covariant
arguments and result which have been achieved due to reverse inheritance. Class ELLIPSE is a
subclass of class SHAPE linked by reverse inheritance class relationship.

Rule Argument, Result Type and the Foster Class. In the context of feature redefinition,
covariant arguments or result types can be linked by ordinary or reverse inheritance.

4.4.5 Expanded vs. Non-expanded Foster Classes
Following the definition of what expanded and non-expanded classes mean in the context of Eiffel
language, the main idea is that the expanded / non-expanded status of a class is not transmitted

10It is known that in Eiffel, a feature of the superclass can be redefined as an attribute in the subclass, but the
reverse is not allowed.

100 BUPT

Example 61 Expanded vs. Non-expanded Foster Classes
class A
end
class B
end
expanded foster class C
exherit
A
B
all

end

through inheritance. The implicit status of a class is non-expanded, if the expanded keyword is
not specified. The non-expanded class object declarations will represent object references, while
the expanded ones will represent object values.

In example 61 any instance of class C will be an object value and not a reference to object.

Rule Implicit Status of Foster Class. The foster class implicitly is considered as non-
expanded.

Rule The Status of the Descendants. The status of the descendant classes in a reverse
inheritance class relationship is not affected by the status of the foster class.

As a consequence, it can be stated that there is no restriction about the use of the expanded
keyword in the foster class.

4.5 Type Exheritance
In this section we will show how the type system of Eiffel can be exherited. In the analysed
examples we exherit features having several kinds of return types. The same examples are valid
in the case of formal argument types. The types taken into account are class types with all their
forms, separate and expanded types which are very similar from the exheritance point of view,
like types with all its forms and finally bit types.

4.5.1 Exheriting Class Types
Class types seem to be the most complex types of Eiffel because they can refer class declarations,
formal generics and can have recursive actual generics. Class types referring class declarations can
have actual generics while class types referring formal generics cannot have. The actual generic
types can be any type of the Eiffel type system. Each one of these situations is analysed in the
next subsections.

Exheriting Class Types Referring Classes

In example 62 we have a classic situation in which a feature f is using a class type referring a class
declaration T. As expected the feature will be exherited implicitly as deferred using the same type
T in the foster class FC.

Rule Exheriting Class Types Referring Classes. Features having class types referring class
declarations in their signatures can be exherited if the correspondent class types are identical
in all exherited classes.

101 BUPT

Example 62 Exheriting Class Types Referring Class Declarations
class EC1
feature f:T is do ... end

end
class EC2
feature f:T is do ... end

end
class T end
foster class FC
exherit
EC1
EC2
all

feature
-- f:T is deferred end

end

Example 63 Exheriting Class Types Referring Formal Generics
class EC1[H]
feature f:H is do ... end

end
class EC2[I]
feature f:I is do ... end

end
foster class FC[G]
exherit
EC1[G]
EC2[G]
all

feature
-- f:G is deferred end

end

102 BUPT

Example 64 Exheriting Class Types Referring Class Declarations and Having Actual Generics
class EC1
feature
f:T[T1,T2,T3] is do ... end

end
class EC2
feature
f:T[T1,T2,T3] is do ... end

end
class T[G1,G2,G3] ... end
class T1 ... end
class T2 ... end
class T3 ... end
foster class FC
feature
-- f:T[T1,T2,T3] is deferred end

end

Exheriting Class Types Referring Formal Generics

In example 63 we deal with class types referring formal generics. In such cases because of genericity
problems discussed in section 5.3 the class configurations are limited. The example taken is a valid
one and the exherited feature in the foster class will have the type G. Features f from EC1 and
EC2 are of type H, respectively I, which are instantiated by G from the foster class. So the final
types of features f are both G, that is why the feature is exheritable.

Rule Exheriting Class Types Referring Formal Generics. Features having class types
referring formal generics in their signatures can be exherited if the correspondent class types
are instantiated with the same type in all exherited classes.

Exheriting Class Types Referring Class Declarations and Having Actual Generics

In example 64 a composed type example is taken. Class T takes three actual generic parameters.
In each exherited classes, type T is equipped with the same types T1, T2, T3 in the same order.
Because class types may have actual generics which can be any type of Eiffel we can consider it
as a type composing mechanism. In order to exherit such a type it is necessary that the types
represented by the actual generics to be exheritable upon the rules of this chapter. The types can
be composed on multiple levels, thus the process of exheritance may become recursive.

4.5.2 Exheriting Expanded and Separate Types
In this section we will present expanded and separate type adaptations together since they must
obey the same rules. The expanded keyword attached to a class type creates a new type and
the behavior of the original class instances is changed. All the instances will be objects and not
references to objects. This is the default behavior of objects in C++. Separate types are used for
the thread mechanism of Eiffel. The interaction between exheritance and concurrent programming
of Eiffel will not be discussed because it is not our research goal, but still some type rules will be
issued in the context of reverse inheritance.

In example 65 we have two exherited classes EC1 and EC2. The f1 features are using expanded
types in their signatures and the exherited feature in the foster class has the same expanded types.
The f2 features from the exherited classes use separate type and is natural that the correspondent
type in the superclass to be the same separate type.

103 BUPT

Example 65 Expanded and Separate Type Exheritance
class EC1
feature
f1(a:expanded T):expanded T is do end
f2(b:separate T):separate T is do end

end
class EC2
feature
f1(x:expanded T):expanded T
f2(y:separate T):separate T

end
class T end
foster class FC
exherit
EC1
EC2

all
feature
-- f1(a:expanded T):expanded T is deferred end
-- f2(x:separate T):separate T is deferred end
end

Rule Exheriting Expanded Types. Features having expanded types can be exherited if the
correspondent expanded types are equal in all exherited classes.

Rule Exheriting Separate Types. Features having separate types can be exherited if the
correspondent separate types are equal in all exherited classes.

4.5.3 Exheriting Like Types
Anchored types (or like types) were introduced in Eiffel in order to avoid the covariant redeclaration
of the inherited features. In this section we analyze how features which are anchored can be
exherited. Therefore we consider the following cases regarding anchored features: features which
are anchored to other features, features which are anchored to current and features which are
anchored to arguments. When a feature in a class is anchored to current it means that it is
anchored to the local class type.

Exheriting Features Anchored to ”Current”

In the example 66 we consider the case of features anchored to the special anchor current. Such
an anchor refers to the local class in which it is written. For example feature f of class B is of
type B, while feature f of class C is of type C.

Exheriting such a feature like f in class A means that it will be of type A. This behavior obeys
the conformance rules of reverse inheritance. Type A is a supertype of types B and C.

Rule Exheritance for Anchored Feature . The features anchored to current in the subclasses
can be exherited keeping the same anchored type.

Exheriting Features Anchored to Other Features

In this case we deal with features anchored to other features, like those from the next example:
In example 66, the anchors are attributes. We can set the following rule:

104 BUPT

Example 66 Exheriting Anchored Features (1)
class B
feature

f: like current
end
class C
feature

f: like current
end
class A exherit
B
C
all

end

Example 67 Exheriting Anchored Features (2)
class B
feature

b: T1
f: like b

end
class C
feature

c: T2
f: like c

end
foster class A exherit
B
C
all

end

105 BUPT

Example 68 Exheriting Anchored Features (3)
class B
feature

f(p: T1; p2: like p): like p is do ... end
end
class C
feature

f(p: T2; p2: like p): like p is do ... end
end
class A exherit
B
redefine att

end
C
redefine att

end
all
feature
f(p: T; p2: like p): like p is do ... end

end

Rule Exheritance for Anchored Feature . Let us assume that b is defined in class B (resp. c
is defined in class C) and that it is of type T1 (resp. T2)

• if T1 and T2 are equal, the feature f in both subclasses has the same signature and is
automatically exherited;

• if T1 is the supertype of T2 (resp. T2 is the supertype of T1), in class A feature f can be
exherited with type T1 (resp. T2).

• if T1 and T2 have some common supertype T then feature f can be exherited with type T.

• if T1 and T2 are not related by any relations, feature f can be exherited only with type
ANY (this kind of exheritance will not help too much in practice).

Exheriting Features Having Arguments Anchored to Other Arguments

In this case we consider not just method arguments but also return types. In example 68, we
analyze a feature having an argument and the return type. From it we can draw the conclusion
that the second parameter and the return type will always follow the type of the first argument.
Feature f can be exherited taking into account the rules defined for type adaptations in section
5.2. In the exheritance of feature f the only thing that counts is the relation between types T1
and T2.

Rule Exheritance for Anchored Feature . The features anchored to other arguments in the
subclasses can be exherited respecting the signature adaptation rules for the types the fea-
tures are anchored to.

Exheriting Features Having Arguments Anchored to Features

In this section we present the case of exheriting features which have arguments anchored to features
from the class. In ordinary inheritance when such a situation arises both the referred feature and
the feature using anchors are inherited in the subclasses automatically. This way the feature using
anchors will have always available the referred feature. In reverse inheritance this dependence is

106 BUPT

Example 69 Exheriting Anchored Features (4)
class B
feature

att: T1
f(p: like att): like att is do ... end

end
class C
feature

att: T2
f(p: like att): like att is do ... end

end
class A exherit
B
redefine att

end
C
redefine att

end
all
feature
att: T
-- f(p: like att): like att is deferred end -- is implicit

end

not assured implicitly because someone might want to exherit the feature using anchors, but not
the referenced feature. In this situation reverse inheritance in invalid, so it must be restricted
by rules. One possibility is to use the anchored feature target type, which might be a recursive
process.

In example 69 we present a simple example of a feature f having anchored types for the
argument and for the return type. Both anchors refer to attribute att in both subclasses B and
C. Feature f is exheritable but it will be valid in the foster class only when feature att will be
exherited too, since feature f uses att.

Rule Exheritance for Anchored Feature . The features anchored to other features in sub-
classes can be exherited if the other features are also exherited.

4.5.4 Exheriting Bit Types
In this section we will present the exheritance of features having bit types in their signature. In
Eiffel the bit types may refer an integer manifest constant or an integer constant feature. In
example 70 we will show how the bit type can be exherited from the exherited classes in all the
possible combinations.

The f1 features from the exherited classes have the bit type expressed using the same value
integer manifest constant and they are exherited using the same type reference.

In exheriting the bit types referring exheritable constant features we have two choices:

• either we exherit the type and the referred feature also and we set the link between the type
and the exherited feature at foster class level;

• or we exherit the type and we create a new manifest constant having the same values as the
ones referred in the exherited classes.

The first choice would seem more natural to perform but it has the drawback that the language
does not allow constant features to be redefined. Still what we could do is to move up automatically

107 BUPT

Example 70 Exheriting Bit Types
class EC1
feature
b:INTEGER is 7
f1(x:bit 7):bit 7 is do end
f2(x:bit b):bit b is do end
f3(x:bit 7):bit 7 is do end

end
class EC2
feature
b:INTEGER is 7
f1(x:bit 7):bit 7 is do end
f2(x:bit b):bit b is do end
f3(x:bit b):bit b is do end

end
foster class FC
exherit
EC1
EC2
all

feature
-- f1(x:bit 7):bit 7 is deferred end -- is implicit
-- f2(x:bit 7):bit 7 is deferred end -- is implicit
-- f3(x:bit 7):bit 7 is deferred end -- is implicit

end

the feature from the exherited classes, but this would be in contradiction with the principle of
exheriting implicitly all features as deferred. The second solution is more feasible from the technical
point of view, but does not keep the same philosophy of the exherited class.

In our example f2 features refer a constant feature b which has the same value 7, being present
in each exherited class. In this case we exherit a feature whose types are linked to a manifest
constant. In case of f3 features we mixed the two natures of the types and the implicit result is
that the types used in the superclass are linked to manifest constants. This behavior is normal
since not all features are linked to some exheritable constant feature.

Rule Exheriting Bit Types In order to exherit bit types, they must refer the same value and
they will be exherited in the foster class as referring an integer manifest constant.

4.5.5 Exheriting Various Types
In example 71 we mixed several types: class types referring formal generics and like types. These
types are special because they do not point directly to the target type. In order to perform
exheritance on such types we must consider their target types. If they are identical then exheritance
is possible. Feature f1 is of type T in both exherited classes, it is normally exherited and the
common type is T. Feature f2 is like f1 in one exherited class and of type T in the other exherited
class. Since the two types refer the same target type T, exheritance is possible and the exherited
type will be obviously T. Feature f3 is a bit more complex. The base class A is the same in both
exherited classes while the actual argument is in the situation of feature f2. Because we showed
that f2 is exheritable, also f3 is exheritable (same base generic class and same target type of actual
generics). Feature f4 adds the expanded keyword to the class type having an actual generic.

108 BUPT

Example 71 Exheriting Various Types
class EC1
feature
f1:T
f2:like f1
f3:A[like f1]
f4:expanded A[like f1]

end
class EC2
f1:T
f2:T
f3:A[T]
f4:expanded A[T]

end
class T ... end
class A[G] ... end
foster class FC
exherit
EC1
EC2
all

feature
-- f1:T
-- f2:T
-- f3:A[T]
-- f4:expanded A[T]

end

109 BUPT

4.6 Behavior in the New Created Class
In order to preserve the behavior of the subclasses and to keep the symmetry between the two
complementary class inheritance relationships it is not allowed to add new behavior in the super-
class. Otherwise, if some new behavior was specified in the superclass, it would be inherited by
all the subclasses, thus changing the semantics of the original ones.

In some special conditions, the target class of reverse inheritance can have superclasses. As we
mentioned earlier the behavior of the source class must not be modified, thus the content of the
superclass must be restricted. It can contain only a subset of the exherited features preserving
their signatures and some method implementations can be provided within this class.

Another interesting case could be when a foster class has two superclasses, meaning that it is
the target of a multiple inheritance class relationship. In this case the same rules of preserving
the behavior of exherited classes apply as in single inheritance. The features in both superclasses
have to be included in the set of the exherited features.

As a conclusion we can state that any hierarchical structure is allowed to be on the top of
one foster class as long as the behavior of the subclasses is not affected by the inheritance of new
features.

Rule New Features in Foster Class Features to a foster class can be added only if they will
not change the original behavior of the subclasses. Behavior can be attached only to a feature
in the foster class (directly or by normal inheritance, single or multiple) if that feature can
be exherited.

This rule will set the base for determining when a foster class can have superclasses:

Rule Foster Superclass A foster class can have superclasses only if the inherited features match
the exherited features.

4.7 Use of Exheritance Clauses for Factoring Features
In this section we will discuss the impact of the exheritance clauses like redefine, undefine and
moveup in the context of exherited features. The redefine and undefine clauses are already part
of the Eiffel language, but their semantics has to be clarified in the context of reverse inheritance.

Redefinition of a feature in a subclass consists in changing the signature, the specification
or the implementation. Of course, in ordinary inheritance the redefined signature must conform
to the original one. With reverse inheritance since we redefine the feature in the foster class, all
the feature signatures from subclasses must conform to the redefined one in the superclass. By
conformance we mean the characteristic of a type to be reused instead of another [Mey02]. The
redefinition of an attribute from the superclass as a method in the subclass is not possible. From
this restriction we infer that a set of features from the exherited classes can be exherited as a
concrete attribute if all features in the set are concrete attributes.

Undefinition of a feature in the context of ordinary inheritance means that the undefined
feature becomes deferred in the subclass. This adaptation can be applied to methods, but not to
attributes. In the context of reverse inheritance it is natural to exherit a feature no matter if is
a method or an attribute as a deferred feature as long as the signatures are compatible. Still if
there is a deferred feature in one of the exherited classes, the corresponding feature in the foster
class cannot be attribute.

The moveup clause is newly added to the language and its semantics is related to the selection
of implementation from the subclasses. If in the subclasses there is an implementation for a feature
which is suitable in the foster class, the moveup keyword should be used on the exheritance branch
corresponding to the subclass that has the desired implementation. Of course, there should be only
one implementation selected for a feature. It is acceptable to use moveup on multiple branches
if the implementations in the corresponding subclasses are the same for a specific feature.

110 BUPT

The adapt clause is used for performing special kind of adaptations that cannot be performed
with undefine and redefine clauses. Because exherited features came from different subclasses,
which may belong to different class hierarchies, some special adaptations seem to be necessary. In
chapter 5 are presented details on these issues.

To have a first idea of possible combinations for the exheritance clauses we make the following
remarks:

• The rename clause can be combined freely with the clauses undefine (implicit behavior),
redefine, adapt and moveup. When combining renaming with other exheritance clauses,
renaming has to be performed first, and only then the other desired clauses are used. Using
the renaming clause, the exherited feature will acquire a new name and the new name will
be used in the next desired exheritance clauses.

• The adapt clause, being used only for the adaptations that cannot be performed with
undefine and redefine clauses, it cannot be used in combination with the two keywords.
It is not possible to redefine and adapt a feature at the same time since the clauses refer to
a disjunctive set of adaptations: the former - to classic Eiffel adaptations and the latter -
to special adaptations. It does not make sense to undefine a feature and to adapt it at the
same time, since there will be no implementation available. The combination of adapt and
moveup is not permitted since it affects the clarity of code.

• The order used in the exheritance branch for rename, undefine (which is implicit), rede-
fine and select is based on the one used for the clauses existing already in Eiffel.

– After a renaming clause the new name of the feature has to be used in the potential
undefinition, redefinition, adaptation, moving or selection. Like in ordinary Eiffel,
renaming deals with the name of the feature and not with the feature itself. The rest of
the operations redefine, adapt, undefine, select, moveup refer to modifications related
to signature, specification, implementation.

– Undefine is the default implicit behavior and is placed after renaming and before se-
lection clauses, but is not allowed together with adapt since the two are not compatible.

– Adapt is a special kind of redefinition, so both can be treated using the same priority
order: after implicit undefinition and before selection. An adapted feature is prohibited
to be moved up.

– When moving up a feature implementation from the subclass in the foster class the
eventual renaming operation should be considered only. Since the implementation is
exherited, it cannot be undefined. The redefinition of a moved feature is necessary if
its signature is changed in the foster class.

4.8 Summary
In this chapter we presented basic concepts about how a foster class can be created using reverse
inheritance. It was pointed out that the most simple class configuration when using reverse
inheritance is the single reverse inheritance case. Also we have to notice that class configurations
which look like multiple inheritance in context of ordinary inheritance, are just some independent
reverse inheritance class relationships. What is important in such class configurations is not so
much the shape of the diagram, but the order of class creation, namely, the time stamp of each
class.

The implicit and natural semantics of factoring features was presented. When attributes and
methods have the same signatures in subclasses they can be automatically exherited. Implicitly,
the attributes are exherited without their implementation, meaning that they are deferred in the
foster class. For methods we use the same rule, the signature is exherited only, being deferred in
the foster class. For practical reasons in the semantics of reverse inheritance is allowed to choose

111 BUPT

between the implicit and explicit selection of the exherited features. There are four options: to
implicitly factor all possible features, having the possibility of explicitly excluding some common
features, to let the programmer specify explicitly the features needed in the foster class and to
factor no features at all.

The nature of the features is taken also into account. We analyzed cases where attributes and
methods with the same signature were present. In that case they will be factored as an abstract
feature in the foster class. The same rule is set if methods are factored from the subclasses and
some are concrete and some deferred. When implementation is decided to be factored the problem
of dependencies arises.

For symmetry reasons and for keeping the philosophy of the Eiffel language consistent, reverse
inheritance is designed as a dual class relationship, having two forms: a conforming one and a
non-conforming one. The syntax used at this point is the same as the one used for ordinary
inheritance. Another supposition for keeping the semantics of the language intact is to not allow
the behavior in the foster class influence the behavior of the subclasses.

Type exheritance refers to the rules showing how types can be exherited. Types represented by
generic classes instantiated with actuals behave like composed types because the type exheritance
rules must be applied recursively. Expanded and separate types depend on class types so the rules
for class types have to be applied along with the appearance of expanded respectively separate
keywords. The like types may be exherited with their link to the anchor if the anchor is exheritable
too, if not, the type in the foster class is the type of the anchor. Bit types are very special, they
cannot be compared with any other type. If their size expressed by a manifest constant or a
constant feature is equal then the bit type may be exherited. Generic types may be instantiated
with any type from the Eiffel type system, like types seem to point to any other types, in the same
manner, so before exheriting them, they must be evaluated.

Exheritance clauses used in factoring features rise several cases, which were semantically anal-
ysed and rules were stated about them. It was taken into account the undefine, moveup, redefine
exheritance clauses and the nature of the features attributes and methods. Some combinations of
exheritance clauses are invalid, some other combinations are valid under certain conditions and
some cases are always perfectly valid. The analysis was made on two exherited classes, but the
same reasoning can be applied when working with multiple ones.

112 BUPT

Chapter 5

Adaptation of Exherited Features

[LHQ94] presents a set of adaptations which are valid in the definition of the reverse inheritance
semantics. However, we think that there are some points where the adaptation mechanism pro-
posed by [LHQ94] can be extended. Adaptations can be seen as local transformations applied to
candidate features from subclasses in order to make them conform to a common signature. These
feature adaptations are performed before their factorization, such that a feature with different
signatures satisfies the constraints for being exherited.

In this chapter we will show what kind of adaptations can be performed and what are their
restrictions. Each adaptation provides a mapping between the original signature of a feature and
the common signature located in the foster class.

5.1 Adaptations for Ordinary Inheritance Applied to Re-
verse Inheritance

5.1.1 Feature Redefinition
The semantics of feature redefinition in reverse inheritance is intended to be kept the same as in
ordinary inheritance. Feature redefinition in ordinary inheritance implies changing either signa-
ture, specification or implementation. In the context of reverse inheritance, redefinition can
be used to adapt the signatures of certain features to one common signature. There are some
limitations of the changes that can be performed.

Signatures from subclasses will have to conform to the signature of the superclass no matter if
they are linked by an ordinary or reverse inheritance class relationships. Specification redefinition
will obey (in particular) the rules presented in section 5.4. Implementation redefinition will take
into account the rules in subsection 4.3.4 and section 4.6, because an implementation can be
rewritten or exherited. If the implementation is removed, meaning that the feature is deferred,
the undefine clause is used implicitly.

An example of such a feature redefinition is provided in example 72. Feature f from class A
must be redefined because the signature and the behavior in class C is changed. Feature f from
class B has only a new implementation preserving the original signature.

In the context of ordinary inheritance there are restrictions about redefining an attribute from
the ancestor as a method in the heir. This is due to the fact that a method in the heir containing an
assignment to that attribute could be inherited, so the redefinition of the attribute into a method
would invalidate the inherited assignment. For this reason, in reverse inheritance a feature from
the exherited class can always be redefined as a method in the foster class, but it can be redefined
as an attribute only if it is an attribute in all exherited classes.

Rule Feature Redefinition . When a feature f is exherited and when a change of signature,
specification (assertions) or implementation is necessary, then feature f has to be redefined
and must satisfy the following conditions:

113 BUPT

Example 72 Feature Redefinition
class T
end
class T1 inherit T
end
class A
feature

f(x: T1) is do end -- implementation of class A
end
class B
feature

f(x:T) is do end -- implementation of class B
end
class C exherit
A
redefine f

end
B
redefine f

end
all

feature
f(x: T) is do end -- implementation of foster class C

end

• all the signatures of f specified in the subclasses must conform to the new signature of f in
the foster class;

• specification adaptation must agree with the rules defined in section 5.4;

• implementation adaptation will conform to the rules related to implementation exheritance
(subsection 4.3.4) and to the rules related to behavior in the newly created class (section
4.6);

• an exherited feature can be redefined as an attribute if it is an attribute in all exherited
classes.

As an observation, it can be noticed that a supertype for a set of classes, needed in a covariant
redeclaration, always can be obtained by reverse inheritance.

5.1.2 Feature Undefinition
In ordinary inheritance if an effective feature is undefined then it becomes deferred in the subclass
(to be noted that the current rules of Eiffel do not allow the undefinition of attributes). With
reverse inheritance an exherited feature is undefined implicitly in all exheritance branches, this
means that it will be deferred in the superclass. Of course, this works for any kind of features:
attribute and method with the constraint that signatures are covariant or at least adaptable. Some
of these aspects were also discussed in section 4.3.1.

Rule Deferred Feature in Foster Class. An exherited feature is implicitly deferred in the
foster class and is undefined in all exheritance branches. In this case the foster class becomes
deferred.

114 BUPT

Example 73 Feature Renaming
class BOX
feature
boundary: REAL

end
class CIRCLE
feature
circumference: REAL

end
deferred foster class SHAPE exherit

BOX
rename
boundary as perimeter

end
CIRCLE
rename
circumference as perimeter

end
all

feature
perimeter: REAL

end

Rule Orthogonality According to Features. Attributes and methods (once1 or not) are
undefined when they are exherited.

5.1.3 Feature Renaming
Because quite often classes are developed independently, in most cases it happens that common
features have different names so that a name adaptation is required. In example 73 taken from
[LHQ94] we present such a name conflict situation and we propose a syntax extension for solving
it.

The classes BOX and CIRCLE both have attributes which refer to the perimeter of the shape,
but using different names boundary and circumference. Because we want to factorize those features
in class SHAPE we had to rename the two features using a common name such as perimeter.

It may also occur that two features from different subclasses have the same name but represent
different features. This is called the case of "false friends", as presented in [Sak02], and it is not
discussed in [LHQ94]. Obviously renaming is used to stop the ambiguity and there is no possibility
for an automated approach. The syntax used for renaming is the same like the one proposed for
ordinary inheritance in Eiffel.

Rule Renaming Feature . Renaming should be used when several semantically equivalent fea-
tures do not have the same name or when features with different semantics have the same
name.

5.1.4 Conclusions
After all these examples we can draw the conclusions regarding the semantics of the exheritance
clauses in two contexts: ordinary inheritance and reverse inheritance. The conclusions are cen-
tralized in table 5.1.

1In Eiffel once methods are executed when they first called and the result is stored. All other calls to once
methods will return the stored result, being no longer executed.

115 BUPT

Inheritance/ Exheri-
tance Clauses

In context of ordinary inher-
itance

In context of reverse inheri-
tance

rename to change the name of the feature to change the name of the feature
undefine to make a feature deferred (it can

not be used for attributes, but
only for methods)

to make a feature deferred (it
is used implicitly for both at-
tributes and methods)

redefine to change signature (in a covari-
ant way), specification or imple-
mentation of a method

to change signature (in a covari-
ant way), specification or imple-
mentation of a method

adapt no semantics attached to change the signature (in other
ways than redefine does, and will
be studied thoroughly in chapter
5)

select is used for multiply inherited fea-
tures with a common seed when
a certain feature needs to be se-
lected in a polymorphic call

has a special semantics dedicated
to solve dynamic binding prob-
lems and it will be presented in
detail is section 6.2

moveup no semantics attached used to select an implementation
of a method in the foster class
from one of the exherited classes
(of course if the dependencies al-
low this, see chapter 6)

Table 5.1: Semantics of Inheritance and Exheritance Clauses

The renaming mechanism has the same semantics in the two class relationships. The undefi-
nition mechanism has the same semantics but in ordinary inheritance must be explicitly invoked,
while in reverse inheritance is applied implicitly to set the status for the exherited features. The
redefinition mechanism has the same known semantics for both ordinary and reverse inheritance.
The adaptation mechanism is valid only in the context of reverse inheritance and it is meant for
adaptations which are not achievable by redefinition. The feature selection mechanism to solve
dynamic binding conflicts has the same semantics in both class relationships, but different syntax,
since the feature selection decision is taken late, after the creation of the root class. The moveup
mechanism enables the explicit selection of the implementation from one subclass for an exherited
feature. The counterpart mechanism in ordinary inheritance is the inheritance of features from
the superclass to the subclasses which is implicit. So the moveup mechanism in the context of
ordinary inheritance has no semantics attached.

5.2 Special Signature and Value Adaptations
In order to increase the expressiveness of the reverse inheritance relationship, and implicitly class
reusability, it may be interesting to provide a mechanism allowing to customize the signature of
the feature when exheriting. The following rule provides a general framework for such adaptation.

Rule Special Feature Adaptation . The adapt clause allows to specify the name of the method
whose signature should be adapted in order to make possible the factorization of the cor-
responding method in the various subclasses. All adaptations are put after the keyword
adapted which is located just after a possible method precondition. Each statement de-
clared in this area allows to specify the adaptation to perform depending on the subclass
which is considered. The name of the class is put between braces, following the same syntax
as the one used for specifying the class corresponding to the precursor. If no adaptation
is specified for a subclass of the foster class, then no adaptation will be performed except

116 BUPT

Example 74 Adaptation Grammar Rules
Adapted_opt: /* empty */

| E_ADAPTED Adapted_list E_END
Adapted_list: Adapted_item

| Adapted_list Adapted_item
| Adapted_list ’;’ Adapted_item

Adapted_item: ’{’ Class_type_list ’}’ Attribute_adaptation
| ’{’ Class_type_list ’}’ Routine_adaptation

Class_type_list: Class_type
| Class_type_list ’,’ Class_type

Attribute_adaptation:
Adapted_type E_IS ’(’ Expression ’)’ Adapted_result

-- Expression is used in assignments to the attribute, and may contain
-- ’Precursor’. Adapted_result is used for reading the attribute, and may
-- contain ’Result’.
Adapted_type: Type

| E_LIKE E_PRECURSOR
Adapted_result: ’:’ Expression
-- May contain ’Result’.
Routine_adaptation:

Adapted_formals Adapted_type_mark_opt E_IS
Adapted_actuals Adapted_result_opt
| Adapted_type E_IS Adapted_result

Adapted_formals: ’(’ Entity_declaration_list ’)’
| ’(’ E_LIKE E_PRECURSOR ’)’

Adapted_type_mark_opt: Type_mark_opt
| ’:’ E_LIKE E_PRECURSOR

Adapted_actuals: ’(’ Actual_list ’)’
| ’(’ E_PRECURSOR ’)’

-- The expressions in Actual_list may contain names of formal arguments
-- of the foster class routine.
Adapted_result_opt: /* empty */

| Adapted_result

if one adaptation had been defined for one of its ancestors, if any. The adapted keyword
allows to specify the adaptation to perform depending on the considered subclass. Possi-
ble adaptations are scale adaptation, modification of the parameter order, number, or type,
modification of the type of feature (attribute type or function return type).

The adaptations applied to attributes are valid only if they are expanded and their instances are
treated as values. For non-expanded classes things become more complicated and are not discussed
here.

The grammar rules are listed in example 74.

5.2.1 Scale Adaptation
The idea of providing scale adaptation can be found in [SN88]. This mechanism is used to facilitate
the conversion between value scales (they use conversion methods between the scales which are
encapsulated in a special meta-class). In our approach we will use the conversion formulas as an
adaptation technique because it seems to fit better in the programming language philosophy.

In example 75 we illustrate a possible use of the scale adaptation mechanism. We start from
two classes RECTANGLE and ELLIPSE which have two methods returning the area of each

117 BUPT

Example 75 Scale Adaptation (1)
class RECTANGLE
feature
getSurface: INTEGER is
do
-- rectangle specific implementation in cm^2

end
end
class ELLIPSE
feature
get_Surface: INTEGER is
do
-- ellipse specific implementation in m^2

end
end
foster class SHAPE exherit
RECTANGLE
rename
getSurface as getArea

end
ELLIPSE
rename
get_Surface as getArea

adapt
getArea

end
all

feature
getArea: INTEGER is
adapted
{ELLIPSE} : like precursor is : Result * 10000

end
end

118 BUPT

shape, but using different scales for that. The method in class RECTANGLE returns a value in
cm2 while the corresponding one in class ELLIPSE returns a value in m2. Following the same
homogeneity principle announced in section 72 we definitely need a conversion between the two
scales. So we decided to extend the syntax of Eiffel to be able to specify the desired transformation.
Although in the example we can remark that the two techniques of renaming and adapting are
orthogonal since they do not affect each other.

The like precursor used in the adaptation denotes the new type returned by the method. The
expression after the is keyword represents the adapted returned value of that method. Internally
the method from the exherited class uses its own representation and it must be adapted when it
is returned.

In the case of adapting an attribute, conversions should be provided in both ways. This is
necessary when setting the value of an attribute. In our approach we consider that a natural way
to do this is to adapt the assigner method of the attribute. This is illustrated in example 76. In
order to exherit the surface attribute we need to also exherit its assigner method putSurface. In
this example we can see that both features (attribute and its assigner) are associated to a piece
of code which achieves the value conversion. When the attribute surface is evaluated using a
reference of type SHAPE on an instance of ELLIPSE, then its implementation is transformed to
have the same representation as in the superclass. When an external object assigns a value to
this attribute through the assigner method attached to a SHAPE reference a conversion is also
necessary. Class ELLIPSE works using its own representation and when its instances interact
through SHAPE references the conversion code is put to work. When an attribute has no assigner
method then no scale adaptation can be performed on it.

Rule Function Scale Adaptation . Scale adaptation can be applied to methods returning
values and it implies providing a conversion from the returned type scale of the feature in
the subclass to the scale of the corresponding feature in the superclass.

Rule Attribute Scale Adaptation . Scale adaptation can be applied to attributes and it implies
providing conversions in both ways: in one way like in the rule above and in the other way
by adapting the assigner methods of the attribute.

5.2.2 Parameter Order Adaptation
The issue of parameter order adaptation is discussed in [LHQ94]. They proposed a syntax exten-
sion to solve this problem2(see example 77):

The proposed syntax extension relies on the adapt clause similar to scale adaptation (see section
5.2.1). It provides a new parameter mapping related to the original one. The relation between the
parameters remains the same that is to say, one to one. No parameter is omitted or duplicated.
The syntax extension allows to specify that when a call to the method scale is made (through a
reference of type SHAPE) on an instance of class BOX, it is equivalent to performing a call to the
method zoom with the parameters in the reverse order.

Example 78 (derived from example 77) illustrates a situation where the adaptation of the
parameter order is useful. When the scale method is called then everything works as if it was
the zoom method which is called relying on both adaptation mechanism and dynamic binding
semantics3.

5.2.3 Parameter Number Adaptation
A similar though more complicated situation arises when the number of parameters is not the
same. In such a situation there are several possibilities:

2We slightly adapted the syntax to fit better to our approach. The changes made are only at the syntactical
level and the semantics is preserved.

3Issues dealing with the dynamic binding will be addressed with much more details in chapter 6.

119 BUPT

Example 76 Scale Adaptation (2)
class RECTANGLE

-- Rectangle specific implementation in cm^2
feature
surface: INTEGER assign putSurface

putSurface(p: INTEGER) is do surface := p end
end
class ELLIPSE

-- Ellipse specific implementation in m^2
feature
area: INTEGER assign putArea
putArea(a: INTEGER) is do area := a end

end
foster class SHAPE exherit
RECTANGLE
ELLIPSE
rename
area as surface
putArea as putSurface

adapt
putSurface

end
all

feature
surface:INTEGER is

adapted
{ELLIPSE} like precursor is (precursor / 10000) : Result * 10000

end
putSurface(s:INTEGER) is

adapted
{ELLIPSE} (a:INTEGER) is : (s / 10000)

deferred
end

end

Example 77 Parameter Position Adaptation
foster class SHAPE exherit
BOX
rename
zoom as scale

adapt
scale

end
all

feature
scale(factor:REAL;center:POINT) is
adapted
{BOX} (center:POINT;factor:REAL) is (center,factor)

end
end

120 BUPT

Example 78 Using the Adaptation
point : POINT
factor: REAL
s: SHAPE
b: BOX
create b
s := b
s.scale(factor,point)
-- equivalent call: b.zoom(point,factor)

• To omit or ignore some parameters - this mapping can be used when in the context of a
given class, the parameter is not needed because of possible lack of semantics.

• To freeze some parameters to constant values - this technique goes in the direction of lan-
guages which support function overloading like C++ does. The restriction imposed by C++
is to locate those default parameters at the end of the declaration list. In our case the pro-
posed syntax bypasses this restriction and allows omitting any parameters independently of
their relative position in the list.

• To replicate some parameters - this practice can be used when the method in the subclass
has a more general behavior and in order to obtain a particular behavior some parameters
can be duplicated. It is intended that the behavior of the superclass will be reused in the
subclass in a particular context.

