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Rezumat, 
Teza abordează domeniul proiectării unităţilor de virgulă flotantă 
pentru aritmetica intervalelor. Sunt abordate pentru 
implementare trei operaţii: adunarea, înmulţirea şi operaţia 
combinată de divide-add fused. în ceea ce priveşte adunarea, 
este propus un sumator ce exploatează paralelismul arhitecturilor 
pe două căi pentru sumatoarele de virgulă flotantă. Pentru 
înmulţirea intervalelor, un algoritm nou este conceput şi este 
propusă o arhitectură bazată pe un înmulţitor modificat de virgulă 
flotantă. Unitatea de divide-add fused are scopul de a creşte 
performanţa metodei lui Newton cu intervale. 
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ABSTRACT 

This thesis addresses the emerging problem of designing and 
implementing floating point arithmetic units for interval arithmetic. The 
present research is important in the present context of the development of 
the future IEEE 1788 standard for interval arithmetic. This future standard 
have its basis in the IEEE 754/1985 standard for floating point arithmetic 
and its extension draft, 754n Therefore, all the major design decisions, 
such as interval representation, have been taken into accordance to these 
two standard proposals. 

In this thesis, three important issues are tackied. The first two 
issues regard the design and implementation of hardware units for the most 
frequent operations, and thus the most important for the performance of 
any arithmetic system: addition and multiplication. The third issue was the 
design of a floating point unit which is dedicated for a specific interval 
arithmetic algorithm: the interval Newton's method. This dedicated 
arithmetic circuit is the floating point divide-add fused unit, which, to the 
best of my knowledge, has never been designed before. 

Regarding the interval addition unit, a novei design has been 
implemented. This design is based on the architecture of the floating point 
double path adder. The proposed interval adder exploits the parallel 
structure of the double path adders. Based on the synthesis results, the 
best performance-cost tradeoff for interval addition is obtained. 
Furthermore, the proposed unit can be used also for increasing the 
performance of the convenţional floating point arithmetic, due to its 
increase throughput and its parallel structure. 

Interval multiplication is the most difficult interval basic operation, 
due to its high number of floating point operations required. The proposed 
interval multiplier implements a developed algorithm, which is based on two 
interval multiplication methods. The core of this unit is represented by the 
dual result multiplier (multiplication unit with two differently rounded 
results). In order to implement such a multiplier, three floating point 
multiplication rounding schemes have been adapted. Furthermore, a novei 
rounding scheme for interval arithmetic has been designed, which has the 
lowest latency and cost. Using the proposed multiplication unit, an increase 
in worst case performance is obtained. Furthermore, the proposed unit can 
be used also for set operations and convenţional floating point 
multiplication. 

The third floating point units is represented by the floating point 
divide-add fused. This unit has a similar algorithm and architecture with the 
floating point multiply-add fused. The main difference is the usage of a 
divider module, instead of multiplication circuits, such as the encoder 
module or the parţial product reduction tree. The purpose of such combined 
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floating point unit is to increase the performance of the interval Newton's 
aigorithm, which has as its core operation a division foilowed by a 
subtraction. The main probtenns regarding the design and implementation of 
such unit are the number of required quotient bits and the rounding 
problem. An in-depth analysis of these two problems is performed. Several 
implementations for such a unit are proposed in this thesis, depending on 
the desired precision or performance. 
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1. INTRODUCTION 

1.1. The Need for Reliable Arithmetic 

Due to advances in the computing technology, at any level (architectural, 
gate, transistor, etc), the computaţional power has increased in an almost 
exponenţial way in the last decades [41][53][86] . Therefore, the nnost powerful 
computing systems can perform biliions of arithmetic operations per second. 

A very important place in most computaţional system is represented by the 
floating point systems. Floating point numbers are used for real number 
representation. Uniike the fixed point numbers (used for integer computations), the 
floating point operations do result in errors [41]. These errors are due to the 
foilowing reasons: on one hand there is a wide range of real numbers which cannot 
be represented exactiy using floating point representation (for example>/2, 

n etc) - in this case an approximation of the real number which can be represented 
in the floating point number system is used; on the other hand, the result from a 
floating point operation cannot be represented using the floating point 
representation - in this case rounding or truncation operations are performed. Thus, 
floating point computations are prone to errors, as shown by the simple example 
presented in Fig. 1.1. 

10^20+10.0+137.0-10^20-17.0= -17.0 
10^20-10^20+10.0-17.0+137.0= 130.0 
10^20+137.0-17.0+10.0-10^20= 0.0 
10.0+10^20-10^20-17.0+137.0= 120.0 
137.0-17.0-10^20+10^20+10.0= 10.0 

Figure 1.1 - Example of Erroneous Results Produced During 
Floating Point Computations [53] 

The large amounts of floating point computations also increases the 
probability of erroneous results, as error may accumulate. Therefore, methods for 
controlling these rounding and truncation errors must be provided for floating point 
systems where the reliability represents an important issue. 

1.2. Interval Arithmetic 

One method for controlling errors which can occur in floating point 
computations is represented by interval arithmetic. Interval arithmetic is the 
arithmetic of intervals [40]. It does not work with a single floaţmg point number, as 
in the convenţional floating point arithmetic, but uses two floating point numbers 
which define an interval. The two floating point numbers in majority of appiications 
represent the lower (inferior) bound of the interval and the upper (superior) bound 
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8 Introduction - 1 

of the interval. Another less used form of representing an interval consists of using 
a floating point number which may represent one bound (lower or upper) or the 
midpoint and another floating point number which represents the width or the 
radius of the interval [54]. 

Interval arithmetic does not increase the accuracy or the precision of the 
computation. However, the interval represents a measure of the error accumulation 
during the intensive computations, and therefore, measures can be taken during in 
order to increase the reliability of the operations (like repeating computations with 
greater precision) [47][53][54][58] . More important, a wide range of specific 
interval methods have been developed, which provide guaranteed and very reliable 
results [25]. 

1 .2 .1 Number Representation 

A very important issue regarding interval arithmetic is represented by 
number representation. Two formats have been proposed for representing floating 
point numbers used in interval arithmetic. 

One format, proposed by Schulte [86][87] , is based on variable precision 
floating point numbers. A number represented in variable precision format is 
composed from two parts: a header word and a variable size mantissa part 
(consisting of more words) - Fig 1.2. The header word contains the exponent bits, 
the sign bit, a type fieid (which indicates if the number is either a convenţional 
variable precision number, or denotes a special value - zero, infinity, not-a-
number), and a fieId which indicates the number of mantissa words. The mantissa is 
composed from a variable amount of words, depending on the required precision for 

the represented number. A normalized mantissa has its value in the range. 

The value of the floating point number is given by the following formula: 
/V = ( - l f M (1.1) 

S EXP TYPE F Header Word 

\ 
Mantissa Words 

/ 
Mantissa Word 1 

Header Word 

\ 
Mantissa Words 

/ 
Mantissa Word 2 

Header Word 

\ 
Mantissa Words 

/ 

Header Word 

\ 
Mantissa Words 

/ Mantissa Word n 

Header Word 

\ 
Mantissa Words 

/ 
Figure 1.2 - Variable Precision Number Format [86][87] 

The main advantage of this representation is the increased accuracy. If the 
required precision must be increased, mantissa words may be added. Furthermore, 
rounding and truncation errors are less frequent and have smaller values, because, 
in case of an operation which needs rounding (the result needs more bits for 
precision) the number of mantissa words for the result is increased. 
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The disadvantages of this type of representation are related to the cost and 
performance of hardware units which implement operations. The reason for this is 
that the variable precision representation requires operations executed for each 
word of mantissa. 

Another format used for representing intervals is the representation used in 
IEEE 754 floating point standard [36]. This is the standard used for representing 
floating point numbers. A number represented in IEEE floating point numbers has 
three fieids: sign, exponent and mantissa. The number of bits used for each of the 
three fieids varies from the specified precision. The IEEE 754 standard defines two 
types of precision (simple precision on 32 bits and double precision on 64 bits), 
while IEEE 754r extension draft specifies four types of precision (half precision on 
16 bits, simple precision on 32 bits, double precision on 64 bits and quad precision 
on 128 bits) - Fig 1.4. The four formats are depicted in Fig 1.3. Also, two extended 
precision formats are specified (simple extended on 44 bits and double extended on 
80 bits) [36]. 

S EXP M 
iO~î sie 15 HALF 

S EXP M ^ 
' SINGLE O l l 8 9 3 1 

EXP M 
' DOUBLE 0 1 11 12 63 

EXP M 
0|1 15 16 127 QUAD 

Figure 1.3 - Number Representation in IEEE 754r Standard [36] 

The value of a number represented in IEEE 754 representation is given by 
the foilowing equation: 

/V = ( - l f (1 .2) 
The exponent's representation is in a biased form. The bias is equal to 15 for half 
precision, 127 for simple precision, 1023 for double precision and 16383 for quad 
precision. Another important feature of this standard is represented y the hidden 1 
for the mantissa. Using this hidden 1, a bit of precision is thus gained. Also, this 
hidden one establishes the range for the mantissa value betweenj^l,2) [26][36] . 

Thus, normalization steps must be performed in ever/ operation, so the mantissa 
remains in the considered range [26][51][74] . 

Another important feature of this standard is represented by the special 
values which are defined. These special values are specified by a specific 
combination of the three fieids of the IEEE 754 floating point numbers. These 
special values are [36] : 

• Zero: this special value is determined by zero in the exponent fieid and zero 
in the mantissa field. However, the sign bit can be O or I , and thus, we have 
a signed zero (positive and negative zero). 
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• Infînity: this special value is determined by an all 1 exponent fieid and a 
zero nnantissa field. As in the case of zero, the infinity special value is signed 
(positive and negative infinity). 

• Not a Number (NaN): this special value is determined by an all 1 
exponent field and a non-zero mantissa. This value results when operations 
with special fieids take place (square root from a negative number, 

• Denormalized Numbers: this special value is determined by zero in the 
exponent field and a non-zero mantissa field. This value results when the 
normalization cannot be performed (the operation has an underflow result). 
This special value is important, because it can be avoided, by the gradual 
underflow mechanism, the total cancellation of the result. 

The IEEE 754 also defines five types of exceptions (overflow, underflow, 
divide by zero, invalid and inexact), ailowing thus the implementation of specialized 
trap handiers for each of the five exceptions [36]. Also, the standard recommends a 
minimum set of operations to be implemented as instructions: addition/subtraction, 
multiplication, division, remainder, square root and conversion between floating 
point and integer. For these operations the standard requires that all the operation 
to be performed so the result is computed exactiy and then rounded according to 
the desired rounding mode. Furthermore, IEEE 754 standard defines four rounding 
modes: rounding towards nearest even, rounding towards zero (truncation), 
rounding towards positive infinity and rounding towards negative infinity [53]. 

Compared to the variable latency format, the IEEE 754 standard does not 
have the same accuracy in computations. However, the hardware units which 
implement the arithmetic operations for IEEE 754 standard have a greater 
performance. 

The IEEE 754 and the extension draft IEEE 754r standard have become the 
basis for the first interval arithmetic dedicated standard, which is the goal of the 
IEEE Working Group P1788 approved by the lEEE-SA Standards Board [116]. 
Therefore, all the designed hardware units in this thesis are designed for IEEE 
representation of floating point numbers. 

1 .2 .2 Interval Operations and Function Evaluation 

Given two inten/als and [ K / ^ ; w h e r e are 
floating point numbers, the four basic arithmetic operations are defined as foilows 
[49][53][47][86][94]: 

• Addition: 
l^lo'^hu-^lyiof^hi] = [^lo-^^lo'f^hi + (1.3) 

• Subtraction: 
= i^lo-'^hif^hi "^/o] (1.4) 
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• Multiplication: 

[^/o; ̂ hi] * [V/o; V>7/] = [min ( n XY); max ( f ] XY) 

Y[XY XjQ * Yio)Xio * YhiiXhi * yio' Xhi * >7?/ 

• Division: 

-Ty, -y^-l* 1/ 

Undefined for Og [y/^;/^/ 

(1.5) 

(1.6) 

The rounding modes used in interval arithmetic are rounding towards 
negative infinity for the lower bound of the result and rounding towards positive 
infinity for the upper bound of the result [41][47]. 

As it depicted by the equations (1.5) and (1.6), multiplication and division 
are not as straightforward as the interval addition and subtraction. The reason for 
this is that an interval operation is defined as foilows [41][47]: 

Xio',Xhi] o [Yio;Yhi] = [min(x o y ) ,max ( x o / ) ] , 
(1.7) 

These four basic interval operations are commutative and associative, while 
regarding the distributivity property in the case of interval arithmetic it does not 
hold. However, the subdistributivity property hoids [47][49][53][107]: 

Xhi] * ([V/o/ V/7/] + [Zio, Zhj]) c 

XIo) Xt)i'\ * [V/o; V>7/] + \Xio) X/,/] * [Z/o; Z/̂ / 
(1.8) 

A function evaluation for an interval is defined in the same way as an 
operation [41][47][53][107]: 

Hl^lo^Xhi]) = [rn\n{f{x)),^^3x{f{x))],\fXG[X|o;Xh|\ (1.9) 

Therefore, using (1.8) sin([0,2*;r]) =[-1,1] and 

not sin ([0,2*7r])= [sin(O), sin(2 * ;r)] = [0,0] , while f ([-2,2]) = [0,4] ^ [4,4" 

f0T f [ x )^x^ [41][53]. 
Very important for interval arithmetic are also the set operations. These 

operations are used in a wide range of interval methods. Among these operations 
are included [1][91]: 

Huli 
;min(X/o,//o),max(X,,, 

when Xhi > Yio > X|o or Yhj > X/̂  > y/o 

'_Xio;Xhi]u[Yio;Yhl] ,otherwise 

(1.10) 
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• Intersection 
max (Xio, Yjo), min (X,,/, >7,/)], 

when Xhi >//o ^ or Yhi > X/o > V7o ^^^^ 

0 .otherwise 

Also used in many interval appiications are operations on the interval, off 
which two are nnore frequently used [41][47][53][107]: 

• Width 
Width([X,o,Xf,i]) = \X,o-Xhi\ (1.12) 

• Midpoint 

The first of these two operations is used for determine the accuracy and the error 
accumulation of the interval computations, while the second is used for 
approximating an interval with a single floating point number. 

1 .2 .3 Applications 

Interval methods have been devised for a wide range of appiications which 
require reliable and guaranteed results [25][41][53][54][58][61][107]. Basically, 
interval arithmetic methods produce numerical proofs. Furthermore, some interval 
algorithms present even a better performance compared to their convenţional 
counterparts. 

Historically, the first time interval methods have been used by Archimedes 
to determine the value of number;r [41][53]. However, modern day interval 
arithmetic has been refined and developed since the works of Ramon E. Moore in 
the 1960s [61]. Since then, a wide range of specific methods have been developed 
which can be used in many fieids of appiications. 

One of the most important fieids of appiication is represented by the 
noniinear equations and systems of equations. Two types of methods can be used 
for this type of appiication: bisection methods and interval Newton's method 
[47][48][53]. The interval Newton's method has the property of providing a very 
narrow interval which will surely contain the solution of the equations or providing a 
certain indication of the no solution situation. This method can be used for all types 
of noniinear equations and systems of noniinear equations, many of which couldn't 
be solved with numerical methods. Furthermore, interval methods have been 
developed for solving linear systems of equations, integral equations, iniţial value 
problems, etc. 

Therefore, these types of methods, and especially interval Newton's 
method, have a wide range of appiications. One fieid of appiications is related to 
computer graphics, where equations solving represent one of the most common 
operations. Based on interval methods, algorithms for ray tracing, ray-surface 
intersection, rendering, collision detection have been developed, many of which 
presenting a better performance compared to their convenţional counterparts 
[47][84]. 
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Interval methods have also been devised for control theory and robotics. 
One of the main research program related to this fieid of appiication is the COPRIN 
project developed at INRIA institute [117]. 

Interval methods have also been used to provide computer assisted proofs 
for mathematical physics, like the Feigenbaum conjecture, the double bubble 
conjecture or Keppier conjecture [47][81]. Also, interval arithmetic has been used 
for determining physical constants, like the Newton's gravity constant. Other 
appiications for interval arithmetic have been developed in chemical engineering, 
electrical engineering, computer-aided design, fluid mechanics, dynamical systems, 
air traffic control, etc. 

1 .2 .4 . Software Support 

In order to enable support for these appiications, software extensions of the 
common programming languages which include interval arithmetic have been 
provided [53][94]. 

SUN Microsystems have developed, during the Interval Computation project, 
a C++ extension (Forte Developer 7, Sun Studio 11) and FORTRAN extension for 
interval arithmetic [97]. The GNU C compiler also has been modified for super-
scalar architecture to support interval arithmetic [94]. Furthermore, the INTLAB is 
an extension of the MATLAB which have been developed at the TU-Hamburg [115]. 

Support is also provided in specific libraries, which contain interval methods 
and algorithms (ALIAS [112], CGAL [113], MPFI [114], BOOST Interval [111] etc). 
Some of these libraries present also optimization techniques particular for interval 
arithmetic. 

Furthermore, scientific extensions of the common programming languages 
contain support for interval arithmetic. Some of these extensions include the Pascal-
XSC (a Pascal extension), C-XSC or ARITH-XSC [41][49][53][94]. 

1.3. Motivation 

Although a wide range of appiications have been developed based on 
interval arithmetic, these methods are quite slow and inefficient on modern 
computers, even if some kind of software support exists for interval arithmetic. The 
main reason is represented by the lack of hardware support for interval arithmetic 
[49][53]. 

Even though the IEEE 754 standard specifies four rounding modes, of which 
the rounding towards negative infinity and rounding towards positive infinity (the 
rounding modes used in interval arithmetic), oniy rounding towards nearest even is 
implemented within the arithmetic operations. For using other rounding modes, a 
dedicated instruction must be executed before the operation. Therefore, for interval 
addition for example, instead of two instructions (one for each floating point 
operation), four instructions must be used, of which two instruction for changing the 
rounding mode (instruction for rounding towards negative infinity, addition, 
instruction for rounding towards positive infinity, addition) [49][53]. Thus, the 
performance of an interval addition is low compared to that x)f two convenţional 
floating point additions (rounded towards nearest even). Although interval hardware 
units have been proposed in literature [1][49][53][86][87][91][94][95][96][107], 
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there is no commerdal processor which offers appropriate support for interval 
arithmetic. 

The reasons for this lack of support for interval arithmetic, as explained by 
Wiiliam Walster from SUN Microsystems, are twofold: on one hand, the uncertainty 
in demand, thus preventing microprocessor companies to implement interval 
hardware units and interval arithmetic instructions; on the other hand, there is no 
standard for interval arithmetic [41]. Lack of standard may be the most important 
reason, as it was in the case of convenţional floating point arithmetic: hardware 
implementations and support for floating point knew a development (almost a 
boom) oniy after the emergence of IEEE 754 standard [41]. 

In order to encourage the development of hardware support for interval 
arithmetic, in the last year the IEEE Standard Association has appointed the 
Working Group 1788 to develop a standard for interval arithmetic [54][116]. This 
standard has its starting point the IEEE 754 standard for floating point and its 
extension draft IEEE 754r (especially related to number format), while specific 
issues of the interval arithmetic (like division by an interval which contains zero) 
must be specified by this standard. 

Thus, there is an increasing need for hardware support for interval 
arithmetic. The arithmetic units must comply to the IEEE 754 number formats, as 
the interval arithmetic standard will be implemented with this type of number 
format. Furthermore, it is desirable that convenţional floating point operations couid 
be executed on the hardware interval arithmetic units. 

1.4. Thesis Objectives 

This thesis has three major objectives: the design of an 
interval/conventional floating point addition unit, the design of an 
interval/conventional floating point multiplication unit and the design of a floating 
point divide-add fused unit. 

Regarding the adder, in convenţional floating point arithmetic the operations 
which are executed on this unit count (additions, subtractions and comparisons) 
count about 55% from all Hoating point operations [69][70]. Therefore, the floating 
point adder is criticai to the performance of any floating point system. In interval 
arithmetic it is also expected that the addition/subtraction to represent as vital 
operation as in the convenţional floating point arithmetic. Therefore, the design of a 
high performance interval adder represents a priority for any interval arithmetic 
hardware processor. Furthermore, this interval hardware shouid be also used for 
convenţional noating point addition. One reason for the combined functionality is 
that two important functions used in interval arithmetic require 
additions/subtractions: width of the interval and midpoint of the interval. 

Regarding the multiplication, in convenţional floating point arithmetic this 
operation counts about 40% from all floating point operations [69][70]. Therefore, 
the floating point multiplier is also a very important unit for any floating point 
system, its performance being criticai for the overall performance. In interval 
arithmetic, it is also expected that the multiplications to be as important as in 
convenţional floating point arithmetic. As in the case of the interval addition unit, 
the multiplication unit shouid be able to also perform convenţional floating point 
multiplications. 

The floating point divide-add fused will be a dedicated arithmetic unit for 
increasing the performance of the interval Newton's method [48][49][53]. In this 
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case, the use of a dedicated combined unit may represent an advantage, as is the 
case of the floating point multiply-add fused for many appiications (digital signal 
processing, computer graphics, etc). This dedicated combined unit can also be used 
for addition or division (both convenţional and interval), but with lower performance 
compared to an adder or a divider. Because interval Newton's method represents 
one of the most important interval algorithms, a dedicated unit for this operation 
will be beneficial for an interval arithmetic system. 

Previous interval designs, such as the ones in 
[1][49][53][86][87][91][94][95][96][107], used convenţional floating point units, 
without making changes in their architectures. The approach used for designing 
interval hardware units is based on optimizations in the internai structure of 
convenţional floating point units. Therefore, cost and performance improvements 
can be obtained by using this approach. 

1.5. Evaluation 

The proposed designs were implemented using VHDL. The role of these 
VHDL models is both verification and performance and cost evaluation [45]. 

In order to determine the performance of the proposed designs, IEEE 754 
double precision models were built. These models using the double precision were 
simulated using as a latency measure the logic level (LL) as in the works of Seidel-
Even [30][89][90]. The proposed designs were compared to other floating point 
designs, whose results are reported in literature. This type of comparison is 
technology independent, but can be inconclusive due to several reasons: 

• It does not take into account the wire delays 
• It does not take into account delays produced by signal buffers 
• Different gates have different delays for different technologies (for example 

the XOR gate has a larger delay compared to an AND gate, while 
multiplexers built with pass transistors may be faster than most logic gates 
[14]). 

Therefore a technology dependent analysis had to be performed. For this 
type of analysis, designs based on IEEE half precision number formats were built. 
These designs were synthesize using Xilinx Synthesis Tool (XST) from the Xilinx ISE 
Webpack 10.1 [108]. The synthesis was done for the Xilinx Virtex-4 FPGA family. 
Models and synthesis results were performed for both the proposed designs and for 
other designs present in literature. 

Table 1.1 - Synthesis results obtained for benchmark circuits 
Benchmark 

Circuits 
Maximum Combinational Delay (ns) Cost 

(LUT-4) 
Benchmark 

Circuits Logic Route Total 
Cost 

(LUT-4) 
C17 0.147 0.266 0.413 2 

C432 2.058 6.588 8.646 67 
C499 1.176 3.510 4.686 110 

C6288 4.410 15.899 20.309 .. 493 
74181 0.753 2.234 2.987 22 
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Furthermore, to increase the confidence in the performed evaluation five 
benchmark circuits from the ISCAS'85 benchmark circuits family were modeled in 
VHDL and synthesized using the same tool for the same technology [39][118]. The 
VHDL code of this five benchmark circuits is given in Appendix A. The five 
benchmark circuits considered are: 

• C17 
• C432 27-bit channel interrupt controller 
• C499 32-bit single error correcting circuit 
• C6288 16-bit*16-bit array multiplier 
• 74181 4-bit arithmetic logic unit 

The obtained results are presented in Table 1. The latencies are given in 
nanoseconds, representing the maximum delay on the longest path of the 
synthesized circuit. As it can be observed, the maximum delay is composed from a 
logic delay and a route delay. The area is given in 4-input look-up tables (LUT-4), 
which represents the basic element of the FPGA family [108]. This way, a 
technology dependent analysis of the proposed designs couid be obtained. 

1.6. Thesis Outiine 

This dissertation is organized in three main chapters. These chapters are 
dedicated each for one inten/al hardware unit. The second chapter presents the 
interval addition hardware unit, the third chapter presents the interval multiplication , 
unit, while the fourth chapter is dedicated to the floating point divide-add fused 
unit. 

The second chapter is dedicated to the interval addition unit. This chapter is 
organized in three main sections. The first section is dedicated to the interval 
addition. Algorithms are presented and hardware implementations are discussed. 
The second section is dedicated to the convenţional floating point addition. The 
basic algorithm and its hardware implementation are presented. The main issues 
regarding the single path adders are than discussed. The final subsection of this 
section dedicated to the convenţional floating point addition represents a criticai 
birds' eye view of the double path adders. This is a very important issue for this 
thesis, as the proposed adder has as the inspiration point the double path adder. 
The last section of this chapter dedicated to the interval addition unit is dedicated to 
the proposed solution. The algorithm and the architecture of the proposed adder are 
presented. Last, but not least, cost and performance evaluations are made. 

Regarding the third chapter, dedicated to the interval multiplication, the 
outiine is similar to the one of the second chapter. Three main sections compose 
this chapter. In the first section, algorithm and hardware implementations for 
inten/al multiplication are discussed and compared. In this chapter, this section is 
far more elaborated than its counterpart of the addition chapter, due to the fact that 
interval multiplication is much more complicated compared to interval addition. The 
second section presents the main issues regarding the convenţional floating point 
multiplication. The integer unsigned multiplication is presented. The focus on this 
section will be the tree multipliers, every main component of them being analyz^: 
encoding module and its implemented multiplication algorithm, the parţial product 
reduction tree topologies and the final addition and rounding scheme. The third 
section of this chapter is dedicated to the proposed solution. A proposed algorithm 
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and its according architecture are presented. Last, but not least, cost and 
performance evaluations are made. 

The fourth chapter is dedicated to the floating point divide-add fused unit. 
The first section presents some considerations of the floating point divide-add fused. 
The second section of this fourth chapter presents the interval Newton's method, 
which is the algorithm for which the floating point divide-add fused is designed. 
Thus, motivation for the implementation of such unit will be provided. The third 
section of this chapter is dedicated to the floating point multiply-add fused. The 
floating point multiply-add fused unit is very important in this context because it is 
the oniy combined operation implemented floating point unit. In the fourth section 
an insight in the floating point division is given. The main algorithms and design 
choices are discussed. The fifth section of this chapter presents the proposed 
solution. The main issues, algorithm and the hardware implementation of this unit 
are presented. Like the other two previous chapters, this one ends with cost and 
performance evaluations. 

The last chapter of this thesis is dedicated to the concluding remarks. This 
chapter is organized in three sections. The first section presents the summary of 
this thesis. The second section is dedicated to the contributions of this thesis. In the 
last section, open problems and future work are discussed. 
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2. Hardware Interval Addition Unit 

2.1 Interval Addition 

Interval addition and subtraction are defined in equations (2 .1) and (2 .2) 
[49] [53] [86] [87] [107] : 

+ yio'^hi. - 'RNI{X,o (2.1) 

- = 'RNI{X,o -Yhi);RPI{Xhi -Yio)\ (2.2) 

As it can be seen from above, the interval addition/subtraction require two 
floating point operations, one rounded RNI, while the other rounded RPI. 

As described in the listed references, two ways for performing an interval 
addition/subtraction operation are given. One way is to use a single floating point 
adder (which incorporates both RNI and RPI) [53]. This way, the performance of the 
interval operations is equal to the performance of two convenţional floating point 
additions/subtractions, while the area required is almost the same as a convenţional 
floating point adder (is a littie bit greater because of a pair of multiplexers) [94]. 

The second way for performing interval addition is by using two floating 
point adders (one with RNI and one with RPI) - fig. 2.1. This adder requires two 
pairs of multiplexers to be adder. The performance in this case is equal with respect 
to the convenţional floating point addition, while the area required is more than 
double [49]. 

Zio Zhl 
Figure 2.1 - Interval Adder Comprised of Two Floating Point Adders [49] 

BUPT



20 Hardware Interval Addition Unit - 2 

These two ways for performing interval additions/subtraction do not require 
major changes in the structure of the floating point adders used (mainly because all 
IEEE compliant floating point adders include, beside RNE and RZ, RNI and RPI [36]) . 

2.2 Floating Point Addition 

2 .2 . 1 Bas ic Algorithm 

Floating point addition is one of the most difficult floating point operations. 

The addition of two IEEE floating point numbers ( F i = (- i f*^ * * J .M i 

and = with F1>F2) is given by the foilowing formula 

[64] : 

s3 * ^l.M3 = Fl±F2 = {-if^ * * ( i . M i ± (2 .3) 

The actual operation to be performed (addition or subtraction - the effective 
operation) is determined by the instruction and the sign of the operands (Table 
2.1) . The two mantissas are in the [ i ; 2 ) r a n g e , so, after an addition/subtraction, 

the mantissa of the result is in the [0 ;4 ) range . Thus, normalization steps are 

required [69] . 

Table 2.1 - The Effective Operation in Floating Point Addition 

Operation Sign 1 Sign 2 Effective Operation 
Addition + Addition 
Addition + - Subtraction 
Addition - + Subtraction 
Addition - - Addition 

Subtraction + + Subtraction 
Subtraction + - Addition 
Subtraction - + Addition 
Subtraction - - Subtraction 

The basic floating point addition, as described in [64] [78] , consists of the 
foilowing steps: 

1. Exponent subtraction. This step is important because of two reasons: the 
greater exponent will be used for the computation of the result exponent and the 
difference represents the amount of alignments shift. 

2. Mantissa alignment. The mantissa of the number with the smaller exponent 
will be right shifted with the amount given by the difference of the exponents. 

3. Mantissa addition/subtraction. The two mantissas will be added or 
subtracted, based on the effective operation. 
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4. Result conversion. In case of a negative result, a two's complenrient have to be 
performed. 

5. Leading zero detection. In case of an effective subtraction, a massive 
cancellation of the result is possible. In this case, normalization is needed (using left 
shifting). The amount of left shifts results from this step. 

6. Normalization. The result of the mantissa is normalized (left shifting in case of 
leading zeros or 1 position right shift if the mantissa is in the [2; 4) range). This 
step is foilowed by an exponent update (subtracting from the greater exponent the 
amount of left shifting in case of cancellation or adding 1 to the greater exponent in 
case of right shift normalization). 

7. Rounding. The rounding decision is computed and the 1 ulp addition is 
performed, if required. 

8. Post-normaiization. A 1 position right shift might be required if the exponent is 
equal to 2. 

This basic algorithm has an unacceptable high latency, as described in [64]. 
This is due steps 2 and 6 (the massive shifts), steps 3, 4 and 7 (which require large 
carry propagate adder - step 4 and 7 requiring these adders oniy to add 1 ulp), and 
step 5. Significant improvements have to be made in order to obtain the high 
performance needed for the most frequent floating point operation. 

2 .2 .2 Single Path Adders 

In order to increase the performance of the floating point addition, several 
improvements can be made. They rely on removing some high latency steps of the 
basic algorithm from the criticai path, either by reducing them to much lower 
latency operation, or by performing them in parallel with other steps. 

A first improvement can be made by swapping the mantissas, based on the 
exponents' difference [12][64][78]. This way, the smaller number will be subtracted 
from the greater number, thus avoiding the two's complement of the result. The 
onIy case when this is not possible is the case of equal exponents. Therefore, step 4 
of the basic algorithm is not completely removed. 

A second improvement can be made by using a leading zero predictor 
instead of a leading zero detector [12][16][37][63][64][65][73][85][89][90]. This 
circuit predicts the number of leading zeros based on the two aligned mantissas. 
Therefore, the leading zero predictor can run in parallel with the mantissa 
addition/subtraction. Thus, the high latency operation of detecting leading zeros is 
removed from the criticai path of the floating point adder. 

A third improvement can be achieved by using a compound adder 
[12][17][37][63][64][65][66][88][89]. The compound adder is a type of adder 
which has two results: the sum of two numbers (A+B) and the incremented sum 
(A+B+l) [98]. Using such adders, the steps which need the addition of lulp (the 
result conversion step and the rounding step) are reduced to a simple selection 
(using a single row of multiplexers). In this way the latency is reduced significantly. 
This module will be detailed in Section 2.2.2.2. 
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Thus, it is obtained the single path adder. The criticai path for the mantissa 
of this type of adder is build from the exponents' subtractor, the swapping circuit, 
the alignment shifter, the bit inversion circuit, the compound adder, the rounding 
and bit inversion multiplexer, the normalization left shifter and the one position 
right shifter. The overall structure of this type of floating point adder is presented in 
Fig. 2.2. 

