
POLITEHNICA UNIVERSITY OF TIMISOARA
AUTOMATION AND COMPUTER SCIENCE FACULTY

PHD THESIS

Reliable Implementations for
Cryptographic Systems with

Testability Facilities

Flavius Opriţoiu
Politehnica University of Timişoara – UPT

Romania

Thesis Supervisor:
Thesis Committee:

Prof. dr. ing. Mircea Vlăduţiu (UPT Timişoara)
Prof. dr. ing. Mircea Petrescu (UPB Bucureşti)
Prof. dr. ing. Daniela Popescu (UO Oradea)
Prof. dr. ing. Liviu Miclea (UTC Cluj)

BUPT

BUPT

i

ABSTRACT

Integrated circuits with security functions gained an ever increasing
importance in human experience. Their main utility is defined in the context of
assuring protection for sensitive data. Among the many applications of the
cryptographic methods, one can enumerate: the secure communication in computer
networks, pay-per-view television, banking cards, electronic payments and
biometric passports, to name only a few.

Both the actuality and the appropriateness of the thesis research topics can
be justified by the interest manifested by the european union toward advancing the
research on the security domain. It can be recollected the continuous support for
sustaining the collaborative research between academics and industrial segments:
the Stork project followed by Ecrypt and later on by the Ecrypt II program settled
the basis for european cryptographic research, promoting these projects to the level
of european-funded programs.

The actuality of the VLSI hardware testing in general and of cryptochip
testing in particular is supported by the growing interest manifested toward
testability by the Semiconductor Industry Association, in its periodic “International
Technology Roadmap for Semiconductors” reports.

The efficiency of the test facilities integrated within a design directly
influences the production costs through the defect rate. Knowing that it is more
costly to replace a defective component in a later stage of its integration into the
final system, than to discard it after production, the incorporation of test mechanism
in a design, capable of verifying the device’s integrity both after fabrication and
during its operational cycle, became mandatory.

The hardware testing, in the context of cryptographic devices, poses new
challenges. On one hand, the testing facilities are essential for any integrated device
while on the other hand they are absolutely necessary for a system vulnerable to
attacks. The continuous refinement of the cryptanalytic methods led to the
development of a wide range of cryptographic-systems attack strategies: from the
passive mechanisms, relying on the analysis of the information inherently leaked by
semiconductor devices (such as thermal radiation, electromagnetic radiation) to the
invasive methods, aiming to modify the internal state of the circuit. In this context,
the integration of self-test facilities represents a top priority for any cryptographic
design. However, the testing mechanism chosen to protect the device can be
inadequate, to the point that it can represent the very starting point of a successful
attack.

The apparent contradiction between the need for integrating testability
features and their potential vulnerability can be easily surpassed by taking into
consideration the self-test strategies. By conferring the test process complete
independence from user and by reducing the volume of information transmitted to
the exterior during the test process, these solutions significantly improve the
system’s security.

The clear conclusion of the previous comments recommends the hardware
test engineering as a domain with significant challenges and opportunities for
research.

BUPT

ii

The issue of fault modeling is introduced, by presenting the fault models
hierarchically, in accordance with the integrated device’s hardware description
levels. The fault models are gradually differentiated starting from those at the
algorithm level, continuing to the models specific to the Register Transfer Level,
followed by those defined at the logic level of circuit description and finalizing with
the fault models particular for the transistor and the semiconductor layer. The
presentation also investigates the extent to which transistor and physical faults can
be mapped into defects at the logical level. The extent to which the low-level defects
are covered by the test processes generated for the stuck-at fault model is
investigated using SPICE simulations at the CMOS transistor level. The VLSI specific
bridging fault model and delay fault model are also detailed, together with a
discussion of their detectability at the gate level.

The thesis introduces the domain of hardware testing, starting with the
economical premises associated with the test. The self-test strategies, practical for
strengthening the security of the test process and for assuring the device’s integrity
are presented, starting with the off-line methods. The Built In Self Test paradigm is
introduced together with the implementation details characteristic to a conventional
off-line configuration. The convenient solutions, relying on Linear Feedback Shift
Registers, for implementing the test vector generation unit and test response
compression module are also discussed. It is also detailed the issue of characteristic
polynomial selection for the two units in order to reduce the aliasing probability. The
Built In Logic Block Observer strategy is described as an algorithmic attempt to
transform a typical VLSI design into a structure integrating Built In Self Test
features. The following topic presented in the thesis relates to on-line testing: the
conventional concurrent testing mechanisms, such as those relying on hardware
duplication, error detecting codes or time redundancy are analyzed following the
model of the most authoritative references in the literature. The work also describes
effective concurrent solutions for detecting the faults that cannot be identified using
logic-level fault model, such as those relying on parametric monitoring of the
implementation.

The cryptographic algorithm domain is also presented in the thesis, starting
with a brief description of its development together with the incentives for its
adaptation and further refinement in order to satisfy the current security
requirements. The presentation is focused on symmetric key algorithms, and in
particular on the Advanced Encryption Standard. Besides describing the algorithm,
the exposition investigates also the solutions offered in the literature for
accelerating the encryption and the decryption processes. The culmination of this
section is represented by the high speed AES dual design, capable of executing both
the encryption and the decryption algorithm, whilst reducing the design dimensions
through hardware resources sharing between the 2 operations. The main differences
between the proposed solution and the ones found in the literature are also
presented.

The thesis details the on-line and off-line test solutions proposed by the
author, which, cumulatively protect all elements of the AES algorithm against
defects in general and invasive attacks in particular. The presentation contains a
section dedicated to presenting the testability solutions applicable to AES, as
identified in the literature. This section is followed by the detailed presentation of
two on-line test mechanisms, one for protecting the AES round transformations and
another one for detecting errors in the AES inversion unit, as well as a BIST
architecture for off-line testing, as an alternative solution for protecting the non-
linear operations of the AES.

BUPT

iii

The first test solution belongs to the concurrent error detection mechanisms.
It facilitates identification of the errors affecting any AES round transformation using
parity-based error detection techniques. The proposed architecture was obtained by
refining a basic structure, constructed from the on-line test solutions found in the
literature. The main disadvantage of the basic structure relates to the irregular
parity prediction structure introduced by the ShiftRows operation. This obstacle is
surpassed in the proposed architecture by computing the parity bytes row-wise with
respect to AES’s state matrix. The mathematical details for predicting the parity
bytes for each AES operation are also described in the thesis. One advantage of the
proposed solution relates to its non-invasive structure, being applicable regardless
of the implementation details for the AES round. Moreover the hardware complexity
for predicting the parity for the key generation unit is significantly reduced. The
proposed architecture is compared with the basic design, while the experimental
results reveal its preeminence over the basic one with respect to design’s
dimensions, power consumption and test process latency.

The second test solution detects the errors affecting the 3 non-linear
operations of the AES using non-concurrent self-test mechanisms. A BIST
architecture is constructed, using LFSR units in order to detect every single stuck-at
error. The selection of the characteristic polynomials for the LFSR structures used
for test vector set generation and test response compaction was guided by
simulations. This section investigates also the adaptation of the presented technique
into an off-line test mechanism relying on concurrent monitoring of the protected
unit’s inputs. The experimental results denote a multiple stuck-at fault detection
rate higher than 99.77% for the first BIST architecture.

The last test design introduces an on-line test strategy for detecting
intermittent faults affecting the AES inversion unit. The test process rely on a
convenient mathematical property of the multiplicative inversion in finite fields,
detailed in the thesis, based on which, the sum of any element with its inverse can
be only one out of 128 possible results. This way, the error verification consists in
performing the addition in the finite field between inversion’s input and output,
followed by the verification of the fact that the obtained vector is one of the 128
correct configurations. The experimental results confirm the applicability of the
proposed method for detecting single and double intermittent faults. Moreover, the
adaptation of the presented method into a non-concurrent architecture, allows to
significantly reducing the test process latency to only 4 cycles, as opposed to the
conventional BIST architectures requiring at least 152 cycles and at most 255
rounds, as documented in the previous test solution.

Because of the aliasing probability, the on-line architecture is not suited for
detecting multiple intermittent faults. To overcome this problem, code redundancy
techniques were employed, at the verifier level, by associating the sum between
inversion’s input and output to a signature computed from the input configuration.
For the analyzed solution, a signature computed by spatially compacting the
inversion’s input into 4 bits was used. The newly obtained architecture is capable of
detecting, with a probability higher than 93%, up to 100 intermittent errors. In
order to evaluate the efficiency of the proposed solutions, they were analyzed with
respect to the hardware duplication mechanism, compared to which, the propose
designs have a significantly lower hardware overhead, while still providing a
detection rate higher than 93%.

The thesis concludes with a brief presentation of the results achieved during
the doctoral research program, marking the contributions as well as the future
research directions.

BUPT

iv

REZUMAT

Circuitele integrate cu funcţie de securitate joacă un rol cu o importanţă
crescândă în viaţa cotidiană. În principal, utilitatea acestora se defineşte în contextul
asigurării securităţii informaţiilor sensibile. Printre multele aplicaţii ale metodelor
criptografice se pot aminti: comunicarea sigură în reţele de calculatoare, distribuţia
media în cadrul televiziunilor digitale în sistem pay-per-view, carduri bancare, plaţi
electronice precum şi paşaport biometric.

Atât actualitatea cât mai ales oportunitatea temei de cercetare alese pot fi
justificate aducând în discuţie interesul manifestat de comunitatea europeană
asupra domeniului securităţii. În acest sens, amintim demersurile continue de
finanţare a cercetării colaborative între instituţiile academice şi segmentul industrial.
În acest sens, proiectul Stork, urmat de Ecrypt şi de actualul Ecrypt II,
fundamentează cercetarea europeană în domeniul criptografic, ridicând-o la nivel de
activitate finanţată prin proiecte cadru de cercetare.

Actualitatea domeniului testării in tehnologie VLSI în general şi a
cryptocipurilor în particular, este justificată de interesul acordat ingineriei testării, de
către Asociaţia Industriilor Semiconductoare în rapoartele întocmite periodic de către
acest for internaţional.

Eficienţa facilităţilor de testarea integrate într-un dispozitiv influenţează
direct costul de producţie prin intermediul ratei de defectare. Cunoscând că
înlocuirea unei componente defecte este cu atât mai puţin costisitoare cu cât este
mai rapid identificată în procesul de asamblare a sistemului final, este pe deplin
justificată integrarea unor mecanisme de testare în interiorul designului, care să
permită verificarea integrităţii dispozitivului atat după fabricaţie, cât şi pe durata
exploatării lui.

Problematica testării în contextul dispozitivelor criptografice capăta valenţe
noi. Pe de o parte facilităţile de testarea sunt esenţiale pentru orice dispozitiv
integrat, iar pe de altă parte, sunt absolut esenţiale pentru un sistem vulnerabil în
fata atacurilor. Rafinarea metodele criptanalitice a dus la construirea unor strategii
de atac a sistemelor criptografice dintre cele mai variate: de la metode pasive,
bazate pe analiza informaţiilor oferite inerent de către dispozitivele integrate
(radiaţie termică, radiaţie electromagnetică) până la soluţii invazive, ţintind
modificarea stării interne a circuitului. În acest context, integrarea facilităţilor de
verificare a integrităţii modulelor criptografice devine o prioritate a oricărui design
criptografic. Pot fi alese însă soluţii de testare necorespunzătoare, care să constitue
tocmai punctul de pornire al unor atacuri reuşite.

Aparenta contradicţie între necesitatea integrării facilităţilor de testare şi
vulnerabilitatea pe care o pot introduce, este uşor depăşită luând în considerare
soluţiile de autotestare. Conferind autonomie procesului de testare şi reducând
volumul de informaţii transmise spre exterior pe durata testului, aceste soluţii
îmbunătăţesc securitatea implementării.

Concluzia evidentă a comentariilor anterioare recomanda ingineria testării
hardware ca fiind o disciplină cu oportunităţi şi provocări actuale, semnificative, în
contextul cercetării ştiinţifice.

BUPT

v

În teză, este introdusă tematica modelelor de defecte, prezentate ierarhic în
concordanţă cu nivelele de descriere hardware ale circuitelor digitale. Modelele de
defecte sunt diferenţiate gradual începând cu cele de la nivelul algoritmilor,
continuând cu cele specifice nivelului de descriere Register Transfer Level,
prezentând apoi modelele caracteristice nivelului de descriere logică al circuitelor şi
finalizând cu mai specializatele modele de defecte la nivelul tranzistorilor şi al
substratului semiconductor. Prezentarea investighează de asemenea, posibilitatea
de mapare a defectelor la nivelul tranzistorilor şi al substratului fizic în termenii
defectelor logice. Ipotezele de acoperire a defectelor de nivel jos prin tehnici de
testare specific defectelor stuck-at sunt validate prin simulări la nivelul transistorului
în tehnologie CMOS, utilizând mediul de simulare SPICE. Sunt detaliate şi modelele
de defect de tip bridging şi cele de tip întârziere, specifice tehnologiei VLSI, oferind
o discuţie a metodelor de detecţie a acestora la nivelul logic.

Lucrarea abordează în continuare problematica ingineriei testării hardware,
pornind de la premisele de natură economică asociate procesului de testare.
Strategiile de testare autonomă, utile în asigurarea integrităţii sistemelor
criptografice, sunt detaliate, începând cu metodele de testare off-line, non-
concurentă. Paradigma Built-In Self-Test este introdusă, împreună cu detaliile de
implementare ale unei soluţii off-line caracteristice, aşa cum sunt prezentate în
literatură şi cum sunt implementate practic de către fabricanţii de circuite. Sunt
discutate soluţiile convenabile de implementare a unităţilor de generare a vectorilor
de test precum şi a modulelor de compactare a răspunsurilor, bazate pe elemente
Linear Feedback Shift Registers, împreună cu problemele de selecţie a configuraţiei
acestora pentru reducerea probabilităţii de aliasing. Strategia Built In Logic Block
Observer este descrisă de asemenea, reprezentând o soluţie algoritmică de
transformare a unui design VLSI într-o structură care încorporează facilităţi Built-In
Self-Test. Lucrarea analizează şi strategiile de testare concurenta: mecanismele
convenţionale de testare on-line, cum sunt cele bazate pe duplicarea hardware, a
utilizării codurilor detectoare de erori şi a metodelor redundantei de timp sunt
detaliate, urmărind modelul referinţelor autoritative din literatură. Sunt prezentate
soluţiile concurente pentru detecţia defectele care nu sunt detectate prin modelele
de la nivelul logic sau cel al tranzistorului, cum sunt cele bazate pe monitorizarea
parametrilor fizici ai implementării.

Domeniul algoritmilor de criptare este de asemenea investigat în teză, fiind
oferind un scurt istoric al dezvoltării acestora precum şi modalităţile curente de
utilizare şi adaptare a lor la nevoile de securitate curente. Accentul este pus pe
algoritmi de criptare simetrică, considerând algoritmul Advanced Encryption
Standard. Pe lângă prezentarea propriu-zisă a algoritmului, teza investighează
soluţiile oferite în literatură, pentru accelerarea procesului de criptare respectiv de
decriptare. Culminarea observaţiilor acumulate prin studiul literaturii de specialitate
o reprezintă arhitectura AES duala, capabilă să execute atât procesul de criptare cât
şi pe cel de decriptare, a cărei sintetiză urmăreşte reducerea dimensiunii designului
prin partajarea resurselor hardware comune celor 2 procese, în condiţiile obţinerii
unei viteze de operare ridicate. Sunt detaliate diferenţele notabile între structura
propusă şi soluţiile întâlnite în literatură.

Lucrarea prezintă soluţiile de testare, atât on-line cât şi off-line, propuse de
autor, soluţii care cumulativ protejează toate elementele constitutive ale
algoritmului AES împotriva defectelor în general şi a atacurilor invazive în particular.
Este inclusă o secţiune destinată inventarierii soluţiilor de testare aplicabile
algoritmului AES, aşa cum au fost întâlnite în literatură, şi continuă cu prezentarea a
doua mecanisme de testare on-line, unul destinat operaţiilor rundei AES, iar altul

BUPT

vi

operaţiei de inversie în câmpul Galois, şi a unei arhitecturi BIST de testare off-line,
ca o soluţie alternativă de protejare a operatiilor nelinieare ale algoritmului.