• To rely on the description of basic computations in order to create new parameters. This
means to write an expression which yields a result which will be used as a parameter later.

In example 79 all the cases are included and a syntax is proposed to describe them.
In example 79 we have designed a superclass X by reverse inheritance, which has a method m

with two parameters. We intended to show that it is possible to use something else than a one to
one parameter mapping. The computations involved into parameter adaptations should be basic
and may involve only the method parameter and attribute or function of the foster class.

The mechanism presented does not interfere with the other adaptation clauses presented in
previous sections, they are orthogonal so they can be freely combined. For instance, it is possible to
perform a scale adaptation in the same adapted construct, thus making the adaptation expressions
more complex. Moreover the feature (m in our example) could have a redefined signature, a new
specification, a new written body or an empty body. In this case, the construct adapted is placed
at the head of method declaration (after possible preconditions), before deferred keyword or
respectively do keyword.

Rule Parameter Number Adaptation Parameter number adaptations are necessary when
exherited methods have a different number of parameters than the method in the foster class.
In the adaptation clauses of the foster class method there can be written equivalent calls
to subclass methods in which some parameters are omitted, frozen, replicated or computed.
The syntax used for this adaptation is the one presented at the beginning of this section
(5.2).

5.3 Generic Type Adaptation
In Eiffel, the genericity can be constrained or unconstrained. Unconstrained genericity implies
that the generic parameter of a generic class can represent any arbitrary type. If the type is
constrained to a specific one then it is possible to do specific operations with it in the class
because it conforms to a known interface. From this dual point of view we start the genericity

121 BUPT

Example 79 Parameter Number Adaptation
class A
feature

m(p1:INTEGER) is do end
end
class B
feature
m(p1, p2, p3: INTEGER) is do end

end
class C
feature
m(p1, p2, p3:INTEGER) is do end

end
class D
feature
m(p1, p2, p3: INTEGER) is do end

end
foster class X exherit
A
adapt m

end
B
adapt m

end
C
adapt m

end
D
adapt m

end
all

feature
m(q1, q2: INTEGER) is
adapted
{A} (p1:INTEGER) is (q1)
{B} (p1,p2,p3:INTEGER) is (q1, q2, 0)
{C} (p1,p2,p3:INTEGER) is (q1, q2, q1)
{D} (p1,p2,p3:INTEGER) is (q1, q2, q1 + q2)

do
... -- possible implementation

end
end

122 BUPT

Example 80 Unconstrained Genericity (1)
class A[G1]
feature

e: INTEGER
f: G1

end
class B[G2]
feature

e: INTEGER
f: G2

end
foster class C exherit
A
B
all

feature
-- e: INTEGER is deferred end --is implicit

end

impact analysis on reverse inheritance. We have to specify also that a class can depend on more
than one generic parameters, actually it is possible for a class to have a list of formal generic
parameters. Our attention is focused on features having generic types potentially to be exherited
and also on the relationship between foster class and exherited class. It is known that a generic
class must generate4 a concrete class through the process of formal generics instantiation. In
inheritance the subclass refers an already instantiated generic superclass. Next, we analyse if the
same thing may happen in the context of reverse inheritance: if the foster class will instantiate
the generic exherited classes in the process of exheritance.

5.3.1 Unconstrained Genericity
Let us have two classes A and B which exist initially and a superclass C created using a reverse
inheritance class relationship with A and B. We take the case of two classes specifying one generic
parameter, which seems to be general enough. At first glance we can identify three main cases
which are addressed in the next three subsections.

Non-generic Foster Class and Generic Subclasses

Class C has no generic parameters, while classes A[G1] and B[G2] have. In this case, only the
features which do not involve generic types are subject to exheritance.

In example 80, feature e from A and B subclasses will be automatically exherited while f fea-
tures cannot be exherited since they are of different generic types. The equivalent class configura-
tion built with ordinary inheritance will have generic subclasses which inherit from a non-generic
superclass.

If subclasses were exherited as instantiated with a concrete type DOUBLE for example, then
feature f would seem exheritable since it is of type DOUBLE in both subclasses through class
instantiation. On the other hand the type of the exherited feature in the superclass would not be
available in the equivalent class hierarchy, so the exheritance of generic features must be forbidden
in this case.

One important aspect worth to discuss here is how the exheritance is performed. As it is
presented in example 80 we exherited directly the generic subclasses, without any class generation.

4In Eiffel, the term of class generation (not instantiation) is used in the context of generic classes, in order to
avoid the confusion with the concept of class instantiation which generates objects.

123 BUPT

Example 81 Unconstrained Genericity (2)
class A[G1]
feature

f: G1
m(p: G1) is do ... end

end
class B[G2]
feature

f: G2
m(p: G2) is do ... end

end
foster class C[G3] exherit
A[G3]
B[G3]
all

feature
-- f: G3 is deferred end -- is implicit
-- m(p: G3) is deferred end -- is implicit

end

We could also exherit features from two generated classes, but the generation types would be lost in
the equivalent ordinary inheritance class hierarchy. Another possibility is to extend the syntax and
to exherit the subclasses instantiated with class NONE argument: foster class C exherit A[NONE]
B[NONE]. Thus, there is no concrete instantiation type5 but it is shown that the referred class
is generic. The advantages of such a syntax extension are more visible in the next section. In
conclusion, we can declare that this case is valid and rules are issued to handle such a case.

Rule Exheriting Generic Classes with a Non-generic Foster Class. When subclasses are
generic and unconstrained and the foster class is not generic, then it is possible to exherit
the generic classes, not the generated ones and to factor only features which are non-generic.

Generic Foster Class and Generic Subclasses

Classes A[G1], B[G2], C[G3] are all generic classes. In this case the class hierarchy based on
reverse inheritance looks like in example 81. Like in example 80, it is possible to exherit non-generic
features as far as they satisfy the signature exheritance requirements mentioned in earlier sections.
Because there is no constraint on the generic arguments it is possible to exherit features whose
signatures are composed out of formal generic types. In order to obtain a consistent equivalent
ordinary inheritance class hierarchy, each formal generic of the subclasses must be instantiated with
the same formal generic from the foster class. Thus, in the equivalent ordinary inheritance class
hierarchy the subclasses will instantiate the superclass with the correspondent formal generics.
So, each formal argument from the foster class will have a correspondent in each subclass.

If the foster class has more formal generics than the subclasses then it would be impossible
to build an equivalent class hierarchy because in ordinary inheritance some superclass formal
arguments will have no correspondents in the subclasses. Also, if the foster class exherits generated
subclasses then the generation types will be lost and no equivalent hierarchy can be generated
because the types for the superclass generation are inexistent. If the foster class has less formal
arguments than the subclasses then it is possible to instantiate some subclass formal arguments
with type NONE as in the previous case. In this situation the instantiation with NONE is more
useful since it increases the possibility of exheriting subclasses with different number of formal

5Class NONE is a conceptual class in Eiffel that inherits all other classes of the universe and it is used for export
restriction, definition of non-conforming inheritance.

124 BUPT

Example 82 Unconstrained Genericity (3)
class A
feature

f: T1
m(p: T1) is do ... end

end
class B
feature

f: T2
m(p: T2) is do ... end

end
foster class C[G] exherit
A
adapt f,m

end
B
adapt f,m

end
all

feature
f: G
m(p: G) is adapted end

end

generics. Such a syntax can be viewed as a deviation from the symmetry of the language, but it
will increase the reuse power of reverse inheritance. From this point of view we can consider that
example 80 is a sub-case of example 81.

The order of generic parameters in exheritance or inheritance is not important, the only re-
quirement is the formal arguments correspondence.

Rule Exheriting Generic Subclasses with a Generic Foster Class. When subclasses
are generic and unconstrained and the foster is also generic and unconstrained, then it is
possible to exherit normally non-generic features and also generic features only if for each
formal generic of the foster class there is a correspondent formal generic in each subclass.

Generic Foster Class and Non-generic Subclasses

Superclass C[G] has generic parameters while subclasses A and B do not have.
In some cases like in example 82, it may be interesting to build a foster class which is not only

more abstract but also can implement, using genericity, a part of the behavior independently from
the data involved. This case is particularly useful for data structures like those from example
83). In our example we created the class C[G] with a formal generic parameter G which will
represent the concrete types T1 and T2 from classes A and B. In this way it is possible to create
at least generic signatures at the level of the superclass. In some cases it could be useful to take an
implementation from one subclass and to generalize it in the superclass using the generic types. Of
course, this is possible only when the implementation of the exherited method is prepared to allow a
concrete type substitution with a generic one. Reverse inheritance presents class parameterization
capabilities but in general situations some other preparations are still required [CRM99].

As a conclusion in this case, multiple reverse inheritance requires the generic parameter G to
be a supertype of T1 and T2. This requirement could be better handled in the case of constrained
genericity. It seems that this case is more appropriate to single reverse inheritance situations.

From the class relationship point of view we can say that instantiation between foster class
and exherited classes is not necessary since exherited classes are not generic, while in equivalent

125 BUPT

Example 83 Unconstrained Genericity (4)
class PERSON_COLLECTION
feature

add(e: PERSON) is do ... end
end
foster class COLLECTION[G] exherit
PERSON_COLLECTION
adapt add

end
all

feature
add(e: G) is adapted ... end -- the parameterized implementation of add

end

ordinary inheritance class relationship such an instantiation is very necessary since the foster class
must be instantiated in order to be inherited. Thus, this case is invalid.

Rule Exheriting Non-generic Subclasses with a Generic Foster Class. When subclasses
are non-generic but the foster class is generic and unconstrained, then such a class combi-
nation is not valid since instantiation information in inheritance does not exist and cannot
be inferred.

5.3.2 Constrained Genericity
In the case of constrained genericity the generic parameter conforms to a type. So, an object
can receive a restricted set of messages through the interface of that type. We take the same
structural example similar to unconstrained genericity. Classes A[G1 → T1], B[G2 → T2] are
created first, they have generic formal parameters G1, G2 and those parameters will conform to
types T1, respectively T2. Then class C[G3 → T3] is created by reverse inheritance with A and
B. We consider various cases for the parameters and types.

Non-generic Foster Class and Generic Subclasses

In example 84 if C has non-generic features, then the non-generic features can be normally exher-
ited. Depending on the relations between T1 and T2 it may be possible to exherit features in-
volving generic types. If T1=T2 then the type used in the feature exheritance can be T=T1=T2.
Otherwise, another type T can be used in the superclass C if T1 and T2 conform to T. A special
case is when T1 conforms to T2 or vice-versa.

Class C is not generic and formal generic parameters G1 and G2 conform to type T. So, in
superclass C attribute a and the signature of method m are equipped with the corresponding type
T. If such a type as T does not exist, then exheritance of the features having generic parameters
is not possible. Anyway such a type can always be created through reverse inheritance. Thus,
supertypes must exist for all generic parameters in the feature signature.

In the exheritance branches the generic classes must be used and not some generated ones. In
the equivalent class relationship any class instantiation type information is lost. The other option
would be to use the syntax based on the type NONE as in subsection 5.3.1.

Rule Exheriting Generic Subclasses with a Non-generic Foster Class. If the subclasses
are generic having constraints and the foster class is non-generic then exheritance of non-
generic features is possible under normal conditions and the exheritance of generic features
can be made by redefinition if common supertypes exist for all the corresponding constrained
types.

126 BUPT

Example 84 Constrained Genericity (1)
class A[G1 -> T1]
feature

a: G1
m(p: G1) is do ... end

end
class B[G2 -> T2]
feature

a: G2
m(p: G2) is do ... end

end
foster class C exherit
A
redefine a,m

end
B
redefine a,m

end
all

feature
a: T
m(p: T)is do ... end

end
class T1 inherit T end
class T2 inherit T end

Generic Foster Class and Generic Subclasses

We analyse the case of all classes having a generic parameter, like A[G1 → T1], B[G2 → T2],
C[G3 → T3]. If T1 and T2 conform to T3, then factorization of generic features is possible.

In example 85, generic class C exherits generated classes A and B with type G3 conforming to
T3. Type T3 is a supertype of the T1 and T2 which are types expressing the constraints for the
formal generic of subclasses A and B.

In ordinary inheritance the instantiation types for the superclass must conform to the con-
straints of that class, but in reverse inheritance the instantiation type for the subclasses generally
will not conform to the constraints. In the equivalent class hierarchy based on ordinary inheritance
the formal generic G1 conforms to T1 and can be used in the instantiation of the superclass C
because T1 conforms to T3. Conversely, in the context of exheritance, the formal generic G3
which conforms to T3 will not guarantee that conforms also to T1, so exheritance instantiated
with generics is invalid in general. The only situation when such exheritance is possible is when
T1=T2=T3. Attribute a and method m use a generic parameter G3 in the superclass which
conforms to T3.

If G3 is unconstrained then we can say that it is constrained to ANY, so we are still in this
case. If the formal generics from the exherited classes G1 and G2 are unconstrained or constrained
to ANY then we are still in the current case.

In conclusion we may say that such a class configuration validity is very restricted.

Rule Exheriting Generic Subclasses with a Generic Foster Class. If the subclasses and
the foster class are both generic having constraints then exheritance of non-generic features
is possible under normal conditions and the exheritance of generic features can be made by
redefinition if all involved types are the same.

127 BUPT

Example 85 Constrained Genericity (2)
class A[G1 -> T1]
feature

a: G1
m(p: G1) is do ... end

end
class B[G2 -> T2]
feature

a: G2
m(p: G2) is do ... end

end
foster class C[G3 -> T3] exherit
A
redefine m

end
B
redefine m

end
all

feature
a: T3
m(p:T3) is do ... end --to write a new code

end
class T1 inherit T3 end
class T2 inherit T3 end

Generic Foster Class and Non-generic Subclasses

The last case in which class C[G3 → T3] is generic, is the same as the case of unconstrained
genericity. The class configuration is not valid since the instantiation information does not exist
and cannot be inferred.

Rule Exheriting Non-generic Subclasses with a Generic Foster Class. If subclasses are
non-generic but the foster class is generic and constrained, then such a class combination is
not valid since instantiation information in inheritance does not exist and cannot be inferred.

5.4 Redefining Preconditions and Postconditions
The assertion mechanism of Eiffel helps checking software text correctness meaning whether the
implementation of a feature conforms to its specification. The basic element of this mechanism is
the assertion. Assertions represent boolean expressions which use Eiffel logical operators (coming
from class BOOLEAN) and the features declared within classes. They are used to express abstract
properties of classes. By assertions we mean preconditions, postconditions and invariants. Class
invariants behave like postconditions so for them we will apply similar rules to postconditions. Let
us investigate how assertions are affected by single and multiple inheritance.

First, in the case of ordinary inheritance, any assertion implicitly includes the corresponding
assertion in the parent. On the other hand, an inherited feature may change the precondition of the
parent by weakening it (by writing an alternative precondition) and may change the postcondition
of the parent by strengthening it (by writing an extra postcondition). The reason for which
preconditions are kept or weakened is for any older clients of the superclass to be able to use the
subclass. In the case of postconditions, since subclasses are specializations of the superclasses they
should have new constraints related to the newly added features.

128 BUPT

Example 86 Constrained Genericity (3)
class A
feature

a: T1
m(p: T1) is do ... end

end
class B
feature

a: T2
m(p: T2) is do ... end

end
foster class C[G3->T3] exherit
A
adapt a,m

end
B
adapt a,m

end
all

feature
a: G
m(p: G) is adapted end

end
class T1 inherit T3 end
class T2 inherit T3 end

If we consider that pre1, pre2, ..., pren are the preconditions and post1, post2, ..., postn are
the postconditions in the precursor then a redeclared routine will have the following equivalent
assertions6:

alternative_precondition or else pre1 or else pre2 ... or else pren
extra_postcondition and then post1 and then post2 ... and then postn

When an inherited feature has not declared any additional preconditions or postconditions then
the alternative_precondition is equivalent to false, since false is neutral to the OR logical operator
and extra_postcondition is equivalent to true, since true is neutral to the AND logical operator.

To exherit features means also to determine which will be their new preconditions and postcon-
ditions in the superclass, should we exherit a part or the whole preconditions and postconditions
that come along with the features. In this section we will see how this task can be accomplished
and in which cases it can be automated.

5.4.1 Eliminating Non-Exherited Variables
In [LHQ94], a rule is proposed for handling preconditions. It defines the precondition of a feature
in the superclass as the AND-ing of all the corresponding preconditions from subclasses. The same
is proposed for postconditions but using the logical OR operator to compose them. So the foster
class will have a stronger precondition and a weaker postcondition. We rely on this approach and
we will augment it later on.

Since true is the weakest assertion it can be used as postcondition in the superclass. It is not
equivalent to use false on the corresponding position for precondition, although it is the strongest
assertion. Any call to such a feature will be rejected, considering that the precondition failed. So
in conclusion the foster class precondition, respectively postcondition, will be the following:

6We mention that when dealing with single inheritance n equals to 1.

129 BUPT

pre1 AND pre2 AND ... AND pren
post1 OR post2 OR ... OR postn

In some cases it is impossible to define a valid precondition for the foster class. This happens
when at least two preconditions are in contradiction and the foster class precondition will always
fail. Such an example is straightforward if pre1 is a<5 and pre2 is a>5. In this cases exheri-
tance is forbidden for conforming reverse inheritance and allowed only for non-conforming reverse
inheritance.

The [LHQ94] paper mentions also that some assertions may contain features which are not
exherited. One radical solution is to invite the programmer to write from scratch all the assertions.
The second solution would be to prompt the programmer to exherit the depending features. Of
course, this solution is more or less applicable depending on the semantical restrictions. Another
possible solution is to adapt the assertions by disabling those logical subexpressions which contain
non-exherited features. In our approach the idea is to automatically modify the boolean expression
in such manner that it will affect as little as possible the evaluation. For example, let us consider
the features a, b, c. The following transformations may appear if c is not exherited or in the last
case, if e1 and/or e2 contain features which are not exherited:

01 (a<b) and (b<c) is transformed in : (a<b)
02 (a<b) or (b<c) is transformed in : (a<b)
03 (a<b) xor (b<c) is transformed in : (a<b)
04 not (b<c) is transformed in : void
05 e1 implies e2 is transformed in : void

On line 01 the second operand of the expression and could not be evaluated, since c is missing in
the new context. It is the same for the logical expressions defined on lines 02 and 03. On lines 04
and 05 the two logical expressions are replaced with void, this means that those logical expressions
are actually ignored. In order to perform such transformations it is necessary to analyze all logical
operators from Eiffel and to determine their neutral elements. We consider that E is a logical
expression.

E and true = true and E = E
E or false = false or E = E
E xor false = false xor E = E

The operators not and implies cannot be handled in the same manner as the operators and, or,
xor, because the operator implies is not reflexive and the operator not is an unary operator.
Further on we will see what can we do with these operators. Taking into account the priority of
Eiffel operators we can define some rules in order to reduce the boolean expressions containing
features which are not exherited. A special reduce operator will be defined for this purpose (see
figure 5.1).

In the extreme case when all features from one assertion are not exherited, then in the superclass
that assertion will be ignored.

The order of evaluation of the assertions in our approach is not important since all assertions
from different classes will have to be independent. As syntactical formalisms we propose the ones
which are defined in example 87.

In example 87 the precondition of feature f in class C is composed with the precondition of class
A and precondition of class B using the AND operator for composing them. The same is done for
postcondition, but using the OR operator. The built-in expressions precondition{classname},
postcondition{classname} are used (without code duplication) to denote the precondition and
postcondition of the current feature from the class specified between the brackets. If there are
non-exherited features in one of the assertions the reduce operator will be applied first, implicitly
on the respective assertion.

The require stronger and ensure weaker keywords are used in order to make the user
aware that he is responsible for writing a stronger precondition and a weaker postcondition in the

130 BUPT

reduce(E)
= E -- E contains just exherited features
= void -- E cannot be decomposed further on and contains non-exherited features

reduce(E1 and E2)
= E1 and E2 -- E1 and E2 contain just exherited features
= reduce(E1) -- reduce(E2) is void
= reduce(E2) -- reduce(E1) is void
= void -- reduce(E1) is void and reduce(E2) is void

reduce(E1 or E2)
= E1 or E2 -- E1 and E2 contain just exherited features
= reduce(E1) -- reduce(E2) is void
= reduce(E2) -- reduce(E1) is void
= void -- reduce(E1) is void and reduce(E2) is void

reduce(E1 xor E2)
= E1 xor E2 -- E1 and E2 contain just exherited features
= reduce(E1) -- reduce(E2) is void
= reduce(E2) -- reduce(E1) is void
= void -- reduce(E1) is void and reduce(E2) is void

reduce(E1 implies E2)
= E1 implies E2 -- E1 and E2 contain just exherited features
= void -- reduce(E1) is void or reduce(E2) is void

reduce(not E)
= not E -- E contains just exherited features
= not reduce(E) -- E can be decomposed further on
= void -- E cannot be decomposed further on and contains non-exherited features

Figure 5.1: Exheritance and Assertion Redefinition

Example 87 Exheritance and Assertions: The Syntax
class C exherit

A
redefine f

end
B
redefine f

end
all

feature
f(x:INTEGER) is

require stronger
precondition{A} and precondition{B}

do
...

ensure weaker
postcondition{A} or postcondition{B}

end

131 BUPT

Example 88 Exheriting the “only” Clause
class A
feature
a,b,c:INTEGER;
f is
require ...
do ...
ensure
only a,b,c

end
end
class B
feature

b,c,d:INTEGER;
f is
require ...
do ...
ensure
only b,c,d

end
end
class C exherit
A
B
all

end

foster class. Checking if the precondition in the foster class is stronger and the postcondition is
weaker is difficult to detect at compile time, because there are multiple preconditions and multiple
variables involved. The idea used here is the same like the one used in ordinary inheritance with
the keywords require else and ensure then. In such cases the user has to be aware that for a
subclass feature, the precondition, respectively the postcondition from the superclass is evaluated
first and only then, the locally defined assertions.

In Eiffel, the mechanism based on the keyword old allows to refer to the values of variables
before the method execution. Since it belongs to the code execution part, it will not be affected
directly by the semantics of reverse inheritance.

The clause only is used for declaring the variables whose values can be changed during the
execution of a routine; it can be affected by reverse inheritance. This happens when some variables
from the list are not exherited in the foster class. In the superclass, the variables which are not
exherited cannot belong to the list. The list of the only clause can have at most the common
features which are exherited.

If the exherited method is redefined in the foster class, the only clause can be modified freely
according to the set of exherited features. If the implicit behavior of reverse inheritance for this
aspect is chosen (see example 88) then just the exherited features from each subclass only list are
kept. In example 88 features f, b and c will be exherited and in the foster class feature f will have
the following postcondition: from the only list of feature f in class A feature a will be removed
since it is not exherited, the same thing happens to feature d.

Method body assertions like check, loop variants are not affected directly by the reverse
inheritance class relationship. As they are part of the body of a method they can be exherited
taking into account the rules related to body exheritance.

Assertions tags in the subclasses, if any, may be kept in the superclass unless some name
conflict arises in which case renaming has to be performed by the programmer.

132 BUPT

5.4.2 Combined Precondition and Combined Postcondition
A different approach on assertions has its origin in section 8.10.5 of[Int06]. The combined pre-
condition and postcondition of a feature in a subclass having multiple superclasses are defined as
follows:

pre1 or ... or pren or else pre
(old pre1 implies post1)
and ... and

(old pren implies postn) and then post

The pre1,...,pren are the preconditions and the post1,...,postn are the postconditions from the
corresponding features from the superclasses. In the new standard of Eiffel [Int06] there is a
new object test in the form of {x:T} exp, where exp is an expression, T is a type and the whole
construct is a boolean expression evaluating whether exp is of type T and attaching x reference
to it, in the scope of the test object.

The critical point in a foster class is the fact that the preconditions and postconditions are
applicable only to the objects that are instances (direct or indirect) of the corresponding heir
classes. Assuming that prei and posti are the precondition and postcondition of a feature f
present in the heir class Ci (i = 1,...,n), and pre’ and post’ those declared in the foster class C,
as an effective precondition in class C we propose:

if ({x1:C1} Current or else ... or else {xn:Cn} Current)
then
({x1:C1} Current implies pre1)
and ... and

({xn:Cn} Current implies pren) and then pre’
else
pre”

For the effective postcondition, similarly we can have:

if ({x1:C1} Current or else ... or else {xn:Cn} Current)
then
({x1:C1} Current implies post1)
and ... and

({xn:Cn} Current implies postn) or else post’
else
post”

These expressions must indeed be the strongest possible precondition and the weakest possible
postcondition. Testing the type of the instance will actually determine exactly which conditions
will be checked from the effective precondition and postcondition of the foster class. For an object
of type Ci, the test object will return true only in {xi:Ci} Current implies prei, respectively in
{xi:Ci} Current implies posti, while in all the other subexpressions it will return false. The pre’
and post’ are used to strengthen respectively to weaken the combined precondition, respectively
the combined postcondition. If an object is an instance of the foster class (but not of exherited
classes) then pre” and post” assertions are used.

In [LHQ94] the requirements are too strict, and therefore, for instance, exheritance would often
be considered impossible, especially if some heir class has elaborated preconditions. In our earlier
solution (see subsection 5.4.1), the requirements have been relaxed too much, and therefore the
desired conformance between a foster class and the exherited classes would often not be achieved.

133 BUPT

5.5 Summary
Regarding the classical adaptation mechanisms from ordinary inheritance, it seems to occur no
problem when applying them to reverse inheritance. Feature redefinition mainly has to satisfy
signature and implementation exheritance restrictions. Feature undefinition in the context of
reverse inheritance was made implicit for both attributes and methods.

Scale adaptations allow specifying mathematical formulas around the exherited features. This
mechanism is quite simple and suits only to some simple situations, but the idea can be improved
in order to be able to perform more general adaptations.

Parameter order adaptation involves only a translation scheme for the parameters. The pro-
posed syntax is quite simple and sufficient to express the semantics of the adaptation. Parameter
number adaptation works only in several restricted cases when it is possible to unify two simple
signatures for not so complex features. In one of the sub-cases some mathematical formulas (idea
taken from scale adaptations) were used. From this point we can generalize and to allow not
just mathematical operations but any expression built with the language constructs. The two
adaptations related to scale and parameter number use the same syntax built around adapt and
adapted keywords.

When generic classes are the target of reverse inheritance there were analyzed several cases
of unconstrained and constrained genericity, combined with cases of generic/non-generic foster
class/subclass. The case of constraint/unconstraint genericity was taken into account. The ana-
ysis was performed taking into account that unconstraint genericity can be viewed as constraint
genericity to class ANY.

Finally, the adaptation of assertions was studied. Feature exheritance is successful if it is
possible to define a precondition other than false, which is stronger than each precondition in the
subclasses for the corresponding feature. In the worst case, for postconditions and invariants, the
true postcondition can be used . Regarding the features which are not exherited and are parts of the
assertions an algorithm was presented for eliminating those features from the logical expression.
The algorithm was based on the neutral values for each logical operator. Because deciding at
compile time whether the precondition for the foster class is stronger than the preconditions
in the subclasses, the require stronger and ensure weaker keywords are proposed for use.
A different solution which requires information about the type of the exherited class instance
manipulated through the common interface of the foster class is the combined precondition and
postcondition. Using type information, the combined assertions corresponding to other subclasses
are invalidated, enabling only the evaluation of the original subclass assertion and of the additional
logical expressions written in the foster class.

134 BUPT

Chapter 6

Coupling Exheritance with
Inheritance

In this chapter we will discuss aspects related to the integration of reverse inheritance in complex
class hierarchies built by ordinary inheritance. We will analyse the problems that may arise
considering several types of class configurations. We are interested in:

i) how the exherited features are inherited in regular classes built by ordinary inheritance;
ii) what is the origin of the exherited features when the exherited class has ancestors;
iii) what happens with both inherited and exherited features from an ancestor-descendant class

pair;
iv) what kind of parent classes a foster class may have;
v) how can a foster class exherit from another foster class;
vi) how can a foster class inherit from another foster class.
An important part of this chapter is dedicated to the dynamic binding aspects and to the

feature selection issues. We will discuss also about the constraints that must be set on the exherited
features and classes regarding aspects like: exheritance of export clauses, exheritance of creator,
once, frozen, obsolete features, impact of aliases and precursor on the exheritance semantics.

6.1 Combining Reverse with Ordinary Inheritance
Let us have a look at the possible combination of reverse and ordinary inheritance (see table 6.1)
in a complex class hierarchy:

Ordinary classes are not allowed to exherit anything. Ordinary classes are allowed to inherit
ordinary and foster classes. Foster classes may inherit from classes and even from foster classes
with the condition of not inheriting new features. Foster classes may exherit from any classes
ordinary or foster.

Actions Class(es) Foster class(es)
class inherits allowed allowed
class exherits not allowed not allowed

foster class inherits allowed but constrained allowed but constrained
foster class exherits allowed allowed

Table 6.1: Possible Combinations of Ordinary Inheritance and Reverse Inheritance

135 BUPT

Example 89 Inheritance from Foster Class
class RECTANGLE
feature
perimeter:REAL is do ... end
halfperimeter:REAL is
do
perimeter/2;

end
end
class ELLIPSE
feature
perimeter:REAL is do ... end
halfperimeter is
do
-- ellipse implementation

end
end
foster class SHAPE exherit
RECTANGLE
moveup halfperimeter

end
ELLIPSE
all

feature
end
class TRIANGLE inherit SHAPE
end

6.1.1 Inheriting From a Foster Class in an Ordinary Class
First, we will discuss about the inheritance of exherited features in new descendants. It is a
natural decision to keep the principle of inheriting in new descendants any feature of the class in
the case of foster parent classes. In order to be more explicit we will start from the example given
in subsection 4.3.4 and we will extend it with a new descendant class.

In example 89, we created a new class TRIANGLE which is derived from foster class SHAPE.
It will benefit from all the features of class SHAPE. Since class SHAPE is the target of the reverse
inheritance class relationship, it will obviously have just exherited features. The features from
class SHAPE are both exherited from RECTANGLE and ELLIPSE on one hand, and inherited
in TRIANGLE on the other hand. In this particular case we exherited and inherited perimeter
method signature and halfperimeter method implementation. As it is designed last, the foster
class may have only new descendant classes.

Rule Inheriting from a Foster Class. Features exherited by a foster class will be inherited
by any descendant of the foster class, applying the classical rules of Eiffel.

6.1.2 Exheriting from a Descendant
In the example described in figure 6.1, we take into consideration a foster class FC which exherits
from an exherited class EC and which has a parent class PC. We are interested in particular about
the exheritance of the features inherited from PC in EC and not the ones immediately defined in
EC since they were already analysed in chapters 4 and 5.

The case is general since we can consider that class PC is a flattened version of itself and its
parents. Still, such a class construction is equivalent to a multiple inheritance construction where

136 BUPT

Figure 6.1: Exheriting from a Descendant

class EC is obtained by multiple inheritance out of classes PC and FC. Because we do not want
to affect class EC by the features of class FC factored by reverse inheritance, we have to disallow
replication of feature f in class EC. If we analyze the nature of inherited features that might be
exherited we draw the conclusion, that they can be deferred and effective methods and attributes
as well in both PC and EC classes.

Getting the Implementation for Source Features from the Exherited Class To get a
single implementation for feature f in the exherited class EC all potential implementations coming
from class FC must be undefined. If feature f in FC is deferred then no conflicts may arise.

In figure 6.2 we presented all possible cases for feature f in classes FC and EC. In class EC
feature f can be deferred, effective or inherited, while in class FC it can be deferred, effective or
moved up.

In case 1a both features are deferred, so no special treatment is necessary. In case 1b the
feature in FC is effective, while the one in EC is deferred, so undefinition must be operated. Case
1c is invalid since no implementation exheritance is possible from a deferred feature.

In case 2a the deferred version from FC is effected in EC, so no adaptations are necessary.
In case 2b two effective versions are present, so a redefine clause is necessary. In case 2c the
implementation from EC is exherited in foster class FC and a redefine keyword would make the
hierarchy consistent.

In case 3a the deferred version from FC is in no conflict with the inherited version from PC.
In case 3b the effective version from FC would conflict with the inherited version from PC, so the
version from FC will be undefined. In case 3c the exherited version from EC is preferred to be
undefined not to conflict with the inherited version from PC.

6.1.3 Inheriting from an Ancestor and Exheriting from a Descendant
In figure 6.3 we captured a different class configuration where reverse inheritance is used. According
to the definition rules of reverse inheritance we are not allowed to create new inheritance paths
between unrelated existing classes nor deleting existing paths. This means that reverse inheritance
can be used only between classes which are in an ancestor-descendant relationship.

In the class hierarchy there are two classes PC (parent class) and EC (exherited class) in
ancestor-descendant relationship. Between these classes there may be any number of intermediate
classes on the ordinary inheritance line. Foster class FC inherits from class PC directly or indi-
rectly and exherits directly from class EC. The selected case is considered general because even
in the class configurations presented so far the foster class still inherits from class ANY. In this
context we have features inherited from class PC and also features exherited from class EC. In
such a class configuration any other parents of FC which are not already ancestors of EC will be
linked to EC by reverse inheritance, even if they were originally unrelated. Such parents may be
newly created classes, but not already existing ones as it will be explained in subsection 6.1.4.

137 BUPT

Figure 6.2: Getting the Implementation for Source Features from the Exherited Class

Figure 6.3: Inheriting from an Ancestor and Exheriting from a Descendant

138 BUPT

All the features from class PC are inherited in class EC through the ordinary inheritance path.
The features from class EC can be divided into three categories:

• inherited from the parent class PC ;

• inherited from other ancestors;

• immediate or locally defined.

The set of features in the foster class FC is composed of several subsets:

• the whole set of features inherited from parent class PC and exherited from exherited class
EC. This set of features is called amphibious features since they are both inherited and
exherited. The exheritance of amphibious features is implicit and it cannot be prohibited
using except clauses.

• a subset of the features exherited from EC, other than the amphibious ones, as deferred,
moved up or redefined.

In the case of multiple exheritance all the exheritance rules presented in the previous chapters
hold. In the case of redefined amphibious feature in the foster class FC with redefined signature
the type covariance rule must hold. This means that the corresponding signature types from foster
class FC are subtypes of the types from parent class PC and also types from the feature signature
of exherited class EC are subtypes of the types from the signature within FC.

Getting the Implementation for Amphibious Features Since amphibious features are
both inherited and exherited they can get their implementation from three sources: parent class
PC by inheritance, exherited class EC by moving up or immediate as locally defined in FC. In
the context of multiple inheritance the feature implementation selection is made by undefine
/ redefine keywords combination and in reverse inheritance we preserve the same philosophy.
Using the same keywords, for each exherited feature at most one implementation must be set. The
implementation selection is made through the proper combination of clauses on the inheritance
and exheritance branches. In the exherited class EC there must be set only one implementation
for feature f also.

In figure 6.4 we present all the possible class configurations with the proper combination of
inheritance and exheritance clauses. In PC the feature may be deferred or effective, in EC it may
be deferred, effective or inherited while the feature from FC may be deferred, effective, inherited
or moved up. Combining these feature statuses we obtain all possible class configurations.

In case 1a all feature versions are deferred, so there is no keyword action to be taken. In case 1b
the feature within FC is deferred so both effective versions from PC and EC must be undefined.
For ordinary inheritance undefinition must be set explicitly, while for reverse inheritance it works
implicitly. Cases 1c and 1d are invalid since the implementation inheritance or exheritance is not
possible while the candidate feature is deferred.

In case 2a feature f from FC is deferred as the version from PC and the effective version from
EC is exherited implicitly as deferred. In such case no feature modifiers are necessary. In case 2b
feature f from FC if effective, effecting the deferred version from PC and redefining the effective
version from EC. Case 2c is invalid since implementation inheritance is not possible when the
ancestor feature is deferred. In case 2d the implementation of feature f is moved up from the EC
and effects the deferred implementation from PC. Obviously that the moveup keyword is used
on the exheritance branch, while on the inheritance branch no keyword is needed.

Cases 3a, 3b, 3c and 3d are invalid since implementation inheritance is not possible from a
deferred source feature.