Ml M2 E l E2 E l E2 

i 
M3 

Flgure 2.2 - Block Architecture of a Single Path Adder [12] 

A typical single path adder is presented in [12] , which is similar with the 
one in Fig.2.2. The design presents all of the improvements presented above. This 
adder has a performance of three clock cycle (three pipeline stages). In the first 
clock cycle the exponent subtraction and the alignment shifting are performed. The 
second pipeline stage is dedicated to the mantissa addition and the leading zero 
detector. The normalization shift is performed in the last stage. Thus, a significant 
improvement of the performance of the floating point addition compared to the 
basic algorithm is obtained. 
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2 . 2 . 2 . 1 Leading Zero Prediction 

The leading zero predlctor (LZP) (also called leading zero anticipator (LZA)) 
is a circuit which predicts the number of leading zeros based on the two operands of 
the subtraction (which will be called in this section A and B) [16][43][85] . 
Therefore, the leading zero predictor can run in parallel with the adder which 
performs the subtraction. Therefore, this dedicated circuit improves the 
performance, uniike the leading zero detector (LZD) [73] , which detects the 
numbers of leading zeros based on the result of the operation {A-B), The difference 
between the two circuits can be seen in Fig. 2.3. Leading zeros do appear when the 
result of the operation is positive and leading ones do appear when the result of the 
subtraction is negative [85]. The leading zero prediction is actually the 
determination of the most significant one bit. Due to this, in some papers (for 
example [16]) , leading zero prediction is called leading one predictor (prediction of 
the most significant one digit). 

A LZP is composed of three modules: 
• encoding logic 
• leading zero detection 
• correction module. 

B 

Figure 2.3 - Placement of Leading Zero Detector (LZD) and Leading Zero Predictor (LZP) [80] 

Leading zero predictor detects the position of the first leading one by 
examining the pattern of the two operand bits. The bits of the same weight in the 
two operands are compared and encoded. One method of encoding is presented in 
[16]. This type of encoding determines the relative position if the two bits of the 

same weight (three bits are used, the equal bits (e/ = a,- e bj ) , the greater bits 

(g/ = a j b j ) and the smaller bits ( s , = a/fc/)). Leading zeros do appear in case of 

e^gs^ (a string of k equal bits, foilowed by a greater bit and j smaller bits) pattern 
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for the most significant position. Leading ones (in case subtraction has a negative 
results) do appear in case of e^sg^ pattern [85]. Based on these encoding bits, a 
string of bits is generated which indicates if a one may appear on the position (the f 
strlng)[16][43][85]. The encoding cell for one position is presented in Fig. 2.4. 

The second stage of a LZP is the LZD, which is a circuit which detects the 
position of the most significant one. A typical LZD is described in [73]. In order to 
decrease the latency of this circuit, the detection of the first significant one is done 
in a binary tree based structure. At the first level, a group of four bits is analyzed, at 
the second level the detection is realized for eight bits. For each group of analyzed 
bits (four for first level, eight for second level, sixteen for third level, etc) a valid bit 
which indicates if a one is contained and the position of the most significant one are 
generated. The generation of valid and position bits for a group of four bits are 
presented in table 2.2. The structure of the four bit detection is presented in Fig 2.5. 

Al Bl 

B s T Y tel 

a+i-
1 

(al+J A 
-Cir-

Figure 2.4 - Encoding Cell in LZP (Logic [16] and Virtex-4 FPGA Technology Schematic) 

Also in 2.5 is presented a leading zero detector tree for sixteen bits. 
The entire structure requires \ log2N' ]- l levels (where N is the number of bits). 
The delay of the first level is 2 LL, while the delay of one tree node is 1 LL. 

Table 2.2 - Four Bits Truth Table for LZD [73] 

Pattern Position 
bits Valid 

I xxx 00 1 
Olxx 01 1 
OOlx 10 1 
0001 11 1 
0000 XX 0 

The encoding provided by the encoding module does not take account of the 
carry-in bits for each position which may appear at the subtraction of the two 
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operands. This may lead to an inaccurate prediction (the inaccuracy being of 
maximum one position). Thus, in order to obtain an aligned mantissa a correction is 
needed. There are, however, leading zero predictors which predict exactiy the 
amount of leading zeros, like the one presented in [35]. However, the latency and 
the area overhead of these types of LZP are great compared to a LZP with 
inaccurate results [85]. 

B3 B2 B l Bo 
u u u u u u u u 
LZD-4 LZD-4 LZD-4 LZD-4 

U i 1 I I 1 I I 1 I I 
LZD-8 LZD-8 

1 i i i 1 I I I 
LZD-16 

I I U I 
a) b) 

Figure 2.5 - Leading Zero Detection - a) For Four Bits Group b) Tree Detector for 16 Bits[73] 

Three ways for performing correction do exist [16][63] . In the first method, 
the normalization shifting is performed using the determined amount of leading 
zeros. After the normalization, in case of a leading zero (maximum one) another left 
shift is performed (Fig. 2.6 - a). This method has the advantage of a low cost, 
requiring oniy a single one position left shifter, besides the encoding and the 
detection tree. The main drawback is that introduces another one position left 
shifter in the criticai path of the floating point adder. 

The second method is based on the selection of the appropriate carry from 
the entire carry chain based on the result of the LZD [43][80] . Based on the 
selected carry, the correction is made (Fig 2.6 - b). This solution has a higher cost 
compared to the correction shifting, because of the carry selection. Regarding the 
added latency to the overall operation, this type of 1_ZP has to wait for the carry 
chain from the adder. Thus, it cannot provide the correct result at the end of the 
addition/subtraction. However, the solution for this is to use the most significant 
bits of the predicted result for course shifting during the correction, while the fine 
shifting (which require the least significant bits of the predicted result and which 
may be affected by correction) to be performed at the end of the operation. This 
way, the latency added to the floating point addition is smaller compared to the 
correction shifter. 

The third method is presented in [16] and is based a parallel detection tree. 
This detection tree detects whether a correction shouid be made based on the set of 
patterns which can be generated in the encoding module (Fig 2.6 - c). The use of 
another detection tree which runs in parallel is to reduce both latency and cost 
(otherwise, an exact LZP wouid be preferred), because analyzing small sets of 
patterns in parallel require simpler logic. Furthermore, this detection tree is 
separated into a detection tree for the positive result case and one for the negative 
result case. This solution is also used in [65]. The main drawback is represented by 
a doubling in cost. However, the introduced delay in the floating point addition of 
this module is negligible. 
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Figure 2.6 - Correction Strategies for L2P [16] a) Correction Shift b) Carry Selection 

c) Concurrent Position Correction d) Technology Schematic of a LZP Presented In a) Obtalned 
wlth XST 

The choice of the correction strategy Influences the area and the 
performance of the overall floating point addition. Thus, a post correction shift 
Introduces the lowest area overhead. As explained in [16], the delay introduced by 
this solution seems to be the greatest. However, different floating point adder's 
designs use this approach, considering that the introduced delay is acceptable for 
the overall performance of Jthe floating point addition. 
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2 .2 .2 .2 Compound Adder 

As presented in Section 2.2.1, three steps in the basic require mantissa 
length adders: the mantissa addition, the result conversion (two's complementation) 
and the rounding step. The result conversion and the rounding step require oniy 1 
ulp addition. By swapping the elements based on the exponents' difference the 
result conversion can be made onIy in the case of equal exponents. In this case, 
there is no need for rounding. Thus, the two steps are mutually exclusive. 
Furthermore, the two steps can be reduced to a selection (a multiplexer) if the 
result of the mantissa addition (>A+fî) and the incremented result {A-^-B+l) can be 
obtained in parallel [78]. This can be achieved using either two integer adder which 
run in parallel or a compound adder [17][98]. 

The compound adder is an adder which computes the sum of two numbers 
and the increment sum (>A+a+i). This adder is very advantageous to 

implement using the parallel prefix tree type integer adders, like the Brent-Kung 
adder [15], or the ones described in [50]. These adders are based on the 
computation of the carry chain based on the = ajbj (generation bits) and 
p, = a/@ 6/(propagation bits). Generation and propagation bits for a group of 
operand bits {Gjj and Pjj) are generated in tree based structures. The carry 

according to the /-th position is determined according to the foilowing 
equatlon: Cj = GQ(j_2)PQ(l_2)CQ\Nhere c^ represents the carry-in of the whole 

adder. The depth of the tree structures used to compute the carry chain has a 
logarithmical depth [15][50]. In [98] it was shown that if Cq is O then c, = Gq(i_2) 

and if Cq is equal to 1 thenc/ = + ^O(i-l) • it can be computed with onIy 

a small increase in hardware A+B (the casec^when is 0) and A+B+1 (the 
case Cq when is 1). The difference in latency between the two results is onIy of 1 LL. 

Table 2.3 - Obtaining Sum, Sum+l , Sum-f2 Using Half Adders and Compound 
Adder[17] 

LSB Compound Adder 
Result (CAR) 

Incremented CAR 
(ICAR) 

Sum 
Selection 

Sum+1 
Selection 

Sum+2 
Selection 

0 A+B+1 A+B+2 CAR,0 CAR,1 ICAR,0 
1 A+B A+B+1 CAR. l ICAR.O ICAR,1 

Therefore, using a compound adder, rounding and complementation can be 
reduced to onIy a simple selection, as foilows [17][79]: 

• In case of effective subtraction for operands with equal exponents, the 
result may be negative of positive. In case of a negative result, the sum is 
selected (which will be later bit-inverted), while in the case of a positive 
result, the incremented sum is selected. 

• In case of rounding to nearest even, the sum and the incremented sum are 
needed for both effective addition (with both the cases when the result 
overflows and does not overflows) and effective subtraction (with both cases 
when the result is denormalized and normalized). 
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In case of rounding towards infinity, the sum and incremented sum are 
needed for the case when the result does not overflow. When the result 
overflows, the is needed. In order to solve this problem two 
solutions have been developed: using two parallel compound adders (with a 
major increase In cost) or using a line of half adders before the compound 
addition. This line of half adders ailows computing either 4+6 and 
either 4+8+1 and 4+fi+2 (see Table 2.3), adding 1 LL in the criticai path of 
the adder. 

• • • 
HA Line 

S 
2C 

1 
O 

a) 

I J J . l i l 

Figure 2.7 - Addition, Complementation and Rounding Module (a) 
Preparing Operands for Sum, Sum+1, Sum+2 Using Half Adders (b) [17] 
Technology Schematic of 12-Bit Compound Adder Obtained with XST (c) 

The module obtained for is presented in Fig. 2.7. Thus, using a compound 
adder, a major reduction in cost (because a single compound adder with 
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multiplexers are used instead of three large carry propagate adders) and latency is 
obtained. 

2 . 2 . 3 Double Path Adder 

Further improvements of the floating point addition performance can be 
made taking account the foilowing assumptions [31] [65] [66] : 

• When the exponents' difference is greater than 1, a massive (more than 1 
position) right shift mantissa alignment step is needed. However, in case of 
an effective subtraction, there can be a maximum one position 
normalization shift. 

• When the exponents' difference is o or 1, oniy one right shift is needed for 
normalization. However, in case of an effective subtraction, cancellation of 
the result possible so a massive normalization left shift is needed. 

As it can be seen above, a massive alignment shift and a massive 
normalization shift are mutually exclusive. Thus, the two cases presented above can 
be separated in two different computaţional paths. This way, a double path adder is 
obtained. This design for floating point addition was first proposed by Farmwald 
( [31] ) and became the design with the highest performance, many versions of this 
type of adder being developed [12] [37] [44] [63] [65] [66] [90] [89] . 

The path which computes the mantissa result when the exponents' 
difference is greater than 1 is called the FAR path [31]. This computaţional path is 
characterized by the right barrel shift, which is used to align the mantissa before 
addition, and the more complex rounding logic. The major latency modules of this 
computation path are the right barrel shifter and the compound adder. 

The path which computes the mantissa result when the exponents' 
difference is O or 1 is called the CLOSE path [31]. This path is characterized by the 
leading zero predictor and the left barrel shifter, which is used to normalize the 
result. The major latency modules of this computation path are the compound adder 
(which runs in parallel with the leading zero predictor) and the left barrel shifter. 

SWAP SWAP 

AUGNMENT 
RIGHT SHIFTER 

ADDmON 
ROUNDING 

LZP 

ADDITION, 
COMPLEMENTATION 

ROUNDING 

NORMAUZATION 
LEFT SHIFTER 

MUX 

Figure 2.8 - Block Architecture of Mantissa Data Path of the Double Path Adder [26] 
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As it can be observed from above, each computaţional path has oniy two 
major latency modules, which are placed on the criticai path of the adder (Fig. 2.8) . 
The single path adder (presented in section 2 .2 .2) contains the three large latency 
modules on the criticai path. Therefore, an evident increase in the performance of 
the floating point addition is achieved. The cost of the double path adder is greater 
compared to a single path adder, mainly because it has two compound adders 
compared with one used in single path adders [44] [66] [90] . 

The computaţional flow in the double path adder is the foilowing: the two 
mantissas are served as inputs in each computaţional path, two results being 
computed; in parallel the path selection condition is also computed; in the last stage 
the correct result is selected. 

Table 2.4 - Examples of Floating Operations Performed on FAR and CLOSE Paths 

Condition Example IEEE Representation Path 

Exponents 
Difference 

0.625±0.375 25 ±(-1)0* 3 CLOSE Exponents 
Difference 2.125±0.375 (-1)' * * 1.0625 ± * * j 3 FAR 

Exponents 
Difference+ 

CLOSE OnIy for 
Subtractions 

0.625-0.375 * ^ 25 - { - \ f * 2-2̂ 2̂7 ^ 1 3 CLOSE Exponents 
Difference+ 

CLOSE OnIy for 
Subtractions 

0.625+0.375 ( - \ f * ^ 1 25 + { - \ f * 2-2̂ 2̂7 ^ j 3 FAR 

Exponents 
Difference+ 

CLOSE OnIy for 
Subtractions 2.125±0.375 (_1)0 * * 1.0625 ± * j 3 FAR 

Exponents Difference 
With No Rounding 

In CLOSE Path 

0.875-0.375 FAR 

Exponents Difference 
With No Rounding 

In CLOSE Path 

0.625-0.375 25-(-1)0*2-2^^27*1 3 CLOSE Exponents Difference 
With No Rounding 

In CLOSE Path 0.625+0.375 
2.125±0.375 

^ 2-H127 * 1 25 + (-1)0 * 2-2̂ 127 * ^ 3 

( - \ f * * 1.0625 ± { - \ f * * 1.5 
FAR 

An important feature of the double path adder is represented by the path 
selection condition. The first condition used in [31] was the exponents' difference. 
This condition was also used in the variable latency adder [64] [66] . Another 
condition for path selection is used in [44] [65] and involves exponents' difference 
and the effective operation. The CLOSE path is destined onIy for effective 
subtractions when the exponents' difference is O or 1, while on the FAR path are 
performed all the effective additions and the subtractions when the exponents' 
difference is greater than 1. This is possible because the effective additions do not 
result in a number with leading zeros, thus the normalization left shift is not 
required. Because on the CLOSE path are performed onIy subtractions, there is no 
possibility for an overflow in the mantissas addition, thus there is no need for a 1-
position right shift in this case (decreasing thus the latency of this path). To further 
increase the performance of the CLOSE path, in [12] [37] [63] [89] [90] another path 
selection criterion is used. The CLOSE path will perform onIy the effective 
subtractions with exponents' difference O or effective subtraction with exponents' 
difference equal to 1 which will result with leading zeros. This way, the roundi^g 
step is removed from the CLOSE path. Examples of different additions and 
subtractions and their execution path are presented in Table 2.3. 
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2 .2 .3 .1 Adela idel999 Adder 

This floating point adder has been designed at the University of Adelaide 
and is presented in [12]. The CLOSE path will perform all the subtractions when the 
exponents' difference is O and the subtractions when the exponents' difference is 1, 
but which will result in denormalized number (it has leading zeros). 
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Rgure 2.9 - Structure of the Adelaide Adder [12] 

This is determined by an examination of the MSBs of the mantissa in the 
unpacked form (the mantissa without the hidden 1). Thus, there is no need for 
rounding in the CLOSE path. The leading zero correction is done using a post-
normalization shifter. 

The FAR path will compute all the operations when the exponents' difference 
greater than 1, all the effective additions and the subtractions which will not result 
in leading zeros. Two exponents' difference subtractor circuits are used (one for El-
E2 and the other for EZ-El), thus there is no need for complementation of the 
exponents' difference in case it is negative. 
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2 . 2 . 3 . 2 SUN1998 Adder 

This adder represent a SUN Microsystems patent [37] and was also 
presented in [89]. This adder is sinnilar to the Adelaide adder regarding the path 
selection criterion and the CLOSE path. 
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Figure 2.10- Structure of the SUN1998 Adder[37] 

The main contributions of this type of adder are implemented in the FAR 
path. One contribution is represented by the way of computing the rounding needed 
bits (G, R and S). Two series of rounding bits are computed in parallel, for each 
mantissa, before any alignment shift. Two exponents' differences are computed, the 
two sets of rounding are obtained based on these results [89]. The correct series is 
chosen based on the sign of exponents' difference. Another contribution of this 
design is to use a special dedicated carry propagate adder with selection 
incorporated. The reason for using such adder is to easily split it for pipeline 
architectures, as this type of adder contains three pipeline stages (which are very 
fast). 

Although it uses a similar path selection criterion like the Adelaide adder, it 
is however implemented rather complicated, as it performs a more complicated 
analysis of the two mantissas. 
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2 .2 .3 .3 AMD2000 Adder 

This adder was designed by Stuart Oberman and represents an AMD patent 
[65] and is also described in [89]. This adder is quite different from the other two 
described in previous sections, mainly due to the path selection criterion. The 
CLOSE path is used for all effective subtractions when the exponents' difference is O 
or 1. Therefore, a rounding unit is needed in the CLOSE path. Thus, an increase in 
latency can be observed in the CLOSE path compared to the other two designs. 
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Flgure 2.11 - Block Structura of AMD Adder 

The main contributions of this design rely are located on the FAR data path, 
especially regarding the alignment shifting. The alignment shift in two steps: the 
first step involves shifting if the exponents' difference is smaller or equal to 63 
(because the mantissa is represented on 53 bits - including the hidden one) [89]. 
This shift is performed for both cases when the exponents' difference is positive or 
negative for both operands. The shifting on each weight is performed after each bit 
of the exponents' difference is available (thus, not waiting for the entire 
subtraction). The second step for shifting is performed after the exponents' 
difference is available. In case that exponents' difference is greater than 63, the 
smaller mantissa will be arithmetically right shifted. This step is performed by the 
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SHIFT ZERO block (actually the number is shifted with the sign and not with 0). This 
way a decrease in the latency of the FAR data path can be obtained. 

2 .2 .3 .4 Seidel-Even Adder 

This adder is presented in [89][90] and implies several techniques to 
decrease the latency. The path selection criterion is similar to the one used in 
[12][37], and the CLOSE path is thus very similar to the SUN and Adelaide adders. 
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Figure 2.12 - Block Stnjcture of the Seidel-Even Adder [90] 

Regarding the FAR path, several optimization techniques are used. Because 
oniy one adder is used for exponents' difference (thus needing a two's complement) 
a speculative one position left shift is performed before exponents' difference is 
available (because exponent's difference will come in one's complement form and 
not two's). Also, the massive right shift is performed (for the case when the 
exponents' difference is greater than 63) in a speculative manner. The shifting for 
the case when exponents difference is smaller than 64 is performed in a similar way 
to the one performed at the AMD adder (as each bit of the exponents' difference is 
available) [90]. Another optimization is carried out in the rounding and post-
normalization shift. The rounding dedsion is computed in two paths, for the case of 
no overflow and for overflow of the addition result. The post-normalization shift is 
performed for each of the two results of the compound adder, before the selection 

BUPT



2.2 - Floating Point Addition 35 

of the appropriate result. The reason is that there is enough time for a one position 
right shift until the rounding decision is available. 

The last optimization technique used in this adder is implemented in the 
result selection multiplexer. The result in the CLOSE path and one result of the 
compound adder (the sum) are available before the other result of the compound 
adder. Thus, a selection between the two is performed. The result of the operation 
is obtained by selecting between the shifted incremented sum of the compound 
adder and the selected result in the previous multiplexer. 

2 .2 .3 .4 Variabie Latency Adder (Stanford) 

The variabie latency adder was proposed in [64][66], as part of the SNAP 
project developed at Stanford University. This adder exploits the fact that not all 
operations are ready at the same time. 
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The path selection criterion is the exponents' difference. Thus, the effective 
additions when the exponents' difference is O or 1 are performed on the CLOSE 
path. In this case, the operations which must be performed are the one position 
alignment shift, addition, rounding and the normalization shifting (in case of 
overflow), not needing the normalization left shifting. After these operations, the 
resuit is available and the operation is ended. Furthermore, in case of effective 
subtraction when exponents' difference is smaller or equal to 1, the resuit is 
available earlier compared to an operation that is performed on the FAR path 
[64][66]. 

Tri-state buffers are place at each location when an operation might be 
over. Thus, the floating point addition may be over earlier or later, depending on the 
execution path and on the effective operation. 

2 .2 .3 .5 Connparisons between Double Path Adder Designs 

In the foilowing table a comparison between the five presented double path 
adders design is realized. The adders are compared in terms of latency (expressed 
in logic levels), path selection criterion, operations in CLOSE path, rounding in 
CLOSE path. 

Table 2.5 - Double Path Adders Comparison 

Adder Latency Path Selection 
Criterion 

Rounding in 
CLOSE 

Operations 
in CLOSE 

Adelaide'99 29 
Exponents difference+ 
Effective operation+ 

Leading zeros in CLOSE 
No Effective 

subtraction 

Sun'98 28 
Exponents difference+ 
Effective operation+ 

Leading zeros in CLOSE 
No Effective 

subtraction 

AMD 2000 26 Exponents difference-h 
Effective operation Yes Effective 

subtraction 

Seidel-Even 24 
Exponents subtraction+ 

Effective operation-h 
Leading zeros in CLOSE 

No Effective 
subtraction 

Variable Latency 29 Exponents difference Yes 
Effective 

subtraction 
+ Addition 

Performing the addition in a speculative manner on two computaţional 
paths, an increase of the performance of the floating addition is obtained. This way, 
high performance for the most frequent floating point operation is provided. 
However, this increase in performance came at almost a double cost and power 
consumption compared to the single path floating point adders. 
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2.3 Proposed Adder 

2 . 3 . 1 Interva l Addition 

As It can be observed in Section 2.1, an interval addition/subtraction 
requires two floating point operations. These two floating point operations can be 
executed either in parallel using two floating point adders, or sequentially using one 
floating point adder. In both cases, in order to obtain better performance, a double 
path floating point adder is recommended in both cases. 

The floating point adders presented are designed to increase the 
performance of oniy a single floating point addition. Because of this features, one 
path is virtually not used when executing one operation (because it will produce the 
wrong result). For example, in case of an addition when the exponents' difference is 
greater than 1, the CLOSE path is of no interest for the result of operation. 

The proposed adder tries to exploits the parallel structure of the double 
path adder, therefore, performing the two floating point operations needed for an 
interval addition/subtraction simultaneous, one on the CLOSE path and the other 
one on the FAR path. In order to perform two floating point operations, the modules 
which compute the exponents and the signs must be duplicated [3] [5] . 

SZIo SZh. EZIo EZhi MZIo MZhi 

Figure 2.14 - Block Structure of Proposed Interval Adder t3][5] 
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[ î i in i f i 
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Figure 2.15 - Technology Schematic Obtalned with XST for FAR path (a) and CLOSE path (b) 

The overall architecture is presented in Fig 2.14. Several changes do appear 
compared to other double path adder designs: 
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1. In the proposed adder, the corresponding path for each operation must be 
known before the splitting into two paths. The reason for this is that two 
pairs of operands, along with the appropriate effective operation and the 
appropriate rounding mode, must be transmitted on the corresponding path. 
Therefore, a set of multiplexers have to be placed before each path. The 
signals which command the set of multiplexers are generated according to 
the path selection criterion. 

2. Two (pairs of) exponents' differences have to be computed, because two 
selection criterions must be computed. Another important feature is that the 
exponents' differences are computed before any mantissa computing in 
either the FAR path or CLOSE path. This is due to the fact that there is no 
speculative operation like in other floating point adder's designs. Because 
exponents' difference are computed before any processing of mantissa, no 
exponent difference prediction is required in the CLOSE path, and no 
technique for improving the alignment shift in the FAR path (like the ones in 
AMD adder and Seidel-Even adder) can be appiied. 

3. The logic for the path selection criterion is founded on the criticai path of the 
floating point adder. Therefore, a simpler path selection criterion means a 
smaller latency. However, a more complex path selection criterion increases 
the possibility that two floating point operations can be performed 
simultaneousiy. 

The path selection criterion used in [3] is the exponents' difference. Using 
this criterion, on the FAR path will be performed the operations which have 
exponents' difference greater than 1, while on the CLOSE path will be performed the 
operation which have exponents' difference smaller or equal to 1. If we use a 
criterion based on the exponents' difference and the effective operation, as 
presented in [5], then on the FAR path will be executed all the effective additions 
and the subtraction when the exponents' difference are greater than 1, while on the 
CLOSE path will be executed all the additions and subtraction when the exponents' 
difference is smaller or equal to 1. In this case, the logic for path selection is more 
complex. In both cases the FAR path and the CLOSE path have the same structure. 

The CLOSE path's structure enables the execution of both additions and 
subtractions when the exponents' difference is O or 1. The swap and alignment are 
based on the exact exponents' difference (because it is available) and not on an 
prediction based on the least significant bits as it is done in other double path 
adder's design. Because effective additions may be performed on the CLOSE path, 
1-position normalization right shifter is needed, because an overflow may occur. 
Furthermore, rounding logic is also needed. Thus, the CLOSE path will have an 
increased latency compared to Adelaide, SUN or Seidel-Even adders. 

On the FAR path can be executed all the operations when the exponents' 
difference is greater than 1 and the effective additions when the exponents' 
difference is O or 1. The alignment shift is performed on the exact difference of the 
exponents (which is available). This is the single major difference between the 
proposed adder's FAR path and other adder designs, like the AMD, SUN or Seidel-
Even adders. The detailed structure of the mantissa data path j s presented in Fig 
2.15, while in Fig 2.16 the technology schematic for the FAR and CLOSE path of the 
proposed adder is presented. 
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Figure 2.16 - Detailed Structure of Mantissa Data Path in Proposed Adder [5] 
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Table 2.6 Examples of Favorable Cases of Interval Addition 
(D stands for exponents' difference) 

^lo Ylo Operation Path ^hi Yhi Operation Path 

0.625 +0.25 
-0.375 D=1 CLOSE 2.125 +0.375 

-0.25 D=3 FAR 

0.625 0.375 Effective Addition 
D=1 CLOSE 0.75 0.5 Effective Addition 

D=0 FAR 

0.625 -0.375 Effective Subtraction 
D=1 CLOSE 0.75 0.25 Effective Addition 

D=1 FAR 

Table 2.7 Examples of Unfavorable Cases of Interval Addition 
(D stands for exponents' difference) 

/̂o Ylo Operation Path ^hi yhi Operation Path 

0.625 -0.375 
Effective 

Subtraction 
D=1 

CLOSE 0.75 -0.25 
Effective 

Subtraction 
D=1 

CLOSE 

1.75 0.375 D=2 FAR 2.125 0.5 0=2 FAR 

Using the proposed adder, the two floating point operations needed for an 
interval addition/subtraction can be performed simultaneousiy, like in the solution 
based on two floating point adders, or can be performed sequentially, like in the 
solution based on a single floating point adder. Therefore, we have favorable cases 
and unfavorable cases. The probability of occurrence of a favorable case depends on 
the selection criterion, the one which is based on both exponents' difference and 
effective operation having a greater probability. In tables 2.6 and 2.7 some 
examples of favorable and unfavorable cases for the exponents' difference and 
effective operation based path selection criterions are presented. In case an 
unfavorable does occur, one operation will have priority (for example the operation 
for the lower end of the result interval), while the other one will wait. This 
unfavorable case can be signaled to the control unit by a dedicated flag. 

2 . 3 . 2 Increas ing Throughput of Convenţ ional Floating Point Addition 

The adder architecture proposed in Fig 2.14 can also be used for increasing 
the performance of convenţional floating point addition by increase in throughput 
realized by this type of adder, as it is presented in [5]. This can be achieved by 
implementing rounding towards nearest even. Two floating point 
additions/subtractions can be performed simultaneousiy on the proposed 
architecture. The proposed adder is suitable to for superscalar, multi-threaded 
(which require two or three funcţional units) or can be used in dynamic scheduling 
schemes (like the Tomasulo's scheme)[42]. The difference compared to the 
structure depicted in Fig 2.14 is lack of multiplexers before the adder itself. Both 
path selection criterions (oniy exponents' difference and exponents' difference plus 
effective operation) may be used, but the second is more appropriate because it will 
increase the probability of performing two floating point operations simultaneousiy. 
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2 . 4 Eva lua t ion 

2 .4 .1 Cost Evaluation 

In order to perform a cost evaluation we used an independent technology 
nnetric, the gate count. This may not be the most conclusive metric for VLSI 
technology, as it does not take into account the wirings. However, this metric was 
also used in [88]. Table 2.9 presents the gate of the five described adders and the 
proposed adder. 

Table 2.9 Gate Count for Floating Point Adders 
(Double Precision Format) 

Adder FAR CLOSE Exponent, Sign 
&Path Select 

Total 

Adelaide 1753 2298 349 4500 
SUN 1828 2302 456 4586 
AMD 1985 2305 453 4743 

Variable Latency 1806 2510 392 4708 
Seidel-Even 1912 2298 381 4591 

Proposed 1753 2457 1122 5332 

As it can be seen from table 2.6, an increase of about 17% for double 
precision of the proposed design compared to other floating point adder's designs 
can be observed. 

Regarding interval addition, the proposed adder has an increase of about 
17% with respect to the interval adder based on a single floating point adder. 
However, the proposed adder's gate count is about 57% of the gate count of the 
two floating point adder's solution for interval addition. 

2 .4 .2 Latency Evaluation 

The latency was estimated using an independent technology metric, the 
logic levels. The estimation was realized IEEE double precision numbers. This metric 
was also used in [89][90]. In table 2.10 the latency of the proposed adder and the 
other five floating point adders. 

Table 2.10 Latency Estimates for Floating Point Adders 

Adder Latency (LL) 
Adelaide 29 

SUN 28 
AMD 26 

Variable Latency 29 
Seidel-Even 24 

Proposed 32 
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As it can be observed, the latency of the proposed solution is higher with 
respect to other floating point adders. The reason for this increased latency is that 
the exponents' difference is performed before any mantissa processing. In other 
floating point adders' design, on the CLOSE path an exponent prediction is used, 
while on the FAR path techniques for parallel alignment shift with exponent 
difference are used. 

2 .4 .3 Synthesis Results 

Two floating point double path adder designs were modeled and synthesized 
using the Xilinx ISE Webpack 10.1 and Xilinx Synthesis Tool for IEEE half precision 
formats: the proposed design and the AMD 2000 double path adder. The two adder 
designs were verified using Modelsim simulations. The results are presented in Table 
2.11. The two designs have in common several features: 

• The compound adder used is based on Brent-Kung carry lookahead adder 
structure 

• The alignment shifter in the FAR path and the normalization shifter in the 
CLOSE path is based on the barrel shifters 

• The rounding computation decisions in the FAR path in both designs is the 
same, while in the CLOSE path is different due to the fact the AMD adder 
implements oniy effective subtractions with exponents' difference equal to O 
or 1, while the proposed adder implements both effective additions and 
subtractions when exponent's difference is equal to O or 1 

• The exponent's subtraction modules were implemented using Brent-Kung 
carry lookahead adders 

• Both designs implement the same leading zero prediction schemes. 

Table 2.11 - Synthesis Results Obtained for Double Path Adders 

Double Path Adders Maximum Combinational Delay (ns) Cost 
(LUT-4) Double Path Adders 

Logic Route Total 
Cost 

(LUT-4) 
AMD 7.821 12.986 15.83 446 

Proposed Adder 9.138 15.221 19.779 568 

The synthesis results show an increase of about 27% for the proposed adder 
compared to the AMD 2000 [65] adder design. The difference between the 
estimated results presented in section 2.4.1 and the synthesis results is due to the 
fact that for IEEE half precision adders the ratio between the exponent's size and 
the mantissa's size is 5/11 ('̂ O, 5), while for IEEE double precision format the ration 
between exponent's size and mantissa's size is 11/53 (~0,2), so the mantissa 
computaţional path has bigger weight in the total cost of the double path adder for 
IEEE double precision formats. Both adder's have a similar mantissa computation in 
terms of cost, while the exponents and sign computation modules are duplicated for 
the proposed design. The synthesis results show that for the proposed adder the 
mantissa computaţional path counts for about 70% (402 LUT-4) of the all total 
number of LUT-4, while for the IEEE double precision estimates the mantissa 
computaţional path counts near to 80% from total cost of the proposed adder. 

Regarding the interval addition, the proposed adder has an overall cost 27% 
higher compared to the single floating point adder solution, while compared to the 
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solution based on two floating point adders (892 LUT-4) the proposed adder the 
proposed adder has a decrease of about 35% (Fig 2.17). 