Prima soluţie de testare aparţine clasei de mecanisme de detecţie
concurentă a erorilor. Ea permite identificarea erorilor care afectează operaţiile
rundei AES, bazându-se pe mecanisme de detecţie a erorilor prin predicţia parităţii.
Arhitectura propusă a fost construită pornind de la o structură de bază, proiectată
pe baza soluţiilor de testare on-line propuse în literatură. Dezavantajul arhitecturii
de bază constă în neuniformitatea predicţiei parităţii pentru transformarea
ShiftRows, impediment înlăturat în structura propusă de autor, care calculează
octeţii de paritate transversal, în matricea de stare. Lucrarea prezintă detaliile
matematice de predicţie a parităţii pentru transformările AES. Se remarcă caracterul
non-intruziv al soluţiei construite, permiţându-i să fie aplicată independent de
modalitatea de implementare a căii de date AES. În plus, pentru noua structură,
complexitatea predicţie parităţii în cazul modulului de generare a cheilor de rundă
este semnificativ redusă. Structura realizată este comparată în raport cu arhitectura
de bază, rezultatele evidenţiind superioritatea ei privind dimensiunile designului,
puterea consumată şi latenţa procesului de test.

A doua soluţie de testare urmăreste detecţia erorilor ce pot afecta cele 3
operaţii neliniare ale AES, prin metode de autotestare non-concurentă. Este
construită o arhitectură BIST utilizând elemente LFSR care să asigure detecţia
oricărui defect stuck-at singular. Alegerea polinoamelor caracteristice pentru
structurile LFSR de generare a vectorilor de test şi respectiv, de compactare a
răspunsurilor, a fost ghidată de simulări. În cadrul aceleaşi soluţii este analizată
adaptare tehnicii prezentate prin monitorizarea continuă a intrărilor unităţii
protejate, în vederea identificării vectorilor relevanţi procesului de testare.
Experimentele indică o rată de detecţie a defectelor multiple, mai mare de 99.77%
pentru prima soluţie BIST propusă.

Ultima arhitectură de test introduce o soluţie on-line de detecţie a defectelor
intermitente în unitatea de inversie AES. Testarea se bazează pe o proprietate
matematică convenabilă a operaţiei, demonstrată în lucrare, pe baza căreia suma
între un element al câmpului şi inversul său poate fi unul din 128 de posibile
rezultate. În acest sens modulul de verificare a integrităţii inversiei efectuează suma
în câmpul finit între intrarea şi ieşirea modulului verificând dacă rezultatul este unul
din cele 128 de configuraţii corecte. Rezultatele experimentale indică aplicabilitatea
acestei metodei în detecţia defectelor intermitente singulare sau duble. Adaptarea
mecanismului prezentat într-o arhitectură de testare non-concurentă, permite
reducerea latenţei testului la numai 4 cicluri, spre deosebire de soluţiile BIST
convenţionale, necesitând între 152 şi 255 de cicluri, după cum documentează
anterioara soluţie de testare.

Datorită efectului aliasingului, metoda de test on-line nu este potrivită
pentru detecţia defectelor intermitente multiple. Soluţia la această problemă se
rezuma la includerea redundantei de cod, asociind suma dintre intrarea şi ieşirea
unităţii de inversie cu o semnătură calculata pentru configuraţia de intrare.
Semnătura, în soluţia analizată, este obţinută prin compactare spaţială pe 4 biti a
intrarii. Noua arhitectură obţinută, detectează cu probabilitate mai mare de 93%
defecte intermitente cu multiplicitate de până la 100. Pentru evaluarea eficienţei
structurilor construite a fost considerată tehnica duplicării hardware, faţă de care
designurile propuse au o complexitate semnificativ redusă, oferind în acelaşi timp o
rată de detecţie mai mare de 93%.

BUPT

vii

În încheierea lucrarii sunt prezentate concluziile activităţii de cercetare si
sunt marcate punctual contribuţiile acesteia împreuna cu posibilele direcţii de
continuare a cercetării.

BUPT

viii

ACKNOWLEDGEMENTS

 The work presented in this dissertation represents the culmination of a
concerted effort upheld by its author and augmented by the support he received
from family, teachers and friends. Since it would be impossible to express my
gratefulness individually, to all the people who endorsed, encouraged, sustained or
braced the accomplishment of this thesis, I feel compelled to make a final appeal to
their understanding cordiality. I would like however to express my gratitude to
those who crafted through their unabated efforts my pursuit in completing this
work.
 This thesis would not have been possible without the help, support and
patience of my supervisor, and mentor, Professor Mircea Vladutiu, not to mention
his advices and unsurpassed knowledge of computer hardware design and test
engineering. His ability to help me concentrate on the research topics whilst allowing
me the room to work in my own way constituted the ideal environment for
developing the work presented in this thesis.
 I would like to acknowledge the financial, academic and technical support of
the Politehnica University of Timisoara, and its staff. In particular I would like to
thank the rector of our university, Professor Nicolae Robu for the significant support
provided in order to attend key conferences.

I owe thanks equally to my colleagues at the ACSA laboratory: Lucian
Prodan and Mihai Udrescu. Their proficiency in the field of computer hardware
design, as well as their invaluable assistance in preparing conference articles and
presentations were essential for my work.
 Last, but not least, I would like to thank my family, for their continued effort
to provide me with the best in life. Needless to say, the caring support they
constantly offered helped me surmount the grey moments throughout my studies.
For their unequivocal support my mere expression of thanks likewise does not
suffice.
 This thesis was supported in part by the CNCSIS PNII IDEI 17/2007
research grant.

BUPT

ix

Table of Contents

 Abstract i
 Rezumat iv
 Acknowledgements viii
 Table of Contents ix
 List of Figures x
 List of Tables xii
1 Introduction 1
2 VLSI Faults 4
 2.1 Fault Models at the Hardware Abstraction Levels 7

2.1.1 Fault Models at the Algorithm Level 10
2.1.2 Fault Models at the Register Transfer Level 12
2.1.3 Fault Models at the Gate Level 13
2.1.4 Fault Models at the Transistor Level 26
2.1.5 Fault Models at the Layout Level 33

2.2 Bridging Fault Model 34
2.3 Delay Fault Model 37

3 Test Engineering 39
3.1 VLSI Testing Considerations 39
3.2 Off-line Testing 45

3.2.1 Built-In Self Test 47
3.2.2 Linear Feedback Shift Register 51
3.2.3 Signature Registers 54
3.2.4 Built-In Logic Block Observer 57

3.2 On-line Testing 60
3.3.1 On-line Testing Techniques 64
3.3.2 Self Checking Designs 66
3.3.3 Supplementary Concurrent Checking Mechanisms 71

4 Advanced Encryption Standard 73
4.1 AES Hardware Implementation 76

4.1.1 SubBytes 77
4.1.2 ShiftRows 80
4.1.3 MixColumns 80
4.1.4 AddRoundKey 82
4.1.5 Key Scheduler 82
4.1.6 AES Decryption 83

4.2 AES Architecture 85
5 On the testable design solutions applied to Advanced Encryption Standard 88

5.1 Related Work on AES Testability 88
5.2 Concurrent Error Detection for AES Round 90
5.3 Analysis of Built-In Self Test Applicability for AES Non-linear

Transformations 96
5.4 Concurrent Checking for AES’ multiplicative inversion 101
5.5 Conclusions 107

6 Conclusions 109
 Bibliography 113

BUPT

x

List of Figures

1.1 Cryptographic mechanism hierarchy 1
2.1 Fault propagation 4
2.2 Fault taxonomy 5
2.3 Hardware design abstraction levels 8
2.4 Mapping transistor level defects into stuck-at faults 14
2.5 Stuck-at faults for circuit fanout 16
2.6 Three inputs TTL NAND gate 19
2.7 Undetectable stuck-at faults 22
2.8 Transistor-level CMOS implementation of the function

Z (A B) (C D) E F 25
2.9 Effect of the open fault in Fig. 2.8 at the gate level 25
2.10 CMOS transistor-level faults for a 2-inputs NOR gate 27
2.11 SPICE simulation of the 2-inputs NOR gate from Fig. 2.10 31
2.12 SPICE simulation of the 2-inputs NOR gate from Fig. 2.10 affected
 by the short f6 32
2.13 Bridging fault 34
2.14 Bridging fault fanout 35
2.15 Gate delay fault 37
2.16 Path delay fault 38
3.1 Failure mechanism taxonomy 41
3.2 Rule of ten for integrated circuit repairing costs 42
3.3 Total costs for producing an integrated circuit 43
3.4 Taxonomy of digital testing mechanisms 46
3.5 Built-In Self-Test taxonomy 47
3.6 Off-line Built-In Self Test design 49
3.7 Internal Linear Feedback Shift Register architecture 52
3.8 External Linear Feedback Shift Register architecture 52
3.9 State transition diagram for the internal LFSR in Fig. 3.7 53
3.10 Single Input Signature Register 54
3.11 Multiple Input Signature Register 56
3.12 Built-In Logic Block Observer Register 57
3.13 BILBO test strategy 59
3.14 Self-testing using MISR and parallel SRSG architecture 60
3.15 On-line test mechanism strategy 61
3.16 Hardware redundancy concurrent checking 62
3.17 Duplication code and Two-rail code architectures 67
3.18 Simple time redundancy and Re-computing with shifted operands
 strategies 70
3.19 Conventional BIST architecture 72
3.20 Conventional Scan Chain architecture 72
4.1 Cryptographic primitives 74
4.2 AES encryption algorithm 78
4.3 SubBytes implementation alternatives: lookup table and
 composite field 79

BUPT

xi

4.4 MixColumns–InvMixColumns unit 81
4.5 AES round key generation for encryption and decryption 82
4.6 Straightforward AES decryption algorithm 84
4.7 Modified AES decryption algorithm 84
4.8 High speed AES datapath 86
4.9 High speed AES key unit 87
5.1 Basic on-line error detection strategy for AES round 91
5.2 Proposed on-line error detection strategy for AES round 93
5.3 On-line adaptation for a typical off-line BIST architecture 98
5.4 Error detection rate for 2 stuck-at faults injected into inversion
 unit 99
5.5 Error detection rate for 5 stuck-at faults injected into inversion
 unit 99
5.6 Error detection rate for 10 stuck-at faults injected into inversion
 unit 100
5.7 Error detection rate for 50 stuck-at faults injected into inversion
 unit 100
5.8 Error detection rate for 100 stuck-at faults injected into inversion
 unit 100
5.9 Error detection rate for 250 stuck-at faults injected into inversion
 unit 100
5.10 Error detection rate for 500 stuck-at faults injected into inversion
 unit 101
5.11 First AES inversion module concurrent checking architecture 102
5.12 BIST constructed around the proposed concurrent checking
 Architectures 103
5.13 Second AES inversion module concurrent checking architecture 104
5.14 Detection rate for the first concurrent error detection architecture
 when 1 stuck-at fault is injected 105
5.15 Detection rate for the first concurrent error detection architecture
 when 2 stuck-at faults are injected 106
5.16 Detection rate for the first concurrent error detection architecture
 when 10 stuck-at faults are injected 106
5.17 Detection rate for the first concurrent error detection architecture
 when 100 stuck-at faults are injected 106
5.18 Detection rate for the first concurrent error detection architecture
 when 1 stuck-open fault is injected 107
5.19 Detection rate for the second concurrent error detection
 architecture when intermittent faults are injected 107

BUPT

xii

List of Tables

2.1 Stuck-at faults affecting 2-inputs NAND gate 15
2.2 CMOS transistor-level faults manifestation for the 2-input NOR
 gate in Fig. 2.10 30
3.1 Comparison of test pattern generation mechanisms 50
3.2 BILBO register modes of operation 58
5.1 Area overhead entailed by the on-line parity based error
 detection architectures [μm2] 95
5.2 Power consumption associated with the on-line parity based
 error detection architectures [mW] 95
5.3 Latency entailed by the on-line parity based error detection
 architectures [ns] 95
5.4 Implementation details for the three non-linear AES operations 99
5.5 Area overhead for the proposed concurrent checking methods in
 comparison with the hardware duplication solution [m2] 105

BUPT

1

Chapter 1
Introduction

This PhD thesis describes the research activity carried on as part of the
doctoral program entitled “Reliable Implementations for Cryptographic Systems with
Testability Facilities”. Our work is mainly focused on constructing efficient testing
architectures for cryptographic systems without degrading their security.

The doctoral program addresses the domain of Computer Science, with
emphasis on the Computer Hardware Design and Secure Self Test subdomains,
operating in the field of encryption algorithms and coding theory, the Self Test
endeavor being addressed by implementing effective on-line and off-line test
solutions for Advanced Encryption Standard hardware realizations.

The extent to which cryptography is emerging in evermore aspects of the
digital systems can be understood from the hierarchical representation in Fig. 1.1.
This figure depicts the typical cryptographic techniques together with the integration
and organization of these methods into higher level mechanisms.

The opportuneness of cryptographic research is justified by a growing
interest manifested by the European Union toward this domain, in general, and
cryptographic hardware implementations, in particular. The academic research in
the area of security is advanced to the level of European financed Research
Framework Program. The “STORK” project (Strategic Roadmap for Cryptography)
was the first step [1] in constructing a common research infrastructure and it was
financed through a FP5 program. The next framework program, FP6, included the
“Networks of Excellence” and settled the foundations for “ECRYPT” (European

Figure 1.1 Cryptographic mechanism hierarchy adapted from [2]

Applications: secure email, digital cash, ecommerce, firewals, etc.

Authentication Protocols: SSL/TLS/WTLS, IPSEC, IEEE 802.11, etc.

Security Services: Confidentiality, Integrity, Authentication, Non
repudiation

Cryptographic Primitives: Encryption/Decryption,
Signature/Verification

PrivateKey Cryptography: AES, DES, RC4, etc.

BUPT

2

Network of Excellence for Cryptology) project, started in 2004 as a 4 years project
[3]. The current status of European investment toward this direction is represented
by the “ECRYPT2” project [4] financed through an FP7 program.

The test engineering strategies represent one of the significant aspects of
the semiconductor industry for its current and future development as revealed by
the Semiconductor Industry Association in the International Technology Roadmap
for Semiconductors [5]. The prospects of a sustained technological development,
leading to reduced dimensions for the integrated semiconductors pose new
challenges for testability.

The reason integrated circuit manufacturers consider including testability
features into their digital implementations resorts to reducing product
manufacturing costs. The defect rate represents an important element in this
context. The implications of defect rate into current integration technology are
evident when analyzing the case studies reported in [6] concerning the defect rate
for the current high-end processors such as IBM Power5, Sun Niagara and AMD
Opteron.

For the special case of cryptographic devices, yet another incentive for
including testability measures within the architecture relates to their vulnerability to
attacks and faults. In fact, a design enhanced with a poor testability mechanism is
subject to malicious attacks, as a consequence of its security flaws. The terminology
used by Fujiwara to presents the concept of testability offers a better understanding
for this observation [7]. Testability is defined in [8] in terms of observability and
controllability, referring to the available methods for enhancing the mechanisms by
which one can observe and control the internal state of a device from exterior. This
definition brings about an apparent contradiction between testability and security.
Moreover, the literature contains references reporting the actual damage an
attacker can do when facing a poorly designed testability [9]. One such example is
reported in [10] in which is detailed the process of retrieving the secret encryption
keys, required for unlocking encrypted television channels: the attacker makes use
of an unsecured Scan Chain implementation.

Apart from the concerns associated with testability measures improperly
adapted to the architecture of a security-enhancing system, the semiconductors are
subject to defects as a consequence of their “wear lifespan” [11]. Moreover, after a
system recovery from an attack, because of the techniques employed in order to
circumvent the protection mechanism, the cryptographic module can be subjected
to permanent defects. The fault attacks, aiming to purposely inject errors into the
device, as a result of their invasive nature affect the system permanently. Some of
the fault attack strategies are detailed in [11], [12], [13], [14], [15].

Considering the broad range of factors capable of altering internally a digital
design, and in particular a crypto-system, and taking into account the generic
strategies available for detecting and/or countering their effect, we conclude that a
robust cryptographic implementation equally depends on concurrent and non-
concurrent error detection mechanisms. Whereas the on-line solutions, operating
concurrently with the device, allows for detecting errors manifesting into the most
vulnerable elements of the architecture, the off-line strategies are intended for a
wider specter of the affected modules. The non-concurrent test strategies, as will be
presented, aim to verify correctness of all elements of the design and in
consequence require the system to cease its normal operation.