In figure 6.5 we continue the presentation of the valid cases.
In case 4a feature f is deferred while its version from PC is effective so an undefine clause is

necessary. In case 4b the two effective versions from PC and FC must be separated by a redefine

139 BUPT

Figure 6.4: Getting the Implementation in Amphibious Features (1)

140 BUPT

Figure 6.5: Getting the Implementation in Amphibious Features (2)

141 BUPT

Figure 6.6: Restricted Inheritance in Foster Classes

keyword. The deferred version from EC is effected in FC so on the exheritance branch no feature
clause is necessary. In case 4c the effective version from PC is inherited in FC and the deferred
version from EC is effected in FC. In such case no feature clauses are necessary. Case 4d is invalid
since implementation exheritance is not possible when the exherited feature is deferred.

In case 5a the deferred version in FC is obtained from two effective versions, so the inheritance
branch requires the undefine keyword, while on exheritance the undefinition is implicit. In case
5b we have three effective versions which must be separated by two redefine keywords. In case 5c
the inherited version of the feature in FC requires no special keyword handling. In case 5d the
moved up version from EC requires the use of the moveup keyword and the undefinition of the
version coming from PC.

In case 6a the deferred version from FC needs undefine on the inheritance branch while on the
exheritance branch this is implicit. In case 6b the effective version from FC is redefined on the
inheritance branch and undefined implicitly on the exheritance branch. The undefine is important
since after transformations it will become explicit in the context of ordinary inheritance. In case
6c there are two inheritance paths and the original one must be favored in EC by undefining
the feature version coming from FC. In FC the feature version from PC is inherited, while the
exherited version from EC is deferred. In case 6d the inherited version from EC is moved up in
FC so the inheritance of the version from PC must be prohibited by an undefine clause.

6.1.4 Restricted Inheritance in a Foster Class
A foster class FC which declares a reverse inheritance relationship to a class EC may also inherit
from a parent class PC, if PC contains at most the same features as FC. This constraint is
necessary in order not to change the behavior of FC descendants. It is interesting to get this
opportunity when we want to keep and reuse some features that are already defined (see figure
6.6):

Because of the constraint described above it is necessary to add some constraints on the clause
that may be set when using ordinary inheritance within a foster class. In particular this is the
case when features are renamed.

Rule Inheriting in a Foster Class. In a foster class FC if one method f belongs to an
ancestor PC of FC, then the feature must be exherited also and both of them must have the
same name. If f is renamed when inheriting from PC, then it must be also renamed when
exherited, obviously with the same name.

6.1.5 Exheriting from a Foster Class
In this subsection we discuss the idea that a foster class could have another foster class on its
top. From this point of view, comparing to ordinary inheritance, it is possible to create subclasses

142 BUPT

Example 90 Exheriting From a Foster Class (1)
class RECTANGLE
feature draw is do ... end
...

end
class ELLIPSE
feature draw is do ... end
...

end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all

end
end
foster class GRAPHICAL_OBJECT
exherit
SHAPE
all

end

to already existing subclasses, thus making the class hierarchy to evolve downward. Reverse
inheritance facilitates the upward evolution of class hierarchies like in example 90.

The only delicate issue that can be noted in this situation is the visibility of the implicitly
exherited features in cascade. In example 90 the exheritance of the draw feature in foster class
SHAPE is implicit, so the feature is not explicitly listed in the foster class. When the exherited
features are not listed explicitly, in a long chain of foster classes it would be very difficult to see
which features succeeded to be exherited along the exheritance chain.

On the other hand, the reverse inheritance relationship is meant to be used at redesign time
when several classes are available. In this context the creation of a foster class for an already
existing foster class implies another process of redesign. In the very same redesign process, ordinary
inheritance may be used, like in example 91.

The main idea in example 91 is to favor the use of ordinary inheritance instead of reverse
inheritance in the same redesign stage. Reverse inheritance is designed for homogenizing classes
having different authors and which originally belonged to independent design processes.

6.1.6 Exheriting from a Hierarchy
In figure 6.7 we have the case of two classes PC and EC linked by ordinary inheritance. In
parallel we create another class hierarchy of two foster classes FC2 and FC1 linked by ordinary
inheritance and each class exheriting its counterpart: FC2 exherits PC and FC1 exherits EC.
The set of features exherited from PC in FC2 is a subset of features exherited from EC in FC1
because the set of features from PC is a subset features of EC.

6.2 Considering the Time Stamp When Defining a Class
In figure 6.8 we study the different orders in which the class hierarchy is built. In this case class
A is the highest ancestor, classes B and C are intermediate and class D is the lowest descendant.

143 BUPT

Example 91 Exheriting From a Foster Class (2)
class RECTANGLE
...

end
class ELLIPSE
...

end
foster class SHAPE
inherit
GRAPHICAL_OBJECT

exherit
RECTANGLE
ELLIPSE
all

end
class GRAPHICAL_OBJECT
...

end

Figure 6.7: Exheriting from a Hierarchy

Figure 6.8: Fork-Join Inheritance Example

144 BUPT

Figure 6.9: Sharing Features (case 1)

Figure 6.10: Sharing Features (case 2)

An even simpler class constellation than the diamond, but still with fork-join inheritance, is a
triangle. Let us drop class C and instead have also a direct inheritance link between A and D. In
this situation, it is clearly possible to share a feature f in all possible definition orders (ordinary
inheritance and reverse inheritance) of the classes. For a replicated feature, a similar extended
clause select as above is needed if D is not defined last.

6.2.1 Sharing Features
The different class construction scenarios reported to the temporal coordinate will be marked using
"+" symbol for those classes constructed by ordinary inheritance and "*" for those constructed
with reverse inheritance. In Eiffel an attribute declared both in classes B and C cannot be unified
in class D unless they have a common seed (except if the attributes are redefined in all inheritance
branches). This happens when B and C have a common ancestor. This restriction really looks
like an unnecessary non-orthogonality in Eiffel. Some different orders can be imagined in which
the sharing of features from B and C is prevented by the rules of Eiffel 1:

• Case 1 : BC+D*A. This means that classes B and C are created first, then class D is
defined by multiple ordinary inheritance from B and C. Finally, class A is built by multiple
reverse inheritance from B and C (see figure 6.9).

• Case 2 : B+D*C*A. This means that class B is created first, then D by inheriting from
B, then C is built by reverse inheritance from D. Finally, class A is designed using multiple
reverse inheritance from B and C (see figure 6.10).

1We remind the reader that adding a class to a hierarchy by reverse inheritance will not affect the behavior of
the rest of the hierarchy.

145 BUPT

Figure 6.11: Sharing Features (case 3)

• Case 3 : D*B*C*A. This means that class D exist first, then classes B and C are built
from D by reverse inheritance and that class A is also built through reverse inheritance from
B and C (see figure 6.11).

The cases in which we swap B and C are equivalent so that only one order needs to be treated.
We can say that the cases leading implicitly to feature sharing corresponds to the cases where A
is defined last. It is interesting to note that if a language contains the capability to define reverse
inheritance relationships, then it is not necessary to allow the unification of two features without
a common seed. A common seed can be always provided by reverse inheritance.

6.2.2 Replicating Features
The more complicated alternative is a feature f that should be replicated, so that there are two
occurrences of f in an object of type D, one corresponding to B and the other to C. One of these
two should be statically selected to act as f when an object of type D is accessed through a
variable of type A. For each definition order below, the orders where B and C are swapped are
equivalent, of course.

Let ffinal be the final name of the occurrence of f that should be selected in class D. Note that
in all definition orders in which not both B and C are defined before D, there must be defined
also some other feature in D that can be exherited as f.

• Case 1 : A+B+C+D . This means, only ordinary inheritance is used, f must be renamed
and/or redefined in B and/or C and/or D, but there are no problems. As we know, the
existing Eiffel syntax is simply "select ffinal". It must be put in the right inheritance branch
to select ffinal.

• Case 2 : B*A+C+D , BC*A+D . The handling of these two situations does not differ
essentially from case 1, because D is defined last, so that it allows to select the right version
ffinal. The clauses rename, undefine and redefine has to be used in such a way that the
behavior is the same as in case 1 (see figures 6.4 and 6.5) .

• Case 3 : BC+D*A, B+D*C*A, D*B*C*A. As it has been mentioned above, these sit-
uations lead implicitly to the sharing of features. To achieve replication of f, it is necessary
to use clauses redefine and rename in one or several locations. In those cases (contrary
to the situations encountered with ordinary inheritance) the clause select should appear in
the definition of class A, because the diamond emerges there. A possible syntax is "select
ffinal in D " (see example 92).

• Case 4 : This represents all the other situations where class B or C is defined last and thus
creates the diamond. Therefore, its definition should contain the clause "select ffinal in D
" at the right location.

146 BUPT

Example 92 Selection of Replicated Features From a Foster Class
class B
feature

f... -- Only name of feature is provided because
-- it may apply to attribute, procedure, function, etc.

end
class C
feature

f... -- Only name of feature is provided because
-- it may apply to attribute, procedure, function, etc.

end
class D inherit
B

rename
f as f_b

end
C

rename
f as f_c

end
end
class A exherit
B
C

select f in D
end
all

end

147 BUPT

Figure 6.12: Select Problem

6.2.3 The "Select" Approach Does Not Solve All Ambiguities
The select clause in Eiffel is not consistent in all cases. An example of such a case can be found in
figure 6.12. Reverse inheritance will not address these ambiguities as far as they are not addressed
by ordinary inheritance.

The equivalent code can be seen in example 93:
In the class hierarchy presented above feature f will be inherited in class F through four

different paths: i) [A, B, D, F], ii) [A, B, E, F], iii) [A, C, D, F] and, iv) [A, C, E, F]. In each class
along the presented paths there are some versions of feature f renamed and selected. When the
feature f of an F type instance is accessed there is no applicable version using such a combination.
Using another combination the selection could be ambiguous, only a certain suitable combination
makes the selection unique as it should.

The conclusion that can be drawn from this example is that in some special cases just the
clause select and the feature name are not sufficient. Some other qualifications are still required.

6.3 Constraints on Exherited Features

6.3.1 Using the Frozen Keyword for Features
The impact of the keyword frozen has to be taken into account in several situations dealing with
reverse inheritance. If we exherit frozen features from the subclasses then in the superclass they
will be implicitly deferred and non-frozen as set with the previous rules. A feature may become
frozen in the foster class only if it is moved up and is identical in all exherited classes. In single
reverse inheritance a frozen attribute or method can be exherited as frozen in the superclass by
moving it up. In multiple reverse inheritance, an attribute can be exherited as frozen only if it
has the same type and it is frozen in all source classes. For methods the conditions are more strict
since their implementations must be identical. A method can be exherited as frozen only if it has
the same signature, the same body and the same frozen status in all exherited classes. Such a case
seem to be an extremely rare event. We can conclude that moveup will be used to exherit also
the frozen status of the feature if conditions hold.

Rule Exheriting Frozen Features 1. A foster class FC cannot declare a feature as frozen
except if the features exherited from all source classes are:

148 BUPT

Example 93 Select Like Approach
class A
feature

f ... -- Only name of feature is provided because
-- it may apply to attribute, procedure, function, etc.

end
class B
inherit A

end
class C
inherit A

end
class D
inherit B
select f -- when f is called through a variable of type A
end

inherit C
rename f as g
end

end
class E
inherit B
rename f as h
end

inherit C
rename f as i
select i -- when f is called through a variable of type A
end

end
class F
inherit D
select g -- when f is called through a variable of type B
end

inherit E
select h -- when f is called through a variable of type C
end

end

149 BUPT

Figure 6.13: Main Configuration When Using the Precursor Keyword

1. attributes of the same type and are declared themselves as frozen;

2. methods with exactly the same signature and the same implementation and declared them-
selves as frozen.

Rule Exheriting Frozen Features 2. A feature which is frozen in a subclass may always be
exherited as a non-frozen feature in the foster class.

Rule Exheriting Frozen Features 3. An exherited frozen feature which cannot be moved up
from the subclass into the foster class will be always non-frozen in the foster class.

6.3.2 Impact of the precursor Keyword
A subtle point about reverse inheritance and dynamic binding is the behavior of the Precursor
keyword in methods. Let us suppose that method f was inherited into class EC from a superclass
PC, where it is effective and was redefined in EC. In that case, it is possible to call the inherited
version of PC from the new version of EC using the Precursor keyword. The class configuration
is pointed out in subsection 6.1.3 and the particular situation is depicted in figure 6.13.

Let us suppose that FC is inserted "in the middle", inherits from PC and exherits from EC.
There are four different cases:

1. The implementation of f is the one of PC . This means f is inherited from PC and
not redefined in EC and f is exherited from EC implicitly undefined. Thus, the precursor
version is the same as without reverse inheritance, and there is no problem.

2. The implementation of f is the one of EC . Feature f is exherited from EC into FC
and is undefined when inherited from PC. This means that the redefinition of f is effectively
moved from EC to FC, and again there is no problem.

3. The implementation of f is the one of FC . Feature f is redefined in FC either when it
is exherited from EC (and undefined when inherited from PC) or when it is inherited from
PC (and undefined implicitly when exherited from FC) or both. In this case the precursor
in the version of EC must be qualified in order to call the version from the parent class PC.

4. Feature f is undefined in FC . This happens if f is undefined when inherited from the
parent class PC and when it is exherited from the exherited class EC. In this case precursor
must be qualified with the name of the parent class PC since there are two method versions
available.

150 BUPT

Example 94 Catcall Example
class POLYGON
feature
add_vertex() is do ... end

end
class RECTANGLE
inherit
POLYGON
export {NONE} add_vertext

end
end

Example 95 Exportation and Exheritance
class EC1
feature f {C1, C2, C3} is do ... end

end
class EC2
feature f {C1, C2, C4} is do ... end

end
foster class FC
exherit
EC1
EC2
all
export {C1, C2} f

end

6.3.3 Export and Exheritance
In ordinary inheritance each feature has a list of client classes which can access it through a
qualified call. This list may be incrementally specified in the feature declaration clause, in the
new export inheritance clause or in the feature redefinition clause [Mey02, Int06]. To export a
feature to a client class means also to export that feature to all its descendants. This means that
the export list for a feature cannot be diminished in the subclasses, the feature may add classes
to the client list but it cannot remove them.

Allowing to diminish the list of clients for an inherited feature in the subclasses would make
possible to hide that feature from descendants. Such an approach is senzitive to the polymorphic
catcalls [Mey97]. CAT means Changing Availability of Type and catcalls may be caused by several
situations like covariance, genericity or descendant hiding. Such a situation is depicted in example
94. The add_vertex method is hidden in RECTANGLE subclass and thus a POLYGON variable
referring a RECTANGLE instance will fail in calling the add_vertext feature since it is unavailable.

We propose to provide symmetrical rules for export in reverse inheritance. In example 95
class A exherits feature f which in class EC1 is exported to classes {C1, C2, C3} and in EC2
is exported to classes {C1, C2, C4}. In foster class FC the export list of feature f contains the
subset of the common client classes {C1, C2}. Extending the client class list in the foster class
{C1, C2, C3, C4} would allow clients like C3 respectively C4 to access classes EC2, respectively
EC1 through polymorphic calls.

Rule Export List of the Exherited Features. In a foster class the export list for an exherited
feature can be kept the same or diminished as the subset of the original common clients of
the subclasses for that feature.

There are several reasons why we should keep or reduce the export list for an exherited feature. The

151 BUPT

Example 96 Exheriting Creation Procedures
class EC1
create make, default_create, build
...

end
class EC2
create make, build, construct
...

end
foster class FC
exherit
EC1
EC2
all

create make, build
end

first argument refers to the consistency and symmetry between reverse inheritance and ordinary
inheritance. If in ordinary inheritance the export list in the subclass must be kept or enlarged
with clients, reverse inheritance must keep as such or reduce the list of clients for an exherited
feature. The second reason is related to avoiding catcall type polymorphism problems. The third
reason is to avoid creating back doors for unauthorised clients to use classes.

6.3.4 Exheriting Creation Procedures
It does not seem that creation procedures should be handled in a special way. Ordinary inheritance
has no effect over the creation procedures, so reverse inheritance should behave the same way. As
foster classes implicitly exherit methods as deferred, these classes will be deferred also. In a
deferred class it makes no sense of talking about creation procedures. Still, creation procedures
can be exherited (or moved) as ordinary features. Sometimes it is a good idea to exherit creation
procedures as deferred, because they can be used as any other procedure, but not for object
creation purposes. If a creation procedure can be moved into the foster class, then it can be used
as a regular feature or it can be added to the creation procedure list of that class.

In order to exherit creation procedures, first they have to be exherited as regular features.
Then, we have to list them in the create section of the foster class if the corresponding features
in subclasses were creation procedures also. In example 96 features like make and build can be
exherited. Because the exherited features in the subclasses are all creation procedures then they
can be listed or not as creation procedures in foster class FC.

Rule Exheritance of Creation Procedures. In a foster class the exherited creation procedures
must have an implementation from one of the subclasses and all the corresponding features
in the subclasses must be listed in their procedure creation list.

6.3.5 Exheritance of an Attribute with Assign Clause
There are attributes which have an assign clause attached and it is necessary to study their
meaning when they are exherited. If a class needs to exherit the attribute along with the clause,
it is necessary to exherit the setter method also. Otherwise the attribute will be exherited in
read-only mode and the attribute may not be modified directly by clients through an assignment.
Because it seems the more natural case, by default in single reverse inheritance, the assign method
will be exherited with the attribute. It should be the same in the case of multiple exheritance
when all subclasses have an assign method for this attribute. Otherwise, only the attribute should

152 BUPT

Example 97 Exheritance of an Attribute with Assign Clause
class EC1
feature

x:INTEGER assign put_x
put_x(p:INTEGER) is do x:=p end

end
class EC2
feature

y: INTEGER assign put_y
put_y(p:INTEGER) is do y:=p end

end
foster class FC exherit
EC1
rename
x as z,
put_x as put_z

end
EC2
rename
y as z,
put_y as put_z

end
all

end

be exherited. The syntax must allow to specify an assign method in the foster class through an
attribute redefinition.

Rule Default Handling of Assign Clause . By default, in single reverse inheritance, the
assign method is implicitly exherited along with the corresponding attribute. It is the same
in multiple exheritance if all subclasses have an assign method for this attribute.

In example 97, both attribute x of class EC1 and attribute y of class EC2 have an assign
method, respectively put_x and put_y. Both attributes x and y as well as their assign methods
(put_x and put_y), are renamed respectively into z and put_z. This means that if the attribute
is exherited from different subclasses and its assign methods too, the exherited attribute will have
automatically attached a deferred assign method in the superclass.

6.3.6 Exheritance When There is an Alias
Aliases represent a part of the renaming mechanism of Eiffel. If we allow to add an alias to a
feature which is exherited, we may not modify the behavior of already existing descendant classes
even if there is a new synonym for an existing feature (see figure 6.14). With ordinary inheritance,
to an inherited feature with alias one can keep the original aliases and add new aliases or remove
some of them [Mey02]. With reverse inheritance we keep the same philosophy: a feature can be
exherited with all the aliases if they are the same in all subclasses (which is not a very probable
case), or some of them can be removed, or new aliases can be created in the foster class. The
behavior of the subclasses will be not affected if in the foster class an alias is added, because
the renaming mechanism does not affect the semantics of an inherited or exherited feature. The
difference between a feature and a feature name is a concept that is kept in the semantics of reverse
inheritance, thus it respects the philosophy of the language.

153 BUPT

Figure 6.14: Adding an Alias When Exheriting

In figure 6.14 class FC is inserted in the middle of the hierarchy created by PC and EC. Feature
f from class EC is exherited into class FC where f gets a new alias. If the aliases for feature f in
class FC are newly added and different from the ones exherited from EC then in order to show
that the semantics of aliases in context of reverse inheritance is consistent, we can consider that
the new aliases of feature f in class FC, are implicitly removed in class EC. The new aliases of
feature f from class FC can be used in any new subclass of FC, for instance.

Rule Aliases and Reverse Inheritance. The renaming mechanism, which includes the aliases
mechanism, does not affect the semantics of reverse inheritance.

6.3.7 Exheriting Obsolete Features
Obsolete features are those old features in a class which are meant not to be used and which might
be removed in the next releases of the class hierarchy. The first natural reaction would be not
to allow the exheritance of such features, which may be no longer needed. Still, there are some
good reasons to allow performing exheritance on them. If the class hierarchy is reused in a new
context and no further evolution of that hierarchy is needed, then it is acceptable to exherit the
obsolete features as they are desired, without any restrictions. This reason is motivated by the
high degree of reuse which is intended to be outlined in the philosophy of reverse inheritance. If the
exheritance of such features is necessary, it is recommended to adapt those features when exheriting
them (rename, redefine, adapt, undefine), otherwise, this means that they are not considered as
obsolete features and this leads to inconsistency. One of the main concepts of reverse inheritance
philosophy is to favour feature reuse at the highest level possible. This is why obsolete features
are allowed to be exherited without any restrictions, but a warning is issued.

6.3.8 Exheriting Once Features
Once features in Eiffel are executed at one moment after which the other several calls are ignored.
If functions are involved, the first computed result is returned at each call. The once mechanism
can be used for smart initializations or shared objects (like the Singleton design pattern [GHJV97]).
There is a possibility to use this mechanism together with once keys allowing the possibility of
selecting several behaviors: once for each instance, once for each thread, once for each process,
once controlled by a user defined key.

It seems very natural to exherit once features like any ordinary features. The behavior of
the feature, whether the body is executed or not, do not interfere with the mechanism of reverse
inheritance. Sometimes it may be useful to have in the foster class a deferred feature which
corresponds to some once or non-once features in the subclasses. The once keyword affects only
the behavior of features at runtime and not the architecture of the object-oriented system.

In example 98 it is presented a combined case of exheriting once features. Features init, setup
and initialize are exherited as a deferred feature start in the foster class. There can be noticed

154 BUPT

Example 98 Exheriting Features of Type once
class EC1
feature init once ... end

end
class EC2
feature setup once(”OBJECT”) ... end

end
class EC3
feature initialize is
do ... end

end
foster class FC
exherit
EC1
rename init as start
undefine start

end
EC2
rename setup as start
undefine start

EC3
rename initialize as start
undefine start

end
all

feature start is deferred end
end

155 BUPT

that feature init is not using any once key, so implicitly is set on PROCESS 2, the once key of
feature setup is explicitly set up on OBJECT, while feature initialize is not a once feature. If it is
decided that a once feature should be moved into the foster class then it is moved together with
the once status.

Rule Exheritance of Once Features. The once mechanism does not affect the semantics of
reverse inheritance.

6.4 Constraints on Foster Classes

6.4.1 Using the Frozen Keyword
In Eiffel the frozen keyword applied to a class will restrict that class from being inherited, thus
having descendants. So, the downward evolution of the class is prohibited. If a class is declared
as frozen it means that the designer has special reasons and he does not want to allow that class
to be extended and its features to be redefined.

To preserve the symmetry principle of the language, we should allow foster classes like ordinary
classes to be declared as frozen and thus to prohibit their upward evolution. This means that a
frozen foster class cannot have new foster classes on its top. On the other hand a foster class
which is declared as frozen in the context of ordinary inheritance can be extended by ordinary
inheritance, so it can have new subclasses.

6.4.2 Using the Obsolete Keyword
An obsolete class in Eiffel is a class which does not meet the current standards and which may be
erased in one of the new releases of the software. By reverse inheritance some features could be
exherited into a new class which represents the part of the class that may be reused in the future.
There is no reason for these features to be marked as obsolete. The default behavior of Eiffel when
using such classes is to issue warnings. Thus, in the context of reverse inheritance, exheritance
from obsolete classes is permitted, but the programmer is warned.

6.5 Summary
In the current chapter were presented several ideas about how to handle the special cases in which
a class is the target of both ordinary and reverse inheritance. In a some general class configurations
the effect of combining inheritance and exheritance clauses was experimented in order to obtain:
a new version of the feature, a deferred feature, the inherited version, the exherited version. The
problem is to get only one implementation for the features having multiple seeds due to the arrival
of the foster class. The solution is based on the idea to undefine the conflicting implementation
coming from the foster class.

The case of amphibious features is analysed, the features which are both inherited from a parent
and exherited from an exherited class in the same foster class. The most important property of
those features is that they cannot be unselected from exheritance. The superclasses of the foster
class cannot bring new features except redefining a subset of existing ones. This restriction is
necessary in order to preserve the non-destructive property of reverse inheritance class relationship.
Foster classes can be built on the top of other foster classes, the only drawback is related to the
lack of visibility for the exherited features when implicitly selected.

It is interesting though to analyze the configuration of a multiple inheritance diamond when
classes are created in several orders. In most of the cases it is necessary to use reverse inheritance.
Sub-cases were analyzed in the experiment of sharing and replicating features. When sharing
features, it is natural to use only the inheritance/exheritance clauses. When replicating features in

2In the standard of ECMA [Int06] different variants of once are allowed: once per process, once per thread and
once per object.

156 BUPT

the diamond, which is done by renaming in all the combinations of ordinary and reverse inheritance
the problem of feature selection in dynamic binding occurs. The feature selection mechanism from
ordinary inheritance is used ”a posteriori”, meaning that the decision for the selection of a feature
is taken in the latest built foster class, representing the base class of the hierarchy. The difference
between the original selection mechanism and the one dedicated to reverse inheritance is the place
for the specification of the ”early” class to which the dynamic binding problem refers. Also, the
effect of the select keyword is analyzed in the context of ordinary inheritance. The conclusion
drawn is that in more complicated class configurations the mechanism does not allow the desired
feature selection when dynamic linking problems occur. This problem is not addressed by ordinary
inheritance, so will not try to solve it with reverse inheritance.

The exherited features may need several decisions regarding their properties like: frozen, pre-
cursor, export, creation nature, assign attachments, aliases, obsolete, once. Identical frozen candi-
dates can be moved up in the foster class with the same frozen status. In practice such a situation
is more probable for attributes than for methods. Another interesting issue is the one related to
unqualified precursor calls initiated in the exherited classes. Such calls become ambiguous at the
arrival of the foster class, so the solution is to make them explicit by attaching the name of the
class to identify the called feature version. The exherited features are exported to the set of com-
mon clients. Exherited creation features must have implementations and all their candidates must
be creation features too. Attribute assign clauses are exherited implicitly as long as their assign
methods are exherited. Aliases are kept in the semantics of renaming in the context of reverse
inheritance. Obsolete candidate features are exherited but a warning is issued. Once features are
exherited as any regular features being orthogonal on the reverse inheritance class relationship.
For foster classes we considered to analyze only the frozen and obsolete statuses. Frozen foster
classes are designed quite symmetrically with frozen ordinary classes: the former prohibits upward
class constructions while the latter prohibits downward hierarchy evolution.

157 BUPT

Part III

Implementation

158 BUPT

Chapter 7

Description of the Implementation

Part III of the thesis, starting with this chapter, presents the operational semantics of reverse
inheritance in order to convince the reader about the feasibility of this class relationship. We
propose an implementation solution for the reverse inheritance concept in the context of Eiffel
language upon the formal semantics described in part II. The implementation is a full solution
which offers the programmer a way to reuse already existing classes by reverse inheritance and
to compile the resulted object-oriented system into an executable binary. The prototype stands
as a proof of concept in order to demonstrate that the proposed class relationship is feasible and
it can be used practically, on class hierarchies, facilitating their reuse in different contexts. The
extended language will be referred to as RIEiffel.

Several Implementation Approaches When adding an extension to an already existing pro-
gramming language there are several implementation choices. In the next subsections we propose
three choices and we analyse their advantages and drawbacks, motivating the choice selected for
implementation.

Modifying the Eiffel Compiler Apparently, a simple and straightforward idea is to modify
the Eiffel compiler, including the new language extension and thus providing the executable of the
object-oriented system. Such an approach implies writing the code expressing the semantics of
reverse inheritance together with the rest of the compiler code. Thus the visibility of the reverse
inheritance operational semantics would be diminished. On the other hand, it could be very
difficult to prove that there are no deviations from the philosophy of the language and that illegal
class constructions are not allowed. Also, such a task would be too big for a PhD research project.
One more reason not to choose such an approach is that most Eiffel compilers do not generate
platform native binary code, but C or Java [AG00] sources instead.

Generating C Source Code Another choice, which is used also by some Eiffel compilers, is to
generate intermediary low level code which can be compiled afterwards by a platform independent
compiler. For example ISE Eiffel [Sof08] compiler generates C code which is compiled further by
gcc [SF08] on Unix/Linux [TOG08] or by Borland C [BI08] or Microsoft Visual C++ [Cor08b] on
Microsoft Windows [Cor08a] platforms. Such an approach benefits from the fact that the resulted
code is cross platform compilable, but would still lack in reverse inheritance semantics visibility.

Generating Eiffel Source Code Using Model Transformation Our chosen implementa-
tion solution is based on the fact that class hierarchies built with reverse inheritance allow the
same facilities as those built with ordinary inheritance, but in different orders of construction, and
that the resulted class hierarchies have the same semantic properties. The main idea of the imple-
mentation is to translate class hierarchies having both reverse inheritance and ordinary inheritance
into semantically equivalent classes having just ordinary inheritance. This solution involves (see

159 BUPT

Figure 7.1: Generating Eiffel Source Code

figure 7.1): i) a translation from RIEiffel source into a Prolog model; ii) a transformation of the
Prolog model to an equivalent Prolog model where the reverse inheritance facts are replaced with
semantically equivalent ordinary inheritance facts; iii) a model translation into pure Eiffel source
code compilable by an ordinary compiler. Thus the reverse inheritance semantics transformations
are expressed using Prolog rules and the output is a pure Eiffel class hierarchy. Next, we define
several notations related to the transformed items previously mentioned.

Original Source Code The original source code is the RIEiffel code which contains reverse
inheritance and also ordinary inheritance. This code includes classes from different libraries which
probably were developed in different contexts.

Original Prolog Model The original Prolog model is a factbase created by parsing the
original source code. The original source code and the original Prolog model are semantically
equivalent. Still some details like code indentation and organization are missing from the model,
but these aspects do not change the logic of the original code. The model contains facts dealing
with both reverse and ordinary inheritance. This model is subject for transformation.

Transformed Prolog Model The transformed Prolog model is obtained after transforma-
tions are applied on the original Prolog model. The transformed and original Prolog models are
semantically equivalent. All reverse inheritance related facts are replaced with ordinary inheritance
facts through transformations performed on the original Prolog model.

Transformed Source Code The transformed source code is obtained by reverse engineering
from the transformed Prolog model. This code contains only ordinary inheritance and is compilable
with an ordinary Eiffel compiler.

We have to state that this solution is just one implementation solution which requires the
source code of the reused classes but its advantage is that it offers the possibility of proving
the equivalence of the two class hierarchies and thus the consistency of the reverse inheritance
semantics.

7.1 Eiffel Reverse Inheritance Reification in Prolog
In this section we present the Prolog model of reverse inheritance class relationship. As the new
class relationship semantics cannot be isolated from the rest of the language, we will have to model
also the pure Eiffel language elements. In order to be able to perform changes on the Eiffel code
and to obtain a pure class hierarchy we need a model which can be changed easily. A Prolog fact
base operated by conditional transformations represent a good choice for the implementation, as
we will see in the next sections. The modelling of language entities through Prolog facts will be
referred further as reification.

160 BUPT

7.1.1 Reification of the RIEiffel Language
In order to integrate reverse inheritance class relationship in the Eiffel programming language,
first we augment its grammar (see appendix A) with the elements of reverse inheritance. For the
implementation we chose the grammar of the Eiffel GOBO library [Bez07]. Each grammar rule is
analyzed and represented in the model by Prolog parameterised clauses.

The factbase is designed like a relational database. Usually, each fact has a unique key, which
is represented by the first argument of that fact. Facts having the same name may be considered
belonging to the same table. The identifiers of the facts having same names represent the primary
keys of the table. Some facts model entities which have parent entities. This type of relations are
represented by identifiers which are second arguments in the clause and they refer to parents. The
links between the clauses are based on these identifiers. Most of the rules refer to their parent
rule. For example the relation between a class declaration and its cluster is modelled as done in
subsection B.1 of appendix B. Some rules have navigation capabilities in both ways. For example,
in subsection B.5 of appendix B, when modelling formal arguments, we need to store their order,
so for that we use a fact having a list as parameter. Also, each formal argument is modeled by
a fact which keeps a link to the parent list. So the list points to its children (formal arguments)
as well as the children point to the parent list (formal argument list). Some clauses have no own
identifier at all, since they denote some optional single attribute of another clause. For example
the deferred keyword for a class will be modelled using an attribute clause which will refer to
the feature and without any other information in subsection B.5 of appendix B.

A special case is represented by modelling expressions in subsection B.8 of appendix B, where
expressions use a downward referencing philosophy: each operator, unary or binary, will refer to
its children. This decision was taken in order to reduce as much as possible the number of facts
in the metamodel, thus decreasing its complexity. Another remark must be noted about different
facts which have to be handled in a uniform manner like instructions. For such kind of facts we
have modeled Prolog rules having the same name, one for handling each concrete instruction like:
creation, assign, conditional, multiBranch, loop, debug, check.

7.1.2 Reification of the Exheritance Branch and Feature Selection Clauses
We will present in detail one fragment of the RIEiffel model, namely the reification of exheritance
branches and exheritance candidate feature selection clauses. All fact arguments beginning with
“#” symbol represent identifiers, having the behavior of indexes or keys in a database table.

The exheritance class relationship is expressed between the foster class and the exherited classes
as types or instantiated classes when they are generic:

exheritance(#id,#classDecl,#classType).

• #id is the primary key;

• #classDecl is the identifier of the current, source class;

• #classType is the identifier of the exherited class type.

The redefinition in the context of reverse inheritance belongs to an exheritance branch like in
ordinary inheritance:

redefine(#id,#exheritance,#featureDecl).

• #id is the primary key;

• #exheritance is the identifier of the exheritance branch where the redefine resides;

• #featureDecl is the identifier of the redefined feature.

The adapt and moveup clauses are linked to the exheritance class relationship and to a feature:

161 BUPT

adapt(#id,#exheritance,#featureDecl).
moveup(#id,#exheritance,#featureDecl).

• #id is the primary key;

• #exheritance is the identifier of the exheritance branch;

• #featureDecl is the identifier of the feature to be adapted.

The exheritance selection mechanism is presented next:

selectExherit(#id,#exheritance).

• #id is the primary key;

• #exheritance is the identifier of the exheritance branch;

The feature which may be selected in the exheritance selection mechanism is next. One exheritance
clause may have multiple features to be selected.

selectExheritFeature(#id,#selectExherit,#featureDecl).

• #id is the primary key;

• #selectExherit is the identifier of the parent fact;

• #featureDecl is the identifier of the feature to be selected.

Descendant class chains can be constructed using the following clause:

descendantQualification(#id,#selectExherit or #descendantQualification,#classDecl).

• #id is the primary key;

• #descendantQualification refers either to the selectExherit fact or to the next descendan-
tQualification in the class chain;

• #classDecl is the identifier of the class in the chain.

The export declarations in the context of reverse inheritance are attached to the class and not to
the inheritance clause, this is why they are modelled separately. Between a feature and export
client class there is a many to many relationship (multiple features can be exported to multiple
classes):

exportExherit(#id,#classDecl).

• models an export statement;

• #id is the primary key;

• #classDecl is the foster class identifier the export belongs to.

The classes which may be linked to an export statement are modelled next:

exportExheritClass(#id,#exportExherit,#classDecl).

• #id is the primary key;

• #exportExherit is the identifier of the export statement;

162 BUPT

• #classDecl is the identifier of the class participating in the export statement.

Exported features are attached to the export statement by the following fact:

exportExheritFeature(#id,#exportExherit,#featureDecl).

• #id is the primary key;

• #exportExherit is the identifier of the export statement;

• #featureDecl is the identifier of the feature that is exported.

If one desires to export all features of a class the following clause must be attached to the export
clause:

exportExheritFeatureAll(#id,#exportExherit).

• #id is the primary key;

• #exportExherit is the identifier of the export statement.

The selection mechanism of exheritance allows to select or deny a set of specific features through
the following facts:

onlyFeature(#id,#classDecl,#featureDecl).
exceptFeature(#id,#classDecl,#featureDecl).