Interval Addition Unit Cost 

LUT 

iBSingleAdder • ProposedAdder DDualAdderl 

Flgure 2.17 - Cost of Inten/al Addition Hardware Units 

Regarding the latency, the synthesis results obtained wlth XST, show a 4 ns 
increase in the latency for the proposed adder (25% higher). Regarding interval 
addition, pipeline versions will be considered (the delay on the pipeline registers for 
Virtex-4 FPGA family is equal to 0.555 ns). Three types of interval adders will be 
considered: 

• Interval adder based on a single floating point AMD double path adder 
with 2 pipeline stages of 8.5 ns pipeline stage 

• Interval adder based on two floating point AMD double path adders with 
2 pipeline stages of 8.5 ns pipeline stage 

• Interval adder based on the proposed adder with 3 pipeline stages of 
7.5 ns (a worst case scenario). 

As it can be observed, the proposed adder can work at slightiy higher 
frequencies compared to the AMD adder. As presented in [12][90]; most double 
path adders have a two pipeline stages construction because each pipeline stage 
present the carry computation logic of the compound adder (with or without the 
generate and propagate bits logic (one line of AND for generate bits and of OR for 
propagate bits before the carry computation circuit), and the sum bits computation 
logic (one line of XOR after the carry computation circuit) and plus some additional 
logic (the compound adder in the CLOSE path is found in the first pipeline stage, 
while the compound adder in the FAR path is found in the second pipeline stage). 
Regarding the CLOSE path, the first pipeline stage incorporates also from the 
exponent prediction logic, complementation logic, swapping and shifting 
multiplexers (which are found before the compound adder). Regarding the proposed 
adder, the two compound adders are also each in one pipeline stage. Before these 
two pipeline stages another pipeline stage is buiit based on the exponents' 
subtraction modules, path selection and path multiplexers. Also in this pipeline 
stage, logic for the exponent prediction, swapping and right shifting can be placed. 
Therefore, the stage delay in the pipeline stage containing the compound adder 
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from the CLOSE path of the proposed adder is thus reduced. Furthermore, this 
stage has the biggest delay from all three pipeline stages (or from all two in the 
other double path adders). Therefore, the proposed adder can operate at a lower 
clock rate. One exception is represented by the SUN double path adder, which has 
three pipeline stages, because it uses a modified compound adder which integrates 
rounding logic [89]. 

The three considered adders will have a workioad of n interval consecutive 
and independent additions (one addition has operands independent of the results 
from previous additions). The total duration of the entire workioad of additions is 
depicted in Table 2.12 and while a comparison between the performances for the 
analyzed interval addition units based on the discussed double path adders is 
depicted in Fig 2.18. 

Table 2.12 Required Latency for Performing n Additions (ns) 

Single 
Adder 

Dual 
Adder 

Pro posed Adder Single 
Adder 

Dual 
Adder f=0.2 f=0.4 f=0.5 f=0.6 f=0.8 

n=5 121 72 99 90 85,5 81 72 
n=10 231 132 180 162 153 144 126 
n=20 451 252 342 306 288 270 234 
n=50 1111 612 828 738 693 648 558 
n=75 1661 912 1233 1098 1030,5 963 828 

n=100 2211 1212 1638 1458 1368 1278 1098 

20 50 

Interval Additions 

•SingleAdder -»-DualAdder — P r o p o s e d _ 0 . 2 P r o p o s e d _ 0 . 4 
- Proposed_0.5 Proposed_0.6 Proposed_0.8 

Figure 2.18 - Performance Comparison of the Three Interval Adders 
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As it Is highilghted both in Table 2.12 and in Fig 2.18, the performance of 
the proposed adder depends on two important factors: 

• The percentage of the favorable cases f: these are the cases when the two 
floating point additions needed for an interval operation are performed 
simultaneousiy. 

• The number n of consecutive and independent interval additions 

As shown in Fig 2.18, the performance of the proposed adder is lower with respect 
to the performance of the interval addition unit based on the two double path 
adders, but is higher compared to the interval unit based on a single double path 
adder. Furthermore, as the percentage of the favorable cases is higher, the 
performance of the proposed adder increases. Thus, when 80% of all interval 
additions are favorable for the proposed implementation, the performance can be 
close to the one of the dual adder solution. 

Figure 2.19 presents the speed-ups of the interval adders implemented with 
two parallel AMD adders and with the proposed adder (for 20%, 40%, 50%, 60% 
and 80% favorable cases) with respect to the interval adder implemented with a 
single AMD double path adder. In this figure it is highiighted the increase in 
performance for the proposed adder with the increase of the number of consecutive 
additions. Thus, the proposed adder is suitable for dealing with series of large 
number of consecutive additions (as found in the vector processors), and not for 
isolated additions. 

20 50 

Interval Additions 

-^Dual Adder • Proposed_0.2 - - Proposed_0.4 ~ Proposed_0.5 
Proposed_0.6 —- Proposed_0.8 

Figure 2.19 - Relative Speed-up of Interval Adder Implementations 

In order to determine which of the three interval adder solutions presents 
the best performance-cost tradeoff a well known latency*cost metric based on the 
synthesis resuits. The latency was considered as the total duration (in ns) of n 
consecutive and independent additions. Figure 2.20 depicts the obtained resuits. 
The analysis for the proposed adder was performed for five percentages of favorable 
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cases (20%, 40%, 50%, 60%, 80%) . The results show that for a 20% percentage 
of favorable cases, the proposed adder has a performance-cost trade-off close to 
the interval adders based on single double path adder or based on two double path 
adders. When the percentage of the favorable cases is higher than 20%, the 
proposed adder presents a better performance-cost tradeoff compared to the other 
two interval addition units. 

900COO 

^^^ ^ ^ JL 

0 -
20 50 

Interval Additions 

-^SingleAdder DualAdder Proposed Adder.0.2 
— ProposedAdder_0.4 * ProposedAdder_0.5 • ProposedAdder_0.6 

ProposedAdder_0.8 

Figure 2.20 - Cost*Latency for Three Interval Adders 

Based on the synthesis results, an analysis of the proposed design for 
convenţional floating point arithmetic has been also carried out. The compared 
floating point adders were the AMD adder with 2 pipeline stages and the proposed 
adder with 3 pipeline stages. 

Based on synthesis results, the latency for n consecutive and independent 
additions was determined (/7=5, 10, 20, 50, 75, 100). For the proposed adder the 
foilowing SPEC92 FPU benchmark results were considered [69] : 

n 57% of all floating point additions and subtractions the exponents' 
difference is greater than 1 
20% of all floating point addition and subtractions are effective additions 
with exponents' difference equal to O or 1 
23% of all floating point addition and subtractions are effective subtractions 
with exponents' difference equal to O or 1 

Considering these results, the percentage of favorable cases is about 62%, while 
the percentage of unfavorable cases is 38%. 
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20 50 

FP Additions 

AMD Adder - - Proposed Adder 

Figure 2.21 - Total Latency for n Consecutive FP Additions on AMD and Proposed Adder 

I — AMD adder Proposed adder | 

Figure 2.22 - Cost»Latency for AMD and Proposed Double Path Adder 

The results of the analysis are presented In Fig 2.21. The performance of 
the proposed adder compared to the performance of AMD adder can be as high as 
1.6 times higher. Also, as in the case of the interval addition, the proposed adder is 
suitable for series of large numbers of consecutive additions. When dealing isolated 
additions, the performance of the proposed adder is lower. The reason for this is 
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that the proposed adder has a higher throughput, due to the fact that in some cases 
(over 62%) it can perform two floating point additions simultaneousiy. 

In Fig 2.22, a cost*latency product analysis is performed. This analysis 
shows that the proposed double path adder represents the best performance-cost 
tradeoff when dealing with series of large numbers of additions. 

2.5 Summary 

In this chapter an overview of the interval addition/subtraction hardware 
units is realized. For this operation two solutions have been devised: one based on a 
single floating point adder and one based on two floating point adders. 

The next section is dedicated to the convenţional floating point addition. The 
basic algorithm is presented. The improvements of this algorithms and the single 
path adder are presented. Next, a detailed presentation of the double path adder is 
realized. The double path adder presents special interest because the proposed 
solution is based on it. Five designs of double path adders are presented: three 
designs presented at different editions of Symposium of Computer Arithmetic 
(ARITH) - the Adelaide adder, variable latency adder and the Seidel-Even adder -
and two patented designs by SUN and AMD. 

The main contribution is presented in section 2.3. The proposed adder for 
interval addition is based on a double path adder. Uniike other double path adders, 
the proposed design exploits the parallel structure of it, by trying to perform the two 
operations required for an interval addition/subtraction. Several differences do 
appear compared to other double path adders: two exponents and sign computation 
circuits are needed; the exponents' difference and the path selection criterion have 
to be computed before any operation of the mantissas; a row of multiplexers for 
path distribution are placed before the two paths. Several path selection criterions 
may be used, but the one based on the exponents' difference and the effective 
operation is preferred because it has a relative simple logic and it increases the 
probability of occurrence of a favorable case. When performing an interval 
addition/subtraction on the proposed adder two cases can occur: a favorable case, 
when the two floating point operations can be performed simultaneousiy, and an 
unfavorable case, when the two floating point operations must be performed 
sequentially. The proposed adder can also be used for increasing the performance of 
the convenţional floating point addition, by increasing the throughput of this 
operation. 

The fourth section is dedicated to cost and performance evaluations, which 
were performed using both technology independent metrics and synthesis results 
for the Xilinx Virtex-4 FPGA family. Regarding the technology independent metric, 
the cost was estimated using gate count. The estimations showed that the proposed 
adder has an area overhead of about 20% compared to other floating point adder 
for double precision format. However, compared to the two adders based solution, 
the proposed adder cost is about 57% of the cost of the interval adder. Synthesis 
results performed for IEEE half precision confirmed the technology independent 
estimates. Regarding the latency, both technology independent metric and the 
synthesis results based evaluations showed that the proposed adder has a higher 
latency with respect to the five floating point adders stydied. The overall 
performance of the proposed adder depends heavily on the percentage of the 
favorable cases. Also, the performance analysis showed that the proposed adder is 
suitable for series of large number of additions and not isolated additions. A 
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performance to cost ratio evaluation has been performed. The evaluation showed 
that in case of at least 20% favorable cases the proposed adder has the highest 
ratlo, thus ensuring the best performance-cost trade-off. Furthermore, performance 
evaluations based on SPEC FPU benchmark results for convenţional floating point 
addition have been performed. The analysis shows that the proposed adder is 
suitable when dealing with series of large numbers of additions, not with isolated 
additions. 
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3. Hardware Interval Multiplier 

3.1 Interval Multiplication Algorithms 

Interval multiplication is, by far, the most difficult from all four basic 
operations (addition, subtraction, multiplication, division). It is defined in (3.1) 
[49][53][86][94][96][107]. 

^hi] * [̂ /o/' ] = {^lo * /̂o/' ^lo * ^hi^ ^hi * /̂o/' ^hi * ^hi) / 
RPI max {X,o * Y,o; X,o * Y^i; * Y/^; X^I * Y^i)] 

(3.1) 

In order to perform an interval multiplication, four floating point multiplications with 
no rounding, four comparisons for minimum and maximum and two rounding 
operations have to be conducted. This leads to an unacceptable low performance for 
the interval multiplication, mainly due to two reasons: 

1. the high number of floating point operations 
2. rounding is performed at the end of the operation which means that: 

• speed-up algorithms for rounding in floating point multiplication 
([30][38][63][79][109]) cannot be appiied 

• the floating point comparisons must be performed with numbers which 
are not rounded, which have a mantissa double in size 

• a dedicated rounding module (based on a large carry propagate adder) 
and a normalization module are needed 

1. P = ^ Io * Ylo 1. P = Xlo*yio r = Xlo* Yhi 
2. r = ^lo * ^hi 2. Q = Xhi*Y,o t = Xhi* Yhi m = min(p,r) 
3. q = ^hi*Ylo m = min(p,r) M = max(p,r) 

M = max(p,r) 3. m = min(m, q) M = max(M,q) 
4. t = Xhi*Yhi m = min(m,q) 4. m = min(m, t) M = max(M,t) 

M = max(M,q) 5. Zio = RNI{m) Zhi = RPI{M) 
5. m = = min(m,t) M = max(M,t) 
6. Zio = RNI{m) Z,^i=RPI{M) 

a) b) 

Figure 3.1 - Inten/al Multiplication Pipelined Algorithm [53] 
a) Using One Multiplier b) Using Two Multipiiers 

A pipelined version of this algorithm is presented in [53]. This version can 
be adapted to a hardware implementation consisting of one multiplier, two 
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comparators and two rounding units (fig. 3.1. a) or two nnultipliers, two 
connparators and two rounding units. 

In order to reduce the penalty imposed by the rounding at the end of the 
operation, the floating point multiplication, the (3.1) is transformed in (3.2) [107]: 

lXlo;^hir[yio;yhi] = [min{RNI{Xio*Y,o);RNI{X,o*Yf,i); 

RPI{Xio''Y,o);RPI{X,o^Yhi)) 

In order to perfornn the interval multiplication accordingly with (3.2) , eight 
floating point multiplications are required, three comparisons for minimum and 
three comparisons for maximum. In this case the main disadvantage is represented 
by the high number of floating point operations - fourteen. An improving can be 
achieved by reducing the eight floating point multiplications to four using floating 
point multiplier with two differently rounded results for the same multiplication 
[107]. In this case the number of floating point operations is ten (four 
multiplications and six comparisons). 

A reduction of the number of floating point operations can be obtained by 
using an algorithm which performs oniy floating point multiplication with RPI [107]. 
This algorithm is presented in fig. 3.2.a. It requires four floating point 
multiplications, four comparisons and one RNI operation - nine floating point 
operations. The algorithm is based on the fact that the RNI result can be computed 
from the RPI (as presented in fig. 3.2.b). The performance of this algorithm is 
improved compared to the first two ways of performing the multiplication. However, 
it has a major disadvantage, due to the fact that it requires a dedicated RNI 
module, which means to a large carry propagate adder. 

5. 

1. p l = RPI(Xio*Y,o) 

2. p2 = RPI(X,o^Y^i) 

3. p3^RPI {X^i-Y io ) 

4. = 

ml = mm[pl,p2) 

Ml - max(pl,p2) 
^ m2 ^ min[p3,p4) 

M2 = max(p3,p4) 
7. M = max{Ml,M2) 

8. mi = max{ml,m2) 
9. m = RNI (mi) 

l^lo /' ^hi ] * [̂ /o /' ^hi ] = 

a) 

RNI{X*Y)< X^Y < RPI {X * Y) 
RPi(x = RNi(x * / ; = x*r=> 

=> RNi(x * = RPi(x * y; 
RPI(X^Y)> X^Y => 

RNI(X * = pred(RPI(X ^Y) 
pred(X) - the previous floating point 
number of X (X - 1 ulp) 

b) 

Figure 3.2 - Interval Mujtiplication RPI Algorithm [107] (a). RNI from RPI [107](b) 
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Significant improvements can be obtained by examining the sign of the 
operands [49][53][94][96]. Nine cases of interval multiplications are obtained 
(Table 3.1). In the first eight cases (when at least one of the intervals does not 
contain the number zero) the number of the operations is reduced to oniy two 
floating point multiplications, one with RNI, while the other to RPI. In the ninth 
case, when both intervals contain zero, the number of floating point operations is 
six: two multiplications with RPI, two multiplications with RNI and two comparisons. 
Using sign examination, the average performance of the interval multiplication is 
significantly increased. The main disadvantage of sign examination is that the 
number of steps differ from the first cases to the nine case (in the ninth case there 
are three times more floating point operations. 

Table 3.1 Interval Multiplication with Sign Examining [107] 

Nr. Y = [Yfo'Yhi] Zio Zhi 

1 Xlo>0 Y,o>0 RNI(Xio*Yio) RPI {Xhi* Yhi) 

2 X,o>0 Yhi<0 RNI {Xhi * Yio) RPI{X,o*Yhi) 

3 X,o>0 Ylo<0< Yhi RNI{Xhi*Y,o) RPI {Xhi* Yhi) 

4 Xhi<0 Yio>0 RNI{X,o*Yhi) RPI {Xhi * Yio) 

5 Xhi < 0 Yhl<0 RNI {Xhi* Yhi) RPI{Xio*Yio) 

6 Xhi < 0 Yio<0< Yhi RNI{X,o*Yhi) f^PIiXlo^^Yio) 

7 Xio<0< Xhi Ylo>0 RNI{X,o*Yhi) RPI {Xhi* Yhi) 

8 X,o<0< Xhi Yhi < 0 RNI{Xhi*Yio) RPI{Xio*Y,o) 

9 Xio<0< Xhi Yio<0<Yhi ml m2 

ml - min{RNI(X,o'^Yhi);RNI{Xhi^Y,o)) 

m2 - max {RPI {X,o * Y,o); RPI[X^i * Y^j)) 

Different hardware designs have been presented for this algorithm. The 
hardware designs presented in [49][107] rely on two multiplexers, two floating 
point multipliers and one floating point comparators. The design in [96] relies on 
two multiplexers and one floating point multiplier (Fig 3.3). The ninth case will be 
handied in software. 

Table 3.2 - The Subdivisions of the Ninth Case of Interval Multiplication [107] 

Nr X - iXio/Xhi] Y = [Yio;Yhi] Zio Zhl 

1 Xfo < Xhi Ylo\<Yhi ml f^PHXhrYhi) 

2 Xio\ < Xhi V/ol > Yhi RNl{Xhi*Yio) m2 

3 Xio\ > Xhi Ylo\<Yhi RNI{Xio*Yhi) m2 

4 Xio\ > Xhi Ylo\>Yhi ml 
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Figure 3.3 - Interval Multiplication Unit [96] 

The ninth case can be divided further into four cases (Table 3 .2) [107] . In 
these four cases, the number of operations is reduced to four: three rounded 
multiplications and one comparison. 

However, this further division comes at a cost. As shown in Table 3.2, two 
nnore comparisons have to be performed before the multiplications, so the number 
of floating point operations is increased by two. Another major disadvantage is that* 
the comparisons are performed both before and after the multiplications. 

Table 3.3 presents a comparison between the presented algorithms. In this 
table are presented the pros and cons for each algorithm. 

Table 3.3 - Comparisons between the Interval Multiplication Algorithms 

Algorithm Pros Cons 

Basic Algorithm 
10 floating point operations 

Rounding in last stage 
No pipelining 

Pipelined Algorithm 
[53] Easy Pipelining 10 floating point operations 

Rounding in last stage 

Eight Products Rounding within 
multiplication 

14 floating point operations 
No pipelining 

RPI Oniy [107] 9 floating point 
operations 

Needs a dedicated RNI 
hardware module 

Sign Examining 
2 floating point 

operations in eight cases, 
6 in the ninth case 

Different number of steps 
from case to case - difficult 

to pipeline 
Stine Sign 

Examining [94][96] 
2 floating point 

operations Ninth case done in software 

Sign Examining 
with Ninth Case 
Division [107] 

2 floating point 
operations in eight cases, 

4 in ninth case 

Comparisons done before ^ 
and after the multiplication 
in ninth case - difficult to 

pipeline 
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3.2 Floating Point Multiplication 

3.2.1 Algorithm and Architecture 

Floating point multiplication is maybe the most simple floating point 
operations. The multiplication of two IEEE floating point numbers 

= = is given by the 

foilowing formula [26] : 

s3 * * 1.M3 = F1^F2 = * * {l.Ml * 1.M2) (3 .3) 

As it can be observed in the (3 .3) the sign of the result is an exdusive-or 
between the two sign, the exponent is obtained by adding the two exponents and 
subtracting the bias, while the mantissa of the result is obtained by multiplying the 
two mantissas. 

Because the result has also to be represented in IEEE 754 format the 
foilowing steps are also requires [26] : 

1. Normalization of the mantissa - because the mantissas of the two results are 
within [ i ; 2) interval, the result of their multiplication is in the range [ l ; 4 ) ; if the 

result is in the range [2 ; 4) a normalization left shift and incrementing the exponent 
are required. 

2. Rounding - the mantissa are represented on n b\ts, the result of their 
multiplication will be on 2*n bits; because the mantissa of the result must be 
represented on n bits, rounding is thus required. 

SI S2 
I 

El E2 l.Ml 1.M2 

XOF̂  Exponent 
Addition 

Exponent 
Update 

Exponent 
Update 

Mantissa 
Multiplication 

I 
Normalization 

Rounding 

S3 E3 

Normalization 

1.M3 

Figure 3.4 - Floating Point Multiplication Unit [74] 
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The basic architecture of a floating point multiplier is depicted in Fig 3.4. 
The largest delay module in this architecture is the mantissa multiplier. The 
mantissa multiplier has to be a fast parallel unsigned integer multiplier. 
Furthermore, the rounding unit significantly contributes to an increase in the delay 
of the unit, because it requires a large carry propagate adder. 

In the next section, a detailed presentation of the mantissa multiplication 
unit will be performed. This presentation will include the general architecture, the 
design choices and the changes of an unsigned integer multiplication unit for 
floating point. 

3 . 2 . 2 Mantissa Multiplication Unit 

The mantissa multiplication unit is the largest delay module of the whole 
floating point multiplication unit. A right design for this module is essential for the 
performance of the floating point multiplication. The design choices for the mantissa 
multiplication unit are the tree multipliers (like Dadda trees, Wallace trees, binary 
trees, etc) due to the foilowing reasons: 

• greater performance than other type due to the fact that the parţial 
products are reduced in parallel 

• high performance rounding schemes (like EvenSeidel, YuZyner, Quach) for 
floating point multiplication can be included, eliminating the need of an 
extra large carry propagate adder. 

l .Ml 1.M2 

i 
Encoder Module 

i U i . 

Parţial Products 
ReducOon Jtee 

f 

Canv Net Sticky 

Add, Round and 
Nomialize Module 

1.M3 

Rgure 3.5 - Tree Multiplier for Mantissa Multiplication for Floating Point Numbers [26] 
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In Fig. 3.5 the architecture of a tree multiplier is depicted. The overall 
structure of such multiplier contains three major blocks [2][13]: 

• parţial products generation scheme (encoder module) - this module has as 
inputs the two multiplicands and, depending on the implemented 
multiplication algorithm, generates several parţial products 

• the parţial product reduction tree - it reduces in a parallel manner the 
parţial products generated by the previous module into two final parţial 
products 

• the final carry propagate adder - in an integer multiplier, this adder is a fast 
2*n bit carry propagate adder (carry lookahead, condiţional sum, prefix-
adders); however; in the floating point multipliers, this adder is replaced 
with a more complicated scheme (that includes a compound adder, a carry-
net circuit, the sticky bits computation circuit, the rounding logic) which has 
also the role to perform the rounding step almost simultaneousiy with the 
addition [26]. 

In the next three sections, each of the three major modules will be 
presented in detail. Different solutions, algorithms and implementations are 
discussed and compared for each of these modules. 

3 .2 .3 Parţial Product Generation Scheme 

The parţial product generation scheme (encoder module) has the role to 
encode the multiplicând (Y) based on the value of the multiplier (X) and on the 
multiplication algorithm in order to produce a vector of several parţial products [13]. 
The most important design choice for this circuit is the implemented multiplication 
algorithm. The multiplication algorithm influences two parameters which affect the 
performance and the area of the entire multiplication unit: 

• the number of parţial products - it affects the size (both area and 
performance) of the parţial product reduction tree 

• the complexity of encoding logic - it affects the area and performance of 
the parţial product reduction scheme 

Thus, the evaluation of the encoder module will be performed in terms of 
the number of parţial products and in terms of complexity of encoding logic. 

The simplest scheme is obtained by appiying a paper-and-pencil algorithm 
[2][14]. This algorithm is based on the fact that if a bit of the multiplier (X) 's zero 
than a parţial product equal to zero is generated, otherwise a parţial product equal 
to the multiplicând (Y) is generated. The resulting circuit is an array of AND gates of 
size n*n. The module is depicted in Fig 3.6. The number of parţial products in this 
case is n. As it can be observed in Fig. 3.6 the bits of the multiplier are entries for 
the rows, while the bits of the multiplicând are entries for the column. The main 
advantage of this scheme is its low complexity of the encoding logic (the multiplier 
is not encoded at all, while the multiplicând is encoded using oniy one AND gate) 
which means a low latency (onIy 1 LL) and a low area (n*n AND gates). The main 
disadvantage is its high number of parţial products (n parţial products). 

A more complicated scheme is the one based on the Booth multiplication 
algorithm. This algorithm relies on the comparison of two consecutive bits [51][75] 
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[100] If there Is a string of zero's or a string of one's than the generated parţial 
product is equal to zero. Table 3.3 presents the Booth encoding. This multiplication 
is suited for signed numbers, because it does not require correction additions. 

xo 
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Figure 3.6 - Encoder Module with AND Gate Array for 4-Bits Multiplicands [13] 

However, for floating point multiplication (where unsigned multiplication is 
used), this algorithm is worst compared to the simpler paper-and-pencil algorithm 
due to the foilowing reasons [14] : 

• it requires an encoding of the multiplier, which leads to a more complex 
encoder module (as seen in Fig 3.7) 

• it involves subtractions, which require obtaining two's complement 
numbers, which means an increase of the parţial products by 1 (the extra 
1 comes to ensure that the last operation is addition so the overall result is 
positive) 

Table 3.4 - Booth's Algorithm [51] 

Comments Operation Parţial Product 
0 0 String of O's No operation 0 
0 1 Beginning of a string of l ' s Addition Y 
1 0 End of a string of l ' s Subtraction Y + 1 
1 1 String of l ' s No operation 0 
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Y3 Y2 

I > 
O o 

YO 

Parţial Product 

Figure 3.7 - Parţial Product Generation Line for 4 Bit Multiplicands Using Booth 

A method of generating fewer parţial products is by using a higher radix. A 
very Important algorithm used is Booth radix 4 [51] or Booth 2 [13][14] . Table 3.4 
depicts the encoding of Booth 2. In Fig. 3.8 are depicted the encoding logic of the 
multiplier and while in Fig 3.9 is presented the dot diagram (which illustrates the 
generation of the parţial products) for this algorithm. The number of parţial 

"n + i " products generated by this algorithm is , so a reduction by almost a factor of 

two is obtained compared to the simple paper-and-pencll algorithm. However, the 
encoding logic is more complex, as shown in Fig 3.8, the delay being of 5 LL. 

b) 
Figure 3.8 - Parţial Product Generation Line for 4 Bit Multiplicând Using Booth 2 [13] (a) 

Technology Schematic of Booth 2 Encoder Module (obtained with XST) (b) 

BUPT



60 Hardware Interval Multiplier- 3 

Table 3.5 - Booth 2 Algorithm [13] 

^2/ Operation Parţial Product 
0 0 0 No operation 0 
0 0 1 Addition of Y Y 
0 1 0 Addition of Y Y 
0 1 1 Addition of 2Y 2Y 
1 0 0 Subtraction of 2Y 2Y + 1 
1 0 1 Subtraction of Y Y + 1 
1 1 0 Subtraction of / Y + 1 
1 1 1 No operation 0 

S S 

_ 1 s S 
S ^ 

• • • • • • • 

O 
o 

Rgure 3.9 - The Dot Diagram of Booth 2 Algorithm for 8 Bit Multiplicands [13] 

A further decrease in the number of parţial products can be obtained by 
using high radices, like Booth radix 8 (Booth 3) or Booth radix 16 (Booth 4). With 

^n + r Booth 3 the number of parţial products is [2][13]. The Booth 3 encoding is 

presented in Table 3.5. As it can be observed in Table 3.5, this algorithm requires 
obtaining the 3Y multiple. This is a major drawback of this algorithm, because 
obtaining 3Y multiple (which is called hard multiple) requires a large carry 
propagate adder (uniike 2Y or4Y which can be obtained by shifting). Higher radices 
(16, 32, etc) further requireSy , 7 r multiples, which makes this algorithm not viable 
and quit unfeasible. Furthermore, the encoding logic is ver/ complicated compared 
to the simple paper-and-pencil and Booth 2. 

An improvement of Booth 3 is proposed in [13], by using a redundant 
representation of the parţial products (redundant Booth). This algorithm makes use 
of small adders with no carry propagation between them. The redundant form is 
treated as two separate numbers with one of them with large gaps of zero. In order 
to avoid that the large gaps of zero will become large gaps of ones for negative 
multiplicands (which are obtained by a bit-inversion), a constant is added to each 
small adder. 
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Table 3.6 - Booth 3 Encoding [2] 

X3i ^31-1 Parţial 
Product Xsi ^31-1 Parţial 

Product 
0 0 0 0 0 1 0 0 0 4Y + 1 
0 0 0 1 y 1 0 0 1 3Y + 1 
0 0 1 0 Y 1 0 1 0 3Y + 1 
0 0 1 1 2Y 1 0 1 1 2Y + 1 
0 1 0 0 2Y 1 1 0 0 2Y + 1 
0 1 0 1 3Y 1 1 0 1 Y + 1 
0 1 1 0 3Y 1 1 1 0 Y + 1 
0 1 1 1 4Y 1 1 1 1 0 

Compensation constant is added to all parţial products in order to obtain a 
net result added to the parţial products reduction tree equal to zero. Table 3.6 
presents the redundant Booth 3 algorithm, while Fig. 3.10 depicts the dot diagram 
of this algorithm. 

Table 3.7 - Redundant Booth 3 Encoding [13] 

^31+2 ^31+1 ^3/ ^31-1 Parţial 
Product ^31+2 ^31+1 X3i Parţial 

Product 
0 0 0 0 k + 0 0 0 0 k + 4Y + l 
0 0 0 1 k + Y 0 0 1 k + 3Y + l 
0 0 1 0 k + Y 0 1 0 k+3Y+l 
0 0 1 1 k + 2Y 0 1 1 k + ^ + 1 
0 1 0 0 k + 2Y 1 0 0 k + ^ + 1 
0 1 0 1 k + 3Y 1 0 1 k + Y + 1 
0 1 1 0 k + 3Y 1 1 0 k + Y + 1 
0 1 1 1 k + 4Y 1 1 1 k + 0 

Table 3.8 - Comparison between Simple, Booth 2 and Redundant Booth 3 
Algorithms for 53 Bits operands 

Algorithm Latency (LL) Parţial Products Gate Number 
Simple 1 LL 53 2809 
Booth 2 5 LL 27 5832 
Booth 3 7 LL 18 6495 
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Figure 3.10 - The Dot Diagram of Redundant Booth 3 [13] 

The impact of these implementations on the perfornnance and area of the 
whole multiplication depends on the technology choice and on the parţial products 
reduction tree. A comparison between the simple paper-and-pendl and the Booth 2 
algorithm was made in [14] using a reduction tree based on [4:2] compressors 
showed that the simple algorithm had a higher performance compared to Booth 2. 
In [13][75] the Booth algorithm shows a higher performance than the simple paper-
and-pendl algorithm (although not very significant). The designs in [35][63] used 
the Booth encoding instead the simple algorithm, this being a proof that Booth 
algorithm shows a higher performance for their technology. Table 3.8 presents a 
comparison between the three algorithms for multiplication, in which the logic 
levels, the parţial products and the gate count are presented. 

3 .2 .4 Parţial Product Reduction Tree 

The parţial product tree reduces the several parţial products which are 
produced by the encoding module to oniy two final parţial products, which must be 
added using a carry propagation adder in order to obtain the product. The reduction 
is done afler several levels, using a series of (m, n) counters or compressors (where 
m>n, and m is number of input vectors, while n is number of output vectors). The 
counters on same level work in parallel. The number of levels of such trees is 

logarithmic dependent on the number of parţial products {O^log^ p , where p is 

the number of parţial products). 
The most simple type of counter is (3,2) counter, presented in Fig. 3.11 

which is basically a carry-save adder [26]. It is buiit of a number of full adder cells 
(FAC), with no carry propagation between them. It has three vectors as inputs, and 
two vectors as outputs (sum and carry). 

The simplest tree that can be buiIt with (3 :2) counters is the Wallace tree 

[101]. The number of levels in a Wallace tree is equal to /og^p -1. A Wallace tree 

for 18 parţial products is presented in Fig. 3.12. In terms of logic levels measured 
latency the Wallace tree has the minimum delay [2]. 
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Figure 3.11 - The (3:2) Counter 

A) The Block Structure for 4 Bit Vectors B) Internai Structure of a FAC 
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Figure 3.12 - The Wallace Tree for 18 Parţial Products (O - Parţial Product) [2] 

A version of the Wallace tree is the Dadda tree [23] , which presents a lower 
number of counters. However, this kind of tree has a major drawback: its topology 
is considered highiy irregular, because it does not specify a systematic method for 
counter connections. Furthermore, a Wallace tree requires a large number of wiring 
tracks, which means a large area [2] [51] . Furthermore, this irreguiarity can also 
increase the delay, if we were to consider the wiring delays. 

Two regular topologies can be obtained using the (3 :2 ) counters. The first 
one is the overturned staircase tree [62]. This type is being build from a root (which 
is the counter on the last level) and a body of height k (whichr is the equal to the 
number of counter levels of the body). The number of counter levels is k+1, A body 
of height k is buiit from a body of height k-1, a connector (buiit of two counters) 
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and a branch (which is bullt from serially line of k-2 counters). Thus, a recursive 
method for building the overturned staircase tree is obtained. The regulanty of this 
topology can also be seen from the Fig. 3.13, which is a tree for 18 parţial products. 
This type of tree can have in some cases the same number of counter levels as the 
Wallace tree (for 18 parţial products both trees have 6 levels). However, the 
number of wiring tracks is significantly lower, thus a reduced area is obtained and 
wiring delays are also significantly slower. The tree depicted in Fig. 3.13 is an 
overturned staircase tree of order 1. By replacing each branch with an overturned 
staircase of order 1, an overturned staircase of order 2 can be obtained. This type of 
tree has a smaller number of levels compared to the order 1, but it needs a greater 
number of wiring tracks [2] . 
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? ? _JL 

3:2 Counter! 
U i 
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3:2 Counter 3:2 Counter 

13:2 Counteri 

^ 

3:2 Counter 
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13:2 Counter 3:2 Counter 
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i ; 

Figure 3.13 - The Overturned Staircase Tree for 18 Parţial Products 
(The o Represents the Parţial Product) [2] 

Another regular topology based on the (3 :2 ) counter is the balanced delay 
tree [110] - Fig. 3.14. A balanced tree of height k+2 is constructed by connecting a 
branch (a chain of serially connected counters) of height k with a balanced tree of 
height k. 