The effectiveness of the proposed testing solutions is evaluated with respect
to the hardware overhead entailed and the obtained error detection rate. The latter
characterization is one of the relevant parameters for a testability measure, taking

BUPT

3

into account all possible errors scenarios affecting the system. As a consequence, all
fault models are considered when evaluating the fault coverage for a given scheme.
Corresponding to a particular fault manifestation mechanism, the actual detection
rate of the verification scheme is approximated by simulating a finite set of all the
possible erroneous conditions associated with the fault model.

The thesis is organized in 7 chapters. In the following a brief description of
the content for each chapter is revealed.

Chapter 1 announces the domain of the thesis, discussing the domain’s
relevance with respect to other initiatives and research activities similar to our
research.

Chapter 2 introduces the fault models hierarchically, corresponding to the
levels of hardware abstraction. The faults models are gradually differentiated
starting with the defects manifesting at the algorithm level, continuing with the
faults at the Register Transfer Level, further at the logic level of description and
specializing at the transistor and layout levels. The presentation also investigate the
extent to which logic level fault models can be used in modeling or at least covering
lower level defects. Additional fault models, relevant for the VLSI technology are
described, together with their relationship and coverage consideration with respect
to the already presented hierarchical fault models.

Chapter 3 covers the problematic of testing in a detailed manner, discussing
the economic motivation of test. It also summarizes the test challenges foreseen by
leading integrated circuitry manufacturers as the technology is progressing deeper
into the nanoscale era. Off-line test strategy is then introduced together with our
justifications, supported by the field’s literature, regarding the applicability of the
Built-In Self Test approach for the requirements of a secure, autonomous test
environment. The BIST architecture is presented, detailing the test pattern
generation and response compression mechanism based on Linear Feedback Shift
Registers. The notable BIST configurations proposed in the literature are also briefly
introduced. This chapter also explores the on-line testing strategies: the
conventional self checking mechanisms are introduced such as hardware
redundancy, code-based error detection and time redundancy mechanism. Moreover
hardware parameter monitoring is characterized as well as the concurrent
adaptation of the off-line testing schemes.

Chapter 4 examines the cryptographic domain and its applicability in the
face of various existing security challenges. It also presents the AES algorithm in a
greater detail, covering diverse hardware implementation and optimization aspects.
The chapter culminates with the presentation of our high speed AES design.

Chapter 5 begins with a short description for the related work on secure
testable implementation of the AES algorithm, as it is described in the literature.
Apart from the related work, the chapter analyses our original contributions to the
problem of testable design in the context of a high speed AES implementation.

Chapter 6 eventually draws a conclusion of the thesis, marking its
contributions and future work.

BUPT

4

Chapter 2
VLSI Faults

A brief description of the terminology and problematic of VLSI faults is

presented in order to prepare the discussion for introducing the fault models. It also
details the mechanism by which faults manifesting at various locations within a
system are propagated and physically observed within system’s interior or exterior
environment, as the Fig. 2.1 depicts.

In order to properly analyze and devise effective countermeasures against
the effects of the defects potentially affecting a VLSI integrated circuit, the basic
terminology and definitions regarding the hardware dependability issue are
provided. The following brief presentation is compliant with the widely accepted
taxonomy in the domain [16]. Terms like defect, error, and fault describe
incorrectness in a system from various point of views, and although it appears they
can be used interchangeable, their formal definitions reveals differences and
causality relations between them:

 A failure or service failure is encountered whenever the behavior of the
system deviates from its correct functioning. The failure marks a
transition in system’s conduct to a condition in which the structure
doesn’t carry out its intended functionality. The failure is temporally
delimited by the service outage and the service restoration, as the
moments when the system’s incorrect behavior begins and ends
respectively [16].

 The states perceivable by system’s collaborators, out of all system’s
states, are referred to as external states. The system’s service is defined
in terms of all system’s external states. An error is characterized by the
deviation of at least one system state from the correct service state.
From these definitions, it can be observed that there is a causality
relation between the system’s service failure and an error in system’s
states. In other words, the error encompasses those of the system’s
states which may lead to a service failure [16].

 A fault is the “hypothesized caused” of an error [16]. The fault may
constitute an internal or external cause for the error. Usually, a fault will
initially lead to an error in the service state for an internal module of the
system, leaving the external state of the system unaffected. A fault
remains dormant when it doesn’t cause a failure as a consequence of
affecting an external state. A fault is said to be active, when its effect
develops into a failure [16].

A suggestive depiction of the relation between faults, errors and failures is
presented in Fig. 2.1. A subtle distinction can be made between an external fault –

Figure 2.1 Fault propagation adapted from [16]

Fault
activation

Error Failure
propagation causes

Fault

BUPT

5

Figure 2.2 Fault taxonomy adapted from [16]

Faults

Phase of creation

Development faults

Operational faults

System boundaries

Internal faults

External faults

Phenomenological
cause

Natural faults

Human‐made faults

Dimension

Hardware faults

Software faults

Objective

Malicious faults

Non‐malicious faults

Intent

Deliberate faults

Non‐deliberate faults

Capability

Accidental faults

Incompetence faults

Persistance

Permanent faults

Transient faults

BUPT

6

as the fault that manifests at the system’s service interface, affecting system’s
inputs - and an internal fault. The latter is referred to as vulnerability because only
by its presence within system’s internals, an external fault can corrupt the system
causing an error and possibly following failures.

In [16], the faults are classified with respect to various criteria and as a
result the mentioned reference builds a complete fault taxonomy. The faults are
classified in elementary classes graphically depicted in Fig. 2.2. It is important to
note that the proposed classification does not provide any information regarding the
physical or electrical conditions characteristic for the enumerated faults. The
construction of the fault taxonomy allows for a particular fault to belong to more
than a single class. As a consequence, the reference [16] continues with developing
a combined fault taxonomy by evaluating all possible fault category intersections of
the fault classifications. This results in the definition of 31 classes of combined faults
which extend over the development, physical and interaction domains of a system.
The physical domain encompasses all fault classes which specifically affect the
hardware, while interaction domain for example includes the external faults.

The principal merit of the combined fault classification resides in its
importance in outlining and establishing the relevant error detection mechanism
with respect to VLSI testability and in particular considering cryptographic systems’
reliability. The extended fault taxonomy together with the crypto-system’s
specification and its intended operational environment determines the possible fault
context. For example, an important segment of the human-made faults [16] can be
avoided provided that the specifications are correspondingly defined in order to
reduce the possibility of omission faults (failing to perform a required action when
the specific context demands it) or commission faults (wrong actions performed by
the human factor). Human-made faults differentiated by the user’s intent are
classified into malicious and non-malicious faults [16]. The reasoning follows with
distinguishing between those human-made malicious faults that appears during the
development phase which will manifest during the system’s use, and the malicious
faults introduced during system’s operation. Similar arguments are constructed for
each fault category.

With respect to persistence, the faults are grouped into permanent and
transient faults. A continuous and lasting fault is referred to as a permanent fault
[17]. Generally, a permanent fault at the hardware layer marks an irreversible
alteration of the semiconductor substrate. The permanent faults can be addressed
also as hard or strong faults due to their reproducible nature [16]. Transient faults
are determined by temporal environmental conditions [17]. They are referred to as
soft faults, emphasizing the fact that they cannot be systematically reproduced, as a
consequence of being subjected by the environmental context [16]. Yet another
class of faults, encountered in the field’s literature is represented by the intermittent
faults. In [16], the category of intermittent faults cumulatively describe both
transient faults and elusive permanent faults. The permanent faults, that surface as
a result of an unstable hardware or software state (“unstable or marginally stable
hardware” [17], or significant system load) are also referred to as intermittent faults
[17].

The distinction line between intermittent and transient faults requires a
special discussion [17]. The main difference lies in their quality of being repairable:
the intermittent faults being determined by hardware’s physical conditions, defective
design at the hardware or software level or by a mere averse but stable
environment can be repaired by replacing the defective module. In the latter case,
component redesign can be performed in order to compensate for the biased

BUPT

7

environmental context [17]. However, the transient faults can’t be repaired as the
hardware structure is unharmed. Moreover, the momentary character of the
environmental conditions wouldn’t permit compensating for the effects of system’s
ambient.

The following sections undertake the problems of fault and fault modeling
from the point of views associated with the classical development cycle, introducing
the technology dependent defective conditions.

2.1 Fault Models at the Hardware Abstraction Levels

Previous section introduced the fault as the “hypothesized cause” for errors.
The precise physical characterization of the fault is unlikely to be determined or
even required for a particular fault condition, especially for intermittent faults. This
is one justification for the hypothetical nature of the fault’s physical description. The
inherent complexity of analyzing and detecting system’s faults at the physical level
is ameliorated by modeling them at higher abstraction levels. In addition, the
versatility of the hardware description languages in detailing a design at its various
abstraction layers is favorable for modeling system’s faults manifesting at precisely
the same level.

Fault modeling can be viewed as generalizing the real physical conditions of
defects across the abstraction levels for a system [18], [19]. The motivation for this
approach can be identified as being related to conveniently representing the
complex physical faults into a form adapted for faster fault simulation and test
generation. It must be noted that a diametrically opposed approach exists: the
Inductive Fault Analysis, detailed in conjunction with the lower-level layout fault
models.

Some criterions for evaluating the fault model appropriateness are
presented in [20]. Ideally, all of the following requirements should be
simultaneously satisfied for a fault model:

 The fault model should reflect the physical defect with maximum
accuracy

 The model should be able to characterize every possible physical
circumstance

 The fault model should exhibit computational efficiency by facilitating
the fault simulation and test generation.

Unfortunately, given the intrinsic computational intensity associated with the
simulation of semiconductor materials at the physical level and the requirement for
rapid fault simulation for a particular fault model, no defect abstraction was found to
cumulatively accomplish the above requirements. In order to address a wider range
of possible defects, and considering the limitations of each fault model, for the
purpose of testability, several fault models are usually taken into account when
generating the test process. It must be noted that over time the fault simulation,
and test vector generation for the conventional fault models sustained various
improvements as evidence of a continuous effort to ameliorate the trade-off
between fault model generalization and its associated computational effort.

Several fault models were proposed, which can be conveniently structured
according to the typical system development abstractions. A comprehensive list of
the fault models can be found in [21] and [22] respectively. The standard integrated
circuits’ development paradigm detailed in terms of the abstraction levels at which a
system can be described is graphically depicted in Fig. 2.3.

BUPT

8

Figure 2.3 Hardware design abstraction levels

TEST1: if Q[0]=0 then goto RIGHTSHIFT,
ADD: A:=A+M, F:=(Q[0] and M[7]) or F;
RIGHTSHIFT: A[7]:= F, A[6:0].Q:=A.Q[7:1],

COUNT:=COUNT+1;

A Q M

Parallel Adder

Layout Level

Transistor Level

Gate Level

Register Transfer Level

Algorithm Level

BUPT

9

Higher levels assume higher abstraction descriptions in Fig. 2.3: the
algorithm level describes the functionality of the system in the most formal
approach, while the geometric (or the layout) level embeds the system’s logic into
the semiconductor and connection layers. Corresponding to the increasing degrees
of details encounter while traversing from top to bottom the abstraction hierarchy in
Fig. 2.3, the design of an integrated circuit is structured in a top-down approach. A
circuit is constructed in a repetitive refinement process, by adding the necessary
details in order to migrate from a higher abstraction level to the next one. The
higher the level of abstraction the lesser particular implementation details it covers
and the more logic functionality it encapsulate [20]. Moreover the high level design
entities, usually being part of the system’s description in a hardware description
language tend to include the much of the system’s functionality.

When taking into account the possibility of organizing and associating the
relevant fault models according to the level of abstraction, the same top-down
development approach can be adapted to modeling the defective digital systems
behaviors. More specifically, treating the possible faults hierarchically entails
significant advantages regarding the computational effort for testing the circuit [23].
In [tt] is described such an approach of correlating integrated circuits’ design phases
with the testing by differentiating the test objectives according to design’s various
stages.

The benefit of handling the fault models at the appropriate level can be
clearly understood when dealing with the problem of testing for faults at the layout
level. It is almost impossible to check for logic or algorithmic errors at this level and
layer, due to the intrinsic complexity of the layout netlist. A more appropriate
attempt would be to perform a thoroughly verification after the algorithms were
constructed and before moving to the next development phase of system refinement
(Register Transfer Logic). Instead, for the physical level (the geometric abstraction)
a more suitable verification approach would consist of checking only for incorrect
placement of the geometric primitives (conductors, doped regions), the verification
for excess polysilicon or similar rules and constrains characteristic for this lower
level.

As a consequence, the fault simulation and its associated test vector
generation should be performed starting from the highest abstraction level. The
computational effort for fault verification increases with the reduction of the
abstraction degree. For example, it is much less computational intensive to verify
correctness for an algorithm, compared to verifying its physical implementation
[23], [24]. An important observation pertains to the ability of the fault models
addressing higher abstraction levels to cover faults at the lower level. Anticipating
the fault models to be presented, the testing for errors at the algorithm level will
inadvertently address also a portion of the stuck-at faults. This is because stuck-at
faults are handled using an input vector for which the response is checked against
the known correct result. It is easy to understand that some of the test cases or
typical utilization scenarios employed for algorithm validation implies stimulating the
algorithm with those input vectors which would detect stuck-at faults in the
integrated device. Ideally, the fault models applicable to the higher level of the
design hierarchy should be effective in detecting the majority of all possible faults.
For such a scenario, the fault models characteristic to lower abstraction levels are
expected to detect fewer and fewer defects as a consequence of the high fault
coverage assured by the faults modeled at previous phases. In consequence it
seems more efficient to first address faults at the higher abstraction level, evaluate
the coverage of the testing process for the fault models situated at lower abstraction

BUPT

10

levels, and specifically address only the undetected fault at these lower abstraction
layers [23]. Apart from the modularity of this hypothetical approach the speed of
simulation and test generation represent another advantage as the algorithm is
expected to be tested much faster than RTL descriptions, gate-level descriptions and
all the other less abstract levels. However due to the imperfection of the available
models [23] and the complexity entailed by constructing a comprehensive fault
model to incorporate the characterization properties for all relevant fault models, a
high percentage [23] of the possible faults not covered by higher level fault models
remain unaddressed. This observations shows how loosely coupled the available
fault models operate. Another explanation for the disjunctive nature of the fault
models with respect to covering defects targeted by other defect models relates to
the applicability of the test. Algorithm fault models, although being able to address
faults at lower degrees of abstraction, are intended to asses algorithms’ correctness
in order to continue the process of design refinement for the next description level
(RTL in this case). There is a high probability that the test vectors employed during
the behavioral verification are discarded afterwards due to the impossibility of
verifying defects for the design stages not yet reached.

2.1.1 Fault Models at the Algorithm Level

The algorithm level of design operates with system’s specifications, building

the general functionality of the circuit. It does this by incorporating the algorithms
required to perform system’s required functionalities. It is also referred to as the
behavioral description level as a consequence of being the least implementation
specific design stage. The end result of this stage describes the design in terms of a
hardware description language (such as Verilog or VHDL).

The field literature undertake the fault models targeting the algorithm level
in several references such as [25], [26], [27], [28], [29]. In the context of
hardware description languages such as VHDL, Verilog as well as the newer
SystemC and SystemVerilog, the testing for behavioral faults at the first design
stages - algorithm level and Register Transfer Level - is performed using specific
language constructs and is covered by the terminology of hardware description
language test benches.

The possible sources of errors at the highest abstraction level can be
handled using the following conditions [23] :

 For each variable used in the algorithm, its initial value must be taken
into account. Usually variables are implemented using registers, which
can be explicitly initialized with a specific configuration or implicitly by
resetting all of its storage cells. Although the registers materialize only
at the next design phase (RTL), it remains necessary to assure proper
initialization for each variable.

 When dealing with integer values, close attention is required to
distinguishing the unsigned and the signed variables. This distinction
becomes important when extending values over a larger number of bits
and when shifting or rotating operands.

 Another observation regarding algorithm variables, as remarked in [26],
pertains to the situation in which a variable’s value remains “stuck” at
its maximal or minimal value. For example, an 8-bit long unsigned
integer could have its value fixed at 255 or at 0. From the description of
this condition, the ability of higher level fault models to cover lower level
defects became evident. The very description of this defect implies that

BUPT

11

along the design hierarchy at lower levels (gate, transistor or layout
level) a condition determines a line or a bus to remain stuck at a value
regardless of its driving value. At the gate description level such a
situation is modeled using the stuck-at fault paradigm. Another
important observation pertains to the effectiveness of testing for a
defect using a fault model more abstract than the situation requires. For
example, suppose that at the behavioral level the intention is to test for
all possible stuck situations, i.e. verify that a particular variable remain
stuck at any possible configuration. For an 8-bit integer value, it will be
verified against all 256 possible configurations whereas at the gate level,
a maximum of 16 faulty conditions need to be tested for identifying any
stuck condition: 2 stuck conditions for each line. However, at the
algorithm level, by testing for fixed values at domain’s boundary
(maximal and minimal values), these 2 configurations can detect defects
characteristic for lower levels.