• #id is the primary key;

• #classDecl is the identifier of the class hosting the feature selection clauses;

• #featureDecl is the feature in the exherited class.

The selection mechanism can be set to select all exheritable features or no features at all, in order
to create a new type:

allFeature(#classDecl).
nothingFeature(#classDecl).

• #classDecl is the identifier of the class hosting the feature selection clause.

7.1.3 Metamodel Validity Rules
It is very natural to validate the reverse inheritance metamodel by a set of rules in order to be
able to check its consistency before the transformation. We intend to define only the validity rules
regarding the reverse inheritance related mechanisms: feature selection, redefinition, adaptation,
selection, assertion. From the technical point of view, validity rules are expressed as Prolog
predicates operating on the model factbase. For some rules we present their Prolog code.

Type Checking

Any RIEiffel factbase is checked against a formal metamodel where all facts are described together
with their arguments. Each argument has a type information allowing type checking. For example,
the class declaration fact has as fourth argument a list of formal generic identifiers. The type
checker will verify that each fact corresponding to that set of identifiers is a formal generic and
not some other fact.

In example 99 we show the node definition for a class declaration. The definition contains
information about the language name (in this case RIEiffel), node name (classDecl) and each fact
parameter. The first argument is the unique identifier of the fact, named id, its multiplicity is

163 BUPT

Example 99 RIEiffel Type Rules
%classDecl(#id,#cluster,’ClassName’,[#formalGeneric,...]).
ast_node_def(’RIEiffel’,classDecl,[
ast_arg(id, mult(1,1,no), id, [classDecl]),
ast_arg(parent, mult(1,1,no), id, [cluster]),
ast_arg(className, mult(1,1,no), attr, [atom]),
ast_arg(formalGenerics, mult(1,*,ord), id, [formalGeneric])

]).

Example 100 Single Selection Rule
checkSingleSelectionMechanism(FosterClassId):-
exists(allFeature(FosterClassId))->
not(exists(onlyFeature(_,FosterClassId,_));
exists(exceptFeature(_,FosterClassId,_));
exists(nothingFeature(FosterClassId))),

!.
checkSingleSelectionMechanism(FosterClassId):-
exists(onlyFeature(_,FosterClassId,_))->
not(exists(allFeature(FosterClassId));
exists(exceptFeature(_,FosterClassId,_));
exists(nothingFeature(FosterClassId))),
!.

checkSingleSelectionMechanism(FosterClassId):-
exists(exceptFeature(_,FosterClassId,_))->
not(exists(allFeature(FosterClassId));
exists(onlyFeature(_,FosterClassId,_));
exists(nothingFeature(FosterClassId))),
!.

checkSingleSelectionMechanism(FosterClassId):-
exists(nothingFeature(FosterClassId))->
not(exists(allFeature(FosterClassId));
exists(exceptFeature(_,FosterClassId,_));
exists(onlyFeature(_,FosterClassId,_))),
!.

one to one with the fact, not ordered, its kind is identifier and its type is classDecl. The second
argument is named parent, the current fact has a one to one multiplicity relation with the cluster
fact, its kind is identifier, and the type is cluster. The third argument is named className, has a
one to one multiplicity relation with the attribute, its kind is attribute and the type is atom. The
fourth argument is named formalGenerics, the current fact has a one to many multiplicity with the
formal generic facts, it is an ordered set (ord), its kind is identifier and the type is formalGeneric.

Exherited Features Validity Rules

Regarding the aspect of feature factorization, several validity rules must hold on the factbase
model.

Single Selection Rule The first rule from example 100 verifies that only one exherited feature
selection mechanism of all, only, except, nothing will be used in a foster class.

164 BUPT

Exheritable Selection Rule All explicitly selected features using only, except keywords from
the exherited classes must exist and must have compatible signatures in all the exherited classes.
In other words it does not make sense explicitly selecting or unselecting sets of features which are
not exheritable.

Non-conflicting Selection Rule The selected features must not generate conflicts with the
new features of the foster class. This means that we cannot select a feature for exheritance while
it already exists in the foster class. In such a case the foster class should be designed with a
redefinition clause.

Immediate Feature Selection Rule The exherited features must exist locally in the subclasses
and not inherited by some ancestor which is not the parent of the foster class. Thus, we avoid
creating new links between already existing classes.

Exherited Feature Redefinition Validity Rules

In the case of feature redefinition, performed in the foster class, several rules must be applied:

• for each redefined set of features in the exherited classes, a new feature must exist in the
foster class. This means that the set of redefineExherit clauses must point to features present
in all exherited classes, having the same final name relative to the foster class.

• the redefined set of features in the exherited classes must have covariant signatures with the
newly defined feature in the foster class;

• a redefined attribute in the foster class cannot have corresponding method candidate features
in the subclasses;

• a redefined attribute from the foster class cannot have corresponding deferred candidate
features in the subclasses.

Exherited Feature Adaptation Validity Rules

Adapted features obey to the following rules:

• an adapted feature must have formal arguments or return type, otherwise there is nothing
to adapt;

• one feature listed in the adaptation clause must have at least one conversion sequence in the
foster class corresponding to an exherited class;

• the signature of the conversion sequence must be identical with the one from the subclass;

• the new implementation signature must be equal to the one of the new features from the
foster class.

Exherited Feature Implementation Migration Validity Rules

The moveup mechanism is driven by the following rules:

• in a foster class the moveup clause for an exherited feature set can be used only on one
exheritance branch. It does not make sense selecting multiple implementations for the same
feature to migrate in the foster class thus arising a conflict.

• the dependencies of the moved features must be provided in the foster class by exheritance
or by redefinition;

• for one exherited feature it cannot be applied both moveup and adapt;

• a feature cannot be both moved up and redefined.

165 BUPT

Exherited Feature Selection Validity Rules

In the case of repeated inheritance the selection of replicated features must satisfy the next rules:

• the selected feature must belong to one of the exherited feature sets;

• all the classes from the selection clause must be direct or indirect subclasses of the foster
class enclosing the select declaration.

Formal Generics Validity Rules

Since the foster class and the exherited classes may or not be generic and genericity can be
constrained and unconstrained, we will set rules for all possible combinations.

Non-generic Foster Class and Generic Subclasses When the foster class is non-generic, it
will refer to the exherited classes through class types which may have attached actual generics.
Considering this, we issue the following rules:

• all formal generics of exherited classes must be instantiated with type NONE. Since these
actual generics will be lost in the equivalent class hierarchy based on ordinary inheritance,
we decided to use a special instantiation of the subclasses with type NONE.

• not all subclasses must be generic.

Generic Foster Class and Generic Subclasses In this case the instantiation information
for the exherited classes will be reused for instantiating the foster class. Thus the following rules
apply:

• each formal argument of the foster class must instantiate a formal generic in all exherited
classes;

• if the formal generics of the foster class are constrained then the instantiated ones from the
exherited classes must have the same constraint;

Generic Foster Class and Non-generic Subclasses An invalid case arises when the foster
class is generic (unconstrained or constrained), the subclasses are non-generic and there is no
instantiation information available.

7.2 Software Instrumentation
In this section we present the several software tools representing the prototype modules. The
RIEiffel prototype is a complete solution for the implementation of the reverse inheritance
class relationship. The prototype accepts as input a reverse inheritance re-engineered project and
produces the executable object-oriented system. The prototype is composed of several modules,
each corresponding to one phase of the proposed solution (see figure 7.2).

7.2.1 The Eiffel to Prolog Translator
The ETransformer module converts the RIEiffel source files into a factbase stored as a Prolog
file. The module is written in Eiffel and it was built from a generated parser. The parser was
generated from the RIEiffel grammar listed in appendix A using the gelex (a version of Flex
[Fou95] generating Eiffel code) and geyacc (a version of Yacc [Joh79] or Bison [Fou06] generating
Eiffel code) tools from the GOBO library [Bez07]. The parsing process is applied on the whole
Eiffel class universe including both client and system libraries classes. This is necessary since the
analysis may require also information from the system library classes. The generated parser builds
the abstract syntax tree (AST) of the input sources written in RIEiffel. Then the AST is visited
and using a set of semantic actions, manually written, the Prolog facts are generated.

166 BUPT

Figure 7.2: Software Instrumentation Overview

7.2.2 The Prolog to Prolog Translator
All the Prolog transformations which will be presented in section 7.3 are centralized in the PTrans-
former module of the prototype. The module takes as input the generated factbase and produces
a new semantically equivalent factbase, which contains only pure Eiffel facts. The CTs are exe-
cuted by the CTC interpretor [Kni06] which analyses them and performs the desired changes on
the factbase.

The PTransformer module is tested automatically with two types of tests: structural and
output. The structural tests consist in transforming a model input and comparing the output
against a model oracle. The output tests compares the regenerated Eiffel code for the transformed
models against an output source oracle.

7.2.3 The Prolog to Eiffel Translator
The transformed factbase must be translated back into pure Eiffel code in order to obtain the
executable object-oriented system. The Unparser module of the prototype is responsible for this
task. The regeneration is done in Prolog by unparsing rules for each type of facts from the factbase
following the RIEiffel1 grammar.

The unparsing process consists in checking the existence of facts and printing at output the
related keywords and values following the rules of RIEiffel grammar. In example 101 we present
one code fragment from the Unparser module.

As an observation, one can notice that we regenerate both Eiffel and RIEiffel code, because
we output the adaptation parts for a feature if they exist. Such a regeneration is necessary for
prototype testing and integration. Thus can be tested the equivalence between the initial source
files and the model, by comparing the source with the unparsed ones obtained from the model.

7.3 Model Transformations
In this section we present the model transformations that must be performed on the factbase
model representing Eiffel class hierarchies built with reverse inheritance in order to generate an
equivalent model by eliminating the new class relationship.

1The grammar of RIEiffel includes the grammar of pure Eiffel. Any pure Eiffel source code will conform to the
RIEiffel grammar.

167 BUPT

Example 101 Unparsing Feature Declarations
unparseFeatureDecl(FeatureDeclId):-
exists(featureDecl(FeatureDeclId,_,FeatureName)),
tab(4),
name(FeatureName,FeatureName2),
writef(’%s’,[FeatureName2]),
(exists(formalArguments(FormalArgumentsId,FeatureDeclId,_))->
unparseFormalArguments(FormalArgumentsId);true),

((exists(typeMark(FeatureDeclId,TypeId))->
(writef(’:’),
unparseType(TypeId)));true),

((exists(featureManifestConstant(FeatureDeclId,ManifestConstantId)),
exists(manifestConstant(ManifestConstantId,Value,_))->

(writef(’ is %t’,[Value])));true),
((exists(routine(RoutineId,FeatureDeclId))->
unparseRoutine(RoutineId));nl),

((exists(attributeAdaptation(_,FeatureDeclId,_,_,_,_));
exists(routineAdaptation(_,FeatureDeclId,_)))->

unparseAdapted(FeatureDeclId);true).

Example 102 Conditional Transformation Structure
ct(
name(arg1,arg2,...),
condition(cond1,cond2,...),
transformation(transf1,transf2,...)

).

7.3.1 Conditional Transformations
Conditional transformations (CTs) are defined and explained in [KK02, Kni06]. A CT is an
abstraction composed of a condition and a transformation under a well defined set of formal rules.
The CT based solution we are using in our program transformation is relying on:

• the representation of programs and models as logic factbases, as it was described in section
7.1;

• condition evaluation based on the declarative semantics of logic programs;

• information propagation via sets of substitutions computed for logic variables;

• the transformation of logic factbases.

Such an approach is applicable to arbitrary languages, models and artifacts. Example 102 presents
the structure of a CT. Technically, it is defined as a Prolog fact called ct. It has three terms: the
name term which is arbitrary, the condition term and the transformation term. The name may
have attached a list of arguments representing the parameters of the CT. The condition term
will have a sequence of facts representing the conditions, while the transformation term will
have a sequence of predicates for creation and deletion of facts from the factbase. The predefined
predicates for the factbase manipulation are named add and delete.

For example, the location of foster classes and the deletion of their foster attribute may be
viewed in example 103. The name of the CT is removeFoster, the condition sequence calls two exists
facts and the transformation uses the predefined delete predicate to erase facts from the factbase.
The transformations will be applied to all sets of values selected by the condition sequence.

168 BUPT

Example 103 Conditional Transformation Example
ct(
removeFoster(FosterClassId),
condition((
exists(classDecl(FosterClassId,_,_,_)),
exists(foster(FosterClassId))

)),
transformation(
delete(foster(FosterClassId))

)
).

The parameters of a CT can be of several types: input, output and input-output, like in any
Prolog rule. The CTs communicate with each other through parameters and the propagation of
information is determined by the operator. CTs are linked together in a sequence through special
binary operators ANDSEQ, ORSEQ and PROPSEQ. The operators have two operands, right-
hand side and left-hand side, which may be either CT or another operator.

ANDSEQ Operator

The ANDSEQ operator propagates the results forward from the first CT to the second one and
also backward if necessary. The parameter value sets for which the condition fails in the second
CT will be back-propagated to the first CT undoing its transformations. For example, a situation
where such an operator is necessary is when we create a feature block within a foster class using
a first CT while the second CT is responsible with the creation of the exherited features. If
there is no feature to exherit then the creation of the feature block is cancelled due to the back-
propagation nature of the ANDSEQ operator. As a consequence such an operator requires that
the first operand must have output parameters which are connected to the input parameters of
the second operand.

PROPSEQ Operator

The PROPSEQ operator propagates forward the values of the parameters from the first operand
to the second one, but never cancels any transformations executed by the first one. For example,
such an operator must be used when we compute the exherited features and only for them we
want to create formal arguments.

ORSEQ Operator

The ORSEQ operator does not propagate anything from left-hand side operand to right-hand side
operand like the previous two ones did. This operator just takes any propagated input from the
context and feeds both inputs of the referred CTs. Such an operator can be used when the two
CTs do not interact with each another. For example the deletion of exheritance clauses and the
deletion of the foster class status are independent and they do not need to interact.

7.3.2 Main Conditional Transformation Diagram
In figure 7.3 we present the main CT tree performing the transformations. Because of complexity
details the tree is not presented entirely but only its root and the subtrees as blocks. Each subtree
will be presented in detail in the next subsections. On each operator node is marked the level of
that node in the tree in order to have a better visualisation.

We visit the CT tree in preorder explaining the process at macro level. The FeatureExheri-
tance CT subtree is responsible with the creation of exherited features and their signatures. The

169 BUPT

Figure 7.3: Main CT Diagram

AssertionGeneration CT subtree composes the combined preconditions and postconditions for the
exherited features if possible. The Moveup CT subtree is in charge with the migration of a candi-
date feature implementation from the exherited class to the foster class and with its adaptation to
the new context. The Adapt CT subtree deals with the generation of mediator methods to allow
adaptation of features having different signatures and same semantics. The FeatureClauses CT
subtree generates adaptation clauses for the newly exherited features. The HierarchyTransforma-
tions CT subtree changes the exheritance branches into inheritance ones and creates the necessary
class types. Finally, the RIElementsRemoval CT subtree deletes all reverse inheritance related
facts from the factbase like class keywords and feature selection clauses.

Another important aspect is the foster class order on which the transformations are executed.
This order is important for foster classes having other foster classes on top of them. First the foster
classes which are at the bottom are processed, then the next upper level until top foster classes
are reached. The upward processing approach enables the propagation of exherited features from
the bottom to top.

7.3.3 Feature Exheritance
In figure 7.4 we present the feature exheritance CT subtree. First we create some temporary
maps for maps from redefined features to foster classes and from old features from exherited
classes to redefined features within the foster class. These maps are created by createRedefine-
FeatureInFosterClassMap and createOldFeature ToRedefinedFeatureMap and will be used for later
computation.

Next, we create a new feature block for the exherited features in the foster class using the cre-
ateExheritedFeatureBlockInFosterClass CT. The createExheritedFeaturesInFosterClass CT from
level 6 creates the exherited features in the foster class. Then deferred routines are attached to
them. The map from candidate features to new features is computed by the createCandidate-
ToNewFeatureMap. Such maps are useful in the computation of other CTs. In the process of
exheritance new types may be scheduled for creation as it was explained in section 4.5. Such types
are created by the createTypesForNewFeatureInFosterClass CT.

Finally, the formal arguments and the type marks are created. Formal arguments are created
by the createExheritedFeatureArguments CT. The ordered list of formal arguments is set by the
createExheritedFeatureArgumentList CT. Since the parent fact of the formal arguments is created
after the children, we must update the children with their parent using the updateExheritedFea-
tureArguments. During the argument creation process some like types might need creation, which
is done by the createTypesForNewFeatureInFosterClass CT. The process of type marks creation is

170 BUPT

Figure 7.4: Feature Exheritance CT Subtree

done by a single CT createExheritedFeatureTypeMarksInFosterClass along with the type creation
CT createTypesForNewFeatureInFosterClass. Next, we will present in detail the CTs which are
most representative for the process.

Creating the Exherited Features in the Foster Class Since feature exheritance is one of
the most challenging and complex parts of the implementation we will present the createExherit-
edFeaturesInFosterClass CT in detail in example 104. Each rule will be explained in detail in the
next paragraphs. First, we compute the candidate feature set which contain tuples of features
from the exherited classes having the same final name in the foster class. After this step the
feature signatures are computed and types from corresponding positions are grouped together in
order to compare them. Thus, we can decide whether they are compatible and if so, what is the
representing type for the new feature in the foster class. In our representation, signatures are
implemented as lists of type identifiers, having on the first position the return type and next the
list of formal argument types.

For each exherited feature we perform several actions. First the feature is created, then a
routine is attached to it and finally the routine is set as deferred.

Computing the Candidate Features The rule from example 105 computes the candidate
features having the same final name in the foster class.

In example 105 we search for sets of features in the exherited classes. Features with the
same final name will be taken from each exherited class to build a set. Such feature sets are
candidates for exheritance. However, feature final name matching is not sufficient for exheritance,
the exherited features require to also have compatible signatures. Signatures issues are discussed
in one of the next paragraphs.

171 BUPT

Example 104 Creating the Exherited Features in the Foster Class
ct(
createExheritedFeaturesInFosterClass(FosterClassId),
condition((
computeCandidateFeatures(FosterClassId,FeatureName,ExheritedFeatureIdList),
computeSelectedFeatures(FosterClassId,ExheritedFeatureIdList,SelectedFeatureIdList),
concatenateFeatureSignatureTypeLists(SelectedFeatureIdList,TypeIdLists),
createTypeIdListCorrespondence(TypeIdLists,CorrespondentTypeIdLists),
maplist(selectRepresentantTypeId,CorrespondentTypeIdLists,RepresentantTypeIdList),
once(exists(featureBlock(FeatureBlockId,FosterClassId)))

)),
transformation((
new_node_id(FeatureDeclId),
new_node_id(RoutineId),
add(featureDecl(FeatureDeclId,FeatureBlockId,FeatureName)),
add(routine(RoutineId,FeatureDeclId)),
add(deferredFeature(RoutineId))

))
).

Example 105 Computing Candidate Features
computeCandidateFeatures(FosterClassId,FeatureName,FeatureList):-
findall(
(FosterClassId,FeatureName,FeatureList),
computeCandidateFeatures0(FosterClassId, FeatureName, FeatureList),
All

),
sort(All,Sorted),
member((FosterClassId,FeatureName,FeatureList),Sorted).

computeCandidateFeatures0(FosterClassId,FeatureName,FeatureList):-
exists(foster(FosterClassId)),
exists(exheritance(_,FosterClassId,ExheritedClassTypeId)),
exists(classType(ExheritedClassTypeId,ExheritedClassId)),
exists(classDecl(ExheritedClassId,_,_,_)),
exists(featureBlock(FeatureBlockId,ExheritedClassId)),
exists(featureDecl(FeatureDeclId,FeatureBlockId,_)),
exheritedFeatureFinalName(FeatureDeclId,FosterClassId,ExheritedClassId,FeatureName),
createExheritedClassList(FosterClassId,ExheritedClassIdList),
forall(member(ExheritedClassId1,ExheritedClassIdList),
exheritedFeatureFinalName(_,FosterClassId,ExheritedClassId1,FeatureName)),

findall(FeatureDeclId1,
exheritedFeatureFinalName(FeatureDeclId1,FosterClassId,_,FeatureName),
FeatureList).

172 BUPT

Example 106 Computing the Selected Features
computeSelectedFeatures(FosterClassId,ExheritedFeatureIdList,
SelectedFeatureIdList):-
findall(FeatureId,
(member(FeatureId,ExheritedFeatureIdList),
isFeatureSelectedForExheritance(FeatureId,FosterClassId)),

SelectedFeatureIdList).

isFeatureSelectedForExheritance(_,FosterClassId):-
exists(allFeature(FosterClassId)),
!.

isFeatureSelectedForExheritance(FeatureId,FosterClassId):-
exists(onlyFeature(FosterClassId,_))->
exists(onlyFeature(FosterClassId,FeatureId)),
!.

isFeatureSelectedForExheritance(FeatureId,FosterClassId):-
exists(exceptFeature(FosterClassId,_))->
not(exists(exceptFeature(FosterClassId,FeatureId))),
!.

isFeatureSelectedForExheritance(_,FosterClassId):-
not(exists(nothingFeature(FosterClassId))).

Computing the Selected Features From the set of exheritable features, we keep only the
features which are selected for exheritance by the programmer. The selection can be performed
by keywords like all, nothing, only, except.

In the implementation, a Prolog rule called isFeatureSelectedForExheritance is defined for each
selection keyword. First the allFeature fact existence is tested for the given foster class. Next, if the
previous rule fails, the onlyFeature fact existence is tested with foster class and feature identifiers.
If the previous rule fails, then, the non-existence of the exceptFeature fact is checked, having
the feature and foster class identifiers as arguments. Finally, the non-existence of nothingFeature
fact is verified on the selected foster class. If there are no selection facts used the non-existence
of nothingFeature will allow the selection of all candidate features. However, only one selection
keyword may be used at one time.

Concatenating Feature Signature Type Lists After we found the sets of candidate features
we concatenate their types in lists, resulting signatures. Such a signature may have one of the
following forms:

01 [noReturnType, noFormalArguments]
02 [noReturnType, 101, 102, 103]
03 [101, NoFormalArguments]
04 [101, 101, 102, 103]

Line 01 contains a signature which has neither formal arguments nor return type. In line 02
we have a signature which has no return type but there are formal arguments having three type
identifiers listed. In line 03 we have a return type on the first position but there are no normal
arguments. Line 04 describes a signature which has return type [101] and three formal argument
types [101, 102, 103]. We can notice that in our convention the return type identifier is on the first
position in the list. Its absence is marked by a special atom named noReturnType. The formal
arguments start on the list second position and take the next positions. The formal arguments
absence is marked by the appearance of the noFormalArguments atom.

In example 107 we listed several rules dealing with feature signature manipulation.

173 BUPT

Example 107 Concatenating Feature Signature Type Lists
createFeatureSignatureTypeIdList(FeatureDeclId,SignatureTypeIdList):-
exists(featureDecl(FeatureDeclId,FeatureBlockId,_)),
exists(featureBlock(FeatureBlockId,ExheritedClassId)),
exists(classDecl(ExheritedClassId,_,_,_)),
exists(classType(ExheritedClassTypeId,ExheritedClassId)),
exists(exheritance(_,FosterClassId,ExheritedClassTypeId)),
exists(foster(FosterClassId)),
extractReturnTypeFromFeature(FeatureDeclId,ReturnTypeIdList),
extractFormalArgumentTypesFromFeature(FeatureDeclId,
FormalArgumentTypeIdList),

append(ReturnTypeIdList,FormalArgumentTypeIdList,
SignatureTypeIdList).

concatenateFeatureSignatureTypeLists([],[]).
concatenateFeatureSignatureTypeLists([FeatureDeclId|FeatureIdList],
[SignatureTypeIdList|SignatureTypeIdLists]):-
exists(featureDecl(FeatureDeclId,_,_)),
createFeatureSignatureTypeIdList(FeatureDeclId,SignatureTypeIdList),
concatenateFeatureSignatureTypeLists(FeatureIdList,SignatureTypeIdLists).

createTypeIdListCorrespondence(SignatureTypeIdLists,
CorrespondingTypeIdLists):-
maplist(length,SignatureTypeIdLists,LengthList),
sort(LengthList,[MaxLength]),
createTypeIdListCorrespondence0(SignatureTypeIdLists,1,MaxLength,
CorrespondingTypeIdLists).

createTypeIdListCorrespondence0(_,Index1,Index2,[]):-
Index1 > Index2.
createTypeIdListCorrespondence0(SignatureTypeIdLists,
Index1,Index2,[CorrespondingTypeIdList|CorrespondingTypeIdLists]):-
Index1=<Index2,
findall(TypeId,
(member(SignatureTypeIdList,SignatureTypeIdLists),
nth1(Index1,SignatureTypeIdList,TypeId)),
CorrespondingTypeIdList),
Index11 is Index1+1,
createTypeIdListCorrespondence0(SignatureTypeIdLists,
Index11,Index2,CorrespondingTypeIdLists).

174 BUPT

Example 108 Creating Formal Arguments
ct(
createExheritedFeatureArgumentsInFosterClass(FosterClassId,FeatureBlockId,
NewFeatureDeclId,ExheritedFeatureIdList,[_|RepresentingTypeIdList]),

condition((
exists(featureBlock(FeatureBlockId,FosterClassId)),
exists(featureDecl(ExheritedFeatureDeclId,FeatureBlockId,_)),
selectFeatureForFormalArgumentExheritance(FeatureDeclId2,ExheritedFeatureIdList),
exists(formalArguments(FormalArguments2,FeatureDeclId2,FormalArgumentIdList2)),
member(FormalArgumentId2,FormalArgumentIdList2),
nth1(Index,FormalArgumentIdList2,FormalArgumentId2),
nth1(Index,RepresentingTypeIdList,RepresentingTypeId3),
exists(formalArgument(FormalArgumentId2,FormalArguments2,FormalArgumentName2,_))

)),
transformation((
new_node_id(FormalArgumentId3),
add(formalArgument(FormalArgumentId3,FormalArguments2,FormalArgumentName2,
RepresentingTypeId3))

))
).

The rule createFeatureSignatureTypeIdList takes as input parameter a feature identifier and
returns its signature (the list of formal arguments and return types).

The rule concatenateFeatureSignatureTypeLists takes as input a list of features, computes for
each feature its signature and returns a list of signatures. For example, suppose feature 701 has
as signature list [101, 101, 102, 103], feature 702 [101, 101, 102, 104] and feature 703 [101, 101,
102, 105]. The result of the rule will be [[101, 101, 102, 103], [101, 101, 102, 104], [101, 101,
102, 105]].

The last rule createTypeIdListCorrespondence groups corresponding types having the same
position in the lists in order to be compared. The effect applied on the previously obtained list
is: [[101, 101, 101], [101, 101, 101], [102, 102, 102], [103, 104, 105]]. The intention of this
arrangement is to facilitate the computation of the resulting types for the exherited feature in the
foster class.

7.3.4 Exherited Feature Signatures Creation
Creating Formal Arguments

After the features are created in the foster class, their arguments must be created also: argument
names are copied from one of the exherited classes candidate feature (if there is a feature imple-
mentation selected by moveup, that feature will provide the formal argument names), while their
types are computed using a special algorithm which will be presented later in subsection 7.3.5.

After the creation of exherited features in the foster class, we have to complete them with
the creation of formal argument and return type facts. In example 108 the formal arguments are
created using the same names from the feature in the selected exherited class. The created formal
argument facts have no reference to the parent fact and they are listed in the argument list of the
selected subclass.

In example 109 we create the formal argument list fact which will refer the formal arguments
created in the previous step. Iterating the argument list from the exherited feature in the subclass
we can locate and build the new argument list for the foster class feature.

The third step of argument update, illustrated in example 110, consists in updating the parent
of all created formal arguments and the like type if it is the case. Some like types require spe-

175 BUPT

Example 109 Creating Formal Argument List
ct(
createExheritedFeatureArgumentListInFosterClass(FosterClassId,FeatureBlockId,
NewFeatureDeclId,ExheritedFeatureIdList),

condition((
exists(featureBlock(FeatureBlockId,FosterClassId)),
exists(featureDecl(ExheritedFeatureDeclId,FeatureBlockId,_)),
selectFeatureForFormalArgumentExheritance(FeatureDeclId2,ExheritedFeatureIdList),
exists(formalArguments(FormalArgumentsId2,FeatureDeclId2,FormalArgumentIdList2)),
findall(FormalArgumentId3,
(
member(FormalArgumentId2,FormalArgumentIdList2),
exists(formalArgument(FormalArgumentId2,FormalArgumentsId2,FormalArgumentName,_)),
exists(formalArgument(FormalArgumentId3,FormalArgumentsId2,FormalArgumentName,_)),
FormalArgumentId2=\=FormalArgumentId3

),
FormalArgumentIdList)

)),
transformation((
new_node_id(FormalArgumentsId),
add(formalArguments(FormalArgumentsId,ExheritedFeatureDeclId,FormalArgumentIdList))

))
).

Example 110 Updating Formal Arguments
ct(
updateExheritedFeatureArgumentsInFosterClass(FosterClassId,FeatureBlockId,
NewFeatureDeclId,CorrespondentTypeIdLists),

condition((
exists(featureBlock(FeatureBlockId,FosterClassId)),
exists(featureDecl(ExheritedFeatureDeclId,FeatureBlockId,_)),
exists(formalArguments(FormalArgumentsId,ExheritedFeatureDeclId,
FormalArgumentIdList)),

member(FormalArgumentId,FormalArgumentIdList),
nth1(Index,FormalArgumentIdList,FormalArgumentId),
nth0(Index,CorrespondentTypeIdLists,TypeIdList),
exists(formalArgument(FormalArgumentId,_,FormalArgumentName,
FormalArgumentTypeId)),

computeLikeType(TypeIdList,FormalArgumentTypeId,FormalArgumentTypeId2)
)),
transformation((
delete(formalArgument(FormalArgumentId,_,_,_)),
add(formalArgument(FormalArgumentId,FormalArgumentsId,FormalArgumentName,
FormalArgumentTypeId2))

))
).

176 BUPT

Example 111 Creating Return Types
ct(
createExheritedFeatureTypeMarkInFosterClass(FosterClassId,FeatureBlockId,
NewFeatureDeclId,[TypeIdList|_],[TypeId|_]),

condition((
exists(featureBlock(FeatureBlockId,FosterClassId)),
exists(featureDecl(ExheritedFeatureDeclId,FeatureBlockId,_)),
computeLikeType(TypeIdList,TypeId,TypeId2),
TypeId2\==noReturnType

)),
transformation(
add(typeMark(ExheritedFeatureDeclId,TypeId2))

)
).

cial updates because like type exheritance requires the feature exheritance process to be finished
completely.

Creating Return Types

After formal argument creation we create also the return types and we attach them to the newly
created features.

In the fourth step of the process (example 111) facts for the return types are created. From
the signature fact we extract the first type in the list and we create a type mark fact, if needed.

7.3.5 Type Exheritance
The feature exheritance rules call a set of other rules related to type exheritance. These rules are
not grouped in a special CT, but they are very complex so they have to be presented separately.
Type exheritance shows how to select the representing type from a list of correspondent types
from the exherited classes in several contexts. The simplest case of type exheritance occurs when
all correspondent types have the same identifiers, meaning that they denote the same type. The
representing type is the unique type identifier. The types we consider are all the types from
the Eiffel type system and they are: class types referring class declarations and having no actual
arguments, separate and expanded type referring class types with the same restriction, like current
types, bit types referring constants. Class types referring generic classes or having different but
equivalent actual generics, like types having anchors, bit types referring constant features must be
treated separately. For types having actual generics and different identifiers, the type exheritance
process is recursive.

In example 112 we start from a type identifier list, we sort it in order to eliminate duplicates and
finally it is expected to obtain a list having a single representing type identifier. For like current
types, which depend very much on the class context they are used in, the type information is
stored in a special structure having two elements (TypeId, ClassDeclId). As we already know that
they are like current types coming from subclasses, we are interested only in the first identifier
TypeId, which has the same value for all like current types in the factbase. If none of the two
rules matches the conditions, then the next rules for representing type computation will be used.

Exheriting Class Types Having Actual Arguments

In this subsection we analyze class type exheritance when types have no equal identifiers. This
means that they might have actual arguments or that they are represented by formal generics.
Here we deal only with class types having actual arguments. The candidate type selection is made

177 BUPT

Example 112 Exheriting Types Having The Same Identifier
selectRepresentantTypeId(TypeIdList,RepresentantTypeId):-
sort(TypeIdList,[RepresentantTypeId]),
!.

selectRepresentantTypeId(TypeIdList,RepresentantTypeId):-
maplist(getLikeCurrentType,TypeIdList,LikeCurrentTypeIdList),
sort(LikeCurrentTypeIdList,[RepresentantTypeId]),
!.

getLikeCurrentType((TypeId,_),TypeId).

Example 113 Exheriting Class Types Having Actual Arguments (1)
selectRepresentantTypeId(TypeIdList,RepresentantTypeId):-
maplist(extractClassDeclFromClassType,TypeIdList,ClassDeclIdList),
sort(ClassDeclIdList,[_]),
maplist(extractClassTypeFromType,TypeIdList,ClassTypeIdList),
selectRepresentantTypeId(ClassTypeIdList,RepresentantTypeId),
!.

extractClassTypeFromType(TypeId,ClassTypeId):-
exists(type(TypeId,ClassTypeId)),
exists(classType(ClassTypeId,_)).

in two steps in order to have a better reuse of the rules: first the classType facts referred by the
type facts are extracted (example 113) and then the representing type is computed (example 114).

In example 113 we show how the classType facts are extracted from the type facts and how the
type selection rule is called. The only constraint invoked by this rule is that the base class of all
types should be identical. The generic class which is instantiated is known in Eiffel terminology
as base class. This operation is performed by the sorting rule which eliminates the duplicates.
Afterwards, only one element should remain in the list.

In example 114 the representing type is computed in the following way:

• actual arguments are extracted, they represent the types which instantiate the generic class;

• the actual arguments are reorganized in lists of types based on position criteria (the very
same principle was used for feature exheritance);

• for those lists the representing type is computed recursively;

• the resulted type is assembled to represent the final result.

The selectRepresentantTypeId rule does all the steps iterated: it uses extractActualGeneric-
TypeIdListFromClassType in order to extract the type list representing the actual arguments,
creates the correspondence list by calling the createTypeIdListCorrespondence rule, recursively
computes the representing types for the actuals by calling the selectRepresentantTypeId rule, and
finally creates a class type with the resulted actuals. We mention also that the actual types may
be any kind of Eiffel types and we apply the same rules for them as we apply in the general process
of type exheritance.

Exheriting Expanded Types In Eiffel variables of expanded types represent objects and not
references to those objects. When such a type appears in the exherited features signatures then
all the correspondent ones must be the same expanded type in order to be exherited.

In example 115 all types from the ExpandedTypeIdList parameter are checked to be expanded
types by the rule isTypeReferringExpandedType. In the metamodel we designed an expanded type

178 BUPT

Example 114 Exheriting Class Types Having Actual Arguments (2)
selectRepresentantTypeId(ClassTypeIdList,RepresentantTypeId):-
member(ClassTypeId,ClassTypeIdList),
exists(classType(ClassTypeId,ClassDeclId)),
exists(classDecl(ClassDeclId,_,_,_)),
!,
maplist(extractActualGenericTypeIdListFromClassType,ClassTypeIdList,
ActualGenericsTypeIdLists),

createTypeIdListCorrespondence(ActualGenericsTypeIdLists,
CorrespondentActualGenericsTypeIdLists),

maplist(selectRepresentantTypeId,CorrespondentActualGenericsTypeIdLists,
ActualGenericsRepresentantTypeIdList),

createClassTypeWithActualGenericTypes(ClassDeclId,
ActualGenericsRepresentantTypeIdList,RepresentantTypeId),

!.
extractActualGenericTypeIdListFromClassType(ClassTypeId,TypeIdList):-
exists(classType(ClassTypeId,ClassDeclId)),
exists(classDecl(ClassDeclId,_,_,FormalGenericIdList)),
length(FormalGenericIdList,Length),
Length=\=0,
extractActualGenericTypeIdListFromClassType0(ClassTypeId,ClassDeclId,
FormalGenericIdList,TypeIdList),

!.
extractActualGenericTypeIdListFromClassType(_,[]).
extractActualGenericTypeIdListFromClassType0(_,_,[],[]).
extractActualGenericTypeIdListFromClassType0(ClassTypeId,ClassDeclId,
[FormalGenericId|FormalGenericIdList],
[TypeId|TypeIdList]):-
exists(formalGeneric(FormalGenericId,ClassDeclId,_)),
exists(actualGenericType(_,ClassTypeId,FormalGenericId,TypeId)),
extractActualGenericTypeIdListFromClassType0(ClassTypeId,ClassDeclId,
FormalGenericIdList,TypeIdList).