As with the overturned staircase tree, the balanced delay tree constructed in 
this way is of order 1. An order 2 balanced tree is buiit by replacing each branch 
with an order 1 balanced delay tree. This type of tree has the highest regularity 
from all types of trees and requires the smallest number of wires tracks. In terms of 
counter levels, this type has a bigger number compared to Wallace tree or 
overturned staircase tree. A very important aspect of the balanced delay tree and of 
the overturned staircase tree is that the wiring track is dependent on the order of 
the tree and not on the nutnber of parţial products [2] . 
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Another type of counter used in reduction trees is the (4 :2 ) counter or (4 :2 ) 
compressor. First described in [106], the (4 :2 ) compressor is depicted in Fig. 3.15 
a. It is buiit from two (3 :2 ) counters, thus the delay of this type of counter is 
doubled compared to the (3 :2 ) counter. Another version of the (4 :2 ) compressor is 
presented in Fig. 3.15. b [72]. This version may constitute an improvement if the 
delay of the XOR gate is considerable higher than the OR and AND gates; the criticai 
path contains three XOR gates in this version; while in Fig. 3.14.a the criticai path 
contains four XOR gates. 
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Figure 3.14 - The Balanced Delay Tree for 18 Parţial Products 
(The O Represents the Parţial Product)[2] 

A very important design feature of the (4 :2 ) compressors and also of higher 
order counters ( (n : 2) counters, where n>4) is that the carry out of the counter 
(Cint-o in Fig 3.14) is independent from the carry in (Cint-I in Fig 3.14). In this way, 
it is avoided the rippie carry affect which propagates the delays across the chain of 
counters [2] . 

With the (4 :2 ) compressor a binary tree can be buiIt [72][106] . Figure 3.16 
depicts a binary tree for 16 parţial products .This type of tree presents a number of 
"/og2 P ] - c o m p r e s s o r levels. This means a major reduction compared to Wallace 
tree or other (3 :2 ) counter based trees. However, each compressor level presents 
an increased delay (1.5 to 2 times higher) compared to the delay of the levels on 
(3 :2 ) counters based trees. Therefore, for a smaller number of parţial products 
(integer multiplication, simple precision floating point multiplication), the (3 :2 ) 
counters based trees have a higher performance, while for a large number of parţial 
products the binary tree has a smaller delay. In terms of topology, the binary tree is 
considered a regular topology, however the number of wired tracks is greater 
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compared to overtumed staircase tree or balanced delay tree, and lower compared 
to the Wallace tree. 

X Y z T 
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Figure 3 . 1 5 - 4 : 2 Compressors 
a) [106] Compressor b) [72] Compressor 

With higher order counters, like (7 :3 ) counters, ( 9 :2 ) counters, and the 
number of counters levels is further reduced. However, the delay of these counters 
is significantly increased. 

T _ t t f 
4:2 Compressor 

; 
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4:2 Compressor 4:2 Compressor 

4:2 Compressor 

Figure 3.16 - The Binary Tree for 16 Parţial Products [2] 

Table 3.9 - Comparison of Parţial Product Reduction Trees for 27 Parţial 
Products 

Reduction Tree Counter Levels Delay (LL) Gate Count Wired Tracks 
Wallace Tree 7 14 10734 12 

Overtumed Staircase 8 16 12750 6 
Balanced Delay 9 18 11316 5 

Binary Tree 4 12 11532 10 

In table 3.9 a connparison between the four types of parţial products 
reduction trees is done. The features foilowed are number of counter levels, delay in 
LL, gate count and wired tracks. The comparison is done for trees used to reduce 27 
parţial products (this number is obtained by a Booth 2 encoding for double precision 
numbers). Although the number of wired tracks is an important aspect in VLSI 
design, for the rest of our.analysis It will not be considered this aspect, because the 
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choice of the parţial products reduction tree does not affect the final addition and 
rounding step, where my contribution is proposed; the analysis of the overali 
perfornnance and cost of the existing and proposed multipliers will be performed 
taking in consideration that both will have the same type of parţial product 
reduction tree. In my implementations, I used the Wallace tree, thus all the 
comparisons are done for multipliers with Wallace trees. 

3 .2 .6 Final Addition and Rounding 

The parţial product reduction tree reduces the several parţial products into 
oniy two final parţial products, in carry and sum format. These final parţial products 
are represented on a double number of bits compared to the two operands 
[26][30]. Thus for the final addition, a double size carry propagate adder must be 
used. Furthermore, the final product will be double size compared to the operands. 
When multiplying IEEE 754 mantissas, the final result have to be on the same 
number of bits as the operands. Thus, a rounding step must be performed. 
Furthermore, because IEEE 754 mantissas are in the range[ i ;2 ) , the result 

mantissa will be in the [2;4)range. Thus, a normalization left shift is also required. 
Thus, the hardware architecture resulted for multiplication of IEEE 754 floating point 
numbers is presented in Fig. 3.4. This structure presents a high latency due to: 

• the double size final carry propagate adder 
• the computation of rounding and sticky bits 
• a large carry propagate adder for rounding 

In order to increase the performance of the floating point multiplication, 
several rounding algorithms for multiplication have been developed, like the ones in 
[30], [79], [109]. These algorithms are based on a separation of the two final 
parţial products (denoted SUM and CARRY) into a lower and an upper part. The 
most significant parts are added with a compound adder, while the lower parts are 
used to compute (in parallel with the addition) the rounding decision. The rounding 
decision is computed for both the case of when the final parţial product is in 
1;2) range and [2 ; 4) range. This way the final addition, rounding and normalization 

are included into a single step. This type of final addition and rounding is much 
faster because: 

• the size of the carry propagate adder is almost the size of the mantissa 
• the rounding decision (including rounding and sticky bits) is computed in 

parallel with the addition 
• the rounding is reduced to a simple selection, thus there is no need for the 

large carry propagate adder specially for rounding 

The (Even-Seidel [30]) algorithm is based on the addition of an injection 
constant, in order to reduce all the rounding modes to RZ. The injection value is O 
for RZ, for RNU, and + for RI. RNE can be obtained from RNU, by a 
correction of the least significant bit when this is bit is equal to 1 and the unrounded 
result is exactiy at half distance between the two numbers. RNI and RPI can be 
obtained form RI and RZ after a sign examination of the result (Ĵ NI is RZ when the 
result is positive and RI when the result is negative). The injection is added as 
another parţial product. This implies that the number of counter levels can increase 
by 1. 
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The Even-Seidel algorithm for IEEE 754 double format, as described in [30], 
proceeds as foilows: 

1. The SUM and CARRY are divided into a high part consisting of 54 bits and a 
low part consisting 52 bits. 

2. With the low part are computed C - carry bit, R - round bit and S - sticky 
bit. The C bit is the carry out if the two lower parts wouid have been added. 
The R bit is the most significant bit of the sum if the lower parts wouId have 
been added. The S bit is obtained by an OR of all other bits of the sum if the 
lower parts wouId have been added. 

3. The higher part is input to a line of half adders and produces X-Sum and X-
Carry on 53 bits and the sum bit of the least significant position (Lx). 

4. The X-Sum and X-Carry are inputs of a compound adder. The results are YO 
and Y1 (where Y1=Y0+1 ulp). 

5. An increment decision box receives the R bit, the C bit, the Lx bit and the 
most significant bit of YO. The increment decision is taken on two paths (one 
on the assumption that no overflow will occur, while the other on the 
assumption that the overflow will occur). The most significant bit of YO will 
make the selection between the two paths. The increment decision signal is 
defined by: 

INC = 
LyC if MSB(y0)=0 or RZ 

Lx-^C ifMSB(YO)=l or RI 
+ /-X + C > 2 if MSB(Y0) = 1 or RNE 

6. The most significant bits of YO and Y1 indicate whether these two results are 
in the range[2;4) ; if YO or Y1 is in this range, it is shifted with one position 
towards right. 

7. The most significant 52 bits of the rounded result are selected between the 
possibly shifted YO and Y l . The selection is made based on the increment 
decision. 

8. In case the rounding mode is RNE, the least significant bit may be 
corrected. The possible correction is computed on two paths, one on the 
assumption that there is no overflow, while the other on the assumption 
there is overflow. The least significant bit is computed for the two paths and 
selected based on the increment decision. 

Fig 3.17 presents the hardware structure which implements this algorithm. 
The delay of this structure is 12 LL, if the injection doesn't increase the number of 
counter levels of the parţial product reduction tree, or 14 LL if the injection does 
increase the number of the counter levels by 1. 

1. Another rounding algorithm for floating point multiplication is based on 
reducing the rounding modes on RZ, RNU and RI and on the injection of a 
prediction bit based on the rounding mode. Thus, this rounding mode is 
similar to the Even-Seidel algorithm. 
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This algorithm was developed at Stanford Unlversity and was proposed by Quach, 
Takagi and Flynn [79] and also optimized by Even and Seidel [30]. This algorithm 
proceeds as foilows, as described in [30]: 

1. The SUM and CARRY are divided into a high part consisting of 54 bits and a 
low part consisting 52 bits. 

2. With the low part are computed C - carry bit, R - round bit and S - sticky 
bit. The C bit is the carry out if the two lower parts wouid have been added. 
The R bit is the most significant bit of the sum if the lower parts wouId have 
been added. The S bit is obtained by an OR of all other bits of the sum if the 
lower parts wouId have been added. 

3. A prediction bit (PRED) is computed. 

4. The higher part is input to a line of half adders and produces the X-Sum on 
54 bits an X-Carry on 53 bits. 

5. The X-Carry string is completed with the PRED, and with the X-SUM are 
Inputs for another line of 54 half adders. The results are X'-Sum and X'-
Carry on 53 bits, while the least significant bit of the sum is Lx. 

6. The X'-Sum and X'-Carry are inputs for a compound adder. The results are 
YO and Y1 (which is equal to YO+1). 

7. An increment decision is computed, based on the rounding mode, the Lx bit, 
the C, R, S bits and on the most significant bit of YO. The increment decision 
is computed on two paths, one on the assumption that overflow occurs, 
while the other on the assumption that no overflow occurs. 

8. The least significant bit is computed for the case that no overflow occurs: 

9. In case of RNE the fixing of the least significant bit of the result might be 
needed. The fixing is also computed on two paths and two signals are 
generated (FIX-Lovf, FIX-Lnovf). 

10. Based on the INC signal, a selection between YO and Y1 is performed. The 
result of this selection is Z (on 53 bits) 

11. The normalization of the Z is produced in case that an overflow occurs (the 
most significant bit of Z is 1). In this way the most significant 52 bits of the 
result are obtained. 

12. The least significant bit is obtained by a selection based on the most 
significant bit of Z (which determines whether an overflow occurred). The 
least significant bit of the result is either the corrected least significant bit of 
Z, either the corrected L. 

The performance of this algorithm is 15 LL. Figure 3.18 depicts the 
implementation of this rounding algorithm. This algorithm uses the prediction for 
the case of RI. This prediction is needed in order to reduce the number of 
possibilities of the rounded result. A slight modificatlon of this algorithm is 
presented in [38]. The modification relies on reducing the two half adder lines into a 
row of 53 half adder, while the prediction is added using a full adder cell. 
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Another rounding algorithm for floating point multiplication is the YuZyner 
algorithm [109] , which was implemented on Sun ULTRASparc processors and 
optimized by Even and Seidel [30].The algorithm proceeds as foilows, as deschbed 
in [30]: 

1. The SUM and CARRY strings are divided into two parts: the higher part 
contains the most significant 55 bits, while the lower part the least 
significant 51 bits. 

2. With the low part are computed C - carry bit and S - sticky bit. 

3. The higher part is input to a line of half adders and produces the X-Sum on 
55 bits an X-Carry on 54 bits. 

4. The most significant 52 bits of the X-Sum and X-Carry are inputs into 52 bit 
compound adder. The results are YO and Y1 (which is equal to YO+l). Based 
on the most significant bits, a normalization right shift may be done for YO 
and Y l . 

5. The last 3 bits of X-Sum and the string formed by the C bit as least 
significant bit and the last 2 bits of X-Carry as most significant bits are 
inputs to a 3 bit adder. The result is ZO. In this way, a prediction of the bits 
needed for RNE (least, guard and sticky) is achieved. 

6. The processing of the ZO is split into two paths: one on the assumption that 
overflow occurs, while the other on the assumption that overflow will not 
occur. A rounding decision is taken on both paths, based on the rounding 
mode, on the S bit, and on the ZO. In the overflow situation, the rounding 
decision is added on the most significant 2 bits of ZO and ZO-ovf \s obtained, 
while in no overflow situation the rounding decision is added on the most 
significant 3 bits of ZO and ZO-novf \s obtained. 

7. An overflow selection decision is taken based the most significant bits of YO 
and Y l and on the ZO-novf: 

8. An increment decision is taken based on the OVF signal and on the ZO-novf 
and ZO-ovf: 

9. The most significant 51 bits of the correct result is selected between the 
(possible) shifted YO and Y l based on the INC signal 

10. The least significant 2 bits of the result is selected based on the OVF signal. 

The structure based on this algorithm is depicted in Fig. 3.19.The delay of 
the hardware scheme which implements this algorithm is 16 LL. However, this 
algorithm does not require an addition of any kind of constant which depends on the 
rounding mode, like the injection which is required in the Even-Seidel algorithm or 
the prediction bit in the Quach algorithm. 

Table 3.10 - Comparison between the Three Rounding Algorithms 

Algorithm Latency Gate Count 
Even-Seidel 12 LL 2090 

Quach 14 LL 1820 
Yu-Zyner 16 LL 1806 
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A comparison of the three rounding algorithm is done in Table 3.10. The algorithms 
are compared for their latency (nrieasured in LL) and for their gate count. 

3.3 Proposed Multiplier 

3.3 .1 Algorithm 

For interval multiplication, a new algorithm which combines the pipelined 
algorithm presented in [53] (depicted in Fig. 3.1) with the eight products algorithm 
(3.2) is proposed. The resulted algorithm is presented in Fig. 3.20 [3][4] . 

1. pi =RNl(X,o *Yio) p2=RPI(Xio*Y,o) 
2. ql =RNI(X,o *Yf,i) q2=RPI(Xio*YM) 
3. rl-=RNI(Xhi *Y,o) r2=RPI(Xf^i*Yio) m=min(pl,ql) M=max(p2,q2) 
4. ti-=RNI(Xhi *Yiy,) t2=RPI( Xhi * Yfji) m=min(m,rl) M=max(M,r2) 
5. m=min(m,tl) M=max(M,t2) 

Zio = m Zhi = M 

Figure 3.20 - Proposed Interval Multiplication Algorithm 

As depicted in Fig 3.20, this algorithm requires fourteen floating point̂  
operations (four multiplication with RNI, four multiplications with RPI and six 
comparisons), as in the eight products algorithm. This is the major disadvantage of 
this algorithm, because it might imply lower performance. However, using two 
multipliers or one multiplier with two differently rounded results (dual result 
multipliers), and two floating point comparators (one for minimum and one for 
maximum) the number of the steps is reduced to oniy five. 

This algorithm presents two major advantages. The first advantage (which 
is not present at the eight products algorithm) is that it is suitable for pipeline 
structures. Therefore, pipeline multiplier architectures can be easily incorporated in 
the overall architecture. The second advantage is the rounding step is performed 
within the floating point multiplications and not as a separate step. Thus, the very 
efficient rounding algorithms, like the ones presented in Section 3.2.6 can be 
appiied. 

3 .3 .2 Overall Architecture 

In order to appiy the algorithm described in Fig. 3.20, two floating point 
multipliers or a dual result multiplier has to be used. Furthermore, two floating point 
comparators must be used. In order to save area, the dual result multiplier is 
chosen. Therefore, the proposed architecture for the interval multiplier is composed 
of a dual result multiplier and two floating point comparators [3][4]. 

The dual result multiplier is similar to a tree multiplier. The encoding module 
and the parţial product reduction tree are identical to the ones used in a 
convenţional floating point multiplier. The reason is that the two results of the 
multiplier are obtained from the same pair of operands (the results differ because 
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the rounding modes differ). Thus, the parţial products obtained from the encoding 
module and the two final parţial products obtained form the tree are the same. A 
new final addition and rounding unit must be used in order to provide the two 
differently results for the same operands. This unit will be presented in detail in 
Section 3.3.3. 

The overall architecture of the proposed multiplier is depicted in Fig. 3.21. 
In this figure, the structure of the dual result multiplier is given. In order to perform 
the proposed algorithm, the two comparators are provided with two feedback paths. 
The structure of the two comparators is similar as the one presented in [93]. The 
comparators for the IEEE floating point numbers rely on sign comparators, an 
exponent subtractor and a mantissa subtractor. 

3 .3 .3 Final Addition and Rounding 

As it can be observed from Fig. 3.21, the overall architecture of the 
proposed interval multiplier relies on a dual result multiplier. The main features of 
this type of multiplier is that the encoding module and the parţial product reduction 
tree are kept in common, while some parts of the final addition and rounding 
module must be duplicated. The goal for such a multiplier is to duplicate as few 
modules as possible of the rounding scheme, but without affecting the performance. 
In this section, four rounding schemes are presented for this type of multiplier, 
three of them being adapted from the ones presented in Section 3.2.6, and a new 
one is proposed. 

In order to appiy the Even-Seidel algorithm, two injections have to be 
appiied (O for RZ and - for RI). Therefore, the injections cannot be 
generated as parţial products, because in the worst case two trees must be used. 
Thus, a CSA level must be used for RI (in order to add the required injection), while 
for RZ no such CSA level is required (because the injection is 0). This will result in 
two pairs of final parţial product (two pairs of SUM and CARRY). The two pairs of 
SUM and CARRY will need two different rounding schemes (two compound adders, 
two C[52], S and R circuits, two increment decision modules, four right shifters, but 
no LSB fixing modules - RNE is not used) [6]. 

An improvement can be obtained using Quach algorithm, because the two 
parţial products used are identical for both rounding cases. Thus, the carry, round 
and sticky bits generator is common for both rounding modes. However, because of 
the prediction, two compound adders must be used (one for RZ when there is no 
need of injection and one for RI when the prediction bit occurs). The hardware 
scheme is presented in Fig. 3.22. The duplicated components are the compound 
adder, the increment decision block (which is much simpler) the right-shifter and 
the selection multiplexers [6]. The two rows of half adders do not need the 
duplication, because the LSB of the first row sum output is used as Lx for RZ. 

The Yu-Zyner scheme avoids the need of a prediction or injection. This is 
possible because the most significant carry from the lower part (C[53]) is added 
with bits from the higher part. In this way, the compound adder has the same 
inputs (and thus the same results) independent of the rounding mode (as in Even-
Seidel or in Quach algorithm). In this way, the same compound adder can be used 
for both RI and RZ. The results of the compound adder (YO and Y l ) are processed 
twice, for each of the two rounding modes. Thus, a major cost saving is achieved, 
by using a single compound adder. Furthermore, a single carry and sticky generator 
is used. The oniy duplicated components are rounding decision modules, the 
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selection decision circuit and the multiplexers used for selecting the final result [6]. 
In Fig.3.23 the hardware scheme is presented. 

X I X2 

zio Zhi 

(a) 

(b) 

Figure 3.21 - Proposed Interval Multipller Architecture [4] (a) 
RTL Schematic Obtained with XST (b) 
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Figure 3.22 - Rounding Scheme for Dual Result Multiplier Based on Quach Algorithm[6] 

These three schemes were adapted from the ones used for convenţional 
floating point multiplication, which were presented in Section 3.2.6. A new scheme 
for dual result muitipliers is proposed which can be used oniy for interval arithmetic. 
This scheme is based on the Yu-Zyner algorithm. However, the proposed algorithm 
is simpler, because it does not into account RNE, which is not need in interval 
arithmetic. The proposed algorithm proceeds as foilows [6] : 

1.The SUM and CARRY strings are separated into a high part consisting of 54 
bits and a low part of 52 bits. 

2.The lower part is used to compute C[52] and the S bit. 

3.The high part is input to a line of half adders. The carry string (consisting of 
53 bits) and the most significant 53 bits of the sum string are inputs to a 
compound adder. The results of the compound adder are YO and Y1 (YO+1). 

4.The LSB bit of the sum string (Lx) is added with C[52] for RZ, and with C[52] 
and S for RI. The sum bit is the ResultZ'[52] for RZ and Resultl'[52] for RI. 
These two bits will be the LSB of the two results in case no overflow occurred. 
The carry bits will be CZ[51] for RZ and CI[51] for RI. The two carry bits will 
determine which of the YO and Y1 will be selected for each rounding case. 

5.A selection between Y0[-1] and Y l [ - 1 ] ( the overflow bits) is done for each 
rounding case, also based on the CZ[51] and CI[51] . The OvfZ signal for RZ 
and Ovfl signal for RI are generated. 

6. The most significant 52 bits of the result are selected in both cases between 
the normalized YO and Y1 based on the CZ[51] and CI[51] . The LSB of the 
result is selected in both cases based on the OvfZ and Ovfl. 
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The hardware scheme is presented in Fig. 3.24. Furthernnore, this algorithm 
uses a single compound adder and a single carry and sticky generator, which means 
a reduced cost. The drawback of this rounding scheme Is that it doesn't Implements 
RNE. Therefore, it cannot be used for convenţional floating point multiplication, but 
oniy for interval arithmetic. 

3 .3 .4 Interval Set Operations 

The two floating point comparators can also be used for interval set 
operations, like interval huli, interval inclusion or interval intersection. These 
operations are of great importance for interval arithmetic (for example, the interval 
intersection is used in each iteration in the interval Newton's method). In Fig. 3.24, 
algorithms for interval huli and interval intersection are given [1]. 

Z/o =max(Xto,Vto) /̂o = min(X/o,y,o) 

Zhi = ZM 
If Z;„ < Z,„ then R= 

else /?= 0 
b) 

FIgure 3.25 - Algorithm for Interval Intersection (a) and Interval Huli (b) [1] 

In order to use the architecture proposed in Fig. 3.20 a series o f 
multiplexers are introduced before the two floating point comparators. The latency 
penalty is minimal (onIy 1 LL). However, an increase in functionality for the 
proposed architecture is obtained [4]. 

3.4 Evaluation 

3 .4 .1 Cost Analysis 

The cost was estimated using gate count as metric. The gate count metric 
can provide useful information about the size of the proposed circuits, although this 
metric is not the most relevant for VLSI technology (as we have seen in 3.2.6, the 
wired tracks are also important for VLSI circuits). However, this metric is technology 
independent. Gate count was also used in [88]. As in [88], the basic gates 
considered are AND/NAND, OR/NOR, NOT, XOR and the 2-input multiplexer. 

In table 3.11 the cost of the proposed architecture for IEEE double precision 
numbers is presented. The dual result multiplier has different configurations, 
depending on the parţial products reduction tree and the final rounding and addition 
module. The encoding used was the Booth 2. 

Table 3.12 presents the cost of convenţional floating point multipliers which 
use for encoding Booth 2 algorithm. Different types of trees and rounding and 
addition modules are also used. 
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Table 3.11 - Gate Count for Proposed Architecture 

Wallace Tree Overturned Staircase Balanced Delay Binary Tree 
Even-Seidel 23286 25032 23868 24084 

Quach 22030 24046 22612 22828 
Yu-Zyner 21000 23016 21580 21798 
Proposed 20938 22954 21518 21736 

Table 3.12 - Gate Count for Convenţional Floating Point Multiplier 

Wallace Tree Overturned Staircase Balanced Delay Binary Tree 
Even-Seidel 18800 20815 19238 19597 

Quach 18630 20645 19068 19427 
Yu-Zyner 18616 20631 19054 19413 

As we can see from table 3.11, the multipliers which have as final rounding 
and addition modules the modified Yu-Zyner and the proposed solution have a 
significantly smaller gate count then the ones based on the Quach algorithm and the 
Even-Seidel algorithms. In table 3.13, is a presentation of the gate counts for these 
four solutions for final rounding and addition. 

Table 3.13 - Gate Counts for Final Addition and Rounding Units 

Algorithm Gate Count 
Even-Seidel 4168 

Quach 2912 
Yu-Zyner 1882 
Proposed 1820 

Another important aspect is that the proposed interval multiplier 
architecture requires from 12% up to 27% more gates for double precision numbers 
compared to the convenţional floating point multipliers. The reasons for this 
increase are: 

• The two floating point comparators 
• The increase cost of the final rounding and addition module. 
• A more complex exponent update module. 

The comparison with a convenţional floating point multiplier is relevant, 
because this unit is the backbone of all other implementations for interval 
multiplication, like the sign examining algorithms or the eight products 
[94][96][107]. 

3 .4 .2 Performance Estimates 

The latency was estimated using the independent technology metric logic 
levels (LL). This metric was also used for latency estimation in [16][30][88][89]. In 
table 3.14 are presented the latency estimates for the proposed architecture, which 
has uses a Booth 2 encoder module and a Wallace tree as the parţial product 
reduction tree. Table 3.15 presents the latency of a convenţional floating point 
multiplier, with the same type of encoder module and parţial product reduction tree. 
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The latency was estimated for different schemes used for final addition and 
rounding modules. 

Table 3.14 Latency Estinriates for Proposed Architecture 

Module Even-Seidel Quach Yu-Zyner Proposed 
Encoder 5 5 5 5 

Parţial Product Tree 14 14 14 14 
Rounding Scheme 14 15 16 13 

Comparator 9 9 9 9 
Overall 42 43 44 41 

Table 3.15 Latency Estimates for Convenţional Floating Point Multiplication 

Module Even-Seidel Quach Yu-Zyner 
Encoder 5 5 5 

Parţial Product Tree 14 14 14 
Rounding Scheme 14 15 16 

Overall 33 34 35 

As it can be observed in Table 3.14 the proposed solution for rounding 
scheme has the best latency. This is due to a much simpler logic of the proposed 
schenne, because the proposed solution does not perform rounding to nearest even • 
(which is the main drawback of the proposed solution). 

The latency of the proposed architecture is higher compared to a 
convenţional floating point multiplier due to the floating point comparator (which 
lies in the criticai data path). If the proposed architecture wouid be used for a 
convenţional floating point multiplication (using Even-Seidel, Quach or Yu-Zyner 
rounding schemes) the latency wouId be almost the same (for Quach and Yu-Zyner 
it wouId be equal, while using Even-Seidel a 2 LL increase in latency can be 
observed). 

Based on the obtained latency, a four stage pipeline architecture for the 
proposed multiplier can be used, with a clock cycle suitable for 12 LL (without 
considering the delays of the pipeline registers or the clock skew). The convenţional 
floating point multiplier wouId have a three stage pipeline. In this case, an interval 
multiplication wouId require 7 clock cycles. A sign-examining interval multiplication 
using a convenţional floating point multiplier wouId require 4 clock cycles in the best 
case, and 8 clock cycles in the worst case - when both intervals contain zero (6 
clock cycles for the 4 multiplications and 2 clock cycles for the 2 comparisons). 
Therefore, the proposed architecture presents a better worst case performance then 
the sign examining algorithm. 

3 .4 .3 Synthesis Results 

Seven multiplier designs were implemented in Xilinx Virtex-4 family FPCA 
technology using the Xilinx ISE 10.1 Webpack and synthesized with Xilinx Synthesis 
Tool (XST). AII seven designs use the Booth radix 4 (Booth 2) algorithm in the 
encoding module and the Wallace tree as the parţial product reduction tree. A 12-bit 
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compound adder was used for the compound addition of the most significant halves 
of the final parţial products, while the carry generator was designed for 11 bits. 
Therefore, in case of the Yu-Zyner rounding scheme, which uses l-bit smaller 
compound adder and carry generator, the cost of the entire rounding scheme may 
be smaller. The foilowing seven multiplier results are: 

• Interval multiplication unit using the proposed addition and rounding unit 

• Interval multiplication unit using the modified Yu-Zyner addition and 
rounding scheme 

• Interval multiplication unit using the modified Quach addition and rounding 
scheme 

• Interval multiplication unit using the modified Even-Seidel addition and 
rounding scheme 

• Floating point multiplication unit using the Yu-Zyner addition and rounding 
scheme 

• Floating point multiplication unit using the Quach addition and rounding 
scheme 

Floating point multiplication 
rounding scheme 

unit using the Even-Seldel addition and 

The latency and cost results for both interval designs and convenţional 
floating point multipliers are presented In Table 3.16. FIgure 3.27 presents the 
relative cost of the Interval multipliers compared to the convenţional floating point 
multiplication units. 

Table 3.16 - Latencles and Cost for the Interval and Floating Point Multipliers 

Interval Floating Point 
Multipliers Multipliers 

Rounding Latency Cost Rounding Latency Cost 
Scheme (ns) (LUT-4) Scheme (ns) (LUT-4) 

Even-Seldel 19.529 495 Even-Seldel 15.365 336 
Quach 20.397 452 Quach 15.959 327 

Yu-Zyner 20.991 402 Yu-Zyner 15.366 320 
Proposed 20.398 373 Proposed - -

The results obtained by synthesis are similar to the estimatlons presented in 
sections 3.4.1. Regarding the cost, an increase is observed due the two floating 
point comparators and the additlonal cost in the modified rounding scheme. The 
cost of the interval multipliers for half precision ranges from 25% (in case of Yu-
Zyner rounding scheme) to 45% (in case of Even-Seldel rounding scheme). The 
reason for this is that in case of half precision the weight of the encoder scheme 
(124 LUT-4) and the parţial product reduction tree (118 LUT-4) is smaller than in 
case of double precision. Regarding the latency, a four pipeline stage for the 
interval multipliers can be designed (as the convenţional floating point multipliers 
can be designed for three pipeline stages). An interval multiplication can be 
executed In seven clock cycles using the proposed algorithm. 
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Cost Comparisson 

I Interval 
I Convenţional 

Figure 3.26 - Cost Comparison between Interval and Convenţional Floating Point Multipliers 

The results for the four interval rounding schemes are presented in Table 
3.18 depicts the results (both latency and cost) obtained oniy for the four addition 
and rounding schemes used for the interval multipliers designs. Figure 3.28 depict 
cost*latency product (measured in ns*LUT-4) for the four interval rounding 
schemes. 

LatencyCost Comparisson 

Quach YZ Proposed 

I Latenc/Cost 

Figure 3.27 - Latency*Cost Comparison of the Four Interval Rounding Schemes 

Table 3.17 - Latencies and Cost for the Interval Rounding Schemes 

Rounding Scheme Latency (ns) Cost 
(LUT-4) Rounding Scheme 

Logic Route Total 
Cost 

(LUT-4) 
Modified ES 2.192 5.218 7.410 226 

Modified Quach 2.342 6.796 9.138 159 
Modified YZ 2.349 5.675 8.024 132 

Proposed 1.911 5.265 7.176 120 
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As it can be observed from both Table 3.18 and Fig. 3.27, the proposed 
rounding scheme has the smallest latency and the smallest cost (as it was shown in 
sections 3.4.1 and 3.4.2). Very advantageous from the (latency*cost) perspective is 
the modified Yu-Zyner rounding scheme. The Even-Seidel also has a relative low 
latency (the second lowest), has a very high cost compared to the other three 
rounding schemes (almost double compared to the proposed one). 

3 . 5 S u m m a r y 

In this chapter, an overview of the most important algorithms and 
implementations for interval multiplication is presented in Section 3.1. Two 
techniques are of interest: the pipelined basic algorithm and the eight products 
algorithm. Emphasize is on these two because the proposed algorithm is a 
combination of these two. 

In Section 3.2, a detailed description of the floating point multiplication is 
realized. We focused on the mantissa multiplication and rounding. Details of each 
major module of the mantissa multiplication are given: the encoding module, the 
parţial product reduction tree and the final addition and rounding module. These 
modules constitute the building blocks of the proposed multiplier. 

Section 3.3 is dedicated to the proposed solutions for interval multiplication. 
The main contributions regarding interval multiplications are presented in this 
section and are: 

• An algorithm for interval multiplication, based on the basic pipeline 
algorithm and on the eight products algorithm 

• A multiplier architecture for the proposed architecture and based on the dual 
result multiplier. Furthermore, the proposed architecture can be used for 
interval set operations. 

• Modifications of the Even-Seidel, Yu-Zyner and Quach rounding schemes for 
dual result multipliers. Furthermore, a new rounding scheme for interval 
arithmetic is proposed. 