 A synchronization dependent operation could behave faulty and be
executed or elude execution independent of the synchronization signal
[23], [26].

 Fault models can be derived for the algorithm’s statements as presented
in [26]:

o For a function call, the returned value can be subjected to the
same defective behavior as a variable, thus checking it for fixed
values.

o In an iterative construct, such as the for instruction, the
operations within the loop could be executed or could be entirely
avoided regardless of the actual value of loop’s condition.

o For a selection control statement such as the switch construct,
the following faulty behaviors should be taken into
consideration: all cases are executed, no case is selected, only
the cases corresponding to the extreme values of the control
variable are selected

o For a conditional statement, i.e. if-then-else construct, the
algorithm execution can encounter the following erroneous
situations: the code expected to execute only for the true
condition is permanently executed, the code associated with the
false value of the condition is permanently executed, the code
associated with the true value of condition is executed when the
condition is false while the true condition determine execution of
the code associated with the false condition.

o For the assignment instruction, the left hand variable remains
unchanged or is changed to the maximal or minimal values of its
range.

A possible shortcoming of the above mentioned fault model relates to their
limited scope in considering the possible faulty conditions, i.e. taking into
consideration only the boundaries, or the extreme values for the domain of a
variable [23]. For example, the possible faulty execution of a loop instruction is
limited only to infinite execution or no execution at all. One motivation for this
limitation is that the model has to be able to practically check the algorithm against
the proposed defective situations. Taking into consideration all the intermediate
values for a variable would make the test unnecessarily long. Although the
possibility to check against some of the intermediate values is recommended, the

BUPT

12

second problem would be to correctly determine the representative value with
respect to loop execution counter. The same observation is relevant for the
limitation of the range of a faulty variable, a returned value of a function, control
statement, conditional statement and assignments.

As already mentioned, the specific faulty situations treated at the algorithm
level for a design and in particular the verification details for the fault models
proposed, implicitly cover defects addressed by lower level fault models. The above
mentioned hypothetic situation in which stuck-at faults are covered by the testing
process associated with algorithm variable’s fault models is relevant in this context.
In fact reference [23] formulate a percentage of almost 85% of the lower level
defects being detected by the algorithm level fault models.

2.1.2 Fault Models at the Register Transfer Level

At the RTL abstraction level (also referred to as functional level), the system

is described as a collection of components. Each component is considered a black-
box, from designer’s point of view. The functionality of each component is described
using high level behavioral modeling constructs. In consequence, the task of
verifying the design can be easily separated for each module because at this level,
the faults at module’s interfaces are not taken into account. The possible defective
behaviors are similar to those for algorithm’s fault models. For example, in the case
of a full adder cell module, the functional verification, when using RTL fault models,
needs to assure that the adder cell computes the sum and the carry out bit correctly
in every circumstance. Because the truth table for this example is of reduced
dimensions, all input configurations can be taken into account. For simple design
modules, such as an adder cell, multiplexer, decoder or any module with similar
complexity, exhaustive testing is preferred because it can detect faults at lower
levels (as will be presented as the N-detect test vector sets methodology). The
number of entity’s inputs determines the complexity of the test simulation which is
why, for more complex modules, the exhaustive test approach is less practical. In a
iterative logic array [23] like the ripple carry adder, the full adder cell is repeated
for a number of times. In consequence, although the number of input configurations
for a 32-bit adder is extremely large for exhaustive simulation, because of all cells
being exact copies of the same basic type, a simple test set composed of 8 vectors
is required for completely testing the design: each of the 32 cells receives the same
input vector, thus requiring only 8 vectors for the cell’s 3 input. For modules, not
manageable using this approach trade-off solutions are presented in the field
literature, capable of reducing the dimensions of the test process by selecting a set
of the inputs observable at one of the outputs [23], or using a more radical solution
of adding new test points to the module, similar to the ad-hoc design for testability
approach with the same name presented in [30].

Concerning the majority of the components, for which fault verification
acceleration techniques are yet to be developed, the test process follows a different
course. It can be said that the majority of the integrated modules are not designed
at the RTL level. Some of the design rationale for current integration process relates
to being able to reduce system’s costs and increase their reliability [24]. Not only
that the integration technology facilitated an ever increasing degree of integration,
but together with the advance of analog and mixed signal design paradigm, the
diversity of the modules capable of being integrated expanded rapidly. The
complexity of the underlying structure for current integrated circuits can range from

BUPT

13

that of an microcontroller to that of a DSP incorporating blocks as diverse as
memories, PLLs, analog-digital converters [24] to name only a few.

The testing approach for complex integrated systems requires a different
handling, as reference [24] emphasize, due to the intractability to the lower design
abstractions (transistor-level). Notwithstanding the clear advances in computing
power and simulation tools, the fault simulation at the discrete level of transistor
fault models is not feasible. In consequence the testing requirements are
segmentalized and dispatched to each of the system’s component blocks. The
smaller components can thus be more thoroughly verified and involving a modest
computational power. Because the components describes parts of the final
architecture (compared to code blocks or procedures, involved with algorithm level
descriptions), these components are described by RTL entities, requiring specific
fault modeling at this level. It is evident that such an approach is favorable with
respect to test generation tractability and design modularity, especially when
considering using third parties specially designed IP cores, extensively tested by the
provider, and accompanied by the test vectors. However, this segmentation
approach raises some problems regarding the interface between system’s
components and the unpredicted inter-component interaction faults, which would
have been treated by a system-wise simulation. Nonetheless, it is considered [24]
that many of the effects of faults modeled at the switching network level can be
mapped into characteristic behaviors (or fault models) at the functional level. In
other words the complexity of lower level simulation is delegated to the more
abstract levels. Only after the correspondence between lower level faults and their
specific manifestation at the RTL level was established, the test pattern generation
can proceed. Needless to say, the mapping between the specific low level fault
manifestation and the defective behavior at the functional level is technology
dependent, meaning that the process needs to be repeated for each integration
technology.

A typical use of functional fault models is for testing RAM modules [24]. The
results presented in reference [24] reveal that the majority of all faults related to
the memory’s decoder and read-write logic can be effectively addressed in terms of
faults at the memory’s cell level, which can be detected by functional fault models.
The defective situations can be modeled as stuck-at faults at the gate-level or short
(coupling) faults at the transistor level. Although this modeling is performed in
terms of the gate-level fault models and transistor’s fault models, the test process
which detects the faults uses the RTL description. It is easier to understand the
mobility of the fault models at various levels when realizing that a fault at a lower
level has influences at higher levels as well. The fault testing at the functional level
of those defects modeled at lower abstraction levels was proposed and used, with
literature references of RAM functional modeling such as [31]. There are similar
reports dealing with fault modeling for complex designs, such as microprocessors, at
the functional level [32].

2.1.3 Fault Models at the Gate Level

The gate level, also referred to as the logic level, describes the design in

terms of primitive Boolean operators. Each constituent modules of an RTL design is
described in terms of these primitives. The logic level allows expressing the behavior
of system components using Boolean relations. Moreover, the computation of the
test vectors is facilitated by the ability to express module outputs using Boolean

BUPT

14

a b
Figure 2.4 Mapping transistor level defects into stuck-at faults

equations [24]. It is the final stage of the design which remains technology
independent. The fault models and the test vectors generated at this level are
portable across implementation technology. The gate level fault models were
introduced early into the development of integrated circuitry: the circuit’s reduced
complexity and integration scale permitted to formulate the simplifying assumption
that any fault condition will influence at least one variable of the Boolean equations
(each wire correspond to a variable in the Boolean equations describing the circuit),
yielding a faulty response [24].

The actual issue for the logic level fault models relates to mapping the lower
level faults into faults at the gate level. A brief graphical representation of how the
gate-level stuck-at fault model is interpreted at the lower abstraction levels is
depicted in Fig. 2.4. In fact the stuck-at fault model is illustrated by the general
condition in which a wire connecting two gates of the design is interrupted and
instead the severed connector stuck to either the ground or the power line potential.
For example, the fault affecting the input B of the NOR gate in Fig. 2.4a, is
translated at the lower level, as the Fig. 2.4b depicts, into an open affecting the line
 and a short to the ground of the N2 MOSFET transistor’s gate electrode, denoted
as in the figure. Although such a situation can occur, it is not the only one that at
the gate level manifests as a stuck-at fault, as this section reveals. However such
inter-level correspondence needs to be performed for each technology individually.
Apart from the technology independence of the model, the cardinality of the possible
fault set is significantly reduced: considering the NAND gate in TTL technology,
depicted in Fig. 2.6, at the switching level, the number of faults depends on the
number of failing mechanisms for each of the 9 elements of circuits in Fig. 2.6, as
will be presented later in this section, whereas when modeling the design at the
gate level, the failing mechanism reduces to a maximum of 6 gate terminals errors.

The stuck-at fault model represents the most used gate-level defect
modeling tool. It owes this widespread due to its simplicity and intuitive behavior. It
was first introduced by Poage in 1963 [24] and is widely used collectively both in

A

B
ZStuck-at-0

A

VDD

B

GND

Stuck-at-0
Z

N2 N1

P2

P1

BUPT

15

academia and in industry together with other gate and switch level fault models.
Because the perspective from which it describes defects remains technology
independent the faults are considered to originate in the gate interconnections, from
which its name – stuck-at or stuck-line fault. The advantages of this fault model can
be summarized as follows:

 it can model many faults at the transistor and layout level [22].
 independence of the integration technology

o the constructed test vectors for detecting stuck-at faults can be
reused regardless of the integration technology

 the ability to detect unmodeled faults when the test vectors were
generated as N-detect vector sets [33]

 the speed of fault simulation and test vector generation
 the abundance of automated tools for generating the test vectors, both

commercial and academic [24]

Inputs Output (Z)

A B
Fault-
free

A
s-a-0

A
s-a-1

B
s-a-0

B
s-a-1

Z
s-a-0

Z
s-a-1

0 0 1 1 1 1 1 0 1
0 1 1 1 0 1 1 0 1
1 0 1 1 1 1 0 0 1
1 1 0 1 0 1 0 0 1

Table 2.1 Stuck-at faults affecting a 2-inputs NAND gate

Table 2.1 details the defective behavior for a 2-inputs NAND gate when a
single stuck-at fault affects the gate. It depicts comparatively the gate behavior for
the fault-free circuit and for all 6 possible stuck-at faults. The colored cells mark the
deviation of the defective circuit’s response from the correct output. The table
reveals the mechanism by which the fault is identified: in this example each stuck-at
condition is recognized by stimulating the circuit with at least one input
configuration, referred to as input stimuli or test vector. The stuck-at-0 affecting
output Z can be detected by more than a single test vectors while a particular test
input configuration can detect more than a single defect such as the input (A=1,
B=1) capable of revealing A and B stuck-at-0 and Z stuck-at-1 defects. This
observation will be further capitalized upon when dealing with test generation
acceleration techniques. As the previous example reveals, for each line of the circuit
there are two possible faulty conditions stuck-at-1 and stuck-at-0. At the gate level
their presence is described as forcing the affected line to remain at the respective
logic level regardless of gate’s input stimuli.

When dealing with typical gate interconnection networks it is important to
take into consideration the various locations at which stuck-at faults can occur, and
the associated implications. More precisely, every fanout branch is considered as a
different wire apart from its driver. For example, in Fig. 2.5, the driver (the output
of the NOR gate) is directly connected to its fanout branches: the input of the
NAND gate and input of the XOR gate. A stuck-at fault affecting determine the
faulty value for and rendering the NAND and XOR gates’ output erroneous,
whereas when a stuck-at fault affects the input of the NAND gate, the XOR gate’s
output remain unaffected. The same applies for the input. It follows that each

BUPT

16

Figure 2.5 Stuck-at faults for circuit fanout

terminal of a gate needs to be accounted separately for fanout branches when
evaluating the possible circuit location where stuck-at faults can manifest. The only
simplifying condition remains when the output of a gate drives a single input.

The number nStuck-at of the lines of a design that can be affected by the
stuck-at faults is computed based on the fanout for each driver. In a circuit, both
the primary inputs of the circuit and the outputs of each gate represent drivers. The
approach presented in [22] for determining the number of wires takes into account
a parameter fi for each gate representing the number of other gate inputs
commanded by the respective gate output. Considering the design D, consisting of
ND gates, referred to as gi, with i=1..ND, we define the function w(gi) representing
the number of wires associated with each gate gi. Function w(gi) is defined in terms
of the gate gi’s fanout fi: for a fanout of 1 w(gi) is 1, while for a fanout fi>1, w(gi) is
fi+1. The number of lines nStuck-at, which can be affected by the stuck-at faults is
expressed in (1) according to the approach in [22].

i

Stuck at i
g D

n w(g)
(1)

In terms of the circuit simulation, the stuck-at defective condition is easily

handled by converting the affected gate into a simplifying Boolean primitive. For the
case of a NAND gate, as reported in Table 2.1, if affected by a stuck-at-0 on one of
its inputs, the entire gate will be replaced with a connector to the power line
because a 0 forced unto a NAND gate input will set the output to 1. If a stuck-at-1
affect the A input, the NAND gate can be reduced to a simple inverter: the inverter’s
input consist of the NAND gate’s unaffected input. Similar circuit simplifications can
be performed using elementary Boolean equations. Moreover the circuit reduction
needs to be performed iteratively in order to incrementally reduce the circuit. For
example if a stuck-at-0 affects the NAND output, the respective NAND gate can be
entirely removed together with all its drivers not commanding other gates. Because
NAND gates output remain fixed at the logic value of 0, this will determine further
simplification and possible further reductions (if the element driven by the NAND’s
output are also NAND or AND gates).

With respect to the fault multiplicity, single stuck-at fault model and multiple
stuck-at faults model are defined. Whereas the faults modeled at the functional or
architectural level usually account for defects spread across multiple lines (a
variable stuck at the maximum domain’s value or the incorrect results of an adder)
at the gate level a distinction is made between single and multiple affected lines.
The single stuck-at faults can be detected using one of the numerous algorithms or
CAD tools available. There are, as already said, algorithms (such as the D-

BUPT

17

Algorithm) which guarantee that a test vector is generated for a fault if the fault is
detectable. However, the restriction that a component is affected by single stuck-at
faults represents a simplification not entirely justified in the context of VLSI device
failing mechanisms.

The complexity of the entire system can be conveniently decomposed and
assigned correspondingly to system’s component, but in order to detect a fault, the
component’s input needs to be controllable and its outputs to be observable for the
test process to effectively identify it. This requirement can be met by conveniently
extending the design with testability measures [34]. However these mechanisms
will increase device’s complexity by widening the accessibility of the system, and
additionally, a more complex design implies higher risk of faults.

Because every gate of a system is susceptible to being affected by defects,
and especially as a consequence of increased complexity, multiple defects modeled
as stuck-at faults can simultaneously influence the device. In a design with n
connection lines that can be affected by the stuck-at faults there are 2n distinct
single stuck-at faults because in a this scenario each terminal of each gate can be
either stuck-at-0 or stuck-at-1, but because only one defect can manifest at a given
time there are 2n distinct conditions. When considering multiple stuck-at faults, for
the same design, there are a total of 3n-1 distinct fault situations. This result is
obtained as follows: every terminal of a gate can be in one of three possible defect
states, namely being affected by stuck-at-0, being affected by stuck-at-1, or being
fault-free; accounting for all the n wires into the design, there are 3n distinct states
out of which one state is fault-free.

The exponential growth of the number of different multiple stuck-at fault
configurations, compared to the linear increase of the total number of single stuck-
at fault conditions represents an important disadvantage for the multiple stuck-at
fault model. Although the single stuck-at fault model does not address the 3n-2n-1
possible defective situations there exist, however, some motives justifying the
relevance of the single stuck-at faults for most of the unaddressed multiple fault
conditions:

 The device can be partitioned in discrete components and in
consequence the extent to which multiple stuck-at faults can manifest is
considerable reduced. In fact the immediate result of circuit
segmentation is the reduction in the number of lines that can be
affected. Moreover, the probability that multiple stuck-at faults would
cluster together in the same region of the design is reduced compared
to the probability of disparate stuck-at faults. In consequence for
smaller components the probability of multiple stuck-at faults and
especially closely located multiple stuck-at faults is smaller.