179 BUPT

Example 115 Exheriting Expanded Types
selectRepresentantTypeId(ExpandedTypeIdList,RepresentantTypeId):-
maplist(isTypeReferringExpandedType,ExpandedTypeIdList,ResultList),
sort(ResultList,[’yes’]),
maplist(extractClassTypeFromExpandedType,ExpandedTypeIdList,ClassTypeIdList),
selectRepresentantTypeId(ClassTypeIdList,TypeId),
createExpandedTypeFromClassType(TypeId,RepresentantTypeId),
!.

extractClassTypeFromExpandedType(TypeId,ClassTypeId):-
exists(type(TypeId,ExpandedTypeId)),
exists(expandedType(ExpandedTypeId,ClassTypeId)),
exists(classType(ClassTypeId,_)),
!.

isTypeReferringExpandedType(TypeId,’yes’):-
exists(type(TypeId,ExpandedTypeId)),
exists(expandedType(ExpandedTypeId,ClassTypeId)),
exists(classType(ClassTypeId,_)),
!.

isTypeReferringExpandedType(_,’no’).

as referring to a class type. So, in this rule we detached the class types in a separate list through
extractClassTypeFromExpandedType and we apply recursively the selectRepresentantTypeId rule.
The result will be a class type which will create the resulted expanded type by the createExpand-
edTypeFromClassType rule.

Exheriting Separate Types

The separate keyword introduces the concept of inter-object concurrency in the Simple Concur-
rent Object-Oriented Programming (SCOOP) mechanism of Eiffel [FOP04]. A class declared as
separate means that the class executes its own thread of control. Separate arguments mean that
they are synchronization points among concurrent threads. To exherit a feature having a separate
type implies that all corresponding types must be separate and must point to the same class. The
resulted type is the same separate type present in the correspondence list.

The implementation provided is very similar to the one used with expanded types. In example
116 all types from the SeparateTypeIdList parameter are checked to be separate types by the rule
isTypeReferringSeparateType. In the metamodel we designed a separate type as refering to a class
type. So, in this rule we detached the class types in a separate list through extractClassTypeFrom-
SeparateType and we apply recursively the selectRepresentantTypeId rule. The result will be a
class type which will create the resulted separate type by the createSeparateTypeFromClassType
rule.

Exheriting Like Types

Like types are special types which refer the type of a feature, formal argument or current class
denoted by the current keyword. Such a type can be defined recursively involving a series of
features or formal arguments. For example the type of a feature f can be like g and the type of g
can be like h and so on, until the final feature has a non-anchored type. In order to compute the
final type of an anchored type we have to call recursively several rules specialised in computing
the final type for each kind of Eiffel type.

In example 117 the representing type is obtained after computing the final type for each
component from the type list. If the two type sets, original and computed, are not equal that
means that there were some anchored types or instantiated generics for which type inference

180 BUPT

Example 116 Exheriting Separate Types
selectRepresentantTypeId(SeparateTypeIdList,RepresentantTypeId):-
maplist(isTypeReferringSeparateType,SeparateTypeIdList,ResultList),
sort(ResultList,[yes]),
maplist(extractClassTypeFromSeparateType,SeparateTypeIdList,ClassTypeIdList),
selectRepresentantTypeId(ClassTypeIdList,TypeId),
createSeparateTypeFromClassType(TypeId,RepresentantTypeId),
!.

extractClassTypeFromSeparateType(TypeId,ClassTypeId):-
exists(type(TypeId,SeparateTypeId)),
exists(separateType(SeparateTypeId,ClassTypeId)),
exists(classType(ClassTypeId,_)),
!.

isTypeReferringSeparateType(TypeId,’yes’):-
exists(type(TypeId,SeparateTypeId)),
exists(separateType(SeparateTypeId,ClassTypeId)),
exists(classType(ClassTypeId,_)),
!.

isTypeReferringSeparateType(_,’no’).
extractClassTypeFromSeparateType(TypeId,ClassTypeId):-
exists(type(TypeId,SeparateTypeId)),
exists(separateType(SeparateTypeId,ClassTypeId)),
exists(classType(ClassTypeId,_)),
!.

Example 117 Exheriting Like Types (1)

selectRepresentingTypeId(TypeIdList,(RepresentingTypeId,ScheduledTypeList)):-
maplist(computeTypeFinalType,TypeIdList,FinalTypeIdList),
TypeIdList\==FinalTypeIdList,
selectRepresentingTypeId(FinalTypeIdList,(RepresentingTypeId,
ScheduledTypeList)),!.

181 BUPT

Example 118 Exheriting Like Types (2)
computeTypeFinalType(TypeId,TypeId):-
exists(type(TypeId,ClassTypeId)),
exists(classType(ClassTypeId,ClassDeclId)),
exists(classDecl(ClassDeclId,_,_,_)),
!.

computeTypeFinalType(TypeId,FinalTypeId):-
exists(type(TypeId,ClassTypeId)),
exists(classType(ClassTypeId,FormalGenericId)),
exists(formalGeneric(FormalGenericId,_,_)),
exists(classDecl(ExheritedClassId,_,_,FormalGenericIdList)),
memberchk(FormalGenericId,FormalGenericIdList),
exists(classType(ExheritedClassTypeId,ExheritedClassId)),
exists(exheritance(_,_,ExheritedClassTypeId)),
exists(actualGenericType(_,ExheritedClassTypeId,FormalGenericId,
FinalTypeId)),

!.
computeTypeFinalType(TypeId,TypeId):-
exists(type(TypeId,ExpandedTypeId)),
exists(expandedType(ExpandedTypeId,ClassTypeId)),
exists(classType(ClassTypeId,_)),
!.

computeTypeFinalType(TypeId,TypeId):-
exists(type(TypeId,SeparateTypeId)),
exists(separateType(SeparateTypeId,ClassTypeId)),
exists(classType(ClassTypeId,_)),
!.

computeTypeFinalType(TypeId,TypeId):-
exists(type(TypeId,BitTypeId)),
exists(bitType(BitTypeId,_)).

was executed. Unless this check is performed the representing type computing rule will go on
an infinite recursion. So, next the representing type is computed using the rules defined in the
previous subsections.

For the non-anchored types of Eiffel we defined the final type to be the type itself (see example
118). The only exception for these rules are the class types refering formal generic instantiated
with some concrete types.

In example 119, for like types the final type may be computed immediately being either the
type of a feature, formal argument or current or recursively if there is a chain of referred entities.

Exheriting Bit Types

Bit types are used in Eiffel to represent integers of different sizes. Bit types may be expressed using
a manifest constant or an integer constant feature. No matter how the candidate bit types are
expressed the result type must be a bit type of the same size. Even if the constant features referred
by the bit types are exheritable, they cannot be redefined in the subclasses again as constant
features. The chosen solution is to exherit the bit type using a manifest constant regardless of
its origins in the subclasses. Another possible solution which affects more the exherited classes
is to move up the constant feature. Such a solution can be triggered by selecting explicitly the
implementation exheritance.

In example 120 the type representing selection rule checks all types to have the same size
using the maplist operator with getBitTypeValue rule on the type list. The resulted list is sorted,

182 BUPT

Example 119 Exheriting Like Types (3)
computeTypeFinalType((TypeId,ClassDeclId),RepresentingTypeId):-
exists(type(TypeId,LikeTypeId)),
exists(likeType(LikeTypeId,IdentifierId)),
exists(identifier(IdentifierId,’current’)),
createClassTypeFromClassDecl(ClassDeclId,RepresentingTypeId),
!.

computeTypeFinalType(TypeId,TypeId):-
exists(type(TypeId,LikeTypeId)),
exists(likeType(LikeTypeId,IdentifierId)),
exists(identifier(IdentifierId,’current’)),
!.

computeTypeFinalType(TypeId,FinalTypeId):-
exists(type(TypeId,LikeTypeId)),
exists(likeType(LikeTypeId,Id)),
((exists(featureDecl(Id,_,_)),

exists(typeMark(Id,TempTypeId)));
exists(formalArgument(Id,_,_,TempTypeId))),
exists(type(TempTypeId,_)),

computeTypeFinalType(TempTypeId,FinalTypeId),!.

Example 120 Exheriting Bit Types
selectRepresentantTypeId(TypeIdList,RepresentantTypeId):-
maplist(getBitTypeValue,TypeIdList,ResultSizeList),
sort(ResultSizeList,[IntegerValue]),
integer(IntegerValue),
createBitType(IntegerValue,RepresentantTypeId),
!.

getBitTypeValue(TypeId,IntegerValue):-
exists(type(TypeId,BitTypeId)),
exists(bitType(BitTypeId,XId)),
((exists(featureDecl(XId,_,_)),
exists(featureManifestConstant(XId,ManifestConstantId)),
exists(manifestConstant(ManifestConstantId,IntegerValue,’integer’)));

(exists(manifestConstant(XId,IntegerValue,’integer’)))).

183 BUPT

Figure 7.5: Combined Assertion Generation CT Subtree

duplicates are eliminated and a single integer is expected to remain. Afterwards, a bit type is
created by the createBitType rule if the type does not already exist.

7.3.6 Combined Assertion Generation
In figure 7.5 we present the CT subtree responsible with the creation of combined preconditions
and postconditions as they were presented in subsection 5.4.2.

First, all features which need preconditions or postconditions from the foster class are placed
in two maps.

Next, the combined preconditions and postconditions components are created by the create-
CombinedPrecondtionComponentsForFCFeatures and createCombinedPostcondtionComponentsFor-
FCFeatures CTs. Each of the two CTs are followed by the expression creation CT named create-
AssertionExpressions. Each component has the following form current.generator.is_equal(“EC1”)
and (x>1 and y>1). This precondition component corresponds to the EC1 exherited class and
(x>1 and y>1) are the and-ed preconditions for the feature in that class. For each exherited class
such a component is created.

Finally, the createCombinedPreconditionForFCFeatures and createCombinedPostconditionFor-
FCFeatures CTs will assemble the final assertions for the exherited feature. For example such an
assertion will have the following form:

(current.generator.is_equal(“EC1”) and (x>1 and y>1)) or
(current.generator.is_equal(“EC2”) and (x>2 and y>2)) or
(current.generator.is_equal(“EC3”) and (x>3 and y>3)) or
(x>0 and y>0).
It can be noticed that the created components are or-ed altogether and the (x>0 and y>0) is

the assertion expressed by requireOtherwise or ensureOtherwise from the foster class.
As a last step the requireOtherwise, ensureOtherwise facts are deleted and the require respec-

tively ensure facts from the subclasses are replaced with requireElse and ensureThen.

7.3.7 Implementation Exheritance
In figure 7.6 there are only two CTs which clone in a generic manner the facts from the feature
implementation located in the subclass into the foster class and performs the necessary context
adjustments.

Cloning Cloning is a generic process driven by the formal metamodel of our implementation,
a fragment is presented in section 7.1.3 example 99. We visit the original tree and the new tree

184 BUPT

Figure 7.6: Implementation Exheritance CT Subtree

is created during the visiting process. For each source node a new node is created by cloning.
The arguments of the source node are analyzed and they may be of several kinds: own identifier,
parent identifier, child identifier, children identifier list, relation link. The own identifier is cloned
by generating a new identifier for the new tree. The parent identifier is cloned by retrieving the
identifier of the parent node in the new tree. That identifier was generated at the previous level
as own identifier. The child identifier is cloned recursively because it can be seen as the root of
another subtree to be cloned. A similar cloning procedure is applied to children identifier list but
with multiple ramifications. There are nodes which refer the parent without the parent knowing
it. Also these nodes are cloned recursively refering the new parent. In this stage references are
kept as they are in the original tree.

Replacing References In the previous step we succeeded to create a new tree with the same
structure but having relation links to the nodes of the original tree and not of the new tree
as we partially intend to have. For example, calls to features from other classes will remain
unchanged, but calls to features within the same class must be dispatched to features of the
foster class. It would be inconsistent at the model level to have a call in the foster class refering
a feature in the subclass. Such a call should be redirected to the correspondent new feature
in the foster class, thus making the model consistent. For this purpose we will use two maps
created in the feature exheritance process presented in subsection 7.3.3. The two maps used are
candidateToNewFeatureMap and oldFeatureToRedefinedFeatureMap. It means that all references
to candidate features from exherited classes will be dispatched to the corresponding new features of
the foster class and references from old features within the exherited class are dispatched towards
redefined features of the foster class.

During cloning and reference replacement new facts are created and some facts are replaced by
creation and deletion. So the two CTs in figure 7.6 are responsible with fact manipulations. The
former performs the cloning and reference replacement by adding facts, while the latter deletes
the replaced facts.

7.3.8 Adapt Transformation
In this section we discuss issues related to exheriting features having same semantics but different,
non-covariant signatures, which can be adapted to a common one by simple method or operator
calls. The considered exheritance case refers to the “light” feature adaptation facility offered by
reverse inheritance. From another point of view the adaptation mechanism can be considered
a stronger redefinition mechanism, which does not cover renaming. The adaptation mechanism
will handle only the cases which cannot be handled by redefinition. We have designed several
types of adaptations: i) scale adaptations, which may imply or not the change of the signature;
ii) parameter order change, iii) parameter number change, iv) return type change.

The implementation of such an adaptive feature behavior is difficult because of the Eiffel rule
which states that the final feature name is unique at the level of a class. In other words, we cannot
have two features with the same name and different signatures in the same class, as we would
maybe like to have: one with the new desired homogeneous signature and the already existing
non-homogeneous ones. This may cause problems in the implementation of adapted features.

In order to simplify the reverse inheritance semantics, we will not allow moving up an adapted
feature implementation from an exherited class into the foster class. Instead, the body of an

185 BUPT

Figure 7.7: Adapt Transformation CT Subtree

adapted feature could be explicitly rewritten by the programmer at the foster class level. From
the implementation point of view there is no problem to combine the transformation effects of
the two concepts. The only factor which may affect the generated class hierarchy is the order of
transformations: first the transformations for move up must be performed and only afterwards the
transformations for the adaptation implementation. Also, we have to consider that an adapted
feature at the foster class level can be deferred as well.

The adaptation expressions can be expressed in the foster class body, in part for each adapted
class. For that matter, the syntax we designed allows to see the adapted candidate feature signature
and the adaptation expression for it. Attribute and method adaptations are treated differently.
For attributes there must be provided two adaptation expressions for each adapted subclass: one
for getting and one for setting the attribute value. For methods there is one expression which
adapts the return value of the adapted method from the subclass and also several expressions for
adapting the arguments in calling the candidate feature from that subclass 5.2.

Method Adaptation

Expressing Method Adaptation In this subsection we will present the implementation of
adapted methods. In example 121 we show a typical situation in which the programmer wants to
use reverse inheritance in order to exherit features which have the same semantics but different
signatures. Formal arguments and return types are optional in the structure of a method but in
the context of an adaptation they cannot miss both, otherwise there is nothing to adapt.

In figure 121 we present a basic example of one foster class named SHAPE and two exherited
classes named RECTANGLE and TRIANGLE, all having a computation feature. This feature
has the same semantics but different signatures and scale representations in the RECTANGLE
and TRIANGLE subclasses. We want to exherit it under a common signature in the foster class
SHAPE. It can be noticed that the features from class RECTANGLE are using type INTEGER
and are expressed in decimeters (dm), while the features in class TRIANGLE are using type
NATURAL and are expressed in centimeters (cm).

In example 122 we present several possible use cases of the classes instances:

• a call on an instance of SHAPE through a reference of type SHAPE will execute the new
code added in the foster class, so the return value will be zero;

186 BUPT

Example 121 Method Adaptation Example
foster class SHAPE
exherit
RECTANGLE
adapt computation

end
TRIANGLE
adapt computation
end

all
feature
computation(x:REAL):REAL is --cm
adapted
--cm -> dm ; dm -> cm
{RECTANGLE}(y:INTEGER):INTEGER is (x.rounded):result*10
--cm -> m ; m -> cm
{TRIANGLE}(z:NATURAL):NATURAL is (x.rounded.as_natural_16):result*100

do
result:=0

end
end
class RECTANGLE
create make
feature
w,h:INTEGER --dm
make(pw,ph:INTEGER) is
do w:=pw; h:=ph end
computation(y:INTEGER):INTEGER is do result:=(w+h)*2*y end --dm

end
class TRIANGLE
create make
feature
a,b,c:NATURAL --m
make(pa,pb,pc:NATURAL) is
do a:=pa; b:=pb; c:=pc end
computation(z:NATURAL):NATURAL is do result:=(a+b+c)*z end --m

end

187 BUPT

Example 122 Method Adaptation Use Example
class ROOT_CLASS
create make
feature
s:SHAPE
r:RECTANGLE
t:TRIANGLE
make is
do
create s
create r.make(10,20) --dm
create t.make(2,2,2) --m
io.put_string("Using SHAPE object and SHAPE reference ")
--io.put_real(s.computation(1)) is replaced by
io.put_real(s.adapted_computation(1)) --1 EURO / cm
io.new_line
io.put_string("Using RECTANGLE object and SHAPE reference ")
s:=r
--io.put_real(s.computation(1)) --1 EURO / cm
io.put_real(s.adapted_computation(1)) --1 EURO / cm
io.new_line
io.put_string("Using TRIANGLE object and SHAPE reference ")
s:=t
--io.put_real(s.computation(1)) --1 EURO / cm
io.put_real(s.adapted_computation(1)) --1 EURO / cm
io.new_line
io.put_string("Using RECTANGLE object and RECTANGLE reference ")
io.put_integer(r.computation(10)) --10 EURO / dm
io.new_line
io.put_string("Using TRIANGLE object and TRIANGLE reference ")
io.put_natural(t.computation(100)) --100 EURO / m
io.new_line

end
end

188 BUPT

• a call on an instance of RECTANGLE or TRIANGLE through a reference of type SHAPE
will provide a uniform result computed using centimeter representation of data;

• a call on an instance of RECTANGLE through a reference of type RECTANGLE will provide
the native implementation computed using decimeters;

• a call on an instance of TRIANGLE through a reference of type TRIANGLE will provide
the native implementation computed using meters.

Because of the unique final feature name rule of Eiffel, at foster class level we cannot use the same
name for the adapted feature, so we called it adapted_computation. Next, we present in detail
one implementation solution.

Method Adaptation Implementation Overview The proposed implementation solution
from figure 123 is based on the generation of a combined mediator method at the level of
the foster class. The mediator method translates a call to the signature of the new feature
(from the foster class) towards each original local implementation (from the exherited class). So,
the exherited feature final name is changed by adding the "adapted" suffix. We must specify
that by changing the name we mean textually replacing the feature name occurrences with the
augmented one, while by renaming we refer to the ordinary renaming mechanism of Eiffel. We
remind also that Eiffel programming language does not allow overloading for methods, so multiple
features with the same name may not coexist in the same class. The motivation behind changing
the name of the exherited feature in the foster class is to be able to add the redefined media-
tor feature in the adapted exherited class(es) by inheritance. The non-adapted exherited classes
features will not be affected.

Generating the Combined Mediator Method in the Superclass The first step involved
by such a transformation is to generate the mediator method in the superclass. The mediator
method will have the signature of the desired new feature and also the new augmented name. The
body of this method will guard all the adaptation expressions for each exherited class. In order to
select the different adaptation code executions the type of the instance is tested statically. There
should be a branch expressing the adaptation for each subclass and one for the foster class. In our
example:

• an instance of type RECTANGLE will execute the rectangle_computation method;

• an instance of type TRIANGLE will execute the triangle_computation method;

• an instance of type SHAPE will execute the redefined code.

The mediator method purpose is to be inherited in the subclasses and to use the implementation
of the hook methods found at that level. This approach concentrates all adaptations at the level
of the foster class while other possible implementation is to distribute each adaptations in its
corresponding subclass.

Adaptation Calls The adaptation calls involve two filters: the adaptation of input arguments
used for the call and the adaptation of the returned or output value of the call. In example 123 in
the context of class RECTANGLE, argument x of type REAL is rounded to an INTEGER value
by calling the rounded method and passed to the original rectangle_computation method. In the
context of class TRIANGLE, the very same argument x of type REAL is converted to a NATURAL
value by calling rounded and as_natural_16 methods and passed to the triangle_computation
method.

189 BUPT

Example 123 Method Adaptation Implementation Solution
class SHAPE
feature
adapted_computation(x:REAL):REAL is --cm
do
if current.generator.is_equal ("RECTANGLE") then
result:=rectangle_computation(x.rounded)*10 --cm

elseif current.generator.is_equal("TRIANGLE") then
result:=triangle_computation(x.rounded.as_natural_16)*100 --cm

elseif current.generator.is_equal("SHAPE") then
-- put the implementation if the feature is effective
result:=0

else
-- do nothing

end
end

feature {NONE} --hook methods
rectangle_computation(x:INTEGER):INTEGER is do end --dm
triangle_computation(x:NATURAL):NATURAL is do end --m

end
class RECTANGLE
inherit SHAPE
rename rectangle_computation as computation
export {NONE} adapted_computation, triangle_computation
redefine computation

end
create make
feature
w,h:INTEGER
make(pw,ph:INTEGER) is do w:=pw; h:=ph end
computation(y:INTEGER):INTEGER is do result:=(w+h)*2*y end --dm

end
class TRIANGLE
inherit SHAPE
rename triangle_computation as computation
export {NONE} adapted_computation, rectangle_computation
redefine computation

end
create make
feature
a,b,c:NATURAL
make(pa,pb,pc:NATURAL) is do a:=pa; b:=pb; c:=pc end
computation(z:NATURAL):NATURAL is do result:=(a+b+c)*z end --m

end

190 BUPT

Generating Empty Hook Methods in the Superclass The methods called from the me-
diator method will be called hook methods since they represent the original methods from the
subclasses for the adapted feature. The implementation is using the idea from the Template
Method design pattern [GHJV97]. The hook methods are empty body methods generated in the
superclass and having the same signature as the ones from the subclasses. The name of such a
method is composed out of the name of the subclass concatenated with the original name of the
subclass method. Such methods may be deferred if the foster class is deferred, but they cannot
be deferred by default because it will force this restriction on the foster class, which might not be
always desired.

New Method Access in the Superclass If an adapted method call is used in the superclass
that call should be redirected towards the adapted method. For instance in class SHAPE any call
to computation method will be routed to adapted_computation method. Such a code may exist
in a redefined exherited feature. Writing a call of a method which does not exist explicitly in the
foster class may affect the readability of the class hierarchy.

Renaming and Redefining the Hook Methods in Subclasses In the subclasses all hook
methods are renamed towards the original features. They must be redefined also because their
implementation changes. In particular, when the foster class is deferred they might not be redefined
since in the superclass they are deferred. With the help of renaming the hook methods from the
superclass are linked with the original methods from the subclasses.

Access Restriction in the Subclasses All the hook methods from the superclass are generated
and inherited in all the subclasses and in this sense we can limit their use by using the export
clause in order to make them secret, except the redefined ones. For example, in class RECTANGLE
feature triangle_computation is made secret since it does not make sense to be used by any client
of this class. Also, the adapted feature from the superclass is not allowed to be available to any
clients of the descendant classes. For example adapted_computation cannot be used by any clients
of RECTANGLE or TRIANGLE classes.

Client Access Regarding the client access to the newly created class hierarchy there are some
modifications to be made. All calls to the adapted features made through superclass type references
must be replaced by the new augmented name of the feature. For example the calls to computation
feature in class ROOT_CLASS are replaced by calls to adapted_computation when reference of
type SHAPE was used. All the other calls made through references of subclasses types are kept
as such.

Attribute Adaptation

Expressing Attribute Adaptation In this subsection we present a typical situation of a com-
mon attribute present in all exherited classes and having different scale representations which is
desired to be factored. The intention is to reuse the attribute by exheritance and to get a uniform
representation at the foster class level.

In example 124 we start from two subclasses RECTANGLE and TRIANGLE which use two
representations: decimeters and meters to store their perimeter feature. A new SHAPE class is
constructed on the top of the two classes using reverse inheritance and a new perimeter attribute
is desired in this class to be expressed in centimeters and still to correspond to the two perimeter
features from the subclasses expressed in decimeters and meters. As a secondary goal the creation
method is also exherited.

In example 125 we present how such an adapted class hierarchy is intended to be used. When
using the SHAPE references on any instance the perimeter attribute will return a value expressed
in centimeters, while using RECTANGLE or TRIANGLE type references the perimeter will be
provided in decimeters and meters.

191 BUPT

Example 124 Attribute Adaptation Example
foster class SHAPE
exherit
RECTANGLE
adapt make, perimeter

end
TRIANGLE
adapt make, perimeter

end
all

create make
feature --adapted
make(p:REAL) is --cm
adapted
{RECTANGLE} (i:INTEGER) is ((p/10).rounded)
{TRIANGLE} (n:NATURAL) is ((p/100).rounded_as_natural_16)

do
perimeter:=p

end
perimeter:REAL is --cm
adapted
{RECTANGLE} INTEGER is ((precursor/10).rounded) : result*10
{TRIANGLE} NATURAL is ((precursor/100).rounded_as_natural_16) : result*100

end
end
class RECTANGLE
create make
feature --creation
make(i:INTEGER) is do perimeter:=i end

feature --original attribute declaration
perimeter:INTEGER --dm

end
class TRIANGLE
create make
feature --creation
make(n:NATURAL) is do perimeter:=n end

feature --original attribute declaration
perimeter:NATURAL --m

end

192 BUPT

Example 125 Attribute Adaptation Use Example
class ROOT_CLASS
create make
feature
s:SHAPE
r:RECTANGLE
t:TRIANGLE
make is
do
create s.adapted_make(100) --cm
create r.make(10) --dm
create t.make(1) --m
io.put_string("Using SHAPE object and SHAPE reference ")
--io.put_real(s.perimeter) will be replaced by
io.put_real(s.get_perimeter) --cm
io.new_line
io.put_string("Using RECTANGLE object and SHAPE reference ")
s:=r
--io.put_real(s.perimeter) will be replaced by
io.put_real(s.get_perimeter) --cm
io.new_line
io.put_string("Using TRIANGLE object and SHAPE reference ")
s:=t
--io.put_real(s.perimeter) will be replaced by
io.put_real(s.get_perimeter) --cm
io.new_line
io.put_string("Using RECTANGLE object and RECTANGLE reference ")
io.put_integer(r.perimeter) --dm
io.new_line
io.put_string("Using TRIANGLE object and TRIANGLE reference ")
io.put_natural(t.perimeter) --m
io.new_line

end
end

193 BUPT

Attribute Adaptation Implementation Overview The implementation solution for adapt-
ing attributes is based on the method adaptation technique used earlier combined with a common
refactoring operation of replacing direct attribute accesses with setter and getter method calls. In
a good object-oriented design the object state represented by attributes should be accessible only
through accessor methods and not directly. In Eiffel attributes can be accessed for writing only
inside the class they are defined in, while they are accessible for reading to all clients of its hosting
class.

In the implementation depicted in examples 126 and 127 the effect of attribute perimeter
exheritance from the subclasses is simulated. We will focus our attention on the attribute exheri-
tance and not on the creator method adaptation. The order in which the code modifications are
presented is a valid order to execute them also.

Generating a New Attribute in the Superclass The first step of the transformation chain
is to create a new attribute with an augmented name in the superclass. In our example we created
adapted_perimeter attribute of type REAL to store values for any SHAPE instances that might
be created if the class is not deferred.

Generating the Combined Mediator Accessor Methods A second step of the code gen-
eration is the creation of mediator accessor methods, getter and setter for the adapted attribute.
These methods are capable of handling all the adaptations expressions for the subclass adapted
attributes. For each adapted subclass attribute there will be a decisional branch and within them
the set and get methods are expressing the desired scale transformation. In each branch one hook
method from the corresponding subclass will be used. For example, in the context of class RECT-
ANGLE the getter will call the rectangle_get_perimeter hook method multiplied by 10 in order
to transform the value from decimeters into centimeters. The hook method will be redefined in
the RECTANGLE subclass to get the value of the original perimeter attribute.

Adaptation Calls Since we are adapting attributes, for each attribute we have to provide two
expressions: one for putting a value into the original attribute and the other to get the value
from it. Thus, the first adaptation expression containing the precursor keyword will be used in
the setter method, while the other one containing the result keyword will be used in the getter
method.

Generating Empty Hook Methods in the Superclass In order to access the attributes
from the subclasses we generate empty body hook setter and getter methods for the attributes
of each subclass. These methods will be redefined in the subclasses and they will access the
adapted original attributes. We need the hook methods because adapted attributes may have
different signatures in the subclasses and this pair of redefined methods will assure the access to
the subclass attributes from the superclass level.

New Attribute Access in the Superclass Since our technique emulates the homogeneous
scale of an attribute, in the foster class any direct access to the attribute must be replaced with
an access to the augmented attribute. For instance in method make of example 124, the perimeter
attribute from the assignment must be replaced with the adapted_perimeter. Another option
would be to use calls to the generated accessor methods.

Access Restrictions in Subclasses Following the same idea used for methods we decided
to restrict the access to the generated pairs of accessors for the subclasses clients. The same
principle applies also to the generated attribute. In our example features like adapted_perimeter,
get_perimeter, set_perimeter, rectangle_get_perimeter, rectangle_set_perimeter are not exported
to subclass clients.

194 BUPT

Example 126 Attribute Adaptation Solution (1)
class SHAPE
create adapted_make
feature --generated mediator creator method
adapted_make(p:REAL) is
do
if current.generator.is_equal("RECTANGLE") then
rectangle_make(p.rounded)

elseif current.generator.is_equal("TRIANGLE") then
triangle_make(p.rounded.as_natural_16)

elseif current.generator.is_equal("SHAPE") then
--perimeter:=p is replaced by
adapted_perimeter:=p

else
--perimeter:=p is replaced by
adapted_perimeter:=p

end
end
feature --generated hook methods for the creator method
rectangle_make(i:INTEGER) is do end
triangle_make(n:NATURAL) is do end

feature --generated attribute for storing data for SHAPE instances
adapted_perimeter:REAL --cm

feature --generated accessors methods containing all adaptations
get_perimeter:REAL is do --cm
if current.generator.is_equal ("RECTANGLE") then
result:=rectangle_get_perimeter*10 --cm

elseif current.generator.is_equal("TRIANGLE") then
result:=triangle_get_perimeter*100 --cm

elseif current.generator.is_equal("SHAPE") then
result:=adapted_perimeter

else
--code for direct subclasses of the foster class
result:=adapted_perimeter

end
end
set_perimeter(x:REAL) is do --cm
if current.generator.is_equal ("RECTANGLE") then
rectangle_set_perimeter((x/10).rounded) --dm

elseif current.generator.is_equal("TRIANGLE") then
triangle_set_perimeter((x/100).rounded.as_natural_16) --m

elseif current.generator.is_equal("SHAPE") then
adapted_perimeter:=x

else
adapted_perimeter:=x

end
end

feature --generated hook methods for the adapted attribute
rectangle_get_perimeter:INTEGER is do end --dm
rectangle_set_perimeter(x:INTEGER) is do end --dm
triangle_get_perimeter:NATURAL is do end --m
triangle_set_perimeter(x:NATURAL) is do end --m

end

195 BUPT

Example 127 Attribute Adaptation Solution (2)
class RECTANGLE
inherit
SHAPE
rename rectangle_make as make
export
{NONE} adapted_make, triangle_make,
adapted_perimeter,
get_perimeter,set_perimeter,
rectangle_get_perimeter,rectangle_set_perimeter,
triangle_get_perimeter,triangle_set_perimeter
redefine make,rectangle_get_perimeter,rectangle_set_perimeter

end
create make
feature --creation
make(i:INTEGER) is do perimeter:=i end

feature --original attribute declaration
perimeter:INTEGER --dm

feature {NONE} --generated redefined hook accessor methods
rectangle_get_perimeter:INTEGER is do result:=perimeter end --dm
rectangle_set_perimeter(x:INTEGER) is do perimeter:=x end --dm

end
class TRIANGLE
inherit
SHAPE
rename triangle_make as make
export
{NONE} adapted_make, rectangle_make,
adapted_perimeter,
get_perimeter,set_perimeter,
rectangle_get_perimeter,rectangle_set_perimeter,
triangle_get_perimeter,triangle_set_perimeter

redefine make,triangle_get_perimeter,triangle_set_perimeter
end
create make
feature --creation
make(n:NATURAL) is
do perimeter:=n end

feature --original attribute declaration
perimeter:NATURAL --m

feature {NONE} --generated redefined hook accessor methods
triangle_get_perimeter:NATURAL is do result:=perimeter end --m
triangle_set_perimeter(x:NATURAL) is do perimeter:=x end --m

end

196 BUPT

Client Access Most of the code changes implied by this implementation affect the new clients
of the class hierarchy. As Eiffel does not allow value assignment for attributes, only the attribute
queries are affected. So, each attribute query attached to an instance referred by the foster class
will be replaced with the corresponding accessor method. For instance in our example all three
perimeter accesses to objects referred by SHAPE reference will be replaced by get_perimeter
method call. The TRIANGLE and RECTANGLE reference calls are not affected by any change,
meaning that they will access the original perimeter feature.

Conclusions

The presented implementation keeps untouched the code of the original features from the subclasses
and all their clients. However, hook methods are inherited, redefined or made private in the
exherited classes. This will slightly modify the text of the subclasses in the inheritance section.
Since the implementation implies changing the name of the new feature with an augmented
one, it may affect the readability of the generated code. If the programmer deliberately wants
to rename the new feature from the exherited classes, then a new name is provided for the new
feature.

The clients of the foster class which may call the new feature are the newly built classes of the
current redesign process because only these classes “know” about the foster class. Those classes
must be regenerated in order to make those calls pointing to the augmented feature. Even the
foster class may have local calls to the adapted features which must be changed. In practice, the
new augmented name must be concatenated with a unique numerical key in order to assure that
there will be no accidental name clashes.

The mediator method format may differ depending whether the adapted features have or not
formal arguments and return type. In case there are no formal arguments in the original feature
from exherited class then any mediator formals will be ignored. In case the original feature has no
return type then the assignment of the call to the result variable will be replaced with a simple
call of the original exherited feature.

Another conclusion can be drawn related to the interaction between method and attribute
adaptations, explicitly to the order of their execution. First, method adaptations should be per-
formed the because they may use some adapted attributes, which may have to be replaced later,
and only afterwards should be performed the attribute adaptation.

7.3.9 Feature Clauses Generation
In figure 7.8 we describe how clauses are set for the new features. The addRedefineClauses-
ForNewFeaturesInTheExheritedClasses CT creates redefine clauses in the exherited classes for
the newly migrated features in the foster class. Similarly, the addRedefineClausesForRedefined-
FeaturesInTheExheritedClasses CT creates redefine clauses on the inheritance branches of the
exherited classes for the redefined features of the foster class. The addUndefinedClausesInTheEx-
heritedClasses CT handles the case when a new feature in the foster class is effective (redefined or
moved up) and one or more of the candidates are deferred. In such a case on the corresponding
inheritance branch the undefinition keyword must be set. The moveRenameFromFosterClassToEx-
heritedClass CT handles the case of renamed features in the foster class. In reverse inheritance
the source features from the exherited classes are renamed in the foster class to a common name,
but in the equivalent ordinary inheritance the feature from the foster class will be renamed back
to its original name of the feature in the exherited class.