Estimates for cost and performance were done and are presented in Section 
3.4. The cost estimates show an increase form 12% up to 27% (double precision) 
and 25% up to 45% (half precision) of the proposed architecture compared to a 
convenţional floating point multiplier. The main reasons for this increase are the 
two floating point comparators. However, this two floating point comparators can 
also be used for interval set operations, thus increasing the functionality of the 
proposed design. Performance estimates show an increase in the worst case of the 
proposed multiplier compared to an interval multiplier based on a sign examining 
algorithm. Furthermore, the proposed multiplier can be used for convenţional 
floating point multiplication (with Even-Seidel, Quach and Yu-Zyner rounding 
schemes) with the same performance of a standard tree based floating point 
multiplier. Last, but not least, the proposed rounding scheme for interval arithmetic 
has an improved latency with respect to the three other rounding schemes, with a 
cost similar to the modified Yu-Zyner scheme (which has the smallest gate count of 
the three modified rounding schemes). 
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4. Floating Point Divide-Add Fused for Interval 
Newton's Method 

4 . 1 Cons ide ra t ions on the F loat ing Point D iv ide-Add Fused 

A detailed analysis on the floating point division and its impact on the 
overail performance in a floating point system were performed in [70] by Oberman, 
using the SPEC FPL) benchmarks. The analysis showed that the division has a 
frequency of about 3% from all floating point operations (compared to the 55% for 
floating point addition and 39% for floating point multiplication). Hence, floating 
point division is a scarce operation, and therefore, the hardware designs regarding 
division shouid be oriented to lower cost rather than higher performance. Another 
analysis performed in [69][70] showed that the 29% of the results of floating point 
division are used as operands in addition. Thus, the percentage in convenţional 
floating point systems of the divide-add fused (division foilowed by subtraction) 
wouid be less than 1%. Instead, multiply-add fused counts more than 12% from all 
floating point instruction. Thus, an implementation of the multiply-add fused is 
convenient even for general purpose processors. This is not the case for the divide-
add fused, which is a very rare operation. Therefore, to the best of my knowledge, 
no hardware unit for divide-add fused has been implemented. 

Also in [70], the authors conclude that a floating point divide-add fused 
wouId be convenient if the percentage of this operation wouId be similar to the one 
of floating point multiply-add fused. This couid be the case in interval arithmetic, 
mainly because of the Newton's interval method. This algorithm is a powerful tool 
for noniinear equation solving [24][34][82][102][104], with appiicability in a wide 
range of fieids such as chemical engineering, computer graphics, robotics and 
control theory, computer-aided design [47]. This algorithm is based on a division 
foilowed by subtraction, thus a divide-add fused unit wouId be convenient for this 
method. 

4 . 2 I n t e r v a l Newton 's Method 

4 .2 .1 Standard Interval Newton's Method 

The standard interval Newton's method can be appiied to functions which 
are continuous and monotonous on the specified interval. Given a function f and a 
starting interval X = [X/o,^/^/], the algorithm relies on the foilowing iteration 
[24][33][34][48][102][104]: 

= ^ (4.1) 
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-̂ z + l = f^iXi) 
n X / 

Where m(Xj) is one point which belongs to the interval X/(usual ly is considered 

the midpoint of the interval). The termination criteria for this algorithm is 
represented either the case of the 0 interval (case where there is no solution in the 
X = \ Xi^,X^i] for the equationf(x) = O), either the obtained interval has the 

desired accuracy ( [X/^./- < f ) [102] [104] . The graphic representation of the 

interval Newton's method is depicted in the Fig. 2.1. 

Figura 4.1 - Graphic Representation of Newton's Interval Method. [a l ,^ l ] represent the iniţial 
interval, m l is the midpoint, and [a2,b2] represent the result interval after the iteration (in 

this case ^1=62) 

This algorithnn makes use of the interval division. The interval division is 
defmed as foilows [53] [95] [94] : 

Undefined for Oe [V/q/̂ A)/ 
(2.2) 

As a direct consequence of (2 .2) , the standard interval Newton's method 
cannot be appiied for intervals where the function has a local minimum or maximum 
on the iniţial interval (or the derivative has a zero on the specified interval) 
[32][47] . Thus, this method can be used for functions which have maximum one 
root on the specified interval. In order to extend this algorithm to intervals where 
the function has a local minimum or maximum (thus, having more than one root), 
an analysis of the interval division by an interval containing zero must be 
performed. 

4 . 2 . 2 In te rva l Divis ion by a Zero Containing In te rva l 

The interval division is defined in (2 .2) . It resembles the interval 
multiplication, thus, it wouid be expected to be as difficult as it, requiring ten 
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floating point operations in order to perform it [49]. As in the case of interval 
multiplication, sign exannining for interval division can be performed [95]. Uniike the 
interval multiplication, due toOe [V/o/>̂ /7/]/ the interval division consists of oniy six 
cases, each requiring onIy two floating point divisions, as presented in Table 4.1 

Table 4.1 - Inten/al Division [49][95][94] 

l^loi^hi] [Ylo'Yhi, Result 
1 X,o>0 Ylo>0 

2 
X,o>Q Yhi<0 [""/Y.'VY.] 

3 Xio<0< Xhi Yio>0 Xio/ Xf^j/ 
. /Ylo' /Ylo. 

4 
X/o < 0 < Xhi Yhi < 0 Xhi/ Xio/ 

. Ahi' /Yhi. 
5 

Xhi < 0 Ylo>0 

6 
Xhi<0 Yhi < 0 Xhi/ Xfo/ 

. Alo' /Yhi. 

In order to extend the interval Newton's method to intervals where the 
function has a local minimum or maximum, the interval division by an interval 
containing zero must be considered. One such analysis was performed by UIrich 
Kulisch [53][54] and constitutes a proposal for the future IEEE 1788 standard for 
interval arithmetic. This analysis is done according to the positioning of the zero 
within the interval. 

Case l . y =r0,0l=0 

This case can be regarded as foilows: the result of the division ^ can be 

viewed as the solution of the foilowing equationO*x = a,ae X , Two sub-cases do 
appear: 

• O G X , which leads to the solution -h») ( (-<«; +oo) for O • x = O and 0 for 

• O ^ X , which leads to the solution 0 

Case 2 . / = [r/o,o; 

In this case, the / = [y/o,0] interval is replaced with the = 

Depending on the dividend X = we have the foilowing sub-cases: 
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• X^i < 0 . The result of the >^.division is ^ /̂y/O'̂ '̂ Xs 

result of the division lirn^ 

• X,o>0. The result of the division is ^^/^e'^'^io 

result of the division is lim^ ^^/-e'^^^io 

. Therefore, the 

. Therefore, the 

^10/ 

Case 3 . / 

In this case, the / = [0,y>ţ/]interval is replaced with the Y '=[£,Yhi ' 

Depending on the dividend X = [Xfo^Xf^i] we have the foilowing sub-cases: 

x^i < 0 . The result of the division is . Therefore, the 

^hiy 
YHI\ 

result of the division is lirn 

X/o>0 . The result of the division is 

result of the division is lim^ " 

. Therefore, the 

Case 4 . K = [Yio, K/,/], V/o < O < Y î 

In this case, the y = [V/cV),/] interval is replaced with 
theV" = [y/o,-f] uFt ,// , , ] . In this case we use the inclusion-isotony property of 

interval arithmetic {A (z B aC c: D=> AopC c BopD ) [54]. Depending on the 
dividend X = [X/o;X/j/] we have the foilowing sub-cases: 

• Xrt, < 0 . The result of the -'^.division is '^^j/y^i ' 

Therefore, the result of the division is 

• X/o > 0 . The result of the ^ . d i v i s i o n is • 

Therefore, the result of the division ^ is 

lim u 
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Table 4.2 - Interval Division by an Interval Containing Zero [54] 

l^lo' ^hi} ^lo- ^hi ] Result 

1 Oe [Xio,Xhi] * —oo, -H» 

2 * [0,0] 0 

3 X,o>0 V/o, o; 

4 Xio>0 
. /YM'"^) 

5 X,o>0 Oe //O'^/J/] u 

6 Xhi<0 

7 Xhi < 0 

8 Xhi < 0 Oe 
' A / . 

u 
. /Ylo' ) 

Table 4.2 presents all the cases for interval division when the divisor 
contains zero. This way, an extension of the standard interval Newton's method can 
be obtained for any continuous functions on the selected interval. 

4 .2 .3 Extended Interval Newton's Method 

In order to extend the interval Newton's method to function whose derivates 
have a zero on the selected interval, it must be taken into account the division by 
an interval which contains zero. Without losing from generality, we will consider the 
case of Og f\X), which corresponds to the and rows from the Table 2.3. 

Starting from the iteration described in ( 2 . 1 ) , after the division and the 
subtraction the foilowing set is obtained [53]: 

After the intersection with the previous interval X/ = 
might be obtained [53]: 

(4.3) 

four cases 

( 4 . 4 ) 

The first case corresponds to the no solution situation. The second corresponds to 
the case when the solutions are in the interval [X/^.,, X/^./^i], while the third 

corresponds to case when the solutions are found 
The fourth case represents the case when the equation has at least two solutions. 
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one In the [X/q . / , X / ^ - z + i ] and the other in [X/^m+I/'^/?/-/]- The graphic 
representation of the fourth case is depicted in Fig. 2.2. Therefore, by using the 
extended interval Newton's method, equations which have multiple solutions on a 
specified interval can also be solved. 

Figure 4.2 - Graphic Representation of the Interval Newton's Method when the 
Function Has a Local Minimum 

Therefore, by employing division by an interval containing zero, the interval 
Newton's method can be used for every continuous function on the selected 
interval. This way, a very powerful numerical algorithm for solving noniinear 
equations is developed. 

4 . 2 . 4 Discuss ion 

The inten/al Newton's method has been proven to provide accurate and, 
more important, guaranteed results [24] [82] . This is quite in contrast to the 
convenţional Newton's method, which is known that it fails in some conditions to 
converge to the root (having a false convergence). Furthermore, the extended 
Newton's algorithm can be used for functions with multiple roots, providing clear 
indications about the number of them. Another advantage compared to its classical 
counterpart is that it indicates from the first iteration the inexistence of any roots. 
Thus, computation time is saved from finding roots that do not exist. 

Regarding the performance, this method has quadratic convergence [47] . 
Provided fast operations within the method (function evaluation, fast division, fast 
subtraction), the interval Newton's method becomes a numerical algorithm which 
can be used for high performance appiications (like rendering in graphical 
computations [84]) . 

Furthermore, this algorithm can be extended for the noniinear systems of 
equations. For this purpose, matrix operations are needed, and the Jacobian matrix 
is used in order to fmd the solution of the noniinear systems [103][105] . 

For this algorithm, a dedicated operator - the interval Newton operator -
has been defined for an interval X based on a function/ [33] : 
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N{X,f) = (4.5) 

This operator comprises of a function evaluation on an interval, on function 
evaluation in a point, an interval division and subtraction. The two function 
evaluations are dependent on the chosen function. However, the division foilowed 
by the subtraction remains as standard operation, no matter the function. 

The interval Newton's method is the one of the most important, or maybe 
the most important, numerical method of the interval arithmetic. Every fieid of 
appiications which require solving noniinear equations or systems of noniinear 
equations can benefit from interval Newton's method. Applications of this method 
have been developed in chemical engineering [47], computer graphics and 
visualization (ray tracing, surface intersections)[84], computer-aided design [32], 
control theory and robotics[24], etc. 

4.3 Floating Point Multiply-Add Fused 

4 .3 .1 Consideration on the Floating Point Multiply-Add Fused 

The multiply-add fused floating point unit represents the basis for the 
proposed divide-add fused circuit due to the foilowing reasons: 

• One of the two involved operations is represented by the 
addition/subtraction 

• The floating point division is similar to the floating point multiplication and 
has the same precedence compared to the addition/subtraction 

• The rich experience in the design of the floating point multiply-add fused 

Multiply-add fused (multiplication foilowed by an addition) - F 1 + F 2 * F 3 - is 
one of the most frequent arithmetic operation [18][57][64][99]. It is the basic 
operation for dot product, matrix multiplication, convolution or polynomial 
evaluation, which are standard operations in different appiications, like digital signal 
processing or computer graphics. Therefore, a hardware unit dedicated for multiply-
add fused is necessary for a wide range of processors, like DSPs or graphical 
processors. 

There are two reasons for using a dedicated hardware unit to perform the 
multiply-add fused operation, rather than using a multiplier and an adder [46][55]: 

1. The performance of dedicated hardware multiply-add fused unit for the 
combined operation is greater compared with the solution based on a 
multiplier and an adder. 

2. Instead on performing two rounding operations (one rounding for 
multiplication and one for addition), oniy one rounding operation is 
performed on a dedicated unit. This leads to a reduction of rounding errors 
and an increase of the accuracy. 

Therefore, in many appiication specific processors or even general use 
desktop processors, like IBM PowerPC, the multiply-add fused had been 
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implemented [99]. The multiply-add fused can also be used for addition or for 
multiplication, but the performance of these two operations is lower compared to a 
fioating point adder or a fioating point multiplier. 

4 . 3 . 2 Basic Algorithnn 

Given three fioating point numbers, F I = * *1.M1, 

F2 = {-if^ * * 1.M2 , F3 = * * 1.M3, the multiply-add fused 

operation F I + F2 * F3 involves the foilowing steps [46][99]: 

1. Addition of multipiication exponents {E2+E3-bias) and the 
subtraction from the result of the addition exponent {El-bias), In this 
way, the result exponent can be determined (max {E2-\-E3-bias, El-bias)) 
and the amount for the alignment shifting for the addition operand. 

2. Align the addition mantissa ( l . M l ) based on the exponents difference 
obtained in step 1. 

3. Mantissa multipiication of the multipiication operands (1.M2 and 
l.Af3). This usually is carried out using a tree multiplier. 

4. Addition of the aligned mantissa. 

5. Result complementation. 

6. Leading zero detection. 

7. Normalization of the result mantissa in case of overflow or in case of 
leading zeros. 

8. Rounding 

Steps 1 and 2 (exponents addition and subtraction foilowed by addend's 
mantissa alignment), respectively 3 (mantissas' multipiication) are done in parallel, 
while the other steps are performed sequentially. Due to the many steps in the 
criticai path, a large latency results for this basic algorithm. 

4 .3 .3 . Enhancements of the Basic Algorithnn 

In order to increase the performance of the fioating point multiply-add 
fused, several improvements are performed to this basic algorithm. Regarding the 
multipiication, a tree multiplier (which in case of normal multipliers consists of an 
encoding scheme, a parţial product reduction tree and a final adder) is used [46]. 
However, in this case oniy the encoding module and the parţial product reduction 
tree are used. Therefore, the product will be obtained in a redundant carry-sum 
form. The aligned addend will be added to this redundant form using a carry-save 
adder line, resulting thus two final sum and carry strings which will be added in 
large carry propagate adder. 

Regarding the alignment step (step 2), a bidirecţional shift (left or rigjit 
shift) may be needed, based on the sign of the exponents' difference. In order to 
avoid the bidirecţional shifting, the foilowing procedure is used [46][56][99]: 
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1. The addend l . M l is initially considered to be positioned m-\-3 bits (where m 
is the number of bits of mantissa - in case of double precision format 
m=52) tothe left of the product. 

2. Two zero bits will be placed in front of the product, which will stand for the 
guard and round bits. 

3. Rather than the E l - (E2 + E3 - 5/as) difference (which will indicate the 
amount of shifting to the left or right), a new difference will 
computed:m + 3 - { E l - ( E 2 + E 3 - 6 / a s ) ) . In case that the new difference is 
negative, no shift will be computed. 

By performing these three steps, the bidirecţional rounding is avoided, oniy a right 
shift rounding being needed. However, even in the case of effective addition, 
normalization step is required. 

l.Ml 

Bit Invert 

Alignment 
Right Shifter 

1.M2 1.M3 
i 

Encoding Module 

Parţial Product 
Reduction Tree 

CSA 

161 - Bit 
Carry Propagate Adder 

Complementer 

Normalization Normalization Sticky 

Rounding 

Figure 4.3 - General Architecture of the Mantissa Data Path in a Multiply-Add Fused 
[10][46][55] 
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The required size for the final carry-propagate adder is of 3 * m + 2bits 
[46](for double precision fornnat 161 bits adder). As in the case of floating point 
addition, instead of a leading zero detector, a leading zero predictor is used, which 
runs in parallel with the final carry-propagate adder. However, uniike the floating 
point addition, rounding cannot be reduced to selection by using a compound adder, 
because nornnalization is done even in the case of effective addition. Therefore, 
rounding is performed after normalization. 

Another improvement of the basic algorithm of the floating point multiply-
add fused consists in the usage of a leading zero prediction instead of a leading zero 
detection [46][55]. This feature is inspired from the design of the floating point 
addition units. Like in the floating point addition, the leading zero prediction works 
in parallel with the carry propagate adder, providing the shifting amount needed for 
the normalization at the end of the addition. 

The overall architecture of a floating point multiply-add fused unit is 
presented in Fig. 3.1. As it can be observed, the structure presents in the 
characteristic from both floating point multipliers (such as the encoding module 
based on a multiplication algorithm and the parţial product reduction tree) and from 
floating point adders (such as the leading zero predictor or the alignment and 
normalization shifters). 

4 .3 .4 . High Performance Multiply-Add Fused Units 

The basic algorithm for floating point multiply-add fused presented in 
Section 3.2 presents a high latency. The module which introduces the greatest. 
latency is the large carry propagate adder (a three word length carry propagate 
adder), which for IEEE double precision format must be of size 161. Furthermore, 
the rounding step is not performed as a simple selection as in the case of floating 
point addition or multiplication, due to the normalization left shift which occurs even 
in the case of effective addition [55]. Several strategies for increasing the 
performance of the floating point multiply-add fused have been developed and are 
based either on a reduction of the carry-propagate adder size, either on reducing 
rounding to a simple selection. 

One technique is used in [22] and is based on using a redundant adder -
signed digit - for the three word addition. Two normalization shifters are used. One 
normalization shifter is used after the signed digit adder. After this first 
normalization shifter, a conversion from the signed digit redundant form to the 
convenţional representation using a two word carry propagate adder is performed. 
After this carry propagate addition, another normalization shift is performed before 
rounding. 

A more advanced design is proposed in [55] by Lang and Bruguera (Fig. 
4.4). This strategy tries to reduce the rounding operation to a simple selection, in a 
similar fashion as in floating point adders or floating point multiplication, by 
reducing rounding to a simple selection a major reduction in latency occurs due to 
the foilowing reasons: a single word length carry propagate adder is used (which 
works in parallel with the carry, round, guard and sticky bits computation circuits) 
and no carry propagate adder is used for rounding (instead a simple multiplexer 
circuit is used). However, as presented in the Section 4.3.2, because of 
normalization step, which in the case of the multiply-add fused is required even in 
the case of effective addition, performing rounding as a simple selection after the 
addition is rather difficult. ^ 

BUPT



4.3 - Floating Point Multiply-Add Fused 97 

The main contribution of the floating point multiply-add fused proposed in 
[55] consists of performing normalization before the carry propagate addition. The 
obtained architecture of the [55] is presented in Fig. 3.3. The normalization is 
carried on the sum and carry strings which result after the carry-save adder line. 
However, normalization can be performed oniy after the leading zero anticipation. In 
order to decrease the delay, the carry save addition between the carry-sum 
redundant form of the product and the addend is performed in parallel with the 
leading zero prediction. Furthermore, two half adder lines are used, which also work 
in parallel with leading zero predictor. Also, parts of the final compound adder are 
placed after the half adder lines. The two lines of half adders and the compound 
adders' parts form two computaţional paths. The reason for the two computaţional 
paths is that one path computes for the case of a positive result, while the other 
computes for the case of a negative result. 

l . M l 1.M2 1.M3 

Compound 
Adder 

MUX 1 

Carry, Round, 
Sticky 

Figura 4.4 - The Floating Point Multiply-Add Fused as Proposed in [55] 
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Also, in parallel with the two computaţional path formed by the half adder 
line and parts of the compound adder, and the leading zero predictor, is placed a 
signed detection circuit which has the role of the sign detection of the final result. 
Based on the detected sign, the result is selected between the two computaţional 
paths. After the normalization left shifting, the final addition and rounding is 
performed similar to the one used in floating point addition and multiplication. The 
solution chosen by the authors in [55] consists of performing the rounding in a 
similar way to the Yu-Zyner floating point multiplication rounding algorithm [109] . 
Thus, for rounding a circuit for the carry, sticky computation, a small three bit carry 
propagate adder which computes the least, guard and round bits and one word 
length compound adder which runs in parallel with carry and sticky module are 
used. Based on this design is the one described in [57] , which is dedicated to 
increasing the throughput of the operations performed on the multiply-add fused. 
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Figure 4.5 - The Double-Path Multiply-Add Fused Architecture [18] 

Another approach for increasing the floating point multiply-add fused 
operation performance has its inspiration drawn from the floating point addition 
optimization techniques, and especially double path adders [18]. The approach to 
use two parallel and mutually exclusive paths in the mantissa data path of the 
floating point multiply-add fused has the main role of increasing the floating point 
addition (the case when the one of the multiplication operands is equal to one) 
performance. Figure 4.5 presents the general structure of the [18] multiply-add 
fused. 

In order to obtain the double path structure for the floating point multiply-
add fused, the alignment shifting is not performed in parallel with the multiplication. 
The two computaţional paths are called as in the classical double path floating point 
adders: the FAR path and the CLOSE path. On the CLOSE path are computed oniy 
effective subtractions when the exponent difference is O, 1, - l or 2 and the 
multiplication results in overflow. On the FAR path are computed the rest of the 
operations. The FAR path comprises of a small 3-bit alignment right shifter, the 
carry-save adder, the computaţional paths comprised of the half adders and parts of 
the compound adder (as in the design proposed in [55]), the normalization shifters 
and the leading zero prediction. The CLOSE path comprises of a large three word 
length alignment right shifter, the half adders computaţional path, a 3-bit 
normalization shifter and a small leading zero predictor. The selection between the 
two computaţional paths is realized before the flnal addition and rounding. Thus, 
this design requires a single compound adder, uniike the double path floating point 
adders, which require one compound adder for each computaţional path. The 
rounding algorithm used in this design is the same as in Lang-Bruguera multiply-
add fused unit. This floating point multiply-add fused unit was designed in order to 
increase the performance of a floating point addition when executed on such unit, 
but without affecting the performance of the floating point multiply-add fused. 

Regading the presented multiply-add fused architectures, the two designs 
based on combining rounding with the addition present the highest performance, 
due to the fact that onIy a single carry propagate addition is present in the criticai 
path of the 

4 . 4 F loat ing Point Div is ion 

In the case of the floating point multiply-add fused specific elements which 
are common to multiplication are found in the internai structure of the dedicated 
combined unit. These specific elements are the encoding module which implements 
one multiplication algorithm and the parţial product reduction tree. It is expected 
that also for a dedicated floating point divide-add fused specific elements of the 
floating point division units to be present in the overall architecture. Therefore, a 
detailed analysis of the floating point division must be realized. 

4 .4 .1 Basic Algorithm 

The basic algorithm for the floating point division resembles greatly with the 
algorithm for the floating point multiplication. The division between two IEEE 
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floating point numbers { F I = { - i f ^ * * l . M l 

and F2 = {-if^ * * i .M2 ) is given by the foilowing formula [51]: 

s3 * *LM3 = F1/F2 = {-if^®^^ * * {1.M1/1.M2) ^^ 

As it can be observed in the (4.6) the sign of the result is an exclusive-or 
between the two sign, the exponent is obtained by subtracting the two exponents 
and adding the bias, while the mantissa of the result is obtained by dividing the two 
mantissas. 

Because the result has also to be represented in IEEE 754 format the 
foilowing steps are also required [51]: 

1. Normalizatîon of the mantissa - because the mantissas of the two results 
are within [ i ; 2) interval, the result of their division is in the range [O; 2 ) ; if the 

result is in the range ( 0 , 5 ; 2) a normalization left shift with the exponent 
decrement are required. 

2. Rounding, foilowed by post normalization. 
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Figure 4.6 - Overall Architecture of a Floating Point Divider [51] 

The basic architecture of a floating point multiplier is depicted in Fig 4.6. 
The largest delay module in this architecture is the mantissa divider. Furthermore, 
the rounding unit significantly contributes to an increase in the delay of the unit, 
because it requires a large carry propagate adder. 

4 . 4 . 2 Mantissa Division 
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The mantissa division is the core operation for the floating point division. 
The nnantissa division is basically an unsigned integer operation and is the most 
difficult from all basic integer arithmetic operations (addition/subtraction, 
multiplication and division). Several algorithms for division have been developed, 
which can be classified in four categories [29][60][71]: digit-recurrence, 
multiplicative methods, very high radix and table look-up. However, oniy the first 
two classes of division algorithms are being implemented in the current processors. 
Therefore, a detailed look for these two types of division algorithms is performed in 
the foilowing sections. 

4 .4 .2 .1 Digit-Recurrence Division 

Digit recurrence division is a class of division algorithms which retum a fixed 
number of quotient digits at each iteration. One class of digit recurrence division is 
the SRT (Sweeney, Robertson [83]and Toucher). The digit recurrence division 
between two numbers (Dividend and D-divisor) consists of finding the number 
Q - quotient \Nh\ch satisfies the foilowing relation [52][67][100]: 

Divident = Q * D + P (4.7) 

where Prepresents the remainder of the division. The main feature of the digit 
recurrence algorithms is that a remainder is obtained after the division (uniike the 
multiplicative methods). 

The digit recurrence algorithms consist of k iterations, in which the foilowing 
recurrence is foilowed [64]: 

rPQ = Dividend (4.8) 
P j ^ l = r P j - q j ^ l * D (4.9) 

where Pj represents the parţial remainder at iteration j ( Pq is the first parţial 

remainder), r the radix in which the operation is performed ( r = 2^), and 
Qj represents the quotient digit. The quotient digit at iteration j is obtained using a 

quotient selection function which depends on the divisor and on the parţial 
remainder: 

qj=SEL{rPj_^,D) (4.10) 

The number of iterations when dividing two n bit numbers is given by the foilowing 
relation: 

/c = 
(4.11) 

The final parţial remainder is computed from the final remainder [71]: 

P ^ Pk-l, if Pk-l ^ o 

For the computation of the square root the relation (4.3) becomes [21]: 
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Pj^i - rPj Qj - qj^i^ * r'-^ 
(4.13) 

Therefore, digit recurrence algorithms can be used for both division and square root 
operations, many commercial floating point units present a combined divider and 
square root unit. 

D Pj 
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Figure 4.7 - Basic Block of a Digit Recurrence Divider [67] 

As it can be observed from (4.9) and (4.11), the digit recurrence algorithms 
are based on the subtraction operation and their complexity is 0(n). Using (4.9) 
and (4.10), the basic block for a digit recurrence division (the block used for the. 
connputation of one digit of the quotient) is presented in Fig. 4.7. The divider may 
use oniy one such block and the division will be performed sequentially. In this case, 
the divider presents a reasonable cost, but it cannot be used efficiently in pipelined 
architectures (because the divider is occupied by onIy one division). At the opposite, 
a divider can be implemented by unrolling of the previous solution. In this case, the 
divider has /c blocks [10]. Therefore, the cost of this solution is much higher than 
the previous solution, but it has a far larger throughput. Also, combined solutions 
can be used, based on a trade-off between the area overhead and desired 
throughput. However, in many commercial implementations the first solution is 
used, mainly because the division is not a frequent floating point operation. 

4 . 4 . 2 . 1 . 1 Design Choices 

Several design choices must be taken when designing a division unit, which 
implies a series of both performance and cost tradeoffs. These design choices are 
related to: 

Radix. A higher radix means less iteration, leading an increase in the 
performance [11]. However, this reduction in iterations comes at a cost 
[40]. On one hand the quotient digit selection becomes more complicated, 
either increasing the combinational logic needed, either the table lookup 
(the latency of the table is increased linearly with the radix, while the area 
of the table quadratically) [68]. This leads to an increase in the latency of 
the iteration, which may lead to the increase of the clock period. 
Furthermore, higher radices (for example 8 or 16) involve the generation of 
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hard multiples (like 3x, 5x, etc) which are difficult to obtain. As in 
multiplication, the chosen radices for division are 2 and nnore frequently 4. 

Quotient Digit Set. The quotient digit set depends on the r ad i x r . The 
easiest way is to use a set consisting from r values. This type of set is 
called the non-redundant digit set. However, using a non-redundant digit 
set means a very low perfornnance from the division algorithnn (for example, 
a radix-2 non-redundant digit set is equivalent to a non-restoring division). 
The redundant digit set is comprised of a set of d i g i t s { - a , . . . , - l , 0 , l , . . . , a } , 

w h e r e r - 1 > a > ̂ . For radix-2, the redundant digit is represented by the 

set { - l , 0 ,1} - this algorithm has been called SRT. For radix-4, there is a 
mininnal redundant digit set ( { - 2 , - 1 , 0 , 1 , 2 } ) and a nnaximally redundant 
digit set ( { - 3 , - 2 , - 1 , 0 , 1 , 2 , 3 } ) . The larger the redundancy, the easier 
quotient selection is. For radix-4 it has been proven by Oberman [68] that 
the quotient selection is about 20% faster for a nnaximally redundant digit 
set compared with a minimally redundant digit set. However, the cost for 
the increase in performance of the quotient selection is that it requires hard 
multiples, which are difficult to obtain. Furthermore, a more redundant digit 
set requires a more complex conversion to the non-redundant form which 
must be obtained. Thus, in the case of the selection of the quotient digit set, 
there must be a trade-off between the performance of the digit selection 
and the construction of needed multiples and the conversion to the non-
redundant form [40]. 
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Figura 4.8 - Quotient Selection Scheme Based on Comparisons [8][20] 

• Quotient Digit Computation/Selection. For radix-2, the quotient digit 
computation is relatively simply, employing oniy simple and fast 
combinational logic. For higher radices (radix-4), the combinational logic for 
quotient digit selection wouid become very complic^ted and with high 
latency. Therefore, for quotient digit selection two alternatives have been 
devised. The first one is using fast memory blocks in form of look-up tables 
(ROM or PLA) [64][68] . For radix-4 minimal redundant the table lookup 
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needs as inputs seven bits from the parţial remainder and three bits of the 
divisor. The second alternative is represented by using a set of comparators 
[8][9][10][20][21] - Fig 4.8. These comparisons are made between a 
truncated parţial remainder and a number of selection constants (which are 
preloaded at the first iteration depending on the divisor). The quotient digit 
is computed based on the results of these comparisons. 

4 . 4 . 2 . 1 . 2 Redundant Remainder Representation 

One important is represented by the remainder computation (4.9) which 
requires a subtraction. Using a full carry propagate adder in order to perform this 
addition, the latency of the division becomes very large, mainly because this 
addition/subtraction is performed sequentially with the quotient digit selection. 
Thus, it is required to be avoided the full carry propagate addition for parţial 
remainder computation. This can be achieved by using a redundant representation 
of the parţial remainder, either a signed digit (borrow save) or a carry-save 
representation [67]. Thus, the parţial remainder computation is performed very 
fast, because the carr/ propagation is thus avoided. For example, using a carry-
save representation , the latency of this step is oniy 2 logic levels, which is a major 
improvement compared with latency of a large carry propagate adder (8 logic levels 
for IEEE double precision numbers) . 

When using table lookup for quotient digit selection, the redundant 
representation of the parţial remainder may prove a disadvantage. The reason for 
this is represented by the fact that instead of two entries to the table (the truncated 
parţial remainder and truncated the divisor), three entries are needed, which will 
increase the table complexity and area [19]. A solution has been provided by using 
a small carry propagate adder (usually one or two bits greater than the number of 
bits needed for parţial remainder) before the table lookup [71]. There is a tradeoff 
between the size of the carry propagate adder and the complexity of the table 
lookup, because smaller carry propagate adders means lower latency, but also 
larger truncation errors, which will lead to a more complex table lookup (Rg. 4.9). 
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Figure 4.9 - SRT Stage wlth Remainder In Carry-Save Form and a Short Carry Propagate 
Adder for the Quotient Selection [64][71] 

When using the comparators based method to select the quotient digits, the 
subtraction for comparisons is performed using carry-save adders, without the need 
of carry propagation [9][20] . A sign detector is used for deternnining the sign of the 
subtraction and a coder is used to analyze the obtained signs and to provide the 
quotient digit. 

4 . 4 . 2 . 1 . 3 Over lapped Archi tectures 

One possibility to maintain the advantages of both higher radices, such the 
high number of quotient bits obtained at each iteration, and the low radices (low 
latency per stage, simple quotient selection, avoidance of hard multiples) is to 
design overlapped digit-recurrence architectures. By using the overlapping strategy, 
higher radices is obtained from cascading lower radices stages. Four types of 
overlapping strategies do exist, as described in [40] : 

• Overlapped rennainder formation 

• Overlapped quotient selection 

• Overiapped rennainder and quotient formation 

• Hybrid overlapping 

Figure 4.10 - Overlapped Quotient Selection [40] 

Figure 4.10 depicts the structure of a SRT divider stage based on the 
overlapped quotient selection. The first quotient digit is obtained as in a normal 
SRT stage. In parallel with the first quotient digit selection several numbers of 
quotient digits (for each digit in the quotient digit set) are pre-computed. The first 
selected quotient digit will select the appropriate second quotient digit. 
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By employing the overlapping strategy, higher radix can be obtained from 
faster and simpler lower radix, such as radix 16 obtained from two overlapped 
radix-4 stages, or radix-4 from two overlapped radix-2 stages [9]. This strategy was 
employed in commercial processors, such the radix-16 divider used in ARM V F P l l 
obtained from two overlapped radix-4, or the radix-8 divider used by Sun obtained 
from overlapping three radix-2 stages. 