 When using a “frequent testing strategy” [22]. This approach increases
the frequency of the test procedure in order to prevent the
semiconductor substrate to develop faults. The premise is that when the
interval between two consecutive tests is small enough the probability of
multiple faults (at least 2) to develop is reasonably small.

Regarding the second justification however there are situations in which
multiple faults can appear concurrently into the design such as:

 Attacks circumstances in which a malicious user attempts to circumvent
some of the device’s function. For example, when developing a crypto-
system the designers need to take into account the fault attacks in
which attackers deliberately induce faults into the design. Not knowing
precisely the affected location within device’s internal structure, the

BUPT

18

attacker usually injects multiple errors and operates the erroneous
results using differential cryptanalysis in order to retrieve sensitive
information. The field literature contains references describing
mechanism for injecting defects into integrated circuits [11], [12], [13],
[14] and [15].

 Another possible situation in which the device can be subjected to
multiple stuck-at faults in between two consecutive test processes
relates to the peculiarities of integrated circuits failing mechanisms: as
reference [22] confirms, and the following sections reveals, there are
fault conditions at the physical level, which manifests as multiple (at
least 2) higher level defects.

 Multiple faults can be present in a design before its production test. An
important percentage of the manufactured devices are defective and
thus discarded. After the manufacturing is completed extensive test are
performed in order to verify devices’ correct behavior. In such
conditions, it is to be expected that more than a single defect to be
present in the design.

There are literature references that exclusively treat the single fault models
(stuck-at fault model as well as other fault models: stuck-on, stuck-open). Such an
example is reference [35], dealing with two-rail code checkers. Apart from the
simplified conditions required for analyzing the checker’s self-checking property and
effectiveness in detecting gate-level and transistor-level defects, the reference takes
into consideration the assumption that the single faults’ distance in time is
sufficiently large as to allow the checker to finalize a codeword verification cycle.
Similar approaches (also referenced in [35]) regarding the single faults assumption
are [36] and [37]. However, references [22] and [24] assert that the multiple
stuck-at faults are often easier to detect. The multiple defects are more probably to
trigger an erroneous response detectable by single stuck-at fault tests [24].
Reference [22] concludes in this aspect that “in most cases, a multiple fault can be
detected ”. This observation, however, applies only for non-concurrent testing
mechanisms.

As with the faults at the higher abstraction levels, it is important to evaluate
the degree of coverage the stuck-at fault models offers for faults manifesting at
lower levels. The ability of stuck-at fault model to cover real defects is relevant
because many of the higher fault models were described in terms of the stuck-at
fault model as already presented in the previous sections. When treating transistor
level faults, however, the technological factor gains importance.

In the following the mechanisms by which faults at the TTL and CMOS
transistors level are modeled by the stuck-at defects will be presented. For the 3-
input TTL NAND gate depicted in Fig. 2.6, the majority of the physical faults
affecting any of the integrated components are detectable by means of the stuck-at
fault model.

The manifestation of a low level fault at the gate level offers insights
regarding the effectiveness of the stuck-at fault model in covering physical defects.
A close analysis reveals the following observations [23]:

 If the resistor R1 is affected by an open defect the circuit output behaves
as influenced by a stuck-at-0 fault.

 The comportment at the gate level of an open affecting any of the R2,
R3, D1 or D2 elements cannot be modeled as a stuck-at fault and thus
such a fault is undetectable using only the stuck-at fault model.

BUPT

19

Figure 2.6 Three inputs TTL NAND gate adapted from [23]

 For transistors T1, T2 and T3 an open emitter manifests as the respective

input would be stuck-at-1, while a disconnected collector or a collector-
emitter short manifests as a stuck-at-0 on Z. Still, disconnected base
and collector-emitter short are undetectable in terms of the stuck-at
model.

 The base-emitter short defects for T1, T2 and T3 don’t behave as stuck-at
faults. However these defects are detectable when considering the
stuck-at-1 defect for each of the 3 gate inputs.

 Defects of T4 such as disconnected emitter, collector or base and
shorted base-emitter junction behaves as stuck-at-1 output. The
collector-base short and a collector-emitter short manifests by forcing
the output at the 0 logic value.

The presented scenarios are intended to justify the effectiveness of stuck-at
fault in modeling faults at the TTL physical layer. The majority of the integrated
elements’ faults can be detected when testing the circuit (the NAND gate in this
case) against this fault model. Not all of the detectable defective conditions actually
maps to a stuck-at defect. Such an example is a base-emitter short for T1. However,
when testing the circuit against stuck-at-1 for the input A, the defect is revealed. Of
importance are the undetected defects. For example, if R2 is disconnected none of
the gate’s ports remain stuck; however, the response of the gate is delayed.
Specific fault models were constructed to reflect such behavior, otherwise correct
from a strictly logic point of view, but considered defective when taking into
consideration the gate’s latency.

Regarding the mapping of CMOS transistor level defects to the stuck-at fault
model, we consider the NOR gate depicted in Fig. 2.4. A first observation pertains to
the simplicity of the circuit compared to the TTL technology represented in Fig. 2.6.
The defects that can affect a CMOS gate can be structured using an approach similar
to the one used for the TTL technology faults. Mainly, for each transistor, there are
six possible defects to be taken into consideration:

 Three open defects, one for each terminal
 Three short paths: gate-source, gate-drain and source drain

A

B

C

T1,T2,T3

R1 R2 R3

D1 D2

GND

VCC

Z

T4

BUPT

20

The short defect conditions are characterized by the presence of an
additional resistive path between the respective nodes, allowing the current to
bypass its correct flow and follow the defective path. The gate-source and gate-
drain conditions are referred to as gate oxide short defects [24], [38].

It is generally accepted that a gate oxide short does not necessarily modify
the behavior of the circuit at the logic level; however it modifies it at the parametric
level. Such defects usually affect the quiescent current or IDDQ, modify the nodes’
voltages or induce delays. The IDD current for the circuit’s quiescent state [39], [40],
[41], [42] is a measure of the circuit’s consumed power. For a resistive short in the
design, the voltage between the shorted nodes increases the IDD current. The
difference between the IDDQ current for the correct integrated device and the
defective device is sufficiently large in order to detect the faulty one [42].

Moreover due to the degradation of the fault over time the defect initially
not affecting the logic functionality of the circuit can end up by altering its
correctness. Whereas it is important to detect the fault when it modifies correct
functioning, it’s even more important to detect a device for which the fault is
degrading in time by shifting its effects from a timing related problem to a logical
fault. The early detection of such conditions assures system’s reliability. The fault
manifested at the logic level can be easily identified after manufacturing using the
stuck-at fault model whereas a latent logic defect as the gate oxide short requires
parametric testing for fault detection and stress testing for accelerating the
degradation process.

In some conditions however the gate oxide shorts determine at the gate
level a behavior easily identified by stuck-at tests. More precisely, dependent on the
actual resistance of the short, the gate oxide short can influence the output’s
potential to such an extent that the fault is discernable at the logic level. It must be
noted that stuck-at fault models for gate oxide shorts doesn’t guaranty fault
detection in any circumstances. For this cause the presented literature references on
gate oxide shorts recommend a single stuck-at test process with 100% fault
coverage needs to be complemented with an IDDQ test.

With respect to the source-drain shorts, the same observation stands
regarding their nonobligatory logic level manifestation. If transistor N1 of the Fig.
2.4 is affected by this fault, and if the resistance of the short is considerably lower
than the equivalent resistance of the P1 ad P2 transistors, both conducting, the
potential of the output when applying the inputs (A=0, and B=0) will remain fixed at
the lower level. In consequence a stuck-at test for the Z stuck-at 0 will detect this
faulty condition [24]. However, due to the extremely small on-resistance of the
MOSFET transistors, the conditions of this scenario are not easily met. Similarly a
short between the drain of transistor P2 and the source of transistor P1 causes the
output to remain stuck-at 1 provided that the resistance of the short is lower than
the resistive path from the output node to the ground potential. When both N-
MOSFET transistors are conducting, their equivalent resistance is smaller than the
on-resistance of each of them separately and as a result this defect is less probable
to be detected when stimulating the circuit with the input vector (A=1, B=1) than
for the case that only one input is at logic 1, such as (A=1, B=0). This situation
makes the short fault detectable by either A stuck-at-1 or by B stuck-at-1. However
none of the two stuck-at defects can actually model the defect but they can detect
it. If the transistor P1 is affected by a source-drain short, the fault cannot be
modeled using the stuck-at fault paradigm. For the inputs (A=1, B=0), transistor P2
is in the active regime, N1 is also in the active regime. The short resistance
connected between VDD and the source of P2 together with the resistance of P1 which

BUPT

21

is saturated and the resistance of N1 determines a resistive divider. Although the
specific transistors’ characteristic parameters and the short’s resistance are able to
shift the potential of the output, as our experiments presented in the following
section reveal, the fault usually remains undetected by means of stuck-at fault
tests. The quiescent current analysis however will indicate significant information
because of the current increase for the case (A=1, B=0), which allows to establish
an otherwise impossible path from VDD to the ground (the short resistor, transistor
P2 and transistor N1). The potential established at the output cannot be predicted
exactly; however an objective characterization of the condition can be obtained by
analyzing the output of the gates connected at the affected node. This analysis is in
turn performed by evaluating the logic levels at the output (similar to the evaluation
of stuck-at defects), by taking into account the following gate’s correct response. If
the next gate’s output value is set correctly the defect is undetectable, whereas an
incorrect output value is the evidence that the potential of affected gate’s output
was incorrect. Similar analysis can be performed for source-drain short on the
remaining transistors. When addressing the open defects of CMOS circuits (for each
of the source, drain and gate terminals), the stuck-at model is unsuitable for
detecting them.

Regarding the test vector generation, the ability to detect a stuck-at fault is
related to the concept of accessibility of a node of the tested structure. The concept
of accessibility is defined in terms of observability and controllability. In order to
detect a node that remain fixed at either 1 or 0 logic, the test process is required to
stimulate the fault location by trying to set at that node the complementary logic
value. For a stuck-at-0 fault, the input variables are required to establish at the
node the high logic value and if this scenario is feasible for the particular structure
of the circuit, it is called 1-controlable [43]. The same rational can be applied for
defining the 0-controlability.

In order to properly detect the defect, the logic value at the affected node
must influence the result at the output lines. This concept is referred to as
observability, and allows the internal logic value at a node to be revealed at the
outputs. This is not merely a property of the circuit, but requires specific
computation for constructing the appropriate input vector so that the logic values of
the other circuit components to not mask the value of the node of interest on the
path to the outputs. The process by which an input vector propagate the logic value
at a particular node in the circuit to the outputs allowing the respective node to
directly influence the result is known as path sensitization [43]. In fact, for the
combinational networks, the above mentioned requirements, of controllability and
observability, or collectively known accessibility, need to be simultaneously
accomplished in order to detect a fault.

Based on the conditions requiring controllability at a particular node and that
node’s observability at the outputs, a set of input vectors can be determined, each
of which being able to detect the fault. The input vectors are expected on one hand
to force the complementary logic value at the suspected defective location by
conveniently activating the required paths from the inputs to the locations - these
paths are also referred to by the concept of fault cones [21], or logic cones [44].
The same input vector will facilitate the path sensitization from the faulty node to at
least one output. By comparing the logic response at output against the response
offered by the correct circuit, a stuck-at fault affecting the suspected node is
detected. Because of the possible multitude of input and output activation paths,
one input vector can be suited for detecting more than a single defect. In

BUPT

22

Figure 2.7 Undetectable stuck-at faults adapted from [43]

consequence, the test generation process is required to select the minimum number
of input vectors, capable of detecting all stuck-at faults (for 100% fault coverage).
Well established algorithms were developed for finding the input vectors which
assure detection for each stuck-at fault. The process of vector generation and
minimal input vector set selection is performed in many commercial and academic
tools, such as ATALANTA [45].

However, there are circuit conditions which prevent a node to be
controllable from the device’s inputs or observable at the circuit’s outputs. Such an
example is depicted in Fig. 2.7. Suppose the circuit is affected by the fault
manifested as stuck-at-1. This defect cannot be detected because a proper input
vector to stimulate it cannot be constructed. The controllability requirements
demand for an input test vector to establish the logic value 0 at the location in
order to observe the supposed incorrect logic value at by inspecting the outputs.
However, this is not possible because of the circuit structure: more precisely, a
closer look to the equation of line reveals, after Boolean reduction, that its value
is permanently 1 for the fault-free circuit, and thus it is impossible to command it to
0. This is a case of undetectable fault due to missing 0-controlability for location .
Similarly, the observability of a node to the output can be hindered by circuit’s
structure. For the same circuit in Fig. 2.7, a stuck-at-1 defect affecting line cannot
be observed at the outputs and thus cannot be detected. Although this defect can
be controlled from circuit’s inputs (X1=0, X2=1), no path from the line to the
output Z is available. Actually, because of the circuit structure, both paths for
sensitizing to the output present a masking effect. This is because a test vector is
expected to generate different output for the fault-free and the faulty conditions. In
fact the XOR gate input is (1, 0) in the fault-free case and (0, 1) in the defective
situation. As a consequence the output is 1 for both scenarios rendering the fault
impossible to observe and thus detect. The circuits which contain location
undetectable for stuck-at faults are said to be redundant [43].

With respect to the size of the possible stuck-at faults, we already computed
the number of all possible stuck-at location using equation (1). However, with
respect to the test generation problem, the computational effort can be significantly
accelerated when avoiding unnecessary computation. For example, considering the
NOR gate from Fig. 2.4, we can observe that any input vector (which is actually a
singular pattern) that detects a stuck-at-1 condition for one of the inputs, also
detects the stuck-at-1 fault for the other input and the stuck-at-0 condition for the
output. As a consequence, the concept of fault equivalence was introduced in order
to condense the number of stuck-at conditions required to be addressed for
attaining full fault coverage. It follows that two stuck-at faults are said to be
equivalent if and only if, the circuit, being affected by each of them, has identical

X1

X2

X3

Z

BUPT

23

output functions [21]. For the NOR gate, each of the stuck-at-1 conditions for the 2
inputs and the stuck-at-0 for the output are equivalent. The direct consequence is
that for an n-input NOR gate out of the 2(n+1) possible stuck-at faults the test
process will take into account only n+2 faults: n+1 for stuck-at-0 of each input for
which the test vectors also cover the stuck-at-1 of the output and the last fault
which covers any stuck-at-1 for inputs and the stuck-at-0 for the output. The
process of eliminating the redundant faulty conditions is referred to as fault
collapsing [21]. As a consequence by eliminating the equivalent faults from the set
of all possible faults, the equivalent collapsing set of faults is obtained [21]. It
involves characterizing each primitive gate in terms of the so-called fault equivalent
classes and selecting a single fault condition for each class as relevant for the test
generation process. The same rational can be followed for the other primitive gates:
after identifying the equivalent faults. Although not a primitive gate, the EXCLUSIVE
OR operator, due to its linearity, has fault equivalent classes formed of only of a
single defect. As a consequence the fault collapsing doesn’t reduce the number of
defects needed to be considered for this type of gate. A detailed description is given
in [21] with respect to the equivalence classes for each of the primitive gates
including the inverter, as well as for the typical structures such as fanout nodes and
the simple connection lines.

Another observation pertains to the extent to which a fault modifies a
circuit. Considering the same NOR gate from Fig. 2.4, it is evident the difference in
detectability for a stuck-at-1 influencing the output of the gate and a stuck-at-0
affecting any of its inputs. It can be observed that while output stuck-at-1 can be
detected using any of the 3 possible input vectors (A=0, B=1), (A=1, B=0), (A=1,
B=1), the test vectors that detects an input stuck-at-0 detects also the output
stuck-at-1. This situation is different than the fault equivalence and is called fault
dominance [21]. A stuck-at fault f1 is said to dominate the stuck-at fault f2 if all test
vector detecting f2 also detect f1. In other words the fault f1 is covered by at least all
the test vectors covering f2, possible by others also. The dominating faults are
further eliminated from the equivalence collapsing set in order to accelerate the
testing process. Following a similarly rationing process for the other primitive gates,
it can be deduced that for an n-input gate there are only n+1 stuck-at faults needed
to be taken into account in order to obtain a full coverage test set. For the NOR gate
in Fig. 2.4 the minimal set of the n+1 relevant faults is composed of 2 stuck-at-0
faults for the two inputs any of which also detecting the stuck-at-1 output and the
stuck-at-1 for any of the two inputs. In [21] is also presented the checkpoint
theorem which, by using the observation already discussed, compute the minimum
number of connection lines required to be analyzed for stuck-at faults so that a fully
covering single-fault test vector set to be obtained.