The CT named createNewFeatureBlocksForExportedFeatures is responsible with the creation
of feature blocks for the features which are exported to different client classes. In the create-
NewFeaturesClientClasses CT we compute the set of common clients for each exherited feature
relying on the candidate features clients. When no common clients can be computed and no export
clauses are present for a set of candidate features then the feature in the foster class is exported
to class NONE, meaning that the feature is private, usable only within the class. The global
exportExheritFeature clauses from the foster class are translated into featureClientClass clauses by

197 BUPT

Figure 7.8: Feature Clauses Generation CT Subtree

the transformExportExheritIntoFeatureClientClasses. Finally, the exportExheritFeatureAll clauses
are translated into featureClientClass clauses. Thus each client class of the clause is added to the
non-empty client list of features.

7.3.10 Hierarchy Transformations
Class hierarchy transformations are presented in the CT subtree of figure 7.9. The first CT named
addCallReceiverPrecursorTypeAttribute deals with issues discussed in subsection 6.3.2. Ambiguous
class configurations are detected and the precursor attribute is added. The following CT, named
createFosterClassType creates the class type corresponding to the inheritance branch in the case of
non-generic foster and exherited classes. Next, the exheritance branch is transformed in inheritance
branch by the transformExheritIntoInheritSingle CT.

In the context of generic foster classes and generic exherited classes we create several foster class
types by the transformExheritIntoInheritMultiple CT. The types will be updated separately with
actual generics. The first update CT named updateActualGenericsForTheFosterClass1 deals with
the case of exherited classes instantiated with formal generics from the foster class (see subsection
5.3.1). The second update CT named updateActualGenericsForTheFosterClass2 handles the case
of exherited classes instantiated with types equal to the constraint types of both exherited and
foster classes (see subsection 5.3.2).

7.3.11 Reverse Inheritance Elements Removal
In figure 7.10 we present the CT subtree dealing with the elimination of reverse inheritance seman-
tical elements from the model. Thus, the feature selection clauses are deleted from the factbase:
allFeature, nothingFeature, onlyFeature, exceptFeature using CTs like: removeAllFeatureSelection,
removeNothingFeatureSelection, removeAllFeatureSelection, removeExceptFeatureSelection. Next,
if the foster class has deferred features then the foster class itself is set as deferred by the addDe-
ferredToClass CT. Finally, the foster facts are eliminated using the removeFoster CT.

198 BUPT

Figure 7.9: Hierarchy Transformations CT Subtree

Figure 7.10: Reverse Inheritance Elements Removal CT Subtree

199 BUPT

7.4 Summary
At the beginning of this chapter we presented several implementation possibilities for reverse
inheritance. The adopted implementation solution does not invent a new programming language,
but extends an existing one, so it resulted RIEiffel. The prototype is based on the GOBO Eiffel
free library, thus it can be tested and used in industrial projects. As a consequence the grammar
of GOBO was augmented with the reverse inheritance rules and was listed in appendix A. The
grammar is designed incrementally, so any pure Eiffel source file will conform to the extended
grammar.

In the implementation we took the decision to express the semantics of reverse inheritance
through Prolog fact transformations. In section 7.1 we presented the metamodel for the logic
representation of Eiffel programs. First, the pure Eiffel entities and afterwards the reverse in-
heritance extension elements are modeled. The factbase metamodel respects the 3NF form for
relational databases. For each significant grammar rule a Prolog fact is designed to represent a
certain language entity. We have to admit that the metamodel design is not homogeneous because
some facts have relations with their parents in both ways and other facts only in one direction.
This decision was taken in order to optimize the model, to minimize the number of facts and
to capture some semantical aspects. The link between formalArguments and formalArgument is
bidirectional and also the children are ordered in the parent, since argument order may not be
ignored. The language entities were modeled as flexible facts linked together by identifiers. Adding
and removing language entities are expressed at model level by adding or removing facts. The
factbase model is structured in two main parts: Eiffel language related facts and RIEiffel specific
facts. The Eiffel facts are structured as follows: class header, formal generics, inheritance clauses,
creators, features, instructions, expressions. The RIEiffel model contains the exheritance clauses
facts and the adaptation facts. Still some details like spaces and comments are not modelled in
our design since they have no semantical value. As a consequence the reverse engineered sources
may not have the same textual organization.

A Prolog metamodel which consists in describing each rule arguments, allows checking auto-
matically the type consistency of the factbase. In the metamodel are also included navigation
information for the nodes to be displayed in a graphic user interface. Validity rules are stated
around the reverse inheritance concepts like: feature factorization, redefinition, adaptation, selec-
tion, export and around some complex contexts of reverse and ordinary inheritance. These rules
substitute the semantical analysis which should be performed by a compiler against the reverse
inheritance extension of a class. For example the exherited feature selection clauses must select
the features in an unique manner.

The semantics of reverse inheritance is implemented by three modules of a prototype. The first
one is a RIEiffel parser which produces the Prolog facts. The second one is a translator written
in Prolog and using the CT concept which generates a semantically equivalent model. The third
module is an unparser of the Prolog factbase producing pure Eiffel code.

In section 7.3 the transformations are described via the conditional transformation (CT) ab-
straction. The CTs from the transformation graph were designed to be executed sequentially in
order to perform the necessary transformations. The ANDSEQ, ORSEQ and PROPSEQ opera-
tors were used to compose the CTs and thus to express the logic of the transformation. The order
of some CTs is arbitrary for the transformation. For example, the deletion of feature selection facts
can be interchanged with the deletion of foster facts. Some CTs may not be even executed during
transformation. For example, when exheriting a feature with no return types the CT responsible
with the return type creation will not be executed. The transformations keep as much time as
necessary the reverse inheritance information in the model, being eliminated only at the end. This
will help us better locate the model elements which need early transformations and avoid using
new intermediary facts. In the transformation CT tree were used ORSEQ operators and some
PROPSEQ operators. The main transformation flow is based on a foster class parameter. At the
beginning of the transformation sequence some CTs propagate the newly created features in order
to equip them with formal arguments and return types.

Further on, we presented a set of transformations on the factbase model which express the

200 BUPT

semantics of reverse inheritance. We decided to use a declarative language, Prolog, since the
semantics of reverse inheritance could be more easily expressed than using an imperative language
based on AST (Abstract Syntax Tree) and Visitor design pattern [GHJV97]. The implementation
is based on the CT abstractions which uses parameters and operators to interact with each other.

The feature exheritance is not a trivial process. First the candidate features are computed, next
their signatures are compared. In this process the combination of all compatible types is taken
into account. If we obtain successfully the list of types from the signature we can start creating
the formal arguments and return types. During this creation process, like types are analysed
again since there is a chance that the anchor was exherited and the new type could refer it. At
this stage new type facts may appear which must be added to the factbase. Next, the feature
clauses are transformed in order to produce the equivalent code. Renamings are reversed, features
from the subclasses are renamed back to their original names. Redefinition clauses of exheritance
are translated into equivalent inheritance redefinition clauses for both new features and redefined
features in foster class. The exheritance branches are transformed into inheritance branches using
two strategies depending whether the exherited classes are generic or not. The actual generics
used to instantiate the exherited classes will be reversed to instantiate the foster class. Finally,
the feature selection mechanisms and the foster modifiers are deleted from the factbase.

201 BUPT

Chapter 8

Evaluation of the Approach

In this chapter we will compare the reverse inheritance approach to class hierarchy reorganization
strategies, class reuse mechanisms, software adaptation and evolution techniques. We will high-
light the similarities and differences between the reverse inheritance class relationship and other
related mechanisms or reegineering models. The closest concept to reverse inheritance is ordinary
inheritance. In some situations reverse inheritance has adapter design pattern capabilities. A con-
crete reenginering method for creating abstract superclasses can be organized around the reverse
inheritance concept. The use of reverse inheritance implies an atomated refactorization process
which can make the original code adapt or evolve. Algorithms optimizing feature factorization
have the same goals as reverse inheritance, but use different means. Reverse inheritance is also a
class reuse concept and is part of class reuse mechanisms like traits and mixins.

8.1 Reverse Inheritance vs. Ordinary Inheritance
The most similar mechanism, which by the way gave birth to reverse inheritance, is ordinary in-
heritance [Fro02]. While ordinary inheritance represents a top-down approach, reverse inheritance
is a bottom-up technique of class organization. Ordinary inheritance affects the subclasses letting
the superclasses intact, while reverse inheritance creates the superclass letting subclasses unmod-
ified. We consider that ordinary and reverse inheritance are symmetrical meaning that any class
construction built with reverse inheritance can be reproduced with ordinary inheritance. Reverse
inheritance introduces no new, incompatible concepts than the already existing and maybe some
natural deriving ones like adapt, because adaptations are a must in an environment where classes
come from different hierarchies. Common features will be hosted in the foster class and they will
be present also in the exherited classes. The behavior of such class hierarchies is the same in the
two cases. In inheritance the things are slightly different because common features are declared
only in the superclass and they are inherited in the subclasses. Subtyping relationship between
classes can be selected in both versions of inheritance (conforming and non-conforming).

Inheritance clauses generally refer to one inherited feature, while in exheritance they may refer
to all the exherited features from the exherited classes. The inheritance clauses refer to one feature
in the superclass while exheritance clauses may refer one (rename, moveup, adapt) or multiple
exherited features (redefine).

8.2 Reverse Inheritance and Design Patterns
In [GHJV97] are presented several design patterns which are a collection of general solutions
to commonly occurring problems. The class reorganization strategies may be applied either at
design time or may be applied afterwards. The second possibility requires changing the original
code but reverse inheritance helps avoiding this. Because design patterns are based basically on
polymorphism, dynamic binding, features which are offered by inheritance, we may say that design

202 BUPT

Figure 8.1: Adapter Using Reverse Inheritance

patterns may rely on reverse inheritance also. In some cases reverse inheritance will help building
better design solutions than ordinary inheritance. With respect to these ideas we will analyse
three examples of design patterns applied using reverse inheritance: adapter, strategy, template
method.

Adapter Design Pattern Using Reverse Inheritance Reverse inheritance may help in using
the Adapter design pattern in some cases, because it adapts subclass interfaces to the interface of
the foster class.

In figure 8.1 and example 128 we show how reverse inheritance can help in the implementation
of the Adapter design pattern [GHJV97]. The basic usage of this design pattern is to adapt the
interface of a class to a different interface of another class. In our case we want to implement the
STACK interface using the DOUBLE_LINKED_LIST class. For that we created a new class
DOUBLE_LIST_IMPL_STACK which is the superclass of DOUBLE_LINKED_LIST and at
the same time a subclass of STACK. From the implementation of the adapted class we will import
all the necessary features in the foster class by listing them in the moveup clause. The case
of single inheritance allows exheritance of features in more relaxed conditions than exheritance
from multiple classes because we do not have to find the features having the same signature in all
exherited classes. We can notice that the methods in the STACK interface have different names
from the methods of the adapted class, so renaming is used to change their names.

The other possibility is to inherit from DOUBLE_LINKED_LIST class, to rename the insert-
Tail and removeTail methods and to prohibit the inheritance of the other unnecessary features
like insertHead, removeHead.

Template Method Design Pattern Using Reverse Inheritance When moving the imple-
mentation of a feature in a foster class we can obtain the effects of the Template method design
pattern (see figure 8.2 and example 129).

In figure 8.2 and example 129 we present a situation where we have a transaction class TRANS-
ACTION_SOCGEN which implements a checking template method, meaning that each transac-
tion should check the bank, the credit of the owner, the loan the owner may have got, the stock
of the bank and the future income the owner may have. All these checkings are implemented in
different manners for each particular bank. This checking template can be reused for implementing
another transaction for a different bank. Using exheritance we will exherit the implementation
of method check into a separate superclass TRANSACTION. Also the checking operations are

203 BUPT

Example 128 Adapter Using Reverse Inheritance (Eiffel Code)
deferred class STACK
feature
push(o:OBJECT) is deferred end
pop:OBJECT is deferred end
top:OBJECT is deferred end

end
class DOUBLE_LIST_IMPL_STACK
inherit
STACK

exherit
DOUBLE_LINKED_LIST
rename
insertTail as push,
removeTail as pop,
getTail as top

moveup
insert,remove,insertHead,push,
removeHead,pop,getHead,top

end
all

end
class DOUBLE_LINKED_LIST
feature
insert(pos:DNODE;o:OBJECT) is do ... end
remove(pos:DNODE) is do ... end
insertHead(o:OBJECT) is do ... end
insertTail(o:OBJECT) is do ... end
removeHead:OBJECT is do ... end
removeTail:OBJECT is do ... end
getHead:OBJECT is do ... end
getTail:OBJECT is do ... end

end

Figure 8.2: Template Method Using Reverse Inheritance

204 BUPT

Example 129 Template Method Using Reverse Inheritance (Eiffel Code)
class TRANSACTION_SOCGEN
feature
checkBank is do end
checkCredit is do end
checkLoan is do end
checkStock is do end
checkIncome is do end
check is
do
checkBank
checkCredit
checkLoan
checkStock
checkIncome

end
end
foster class TRANSACTION
exherit
TRANSACTION_SOCGEN
moveup check

end
all
end
class TRANSACTION_BPN
inherit
TRANSACTION_SOCGEN
redefine checkBank,checkCredit,checkLoan,CheckStock,checkIncome

end
feature
checkBank is do end
checkCredit is do end
checkLoan is do end
checkStock is do end
checkIncome is do end
check is do ... end

end

205 BUPT

exherited as deferred features since they are needed by the check method. From the newly con-
structed superclass we can inherit the template method and reimplement the checking operations
in class TRANSACTION_BPN.

Reverse inheritance is a different way of reusing behavior and state from classes, the same
thing could be done also by ordinary inheritance. In this case we could non-conformly inherit
from class TRANSACTION_SOCGEN, redefine the checking operations and not export the other
unnecessary features. In this solution we performed just a class reuse operation without having
any type relationship between the classes. If we consider to inherit conformly and to prevent
the export of unnecessary features then the class instances may be target to invalid CAT1 calls.
The advantage of reverse inheritance solution stands in offering the application designer a new
supertype holding the common behaviour and state.

8.3 Reverse Inheritance and Abstract Superclass Creation
by Refactorings

In [OJ93] is described a manual method of reorganizing class hierarchies by creating a new abstract
superclass for a set of subclasses, using refactorings [Opd92, Fow99]. It is explained step by step
the process of creating an abstract superclass: adding function signatures to the superclass, making
function bodies compatible, moving variables and migrating common code to the superclass. In
our work dedicated to Eiffel we encapsulated all these operations in the semantics of reverse
inheritance. The main difference is that the transformations proposed alter the subclasses while
our approach keeps them intact, having the possibility of cancelling later easily the modifications.
We will show a parallel between the two approaches, so we translated the use case of [Opd92] in
order to fit the syntax of Eiffel. In example 130 is presented the equivalent class MATRIX in
Eiffel.

The original MATRIX class contains:

• same attribute for storing state: rows, columns, elements;

• accessor methods for each element of the modelled matrix: get and put which use a linear
formula for indexing;

• a creator method matrix which is the equivalent of the C++ constructor;

• special matrix operators like matrixMultiply, rotate, matrixInverse.

In example 131 we created the new class ABSTRACT_MATRIX which exherits state and
behavior from the original MATRIX class. The rows and columns attributes were exherited as
effective. The elements attribute is redefined at foster class level as an array of class ANY. The
get and put accessors were exherited as deferred since in SPARSE_MATRIX class they will have
a different implementation based on storing non-null values and their coordinates. The operations
methods matrixMultiply, rotate, matrixInverse were exherited as deferred also since they have to
be redefined at foster class level using the get and put accessors. The operation features will act
like template methods in the foster class and in the subclasses they will reuse the redefined local
accessors.

Later from the ABSTRACT_MATRIX class there can be derived the SPARSE_MATRIX
class presented in example 132. The elements attribute has to be redefined as an array of
SPARSE_ELEMENT instances. The get and put accessors must be redefined since they have to
perform searches in the array containing the values along with their coordinates and not direct in-
dexing like original MATRIX class did. A possible implementation for the SPARSE_ELEMENT
class is presented in example 132 and it must contain attributes and accessor for storing the value
and its coordinates.

1Changing Availability of Type

206 BUPT

Example 130 Initial Matrix Class
class MATRIX
create matrix
feature --attributes
rows, columns : INTEGER
elements : ARRAY[INTEGER]

feature --accessors
get(rowNum:INTEGER;colNum:INTEGER):INTEGER is
do
result:=elements.item(rowNum * columns + colNum)

end
put(newVal:INTEGER;rowNum:INTEGER;colNum:INTEGER) is
do
elements.put(rowNum * columns + colNum,newVal)

end
feature --creators
matrix(numRows:INTEGER; numCols:INTEGER) is do
create elements.make(0,9999)

end
feature --operations
matrixMultiply(m2:MATRIX):MATRIX is do ... end
rotate is do ... end
matrixInverse is do ... end

end

Example 131 Abstract Matrix Class
foster class ABSTRACT_MATRIX
exherit
MATRIX
moveup rows, columns

end
only elements, get, put, matrixMultiply, rotate, matrixInverse
redefine elements, matrixMultiply, rotate, matrixInverse

feature --attributes
elements : ARRAY[ANY]

feature --accessors
get(rowNum,colNum:INTEGER):INTEGER is deferred end
put(newVal:INTEGER;rowNum:INTEGER;colNum:INTEGER) is deferred end

feature --operations
matrixMultiply(m2:ABSTRACT_MATRIX):ABSTRACT_MATRIX is
do
-- must be reimplemented accessing only get and put

end
rotate is
do
-- must be reimplemented accessing only get and put

end
matrixInverse is
do
-- must be reimplemented accessing only get and put

end
end

207 BUPT

Example 132 Sparse Matrix Class
class SPARSE_MATRIX
inherit
ABSTRACT_MATRIX
redefine elements, get, put

end
feature --attributes
elements : ARRAY[SPARSE_ELEMENT]

feature --accessors
get(rowNum,colNum:INTEGER):INTEGER is
do
-- a search in the array is performed

end
put(newVal:INTEGER;rowNum:INTEGER;colNum:INTEGER) is
do
-- a search in the array is performed

end
end
class SPARSE_ELEMENT
feature --attributes
rowNum : INTEGER
colNum : INTEGER
value : INTEGER

feature --accessors
getRow:INTEGER is do result:=rowNum end
setRow(row:INTEGER) is do rowNum:=row end
getCol:INTEGER is do result:=colNum end
setCol(col:INTEGER) is do colNum:=col end
getValue:INTEGER is do result:=value end
setValue(v:INTEGER) is do value:=v end

end

208 BUPT

We showed that the matrix abstraction process can be performed successfully with reverse in-
heritance and ordinary inheritance without affecting the original class. There are some differences
due to the fact that reverse inheritance keeps intact the behavior of the exherited classes. The first
difference refers to the impossibility of renaming the original MATRIX class because of reverse
inheritance imposed restrictions.

The exheritance of the elements attribute is not present in the [OJ93] example, but we redefined
it as an array of ANY references at the superclass level in order to be reused. In the sparse matrix
class this array is redefined as an array of sparse elements in both approaches. If we choose not
to exherit this member in the superclass, we will have to add a new array of sparse elements in
the sparse matrix class implementation.

The columns and rows attributes were listed in the moveup clause of reverse inheritance while
in the [OJ93] example they moved the attributes manually or automatically. In both approaches
the effect will be the same.

The accessor methods get and set are exherited as deferred in the abstract class and then
reimplemented in the sparse matrix class. For this only the selection of features in the exheritance
clause was necessary, while in the [OJ93] example they had to explicitly copy the signature in the
superclass manually or automatically.

The matrix operations in our approach have to be redefined at foster class level using the
accessor methods since in [OJ93] example they are directly modified to use accessors and then it
is moved in the superclass. In both approaches they will operate as template methods.

We can conclude that both methods have the same goals for the given example. The [OJ93]
method has more flexibility since they use ad-hoc refactoring operations while reverse inheritance
has strict rules. The refactorings in [OJ93] method are manual or semiautomatic while in reverse
inheritance the refactorings are expressed implicitely by the semantics.

8.4 Reverse Inheritance and Other Class Reuse Mechanisms
In [Fow99] are presented several techniques of restructuring code by altering its internal structure
without changing external behavior. We adhere to this restriction in the sense that we do not
change the behavior of the exherited classes. Some code reorganization techniques will be used
in our work when implementing the semantics of reverse inheritance in terms of equivalent pure
language constructs. By proving that each semantical element of reverse inheritance can be ex-
pressed using pure Eiffel language constructs we can assure the feasibility of our approach. We
mention also that this is not the only possible implementation.

In [DHLR02] is presented an algorithm that reorganizes class hierarchies based on Galois lattice
for optimizing factorization of features. In this work the changes are intended to be performed on
a class hierarchy in order to avoid flaws regarding factorization. Modifications of attributes to all
occurrences is considered time consuming and error prone. Multiple unnecessary declarations of
features makes the hierarchy less understandable and usable. In our approach reverse inheritance
helps modifying the class hierarchy in order to reflect the new desired model of the application
and also to reduce the presence of redundant attributes and methods. The difference between
the two approaches is that the reorganization algorithm proposed in [DHLR02] is automatic and
it may modify the relations between classes in order to perform optimizations, while exheritance
must be used as a tool for redesign first and then by automatic translation the executable system
can be obtained.

In [SDN02, SDNB03] is presented the trait model which can be viewed as a class reusing
mechanism. Traits are reusable and composable parts of a class which can be connected together.
Also traits must respect a connection protocol between them, so they must be designed in a special
way. The trait model can be applied only in frameworks in which reusable traits already exist.
Reverse inheritance is designed so that it can be applied to any set of class hierarchies written in
Eiffel. Comparing the two models, traits are more likely oriented toward designing a system whose
parts should be highly reused, while reverse inheritance helps reusing already designed systems.

209 BUPT

Example 133 Excerpt of Eiffel Library

8.5 Experimenting with Reverse Inheritance on Eiffel Kernel
Library

In previous sections we intend to show the main facets of reverse inheritance and its implemen-
tation. The aim of this section is to experience reverse inheritance for implementing the reuse of
the Eiffel library2.

Let us consider the kernel Eiffel library (around 300 classes), especially its kernel (120 classes).
In the latter we are interested in an excerpt of this kernel (see figure 133) focusing only on a few
classes and features needed by our case-study. Class DIRECTORY provides 73 features to handle
directories3.

Class PLAIN_TEXT_FILE has a total of 318 features and manages creation and use of plain
text files as its name suggests it. Class FILE (resp. IO_MEDIUM) contains a total of 307
(resp.120) features. Class DISPOSABLE contains 33 features coming mainly (31 of them) from
class ANY which is inherited implicitly by every class.

As figure 133 shows it, class DIRECTORY and class PLAIN_TEXT_FILE have common
functionalities but they are not factorized in common inherited classes. The subset of features
shows that both of these classes may open a file or directory in the reading mode (open_read), make
the cursor at the first position (start) and close it (close). Class DIRECTORY allows access to the
name of the files or directories that one directory may contain. The routine read_entry reads the
next entry and makes it accessible through the attribute last_entry. Class PLAIN_TEXT_FILE
provides read_line and laststring. They work in the same way as read_entry and last_entry.
Feature read_line retrieves the next line of the file and laststring is a function allowing access to
it.

Let us suppose that we need to write a small program for visiting a file system and printing
on the screen the contents of directories (name of included files like the UNIX command ”ls”) or
text files like the UNIX command ”cat”. To implement this case study in an appropriate way
we need to have a common ancestor (we called it GEN_FILE) for PLAIN_TEXT_FILE and
DIRECTORY like it is experienced in the source code presented in example 134. It prints on the
screen the contents of each plain text file or directory found in the file system.

Routine get_next (line 04) returns an instance of PLAIN_TEXT_FILE or DIRECTORY
which corresponds to the next file to be considered. Due to class GEN_FILE we benefit (lines

2This library comes with EiffelStudio and may be found at http://www.eiffel.com/products/studio/.
3The number of features given in this paragraph includes the inherited features, as if the hierarchy was flattened.

210 BUPT

Example 134 Implementation of the Case Study
01 ...
02 f: GEN_FILE
03 ...recursive visit of the file system
04 f := get_next
05 f.open_read
06 from f.start
07 until stop
08 loop
09 f.read_line
10 stop := f.laststring = void
11 if not stop then
12 io.putstring (f.laststring)
13 end
14 end -- loop
15 ...

05 to 12) from the polymorphism and we do not have to consider differently the two categories
of files in the source code.

But this is not as straighforward as it may look like. Figure 133 shows that the features which
are needed by class DIRECTORY are all declared in this class but this is not the case for class
PLAIN_TEXT_FILE : some of them are declared in class IO_MEDIUM and some others in
FILE.

To make GEN_FILE the direct ancestor of DIRECTORY and PLAIN_TEXT_FILE with
all the common features is then not sufficient because we must avoid the creation of any new
inheritance paths in order to not introduce any conflict or additional ambiguities. The consequence
is that we may not exherit inherited features, so that a reverse inheritance relationship must target
a class where the feature is declared or at least redefined. This is why we define two foster classes
instead of only one, with an inheritance relationship between them: GEN_IO_MEDIUM and
GEN_FILE (see figure 8.3).

The source code of these foster classes is shown in figure 135. It is worth to note that the use of
single exheritance between IO_MEDIUM and GEN_IO_MEDIUM (line 03) would allow without
any further constraint to move (using the clause moveup) the implementation of the two features
into GEN_IO_MEDIUM. We did not select this possibility because we do not intend to share the
implementation of these features between DIRECTORY and PLAIN_TEXT_FILE. To select it
would force us to undefine them (clause undefine) when inheriting from GEN_IO_MEDIUM in
class GEN_FILE.

Moreover the clause only (line 04) is optional. But not using it in GEN_IO_MEDIUM would
make all the features of IO_MEDIUM deferred features of the foster class. In class GEN_FILE
we use multiple exheritance (lines 12 to 17). Again, the clause only (lines 18 -19) is optional.
Not using it would make all factorizable features of DIRECTORY and FILE, deferred features
of GEN_FILE (there are 15 of them). Finally, the signature of read_line and read_entry may
not be the same. This would be solved using the clause adapt for some scale adaptation but for
handling the difference of parameter order and/or parameter number depending on the situation.

Looking to classes FILE and DIRECTORY, we have such features: open_read, close and start
which are present in both classes with the same signature. Class FILE contains an attribute
last_string which contains the last string read by the routine read_line. Class DIRECTORY
includes a routine read_entry for reading the content of an entry (mainly the corresponding file
name) and a routine laststring which allow to access to the last entry read by the previous routine.
Then we propose to define the following foster class (see figure 135).

Our compiler ETransformer generates the prolog facts (there are 150.000 facts and their
overall size is 6 MBytes) in less than 7 seconds. Then we perform the transformation and then the

211 BUPT

Figure 8.3: Adaptation of the Eiffel Library

Example 135 Foster Classes for Adapting the Library
01 deferred foster class GEN_IO_MEDIUM
02 exherit
03 IO_MEDIUM
04 only read_line, laststring
05 feature
06 end -- class GEN_IO_MEDIUM
07
08 foster class GEN_FILE
09 inherit
10 GEN_IO_MEDIUM
11 exherit
12 DIRECTORY
13 rename
14 read_entry as read_line,
15 lastentry as laststring
16 end
17 FILE
18 only open_read, start, read_line,
19 laststring, close
20 feature
21 end -- class GEN_FILE

212 BUPT

Figure 8.4: Eiffel Library after Transformation

regeneration of Eiffel classes. These two phases take about 90 seconds. It is straighforward that
an optimized implementation fully integrated in the Eiffel compiler would have a much smaller
overhead. The generated classes (see figure 8.4) are recorded in a temporary directory. Then
this directory is given to the Eiffel compiler in order to get the application ready to be executed.
Presently the process is not fully automated and the different steps (fact generation, transformation
and source (re)generation, Eiffel compilation) are initiated manually by the user but this can be
done easily and be fully integrated.

Summary This experiment of our approach suggests a number of comments. It stresses that
our first intent is not to refactor a class-hierarchy, but to adapt its content in order to reuse it
for the purpose of a given application. Nevertheless our approach by model transformation allows
also to generate a new pure Eiffel hierarchy without any reverse inheritance relationship. This
new hierarchy could be considered as an evolution of the original one and replace it.

The rules that had been set (e.g. no additional inheritance path, no introduction of new features
in foster classes, attribute may not be merged when they do not have a common seed...), may ap-
pear as a limitation - for example we had been forced to create two foster classes GEN_IO_MEDIUM
and GEN_FILE instead of one. But these rules are necessary in order to preserve the original
semantics of existing Eiffel constructs and the strong-typing. The main outcome is that the be-
haviour of existing classes is not modified so that it doest not impact the robustness of existing
code.

Reverse-inheritance is more than another approach for improving the reuse; it is the counterpart
of ordinary inheritance. Accordingly, reverse inheritance is not designed to solve all the problems
related to reusability. But, it is fully integrated in the language making it more understandable
by Eiffel progammers. The various clauses provided for this new relationship and their possible
combinations are in line with the complexity but also the expressiveness of ordinary inheritance.

This makes it fully integrated in the language. The effort for implementing reverse-inheritance
relationship within Eiffel is significant but not more than some other interesting features of this

213 BUPT

language. The fact that Eiffel is a strongly-typed language increases the complexity of the mech-
anisms to be implemented but allows a better control of the reuse.

There are two main research directions related to source-code reuse:
i) to consider existing source-code in its current state and to adapt it locally in order to be

able to use it for building an application or,
ii) to improve the quality of the source-code in order to make it more reusable.
There is no doubt that object-oriented languages do not fully achieve software reusability even

if the contribution is significant thanks to ordinary inheritance, genericity, assertions, etc.
Adaptation of existing classes or their refactoring may be handled either by new paradigms (and

some extensions of existing ones), or by external tools provided by the programming environment.
In general refactoring facilities are included in the programming environment whereas adap-

tation capabilities are more likely introduced in the programming language itself. As it had been
mentioned earlier, reverse inheritance belongs to the second category. A lot of other paradigms or
language extensions intend to improve software reusability.

214 BUPT

Chapter 9

Conclusions and Perspectives

9.1 Contributions
Analysis of the Class Reuse Mechanisms In this work we analysed: the features of ordinary
inheritance, the existing elements of reverse inheritance in literature [CCL+05d], other reuse
mechanisms. We identified some potential uses of reverse inheritance in Java, but with not so
much benefits [CPc05, CCL05b, CRC+06a, CRC06b]. In the next paragraphs are presented
the main challenges and our proposed solutions, which are scientific contributions, in order to
implement this class relationship.

Exheritance Definition We defined reverse inheritance semantics relying on seven principles
[SLC09]. In the definition several choices were made to facilitate simplicity. The choice for
the syntactical elements was made taking into account the expressiveness of the resulted class
hierarchy. In order to avoid confusion we pointed out the difference between single, multiple
reverse inheritance and several independent reverse inheritance class relationships.

Feature, Type and Implementation Exheritance We designed feature exheritance [CCL+04c,
CCL04a, CCL04b, CCL+05c] as the main concept in obtaining a uniform interface for all the dif-
ferent subclasses. The choices for factorization are multiple, depending on the number of features
that are needed to be exherited. One can choose all possible features except some, which may
have the same name but representing the same feature, or can choose no features to be factored
implicitly, but the explicitly listed ones. All features or no features may be exherited also. The
nature of the feature attribute or method is not important when setting the implicit rules for fac-
torization. For simplicity, we decided that it is better that implicitly both attributes and methods
are exherited as deferred features in the foster class.

Another challenge was the definition of type exheritance rules in the exheritance of candidate
signatures. We defined type exheritance rules for each sort of type from the Eiffel type system
[CLS07, SLC09]. Identical class types are exherited as such. Class types with actual generics
must have the same structure in order to be exherited. Expanded types and separate types must
have the same referred class type in order to be exherited. Like types are exherited together with
their anchor when possible in the case of feature and formal argument. Otherwise, the target
type is used for exheritance. Like current types are exherited as such when all candidates are like
current. Bit types are exherited in the foster class using the common manifest integer constant.

When implementation is subject to factorization, we found out that there are quite strong
restrictions to be imposed, in order to obtain a valid class hierarchy. We found solutions and decent
compromises to all related problems [CLS07, SLC09]. The exheritance of implementations calling
precursor disables implementation reverse inheritance. The main problem refers to dependencies
that can be handled either by exheriting them or by reimplementing them at the foster class level,
but without affecting the behavior of the original classes. Redefinition of features may also change

215 BUPT

the availability of types in the context of foster class. Fortunately such problems can be detected
statically, at compile time.

Type Conformance Another important feature of reverse inheritance we pointed out is the type
conformance between subclasses and the foster class. We made the substitution principle of poly-
morphism to work exactly like in ordinary inheritance. Dynamic binding of common features still
holds in the context of reverse inheritance. Because of symmetry reasons, we created the concept
of non-conformance reverse inheritance. In some versions of the Eiffel language, non-conforming
inheritance is used as solution to solve dynamic binding problems. The exheritance class relation-
ship in this case can be used only for reusing implementation from the subclasses. Generic classes
instantiated with classes related by reverse inheritance keep their superclass/subclass behavior.
Using reverse inheritance between classes working as types, covariant feature redeclarations can
be obtained. The expanded status of a class is orthogonal on the ordinary or reverse sort of inher-
itance. A delicate aspect is related to the behavior added in the superclass, which can be achieved
either by reverse inheritance from the subclasses or from a potential superclass. Our approach is
strongly based on the fact that in ordinary and reverse inheritance features can be redefined. We
restricted some exheritance clause combinations in context of attributes, methods and mixes of
attributes and methods. Moving a candidate feature and redefining another candidate, or moving
at the same time several candidate features are not valid actions.

Feature Adaptations, Genericity and Assertions Redefinition Since adaptations are the
core of the exheritance mechanism permitting the use of several different classes under a common
interface, we dedicated a special chapter to present the related problematics. First we presented
the classic adaptation mechanisms like redefinition, undefinition and renaming and how they work
in the context of reverse inheritance. We designed a special set of adaptations [CCL05a, CCL07a,
CCL07b] the ones related to signatures, which may be different and still have a common signature
in the foster class. In [LHQ94] was presented an example of parameter order adaptation without
any syntax definition and underlying implementation. Our syntax for this mechanism allows
adaptation code to be written for formal arguments and return types. We consider that our
designed adaptations are not a severe deviation from the philosophy of the language.

Regarding genericity we analysed the cases of unconstrained and constrained generic subclasses.
We allowed for a foster class to instantiate and exherit several generic classes. If the foster class is
also generic then non-generic features and also generic features can be exherited, since there is no
constraint on the generic parameters and they can be instantiated with any type. A special and
useful situation of reuse arises in case the foster class is generic and the subclasses are non-generic,
and some concrete features from the subclasses are exherited as generic features. This behavior
is somehow asymmetric related to ordinary inheritance and probably difficult to implement. For
constrained genericity exheritance cases, in order to be able to factor generic features there must
be a conforming supertype of all corresponding generic parameter constrained type. If such a type
does not exist, we can always provided it by reverse inheritance.

The redefinition of assertions (preconditions, postconditions and invariants) is a very prob-
lematic issue related to reverse inheritance. Precondition in foster class must be stronger than
those in subclasses, so the AND logical operator must be used [LHQ94]. This approach is not
always applicable when preconditions from the subclasses are contradictory. False is the strongest
precondition, but it will forbid method code execution, resulting failure. For postconditions and
invariants the OR logical operator should be used. The problem of postconditions is not so severe
since true is the weakest postcondition that always checks. Another problem arises for all asser-
tions when a feature present in the logical expression is not exherited in the foster class [LHQ94].
For this problem we proposed as strategy to eliminate the missing logical variable, replacing it
with a neutral constant (true or false), trying to affect as less as possible the logical expression.
However, the burden of guaranteeing which assertion is correct, is left in the responsibility of the
programmer. Using such keywords makes the programmer aware. A different approach, which
we implemented in the prototype, is to create a combined precondition and postcondition using

216 BUPT

the cheating server technique inspired from [Int06], but the non-exheritable features would still
make impossible the exheritance of that feature. This technique implies creating a complex as-
sertion expression based on static type checking of the current instance and the execution of the
corresponding assertion found in the subclass.