4 . 4 . 2 . 1 . 4 Quotlent Conversion 
One important feature of the digit recurrence division is that the quotient 

digits are represented in a redundant form. The redundancy factor can have a 
significant influence on the performance of the quotient digit selection; a higher 
redundancy factor leads to a simpler selection. However, the final result must be in 
a non-redundant form. Thus, a conversion from the redundant form into the non-
redundant form must be performed. 

The quotient digits are obtained from C7i up to qi^, in /c iterations, where 
qQ \s the most significant digit and is obtained first, while Q/^.i is the least 
significant digit and is obtained in the last step. The conversion is the 
transformation ofQintoQ' , where the two strings are defined by the foilowing 
relation: 

k 

i=l 

= {04 } 
/=1 

(4.11) 

The conversion between the redundant form and the non-redundant form is 
made using the foilowing iteration [26][27]: 

= (4.12) 

This type of conversion can be very simple when the obtained quotient 
digits q j are positive. In this case, the addition means oniy adding the non-

redundant representation of the quotient digit at the end at of the parţial of the 
non-redundant quotient. However, the redundant quotient digits can be negative, 
which means that in order to convert these digits a carry propagate addition must 
be performed. The carry propagate adder leads to an increase area and latency for 
the conversion, which leads to an increase area and latency for the entire division. 

A method for removing the carry propagate addition in the conversion 
process has been proposed by Ercegovac and Lang [27]. This method uses to 
strings A[j] and B[j], one expecting positive or zero quotient digits, while the other 
expecting negative digits. 
The resulted quotient will have the foilowing expression [26][27]: 

QV] = 

A[j-l]^qU]*r-j,q[J]>0 

A[J-l],q[j] = 0 (4.13) 

S [ 7 - l ] + ( r - | Q [ 7 ] | ) T - A Q [ j ] < 0 
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In order to obtain this expression for the quotient result, the A[j] and B[j] 
must be equal to: 

A[j] = QV] 
B[j] = A[j]-r-

The iniţial value of the >A[7]and B[j] strings are: 

(4.14) 

^[1] = 

B[l] = 

+qi*r >0 

> 0 

+(c7i-l)*r-^c7i >0 

-(|c7i| + l )*r-^c7i 

(4.15) 

The recurrence for the two strings is given by the foilowing relation 
[26][27]: 

A[j] = 

B[j] = 

B[j-l] + (r-\qj\)*r-j,qj <0 
(4.16) 

A[j-l]^{qj-l)*r-J,qj>0 

Thus, obtaining the two strings requires oniy a concatenation of the decoded 
quotient digit at the end in each iteration. In this way the large carry propagate 
adder is thus avoided, which leads to smaller latency and area. The onIy thing 
needed to be computed is the ( r - q ^ ) difference, which requires a small carry 

propagate adder. For example, for radix 2, there is no need for such an adder, for 
radix 4 minimally redundant a two bit carry propagate adder is needed, while for 
radix 4 maximally redundant a three bit carry propagate adder is needed. Thus, as 
the radix and the redundancy factor increases, the more complex is the conversion. 

Similar to on-fly quotient conversion is the on-fly rounding [28]. The main 
difference is represented by employing another string. This new string is used due 
to the fact that - l ulp subtraction is needed when the final remainder is negative. 

By these means, both the conversion of the quotient and the rounding in 
case of floating point operation is convenient to perform for digit-recurrence 
algorithm, which represents an advantage of this type of algorithms. 

4 . 4 . 2 . 2 Multiplicative Methods 

Multiplicative methods imply using a multiplication as core operation, uniike 
the digit-recurrence methods which are based on addition/subtraction. A wide range 
of such algorithms, from which two categories are more important: Newton-
Raphson algorithm and series expansion (or Goidschmidt) algorithms [26][60]. 

Newton-Raphson multiplicative algorithm for performing division is based on 
the Newton's method to approximate a root of the equation f{x) = O using the 
foilowing iteration [59]: 
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If we considered the function f ( x ) = ̂ - D which has the rootx = -^, it is 

possible to find the result of the division q = by employing the foilowing 

iteration[59]: 

Xi,^ = X i ( l - 2 D X i ) (4.18) 

The series expansion method relies on determining a string of numbersX, , 
so the foilowing relation to hold [59]: 

^ ^ ^ (4.19) 
=> Divident * Xi* X2* X p q 

Having in mind that the divisorD E [1 ,2) , it is possible to represent the 

divisor as D = 1 + f , where e e [0 ,1) . In this case, the foilowing string is considered: 

Xq = X j + (4.20) 

Therefore: 

D • Xo * * X2... * Xp = (1 + ^)(1 - ^)(1 + + + ) ^ 

= 1 ( 4 . 2 1 ) 
Divident * Xq » X^ * X2... * Xy^ q 

While the X, string can be computed using the foilowing recursion: 

= 2 - D » X O * X I . . . * X / ( 4 . 2 2 ) 

Therefore, if we consider Yj = D*Xq • X i . . . * X / t h e algorithm relies on the foilowing 
recursions: 

( 4 . 2 3 ) 

The two multiplication based division algorithnn are very similar, due to the 
foilowing reasons [59][60]: 

• Both require two floating point multiplications and one subtraction 
• Both have a quadratic convergence ^ 
• Both require an iniţial estimation, which is usually implemented as a table 

look-up; the number of performed steps depends heavily on this estimation 
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The main difference between the two multiplicative division algorithms is 
that the two floating point multiplications required in Newton-Raphson are 
dependent, while in the series expansion algorithm these two floating point 
algorithms are independent [60]. Therefore, the second algorithm may present a 
higher performance due to the possibility of pipelining the two multiplications [92]. 

In terms of required hardware, both algorithm rely on a slight modification 
of other floating point units, such as the floating point multiplier of the floating point 
multiply-add fused. Usually, this modiflcations increase slightiy the latency of these 
floating point units, mainly due to the required multiplexers used in the criticai path 
[26]. Another major disadvantage is represented by the rounding operation, which 
requires several more iterations and the computation of the remainder using a 
floating point multiplication and a floating point subtraction. 

4 . 4 . 2 . 3 Comparison between Digit Recurrence and Multiplicative 
Methods 

In Table 4.3 a comparison between the two main classes of algorithms for 
floating point division is performed. The comparisons are made regarding 
convergence times, rounding and remainder computation and hardware 
requirements. 

Table 4.3 - Comparison between Two Main Classes of Division Algorithm 

Convergence Rounding Hardware 
Requirements 

Multiplicative 
Methods Quadratic 

Diflicult 
Requires floating point 

multiplication and' 
subtraction 

Floating point 
multipliers or floating 

point MAF 

Digit Recurrence 
Division Linear 

Easy 
Remainder is obtained 

at the end of the 
iterations 

Rounding is performed 
on-fly 

Dedicated divider 
stages 

As presented in [92], 11 out 13 processor designs use digit recurrence 
algorithms. The vast majority of the digit recurrence algorithm implemented for 
division comes as a result that when implementing floating point division as shared 
units with other floating point operations (floating point multipliers and floating 
point multiply-add fused) a performance degradation of about 40% comes 
compared to the case when division is performed as a dedicated floating point unit 
using digit recurrence algorithms, as showed by Oberman based on an analysis 
made on SPEC FPU benchmarks [70][69]. The conclusion was expressed by 
Ercegovac and Lang, that for a dedicated floating point division unit (with no 
hardware sharing with other floating point units) the best choices are represented 
by digit-recurrence [26]. However, when the division is not implemented as a 
specific dedicated unit and hardware sharing with other floating point units is 
considered, the multiplying methods (which share the floating point multiply-add 
fused or the floating point multiplier) are the preferred ones. 
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4.5 Floating Point Divide-Add Fused 

4 .5 .1 Basic Algorithm and Architecture 

In order to perform a floating point divide-add fused between three floating 

point numbers Given three floating point numbers, F I = (-1)^^ * * l . M l , 

= = the divide-add fused 

operation FI + involves the foilowing steps [7][76] : 

1. Subtraction of division exponents {E2-E3-hbias) and the subtraction 
from the result of the addition exponent (El-bias). In this way, the result 
exponent can be determined (max {E2-E3+bias, El-bias)) and the amount 
for the alignment shifting for the addition operand. 

2. Align the addition mantissa ( l . M l ) based on the exponents difference 
obtained in step 1. 

3. Mantissa division of the division operands (1.M2 and 1.M3). 

4. Addition of the aligned mantissa (the aligned addend with the quotient). 

5. Result compiementation. 

6. Leading zero detection. 

7. Normaiization of the result mantissa in case of overflow or in case of 
leading zeros. 

8. Rounding (for this operation the remainder is necessary) 

The proposed divide-add fused algorithm is similar to floating point multiply-
add fused algorithms [46][56][57]. Steps 1 and 2 (exponents addition and 
subtraction foilowed by addend's mantissa alignment), respectively 3 (mantissas' 
division) are done in parallel, while the other steps are performed sequentially. 
Furthermore, as in floating point addition and floating point multiply-add fused, the 
leading zero detection is replaced by a leading zero prediction which is done in 
parallel with the addition. 

The overall architecture is depicted in Fig. 4.12. The floating point divide-
add fused structure in its mantissa computation path contains the foilowing blocks: 
addend compiementation (in case of an effective subtraction), alignment shifter, the 
division module (which will have as results the quotient and the remainder), the 
mantissa adder (which works in parallel with the leading zero predictor), the 
normaiization left shifter and the rounding unit. 

This structure is very similar to the one of the floating point multiply-add 
fused [46][55], the major difference being that a divider is placed instead of a 
multiplication block. Furthermore, because the result of the division does not come 
in a convenient redundant form (such as the carry-save form which is the typical 
result of the parţial products reduction tree of the tree multipliers), the 3:2 carry 
save adder, which is placed before the mantissa adder, is not required. 
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Exponents l . M l 1.M2 1.M3 

Mantissa Result 
Figure 4.11 - Overall Architecture of the Mantissa Data Path of a Floating Point Divide-Add 

Fused [7][76] 

The biggest influence in both the performance and the area overhead in the 
proposed scheme is represented by the number of quotient bits needed. The 
number of quotient bits influences the foilowing modules: 

• The latency/area of the divider; greater number of quotient bits means 
greater division latency, as the digit-recurrence division has a linear 
complexity with the number of quotient digits 

• The alignment shift amount; the number of logic levels if the barrel right 
shifter used for alignment is influenced by the number of quotient bits 

• The mantissa adder size 

• The normalization left shifter 

Therefore, a very analysis must be performed in order to use the minimum number 
of quotient bits. However, this number has to be high enough in order to attain a 
reasonable precision for the operation. 

4 . 5 . 3 Nunnber of Required Quotient Bits 

The number of quotient bits represents the main issue-in the design of the 
floating point divide-add fused, because it affects both the performance of the unit 
and the area overhead. However, the number of bits has to be large enough in 
order to make possible a correct IEEE rounding. 
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In order to determine the number of quotient bits needed we will consider 
different cases, depending on the difference between exponents (d - relative to the 
number of bits in the mantissa m) and the effective operation which will be 
executed (addition or subtraction) [7]. 

Case 1. d >m +3 
This case corresponds to the one presented in Fig. 4.13 a. The result 

significant will be equal to the addend (or incremented addend in case of rounding 
towards infinity). The maximum needed left shift of the addend is equal tom + S . For 
rounding towards nearest even, two zero bits have to be inserted (for the round and 
guard digits) - similar to the floating point multiply-add fused [46]. The sticky bit 
corresponds to the condition quotient different to zero (which is always true), thus 
the sticky bit is always one in this case. For rounding towards zero (truncation), no 
zeros have to be inserted, the result being equal to the addend. In case of rounding 
for infinity, no zeros have to be inserted and the result is equal to the incremented 
addend, as the sticky bit is always one (for rounding towards zero and infinity the 
condition d>m + 3 is transformed intod>rn + l ) Therefore, for this case, we don't 
need any quotient bits. 

Case IL l<d <m +3 
This second case corresponds to the case when the addend must be left-

shifted for alignment and the addition/subtraction of the quotient must be 
performed (Fig 4.13.b). In this case, in case of an effective subtraction the 
maximum number of leading zeros is one (as in the case of floating point addition 
when the exponents' difference is greater than one [31]). As in floating point digit • 
recurrence division, the remainder will be used for the computation of the sticky bit. 
The number of quotient digits needed in this case depends on the rounding mode 
and is: 

• m - d + 3for rounding towards nearest even {m-d + 2 in order to align the 
quotient and two quotient digits for the round and guard bit, in case of no 
cancellation and no overflow, m-d + l in case of overflow and m - d + 3in 
case of leading zero) 

• m - d +1 for rounding towards zero (truncation) 
• m - d -h 1 for rounding towards infinity 

Case III. l<d<-2 
In this case also the addend must be added to the obtained quotient (Fig. 

3). The main feature of this case is that in case of an effective subtraction, a 
massive cancellation of the result can occur, thus, leading to a large number of 
leading zeros (this case is similar to the CLOSE path in double path adders [31]). 
Uniike the CLOSE path in the double path adders (which occurs when the exponent 
difference is - l , O or 1), in the case of floating point divide-add fused also the case 
of is considered because the most significant bit of the quotient can be equal to zero 
(un-normalized quotient - Fig. 4.13.C). The number of quotient digits needed in this 
case depends on the amount of the leading zeros. The maximum number of leading 
zeros, considering oniy the addend and the most significant part of the quotient, is 
equal tom (the case when the addend is equal to the most significant part of the 
quotient), Furthermore, after the most significant m positions of the quotient, the 
next bits of the quotient can be equal to zero (a series of /c zeros). In this case, the 
number of quotient bits needed, if the rounding mode is rounding towards nearest 
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even, is equal to m + Zc + m + s (m + l - leading zeros resulted after the subtraction, 
k- the length of the series of zero quotient bits, m - the required length for 
mantissa, 2 - guard and round bits for rounding towards nearest even). For every 
rounding mode, the remainder is used for the computation of the sticky bit, as in 
floating point division [28]. 
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Flgure 4.12 - The Four Cases for Divide-Add Fused a) d >m+ 3 b) l<d < m + 3 c) 
1 < d < -2 d) d <-2 (in this trivial example m=5) 

Case IV. d<-2 
In this case the addend is shifted to the right compared to the quotient (Fig 

4.13.d). Also, in this case, the maximum number of leading zeros is 1 (this case is 
similar to the FAR path in the double path adder). The truncated result is given by 
the most significant m - l b i t s of the addition of the result in case of an overflow, 
mbits for no overflow and no leading zero, and m + l bits for the leading zero case. 
For rounding towards nearest even, two more bits are needed, while for rounding 
towards zero and rounding towards infinity there is no need for additional bits. The 
rest of the addition result bits are used for the sticky bit computation. In this case, 
the number of the quotient bits is equal tom + |cy|-i, for overflow, m + \d\, when no 
overflow and no leading zero occurs, and /r? + |d| +1 when the leading zero occurs. 

As it can be observed from this analysis, the third ănd the fourth case 
represent problematic cases, due to the high number of quotients bits required. 
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4 . 5 . 3 Implementa t ions 

As it was presented in the previous section, the number of quotient digits 
can vary from case to case. In cases I I I and IV, the number of required quotient 
digits can be very high. This will lead to lower performances, as the latency of the 
division will increase, the mantissa carry-propagate adder will be larger and the two 
shifters will have an increased number of lievels. Better performance can be 
obtained, but with a loss in precision as penalty. Several implementations are 
presented in this section, the evaluation of the performance, cost and precision 
being evaluated in the next section. 

4 . 5 . 3 . 1 Pro-Accuracy Implennentat ion 

The first proposed implementation uses a number of2n7 +3 quotient bits. 
2m + 3 is the minimum number of quotient bits for which in the third case in the 
case of an effective subtraction, there is no loss in precision when the most 
significant bits of the quotient are equal to the addend and the first quotient bit 
after the result is one. This proposed floating point divide-add fused resembles with 
a floating point multiply-add fused [46] [55] . The alignment shifter, the adder, 
leading zero predictor, the normalization shifter and the rounding unit has the same 
size as in the case of a basic floating point multiply-add fused - 3m + 5. 
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Figure 4.13 - The Pro-Accuracy Architecture a)Divider Unfolded b)Sequentlal Generation of 

Quotient Bits (m=53 - IEEE double precision format) 

The proposed structure is presented Fig 4.14. The first proposed structure 
(Fig. 5.3-a) presents an unfolded divide unit, which is formed from 
p= successive digit recurrence blocks, where r = 2^is the working radix [64]. 

This structure presents a high throughput, but the area overhead is considerable 
high. In the second proposed architecture (Fig 4.14-b) the quotient bits are 
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obtained sequentially. This architecture presents a lower cost than the first 
architecture, but has a lower throughput. 

Regarding the obtained accuracy, the problematic cases do appear for the 
third and the fourth case presented in the previous section. Thus, in the third case, 
the problems appear in the event of an effective subtraction, when the massive 
cancellation can appear and the number of leading zeros is greater than m-^i (the 
last favorable case is represented by an un-normalized quotient equal in its most 
significant bits to the addend - which is shifted by one position to the right 
compared to the quotient). This corresponds to the case when the most significant 
part formed of m + l bits is equal to the addend, while a series of k zero bits in the 
quotient foilows after the most significant leading m bits. In this case, the proposed 
implementation will consider the foilowing rounding rules (which are not always 
IEEE compliant): 

• If the remainder is equal to zero, then the result is exact. The obtained 
result will be formed by the least significant 2/7?-m-/c + 3 bits (which follow 
after the leading zero) foilowed by zeros until the completion of the 
mantissa. 

• If the remainder is different than zero, then the result will not be IEEE 
compliant. For rounding to zero (truncation) the result will be formed by the 
least significant 2m-m-/c + 2 bits (which follow after the leading zeros) 
foilowed by zeros until the completion of the mantissa. Rounding towards 
nearest even will be considered as a truncation (as the considered guard bit 
and round bit will be equal to zero). In the case of rounding towards infinity, 
a plus 1 addition is performed to the least significant quotient bit (the sticky 
bit is indicated by the non-zero remainder). 

Therefore, the maximum number of leading zero for which the result is correct 
(IEEE rounded), in the event of a non-zero remainder, is equal tom. For this case, 
all four IEEE rounding modes can be performed correctiy (mbits remain for the 
mantissa, 1 bit is for guard bit, 1 bit for the round bit, while the remainder is 
determine the sticky bit [28]). 

In the fourth case of division, loss in precision does appear when the addend 
is right-shifted compared to the quotient more thanm + lpositions. In this fourth 
case, the most significant mbits represent the non-rounded result, foilowed by two 
bits (the guard and round bits in case of rounding towards nearest even). The sticky 
will be computed from the next m bits, the addend bits which were not added, and 
the remainder. In case of a non-zero remainder, there is a probability of a possible 
carry one which wouid result from the non-calculated quotient bits added to the 
least significant bits of the addend. This carry couid propagate to the most 
significant bits of the result. Therefore, the result may not be correct. If for rounding 
towards zero (truncation) and rounding towards nearest even, this carry was not 
considered, for rounding towards infinity this carry will be considered and will be 
added to the lowest significant bit of the first m bits of the result. Furthermore, a 
plus one addition is also performed if the sticky bit is not equal to zero. 

4 . 5 . 3 . 2 Pro-Accuracy Implementation 

The second proposed implementation uses a number ofm + 3 quotient bits. 
This number of quotient bits is the same as in a standard floating point division 

BUPT



116 Floating Point Divide-Add Fused for Interval Arithmetic - 4 

[69]. The alignment shifter, the adder, leading zero predictor, the normalization 
shifter and the rounding unit have a much smaller size compared to the previous 
implennentation - 2m + 5. AII the features of the floating point divide-add fused 
presented in the previous section remain to this implementation, but their size is 
smaller, which n îeans that lower latency and lower cost is associated to this 
proposed floating point divide-add fused. 
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The proposed structure is presented Fig 4.15. As in the case of the floating 
point divide-add fused, two architectures were designed: an architecture which has 
an unfolded divider (a) and architecture which presents a sequential divider (b). 

Regarding the accuracy, this floating point divide-add fused presents more 
problematic cases (when it cannot be performed an IEEE compliant rounding 
operation) compare to the one presented in 5.4.1. In the third case, in the event of 
effective subtraction and a massive cancellation of the result, the loss in precision is 
inevitable. The three types of rounding are performed as in the previous 
implementation when the number of leading zeros where greater thanm + l . Loss 
precision is also inevitable for the fourth case. Also, in this case, the rounding is 
performed as in the previous implementation, when the addend is right-shifted with 
more than m + 2 positions. 

4 . 5 . 4 Variable Latency 

As presented in Section 4.5.2, the number of quotient bits varies from case 
to case. Thus, in the first case no quotient bits are needed, in the second case a 
rather small number of quotient bits are needed, in the third case, a large number 
of quotient bits are needed in case of an effective subtraction and massive 
cancellation, while in the fourth case also a large number of quotient bits is 
required. Therefore, devisîng a variable latency wouid ensure a higher performance 
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when small number of quotient bits is required and a high accuracy when a large 
number of bits are required. 

The variable latency floating point divide-add fused is best suited to the 
sequential floating point divide-add fused depicted in Fig 4.14.-b and Fig 4.15-b. 
While in these designs, the feedback path of the division unit is used for generation 
of the maximum number of quotient bits, in the variable latency design, the 
feedback path of the division unit is used oniy for a limited number of times, 
depending on the case. Considering the design in Fig 4.14 - b, the feedback path of 
divider is used as foilows: 

• One time for the Case I (although no quotient digit is required) 

P = for the Case II where q is the number of required quotient bits, 

r = 2^ \s the radix and f the number of unfolded stages, 

P = 

P = 

d <-(m + 1) 

for the Case I I I and effective addition 

for the Case IV and d >-(m +1) 

for Case I I I and effective subtraction and Case IV and 

The decision for the number of division loops is taken based on the effective 
addition and the exponents' operation result. In the Case IV, more quotient bits can 
be generated than the maximum, but this leads to an increase carry propagate 
adder. In Case I I I , effective subtraction, fewer quotient digits may be needed, in the 
event of a small number of leading zeros. However, the number of leading zeros is 
determined by the leading zero predictor, after the quotient bits have been 
generated [26]. The variable latency algorithm does not require changes to the 
divide-add fused unit, but onIy to the feedback control block. 

4 . 5 . 5 Interval Divide-Add Fused 

By implementing rounding towards infinity and rounding towards zero 
(which can be easily extended to rounding towards negative infinity and rounding 
towards positive infinity), interval arithmetic operations can be performed on the 
proposed floating point divide-add fused. Furthermore, in the event of an inexact 
result (due to few bits in the quotient), the performed rounding considered for both 
rounding towards zero and rounding towards infinity will covered the less favorable 
cases. Therefore, the principles of the interval arithmetic (the obtained result to 
contain the correct result) were respected [47]. The two operations are performed 
according to the Table 4.4. 
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Table 4.4 - The DIvide-Add Fused of Three IntervalsX±//Z , for Og Z [47] 

Operation [^lo'^hi] Result 

Addition Ylo>0 Zio>0 

Addition Ylo>0 Zhi<0 

Addition Yhi < 0 Z,o>0 

Addition YN < 0 Zhi < 0 

Addition >'/o < 0 < V7,/ Zio>0 

Addition Yio<0<Y^I Zhi < 0 

Subtraction Yio>0 Zio>0 

Subtraction Ylo>0 Zhi < 0 

Subtraction Yhi < 0 Z,o>0 ^lo-Yz^r'^i-Yz,^ 
Subtraction Yhi < 0 Zhi<0 

Subtraction V/o < 0 < Yf,i Zio>0 

Subtraction Ylo<0<Yf,i Zhi<0 

As it can be observed from the above table, interval divide-add fused 
requires oniy two floating point operations. This is due to the fact that both interval 
addition/subtraction and interval division require onIy two floating point operations. 
The two operations can be performed either sequentially using onIy one floating 
point divide-add fused, either in parallel, using two such units. 

4.6 Evaluation 

4 .6 .1 Accuracy 

In order to determine the accuracy of the two proposed designs, a round-off 
error analysis is performed. The round-off error analysis will consider onIy rounding 
towards nearest even, however, it can be easily extended to the other two rounding 
modes (rounding towards infinity and rounding towards zero). These round-off 
errors will be compared to the round-off error introduced by the rounding towards 
nearest even. This method was appiied to the analysis of the round-off errors 
produced by different on-fly rounding algorithms by Ercegovac and Lang in [28]. ^ 
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Considering the size of mantissa to be m (including the hidden one), the 
round-off error introduced by a correct rounding towards nearest even is equal to 

[28]. 

Using the cases presented in Section 4.5.3, for the pro-accuracy 
implementation, the round-off error is equal to: 

• Case I 
In this case the rounding is performed correctiy; therefore the rounding 
error is equal to the one of the rounding towards nearest even: ^ * . 

• Case II 
Also in this particular case the rounding is performed correctiy; therefore 
the rounding error is equal to the one of the rounding towards nearest 
even: 

• Case I I I 
In this case, the problem of leading zeros can appear. When the number of 
leading zeros is smaller thenm, then there are a sufficient number of bits in 
order to perform a correct rounding. When the number of leading zero is 
between m and m-\-3, an incorrect rounding bits (sticky, round and guard) 

computation does appear. In this case the rounding error is equal to , 
because a truncation may be performed. When the number of leading zeros 
is greater than m-\-3, the result will consist of 2rn + 3- /b i t s of the 
subtraction result in the most significant positions (where / is the number 
of leading zeros), while the rest will be equal to 0. The rounding error in this 
case will be equal to . If l>2m + 3 than the result will be 
equal to zero. 

• Case IV 
In this case two situations do appear. In the first situation, the addend is 
rightshifted by maximum m + 3 positions compared to the quotient. In this 
case, the computation of the rounding bits will be correct and the result will 
be correctiy rounded. In the second case, the addend is rightshifted more 
than m + 3 positions compared to the quotient. In the worst case, a carry 
propagation to the guard and round bit or even to the most significant m 
bits can appear. In this case the result will not be rounded correctiy and the 
maximum error is (similar to the error of a truncation). 

Regarding the pro-performance implementation, the analysis will be performed in 
the same way: 

• Case I 
In this case the rounding is performed correctiy; therefore the rounding 
error is equal to the one of the rounding towards nearest even: • . 

• Case II 

BUPT



134 Floating Point Divide-Add Fused for Interval Arithmetic - 4 

Also in this particular case the rounding is perfornned correctiy; therefore 
the rounding error is equal to the one of the rounding towards nearest 

• Case II I 
In this case, the problem of leading zeros can appear. When the number of 
leading zeros is equal to zero, then there are a sufficient number of bits in 
order to perform a correct rounding. When the number of leading zero is 
between 1 and 3, an incorrect rounding bits (sticky, round and guard) 
computation may appear. In this case the rounding error is equal to 
because a truncation may be performed. When the number of leading zeros 
is greater than 3, the result will consist of m + 3 - / bits of the subtraction 
result in the most significant positions (where / is the number of leading 
zeros), while the rest will be equal to 0. The rounding error in this case will 
be equal to . If / > m + 3 than the result will be equal to zero. 

• Case IV 
In this case a carry propagation to the guard and round bit or even to the 
most significant m bits can appear. Therefore, the result will not be 
rounded correctiy and the maximum error is (similar to the error of a 
truncation). 

These two implementations are compared to the accuracy obtained by perfuming 
the combined operation using a floating point divider and a floating point adder. The 
round-off error for the result of the floating point divider is equal to 

Considering the floating point addition, we obtain the foilowing cases: 
• The addend is leftshifted by at least two positions compared to the quotient. 

In this case the least significant bits of the quotient are used for the 
computation of the rounding bits (guard, round, sticky). In the worst case, 
the value of the sticky bit may not be the correct one (due to the fact that in 
the rounding operations performed in division, quotient bits which couid 
influence the value of the sticky bit were ''truncated"). Therefore, in this 
case the round-off error This case corresponds to the first two 
cases in the analysis performed for floating point divide-add fused. 

• The addend is rightshifted by at least two positions compared to the 
quotient. This case is equivalent to the fourth case in the analysis of the 
floating point divide-add fused and the round-off error is the same: . 

• The difference between exponents is O or 1. In the case of an effective 
subtraction, leading zeros may appear. The result will be comprised of the 
most significant m-Zbi ts (which were leftshifted during the normalization 
step) foilowed by zeros. The maximum round-off error in this case^is 
2l-m+/ jf / > ̂  ^ than the result will be equal to zero. 
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Table 4.5 - Maximum round-off errors for divide-add fused 

Implementation 
Max Error 
Addend 

Leftshifted 

Max Error 
Addend 

Rightshifted 

Max Error 
Leading 
Zeros 

Min leading 
zeros 

for a zero result 
FP Divider+ 

FP Adder 
2l-m 2I-/77 

/ >0 
m 

Pro-
performance 

DAF 
2l-m 

l>3 
m-\-3 

Pro-accuracy 
DAF 

, d>m 

d < m 
! > 

2m + 3 

The results of the analysis are summarized in table 4.5. The table presents 
the maximum error in case when addend Is leftshifted compared to the quotient, the 
maximum error when the addend is rightshifted compared to the quotient, 
maximum error in case of leading zeros and the minimum number of leading zeros 
for a zero result. 

The analysis shows that even for the pro-performance divide-add fused unit 
which uses the same number of quotient bits as the solution based on an adder and 
divider, an increase in accuracy is obtained. Therefore, in terms of accuracy, an 
implementation of the divide-add fused unit is favorable. 

4 . 6 . 2 Synthes i s Resul ts 

In order to obtain, two IEEE half precision divide-add fused units have been 
implemented in VHDL and synthesized using Xilinx Synthesis Tool: 

• A pro-accuracy divide-add fused with unrolled SRT stages 
• A pro-accuracy divide-add fused with one SRT stage 

These four implementations were also compared to a floating point divider 
obtained using unrolled 14 SRT radix-2 stages and a AMD double path floating point 
adder. 

When implementing the floating point divider and the floating point divide-
add fused units, the foilowing modules were used: 

• The implemented divider stage was a SRT radix-2, used in the 167 MHz Sun 
UltraSparc processor [77]. The reason for implementation was its simplicity. 
However, any other type of SRT division stage can also be used, depending 
on the desired performance, cost and power consumption (Fig 4. 15). 

• The carry propagate adders used were implemented using Bret-Kung carry 
lookahead computaţional chains [15]. 

• The alignment right shifter and the normalization left shifter were 
implemented as barrel shifters. 

Regarding the obtained cost, the results are presented in table 4.6 (for the 
unfolded and one SRT stage dividers). Fig 4.16 presents a comparison between the 
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two implemented divide-add fused versus divider plus a double path adder (both 
unfolded and one SRT stage). 

Table 4.6 - Cost of Proposed 
DIvide-Add Fused Architectures (in LUT-4) 

Architecture Divider 
Unrolled 

Pro-Accuracy 1904 
Pro-Performance 862 

FP Divider+ 
AMD FP Adder 

776+446 
1222 

As it can be observed from tabel 4.7 and Fig 4.16, the cost of the pro-
accuracy implementatlon using unrolled SRT stages is higher compared to an 
Implementation consisting of a floating point divider and a double path adder. 
Regarding the cost of the pro-performance implementation a decrease compared to 
the other two solutions can be observed. 

• m i m i n 

Figure 4.15 - Technology Schematic of the Used SRT Radix-2 Stage Obtained with XST 

Comparative Cost 

Pro- Pro- FPDiv+FP 
Accuracy Performance Add 

iCost 

Figure 4.16 - (Comparative Cost of the Three Implemented Designs 
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Regarding the latency as an indicator of performance, the considered 
latency was for the unrolled SRT stages designs for both the proposed divide-add 
fused implementations and the floating point division. The results are presented in 
table 4.7 and Fig 4.19. 

Table 4.7 - Latency of Proposed 
DIvide-Add Fused Architectures (in ns) 

Architecture Divider 
Unrolled 

Pro-Accuracy 112,657 
Pro-Performance 63,546 

FP Divider+ 
AMD FP Adder 

61,746+15,83 
77,576 

Latency Comparison 

iA c 

Pro-Accuracy Pro-Performance FP Div + FP Add 

I Latency 

Figure 4.19 - Comparative Latency of the Three Innplemented Designs 

Regarding the latency, the results show that the pro-performance 
implementation has a smaller latency compared to the combined floating point 
divider and floating point adder, while the pro-accuracy implementation have a 
higher latency, mainly because the number of quotient bits generated is almost 
double. However, this latency analysis does not consider the penalties imposed by 
the write back operation into the register file imposed by the storage of the floating 
point division results. 