Some of the shortcomings for the stuck-at fault model were already
mentioned. Despite its universal use, simplicity in simulation and test vector
generation, a circuit for which the test process fully covers all single stuck-at faults
is not guaranteed to be fault-free.

One problem of the model is its inability to neither model nor detect all
open-faults for the gates designed in the CMOS technology. If none of the N-
MOSFET or P-MOSFET transistors set the potential on the gate output, the output
holds its previous value, this situation being referred to as high impedance. This
observation is conveniently used in “data storage and discrete signal processing”
[24]. Moreover, the high impedance property represents the premise for a design in
which a line can have more than a single driver. It is usually the case for a system
bus for which multiple sources can establish its value. However, when the open is

BUPT

24

the result of a fault, at the gate level the condition is expected to be detected,
which, using stuck-at model cannot be accomplished. Further details regarding the
detection strategy are offered in the following section.

Secondly, the stuck-at fault model cannot accurately describe all possible
short defects. As already presented some of the short defects, can be detected
using the stuck-at fault model. However, for the short defects not addressed, an
appropriate detection mechanism is required.

As observed in [24], [43], [46] the circuit description at the gate level and
the circuit representation at the transistor level are topologically different. At the
transistor level there are connections lines which cannot be represented in a gate-
level description. Although the reverse case is also possible – namely, having lines
at the gate level not required at the transistor level – the former situation is more
important with respect to the fault conditions because of the lower level defects
unable to be modeled or detected by the gate level faults models. An example can
illustrate this observation: the gate level description doesn’t represent the power
and ground lines for each gate. An open affecting either of the two lines translates
to a fault which cannot be modeled using stuck-at faults, although such a situation
can be detected.

Faults in CMOS integrated devices at the transistor level can also modify the
implemented function rather than forcing a connection line to remain at a specific
logic value [46]. As a consequence, the very fundamental assumption that the gate
level description of the circuit is an abstract view of the transistor level structure
becomes inexact for such a scenario. In order to understand this situation we
consider the transistor level implementation of the function

Z (A B) (C D) E F graphically depicted in Fig. 2.8.

Let the connection be affected by an open fault causing the two pairs of
N-MOSFET transistors to be separated. The behavior at the gate level of the circuit
affected by the open fault is described by a new structure which implements the

function faultyZ (A B) (B C) (C D) E F . The analytical expression for the

function implemented by the faulty circuit in Fig. 2.8 was determined
experimentally: the defective design was analyzed using the SPICE simulator. For
each input configuration the voltage at the Z output obtained through simulation
was converted into logic values while taking into consideration the technology
factors (the MOSFET transistor model, the VDD voltage and the threshold voltage)
and from these the Boolean expression for the faulty circuit was derived using the
ESPRESSO logic minimizer. In Fig. 2.9a is represented the gate level abstraction of
the circuit in Fig. 2.8 without the defect while Fig. 2.9b depicts the gate structure
which models the behavior of the same circuit when affected by the open fault.
The problem with CMOS defects that change the implemented function is that,
although the correct value of the output is known (computed using the structure in
Fig. 2.9a) the locations susceptible to stuck-at faults are unknown as a result of a
changed structure. This example also illustrates the above mentioned topological
differences between transistor-level modeling and gate-level description: the line
mapping is not consistent in the sense that most of the connections from Fig. 2.8
are absent in the structures of Fig. 2.9. However, as this example reveals the
opposite is also true. This is because of the specific design methodology in the
CMOS technology: the intended function is implemented by a P-MOSFET transistors
network joint with an N-MOSFET transistor structure. The N-MOSFET network will

BUPT

25

Figure 2.8 Transistor-level CMOS implementation of the

function Z (A B) (C D) E F

a b
Figure 2.9 Effect of the open fault in Fig. 2.8 at the gate level

VDD

Z

GND

A

B

E

D

F

C

A

B

C

D

E

F

Z

A

B

E

F

Zfaulty

D

C

BUPT

26

set the lower potential on the output and the P-MOSFET network will set the higher
potential. Consequently the connections between primitive gates at the logic level
have no direct correspondence in the transistor substrate.

Despite its shortcomings the stuck-at fault model remains widely used
although it is not capable to specifically model transistor level defects. The field
literature contains reports suggesting that test vector sets particularly constructed
for a circuit (it is the case of N-detect test vector sets) can actually detect the
majority of transistor and layout fault models. The straightforward test generation,
easy simulation and “established practice” [47] recommends the stuck-at fault as a
primary VLSI fault model.

2.1.4 Fault Models at the Transistor Level

Modeling the defects at transistor level is a result of stuck-at model’s

inability to cover or at least detect all faulty conditions. As already stated, the
analysis at this level is technologically dependent. Due to the large utilization of
CMOS technology for its numerous advantages [47], the following presentation is
directed toward transistor faults in the CMOS technology. The defective conditions
that are better described at this level were already encountered in the previous
section, when the coverage of the stuck-at faults and its ability to map real defects
were discussed. The main fault models at this level are transistor open faults also
referred to as stuck-open transistor, and transistor short faults [23]. The situation in
which the short determines the transistor to be permanently in conduction is known
as transistor stuck-on. A distinction can be made for these fault conditions regarding
the associated terminology. In [43] is described a condition similar to the stuck-on
defect, called stuck-closed together with a fault situation called stuck-off described
as an open defect.

A stuck-open defect is described as a faulty condition which renders the
transistor unable to conduct. In fact an open for the gate, drain or source of the
transistor lead to this defect because the MOSFET transistors’ output is determined
by the relation between the voltage difference between its gate and source
terminals and transistor’s threshold voltage. In other words, due to a specific fault
affecting the source to drain path or due to floating terminals, the MOSFET
transistor can be modeled as being in the blocked regime. Such conditions can be
described at the transistor representation of the circuit by defects like f1, f3, f5, f8,
f10, f12, f14, f16, f18, f20 or f22 from Fig. 2.10. In [43], the stuck-open situation is
interpreted as a permanent blocked source-drain connection. If the resistance of the
source-drain path is close to that of a fault-free but blocked transistor the defect is
referred to as stuck-open, whereas substantially higher impedance defines the
stuck-off defect. However the two defects, stuck-open and stuck-off behave
similarly with respect to their detection. The difference is perceived only when
investigating the quiescent current.

Considering the defect f20 to affect the N1 MOSFET transistor, we apply the
input vector (A=0, B=0). Both P-MOSFET transistors are in the active mode,
conducting which allows the output to be settled at the higher potential, interpreted
as logic 1. The response is correct, because the output potential is established by
the P-MOSFET transistors. If the next input vector is (A=1, B=0), the output
potential is established by the defective transistor because neither N2 nor P1 are
conducting. As a consequence, with transistor N1 not being able to set the output
potential, the gate’s output logic value remains unchanged from its previous
switching due to the high impedance property of the CMOS designs. In

BUPT

27

consequence, the output value for the second vector remains at logic 1, which is
evidently, erroneous. The 2 vectors employed for analyzing the defective behavior
detected the stuck-open defect, however if the first vector would have been (A=0,
B=1), the result, although affected by the defect, would have been correct. It is
possible for the previous input vector to mask the presence of an open fault.

In order to detect stuck-open faults two input patterns are required to be
applied, as opposed to the stuck-at fault model which requires a single input vector:
the first vector is referred to as the initialization pattern and the second as the test
vector [23]. The test vector is required to render evident the defect: the input
configuration will activate the specific path of the current flow, which in the correct
device would allow the defective transistor to influence the output. The initialization

Figure 2.10 CMOS transistor-level faults for a 2-inputs NOR gate

A

VDD

B

GND

Z

N2 N1

P2

P1

f2

f4

f1

f3

f7

f9

f5

f8

f10

f19

f21

f18

f20

f22

f13

f15

f12

f14

f16

f6

f11

f17

f23

BUPT

28

pattern is expected to establish a logic value at the output complementary to the
value established by the second vector for the correct device. The failure of the
second input pattern to modify the logic value at the output is then an evidence of
the transistor stuck-open defect.

A closer look at this defect reveals its sequential behavior: the value of the
output is retained from the previous computation due to CMOS’s high impedance
property. In a sequential design this behavior can be interpreted as similar to a
storage element operating for at least one clock cycle.

Another transistor-specific defect is the stuck-on transistor. The transistor,
in this condition, is permanently in the active mode, or conduction. This behavior is
modeled as a permanent short between the source and the drain of the transistor.
The resistance of the stuck-on is comparable to the on-resistance of the fault-free
transistor when conducting. Provided that the drain-source resistance is
considerably lower, for the faulty situation, than the resistance of the source-drain
connection for the fault-free transistor, the defect is identified as stuck-closed.
Another physical cause for the stuck-on behavior is the absence of the polysilicon
layer [23]. The stuck-on condition was analyzed in the previous section with respect
to the ability of stuck-at faults to cover the lower-level defects. As already state,
dependent on the resistive properties of the short and parametric behavior of the
remaining components, there are situation for which the defect can be detected by
observing the logic value of the result (referred to as logic monitoring [23]).
However, there are situations in which due to the actual resistive characteristics of
the transistors and the short, the logic value at the output remains correct.
However, it was showed that monitoring the “steady state current consumption”
[24] or the quiescent current, in most cases, is conclusive in detecting stuck-on
defects [23], [24]: a resistive ladder between the power line and the ground
potential increases the quiescent current by some orders of magnitude.

The analysis of transistor level defects reveals a gap between stuck-at fault
model coverage and the actual extent of possible defects at the switching layer. For
this reason it is important for the test process to take into account the possible
transistor defects when building a test vector set or constructing an on-line fault
detection strategy. As already presented, the gate layer and the transistor layer for
a design are topologically different. As a consequence, when operating with the
transistor fault models, the circuit is required to be described in terms of the
underlying integration technology, namely the MOSFET transistors for the CMOS
paradigm.

The typical implementation methodology for a design described at the
Register Transfer Level when targeting the ASIC platform include design’s synthesis
followed by the place and route steps [48]. The synthesis typically uses, as building
blocks, predefined simple components, extensively tested, for which functional
parameters such as logic, timing, physical, and electrical properties are completely
specified. The basic components are referred to as standard cells, and are delivered
in so-called standard cell libraries. The synthesis process maps the RTL description
to instances of the standard cells delivering a cell-based circuit representation as its
result. The standard cells however, can still be logically modeled in terms of
technology-independent constructs. The placing process determines the location of
each standard cell instance within the design’s final technological-dependent netlist.
Its result is usually influenced by various constrains such as throughput, latency,
power consumption. The routing process generates the necessary connections
between the already placed components. The final netlist represents the adequate
stage for transistor fault model testing.

BUPT

29

The transistor fault models can be applied also at the smaller scope of the
standard cells. For example, the 2-input NOR gate represented in Fig. 2.4a
represent a standard cell component of the [49] standard cell library. For the NOR
gate in Fig. 2.4a the CMOS transistor level representation is given in Fig. 2.4b.
Similarly the component in Fig. 2.9a can describe a standard cell element with its
CMOS implementation detailed in Fig. 2.8.

 The observation that transistor faults can be detected at the standard cell
level, coupled with the minimal standard cell library of [49], composed of primitive
gates and storage elements, permits the transistor fault models to be used, even at
the gate-level circuit description: the synthesis step maps the RTL constructs into
standard cells, which in turn represent basic blocks for which the underlying
structure is already known. In consequence the result of the synthesis can be
interpreted both as a transistor level representation and as a gate level
representation.

The transistor faults can be simulated using a different approach compared
to the stuck-at faults simulation, because of switching level technology-dependent
nature which requires simulation closer to semiconductor material level. The process
is exemplified for the 2-input NOR-gate depicted in Fig. 2.10 by taking into account
all transistor defective conditions already discussed: stuck-open and short defects
(the latter including the stuck-on faults). The analysis of gate behavior was
performed with the SPICE simulator using TSMC’s 180 nm BSIM3v3 MOSFET model
[50]. In order for the simulation to be reliable with respect to the actual
performance of real CMOS devices, we commanded the 2 inputs of the NOR gate
using CMOS inverters and we indirectly analyzed the output of the NOR gate
through the output of another inverter connected on NOR gate’s output. In this
manner, we assured the logic levels, which depend on the threshold voltage of the
component transistors, are correctly interpreted. All inverter gates and the NOR
gate were constructed using the same parameters for the P-MOSFET and N-MOSFET
transistors. “Real life” integrated devices exhibits a wider range of process variation,
and with respect to this aspect, our simulations lack the transistors’ parameter
heterogeneity. Nevertheless the experiment allowed observing the effect of faulty
conditions over the quiescent current as well as the influence of the short resistance
over the electrical and especially over the logic behavior of the circuit. The short
resistance was considered to be in the range 1kΩ-20kΩ, according to what the
authors of [47] report to have found in the laboratory experiments. Another
reference providing experimental boundaries for the short resistivity is [51], in
which the short resistance was found to range in a interval comparable to the one in
[47]: between 100Ω and 2kΩ, although it remarks that “dependent on the degree of
transistor mismatch“ the limits can vary.

Table 2.2 summarizes the transistor-level fault simulations performed. The
table illustrates the logic behavior of the CMOS 2-input NOR gate when affected by
each of the faults represented in Fig. 2.10. Moreover, as already stated, the specific
behavior of the bridging fault is highly dependent on the particular physical
parameters of the affected nodes and its neighboring lines. In consequence, the
defect does not modify the logic behavior whenever the output voltage of the
affected node maintains the correct relation with respect to the threshold potential
of the transistors it commands. Because each short defect is characterized, besides
its location, also by its resistance, the critical resistance is defined as the short
resistance for which the correct logic behavior of the circuit can still be distinguished
from the faulty logic behavior. The Rshort column presents the value of the critical

BUPT

30

Faulty behaviors

In
p

u
ts

A=0
B=0

A=0
B=1

A=1
B=0

A=1
B=1 Fault

No.
Fault type

Fault activation
condition

Fault-free

O
u

tp
u

t

1 0 0 0
f1 P1 Open Qn 0 0 0
f2 P1 GOS Rshort<=1kΩ 0 0 0 0
f3 P1 Open Qn 0 0 0
f4 P1 GOS Rshort<=1.8kΩ 0 0 0 0
f5 P1/P2 Open Qn 0 0 0
f6 P1 SD Short 1 0 0 0
f7 P2 GOS Rshort<=1.8kΩ 0 0 0 0
f8 P2 Open Qn 0 0 0
f9 P2 GOS Rshort<=3kΩ 0 0 0 0
f10 P2 Open Qn 0 0 0
f11 P2 SD Short 1 0 0 0
f12 N2 Open 1 Qn 0 0
f13 N2 GOS Rshort<=3kΩ 0 0 0 0
f14 N2 Open 1 Qn 0 0
f15 N2 GOS Rshort<=1.6 kΩ 1 1 0 0
f16 N2 Open 1 Qn 0 0
f17 N2 SD Short Rshort<=3kΩ 0 0 0 0
f18 N1 Open 1 0 Qn 0
f19 N1 GOS Rshort<=3kΩ 0 0 0 0
f20 N1 Open 1 0 Qn 0
f21 N1 GOS Rshort<=1.7kΩ 1 0 1 0
f22 N1 Open 1 0 Qn 0
f23 N1 SD Short Rshort<=3kΩ 0 0 0 0

Table 2.2 CMOS transistor-level faults manifestation for the 2-input NOR gate in
Fig. 2.10

 Qn stands for the output’s previous value
 GOS stands for gate oxide short

SD Short stands for source-drain shorts

resistance obtained experimentally through SPICE simulations. It can be observed
that some of the faulty conditions can be detected using gate level fault models. For
all stuck-open defects the detection relies on a test vector pair as already discussed.
With the exception of fault f6 and f11, the remaining defects exhibit deviations from
the correct behavior at the logic level. The two faults however are detected by
measuring the IDD current in circuit’s quiescent state. From the simulations
performed it was observed that the IDDQ method guaranties to detect transistor
shorts with certainty higher than the stuck-at fault model, as also reported in [23],
[24], [46], [47]. The influence of transistors defects and in particularly of short f6
from Fig. 2.10 over IDD is described graphically in Fig. 2.11 and Fig. 2.12. The VDD
potential was set to VDD=1.8V and the parameters for the MOSFET transistor model
were choose so that the threshold potential to be VT=780mV; the short resistance is
1.8kΩ. The correct circuit behavior is depicted in Fig. 2.11. In Fig. 2.12 as compared
to Fig. 2.11, the quiescent IDD current is emphasized. As already mentioned the IDD

BUPT

31

Figure 2.11 SPICE simulation of the 2-inputs NOR gate from Fig. 2.10

current is to be measured after the transient regime is over and the signals are
stable. The Fig. 2.12 also marks out the effect of short f6 over the output potential,
VZ.