Coupling Exheritance with Inheritance We studied several class configurations made of
foster classes and ordinary classes. The most interesting case is the one of amphibious features
which cannot be prevented from exheritance. In such cases the prototype generates equivalent class
hierarchies with the appropriate inheritance clauses in order to avoid implementation conflicts due
to the newly added class.

The classic diamond multiple inheritance class configuration can be obtained also using reverse
inheritance, but adding the classes in different orders, thus having different time stamps. In the
case of sharing multiple inherited features there are no problems because the features share the
same seed, but when replication is needed and the class in the top of the hierarchy is added last,
then the selection of the appropriate implementation for a replicated feature in the bottom class
must be specified in the top class, since it is the last one added. The classic solution of using
select for solving dynamic binding problems in ordinary inheritance has some drawbacks in more
complex class hierarchies, by not permitting a free selection of a desired implementation for a
feature. This issue is not solved in inheritance nor in exheritance.

We analysed the impact of some keywords related to the status of features and classes in
the context of reverse inheritance. The most interesting one is related to the use of precursor.
Related to feature export, our conclusion is that the foster class can restrict the set of subclass
common clients, but not to allow new ones. Creational procedures can be exherited, but in the
foster class they must be also declared in the creation procedure list. The assign clause of an
attribute can be exherited together with the attribute, if they are present in all the subclasses.

Thus, we defined our semantics for the class reuse mechanism fulfilling our first objective.

Prototype Implementation We decided to integrate reverse inheritance in Eiffel because of
its philosophy, it includes multiple inheritance, unique names for features, redefinition clauses.
Regarding the implementation architecture [CKLS07], firstly we designed the reader module of
the prototype which translates RIEiffel into Prolog by extending the grammar of a GOBO com-
piler with reverse inheritance specific syntax. We added new syntax for: the foster keyword in
the class header, the exheritance branch with all its clauses, the feature selection mechanism after
the inheritance/exheritance section, the adaptation syntax in the body of a method. We modelled
all the entities of the RIEiffel language in Prolog including both ordinary and reverse inheri-
tance. With respect to the ideea of generating Prolog representation from program source code
we developped an automated grammar driven approach applicable to any programming language
[CJM08, JCM08].

In the second transformation module we implemented the designed concepts of reverse inheri-
tance by Prolog CTs1 which manipulate the original source code in form of facts. Each informal
rule in the semantics part has its counter part in the set of Prolog CTs executed by the CTC
transformation engine. All the semantics from the previous paragraphs is implemented by CTs
written in Prolog.

Finally, we wrote an unparser, the writer module, to translate back Prolog facts into pure
Eiffel source code. Arround the prototype modules we designed a testing framework, animated
by Perl scripts, using output testing and structural testing strategies [CJF09]. We consider that
implementing reverse inheritance semantics by CTs executed by the CTC engine is a validation of
the transformation engine itself.

Conditional Transformations Implementing Reverse Inheritance Semantics We de-
signed a set of CTs for common signature feature exheritance. The feature signature is decom-

1The Conditional Transformation is a pair of a precondition and a transformation action written in Prolog and
processed by the CTC transformation engine.

217 BUPT

posed into: name, argument and return type. All these are analyzed in order to produce a common
signature for the new feature in the superclass. We wrote the type exheritance CTs which take
into account our proposed rules related to the whole Eiffel type system and determines the rep-
resentant type for the superclass computed from a set of subclass types. We wrote these CTs
in order to generate static type checking conditions for preconditions and postconditions. Our
export CTs computes the common set of client classes for an exherited feature. Using these CTs
we generate the mediator feature and the glue code in order to adapt attributes and methods.
Our class reorganization CTs transform exheritance into inheritance branches and also deals with
genericity: creates new types and instantiates them as needed. Usually, new language concepts are
implemented in small experimental languages which are easy to prototype. We integrated reverse
inheritance in Eiffel which is an industrial strength programming language.

Thus, we showed that reverse inheritance is implemented in an industrial strength language
achieving our second objective.

A Posteriori Class Reusability According to our objectives we designed reverse inheritance
with a posteriori class reusability facilities like: i) to create new abstract supertypes; ii) to fac-
tor features from classes; iii) to combine the implementations of features. The use of the class
relationship creates a common supertype for the subclasses through which these classes can be
manipulated. By common features factorization through implementation exheritance and later by
inheritance in new descendant classes we provide free reuse of the exherited code with new code
in two ways: by calling the exherited code or by redefining its calls.

Class Evolution and Adaptation By reverse inheritance we offer also facilities which promote
class evolution and adaptation: i) to redefine the implementations of features; ii) to adapt the
implementation of features; iii) to cancel the implementation of a feature. Redefining a feature in
a superclass with a general behavior facilitates building healthy and evolved class hierarchies. Our
adaptation mechanism allows adjusting different feature signatures to a common one, in order to
be uniformly reused. We consider that this mechanism makes the classes evolve. Cancelling the
implementation of a feature is a natural concept for generalization class relationship.

A Posteriori Class Hierarchy Reorganization Our concept of reverse inheritance helps also
a posteriori class hierarchy reorganization by adding an abstraction layer into a class hierarchy.
We designed the class relationship with the capability of combining it with ordinary inheritance,
thus building complex class hierarchies. For the unforseen design changes reverse inheritance
together with ordinary inheritance makes possible to add a new class between two existing ones
without affecting the rest of existing classes.

Pragmatics Assessing the principles of ordinary inheritance, the backbone of object-oriented
technology, will facilitate learning easily the principles of reverse inheritance. We base this idea
on the symmetry between the two class relationships. Our grammar extension is quite small
containing only a few rules. Renaming, undefinition and redefinition concepts have the same
semantics and the same syntax for reverse inheritance.

Thus, we showed that reverse inheritance has evolutionary and adaptability capabilities, ac-
complishing our third objective.

Feasible and Effective Class Reuse Mechanism Taking into account all developed reverse
inheritance features at both conceptual rules and prototype level, the thesis of this work is that re-
verse inheritance class relationship is a feasible and effective class reuse mechanism .
According to our accomplished objectives we fulfilled our main goal of class reuse .

218 BUPT

9.2 Future Work
Like Type Class Relationship A first perspective is to develop and explore further the
like type class reuse mechanism, which allows reuse in a slightly different manner. Single non-
conforming reverse inheritance is equivalent to single like type.

Formal Semantics Another perspective is to define the reverse inheritance of Eiffel semantics in
relation to the one of ordinary inheritance using formalisms based on lattices. Thus, the soundness
of the type system can be proved in the context of reverse inheritance.

Implementation Optimization A different perspective is linked to the optimization of the
current prototype implementation. We can optimize transformation speed by rewriting some of
the generic transformations. For example, the generic implementation for cloning an instruction
list can be done with specific cloning rules. Thus, at each node in the AST only a small subset of
facts corresponding to that node are iterated and not all the facts from the factbase.

Module Generalization Since the grammars for most programming languages are available
freely on the Internet, the reader and the writer modules could be automatically generated for any
language by a grammar driven approach. In this direction we did some efforts resulting Prolog
facts, following a strict generation pattern, very close to the AST. This generated Prolog model
is very rigid including unnecessary facts for some tokens and rules. A specification of mapping
rules between the grammar and the Prolog facts would permit the generation of customized Prolog
facts, thus eliminating all unwanted details.

Enhanced Portability Another perspective for the reverse inheritance extension is to be ported
on the latest versions of the GOBO Eiffel library [Bez07], as an experimental feature. We intend
to design the integration schema to be as independent as possible of the GOBO library further
evolution. The RIEiffel grammar files will override the standard ones from the library, the AST
files must be regenerated using the gelex and geyacc tools. The source files containing the classes
modelling the Prolog facts can be copied in a new folder of the existing directory structure. Such
an integration task could be easily automated by a shell script.

Developer Documentation A special attention should be given to technical writing. All
prototype modules should be described in details for any other future developers.

219 BUPT

Bibliography

[AAS01] Walid Al-Ahmad and Eric Steegmans. Integrating extension and specialization inher-
itance. Journal of Object-Oriented Programming, December 2001.

[AB91] Serge Abiteboul and Anthony Bonner. Objects and views. In SIGMOD’91 Conference
Proceedings, International Conference on Management of Data, pages 238–247, San
Francisco, California, March 1991. ACM Press.

[ABV92] Mehmet Aksit, Lodewijk Bergmans, and Sinan Vural. An object-oriented language-
database integration model: The composition-filters approach. In Ole Lehrmann Mad-
sen, editor, Proceedings of the 6th European Conference on Object-Oriented Program-
ming (ECOOP), volume 615, pages 372–395, Berlin, Heidelberg, New York, Tokyo,
1992. Springer-Verlag.

[AG00] K. Arnold and J. Gosling. The Java Programming Language. Sun Microsystems, 3rd
edition, USA, 2000.

[Agh86] Gul Agha. An overview of actor languages. In Proceedings of the 1986 SIGPLAN
workshop on Object-oriented programming, pages 58–67, New York, NY, USA, 1986.
ACM Press.

[Aks96] M. Aksit. Separation and composition of concerns in the object-oriented model. ACM
Comput. Surv., 28(4es):148, 1996.

[BDMN79] G.M. Birtwhistle, O.J. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin. Chartwell-
Bratt Ltd, 1979.

[BDW03] Alexander Bergel, Stephane Ducasse, and Roel Wuyts. Classboxes: A minimal module
supporting local rebinding. In JMLC’03: Proceedings of Joint Modular Language
Conference. Springer, 2003.

[Bez07] Eric Bezault. GOBO Eiffel Project. http://www.gobosoft.com, November 2007.

[BI08] Borland International. Borland C++ 5.5 - Command-line compiler, 2008.

[Boo94] Grady Booch. Object-Oriented Analysis and Design with Applications. Second Edi-
tion. Addison-Wesley, 1994.

[CCL04a] Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire. A reverse inheri-
tance relationship dedicated to reengineering: The point of view of feature factoriza-
tion. In MASPEGHI Workshop at ECOOP 2004, MechAnisms for SPEcialization,
Generalization and inHerItance, Oslo, Norway, June 2004.

[CCL04b] Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire. A reverse in-
heritance relationship for improving reusability and evolution: The point of view of
feature factorization. Research Report, 6 pages, ISRN I3S/RR-2004-22-FR, OCL
Project, Laboratoire Informatique, Signaux et Systmes de Sophia-Antipolis (UNSA /
CNRS), France, http://www.i3s.unice.fr/˜mh/RR/2004/liste-2004.html, September
2004.

220 BUPT

[CCL+04c] Ciprian-Bogdan Chirila, Pierre Crescenzo, Philippe Lahire, Dan Pescaru, and
Emanuel Ţundrea. Factoring mechanism of reverse inheritance. In International
Conference on Technical Informatics CONTI 2004, Periodica Politechnica, Trans-
actions on Automatic Control and Computer Science, ISSN 1224-600X, volume 49,
pages 131–136, Timisoara, Romania, May 2004.

[CCL05a] Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire. Reverse in-
heritance: An approach for modeling adaptation and evolution of applications.
Research Report, 14 pages, ISRN I3S/RR-2005-05-FR, OCL Project, Laboratoire
Informatique, Signaux et Systmes de Sophia-Antipolis (UNSA / CNRS), France,
http://www.i3s.unice.fr/˜mh/RR/2005/liste-2005.html, February 2005.

[CCL05b] Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire. Towards
reengineering: An approach based on reverse inheritance - application to java.
Research Report, 70 pages, I3S/RR-2005-05-FR, OCL Project, Laboratoire In-
formatique, Signaux et Systmes de Sophia-Antipolis (UNSA / CNRS), France,
http://www.i3s.unice.fr/˜mh/RR/2005/liste-2005.html, September 2005.

[CCL+05c] Ciprian-Bogdan Chirila, Pierre Crescenzo, Philippe Lahire, Dan Pescaru, and
Emanuel Ţundrea. Factoring mechanism of reverse inheritance. Research
Report, 6 pages, ISRN I3S/RR-2005-05-FR, OCL Project, Laboratoire Infor-
matique, Signaux et Systmes de Sophia-Antipolis (UNSA / CNRS), France,
http://www.i3s.unice.fr/˜mh/RR/2005/liste-2005.html, September 2005.

[CCL+05d] Ciprian-Bogdan Chirila, Pierre Crescenzo, Philippe Lahire, Dan Pescaru, and
Emanuel Ţundrea. Survey on reverse inheritance. Scientific Bulletin of Politehnica
University of Timisoara, Transactions on Automatic Control and Computer Science,
Vol. 50 (64), ISSN 1224-600X, 2005.

[CCL07a] Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire. Re-
verse inheritance: Improving class library reuse in Eiffel. Research Re-
port, 14 pages, ISRN I3S/RR-2007-10-FR, OCL Project, Laboratoire Infor-
matique, Signaux et Systmes de Sophia-Antipolis (UNSA / CNRS), France,
http://www.i3s.unice.fr/˜mh/RR/2007/liste-2007.html, March 2007.

[CCL07b] Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire. Reverse inheri-
tance: Improving class library reuse in Eiffel. Poster presentation at LMO (Langages
et Modeles a Objets) 2007 Conference, May 2007.

[CJF09] Ciprian-Bogdan Chirila, Calin Jebeleanu, and Krisztina Francz. Testing tech-
niques for a logic representation generator. In In Proceedings of 2009 IEEE 5-th
International Conference on Intelligent Computer Communication and Processing,
ICCP 2009, IEEE Xplore Rated, pages 207–210, Cluj-Napoca, Romania, August
27-29 2009.

[CJM08] Ciprian-Bogdan Chirila, Calin Jebelean, and Anca Maduta. Towards automatic
generation and regeneration of logic representation for object-oriented programming
languages. In In Proceedings of International Conference on Technical Informatics,
CONTI 2008, volume 2, pages 13–18, Timisoara, Romania, June 5-6 2008. Politehnica
Publishing House Timisoara.

[CKLS07] Ciprian-Bogdan Chirila, Gunter Kniesel, Philippe Lahire, and Markku Sakkinen.
RIEiffel Project Website. http://nyx.unice.fr:9000/trac, December 2007.

[CLS07] Ciprian-Bogdan Chirila, Philippe Lahire, and Markku Sakkinen. Towards fully-
fledged reverse inheritance in Eiffel. Research Report ISRN I3S/RR-2007-12-FR, OCL
Project, Laboratoire Informatique, Signaux et Systmes de Sophia-Antipolis (UNSA /
CNRS), France, http://www.i3s.unice.fr/˜mh/RR/2007/liste-2007.html, March 2007.

221 BUPT

[CMR02] Yania Crespo, Jos Manuel Marques, and Juan Jos Rodriguez. On the translation of
multiple inheritance hierarchies into single inheritance hierarchies. In In European
Conference on Object-Oriented Programming, 2002.

[Cor08a] Microsoft Corporation. Microsoft Windows, 2008.

[Cor08b] Microsoft Corporation. Visual C++, 2008.

[CPc05] Ciprian-Bogdan Chirila, Dan Pescaru, and Emanuel Ţundrea. Foster class model.
In In Proceedings of SACI 2005 2nd Romanian-Hungarian Joint Symposium on Ap-
plied Computational Intelligence, ISBN 963-7154-39-6, pages 265–272, Timisoara,
Romania, May 2005.

[CRC+06a] Ciprian-Bogdan Chirila, Monica-Naomi Ruzsilla, Pierre Crescenzo, Philippe
Lahire, Dan Pescaru, and Emanuel Ţundrea. Towards a reengineering tool for Java
based on reverse inheritance. In In Proceedings of SACI 2006 the 3-rd Romanian-
Hungarian Joint Symposium on Applied Computational Intelligence, ISBN 963-7154-
46-9, pages 364–375, Timisoara, Romania, May 2006.

[CRC06b] Smaranda-Claudia Chirila, Monica-Naomi Ruzsilla, and Ciprian-Bogdan Chir-
ila. Reverse inheritance features applied in coding Java mobiles applications. In
In Proceedings of International Conference on Technical Informatics - CONTI’2006,
ISBN (10): 973-625-319-8 ISBN (13): 978-973-625-319-5, volume 2, pages 43–46,
Timisoara, Romania, June 2006.

[CRM99] Yania Crespo, Juan Jos Rodriguez, and Jos Manuel Marques. Obtaining generic
classes automatically through a parameterization operator. a focus on constrained
genericity. In Proceedings of the Technology of Object-Oriented Languages and Sys-
tems, volume 31, pages 166–176, 1999.

[DHLR02] Michel Dao, Marianne Huchard, Therese Libourel, and Cyril Roume. Evaluating and
optimizing factorization in inheritance hierarchies. In Proceedings of the Inheritance
Workshop at ECOOP 2002, Malaga, Spain, June 2002.

[FOP04] Oleksandr Fuks, Jonathan S. Ostroff, and Richard F. Paige. SECG: The SCOOP-to-
Eiffel code generator. Journal of Object Technology, 3:143–160, 2004.

[Fou95] GNU Software Foundation. Flex - a fast scanner generator.
http://www.gnu.org/software/flex, March 1995.

[Fou06] GNU Software Foundation. Bison - GNU parser generator.
http://www.gnu.org/software/bison, 2006.

[Fow97] Martin Fowler. Dealing with roles. In Inproceedings of the 4-th Annual Conference
on the Pattern Languages of Programs, Monticello, Illinois, USA, September 1997.

[Fow99] Martin Fowler. Refactoring Second Edition. Addison-Wesley, 1999.

[FPB+02] Jeff Ferguson, Brian Patterson, Jason Beres, Pierre Boutquin, and Meeta Gupta. C#
Bible. Wiley Publishing, Inc., 10475 Crosspoint Boulevard, Indianapolis, IN 46256,
2002.

[Fro02] Peter H. Frohlich. Inheritance decomposed. In Proceedings of the Inheritance Work-
shop at ECOOP 2002, Malaga, Spain, June 2002.

[GHJV97] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1997.

222 BUPT

[GSR96] Georg Gottlob, Michael Schrefl, and Brigitte Rock. Extending object-oriented systems
with roles. In ACM Transactions on Information Systems, volume 14, pages 268–296,
July 1996.

[Hil99] Rich Hillard. View and viewpoints in software systems architecture. In First Working
IFIP Conference on Software Arhitecture (WICSA 1), pages 22–24, San Antonio,
Texas, February 1999.

[HN96] Michael Van Hilst and David Notkin. Using role components to implement
collaboration-based design. In Proceedings of Conference on Object-Oriented Pro-
graming, Systems, Languages and Applications (OOPSLA’96), California, USA, 1996.
ACM Press.

[Int06] ECMA International. Standard ECMA-367 Eiffel: Analysis, design and programming
language. www.ecma-international.org, June 2006.

[JCJO92] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software
Engineering: A Use Case Driven Approach. ACM Press, 1992.

[JCM08] Calin Jebelean, Ciprian-Bogdan Chirila, and Anca Maduta. Generating logic
based representation for programs. In In Proceedings of 2008 IEEE 4-th International
Conference on Intelligent Computer Communication and Processing, ICCP 2008, ISI,
IEEE Xplore Rated, pages 145–151, Cluj-Napoca, Romania, August 28-30 2008.

[Joh79] Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX Programmer’s
Manual, volume 2, pages 353–387. Holt, Rinehart, and Winston, New York, NY, USA,
1979.

[Kee89] Sonja E. Keene. Object-Oriented Programming in Common Lisp. A Programmer’s
Guide to CLOS. Addisson Westley, 1989.

[Ken99] Elisabeth A. Kendall. Role model designs and implementations with aspect-oriented
programming. In Proceedings of the 1999 Conference on Object-Oriented Program-
ming Systems Languages and Applications (OOPSLA), Denver, Colorado, USA,
November 1999.

[KK02] Günter Kniesel and Helge Koch. ConTraCT - conditional transformations for incre-
mental compilation of aspects. Demonstration at 1st International Conference on
Aspect-Oriented Software Development, June 2002.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Akşit and Satoshi Matsuoka, editors, Proceedings European Conference on Object-
Oriented Programming, volume 1241, pages 220–242. Springer-Verlag, Berlin, Heidel-
berg, and New York, 1997.

[Kni06] Günter Kniesel. A logic foundation for conditional program transformations. Tech-
nical Report IAI-TR-2006-1, Computer Science Department III, University of Bonn,
January 2006.

[KR93] Harumi A. Kuno and Elke A. Rundensteiner. Developing an object-oriented view
management system. In IBM Centre for Advanced Studies Conference archive Pro-
ceedings of the 1993 conference of the Centre for Advanced Studies on Collaborative
research: software engineering, volume 1, pages 548–562, Toronto, Ontario, Canada,
July 1993.

[Kri96] B. B. Kristensen. Object-oriented modelling with roles. In Object Oriented Informa-
tion Systems, Dublin, Ireland, 1996.

223 BUPT

[Lad02] Ramnivas Laddad. I want my AOP. Java World, January 2002.

[LHQ94] Ted Lawson, Christine Hollinshead, and Munib Qutaishat. The potential for reverse
type inheritance in Eiffel. In Technology of Object-Oriented Languages and Systems
(TOOLS’94), 1994.

[LW94] Barbara Liskov and Jeanette Wing. A behavioural notion of subtyping. In ACM
Transactions on Programming Languages and Systems, November 1994.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction 2nd ed. Prentice Hall, 1997.

[Mey02] Bertrand Meyer. Eiffel: The language. http://www.inf.ethz.ch/ meyer/, September
2002.

[MS98] Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base class problem. In
Proceedings of the European Conference on Object-Oriented Programming (ECOOP),
volume 1445, pages 355–382. Springer-Verlag, 1998.

[OJ93] William F. Opdyke and Ralph E. Johnson. Creating abstract superclasses by refac-
toring, 1993.

[OMG04] Object Management Group. UML Superstructure version 2.0. www.omg.org/uml,
October 2004.

[Opd92] William Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University
of Illinois at Urbana-Champaign, 1992.

[Ped89] C. H. Pedersen. Extending ordinary inheritance schemes to include generalization.
In Conference proceedings on Object-oriented programming systems, languages and
applications, pages 407–417. ACM Press, 1989.

[Pon02] Claudia Pons. Generalization Relation in UML Model Elements. In Inheritance
Workshop of European Conference on Object-Oriented Programming, 2002.

[Sak02] Markku Sakkinen. Exheritance - Class generalization revived. In Proceedings of the
Inheritance Workshop at ECOOP, Malaga, Spain, June 2002.

[SB00] Yannis Smaragdakis and Don Batory. Mixin-based programming in C++. In Proceed-
ings of the International Conference on Generative and Component-Based Software
Engineering (GCSE), 2000.

[SB02] Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented implementa-
tion technique for refinements and collaboration-based designs. ACM Trans. Softw.
Eng. Methodol., 11(2):215–255, 2002.

[Sch98] Herbert Schildt. C++ The Complete Reference, Third Edition. McGraw-Hill, 1998.

[SDN02] Nathanael Schärli, Stéphane Ducasse, and Oscar Nierstrasz. Classes = traits + states
+ glue (beyond mixins and multiple inheritance). In Proceedings of the International
Workshop on Inheritance, Malaga, Spain, June 2002.

[SDNB03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits:
Composable units of behavior. In Proceedings of the Inheritance Workshop at ECOOP
2003, Darmstadt, Germany, July 2003.

[SF08] GNU Software Fundation. GCC, the GNU compiler collection, 2008.

[Ska93] John Max Skaller. Mixin article from the comp.lang.c++ newsgroup.
http://cpptips.hyperformix.com/cpptips/mixins, 1993.

224 BUPT

[SLC09] Markku Sakkinen, Philippe Lahire, and Ciprian-Bogdan Chirila. Towards fully-
fledged reverse inheritance in Eiffel. In In Proceedings of 11th Symposium on Program-
ming Languages and Software Tools SPLST 09 and 7th Nordic Workshop on Model
Driven Software Engineering NW-MODE 09, pages 132–146, Tampere, Finland, 2009.

[SN88] Michael Schrefl and Erich J. Neuhold. Object class definition by generalization using
upward inheritance. In IEEE Transactions, 1988.

[Sof08] Eiffel Software. Eiffel studio, 2008.

[SS77] John Miles Smith and Diane C.P. Smith. Database Abstractions: Aggregation and
Generalization. In ACM Transactions on Database Systems, volume 2, pages 105–133,
June 1977.

[Str97] Bjarne Stroustrup. The C++ Programming Language Third Edition. Addison-Wesley,
1997.

[Str02] Bjarne Stroustrup. Multiple inheritance for c++. In European UNIX Users’ Group
Conference, Helsinky, Finland, May 2002.

[Tai96] Antero Taivalsaari. On the notion of inheritance. In ACM Computing Surveys, No.
3, volume 28, September 1996.

[Tea03] The AspectJ Team. The aspectj programming guide. Technical report, Xerox Cor-
poration, Palo Alto Research Center, Incorporated, 2003.

[TOG08] The Open Group. The Unix System, 2008.

[TUI05] Tetsuo Tamai, Naoyasu Ubayashi, and Ryoichi Ichiyama. An adaptive object model
with dynamic role binding. In ICSE ’05: Proceedings of the 27th International Con-
ference on Software Engineering, pages 166–175, New York, NY, USA, May 2005.
ACM Press.

[VN96] Michael VanHilst and David Notkin. Using C++ templates to implement role-based
designs. In ISOTAS ’96: Proceedings of the Second JSSST International Sympo-
sium on Object Technologies for Advanced Software, pages 22–37, London, UK, 1996.
Springer-Verlag.

[WSM06] Alessandro Warth, Milan Stanojevic, and Todd Millstein. Statically scoped object
adaption with expanders. In Proceedings of Conference on Object-Oriented Program-
ing, Systems, Languages and Applications (OOPSLA’06), Portland, Oregon, USA,
2006. ACM Press.

[WZ88] P. Wegner and S. B. Zdonik. Inheritance as an incremental modification mechanism
or what like is and isn’t like. In on ECOOP ’88 (European Conference on Object-
Oriented Programming), pages 55–77, London, UK, 1988. Springer-Verlag.

225 BUPT

Appendix A

Eiffel Reverse Inheritance BNF
Grammar Rules

Class_declaration: Indexing_opt Class_header Formal_generics_opt Obsolete_opt
Inheritance_opt Exheritance_opt Creators_opt Features_opt Invariant_opt E_END
Indexing_opt: -- /* empty */
| E_INDEXING Index_list
Index_list: -- /* empty */
| Index_clause
| Index_list Index_clause
| Index_list ’;’ Index_clause
Index_clause: Index_terms
| E_IDENTIFIER ’:’ Index_terms
Index_terms: Index_value
| Index_terms ’,’ Index_value
Index_value: E_IDENTIFIER
| Manifest_constant
Class_header: Header_mark_opt E_CLASS E_IDENTIFIER
Header_mark_opt: -- /* empty */
| E_DEFERRED [E_FOSTER]
| E_EXPANDED [E_FOSTER]
| E_SEPARATE
| E_FOSTER
Formal_generics_opt: -- /* empty */
| ’[’ Formal_generic_list ’]’
Formal_generic_list: -- /* empty */
| E_IDENTIFIER Constraint_opt
| Formal_generic_list ’,’ E_IDENTIFIER Constraint_opt
Constraint_opt: -- /* empty */
| E_ARROW Class_type
Obsolete_opt: -- /* empty */
| E_OBSOLETE E_STRING
Inheritance_opt: -- /* empty */
| E_INHERIT Parent_list
Parent_list: -- /* empty */
| Parent
| Parent_list Parent
| Parent_list ’;’ Parent

226 BUPT

Parent: Class_type Feature_adaptation_opt
Feature_adaptation_opt: -- /* empty */
| Feature_adaptation1
| Feature_adaptation2
| Feature_adaptation3
| Feature_adaptation4
| Feature_adaptation5
Feature_adaptation1: Rename New_exports_opt Undefine_opt Redefine_opt
Select_opt E_END
Feature_adaptation2: New_exports Undefine_opt Redefine_opt Select_opt E_END
Feature_adaptation3: Undefine Redefine_opt Select_opt E_END
Feature_adaptation4: Redefine Select_opt E_END
Feature_adaptation5: Select E_END
Rename: E_RENAME Rename_list
Rename_list: -- /* empty */
| Feature_name E_AS Feature_name
| Rename_list ’,’ Feature_name E_AS Feature_name
New_exports: E_EXPORT New_export_list
New_exports_opt: -- /* empty */
| New_exports
New_export_list: -- /* empty */
| New_export_item
| New_export_list New_export_item
| New_export_list ’;’ New_export_item
New_export_item: Clients Feature_set
Feature_set: Feature_list
| E_ALL
Feature_list: -- /* empty */
| Feature_name
| Feature_list ’,’ Feature_name
Clients: ’{’ Class_list ’}’
Clients_opt: -- /* empty */
| Clients
Class_list: -- /* empty */
| E_IDENTIFIER
| Class_list ’,’ E_IDENTIFIER
Redefine: E_REDEFINE Feature_list
Redefine_opt: -- /* empty */
| Redefine
Undefine: E_UNDEFINE Feature_list
Undefine_opt: -- /* empty */
| Undefine
Select: E_SELECT Feature_list
Select_opt: -- /* empty */
| Select
Exheritance_opt: -- /* empty */
| E_EXHERIT Heir_list Exherited_feature_list Foster_adaptation_opt
Heir_list: -- /* empty */
| Heir
| Heir_list Heir
| Heir_list ’;’ Heir
Heir: Class_type Feature_adaptation_opt
Feature_adaptation_opt: -- /* empty */
| Feature_adaptation11

227 BUPT

| Feature_adaptation12
| Feature_adaptation13
| Feature_adaptation14
Feature_adaptation11: Rename Adapt_opt Moveup_opt Select_RI_opt E_END
Feature_adaptation12: Adapt Moveup_opt Select_RI_opt E_END
Feature_adaptation13: Moveup Select_RI_opt E_END
Feature_adaptation14: Select_RI E_END
Adapt: E_ADAPT Feature_list
Adapt_opt: -- /* empty */
| Adapt
Moveup: E_MOVEUP Feature_list
Moveup_opt: -- /* empty */
| Moveup
Select_RI: E_SELECT Qualified_Feature_list
Select_RI_opt: -- /* empty */
| Select_RI
Qualified_feature_list: Feature_list_RI
| Qualified_feature_list ’;’ Feature_list_RI
Feature_list_RI: Feature_list
| Descendant_qualification ’:’ Feature_list
Descendant_qualification: Class_name
| Descendant_qualification ’.’ Class_name
Exherited_feature_list:
E_ONLY Feature_list | E_EXCEPT Feature_list | E_ALL | E_NOTHING
Foster_adaptation_opt:
New_exports_opt Redefine_opt
-- New_exports_opt from Inheritance
-- Redefine_opt from Inheritance
Creators_opt: -- /* empty */
| Creation_clause
| Creators_opt Creation_clause
Creation_clause: E_CREATION Clients_opt Procedure_list
Procedure_list: -- /* empty */
| E_IDENTIFIER
| Procedure_list ’,’ E_IDENTIFIER
Features_opt: -- /* empty */
| Feature_clause
| Features_opt Feature_clause
Feature_clause: E_FEATURE Clients_opt Feature_declaration_list
Feature_declaration_list: -- /* empty */
| Feature_declaration
| Feature_declaration_list Feature_declaration
| Feature_declaration_list ’;’ Feature_declaration
Feature_declaration: New_feature_list Declaration_body
Declaration_body: Formal_arguments_opt Type_mark_opt Constant_or_routine_opt
Adapted_opt
Constant_or_routine_opt: -- /* empty */
| E_IS Feature_value
Feature_value: Manifest_constant
| E_UNIQUE
| Routine
New_feature_list: New_feature
| New_feature_list ’,’ New_feature
New_feature: Feature_name

228 BUPT

| E_FROZEN Feature_name
Feature_name: E_IDENTIFIER
| E_PREFIX E_STRING
| E_INFIX E_STRING
Formal_arguments_opt: -- /* empty */
| ’(’ Entity_declaration_list ’)’
Entity_declaration_list: -- /* empty */
| Entity_declaration_group
| Entity_declaration_list Entity_declaration_group
| Entity_declaration_list ’;’ Entity_declaration_group
Entity_declaration_group: Identifier_list ’:’ Type
Identifier_list: E_IDENTIFIER
| Identifier_list ’,’ E_IDENTIFIER
Type_mark_opt: -- /* empty */
| ’:’ Type
Routine: Obsolete_opt Precondition_opt Local_declarations_opt
Routine_body Postcondition_opt Rescue_opt E_END
Routine_body: E_DEFERRED
| E_DO Compound
| E_ONCE Compound
| E_EXTERNAL E_STRING External_name_opt
External_name_opt: -- /* empty */
| E_ALIAS E_STRING
Local_declarations_opt: -- /* empty */
| E_LOCAL Entity_declaration_list
Precondition_opt: -- /* empty */
| E_REQUIRE Assertion
| E_REQUIRE E_ELSE Assertion
| E_REQUIRE E_OTHERWISE Assertion -- New for RI!
Postcondition_opt: -- /* empty */
| E_ENSURE Assertion
| E_ENSURE E_THEN Assertion
| E_ENSURE E_OTHERWISE Assertion -- New for RI!
Invariant_opt: -- /* empty */
| E_INVARIANT Assertion
Assertion: -- /* empty */
| Assertion_clause
| Assertion Assertion_clause
| Assertion ’;’ Assertion_clause
Assertion_clause: Expression
| E_IDENTIFIER ’:’ Expression
Adapted_opt: /* empty */
| E_ADAPTED Adapted_list E_END
Adapted_list: Adapted_item
| Adapted_list Adapted_item
| Adapted_list ’;’ Adapted_item
Adapted_item: ’{’ Class_type_list ’}’ Attribute_adaptation
| ’{’ Class_type_list ’}’ Routine_adaptation
Class_type_list: Class_type
| Class_type_list ’,’ Class_type
Attribute_adaptation:
Adapted_type E_IS ’(’ Expression ’)’ Adapted_result
Adapted_type: Type
| E_LIKE E_PRECURSOR

229 BUPT

Adapted_result: ’:’ Expression
-- May contain ’Result’.
Routine_adaptation:
Adapted_formals Adapted_type_mark_opt E_IS
Adapted_actuals Adapted_result_opt
| Adapted_type E_IS Adapted_result
Adapted_formals: ’(’ Entity_declaration_list ’)’
| ’(’ E_LIKE E_PRECURSOR ’)’
Adapted_type_mark_opt: Type_mark_opt
| ’:’ E_LIKE E_PRECURSOR
Adapted_actuals: ’(’ Actual_list ’)’
| ’(’ E_PRECURSOR ’)’
-- The expressions in Actual_list may contain names of formal arguments
-- of the foster class routine.
Adapted_result_opt: /* empty */
| Adapted_result
Rescue_opt: -- /* empty */
| E_RESCUE Compound
Type: Class_type
| E_EXPANDED Class_type
| E_SEPARATE Class_type
| E_LIKE E_CURRENT
| E_LIKE E_IDENTIFIER
| E_BITTYPE Integer_constant
| E_BITTYPE E_IDENTIFIER
Class_type: E_IDENTIFIER Actual_generics_opt
Actual_generics_opt: -- /* empty */
| ’[’ Type_list ’]’
Type_list: -- /* empty */
| Type
| Type_list ’,’ Type
Compound: -- /* empty */
| Instruction
| Compound Instruction
Instruction: Creation
| Call
| Assignment
| Conditional
| Multi_branch
| Loop
| Debug
| Check
| E_RETRY
| ’;’
Creation: ’!’ Type ’!’ Writable Creation_call_opt
| E_BANGBANG Writable Creation_call_opt
Creation_call_opt: -- /* empty */
| ’.’ E_IDENTIFIER Actuals_opt
Assignment: Writable Assign_op Expression
Assign_op: E_ASSIGN
| E_REVERSE
Conditional: E_IF Expression E_THEN Compound Elseif_list Else_part E_END
Else_part: -- /* empty */
| E_ELSE Compound

230 BUPT

Elseif_list: -- /* empty */
| E_ELSEIF Expression E_THEN Compound
| Elseif_list E_ELSEIF Expression E_THEN Compound
Multi_branch: E_INSPECT Expression When_list Else_part E_END
When_list: -- /* empty */
| E_WHEN Choices E_THEN Compound
| When_list E_WHEN Choices E_THEN Compound
Choices: -- /* empty */
| Choice
| Choices ’,’ Choice
Choice: Choice_constant
| Choice_constant E_DOTDOT Choice_constant
Choice_constant: E_IDENTIFIER
| Integer_constant
| E_CHARACTER
Loop: E_FROM Compound Invariant_opt Variant_opt E_UNTIL Expression
E_LOOP Compound E_END
Variant_opt: -- /* empty */
| E_VARIANT -- Not standard.
| E_VARIANT Expression
| E_VARIANT E_IDENTIFIER ’:’ Expression
Debug: E_DEBUG Debug_keys_opt Compound E_END
Debug_keys_opt: -- /* empty */
| ’(’ Debug_key_list ’)’
Debug_key_list: -- /* empty */
| E_STRING
| Debug_key_list ’,’ E_STRING
Check: E_CHECK Assertion E_END
Call: Call_chain
| E_RESULT ’.’ Call_chain
| E_CURRENT ’.’ Call_chain
| ’(’ Expression ’)’ ’.’ Call_chain
| E_PRECURSOR Actuals_opt
| E_PRECURSOR Actuals_opt ’.’ Call_chain
| ’{’ E_IDENTIFIER ’}’ E_PRECURSOR Actuals_opt
| ’{’ E_IDENTIFIER ’}’ E_PRECURSOR Actuals_opt ’.’ Call_chain
Call_chain: E_IDENTIFIER Actuals_opt
| Call_chain ’.’ E_IDENTIFIER Actuals_opt
Actuals_opt: -- /* empty */
| ’(’ Actual_list ’)’
Actual_list: -- /* empty */
| Actual
| Actual_list ’,’ Actual
Actual: Expression
| ’$’ Address_mark
Address_mark: Feature_name
| E_CURRENT
| E_RESULT
Writable: E_IDENTIFIER
| E_RESULT
Expression: Call
| E_RESULT
| E_CURRENT
| E_PRECURSOR

231 BUPT

| ’(’ Expression ’)’
| Boolean_constant
| E_CHARACTER
| E_INTEGER
| E_REAL
| E_STRING
| E_BIT
| E_LARRAY Expression_list E_RARRAY
| ’+’ Expression %prec E_NOT
| ’-’ Expression %prec E_NOT
| E_NOT Expression
| E_FREEOP Expression %prec E_NOT
| Expression E_FREEOP Expression
| Expression ’+’ Expression
| Expression ’-’ Expression
| Expression ’*’ Expression
| Expression ’/’ Expression
| Expression ’^’ Expression
| Expression E_DIV Expression
| Expression E_MOD Expression
| Expression ’=’ Expression
| Expression E_NE Expression
| Expression ’<’ Expression
| Expression ’>’ Expression
| Expression E_LE Expression
| Expression E_GE Expression
| Expression E_AND Expression
| Expression E_OR Expression
| Expression E_XOR Expression
| Expression E_AND E_THEN Expression %prec E_AND
| Expression E_OR E_ELSE Expression %prec E_OR
| Expression E_IMPLIES Expression
| E_OLD Expression
| E_STRIP ’(’ Attribute_list ’)’
Attribute_list: -- /* empty */
| E_IDENTIFIER
| Attribute_list ’,’ E_IDENTIFIER
Expression_list: -- /* empty */
| Expression
| Expression_list ’,’ Expression
Manifest_constant: Boolean_constant
| E_CHARACTER
| Integer_constant
| Real_constant
| E_STRING
| E_BIT
Boolean_constant: E_TRUE
| E_FALSE
Integer_constant: E_INTEGER
| ’-’ E_INTEGER
| ’+’ E_INTEGER
Real_constant: E_REAL
| ’-’ E_REAL
| ’+’ E_REAL

232 BUPT

Appendix B

Eiffel Reverse Inheritance Reification
in Prolog

B.1 Reification of Class Header

Project
The first fact modelled is the one locating the Eiffel project. We are interested in the name of
the project, its location along with the same information about the transformed project or output
project:

project(’ProjectName’,’Location’,’OutputProjectName’,’OutputProjectLocation’).