Therefore, regarding the three considered aspects of the floating point 
division foilowed by a floating point addition/subtraction - accuracy, cost and 
latency - the implementation of a dedicated divide-add fused unit represents an 
advantage compared to using a floating point adder and a floating point divider. 
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Figure 4.17 - Technology Schematic of Mantissa Datapath for Pro-Performance DIvide-Add 
Fused Obtalned with XST 
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4.7 Summary 

This chapter is dedicated to the floating point divide-add fused unit, a 
dedicated arithmetic unit for increasing the performance of a specific interval 
arithmetic algorithm: the interval Newton's method. To the best of my knowledge, 
in this thesis is presented the first such unit. In the first section, the reasons for not 
being implemented such a dedicated hardware unit are presented, which are related 
to the fact that division foilowed by addition/subtraction is a very rare operation. 

The second section of this chapter presents the interval Newton's method. 
This represents a powerful interval algorithm for noniinear equations and systems of 
equation solving, with appiicability in a wide range of fieids of appiications. This 
method has several advantages compared to other equation solving numerical 
algorithms, such as: guaranteed convergence to the solution, quadratic 
convergence, and no solution situation indicated in the first iteration. The basic 
arithmetic operations for this method are represented by the division foilowed by 
subtraction. Therefore, for this case, a dedicated divide-add fused wouid bring 
certain advantages. 

The next two sections are dedicated to the floating point multiply-add fused 
and floating point division. Due to the fact that multiply-add fused has one of its 
operation the addition and the floating point multiplication is similar to floating point 
divisron, it is expected that the architecture of the divide-add fused unit to be 
similar to the one of the multiply-add fused. Therefore, a detailed presentation of 
the multiply-add fused is realized in the third section of this chapter. The basic 
algorithm, enhancements of this algorithm and high performance multiply-add fused 
architectures are presented. The fourth section is dedicated to the floating point 
division. An overview of the two most used division algorithm classes is realized. 
The first analyzed division algorithms class is represented by digit recurrence. These 
algorithms have as their basic operation the addition. The main design choices, such 
as radix, quotient digit set, quotient digit computation, parţial remainder 
representation or on-fly conversion and rounding, are presented. The second class 
of division algorithms analyzed is represented by the multiplicative methods, such 
as Newton-Raphson and series expansion. A comparison between these two types of 
division algorithms is realized. 

The final two sections present the proposed floating point divide-add fused 
unit. The algorithm and the according architecture of this dedicated hardware united 
are detailed. They are similar to the ones used for multiply-add fused, with several 
changes: instead of the encoding module and the parţial product reduction tree a 
digit-recurrence divider is used. The main issue in designing a floating-point divide-
add fused unit is represented by the number of quotient bits needed. A detailed 
analysis is performed. A large number of quotient bits leads to lower performance 
and higher cost, but provides a better accuracy of the result. Therefore, a tradeoff 
must be made between the desired performance and the needed accuracy. Two 
architectures are proposed, one suitable for better accuracy, while the second is 
suitable for better performance. Also, variable latency architecture can be used for 
the two proposed architectures. The last chapter presents the evaluation resuits. An 
analysis of the accuracy and comparison with an architecture composed of a division 
and addition unit is realized. Furthermore, a cost and latency analysis based on 
synthesis resuits is realized. 
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5. Conclusions 

5.1 Context and Relevance 

Interval arithmetic has been the focus of the research community for more 
than four decades. In this years, a wide range of interval appiications have been 
developed, which have proven more reliable and in some cases with higher 
performance compared to the ones based on convenţional floating point arithmetic. 
However, lack of appropriate hardware support nnade these interval algorithms and 
methods to be slow and inefficient. This thesis tackies the problem of designing 
dedicated floating point units for interval arithmetic. This way, basic incentives for 
an efficient implementation of interval algorithms have been created. 

The importance and the need for hardware units for interval arithmetic are 
proven by the last initiatives of the IEEE Standards Association - Microprocessor 
Standards Committee: 

• The first initiative is represented by the revision and the extension of the 
IEEE 754 standard for floating point arithmetic which is expected to be 
released by the end of 2008. 

• The second initiative is represented by the formation of the Work Group 
1788 for developing an IEEE standard for interval arithmetic [116]. The 
future standard - IEEE 1788 standard for interval arithmetic - is expected 
to be completed by the end of 2012. 

Three dedicated floating point unit have been designed and implemented. 
The first two are dedicated for the most frequent operations in any arithmetic 
system: addition and multiplication. This way, the basis for any interval arithmetic 
system has been laid. 

The third designed and implemented module is the floating point divide-add 
fused. This unit comes as a dedicated floating point hardware circuit for an interval 
arithmetic specific algorithm: the interval Newton's algorithm. The interval Newton's 
method represents one of the most important interval algorithms, with a wide range 
of appiications. The proposed unit comes in the context of designing more and more 
dedicated hardware for both System-on-Chip and accelerators implemented in FPGA 
based circuits [119]. 

Furthermore, all three units can be used for performing convenţional 
floating point operations. This goal represents a necessity for interval arithmetic 
units, as combined interval and convenţional floating point appiications might be 
used. Furthermore, several crucial interval operators (such as midpoint and width of 
an interval) rely on convenţional floating point arithmetic. 

5.2 Summary 

This thesis has three main chapters, each of them dedicated to the 
corresponding floating point hardware unit. 
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The first hardware arithmetic unit is dedicated to the interval addition, 
treated in Chapter 2. The first section of this chapter presents the two solutions for 
the interval addition, which are based on the usage of convenţional floating point 
adders. The foilowing subsection is dedicated to the convenţional floating point 
addition. The basic algorithm and the enhancements for this basic algorithm are 
detailed. These enhancements of the basic floating point addition algorithm 
represent the backbone of the single path floating point adder. A detailed 
presentation of the double path adder foilows. Several high performance floating 
point adders based on the double adder architecture are described, including both 
academic and commercial designs. The third section of the addition dedicated 
chapter presents then proposed addition unit, which is based on the double path 
adders. The proposed adder exploits the parallel structure of it, by trying to 
perform the two operations required for an interval addition/subtraction 
simultaneousiy. This represents a novei approach in the design of double path 
adders. In the last section of this chapter, performance and cost evaluations were 
performed for the proposed adders compared to other commercial and academic 
double path adder based solutions. These evaluations showed that the proposed 
adder presents the best cost/performance tradeoff with respect to other interval 
adders. Furthermore, the proposed adder can be used for increasing the 
performance of the convenţional addition, due to its increased throughput. 

The third chapter presents the interval multiplication. Uniike addition, 
interval multiplication represents a difficult operation. Therefore, a number of 
algorithms have been developed in order to improve the performance of this crucial 
operation. These algorithms are presented in the first section of this chapter. 
Further, an overview of the convenţional floating point multiplication is given in the 
second section. Tree multipliers are presented, different tree topologies being 
analyzed. Finally, three rounding schemes for floating point multiplication are 
presented: the Even-Seidel, Quach and Yu-Zyner. The third section of Chapter 3 is 
dedicated to the proposed interval multiplier. Algorithm for interval multiplication 
and its corresponding architecture are presented. The architecture is based on the 
dual result multiplier and two floating point comparators. The three rounding 
schemes presented in the previous section are modified for dual result multipliers. A 
new rounding scheme is proposed. In the last section, performance and cost 
estimates are realized. These estimates show an improvement in the worst case 
performance for the proposed interval multiplication architecture. Furthermore, the 
proposed rounding scheme has the lowest latency and lowest cost. 

The fourth chapter is dedicated to the floating point divide-add fused 
hardware unit. Due to the fact that divide-add fused have never been implemented 
yet, to the best of my knowledge, the first sections of this chapter presents why 
such a dedicated hardware unit has never been yet designed and the reasons for 
which in the context of interval arithmetic, such a unit may prove and advantage. 
The reasons for such a unit are related to the accelerating the interval Newton's 
method, which is presented in detail in this chapter. The foilowing sections present 
the floating point multiply-add fused units and the floating point division, which 
represent the inspiration point for such a hardware unit. The fifth section of this 
chapter is dedicated to the design and implementation of the floating point divide-
add fused unit. The algorithm and its architecture are inspired from the ones used 
for floating point multiply-add fused. The main difference is represented by the 
usage of a divider stage instead of the encoding module and the parţial product 
reduction tree. The main issues regarding the implementation of this dedicated unit 
are analyzed. These two issues are related to the number of quotient bits needed 
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and the rounding in floating point divide-add fused. An analysis of these two 
problems is performed. Last, but not least, performance and cost evaluations are 
performed. 

5.3 Contributions 

Thls section will present the contributions of this thesis linked to the three 
research directions pointed in Section 5.1. The motivations for these three directions 
have been provided in Section 1.3 of the introductory chapter. 

• Interval Addition Unit 

Regarding the most frequent operation in any arithmetic system -
addition/subtraction - the major contribution is represented by the design of a new 
adder architecture. The proposed adder architecture is based on the double path 
adder structure and exploits the parallelism of this structure, by performing the two 
floating point additions required for the interval operation. The main advantages of 
the proposed adder, as they resulted from the cost and performance estimates, are: 

- Higher performance compared to the interval adder based on a single 
double path adder 

- Lower cost compared to the interval adder based on two floating point 
adders 

- High throughput compared to other interval adder architectures 
- Best cost/performance cost tradeoff when dealing with high number of 

interval additions. 

The limitations of the proposed interval adder are: 
- Higher cost compared to the interval adder based on a single double path 

adder 
- Lower performance compared to the interval adder based on two floating 

point adder 
- Low performance when dealing with isolated additions, as the proposed 

adder's main characteristic is represented by the throughput 

The proposed adder can also be used for increasing the throughput of the 
convenţional floating point addition, due to the parallel structure of it. Thus, as 
estimates results show, the proposed adder present the highest performance and 
the highest cots-performance tradeoff when dealing with series of large numbers of 
additions. Due to higher latency compared to other floating point addition 
implementations, the proposed adder is not suitable for single additions. 

• Interval Multiplication Unit 

Regarding the interval multiplication, the foilowing contributions have been 
proposed in this thesis: 

- Interval multiplication algorithm based on the pipelined intei^al 
multiplication proposed by Kulisch and the eight prx)duct multiplication 
algorithm 

- Novei interval multiplier architecture based on a dual result multiplier and 
two floating point comparators 
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- Dual result multiplier based on tree based floating point multipliers 
- Novei addition and rounding units for dual result multipliers based on the 

Quach rounding scheme and on the Yu-Zyner rounding schemes for 
convenţional floating point multiplication 

- Novei addition and rounding units for dual result multiplier for usage 
exclusively for interval arithmetic 

The advantages of the proposed interval multiplication unit based on the dual result 
multiplier are: 

- Higher worst case performance compared to other interval multiplication 
algorithm 

- Increased functionality, as the proposed unit can also be used for 
convenţional floating point multiplication and interval set operations based 
on comparisons 

The disadvantage of the proposed unit relies in a lower medium performance 
compared to other interval multipliers. 

Regarding the proposed addition and rounding multiplication scheme for interval 
arithmetic, the main advantages are lower latency and lower cost compared to the 
rounding units based on Quach rounding scheme and on Yu-Zyner rounding 
scheme. 

• Floating Point Divide-Add Fused 

The floating point divide-add fused has never been implemented, to the best of my 
knowledge. Therefore, a motivation had to be provided for implementing this ' 
dedicated combined operations unit. This motivation has been provided by the one 
of the most powerful interval arithmetic algorithms: interval Newton's method. 
Thus, the contributions regarding the floating point divide-add fused are: 

- Algorithm for floating point divide-add fused inspired from the multiply-add 
fused algorithm 

- Architecture for divide-add fused inspired from the basic multiply-add fused 
architecture based on digit-recurrence dividers 

- A detailed analysis of the number of quotient bits required for performing 
the divide-add fused architecture 

- Variable latency architecture for divide-add fused units 

This way, a specific divide-add fused floating point unit for interval Newton's method 
have been proposed and implemented. Therefore, performance and precision 
increases for one of the most powerful interval arithmetic algorithm has been 
provided. 

5.4 Future Work 

This thesis has addressed immediate problems regarding the design of the 
floating point hardware units for interval arithmetic. However, as the future IEEE 
1788 standard for interval arithmetic will be developed, several modification of the 
proposed design will have to be done in order to be fully compliant to the standard. 
The proposed units didn't address specific problems closely related to an arithmetic 
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standards such as the special quantities (such as infinity, zero, NaN used in the IEEE 
754) or the exceptions and their handiing. 

The second research direction is represented by the combining the divide-
add fused architectures with other division algorithms classes, such as the 
multiplication methods (Newton-Raphson, series expansion) and very high radix 
algorithms. This way, a wide variety of divide-add fused floating point units with 
different performance/cost/power characteristics shouid be provided. Furthermore, 
higher performance divide-add fused architectures inspired from multiply-add fused 
structure are considered for future implementations. 

The third research direction will be the design of interval function evaluators 
in order to further increase the performance of the interval Newton's method and 
other interval algorithms which make extensive use of function evaluators. Thus, 
hardware implementations for functions such exponentiation, logarithmic, square 
root or function describing surfaces, curves, etc. This way, dedicated hardware 
accelerators for specific appiications which used interval arithmetic algorithms, such 
as the computer graphics, will be considered for implementation. 
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Appendix A 
VHDL Source Code and Technology Schematics for 

ISCAS'85 Benchmark Circuits 

In order to increase the confidence of the obtained synthesis results, five ISCAS'85 
benchmark circuits were modeled in VHDL and synthesized with Xilinx Synthesis 
Tool (XST) for Xilinx Virtex-4 FPGA. These circuits are described in [39], while their 
Verilog HDL source codes can be found at 
http://www.eecs.umich.edu/~jhayes/iscas.restore/benchmark.html [118]. 

Al. C17 Benchmark Circuit 

entity C17 is 
Port ( in_gl : in STD_LOGIC; 

in_g2 : in STD_LOGIC; 
in_g3 : in STD_LOGIC; 
in_g4 : in STD_LOGIC; 
in_g5 : in STD_LOGIC; 
out_gl : out STD.LOGIC; 
out_g2 : out STD_LOGIC); 

end C17; 

architecture Behavioral of C17 is 
signal gll,gl2,g21,g22:stdJogic; 
begin 

Nandl_l 
Nandl_2 
Nand2_l 
Nand2_2 
Nand3_l 
Nand3_2 

end Behavioral; 

g l l < = in_gl nand in_g3; 
gl2< = in_g3 nand in_g4; 
g21< = in_g2 nand gl2; 
g22< = in_g5 nand gl2; 
out_gl<=gll nand g21; 
out_g2<=g21 nand g22; 

LUT4 EE4C 

h- -

t ' t ' LUT4_5F4C 

-[oIIl> 

rii> 
Figure A l - Technology Schematic for C17 Obtained wlth XST 
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A2. C432 Benchmark Circuit 

entity C432 is 
Port ( e : in STD_LOGIC_VECTOR (8 downto 0); 

a : in STD_LOGIC_VECTOR (8 downto 0); 
b : in STD_LOGIC_VECTOR (8 downto 0); 
c : in STD_LOGIC_VECTOR (8 downto 0); 
pa : out STD_LOGIC; 
pb : out STD_LOGIC; 
pc : out STD_LOGIC; 
Chan : out STD_LOGIC_VECTOR (3 downto 0)) ; 

end C432; 

architecture Struct of C432 is 
component m l 

port (a:in std_logic_vector (8 downto 0); 
e:in stdJogic_vector (8 downto 0); 
pa:out std_logic; 
x l :out stdJogic_vector (8 downto 0)); 

end component; 
component m2 

port ( x l : in STD_LOGIC_VECTOR (8 downto 0); 
b : in STD_LOGIC_VECTOR (8 downto 0); 
e : in STD_LOGIC_VECTOR (8 downto 0); 
pb : out STD_LOGIC; 
x2 : out STD_LOGIC_VECTOR (8 downto 0)); 

end component; 
component m3 

Port ( x l : in STD_LOGIC_VECTOR (8 downto 0); 
x2 : in STD_LOGIC_VECTOR (8 downto 0); 
c : in STD_LOGIC_VECTOR (8 downto 0); 
e : in STD_LOGIC_VECTOR (8 downto 0); 
pc : out STD_LOGIC); 

end component; 
component m4 

Port ( e : in STD_LOGIC_VECTOR (8 downto 0); 
a : in STD_LOGIC_VECTOR (8 downto 0); 
pa : in STD_LOGIC; 
b : in STD_LOGIC_VECTOR (8 downto 0); 
pb : in STD_LOGIC; 
c : in STD_LOGIC_VECTOR (8 downto 0); 
pc : in STD_LOGIC; 
i : out STD_LOGIC_VECTOR (8 downto 0)); 

end component; 
component m5 

Port ( i : in STD_LOGIC_VECTOR (8 downto 0); 
chan : out STD_LOGIC_VECTOR (3 downto 0)); 

end component; 

signal pa jnt , pbJnt,pc_int:stdJogic; 
signal xl,x2,i:stdJoglc_vector (8 downto 0); 
begin 

Mljogic : m l port map (a, e, pa jnt , x l ) ; 
M2Jogic: m2 port map ( x l , b, e, pbjnt , x2); 
M3Jogic: m3 port map ( x l , x2, c, e, pc jnt ) ; 
M4Jogic: m4 port mşp (e, a, pa jnt , b, pbJnt, c, pcJnt, i); 
MSJogic: m5 port map (i, chan); 
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pa<=pajnt; 
pb< = pbjnt ; 
pc<=pcjnt; 

end Struct; 

entity ml is 
Port ( a : in STD_LOGIC_VECTOR (8 downto 0); 

e : in STD_LOGIC_VECTOR (8 downto 0); 
pa : out STD_LOGIC; 
x l : out STD_LOGIC_VECTOR (8 downto 0)); 

end ml ; 

architecture Behavioral of ml is 
signal gl:std_logic_vector (8 downto 0); 
signal pa_gen:stdJogic; 
begin 

Gl jogic : 
for i in 8 downto O generate 

gl(i)<= (not a(i)) nand e(i); 
end generate; 

PAJogic: 
pa_gen<=not (gl(0) and g l ( l ) and gl(2) and gl(3) and gl(4) 

and gl(5) and gl(6) and gl(7) and gl(8)) ; 

pa<=pa_gen; 

X l jog ic : 
for i in 8 downto O generate 

x l ( i )< = pa_gen xorgl ( i ) ; 
end generate; 

end Behavioral; 
entity m2 is 

Port ( x l : in STD_LOGIC_VECTOR (8 downto 0); 
b : in STD_LOGIC_VECTOR (8 downto 0); 
e : in STD_LOGIC_VECTOR (8 downto 0); 
pb : out STD.LOGIC; 
x2 : out STD_LOGIC_VECTOR (8 downto 0)); 

end m2; 
architecture Behavioral of m2 is 
signal g l , g2: stdJogic_vector(8 downto 0); 
signal pb_gen: stdjogic; 
begin 

GlG2_logic: 
for i in 8 downto O generate 

gl(l)<=(not e(i)) nor b(i); 
g2(i)<=gl(i) nand x l ( i ) ; 

end generate; 
PBJogic: 

pb_gen<= not (g2(0) and g2( l ) and g2(2) 
and g2(3) and g2(4) and g2(5) 
and g2(6) and g2(7) and g2(8)); 

pb<=pb_gen; 
x2Jogic: 
for i in O to 8 generate 

x2(i)<=pb_gen xor g2(i); 
end generate; 

end Behavioral; 
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entity m3 is 
Port ( x l : in STD_LOGIC_VECTOR (8 downto 0); 

x2 : in STD_LOGIC_VECTOR (8 downto 0); 
c : in STD_LOGIC_VECTOR (8 downto 0); 
e : in STD_LOGIC_VECTOR (8 downto 0); 
pc : out STD_LOGIC); 

end m3; 

architecture Behavioral of m3 is 
signal gl,rc:std_logic_vector(8 downto 0); 
begin 

g l jogic : 
for i in 8 downto O generate 

gl(i)<= (not e(i)) norc(i); 
end generate; 
RCJogic: 
for i in 8 downto O generate 

rc(i)<= not (gl( i ) and x l ( i ) and x2(i)) ; 
end generate; 
PC_logic; 

pc<=not (rc(0) and rc( l ) and rc(2) and rc(3) 
and rc(4) and rc(5) and rc(6) and rc(7) 
and rc(8)); 

end Behavioral; 

entity m4 is 
Port ( e : in STD_LOGIC_VECTOR (8 downto 0); 

a : in STD_LOGIC_VECTOR (8 downto 0); 
pa : in STD_LOGIC; 
b : in STD_LOGIC_VECTOR (8 downto 0); 
pb : in STD_LOGIC; 
c : in STD_LOGIC_VECTOR (8 downto 0); 
pc : in STD_LOGIC; 
i : out STD_LOGIC_VECTOR (8 downto 0)); 

end m4; 
architecture Behavioral of m4 is 
signal ga,gb,gc:stdJogic_vector(8 downto 0); 
begin 

i jogic: 
for j in 8 downto O generate 

GAJogic: gaO)<= a(j) nand pa; 
GBJogic: gbO)<= b(j) nand pb; 
GCJogic: gc(j)<= cQ) nand pc; 
I_generation: iO)<= not (e(j) and gaQ) and gbQ) and gcQ)); 

end generate; 
end Behavioral; 
entity m5 is 

Port ( i : in STD_LOGIC_VECTOR (8 downto 0); 
chan : out STD_LOGIC_VECTOR (3 downto 0)); 

end m5; 

architecture Behavioral of m5 is 
signal \7_Q, i6_5, i5_2, i6_3, i6_ l : stdjogic; 
begin 

chan3Jogic: 
i7_0<=i(7),and i(6) and 1(5) and i(4) 

and 1(3) and i(2) and 1(1) and i(0); 

BUPT



A2 - Appendix 137 

chan(3)<= not ( (not 1(8)) nor i7_0); 
chan2Jogic: 

i6_5<= not 1(5) nand i(6); 
chan(2)<=not (i(7) and i(6) and i(4) and i6_5); 

chanljogic: 
i5_2<= not (i(5) and i(4) and (not i(2))); 
chan(l)<=not (i(7) and i(6) and i5_2 and i6_3); 

chan9Jogic: 
I6_3<= not (i(6) and i(5) and i(4) and i(3)); 
i6_l<= not (i(6) and i(5) and i(2) and (not i ( l ) ) ) ; 
chan(0)<= not (i(7) and i6_5 and i6_3 and i6_l ) ; 

end Behavloral; 

I r 

U i l I l i K ^ i l I H i 

I I L 

Figure A2 - Technology Schematic of C432 Benchmark Circuit Obtalned wlth XST 

A3. C499 Benchmark Circuit 

entity c499 Is 
Port ( r 

ic ; 
id 
od 

end C499; 

: in STD.LOGIC; 
In STD_LOGIC_VECTOR (7 downto 0); 
in STD_LOGIC_VECTOR (31 downto 0); 

: out STD_LOGIC_VECTOR (31 downto 0)); 

architecture Struct of c499 Is 
component m l 

Port ( r : In STD_LOGIC; 
Ic : in STD_LOGIC_VECTOR (7 downto 0); 
Id : in STD_LOGIC_VECTOR (31 downto 0); 
s : out STD_LOGIC_VECTOR (7 downto 0)); 

end component; 
component m2 

Port ( s : in STD_LOGIC_VECTOR (7 downto 0); 
id : in STD_LOGIC_VECTOR (31 downto 0); 
od : out STD_LOGIC_VECTOR (31 downto 0)); 

end component; 
signal s:stdJoglc_vector (7 downto 0); 
begin 
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Ml_logic: m l port map(r, ic, id, s); 
M2Jogic: m2 port map(s, id, od); 

end Struct; 

entity ml is 
Port ( r : in STD_LOGIC; 

Ic : in STD_LOGIC_VECTOR (7 downto 0); 
id : in STD_LOGIC_VECTOR (31 downto 0); 
s : out STD_LOGIC_VECTOR (7 downto 0)); 

end ml ; 

architecture Behavioral of ml is 
begin 

s(0)<=(id(0) xor id(4) xor id(8) xor id(12)) xor (id(16) xor id(17) xor id(18) xor id(19)) 
xor (id(20) xor id(21) xor id(22) xor id(23)) xor (r and lc(0)); 

s(l)<=(id(l) xor id(5) xor id(9) xor id(13)) xor (id(24) xor id(25) xor id(26) xor id(27)) xor 
(id(28) xor id(29) xor id(30) xor id(31)) xor (r and ic{ l)) ; 

s(2)<=(id(2) xor id(5) xor id(lO) xor id(14)) xor (ld(16) xor id(17) xor id(18) xor id(19)) 
xor (id(24) xor id(25) xor id(26) xor id{27)) xor (r and ic(2)); 

s(3)<=(id(3) xor id(7) xor id ( l l ) xor id(15)) xor {id(20) xor id(21) xor id(22) xor id(23)) 
xor (id(28) xor id(29) xor id(30) xor id(31)) xor (r and ic(3)); 

s(4)<=(id(16) xor id(20) xor id(24) xor id(28)) xor (id(0) xor id(l) xor id(2) xor id(3)) 
xor (id(4) xor id(5) xor id(6) xor id(7)) xor (r and ic(4)); 

s(5)<=(id(17) xor id(21) xor id(25) xor id(29)) xor (id(8) xor id(9) xor id(lO) xor id( l l ) ) 
xor (id(12) xor id{13) xor id(14) xor id(15)) xor (r and ic(5)); 

s(6)<=(id(18) xor id(22) xor id(26) xor id(30)) xor (ld(0) xor id(l) xor ld(2) xor id(3)) 
xor (id(8) xor id(9) xor id(lO) xor id( l l ) ) xor (r and ic(6)); 

s(7)<=(id(19) xor id(23) xor id(27) xor id(31)) xor (id(4) xor id(5) xor id(6) xor id(7)) xor 
(id(12) xor id(13) xor id(14) xor id(15)) xor (r and ic{7)); 

end Behavioral; 

entity m2 is 
Port ( s : in STD_LOGIC_VECTOR (7 downto 0); 

id : in STD_LOGIC_VECTOR (31 downto 0); 
od : out STD_LOGIC_VECTOR (31 downto 0)); 

end m2; 
architecture Behavioral of m2 is 
begin 

od(0)<= ((s(0) and (not s ( l ) ) and (not s(2)) and (not s(3)))and 
(s(4) and (not s(5)) and s(6) and (not s(7)))) xor id(0) 

od(l)<= (((not s(0)) and s ( l ) and (not s(2)) and (not s(3)))and 
(s(4) and (not s(5)) and s(6) and (not s(7)))) xor id(l) 

od(2)<= (((not s(0)) and (not s ( l ) ) and s(2) and (not s(3))) and 
(s(4) and (not s(5)) and s(6) and (not s(7)))) xor id(2) 

od(3)<= (((not s(0)) and (not s ( l ) ) and (not s(2)) and s(3)) and 
(s(4) and (not s(5)) and s(6) and (not s(7)))) xor id(3) 

od(4)<= ((s(0) and (not s ( l ) ) and (not s(2)) and (not s(3))) and 
(3(4) and (not s(5)) and (not s(6)) and s(7))) xor id(4) 

od(5)<= (((not s(0)) and s ( l ) and (not s(2)) and (not s(3))) and 
(s(4) and (not s(5)) and (not s(6)) and s(7))) xor id(5) 

od(6)<= (((not s(0)) and (not s ( l ) ) and s(2) and (not s(3))) and 
(s(4) and (not s(5)) and (not s(6)) and s(7))) xor id(6) 

od(7)<= (((not s(0)) and (not s ( l ) ) and (not s(2)) and $(3)) and 
(3(4) and (not s(5)) and (not s(6)) and s(7))) xor id(7) 

od(8)<= ((3(0) and (not 3(1)) and (not 3(2)) and (not s(3))) and 
((not 3(4)) and 3(5) and s(6) and (not $(7)))) xor id(8) 
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od(9)< = 

od(10)<= 

od( l l )< : 

od(12)<: 

od(13)<= 

od(14)<: 

od(15)<: 

od(16)<= 

od(17)<: 

od(18)<: 

od(19)<: 

od(20)<: 

od(21)<: 

od(22)<: 

od(23)<: 

od(24)<: 

od(25)<: 

od(26)<: 

od(27)<: 

od(28)<= 

od(29)<= 

od(30)<: 

od(31)< 

not s(0)) and s ( l ) and (not s(2)) and (not s(3))) and 
((not s(4)) and s(5) and s(6) and (not s(7)))) xor id(9); 

(not s(0)) and (not s ( l ) ) and s(2) and (not s(3)))and 
((not s(4)) and s(5) and s(6) and (not s(7)))) xor id(lO); 

(not s(0)) and (not s ( l ) ) and (not s(2)) and s(3))and 
((not s(4)) and s(5) and s(6) and (not s(7)))) xor id ( l l ) ; 

s(0) and (not s ( l ) ) and (not s(2)) and (not s(3)))and 
((not s(4)) and s(5) and (not s(6)) and s(7))) xor id(12); 

(not s(0)) and s ( l ) and (not s(2)) and (not s(3))) and 
((not s(4)) and s(5) and (not s(6)) and s(7))) xor id(13); 

(not s(0)) and (not s ( l ) ) and s(2) and (not s(3))) and 
((not s(4)) and s(5) and (not s(6)) and s(7))) xor id(14); 

(not s(0)) and (not s ( l ) ) and (not s(2)) and s(3))and 
((not s(4)) and s(5) and (not s(6)) and s(7))) xor jd(15); 

s(4) and (not s(5)) and (not s(6)) and (not s(7)))and 
(s(0) and (not s ( l ) ) and s(2) and (not s(3)))) xor id(16); 

(not s(4)) and s(5) and (not s(6)) and (not s(7)))and 
(s(0) and (not s ( l ) ) and s(2) and (not s(3)))) xor id(17); 

(not s(4)) and (not s(5)) and s(6) and (not s(7)))and 
(s(0) and (not s ( l ) ) and s(2) and (not s(3)))) xor id(18); 

(not s(4)) and (not s(5)) and (not s(6)) and s(7)) and 
(s(0) and (not s ( l ) ) and s(2) and (not s(3)))) xor id(19); 

s(4) and (not s(5)) and (not s(6)) and (not s(7)))and 
(s(0) and (not s ( l ) ) and (not s(2)) and s(3))) xor id(20); 

(not s(4)) and s(5) and (not s(6)) and (not s(7))) 
and (s(0) and (not s ( l ) ) and (not s(2)) and s(3))) xor id(21) 

(not s(4)) and (not s(5)) and s(6) and (not s(7))) 
and (s(0) and (not s ( l ) ) and (not s(2)) and s(3))) xor id(22) 

(not s(4)) and (not s(5)) and (not s(6)) and s(7)) 
and (s(0) and (not s ( l ) ) and (not s(2)) and s(3))) xor id(23) 

s(4) and (not s(5)) and (not s(6)) and (not s(7))) 
and ((not s(0)) and s ( l ) and s(2) and (not s(3)))) xor id(24) 

(not s(4)) and s(5) and (not s(6)) and (not s(7))) 
and ((not s(0)) and s ( l ) and s(2) and (not s(3)))) xor id(25) 

(not s(4)) and (not s(5)) and s(6) and (not s(7))) 
and ((not s(0)) and s ( l ) and s(2) and (not s(3)))) xor id(26) 

(not s(4)) and (not s(5)) and (not s(6)) and s(7)) 
and ((not s(0)) and s ( l ) and s(2) and (not s(3)))) xor id(27) 

s(4) and (not s(5)) and (not s(6)) and (not s(7))) 
and ((not s(0)) and s ( l ) and (not s(2)) and s(3))) xor id(28) 

(not s(4)) and s(5) and (not s(6)) and (not s(7))) 
and ((not s(0)) and s ( l ) and (not s(2)) and s(3))) xor id(29) 

(not s(4)) and (not s(5)) and s(6) and (not s(7))) 
and ((not s(0)) and s ( l ) and (not s(2)) and s(3))) xor id(30) 

(not s(4)) and (not s(5)) and (not s(6)) and s(7)) 
and ((not s(0)) and s ( l ) and (not s(2)) and s(3))) xor id(31) 

end Behavioral; 
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Figure A3 - Technology Schematic of C499 Benchmark Circuit Obtained with XST 

A4 C6288 Benchmark Circuit 

entity C6288 is 
Port { a : in STD_LOGIC_VECTOR (15 downto 0); 

b : in STD_LOGIC_VECTOR (15 downto 0); 
p : out STD_LOGIC_VECTOR (31 downto 0)); 

end C6288; 

architecture Struct of C6288 is 

type matrix is array(15 downto 0) of std_logic_vector(15 downto 0); 
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component HA 
Port ( a : in STD_LOGIC; 

b : in STD_LOGIC; 
s : out STD_LOGIC; 

cout:out STD_LOGIC); 
end component; 

component FA 
Port ( a : in STD_LOGIC; 

b : in STD_LOGIC; 
cin : in STD_LOGIC; 
s : out STD.LOGIC; 
cout : out STD_LOGIC); 

end component; 

signal lineO, linei, Iine2, Iine3, Iine4, lineS, Iine6, line?: stdJogic_vector (15 downto 0); 
signal lineS, Iine9, linelO, l inel l , Iinel2, Iinel3, Iinel4, linelS: stdJogic_vector (15 downto 
0); 

signal s,c:matrix; 

begin 
line_generation: 
for i in O to 15 generate 

Iine0(i)<=a(i) and b(0); 
linel(i)<=a(i) and b( l ) ; 
rme2(i)<=a(i) and b(2); 
Iine3(i)<=a(i) and b(3); 
Iine4(i)<=a(i) and b(4); 
Iine5(i)<=a(i) and b(5); 
Iine6(i)<=a(i) and b(6); 
Iine7(i)<=a(i) and b(7); 
rme8(i)<=a(i) and b(8); 
Iine9(i)<=a(i) and b(9); 
linelO(i)<=a(i) and b(10); 
linell(i)<=a(i) and b ( l l ) ; 
rmel2(i)<=a(i) and b(12); 
Iinel3(i)<=a(i) and b(13); 
Iinel4(i)<=a(i) and b(14); 
Iinel5(i)<=a(i) and b(15); 

end generate; 
matrix_generation: 
for i in 1 to 15 generate 

HAJineO: 
HA port map (lineO(i), l inel(i-l) , s(0)(i-l) , c(0)(i)); 

s(0)(15)<=linel(15); 
c(0)(0)<='0'; 