In the previous section we concluded that in particular situations, given the
specific resistance of the transistors, when in conduction or in the blocked regime
respectively, and the resistivity of the short, the fault can be identified at the logic
level or not. However, the detection is based on the assertion that a particular
relation between the parameters of the circuit must be met. For example
considering defect f6, it can be detected by the (A=1, B=0) input vector only if the
equivalent resistance of the short connected in series with the on-resistance of
transistor P2 is lower than the on-resistance of the N1 transistor and the resistive
divisor shifts the potential of the output toward VDD. While given the parametric
variance in “real life” integrated devices, this scenario can occur. In our simulation
environment, with the same parametric properties for all transistors, this is not
feasible because of the perfectly symmetric characteristic of the P-MOSFET and N-
MOSFET transistors. In Fig. 2.12, the effect of the short resistance, “trying” to pull
the output potential toward VDD is also marked out as can be observed when
comparing the VZ potential to the output potential of the correct circuit from Fig.
2.11.

IDD

VA

VB

VZ

BUPT

32

Figure 2.12 SPICE simulation of the 2-inputs NOR gate from Fig. 2.10 affected by the short f6

In Table 2.2, the open defects’ characteristic of conserving the previous’

operation value is denoted by Qn. The open defects behavior, as already presented,
can be detected at the gate level because it requires two distinct consecutive input
vectors: the first one for setting the output’s initial logic value and the second one
to command the output in the complementary logic state. As a consequence,
provided that the previous input vector of the stuck-at test set, correspond to the
initialization pattern, and the current test vector triggers the affected cell’s output to
the complementary level, the respective stuck-at test vector set assures transistor’s
open detection.

In short, this section presented the behavior and detection mechanisms for
the conventional fault models at the transistor level which can be grouped according
to the common transistor failure modes into:

 open defects: detectable by a test vector sequence conveniently
constructed

 short faults: detected with high certainty by means of quiescent current
although there are situations in which the short can be detected by a
stuck-at fault.

IDD

VA

VB

VZ

BUPT

33

2.1.5 Fault Models at the Layout Level

The layout level for a design is obtained at the end of the place and route

process and describes the circuit in terms of geometric primitives specific to the
physical implementation level. Fault models at this very low level were introduced as
a result of the inability of higher level fault models to properly address layout
defective conditions. In [46] are described possible defects originating in the
circuit’s physical layer:

 A surplus of polysilicon (conductive material) can connect any physical
point of the netlist to either the power lines, the ground potential or to
other points in the design. Although these faults can be usually mapped
at the transistor level as typical short faults, the diverse scenarios for
defective connections occurring between standard cell instances justifies
the need for low-level physical defect descriptions.

 The omission of the oxide (electrical insulator) between the gate and the
bulk, source or drain can be especially difficult to model in terms of the
transistor-level defects, not to mention the stuck-at faults. For example
a missing oxide manifesting as a contact surface between the gate and
the source for an N-MOSFET transistor could determine the input line
connected at the gate to be permanently stuck-at-0 while affecting also
the functionality of the current standard cell.

 A defect condition specific to the geometric primitive level is a bridging
fault translated at the transistor level as multiple shorts, effectively
bypassing a transistor and shorting two connection lines.

One mechanism for handling the complexity of fault modeling at the layout
level is the Inductive Fault Analysis [23]. Contrary to the approach we used when
presenting the fault models hierarchically, the Inductive Fault Analysis starts from
the lower level faults and subsequently refines the physical defects in terms of faulty
behaviors which can be described using higher level fault models. The higher level
defects are thus “induced” through analysis by describing the lower level faults at
the higher abstraction level. The Inductive Fault Analysis is directed by the following
principles [23]:

 The range of all physical faults is assembled statistically using
experimental data from the integration process.

 The effects of the physical faults at higher levels (gate level, for
example) are determined

 Faults at the higher levels are classified and ranked based on their
occurrence probability. The process of ranking higher level defects is
performed based on the number of physical faults manifesting as the
respective high level defect. Moreover the effort toward a better
coverage can be directed for the highest ranked gate level faults, in
order to make the test process efficient.

The physical faults which are probable to affect the design are gathered
statistically from the integrated designs. The physical fault is considered to manifest
in the area of a so-called spot or point defect [23]. The size of the spot and its
frequency per unit of area are defined as probability density functions [23]. Further
details regarding the Inductive Fault Analysis technique are offered in [23], [24] and
[46].

BUPT

34

2.2 Bridging Fault Model

A bridge fault is defined as a short between two lines. The short fault model
discussed in the previous section refers to shorts within a standard cell. However
the model can be extended at the gate level, and describes resistive connections
between gates, as the one illustrated in Fig. 2.13a. The transistor level description
of the defective condition in Fig. 2.13a is depicted in Fig. 2.13b. The electrical
analysis of the fault, with respect to the transistor level condition, is performed
using the model of the resistive ladder in Fig. 2.13c. In this section, in accordance to
the field literature, we will refer to the bridge defects as short conditions manifesting
at the gate level, such as the one in Fig. 2.13a. In [22] it is discriminated between
feedback bridging faults and non-feedback bridging faults: feedback bridging faults
are manifested as a short between the gate’s output and at least one of its inputs
giving the circuit a sequential or even an oscillating behavior and making the
detection issue more difficult. Non-feedback bridging faults on the other hand do not
incorporate feedback loops.

a

b c
Figure 2.13 Bridging fault adapted from [24]

B

A

I

A

VDD

B

GND

Z1

P1 P2

N2

N1

P

N

Z2

VDD

GND

I

VDD

GND

Z1

Z2

RP2

RShort

RN

BUPT

35

In bipolar technology such as the TTL and ECL technologies, shorts between
gates’ output are said to implement a wired-and or wired-or function. This behavior
is generated by the fact that one of the two logic levels is “stronger” [47] and forces
its associated potential to the node established at the oposite logic level. This
behavior is not observed in the CMOS technology. The study [52] reveals, however,
a weak correlation between the CMOS bridging fault model and the wire-and or
wire-or fault model [47]. The typical CMOS bridging behavior is the so-called
dominant bridging fault, for which one node forces the potential on the other node
of the short. In [53] are introduced the dominant-and and dominant-or bridging
fault models in which one node manifests as dominant but only for a particular logic
value.

The behavior of a CMOS transistor fault, as already presented in the
previous sections, depends on the resistive divisor formed between the power line
and the ground potential. The resistive equivalent divisor for the structure in Fig.
2.13b is represented in Fig. 2.13c. One observation is that the smaller the short
resistance the closer the Z1 and Z2 potentials are. The most important aspect relates
to the manifestation of bridging faults. It is obvious that if both Z1 and Z2 are set at
the same potential, be it ground’s or power’s potential, the bridging fault has no
influence over the two outputs. However, when they differ, and only then, the
explicit semiconductor’s parameters determine the potentials at the affected nodes.
For the input (A=1, B=1, I=1) both Z1 and Z2 have a near-zero potential. Yet for the
input (A=1, B=0, C=1) the unaffected Z1 and Z2 would have complementary logic
values.

In ideal conditions, the fanout for a gate doesn’t influence the number of the
possible bridging faults. This is justified by the observation that in a circuit, as the
one presented in Fig. 2.14, the nodes , , and are interpreted at the same
logic level. In the following exposition, the potential at a node as expected for the
correct circuit is denoted by the driver value, according to [22]. If the driver values
at the and nodes are equal, corresponding to the previous discussion, the circuit
is performing correctly whether the short is present or not. If the driver values at
the two nodes are different, provided that the affected potentials are in different
regions with respect to the commanded gates’ threshold values, the short is not
affecting the logic behavior of the circuit. If the driver values at the two nodes are
different and the affected potentials are in the same region with respect to the
commanded gates’ threshold potential, the bridging defect affects the circuit’s logic
behavior and all fanout lines (namely 1 and 2, and 1 and 2 respectively) are set
at the same potential.

Figure 2.14 Bridging fault fanout

BUPT

36

The consequence of the above observation is that the only circuit lines taken
into account as possible being affected by the bridging defects are the gates’
outputs, and the circuit’s primary inputs because the internal gates’ inputs are
covered by the gates’ output fanout. In [22] the number of all possible bridging
faults affecting a design depends only on the number of gate outputs and the
number of primary inputs. This gate-level fault model of the bridging defects is
known as the voting model, in which the gates’ parameter variation is neglected and
the potential of the shorted nodes is set by the strongest driver (the one which
“drives more current” [47]). This model is an adaptation of the bipolar wire-and and
wire-or models to the CMOS technology.

The above analysis is sound with respect to ideal CMOS realizations.
However, the physical transistors’ threshold voltage is not uniform and according to
[54] the physical gates can interpret the same logic value differently. In this case
the same potential at the and lines can be interpreted different by the
following OR and NOT gates. In this situation, the number of all theoretical possible
bridging situations depends on the gates’ output fanout. This bridge fault model is
known as the biased voting model, because it takes into account the inherent
variance in transistors’ sensitivity (the transistor’s threshold voltage). For this
scenario all lines within a design can be affected by a bridging fault. The total
number of bridging faults, expressed by (2), is equal to the 2-combinations of the
number of all possible stuck-at defects as computed in (1).

i

i
g DBridging

w(g)
n

2

 (2)

As remarked in [22] the figure in (2) does not reflect the physical reality,

because it assumes that every line can be shorted to every other line within a
circuit. More precisely, at the layout level, after the place and route process have
been performed, it is evident that not every line is physically close to any other line.
As a consequence a bridging fault cannot appear between any two lines of the
design and thus the exact number of the possible short conditions is much smaller.

The number of bridging faults is higher than the number of stuck-at faults.
Intuitively, this is supported by equation (2) in comparison to equation (1).
Although not all bridging faults are physically feasible, the defect Pareto charts
identifies the bridging faults as the most frequent defect in most manufacturing
processes [51].

A reliable detection mechanism for bridging faults is the quiescent current
analysis similar to the short faults affecting standard cells. In [47] the stuck-at fault
model, extended with IDDQ current measuring techniques is denoted as the “pseudo
stuck-at fault model”. With respect to the covering of the bridging fault models by
the stuck-at fault models, the test process using N-detect test vector sets is
effective in detecting the majority of the bridging faults [20]. In this context, the
reference [55] is relevant: experimental results revealed that even for test vector
sets not fully covering all stuck-at faults, but only 99.5% of them, the bridge fault
coverage is 95%. Moreover, results presented in reference [24] indicate that the
open defects are responsible for only 1.21% of the tested devices which avoided
being detected when using a test vector set fully covering all stuck-at defects.

BUPT

37

2.3 Delay Fault Model

There are physical faults, as presented in the previous sections, which does
not affect the logic behavior of the circuit. However these circumstances remain
faulty because of their effect over the quiescent current or the signal propagation
latency. The defects which alter the temporal behavior of a design are generally
referred to as delay faults. The delay faults are related to signals’ transitions rather
than signals’ values as for the previous fault models [51]. They are especially
important as the integration technology evolves: the effect of delay faults is more
pronounced with the decrease of the feature size.

The fault size is characteristic for a delay fault, and it is the amount of time
required for the affected node or affected path to propagate an input transition by
generating an output transition. Two categories of delay faults are proposed: those
concerning gate delays and those describing delays accumulated over signals’ paths.

A gate delay models the latency incurred at a gate, which “operates slower
than it is expected” [51]. The defect is called sometime transition fault [23]. A
graphical depiction of this situation is presented in Fig. 2.15. The slow-to-fall and
slow-to-rise conditions can be identified with respect to the affected output, Z,
although a gate mustn’t be affected by both defects simultaneously.

It is evident that in order to identify the defective transition latencies, the
gate inputs need to be correspondingly prepared. For example in Fig. 2.15, a value
of 1 on the second gate’s input would not allow detecting the defective behavior.
Another important aspect regarding the delay fault detection can be identified from
Fig. 2.15: in order to detect a gate delay fault, the gate’s output needs to be settled
at a particular value by an initialization pattern (at logic 1 for the slow-to-fall defect
and at logic 0 for slow-to-rise defect). The second input vector is required to trigger
the tested transition and also must assure its effect is propagated to the output.

A path delay fault addresses the transition latency by analyzing it over a
larger circuit section. For this model, the transition delay is affected by all the gates
included within the analyzed path of the circuit; it is composed by incremental
latencies of the component gates, as depicted in Fig. 2.16. It can be observed from
the figure the cumulative nature of the delay faults at each gate. The same
observation stands, regarding the preparation of the transition phase, which needs
to assure the signal propagation throughout the selected route. The detection
employs an initialization vector and a transition triggering and propagation vector.

Figure 2.15 Gate delay fault adapted from [51]

A

0
Z Z

A

expected
transition

slow-to-fall
defective
transition

expected
transition

slow-to-rise
defective
transition

BUPT

38

Figure 2.16 Path delay fault adapted from [51]

The detection of a path delay is said to be robust if another possible delay

fault doesn’t interfere with the initial fault’s detection. The condition for a gate
whose latency determines all paths containing the respective gate to fails due to the
signal transition latency is referred to as a gross gate delay fault. It can be assumed
that if any path containing the gate fails to perform the transition correctly, than the
delay at that particular gate is larger than the clock period [23]. The fault size for
the conventional gate delay faults does not necessarily exceed the clock period. The
path delay faults are considered to model the temporal defects of a circuit more
reliable than the gate delay fault model [23].

A delay fault which manifest only at certain clock frequencies, different from
the normal operating frequency, does not provoke circuit failures, being only a
potential fault. However, when the delay faults are manifesting at the operational
clock frequency, the logic behavior of the circuit is altered as a consequence of the
high latency. This is observable when inspecting the sequential modules surrounding
combination networks. The transition for the combinational segment is triggered by
the clock’s first edge, and provided that the delay’s fault size, along at least one
path, is larger than the clock frequency, the next active edge of the clock will store
the incorrect value in the register. The logic faults provoked by delay faults are not
guaranteed to be detected by the stuck-at or transistor level fault models, as the
field literature suggest.

However there are references marking out the relations between the stuck-
at faults coverage and the path delay defects. Such an example is reference [56], in
which the robust test vectors for a path delay fault can be obtained from the test
vectors detecting stuck-at faults. Similar references investigate the coverage of N-
detects stuck-at test vector sets for the delay faults. The N-propagation test pair set
is constructed in [57] from the N-detect stuck-at test vector set and the applicability
to single testable path delay faults and robust path delay faults is evaluated. The
experimental results yielded considerable path delay coverage, thus linking the
stuck-at fault model to the path delay fault models.

t

t

gate's
output

gate's
input

A

0

1

0
Z

BUPT

39

Chapter 3
Test Engineering

As the security demands are increasing, specialized encryption modules are

integrated in more and more systems: ranging from low-power, low-speed Radio
Frequency Identification modules up to the high speed disk controllers. Security
modules are especially sensitive to faults. As a consequence of their nature, more
precisely due to the diffusion property, a single bit modified during the execution of
a cryptographic algorithm will determine a shuffled result when compared to the
expected one, because of the spread of modified bit’s effect through the entire
state, process driven by encryption’s very own operators. In fact, for the case of
AES, in [58] is experimentally obtained the mean number of output’s modified bits
as a result of injecting a single fault into one of the 10 rounds. With the excepting of
the last round, by injecting a single fault, the mean number of modified output bits
is 64, more precisely: half of the output data block is changed. This behavior was
described in order to introduce the need for better protection in the context of
cryptosystems. For example, if the encryption module is affected by a fault in a
secured encryption-capable disk controller, the chances to recover the stored data,
taking into account the above fault behavior, are reduced. Although for some
specific applications, security is more important than availability (or even reliability)
the majority of cryptographic modules are required to undergo system tests. The
motivation for testing an encryption system is driven on one hand by the typical
VLSI manufacturing practice and on the other hand by the motivation to assess
device’s integrity during and after its normal operations.