This fact in particular has no own identifier, the contained data is global.

Clusters
Clusters are used as modules for grouping classes. In particular in Eiffel there are no visibility
rules between clusters like in other programming languages. Clusters are modelled in the following
way:

cluster(#id,’ClusterName’).

• #id is the the primary key;

• ClusterName is the name of the cluster.

Class Declarations
Classes are declared taking into account information about: its location given by the cluster it
belongs to, its name and the list of its formal generics. The relation between class declaration
facts and formal generic facts is one to many. If the class is not generic then it has no generic
parameters and the list is empty. It is necessary to keep them in a list because their order is
important for the consistency of the model. A simple reference from formal generic to parent class
would not be sufficient.

classDecl(#id,#cluster,’ClassName’,[#formalGeneric,...]).

• #id is the identifier of the class;

• #cluster is the identifier of the cluster the class belongs to;

233 BUPT

• ClassName is the name of the class;

• #formalGeneric is the identifier of a formal generic parameter.

Obsolete Messages
Obsolete messages are used for the issue of warnings in case the class they belong to, is deprecated.

obsoleteMessage(#classDecl or #routine,#manifestConstant)

• #classDecl is the identifier of the class;

• #routine is the identifier of the obsolete routine;

• #manifestConstant is the id of a string manifest constant containing the obsolete message
of that class.

Index Clauses
The index clauses are used to retain metadata about a class. A clause may have literal identifiers
and the literal identifiers may have values. The values are expressed using manifest constant facts
which will be modelled later on.

indexClause(#id,#classDecl).

• a class declaration may have zero or more index clauses;

• #id represents the primary key;

• #classDecl points to the class declaration to which the list belongs to.

The index clause may have an attached identifier. These facts are optional, so they are modelled
as attribute facts for the index clause facts.

indexClauseIdentifierAttribute(#indexClause,’IdentifierName’).

• an index clause may have an identifier attached;

• IdentifierName is the name of the identifier attached.

Index values facts model the values that are attached to index clauses:

indexValue(#id,#indexClause,#identifier or #manifestConstant).

• one index clause may have attached one or more index values;

• #id is the primary key;

• #indexClause the identifier of the clause referred;

• #manifestConstant is the identifier of the constant.

Class Declaration Attributes
A class declaration may be augmented with several keywords deferred, expanded, separate, foster.
These keywords are modelled through the following facts:

deferredClass(#classDecl).
expandedClass(#classDecl).
separateClass(#classDecl).
foster(#classDecl).

• all of these facts refer to class declarations;

• all clauses are optional for a class declaration.

234 BUPT

B.2 Reification of Formal Generics
Formal generic parameters belong to a generic class. They are equipped with their unique identifier,
next comes the identifier of the parent class and finally the name of the parameter.

formalGeneric(#id,#classDecl,’GenericParameterName’).

• one classDecl may have zero or more formal generic parameters, it is correlated with the list
from the foster class declaration;

• #id is the primary key;

• #classDecl represents the identifier of the class the generic parameter belongs to;

• GenericParameterName is the name of the generic parameter.

A formal generic may be restricted to a certain type, this constraint is modelled by the following
fact:

constrainedClassType(#formalGeneric,#classType).

• a class type may have zero or more generic types;

• #formalGeneric represents the identifier of the generic parameter referred by the constraint
class type;

• #classType is the identifier of the class type used for the constraint.

B.3 Reification of Inheritance
In this section we present the elements which reifies the ordinary inheritance class relationship.
To express inheritance we need the identifier of the subclass and the identifier of the superclass
type. It is a type and not just a simple class because in case of generic superclasses we have to
provide also the actual generic parameters. This information belongs to the type and not to the
instantiated class.

inheritance(#id,#classDecl,#classType).

• #classDecl represents the identifier of the current class which is the source of the inheritance
relationship;

• #classType represents the identifier of the target class type of the relationship.

In inheritance the renaming of feature is possible, this aspect is modeled by the following Prolog
fact:

rename(#id,#inheritance or #exheritance,#featureDecl,’FeatureNewName’).

• #id is the key of the node;

• #inheritance is the identifier of the inheritance link the rename belongs to. Also we can no-
tice that #exheritance is a valid choice, meaning that rename can be used in both inheritance
and exheritance class relationships.

• #featureDecl is the identifier of the feature that is renamed;

• FeatureNewName is the new name of the feature.

235 BUPT

In the context of inheritance, more specifically on the inheritance branches we can set the inherited
features visibility by performing feature export. Between a feature and export client class there
is a many to many relationship, meaning that a group of several features may be exported to a
group of several classes.

exportInherit(#id,#inheritance).

• #id is the primary key;

• #inheritance is the inheritance branch identifier the export belongs to.

The next fact is used for modelling the classes that belong to a certain class group used for export
purposes.

exportInheritClass(#id,#exportInherit,#classDecl).

• #id is the primary key;

• #exportExherit is the identifier of the export statement;

• #classDecl is the identifier of the class participating in the export statement.

Next we have the model of the features which are exported by the following fact:

exportInheritFeature(#id,#exportInherit,#featureDecl).

• #id is the primary key;

• #exportExherit is the identifier of the export statement;

• #featureDecl is the identifier of the feature that is exported.

The all keyword for an export statement is modelled by the following clause:

exportInheritFeatureAll(#id,#exportInherit).

• #id is the primary key;

• #exportExherit is the identifier of the export statement.

This means that all inherited features are exported to a certain group of classes.
When we want to undefine, redefine or select a feature on an inheritance branch we can use

the following Prolog facts:

undefine(#id,#inheritance or #exheritance,#featureDecl).
redefineInherit(#id,#inheritance,#featureDecl).
selectInherit(#id,#inheritance,#featureDecl).

• #id is the key of the node;

• #inheritance or #exheritance is the identifier of the inheritance link that undefine, redefine
or select belongs to;

• #featureDecl is the identifier of the feature referred from the superclass or exherited class.

236 BUPT

B.4 Reification of Creators
The creators of an Eiffel class are modelled using the following fact:

creator(#id,#classDecl).

• #id is the primary key;

• #classDecl is the id of the class the creator belongs to.

A class has zero or more creators and that is why they have to be indexed.
The next fact models the features that are used for creation.

creatorFeature(#id,#creator,#procedure).

• #id is the primary key;

• #creator is the identifier of the creator the client the feature is accessible from;

• #procedure is the identifier of the feature that is declared as creator.

The client class that may use a creator can be set using the following fact:

creatorClientClass(#id,#creator,#classDecl).

• #id is the primary key;

• #creator is the identifier of the creator the client class can access;

• #classDecl represents the identifier of the client class that can access the creator feature.

B.5 Reification of Features
In this subsection we will present the facts which model the feature related entities. The feature
block models a set of features grouped in the code using the feature keyword.

featureBlock(#id,#classDecl).

• #id is the primary key;

• #classDecl is the class the feature block belongs to.

The feature declaration fact models a feature declaration storing the identifier of the feature block
and the feature name:

featureDecl(#id,#featureBlock,’FeatureName’).

• #id is the primary key;

• #featureBlock refers to the feature block that the feature declaration belongs to.

The next fact models the characteristic of a feature to be an attribute:

attribute(#featureDecl).

• #featureDecl is the identifier of the feature.

The next two facts model the type of the operator when the feature denotes an operator by its
name:

237 BUPT

prefix(#featureDecl).
infix(#featureDecl).

The characteristic of a feature as being frozen is modelled using the following fact:

frozen(#featureDecl).

The following fact models the client classes for a block of features:

featureClientClass(#id,#featureBlock,#classDecl).

• #id is the primary key;

• #featureBlock is the identifier of the referred feature block;

• #classDecl is the identifier of the client class.

The formal argument list of a feature is modelled using the following fact:

formalArguments(#id,#featureDecl,[#formalArgument,...]).

• #id is the primary key;

• #featureDecl is the identifier of the referred feature owning the formal arguments;

• #formalArgument is the identifier of the formal argument from the ordered list.

The formal argument itself is modelled using the next fact, by storing the formal arguments fact
which is the parent, the name and the type identifier:

formalArgument(#id,#formalArguments,’ArgumentName’,#type).

• #id is the primary key;

• #formalArguments points to the feature the signature belongs to;

• ArgumentName is the name of the formal argument;

• #type is the identifier of the argument type.

The type mark of the feature represents its return type. Each feature may have attached one type
mark, in case of procedures it is optional.

typeMark(#featureDecl,#type).

• #featureDecl points to the feature who owns the type mark;

• #type represents the return type of the feature.

Some features may have constant values attached to them in this case they are constant features
in the class. To declare such a feature we will use the following definition:

featureManifestConstant(#featureDecl,#manifestConstant).

• #featureDecl is the identifier of the feature the constant belongs to;

• #manifestConstant is the identifier of the manifest constant attached to the feature.

To specify whether a feature is unique we can use the following rule:

unique(#featureDecl).

238 BUPT

A routine can be attached to a feature by using the following fact:

routine(#id,#featureDecl).

• #id is the primary key;

• #featureDecl is the identifier of the feature the routine is attached to.

• The routine can be either deferred or once (meaning that it will be executed once in the
runtime):

deferredFeature(#routine).
once(#routine).

• In Eiffel routines can be defined in other programming languages, so they need to have an
external name in that language which can be different from the name of the feature in Eiffel.
The external name of the feature is modelled as a String manifest constant.

external(#id,#routine,#manifestConstant).

• #id is the primary key;

• #routine is the routine that has the external implementation;

• #manifestConstant is the identifier of the String containing external name of the feature.

• The external alias of a feature can be modelled using the followings:

externalAlias(#external,#manifestConstant).

• #external is the id of the external declaration that is referred;

• #manifestConstant is the identifier of the String which is the name of the alias.

Local declarations in a routine may be declared using the following rule:

localDecl(#id,#routine,’LocalName’,#type).

• #id is the primary key;

• #routine is the routine identifier the local declaration belongs to;

• LocalName the name of the local variable;

• #type points to the type identifier of the local variable.

There can be noticed that the order in which locals are declared is not important.
The next six clauses refer to all the possible assertions that can be added to a feature. The

require fact is used for attaching the precondition of a feature within a class which has no superclass,
except ANY. The requireElse is used for declaring the precondition of a feature in a class having
one or more superclasses, completing the preconditions from the superclasses. We note that the
precondition of the subclass must be weaker or equal than the precondition of the superclass.
The ensure and ensureThen fact attaches a postcondition to a routine in the case of a class not
having or having superclasses. The requireOtherwise and ensureOtherwise are used for declaring
the precondition and postcondition of a feature in the foster class.

require(#id,#routine,#assertion).
requireElse(#id,#routine,#assertion).
requireOtherwise(#id,#routine,#assertion).
ensure(#id,#routine,#assertion).
ensureThen(#id,#routine,#assertion).
ensureOtherwise(#id,#routine,#assertion).

239 BUPT

• #id is the primary key;

• #routine points to the routine the assertion belongs to;

• #assertion points to a fact modelling the logical expression to be verified.

The assertion fact is modelled as follows:

assertion(#id,#expression).

• #id is the primary key;

• #expression is the identifier of an expression which must return boolean value.

An assertion may have a tag as an attribute, this is modelled using the following fact:

assertionTagAttribute(#assertion,’TagName’).

• #assertion is the identifier of the assertion;

• TagName is the name of the assertion tag.

The class type present in an adaptation item is modelled using the following clause:

adaptedClassType(#id,#attributeAdaptation or #methodAdaptation,#classType).

• #id is the primary key;

• #attributeAdaptation or #methodAdaptation are parent facts;

• #classType is the identifier of the class type used in the adaptation process.

The facts is used to adapt attributes or methods to a different signature or behavior.
The attribute adaptation is modelled using the following fact:

attributeAdaptation(#id,#featureDecl,#featureDecl,#type or
#identifier (like precursor),#expression,#expression).

• #id is the primary key;

• #featureDecl is the identifier of the parent feature which defines the adaptation;

• #featureDecl is the identifier of the feature from the subclass which is adapted;

• #type is the identifier of the result type;

• #expression is the identifier of the expression passed to precursor;

• #expression is the identifier of the expression passed representing the adapted result.

240 BUPT

B.6 Reification of Types
The types are represented on two levels: at one level we have a fact modelling an abstract type
and on the second level we have the concrete types:

type(#id,#classType or #expandedType or #separateType or #likeType or #bitType).

• #id is the primary key;

• the second argument (#classType, #expandedType, #separateType, #likeType, #bitType) is
the identifier of the concrete type that the current fact refers to.

Class types are modelled by the following fact:

classType(#id,#classDecl or #formalGeneric).

• #id is the primary key;

• #classDecl is the identifier of the class name;

• #formalGeneric is the identifier of the formal generic parameter.

One can notice that the class type may refer a class declaration or a formal generic.
A class type may have actual generics if the class referred is generic. If the class type refers a

formal generic it can never have actual generic types.

actualGenericType(#id,#classType,#formalGeneric,#type).

• #id is the primary key;

• #classType is the parent identifier the type the actual generic belongs to;

• #formalGeneric is the identifier of the formal generic parameter the actual generic type
corresponds to;

• #type is the identifier of the actual generic type.

Expanded and separate types are a special kind of class types which have special properties. The
expanded type instances are objects not references, while separate types are used in the concurrent
mechanisms of Eiffel.

expandedType(#id,#classType).
separateType(#id,#classType).

• #id is the primary key

• #classType is the identifier of the class type that is expanded/separate.

Like types or anchored types are types which refer to the types of other features, formal arguments
or local declarations. There are allowed also links to current keyword which actually represents
a contextual reference to the current object. These types were introduced mainly for helping
covariant redeclaration of features:

likeType(#id,#identifier(current) or #featureDecl or #formalArgument or #localDecl).

• #id is the primary key;

• #identifier is the identifier of the current keyword;

241 BUPT

• #featureDecl is the the identifier of the feature referred;

• #formalArgument is the identifier of the formal argument referred;

• #localDecl is the identifier of the local variable used.

Finally bit types are represented by the following fact. To be noted that they reference either a
integer constant either a integer constant feature.

bitType(#id,#integerManifestConstant or #featureDecl).

• #id is the primary key;

• #integerManifestConstant refers to an integer constant;

• #featureDecl refers to an integer constant attribute.

B.7 Reification of Instructions
A compound instruction is modelled as a ordered set of instructions by the following fact:

compound(#id,
#routine or #conditional or #elseIf or #conditionalElse or
#when or #multiBranchElse or #loop or #debug,
[#creation,#assign,#reverse,#call,#conditional,#multiBranch,#loop,
#debug,#check,#retry]).

• #id is the primary key;

• the parent entity may be #routine, #conditional, #elseIf, #when, #multiBranchElse, #loop,
#debug ;

• refers in order instruction clauses like #creation, #call, #multiBranch, #loop, #debug,
#check, #retry.

A rescue compound is modelled like this:

rescueCompound(#id,#routine,
[#creation,#assign,#reverse,#call,#conditional,#multiBranch,#loop,
#debug,#check,#retry]).

• #id is the primary key;

• the parent entity may be routine only;

• refers in order instruction clauses like #creation, #call, #multiBranch, #loop, #debug,
#check, #retry.

The creation instruction is modelled next:

creation(#id,#compound,#featureDecl or #localDecl or #identifier (result)).

• #id is the primary key;

• #compound is the identifier of the parent the creation instruction belongs to;

• #featureDecl is the identifier of the feature referencing the newly created object;

• #localDecl is the identifier of the local referencing the newly created object;

242 BUPT

• #identifier is the identifier of the result keyword referencing the newly created object.

The type of the creation instruction can be expressed optionally using the next fact:

creationType(#id,#creation,#type).

• #id is the primary key;

• #creation is the creation instruction the type is used for;

• #type is the type used in the creation.

The creation instruction may imply also a call which is modeled next:

creationCall(#id,#creation,#call).

• #id is the primary key;

• #creation is the creation instruction the call is used in;

• #call is the identifier of the call needed in the creation process.

The assignment instructions are represented by the following facts:

assign(#id,#compound,#featureDecl or #localDecl or #identifier (result),
#expression).
reverse(#id,#compound,#featureDecl or #localDecl or #identifier (result),
#expression).

• #id is the primary key;

• #compound is the identifier of the parent the assignment belongs to;

• #featureDecl is the identifier of the assigned feature, which must denote an attribute;

• #localDecl is the identifier of the assigned local;

• #identifier is the identifier of the result keyword;

• #expression is the identifier of the expression assigned.

A conditional instruction has a parent, an expression that must be evaluated and a compound.
Optionally there might be present some ordered else-if instructions which deal with other alterna-
tives:

conditional(#id,#compound,#expression,#compound,[#elseif,...]).

• #id is the primary key;

• #compound is the identifier of the parent the conditional belongs to;

• #expression is the identifier of the evaluated expression;

• #compound is the identifier of the compound instruction executed on the then branch;

• #elseif is the identifier of the ordered else-if instructions.

The else-if instruction contains a condition, an expression and a compound.

elseIf(#id,#conditional,#expression,#compound).

243 BUPT

• #id is the primary key;

• #conditional is the instruction the elseif belongs to;

• #expression is the identifier of the evaluated expression;

• #compound is the identifier of the compound instruction executed on the else-if branch.

The conditional else branch of a conditional instruction is modelled next:

conditionalElse(#id,#conditional,#compound).

• #id is the primary key;

• #conditional is the instruction the else belongs to;

• #compound is the identifier of the compound instruction executed on the else branch.

The multi branch instruction is similar to the switch instruction of C language and it is modelled
as follows:

multiBranch(#id,#compound,#expression,[#when,...]).

• #id is the primary key;

• # compound is the identifier of the parent the creation belongs to;

• #expression is the identifier of the evaluated expression;

• #when is the identifier of the when clause in the ordered list.

The branches are modelled by the following clause:

when(#id,#multiBranch,#compound).

• #id is the primary key;

• #multiBranch is the identifier of the branch the when clause belongs to;

• #compound is the identifier of the compound instruction to be executed if one of the when
choices match.

The choice element is modelled next:

choice(#id,#when).

• #id is the primary key;

• #when is the identifier of the parent branch.

A choice may be represented either by constants either by constant ranges:

choiceConstant(#id,#choice,#featureDecl or #manifestConstant).
choiceConstantRange(#id,#choice,#featureDecl or #manifestConstant,
#featureDecl or #manifestConstant).

• #id is the primary key;

• #choice is the identifier of the parent choice;

• third and fourth arguments are identifiers of constant attributes or manifest constants (char-
acter or integer).

244 BUPT

The multi branch instruction is equipped with an optional else alternative, as we can see next:

multiBranchElse(#id,#multiBranch,#compound).

• #id is the primary key;

• #multiBranch is the identifier of the parent multiple branch instruction;

• #compound is the identifier of the compound instruction to be executed in case no branch
is taken.

The only instruction of Eiffel dealing with iteration is modelled next:

loop(#id,#compound,#compound,#expression,#compound).

• #id is the primary key;

• second argument #compound the is the identifier of the parent the creation belongs to;

• third argument #compound is the identifier of the compound instruction to be executed for
initialization purposes;

• #expression is the identifier of the expression to be evaluated at each step;

• #compound is the identifier of the compound instruction to be executed at each step.

The invariant of a looping instruction follows:

loopInvariant(#id,#loop,#assertion).

• #id is the primary key;

• #loop is the identifier of the parent loop instruction;

• #assertion is the identifier of the assertion representing the loop invariant.

A loop instruction may have variant expressions also:

loopVariant(#id,#loop,#expression).

• #id is the primary key;

• #loop is the identifier of the parent loop instruction;

• #expression is the identifier of the expression representing the loop variant.

The variant may have an name attached optionally:

loopVariantIdentifierAttribute(#loopVariant,’VariantName’).

• #loop is the id of the parent loop variant;

• ’VariantName’ is the name of the variant.

The debug instruction is the next one modelled:

debug(#id,#compound,#compound).

• #id is the primary key;

• the second argument #compound is the identifier of the parent the creation belongs to;

245 BUPT

• the third argument #compound is the id of the compound instruction executed in case of
debug situations.

A debug instruction may have attached zero or more keys:

debugKey(#id,#debug,#manifestConstant).

• #debug is the identifier of the parent debug instruction;

• #manifestConstant is the identifier of the string value of the debug key.

The check instruction verifies an assertion related to a compound instruction:

check(#id,#compound,[#checkAssertion,...]).

• #id is the primary key;

• #compound is the identifier of the parent the creation belongs to;

• #checkAssertion refers to an assertion that will be checked at runtime. They are kept in a
list in order to preserve their execution order.

The assertion of a check instruction is handled by the following fact:

checkAssertion(#id,#check,#assertion).

• #id is the primary key;

• #check is the identifier of the parent check instruction fact;

• #assertion is the identifier of the assertion to be checked at runtime.

The retry instruction is used in case of a constraint failure in a compound. As the retry instruction
has no parameters it can be unique in the model and it can be referred as many times as necessary.

retry(#id,#compound).

• #id is the primary key;

• #compound is the identifier of the parent the creation belongs to.

Calls are a special kind of instructions. They are modelled in a quite sophisticated way because
of the composed receivers:

call(#id,#expression or #compound, #featureDecl or #localDecl).

• #id is the primary key;

• the second argument #expression or #compound is the identifier of the parent the creation
belongs to;

• #featureDecl is the identifier of the feature declaration that is called, in case of precursor
call, it is the id of the feature from the superclass or an identifier representing a local.

The call receivers represent the constructions before the called feature and they are linked one to
another in case there are multiple ones:

callReceiver(#id,#call or #callReceiver,
#identifier (result, current, precursor) or
#expression or #call or #featureDecl or #formalArgument or #localDecl).

246 BUPT

• #id is the primary key;

• the second argument models the parent of the receiver:

– #call is the identifier of the call the receiver belongs to;
– #callReceiver is the identifier of the parent call receiver of the current receiver;

• the third argument models the receiver entity, and it can be:

– #identifier points to result, current or precursor keywords;
– these identifiers will be always the last call receivers;

• #expression points to an expression identifier;

• #call is the identifier of another parent call;

• #featureDecl is the identifier of a feature referencing an object;

• #formalArgument is the identifier of a formal argument referencing an object;

• #localDecl is the identifier of a local declaration referencing an object.

For example the call current.f.g.h will be represented like this:

call(200,100,id of feature h).
callReceiver(300,200,id of feature g).
callReceiver(301,300,id of feature f).
callReceiver(302,301,id of "current").

The precursor receiver of a call may be parameterized by a certain type. This is useful in case of
multiple inheritance to select a certain implementation to be executed from one parent.

callReceiverPrecursorTypeAttribute(#id,#callReceiver,#type).

• #id is the primary key;

• #callReceiver is the parent receiver which can be only precursor;

• #type is the identifier of the type used for casting.

The actuals of a call are modelled next. They are not ordered since they refer the formal argument
of the feature where the order is kept:

actual(#id,
#creationCall or #call or #actuals,
#formalArgument,
#expression or #featureName or #identifier (current, result)).

• #id is the primary key;

• #creationCall or #call identifies the call using the current call actual;

• #actuals identifies a fact modelling a set of actuals;

• #formalArgument the identifier of the corresponding formal argument;

• #expression is the identifier of the expression used as actual parameter;

• #featureName is the identifier of the feature representing the address mark;

• #identifier may be identifier of current or result representing address marks.

247 BUPT

B.8 Reification of Expressions
Expressions are modelled through a fact which may pointing at several facts representing expres-
sions:

expression(#id,#call or #identifier (current, result, precursor) or
#subexpression or #manifestConstant or #manifestArray or
#unaryOperator or #binaryOperator or #strip).

• #id is the primary key;

• the second argument is the identifier of another subexpression element:

– #call is the id of a call;
– #identifier which may point to current or result keywords;
– #subexpression points to another expression;
– #manifestConstant points to a constant;
– #manifestArray is the identifier of an array operator;
– #unaryOperator is the identifier of an unary operator;
– #binaryOperator is the identifier of a binary operator;
– #strip is the identifier of a strip expression.

Subexpressions model an expression which is enclosed between parenthesis:

subexpression(#id,#expression).

• #id is the primary key;

• the second argument is the identifier of the expression element.

As component of an expression is the unary operator. It may be: +, -, not, free operator, old.

unaryOperator(#id,’OperatorSymbol’,#expression).

• #id is the primary key;

• ’OperatorSymbol’ is the symbol of the operator;

• #expression is the identifier of the expression representing the operators argument.

Another expression component is the binary operator (free operator symbol, +, -, *, /, ^, div,
mod, =, /=, <, >, <=, >=, and, or, xor, and then, or else, implies):

binaryOperator(#id,#expression,’OperatorSymbol’,#expression).

• #id is the primary key;

• #expression is the identifier of the expression representing the operators left argument;

• ’OperatorSymbol’ is the symbol of the operator;

• #expression is the identifier of the expression representing the operators right argument.

The manifest array expression is modelled by the next fact:

manifestArray(#id,[#manifestArrayExpression,...]).

• #id is the primary key;

248 BUPT

• the third argument is a table for maintaining the order of the expression identifiers.

The manifest array expression is modelled by the next fact:

manifestArrayExpression(#id,#manifestArray,#expression).

• #id is the primary key;

• #arrayOperator is the identifier of the array operator referred;

• #expression is the identifier of the expression used by the operator.

A strip expression returns an array of all attributes of an object. It is modelled by the following
fact:

strip(#id).

• #id is the primary key of the strip expression.

A strip attribute is modelled next:

stripAttribute(#id,#strip,#featureDecl).

• #id is the primary key;

• #strip is the parent strip instruction the attribute belongs to;

• #featureDecl is the identifier of the referred attribute.

Identifiers are modelled by the following facts:

identifier(#id,’IdentifierName’).

• #id is the primary key;

• ’IdentifierName’ is the name of the identifier.

Manifest constants of type boolean, character, integer, real, string, bit are modelled next:

manifestConstant(#id,’ManifestConstantValue’, ’boolean’ or ’character’ or
’integer’ or ’real’ or ’string’ or ’bit’).

• #id is the primary key;

• ’ConstantValue’ is the value of the manifest constant;

• the third argument models the type of the constant.

Invariants are boolean expressions which must hold in the context of a class:

invariant(#id,#classDecl,#assertion).

• #id is the key of the node;

• #classDecl is the identifier of the class that the invariant refers to;

• #assertion is the identifier of the invariant assertion.

249 BUPT

B.9 Reification of Exheritance
The exheritance class relationship is expressed between the foster class and the exherited classes
as types and instantiated in case of generic classes:

exheritance(#id,#classDecl,#classType).

• #id is the primary key;

• #classDecl is the identifier of the current, source class;

• #classType is the identifier of the exherited class type.

The adapt and moveup clauses are linked to the exheritance class relationship and to a feature:

adapt(#id,#exheritance,#featureDecl).
moveup(#id,#exheritance,#featureDecl).

• #id is the primary key;

• #exheritance is the identifier of the exheritance branch;

• #featureDecl is the identifier of the feature to be adapted.

The exheritance selection mechanism is presented next:

selectExherit(#id,#exheritance,#descendantQualification).

• #id is the primary key;

• #exheritance is the identifier of the exheritance branch;

• #descendentQualification is the identifier of the class chain that the feature is selected in.

The feature which may be selected in the exheritance selection mechanism is next. One exheritance
clause may have multiple features to be selected.

selectExheritFeature(#id,#selectExherit,#featureDecl).

• #id is the primary key;

• #selectExherit is the identifier of the parent fact;

• #featureDecl is the identifier of the feature to be selected.

Descendant class chains can be constructed using the following clause:

descendantQualification(#id,#descendantQualification,#classDecl).

• #id is the primary key;

• #descendantQualification is the element before the current one, the first entity will have no
predecessor, so this value will be zero;

• #classDecl is the identifier of the class in the chain.

The export declarations in the context of reverse inheritance are attached to the class and not to
the inheritance clause, this is why they are modelled separately. Between a feature and export
client class there is a many to many relationship (multiple features can be exported to multiple
classes):

250 BUPT

exportExherit(#id,#classDecl).

• models an export statement;

• #id is the primary key;

• #classDecl is the foster class identifier the export belongs to.

The classes which may be linked to an export statement are modelled next:

exportExheritClass(#id,#exportExherit,#classDecl).

• #id is the primary key;

• #exportExherit is the identifier of the export statement;

• #classDecl is the identifier of the class participating in the export statement.

Exported features are attached to the export statement by the following fact:

exportExheritFeature(#id,#exportExherit,#featureDecl).

• #id is the primary key;

• #exportExherit is the identifier of the export statement;

• #featureDecl is the identifier of the feature that is exported.

If one desires to export all features of a class the following clause must be attached to the export
clause:

exportExheritFeatureAll(#id,#exportExherit).

• #id is the primary key;

• #exportExherit is the identifier of the export statement.

The redefinition in the context of reverse inheritance is global, it does not belong to an exheritance
branch like in ordinary inheritance:

redefineExherit(#id,#classDecl,#featureDecl).

• #id is the primary key;

• #classDecl is the identifier of the class containing the feature;

• #featureDecl is the identifier of the redefined feature.

The selection mechanism of exheritance allows to select or deny a set of specific features through
the following facts:

onlyFeature(#id,#classDecl,#featureDecl).
exceptFeature(#id,#classDecl,#featureDecl).

• #id is the primary key;

• #classDecl is the identifier of the class hosting the feature selection clauses;

• #featureDecl is the feature in the exherited class.

The selection mechanism can be set to select all exheritable features or no features at all, in order
to create a new type:

allFeature(#classDecl).
nothingFeature(#classDecl).

• #classDecl is the identifier of the class hosting the feature selection clause.

251 BUPT

B.10 Reification of Feature Adaptation
A rather new concept, but very necessary in the process of feature exheritance is the concept of
adaptation, which changes dramatically the structure of an ordinary feature. The main change
consists, as we know, in having a feature adaptation clause for each exherited class when necessary.

adaptedClassType(#id,#attributeAdaptation or #methodAdaptation,#classType).

• models the class type present in an adaptation item;

• multiple adaptedClassType facts refer to one #attributeAdaptation or #methodAdaptation
fact;

• #id is the primary key;

• #attributeAdaptation or #methodAdaptation are parent facts;

• #classType is the identifier of the class type used in the adaptation process;

attributeAdaptation(#id,#featureDecl,#featureDecl,#type or
#identifier (like precursor),#expression,#expression).

• #id is the primary key;

• #featureDecl is the identifier of the parent feature which defines the adaptation;

• #featureDecl is the identifier of the feature from the subclass which is adapted;

• #type is the identifier of the result type;

• #expression is the identifier of the expression passed to precursor;

• #expression is the identifier of the expression passed representing the adapted result;

routineAdaptation(#id,#featureDecl,#featureDecl).

• #id is the primary key

• #featureDecl is the identifier of the feature which defines the adaptation;

• #featureDecl is the identifier of the feature from the subclass which is adapted.

The adapted formals are modelled next:

adaptedFormals(#routineAdaptation,#formalArguments or #identifier (like precursor)).

• #routineAdaptation is the identifier of the parent fact;

• #formalArguments is the identifier of the formal arguments fact;

• #identifier is the identifier of like precursor keyword construction.

The adapted type mark is modelled next:

adaptedTypeMark(#routineAdaptation,#type or #identifier (like precursor)).

• #routineAdaptation is the identifier of the parent fact;

• #type is the identifier of the return type of the method;

252 BUPT

• #identifier is the identifier of the like precursor keyword construction;

The next fact models the adapted actuals of an adapted feature, they can be regular actuals or
the precursor keyword.

adaptedActuals(#routineAdaptation,#actuals or #identifer (precursor)).

• #routineAdaptation is the identifier of the parent fact;

• #actuals is the identifier of the set of actuals;

• #identifier (precursor) is the identifier of the keyword used when a simple call has to be
made.

The fact refers to the adapted actuals:

actuals(#id,#adaptedActuals).

• #id is the global identifier for the actuals;

• #adaptedActuals is the parent fact.

The adapted result consists in an expression which may contain the result keyword and is modelled
by the following fact:

adaptedResult(#routineAdaptation,#expression).

• #routineAdaptation is the identifier of the parent fact;

• #expression is the identifier of the expression fact.

253 BUPT