FAJinel : 
FA port map(rme2(i-l), s(0)(i), c(0)(i), s ( l ) ( l - l ) , c ( l ) ( i ) ) ; 

s(l)(15)<=line2(15); 
c(l)(0)<='0'; 

FAJine2: 
FA port map(line3(i-l), s ( l ) ( i ) , c( l ) ( i ) , s(2)(i-l) , c(2)(i)); 

s(2)(15)<=line3(15); 
c(2)(0)<='0'; 
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FAJine3: 
FA port map(line4(i-l), s(2)(i), c(2)(i), s(3)(i-l), c(3)(i)); 

s(3)(15)<=line4(15); 
c(3)(0)<='0'; 

FAJine4: 
FA port map(line5(i-l), s(3)(i), c(3)(i), s(4)(i-l), c(4)(i)); 

s(4)(15)<=line5(15); 
c(4)(0)<='0'; 

FAJineS: 
FA port map(line6(i-l), s(4)(i), c(4)(i), s(5)(i-l), c(5)(i)); 

s(5)(15)<=line6(15); 
c(5)(0)<='0'; 

FAJine6: 
FA port map(line7(i-l), s(5)(i), c(5)(i), s(6)(i-l), c(6)(i)); 

s(6)(15)<=line7(15); 
c(6)(0)<='0"; 

FAJine7: 
FA port map(line8(i-l), s(6)(i), c(6)(i), s(7)(i-l), c(7)(i)); 

s(7)(15)<=line8(15); 
c(7)(0)<='0'; 

FAJineS: 
FA port map(line9(i-l), s(7)(i), c(7)(i), s(8)(i-l), c(8)(i)); 

s(8)(15)<=line9(15); 
c(8)(0)<='0'; 

FAJine9: 
FA port map(linelO(i-l), s(8)(i), c(8)(i), s(9)(i-l), c(9)(i)); 

s(9)(15)<=linel0(15); 
c(9)(0)<='0'; 

FAJinelO: 
FA port map(linell(i-l), s(9)(i), c(9)(i), s(10)(i-l), c(10)(i)); 

s(10)(15)<=line7(15); 
c(10)(0)<='0'; 

FAJinel l : 
FA port map(linel2(i-l), s{10)(i), c(10)(i), s ( l l ) ( i - l ) , c ( l l ) ( i ) ) ; 

s(ll)(15)<=line8(15); 
c(ll)(0)<='0"; 

FAJinel2: 
FA port map(linel3(i-l), s ( l l ) ( i ) , c ( l l ) { i ) , s(12)(i-l), c(12)(i)); 

s(12)(15)<=linel3(15); 
c(12)(0)<='0'; 

FAJinel3: 
FA port map(linel4(i-l), s(12)(i), c(12)(i), s(13)(i-l), c(13)(i)); 

s(13)(15)<=linel4(15); 
c(13)(0)<='0'; 

FAJinel4: 
FA.poit map(linel5(i-l), s(13){i), c(13)(i), s(14)(i-l), c(14)(i)); 

s(14)(15)<=linel5(15); 
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c(14)(0)<='0'; 

FAJ inelS : 
FA port map(c(15)(i-l), s(14)(i), c(14)(i), s(15)(i-l) , c(15)(i)); 

c(15)(0)<='0'; 
s(15)(15)<=c(15)(15); 

end generate; 

p(0)<=line0(0); 
p(l)<=s(0)(0) ; 
p(2)<=s(l)(0) ; 
p(3)<=s(2)(0); 
p(4)<=s(3)(0); 
P(5)<=S(4)(0); 
p(6)<=s(5)(0); 
P(7)<=S(6)(0); 
P(8)<=S(7)(0); 
p(9)<=s(8)(0); 
p(10)<=s(9)(0); 
p( l l )<=s(10)(0) ; 
p(12)<=s( l l ) (0) ; 
p(13)<=s(12)(0); 
p(14)<=s(13)(0); 
p(15)<=s(14)(0); 

p_generation: 
for i in O to 15 generate 

p(16+i)<=s(15)(i); 
end generate; 

end Struct; 

entity FA is 
Port ( a : in STD_LOGIC; 

b : in STD_LOGIC; 
cin : in STD_LOGIC; 
s : out STD_LOGIC; 
cout : out STD_LOGIC); 

end FA; 

architecture Behavioral of FA is 
begin 

s<=a xor b xor cin; 
cout< = (a and b) or (a and cin) or (b and cin); 

end Behavioral; 

entity HA is 
Port ( a : in STD_LOGIC; 

b : in STD_LOGIC; 
s : out STD_LOGIC; 
cout:out STD_LOGIC); 

end HA; 

architecture Behavioral of HA is 
begin 

s<=a xor b; 
cout<=a and b; 

end Behavioral; 
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Figure A4 - Technology Schematic of C6288 Benchmark Circuit Obtained with XST 

A5 74181 Benchmark Circuit 

entity C74181 is 
Port ( a : in STD_LOGIC_VECTOR (3 downto 0); 

b : in STD_LOGIC_VECTOR (3 downto 0); 
s : in STD_LOGIC_VECTOR (3 downto 0); 
cin : in STD_LOGIC; 
m : in STD_LOGIC; 
eq : out STD.LOGIC; 
f : out STD_LOGIC_VECTOR (3 downto 0); 
X : out STD_LOGIC; 
y : out STD.LOGIC; 
cout : out STD_LOGIC); 

end C74181; 
architecture Struct of C74181 is 
component ml 

Port ( a : in STD_LOGIC_VECTOR (3 downto 0); 
b : in STD_LOGIC_VECTOR (3 downto 0); 
s : in STD_LOGIC_VECTOR (1 downto 0); 
e : out STD_LOGIC_VECTOR (3 downto 0)); 

end component; 
component m2 

Port ( a : in STD_LOGIC_VECTOR (3 downto 0); 
b : in STD_LOGIC_VECTOR (3 downto 0); 
s : in STD_LOGIC_VECTOR (1 downto 0); 
d : out STD_LOGIC_VECTOR (3 downto 0)); 

end component; 
component CLA 
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Port ( d : in STD_LOGIC_VECTOR (3 downto 0); 
e : in STD_LOGIC_VECTOR (3 downto 0); 
cin : in STD_LOGIC; 
c : out STD_LOGIC_VECTOR (3 downto 0); 
cout : out STD_LOGIC; 
X : out STD.LOGIC; 
y : out STD_LOGIC); 

end component; 
signal d,e,carry, f_buf:std_logic_vector(3 downto 0); 
signal s l , s2:stdJogic_vector(l downto 0); 
begin 

sl(0)<=s(2); 
s l ( l )<=s(3) ; 
s2(0)<=s(0); 
s2( l )<=s( l ) ; 
Mljogic: m l port map(a,b,sl,e); 
M2Jogic: m2 port map(a,b,s2,d); 
CLAJogic: CLA port map(d,e,cin, carry, cout, x, y); 
f_generation: 
for i in O to 3 generate 

f_buf(i)<=( m or carry(i)) xor e(i) xor d(i); 
f(i)<=f_buf(i); 

end generate; 
eq<=f_buf(0) and f_buf(l) and f_buf(2) and f_buf(3); 

end Struct; 

entity CLA is 
Port ( d : in STD_LOGIC_VECTOR (3 downto 0); 

e : in STD_LOGIC_VECTOR (3 downto 0); 
cin : in STD_LOGIC; 
c : out STD_LOGIC_VECTOR (3 downto 0); 
cout : out STD_LOGIC; 
X : out STD_LOGIC; 
y : out STD_LOGIC); 

end CLA; 
architecture Behavioral of CLA is 
signal c0g0,c0g01,c0g012,c0g0123:stdjogic; 
signal p0gl,p0gl2,p0gl23,plg2,plg23,p2g3:stdjogic; 
signal y_buf:stdJogic; 
begin 

p_g_products: 
cOgO<=cin and e(0); 
c0g01<=cin and e(0) and e ( l ) ; 
c0g012<=cin and e(0) and e ( l ) and e(2); 
c0g0123<=cin and e(0) and e ( l ) and e(3); 
p0gl<=d(0) and e ( l ) ; 
p0gl2<=d(0) and e ( l ) and e(2); 
p0gl23<=d(0) and e ( l ) and e(2) and e(3); 
plg2<=d(l) and e(2); 
plg23<=d(l) and e(2) and e(3); 
p2g3<=d(2) and e(3); 

x<=(e(0) nand e ( l ) ) nand (e(2) nand e(3)); 
carry: 

c(0)<=not cin; 
c(l)<=d(0) nor cOgO; 
c(2)<=not (d( l ) or pOgl or cOgOl); 
c(3)<=not (d(2) or plg2 or p0gl2 or c0g012); 

y_buf<=not (d(3) or p2g3 or plg23 or p0gl23); 
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cout<=y_buf nand (not c0g0123); 
y<=y_buf; 

end Behavioral; 

entity ml is 
Port ( a : in STD_LOGIC_VECTOR (3 downto 0); 

b : in STD^LOGIC_VECTOR (3 downto 0); 
s : in STD_LOGIC_VECTOR (1 downto 0); 
e : out STD_LOGIC_VECTOR (3 downto 0)); 

end ml ; 
architecture Behavioral of ml is 
begin 

result_generation: 
for i in O to 3 generate 

e(i)<=(a(i) and b(i) and s ( l ) ) nor (a(i) and (not b(i)) and s(0)); 
end generate; 

end Behavioral; 

entity m2 is 
Port ( a : in STD_LOGIC_VECTOR (3 downto 0); 

b : in STD_LOGIC_VECTOR (3 downto 0); 
s : in STD_LOGIC_VECTOR (1 downto 0); 
d : out STD_LOGIC_VECTOR (3 downto 0)); 

end m2; 
architecture Behavioral of m2 is 
begin 

d_generation: 
for i in O to 3 generate 

d(i)<=((not b(i) and s ( l ) ) nor (b(i) and s(0))) nor a(i); 
end generate; 

end Behavioral; 

Figure A5 - Technology Schematic of 74181 Benchmark Circuits Obtained with XST 
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Bl . Compound Adder 

entity CompoundAdderl2 is 
Port ( a : in STD_LOGIC_VECTOR (11 downto 0); 

b : in STD_LOGIC_VECTOR (11 downto 0); 
s : out STD_LOGIC_VECTOR (11 downto 0); 
s l : out STD_LOGIC_VECTOR (11 downto 0)); 

end CompoundAdderl2; 

architecture Behavioral of CompoundAdderl2 is 

connponent CLA_cell 
Port ( g j j : in STD_LOGIC; 

p j j : in STD_LOGIC; 
g j k : in STD_LOGIC; 
p j k : in STD_LOGIC; 
g Jk : out STD.LOGIC; 
pJk : out STD_LOGIC); 

end connponent; 

signal p jeve l l , gJevell :stdJogic_vector(l l downto 0); 
signal pjevel2, gJevel2:stdJogic_vector(ll downto 0); 
signal pJevelS, g_level3:stdJogic_vector(ll downto 0); 
signal p_level4, gJevel4:stdJogic_vector(ll downto 0); 
signal pJevelS, gJevel5:stdJogic_vector(ll downto 0); 
signal cO,cl:stdJogic_vector(ll downto 0); 

begin 
levell: 
for i in O to 11 generate 

pjevell( i )<=a(i) xor b(i); 
g_levell(i)<=a(i) and b(i); 
s( i )<=pjevel l ( i ) xor cO(i); 
s l ( i )<=pjevel l ( i ) xorc l ( i ) ; 

end generate; 

Ievel2_p: 
for i in O to 5 generate 

CLA_block2_0: CLA_cell port map(gjevell(2*i) , p jevel l (2* i ) , 
g jeve l l (2* i+ l ) , p levell(2*l+l), 

gjevel2(2*i)<=gjevel(2*i) ; 
pjevel2(2*i)<=gjevel l (2*i) ; 

end generate; 

Ievel3_p: 

gjevel2(2*i+l) , pjevel2(2*i+l)) ; 
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for j in O to 2 generate 
CLA_block3_0:CU\_cell port map(gjevel2(4*i+l) , p jevel2(4* i+l ) , 

gJevel2(4*i+3), pJevel2(4*i+3), 
gJevel3(4*i+3), pJevel3(4*i+3)); 

CLA_block3_l:CLA_cell port nnap(gjevel2(4*i+l), p jevel2(4* i+l ) , 
gJevel2(4*i+2), pJevel2(4*i+2), 
gJevel3(4*i+2), pJevel3(4*i+2)); 

gjevel3(4*j)<=gjevel2(4*i) ; 
pjevel3(4*i)<=pjevel2(4*i) ; 
g_level3(4*i+1) < =gjevel2(4*i+1); 
p jevel3(4* i+l )<=pjevel2(4* i+l ) ; 

end generate; 

Ievel4_p: 
for i in O to 3 generate 

CLA_block4: CLA_cell port map(gjevel3(3), pjevel3(3) , 
gjevel3(4+i), pjevel3(4+i), 
gjevel4(4+i), p_level4(4+i)); 

gjevel4(i) < =gjevel3(i) ; 
pjevel4(i)<=pjevel3(i) ; 
gjevel4(8+i) < =g Jevel3(8+i) ; 
pjevel4(8+i)<=pjevel3(8+i); 

end generate; 

Ievel5_p: 
for i in O to 3 generate 

CLA_block5: CLA_cell port map(gjevel4(7), pjevel4(7) , 
gjevel4(8+i), pjevel4(8+i). 

gjevel5(i)<=gjevel4(i) ; 
pjevel5(i)<=pjevel4(i) ; 
gjevel5(4+i)<=gjevel4(4+i); 
pjevel5(4+i)<=p_level4(4+i); 

end generate; 

carry_formation: 
for i in O to 10 generate 

c0(i+l)<=g_level5(i); 
c l ( i+l )<=gjevel5( i ) or pjevel5(i) ; 

end generate; 
c0(0)<='0'; 
c l (0)<=' l ' ; 

end Behavioral; 

entity CLA_cell is 
Port ( g j j : in STD_LOGIC; 

p_ij : in STD_LOGIC; 
g j k : in STD_LOGIC; 
p j k : in STD_LOGIC; 
g J k : out STD_LOGIC; 
p Jk : out STD_LOGIC); 

end CLA_cell; 

architecture Behavioral of CLA_cell is 
begin 

p j k < = p j j and p J k ; 
g j k < = g j k or ( p J k and g J j ) ; 

end Behavioral; 

gjevel5(8+i), pjevel5(8+i)) ; 
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B2. Leading Zero Predictor 

entity LZP is 
Port ( a : in STD_LOGIC_VECTOR (10 downto 0); 

b : in STD_LOGIC_VECTOR (10 downto 0); 
sub : in STD_LOGIC; 
norm : out STD_LOGIC_VECTOR (3 downto 0)); 

end LZP; 

architecture Behavioral of LZP is 
component encoding_cell 

Port ( a : in STD.LOGIC; 
b : in STD_LOGIC; 
s_sup: in stdjogic; 
g_sup: in stdjogic; 
e_inf: in stdjogic; 
s : out STD_LOGIC; 

g : out STD_LOGIC; 
e : out STD_LOGIC; 

f : out stdjogic); 
end component; 
component Izd 

Port ( f : in STD_LOGIC_VECTOR (10 downto 0); 
z : out STD_LOGIC_VECTOR (3 downto 0)); 

end component; 

signal f:stdjogic_vector(10 downto 0); 
signal g,s,e:stdJogic_vector (11 downto 0); 
signal z:stdJogic_vector(3 downto 0); 
begin 

g(0)<='0'; 
s(0)<='0'; 
e ( l l )<= ' l ' ; 
encoding_modules: 
for i in O to 10 generate 

enc_cell: encoding_cell port map(a(i),b(i), s(i),g(i),e(i + l ) , 
s( i+l) ,g( i+l) ,e( i ) , f ( i ) ) ; 

end generate; 
leading_zero_detection: 

Izd port map(f, z); 
result: 
for i in O to 3 generate 

norm(i)<=sub and z(l); 
end generate; 

end Behavioral; 

entity LZD is 
Port ( f : in STD_LOGIC_VECTOR (10 downto 0); 

z : out STD_LOGIC_VECTOR (3 downto 0)); 
end LZD; 

architecture Behavioral of LZD is 
signal v0:stdjogic_vector(2 downto 0); 
signal p0_0,p0_l,p0_2:stdjogic_vector(l downto 0); 
signal v l : s td jogic ; 
signal pl_0:stdjogic_vector(2 downto 0); 
signal p2_0:stdjogic_vector(3 downto 0); 
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begin 
rirstJeveL4_bits: 

v0(2)<=f(10) or f(9) or f(8) or f(7); 
p0_2(l)<=f(10) nor f(9); 
p0_2(0)<=(f(10) nor (not f(9))) or (f(10) nor f(8)); 
v0(l)<=f(6) or f(5) or f(4) orf(3); 
p0_l( l )<=f(6) nor f(5); 
p0_l(0)<=(f(6) nor (not f(5))) or (f(6) nor f(4)); 
v0(0)<=f(2) or f ( l ) or f(0); 
p0_0(l)<=f(2) nor f ( l ) ; 
p0_0(0)<=(f(2) nor (not f ( l ) ) ) or (f(2) nor f(0)); 

second_leveL8_bits: 
vl<=v0(2) or vO(l); 
pl_0(2)<=not(v0(2)); 
p l_0( l )<= p0_2(l) when v0(2)='l' else 

pO_l( l ) when v0(2)='0' else 
•O'; 

pl_0(0)<= p0_2(0) when v0(2)='l' else 
p0_l(0) when v0(2)='0' else 
'O'; 

thirdJeveLl l_bits : 
p2_0(3)<=not v l ; 
p2_0(2)<= pl_0(2) when v l= ' l ' else 

(not v0(0)) when vl='0' else 
•O'; 

p2_0(l)<= p l _0 ( l ) when v l= ' l ' else 
(v0(0) and p0_0(l)) when vl='0' else 
•O'; 

p2_0(0)<= pl_0(0) when v l= ' l ' else 
(v0(0) and p0_0(0)) when vl='0' else 'O'; 

Z<=p2_0; 
end Behavioral; 

B3. Booth Radix-4 Encoding Module 

entity Booth_encoder is 
Port ( a : in STD_LOGIC_VECTOR (10 downto 0); 

b : in STD_LOGIC_VECTOR (10 downto 0); 
ppO : out STD_LOGIC_VECTOR (14 downto 0) 
ppl : out STD_LOGIC_VECTOR (15 downto 0) 
pp2 : out STD_LOGIC_VECTOR (15 downto 0) 
pp3 : out STD_LOGIC_VECTOR (15 downto 0) 
pp4 : out STD_LOGIC_VECTOR (14 downto 0) 
pp5 : out STD_LOGIC_VECTOR (12 downto 0)); 

end Booth_encoder; 

architecture Behavioral of Booth_encoder is 
component booth_encoding_cell 

Port ( x_iO : in STD_LOGIC; 
x j l : in STD_LOGIC; 
x J 2 : in STD_LOGIC; 
sell : out STD_LOGIC; 
sel2 : out STD_LOGIC; 
s : out STD_LOGIC); '' 
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end component; 
component boothjine 

Port ( a : in STD_LOGIC_VECTOR (10 downto 0); 
sel l : in STD_LOGIC; 
sel2 : in STD_LOGIC; 
a_booth : out STD_LOGIC_VECTOR (11 downto 0)); 

end component; 

signal zero, oneistdjogic; 
signal lineO, linei, Iine2, Iine3, rme4, line5:stdJogic_vector(ll downto 0); 
signal sell_0, se l l _ l , sell_2, sell_3, sell_4, sell_5:std_logic; 
signal sel2_0, sel2_l , sel2_2, sel2_3, sel2_4, sel2_5:stdJogic; 
signal sO, s l , s2, s3, s4, s5:stdJogic; 

begin 
zero<='0'; 
one<='l'; 

booth_encoding_celLO: 
booth_encoding_cell port map(zero, a(0), a ( l ) , sell_0, sel2_0, sO); 

boothjine_0: 
boothjine port map(b, sel l_0, sel2_0, lineO); 

partiaLproduct_0: 
for i in O to 11 generate 

ppO(i)<=rmeO(i); 
end generate; 

pp0(12)<=s0; 
ppO(13)<=sO; 
ppO(14)<=not sO; 

booth_encoding_cell_l: 
booth_encoding_cell port map(a(l), a(2), a(3), se l l _ l , sel2_l , s l ) ; 

booth_line_l: 
boothjine port map(b, se l l _ l , sel2_l , linei); 

partial_product_l: 
for i in O to 11 generate 

ppl(i+2)<=rmel(i) xo r s l ; 
end generate; 

ppl(14)<=not s l ; 
ppl(15)<=one; 
ppl(0)<=s0; 
ppl(l)<=zero; 

booth_encoding_celL2: 
booth_encoding_cell port map(a(3), a(4), a(5), sell_2, sel2_2, s2); 

boothJine_2: 
boothjine port map(b, sel l_2, sel2_2, rme2); 

partiaLproduct_2: 
for i in O to 11 generate 

pp2(i+2)<=line2(i) xor s2; 
end generate; 

pp2(14)< = not s2; 
pp2(15)<=one; 
pp2(0)<=sl; 
pp2U)<=zero; 
booth_encoding_celL3: 

booth_encoding_cell port map(a(5), a(6), a(7), sell_3, sel2_3, s3); 
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boothJine_3: 
boothjine port map(b, sel l_3, sel2_3, lineS); 

partiaLproduct_3: 
for i in O to 11 generate 

pp3(i+2)<=line3(i) xor s3; 
end generate; 

pp3(14)<=not s3; 
pp3(15)<=one; 
pp3(0)<=s2; 
pp3(l)<=zero; 

booth_encoding_celL4: 
booth_encoding_cell port map(a(7), a(8), a(9), sel l_4, sel2_4, s4); 

boothJine_4: 
boothjine port map(b, sel l_4, sel2_4, Iine4); 

partiaLproduct_4: 
for i in O to 11 generate 

pp4(i+2)<=line4(i) xor s4; 
end generate; 

pp4(14)<= not s4; 
pp4(0)<=s3; 
pp4(l)<=zero; 

booth_e ncod i ng_cel L 5 : 
booth_encoding_cell port map(a(9), a(10), zero, sel l_5, sel2_5, s5); 

boothJine_5: 
boothjine port map(b, sel l_5, sel2_5, lineS); 

partiaLproduct_5: 
for i in O to 10 generate 

pp5(i+2)<=line5(i) xor s5; 
end generate; 

pp5(0)<=s4; 
pp5(l)<=zero; 

end Behavioral; 

entity Booth_encoding_cell is 
Port ( xJO : in STD_LOGIC; 

x j l : in STD_LOGIC; 
x J 2 : in STD_LOGIC; 
sell : out STD_LOGIC; 
sel2 : out STD_LOGIC; 
s : out STD_LOGIC); 

end Booth_encoding_cell; 

architecture Behavioral of Booth_encoding_cell is 
begin 

sel l<=xJO xor x j l ; 
sel2< = ( x J 0 xor x j l ) nor ( x j l xnor x J 2 ) ; 
s<=xJ2 ; 

end Behavioral; 

entity boothjine is 
Port ( a : in STD_LOGIC_VECTOR (10 downto 0); 

sell : in STD_LOGIC; 
sel2 : in STD_LOGIC; 
a_booth : out STD.LOGIC.VECTOR (11 downto 0)); 

end boothjine; 
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architecture Behavioral of boothjine is 
signal a_prep, a2_prep:stdJogic_vector(ll downto 0); 
begin 

multiplicand_prep: 
a_prep(10 downto 0)<=a(i); 
a2_prep(l l downto l)<=a(i) ; 
a_prep(ll)<='0'; 
a2_prep(0)< = '0'; 

line_encoding: 
for i in O to 11 generate 

a_booth(i)<=(a_prep(i) and sell) or (a2_prep(i) and sel2); 
end generate; 

end Behavioral; 

B4. Wallace Tree 

entity wallace_tree is 
Port ( ppO : in STD_LOGIC_VECTOR (14 downto 0); 

ppl : in STD_LOGIC_VECTOR (15 downto 0); 
pp2 : in STD_LOGIC_VECTOR (15 downto 0); 
pp3 : in STD_LOGIC_VECTOR (15 downto 0); 
pp4 : in STD_LOGIC_VECTOR (14 downto 0); 
pp5 : in STD_LOGIC_VECTOR (12 downto 0); 
sum : out STD_LOGIC_VECTOR (21 downto 0); 
carry : out STD_LOGIC_VECTOR (21 downto 0)); 

end wallace_tree; 

architecture Behavioral of wallace_tree is 
component fa_cell 

Port ( a : in STD_LOGIC; 
b : in STD_LOGIC; 
cin : in STD.LOGIC; 
s : out STD_LOGIC; 
c : out STD_LOGIC); 

end component; 

signal pp0_0, ppl_0, pp2_0:stdjogic_vector(17 downto 0); 
signal pp3_0, pp4_0, pp5_0:stdjogic_vector(16 downto 0); 
signal s l , cl:stdJogic_vector(17 downto 0); 
signal s2, c2:stdJogic_vector(16 downto 0); 
signal ppO_l, pp l _ l , pp2_l:std_logic_vector(20 downto 0); 
signal s3, c3:stdjogic_vector(20 downto 0); 
signal pp0_2, ppl_2, pp2_2:stdJogic_vector(21 downto 0); 
signal s4,c4:stdJogic_vector(21 downto 0); 
begin 

pp0_0(14 downto 0)<=pp0; 
pp0_0(15)<='0'; 
pp0_0(16)<='0'; 
pp0_0(17)<='0'; 
ppl_0(15 downto 0)<=ppl; 
ppl_0(16)<='0'; 
ppl_0(17)<='0'; 
pp2_0(17 downto 2)<=pp2; 
pp2_0(0)<='0'; 
pp2_0(l)<='0'; 
f a j ine0_ l : 
for i in O to 17 generate 
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fulLadderO:fa_cell port map (pp2_0(i),ppl_0(i),pp0_0(i),sl(i),cl(i)); 
end generate; 

pp3_0(15 downto 0)<=pp3; 
pp3_0(16)< = '0'; 
pp4_0(16 downto 2)<=pp4; 
pp4_0(0)< = '0'; 
PP4_0(1)< = '0'; 
pp5_0(16 downto 4)<=pp5; 
PP5_0(0)<='0'; 
pp5_0(l)<='0'; 
pp5_0(2)<="0'; 
PP5_0(3)<='0'; 
fa j ine l _ l : 
for i in O to 16 generate 

fuILadderl:fa_cell port map(pp5_0(i),pp4_0(i),pp3_0(i),s2(i),c2(i)); 
end generate; 

pp0_l(17 downto 0)<=sl; 
pp0_l(18)<='0'; 
pp0_l(19)<='0'; 
pp0_l(20)< = '0'; 
ppl_l(18 downto l)<=cl; 
ppl_l(0)< = '0'; 
ppl_l(19)<='0'; 
ppl_l(20)<='0'; 
pp2_l(20 downto 4)<=s2; 
pp2_l(0)<='0-; 
pp2_l(l)< = '0'; 
pp2_l(2)<='0'; 
pp2_l(3)< = '0'; 
fa_adder0_2: 
for i in O to 20 generate 

fulLadder2:fa_cell port map(pp2_l(i),ppl_l(i),pp0_l(i),s3(i),c3(i)); 
end generate; 

pp0_2(20 downto 0)<=s3; 
pp0_2(21)<='0'; 
ppl_2(21 downto l)<=c3; 
ppl_2(0)<="0'; 
pp2_2(21 downto 5)<=c2; 
pp2_2(0)<='0'; 
pp2_2(l)<='0"; 
pp2_2(2)< = '0'; 
pp2_2(3)<='0'; 
pp2_2(4)<='0'; 
fa_adderO_3: 
for i in O to 21 generate 

fulLadder3:fa_cell port nnap(pp2_2(i),ppl_2(i),pp0_2(i),s4(i),c4(i)); 
end generate; 

sum<=s4; 
carry(21 downto l)<=c4(20 downto 0); 
carry(0)<='0'; 

end Behavioral; 

B5. SRT Radix 2 Stage 
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entity SRT_stage is 
Port ( pr_s : in STD_LOGIC_VECTOR (14 downto 0); 

pr_c : in STD_LOGIC_VECTOR (15 downto 0); 
d : in STD_LOGIC_VECTOR (13 downto 0); 
pr_s_next : out STD_LOGIC_VECTOR (14 downto 0); 
pr_c_next : out STD_LOGIC_VECTOR (15 downto 0); 
q : out STD_LOGIC_VECTOR (1 downto 0)); 

end SRT_stage; 

architecture Behavioral of SRT_stage is 
component selectionjogic 

Port ( pr_s : in STD_LOGIC_VECTOR (3 downto 0); 
pr_c : in STD_LOGIC_VECTOR (3 downto 0); 
q : out STD_LOGIC_VECTOR (1 downto 0)); 

end component; 

signal d_neg, d_pos, d_zero, d_add:stdJogic_vector(14 downto 0); 
signal q_par:stdJogic_vector(l downto 0); 
signal cin:stdJogic; 
signal pr_s_sel, pr_c_sel:std_logic_vector(3 downto 0); 
signal pr_c_add, pr_s_res:stdJogic_vector(14 downto 0); 
signal pr_c_res:stdJogic_vector(15 downto 0); 
begin 

d_pos(13 downto 0)<=d; 
d_pos(14)<='0'; 
d_zero<="000000000000000"; 
negate: 

for i in O to 14 generate 
d_neg(i)<=not d_pos(i); 

end generate; 
multiplexing: 

d_add<=d_neg when q_par="01" else 
d_pos when q_par="10" else 
d_zero; 

cin<='l' when q_par="01" else 'O'; 

pr_s_sel<=pr_s(13 downto 10); 
pr_c_sel< = pr_c(13 downto 10); 
quotient_sel: 

selectionjogic port map(pr_s_sel, pr_c_sel, q_par); 
pr_c_add(14 downto l)<=pr_c(14 downto 1); 
pr_c_add(0)<=cin; 
carry_save_addition: 
for i in O to 14 generate 

pr_s_res(i)< = pr_c_add(i) xor pr_s(i) xor d_add(i); 
pr_c_resCi+l)<=(pr_c_add(i) and pr_s(i)) or (pr_c_add(i) and d_add(i)) or 

(pr_s(i) and d_add(i)); 
end generate; 
p r_s_n ext <=p r_s_res; 
pr_c_next(15 downto l)<=pr_c_res(15 downto 1); 
pr_c_next(0)<='0'; 
q<=q_par; 

end Behavioral; 

entity selectionjogic is 
Port ( pr_s : in STD_LOGIC_VECTOR (3 downto 0); 

pr_c : in STD_LOGIC_VECTOR (3 downto 0); 
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q : out STD_LOGIC_VECTOR (1 downto 0)); 
end selectionjogic; 

architecture Behavioral of selec±ion_logic is 

signal sum:std_logic_vector(3 downto 0); 
signal aILO, a lL l , zero:stdJogic; 

begin 
sum<=pr_s + pr_c; 

all_0<= not(sum(0) or sum(l) or sunn(2) or sum(3)); 
alLl<=sum(0) and sum(l) and sum(2) and sum(3); 
zero< = not(pr_s(3) or pr_c(3) or pr_s(2) or pr_c(2) or 

pr_s(l) or pr_c(l) or pr_s(0) or pr_c(0)); 

q<="00" when ( (a lL l or (zero and alLO))='l') else 
"01" when ((not sum(3) and not (zero and alLO))='l') else 
"10" when ((sum(3) and (not alL l ) )=' l ' ) else "11"; 

end Behavioral; 

entity quotient_formation_block is 
generic(n: integer: =8); 
port( q_digit:in stdJogic_vector(l downto 0); 

q_n:in stdJogic_vector(n-l downto 0); 
qm_n:in std_logic_vector(n-l downto 0); 
q_nl:out stdJogic_vector(n downto 0); 
qm_nl:out stdJogic_vector (n downto 0)); 

end quotient_formation_block; 

architecture Behavioral of quotient_formation_block is 
begin 

q_nl(n downto l)<=qm_n when (q_digit="10") else 
q_n; 

q_nl(0)<='l' when (q_digit="01" or q_digit="10") else 
'O'; 

qm_nl(n downto l)<=q_n when (q_digit="01") else 
qm_n; 

qm_nl(0)<='l' when (q_digit="00") else 'O'; 
end Behavioral; 
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