3.1 VLSI Testing Considerations

An important reference point for the VLSI era is the Moore’s law, regarding
the scale of integrated circuits which tends to double every 18 month, property
which is expected to hold on for at least two decades. Two distinct directions
influence the integration process: the increase in circuit’s die area and decrease in
integrated elements’ dimensions (also known as feature size). Taking into account
these tendencies the signal propagation delay (potential delay faults at high
operating frequencies manifest at the logic level) remains the most important factor
in limiting the operation speed, even for smaller feature size [59]. Another
technological issue refers to the signal integrity problem: as the effect of the
crosstalk noise prevails in the context of thicker interconnections (the connection
lines’ section is increased in order to reduce signal propagation delay) [60].
Connected with these issues and amplified by the pace of physical integration is the
power integrity problem: the progressive reduction of supply voltage and the
increase in performance by raising the clock frequency makes the power supply
drops, due to connection line’s inductance, this being actually a critical issue.
Moreover, the process of testing for high current pikes’ worst case scenario proves
to be challenging [61].

The actuality of test engineering is revealed into the International
Technology Roadmap for Semiconductors, published by the Semiconductor Industry

BUPT

40

Association in 2004 [5]. The document contains an updated description of the test
process and test equipment “through the year 2010 and beyond” [62]. The
Semiconductor Industry Association is a global cooperative effort among the
manufacturers and suppliers in the field of integrated devices including
manufacturers, universities and governments. Its declared objectives are to advance
the performance of integration process as well as identify and assess the challenges
to be faced as the industry is moving on toward new technologies. Among the
challenges still requiring solutions, for designs with feature size less than 45 nm, the
report mentions the following [62]:

 automated test equipment interface for the devices under test
 proper test methodologies
 reliable device analysis
 failure analysis
 disruptive device technologies
The specific test challenges are summarized in the following issues [62]:
 effective speed testing for designs with higher core frequencies and

widespread adoption of GHz input/output protocols
 a growing gap between the existing Design for Testability measures and

provisioned devices’ complexity
 the impact over design’s quality and yield of the limitation of the test

process
 testing for signal integrity as well as for possible new fault models
 enhanced methods for diagnostic, reliability and yield
 developing online test methods capable of scaling increasing design

complexities
Also the concept of Design for Testability and Design for Manufacturability

will more likely require further refining and modification in order to accommodate
for the new testing techniques imposed by nanoscale designs.

The growing interest for defining a roadmap for semiconductor industry led
to the updated versions of the International Technology Roadmap for
Semiconductors in 2005 [63] and 2006 [64]. Among the elements predicted to
require new technological solutions the following were added [62]:

 distributed test, as a form for relaxing the test process complexity
 improved test for yield predictions
 screening for reliability,

as well as introducing new process-dependent faulty conditions. Possible
opportunities, related to the test process are [62]:

 test program automation
 test interface hardware integration within the design flow
 “convergence of test and system reliability solutions”
The mention of International Technology Roadmap for Semiconductors

documents and their interest in the future test methodology was intended for
highlighting the importance offered to the test process by the leading semiconductor
developers, as well as the challenges which await new technical solutions from the
test engineering domain.

The test challenges for state-of-the-art and future VLSI integrated devices
are only a fragment of the possible fault causes, referred to as failure mechanisms.
A more general taxonomy of the failure mechanisms is presented in [65] and
graphically depicted in Fig 15, taking into account a global physical and electrical
failure approach.

BUPT

41

Figure 3.1 Failure mechanism taxonomy adapted from [65]

Failure
Mechanism

Electricall stress

Electrical
overstress

Electrical
discharge

Intrinsic failure
mechanisms

Gate oxide
breakdown

Ionic
contamination

Surface charge
spreading

Charge effects

Slow trapping

Hot electrons

Secondary slow
trapping

Piping

Dislocations

Extrinsic failure
mechanisms

Packaging

Metallization

Corrosion

Electromigration

Contact migration

Microcracks

Bonding (purple
plague)

Die attachment
failure

Particle
contamination

Radiation

External

Intrinsic

BUPT

42

The test of digital systems encompasses both a logical test and an electrical
test. Whereas logical tests assess logical correctness of its behavior (the integrated
device performs the intended function with respect to its inputs and outputs), the
electrical characterization verify electrical properties of the signals such as the
voltage levels, the value of the quiescent current, the influence of the clock signal
and the clock skew on the information propagated over the data lines (especially
effective, as already presented in the previous chapter at identifying transistor level
defects and delay faults), or the drive conditions (the ability of the device to drive
other inputs). During our research, we were especially interested in constructing
efficient mechanisms for logic testing, pursuing limited electrical characterization of
the design which involved semiconductor simulations (the SPICE simulations
presented in the previous chapter). Moreover, the electrical testing is usually
performed after manufacturing in order to verify that circuit’s correct electrical
parameters are met with each produced device. On the other hand, logical testing is
performed not only after production but also as a mechanism for incoming
inspection [21], and more important, during unit’s normal operation, at the user’s
request in order to reassess its correctness.

The testing phase can be performed during module’s normal operation, in
which case is referred to as an on-line or concurrent test. However, the test
procedure is expected not to interfere with module’s internal control and data flow.
Some techniques that can be used for concurrent testing are: concurrent error
detection codes (parity codes, cyclic redundancy codes) hardware redundancy (such
as n-modular redundancy for high reliability systems). Usually, a thoroughly
verification requires some test procedures to be performed that would modify the
normal control flow and device’s state. This type of test is called an off-line or non-

Figure 3.2 Rule of ten for integrated circuit repairing costs adapted from [23]

Device level:
Cost 1

Board level:
Cost 10

System level:
Cost 100

In-field use:
Cost 1000

BUPT

43

concurrent test. For their application, the system usually is brought into a so-called
test-mode, interrupting system’s normal operation.

The difficult problems posed by the advance of integration process are
reflected in the process of validating and testing devices’ correctness, as already
presented. It can be imagined that the challenges of the new integration process are
required to manage and resolve the low yields and high production costs. The
importance of eliminating the faulty units as soon as possible relates to test
economics. A well established standard, familiar to test engineers, illustrate the cost
for repairing a defective chip along its lifetime phases: immediately after the
component was manufactured, after its integration into a board, after being
integrated (within the board) into a system, and finally in system’s intended
operational environment. This illustration suggests that the test and repair costs
respect the rule of ten graphically represented in Fig. 3.2. The rule gives an inner-
view of the test economics governing the production costs; it states that if the cost
to detect and replace a faulty chip immediately after its manufacture is $0.30 then
the cost to discover and replace the same faulty module after it was assembled into
a board is $3, the cost to detect and replace the very same unit after the board was
integrated into the final system is 30$ and the cost to discover and replace the
same defective circuit during system’s operational life is 300$. A possible
explanation for the escalation of the repairing cost is offered in [23] and relates to
the increased difficulty to detect the fault (it is much simpler at the production line
than inside an operational system) and the repair costs (travel time, reintegration
costs). Both a poor interest in test process as well as an over-investment in
verification and testing phase can prove unprofitable. The relation between the total
cost and test quality can be understood from the graphical representation in Fig.
3.3, as well as the optimum investment in manufacturing and maintenance costs.

Yet another reason for testing is connected with liability [23]. In case a
system produces damages (injuries, economical loss) as a result of an integrated
circuit’s failure, the designer is legally responsible for the consequences, partly or
entirely. Typical examples are from the automobile industry (accidents due to
defective car control modules) and medical systems (due to a faulty component a
curing radiation-based system produces overdose injuries).

Figure 3.3 Total costs for producing an integrated circuit adapted from [23]

BUPT

44

In the context of cryptographic systems, the subject of liability and costs
caused by system’s failure gained an important perspective. Shipping a defective
security-enforcing device (such as a crypto-system) would represent an acute legal
problem for its developer. On the other hand, as with any other electronic
integrated circuitry, an encryption module can be affected in various ways by faults
(the failure mechanisms being presented in Fig. 3.1): especially after extensive use
over a large period of time, due to semiconductor’s “wearing” the devices will
ultimately become useless. Any cryptosystem design is required to take into account
the “wear lifespan” [11] of semiconductors and consequently provide mechanisms
for validating system’s integrity during its operational cycle.
 In addition to the possibility of a fault affecting the cryptographic module,
due to their security-preserving properties, they are prone to being attacked.
Cryptographic devices usually protect valuable information (secret keys such as
those stored in Automated Teller Machines), or at least a service requiring a
payment (Prepayment Electricity Meters). In both cases, a successful attack on the
system, allowing a malicious user to bypass the security restrictions, could have
serious financial implications for cryptographic system’s user. Literature proves that
by injecting faults into a cryptographic unit, enough information can be obtained in
order to significantly reduce the efforts for finding the sensitive data [12]. Usually
mounting such an attack requires direct access to the cryptographic chip in order to
manipulate its inputs and observe the outputs. In fact, for the case of Prepayment
Electricity Meters systems, such an attempt is reasonable to imagine.
 Moreover, cryptanalysis, settled as a distinct research direction, with the
declared objective of strengthening the existing cryptographic algorithms and
protocols through its attempts of breaking security algorithms. The cryptanalytic
techniques developed over the time represent an important concern for security
modules. Techniques such as side-channel analysis, requires no intrusive actions but
to observe the inherently information offered by the unit such as power, thermal
and electromagnetic radiation [7]. Also, the timing of module’s operations could
offer important information regarding the actual configuration of the key. In order to
protect a system against this attacks, special design consideration is required in
order to balance the amount of information emanated by chip in each stage of its
execution so that the passively gathered data (power, thermal and electromagnetic
radiations) to reveal no useful information regarding the inner operations.
 Cryptanalysis also refined the fault injection technique: the fault could be
forced into the design through various mechanisms [7] such as:

 insert a spike into module’s power supply by varying the supply voltage
 inject a glitch by rapidly varying the clock frequency
 subject the unit to extreme condition (near failure situations) by

overheating or freezing it, in order for an existing defect to manifest
itself

 physical injection of an error through a focused laser beam (or X-ray
beam as well)

The serious threat posed by fault injection is that it leaves no trace
regarding the tampering actions performed against the device (especially when
injecting faults by light radiation). Moreover, the injected fault is a transient fault,
meaning that at the next iteration of the encryption round, if the timing of the
injected radiation is correspondingly adjusted, the defect will not manifest, however
its effects already resides into the modified state. This behavior allows an attacker
to perform numerous such attempts, each of them bringing him closer to the
objective of finding the secret encryption keys. In fact reference [66] describes an

BUPT

45

AES attack methodology that can reveal all bits of the key stored in a cryptographic
device even when the system is protected by concurrent error detection strategies.
The solution, although simple, require attacker to have access to the encryption
module in order to be able to deliver data to its inputs and receive its outputs. The
experiment starts by setting the input block as all-zero bytes. After the very first
round (as will be presented in the following chapter, the initial AES rounds implies a
simple addition of the encryption key to the data block) attacker injects an error into
one bit of the state matrix forcing its value to become 0. If the affected bit’s correct
value was 1, the attacker would notice an error status, triggered by the detection of
a fault by the concurrent verification mechanism; otherwise by correctly performing
the entire algorithm, the attacker would also know the correct value for that bit was
0. Repeatedly performing this action, the entire key can be retrieve. An efficient
countermeasure for such attacks would be to offer no error status but to randomly
craft an output response, in order to mislead the attacker.

In consequence, the encryption modules should include mechanisms for
concurrent error detection in order to permanently reassess its integrity. The
presented scenario reveal that a successful protection scheme relies on both off-line
and on-line test mechanisms. The protection can be performed using external
testing modules (be it in-system or external to the system, such as Automated Test
Equipment) or in-chip, relying on self-test mechanisms.

It is generally accepted that achieving high fault coverage with external
testing equipment (Automated Test Equipment) in the context of current high speed
and complex designs became harder and especially very costly. In consequence the
solution is to resort to structured testing mechanisms that allow the testing process
to be performed on-chip with at-speed performance. Such solutions are well
established Design for Testability measures such as Built-In Self Test and Scan
Chain.

3.2 Off-line Testing

The off-line test mechanism, as already mentioned, assumes that the entire
digital system or at least part of it, is “taken out of service” [20] in order to allow
the test process to perform. As a consequence of test’s non-concurrent nature, the
implied hardware overhead can be significantly reduced because the off-line
strategies are not required to maintain the system in its normal operation mode,
such as for the on-line methods. In consequence, requiring smaller area, the off-line
test solution can be design to cover all, or as much of the device’s area as possible.
Not the same can be said about the concurrent measures, for which the associated
hardware investment, being significant, is usually reserved for critical modules and
units, especially vulnerable to faults.

Off-line test can be used also in conjunction with the on-line test for fault
localization [20]. Provided that the concurrent checking mechanism detected an
error, the off-line test can be used as a diagnostic mechanism, in order to detect the
location of the failing module or the extent to which the error spread. In a modular
design, composed of discrete units (such as a circuit board) the off-line test strategy
is effective at locating the component to be replaced.

Generally, because of the manner the non-concurrent tests are applied, they
are more appropriate in detecting defects at a larger set of locations, because of
their wide applicability as already discussed. However, the strategy requires the
inputs of the system and its state to be controllable. In consequence an off-line test

BUPT

46

would be triggered in “low-demand periods” [20], in idle cycles or immediately after
a system repair [20] to ensure system’s overall correctness.

Typical testing processes, as presented in the previous chapter, rely on
constructing test vector sets relevant for a given fault model or set of fault models.
The test sets are, as already described, specifically design for maximizing the
coverage (for single fault conditions they usually assure complete fault coverage)
while minimizing the test application time. Moreover, the specific sequence of test
vectors (especially for stuck-open defects and delay faults) required to be presented
at the circuit’s inputs demands a mechanism for applying the vectors directly to

Figure 3.4 Taxonomy of digital testing mechanisms adapted from [67]

Digital test
strategies

With no or
limited DFT
strategy

Fully
exhaustive
test or gold
unit test

Non‐
exhaustive

Fault
modeling
using ATPG

Ad‐hoc or
manually
generated
test sets

Strongly‐
structured
circuits

Pseudorandom
test sets

Data
compression

using
signatures

HDL
generated
test sets

With specific
DFT

strategies

Strongly‐
structured

Non‐
concurrent

Concurrent

Not strongly‐
structured

Non‐
concurrent

Scan path

LSSD

Partial scan
Boundary

scan

BIST

BILBO

STUMP

Concurrent

Information
redundancy

based

Hardware
redundancy

based

BUPT

47

the inputs of the unit. This requirement describes the basic functionality of the Built-
In Self Test mechanism as will be further detailed.
 A brief description of the digital testing strategies is presented in Fig. 3.4,
where the conventional non-concurrent test mechanisms presented are:

 the Built-In Self Test [21], [68]
 the Scan Path approach [21], [68]
 the Boundary Scan method, together with the IEEE 1149.1 standard -

Standard Test Access Port and Boundary-Scan Architecture [69]
For the case of strongly structured designs, such as storage modules (ROM,

RAM memories) or programmable logic (PLA, FPGA), the non-concurrent test
mechanism can intersect with the typical non-structured designs methodologies
although they tend to employ specific test strategies [68], [20].

Yet another test strategy relies on verification using external mechanism:
either hardware, such as the Automated Test Equipment [21], [23], [68] or
software such as software diagnostic methods [70].

3.2.1 Built-In Self Test

The Built-in Self Test represents a typical Design for Testability measure

aiming to insert into the structure of the digital circuits special modules capable of
validating their functional correctness and integrity, with the general architecture
depicted in Fig. 3.6. It is especially suitable for secure verification of a device,
because it reduces the amount of information exchanged with device’s environment
to a minimum. Our early BIST research with respect to secure AES testable
solutions was summarized by [71] in a presentation to the “The Claude Shannon
Workshop”.

Figure 3.5 Built-In Self-Test taxonomy [20]

BIST

Off‐line

Functional Structural

Internal External

Automated Test
Equipment

On‐line

Concurrent

Non‐concurrent

BUPT

48

According to reference [20] the BIST testing approach can be classified as in
Fig. 3.5. The non-concurrent labeling of an on-line test solution (as the figure
presents) is rather non-standard as the literature confirms and the classification in
Fig. 3.4 reveals. However, the terminology serves the intended description of the
test solution as will be presented.

The concurrent on-line BIST performs the test function simultaneous with
the circuit’s normal operation. The behavior of the test scheme when a fault is
encounter varies according to its design and properties:

 for a self-repairing design, the system’s functionality is restored to a
previous correct state

 in a fail-safe system the error could trigger a specific routine for
preparing the unit to enter an erroneous state without compromising the
current operation.

The “non-concurrent” online BIST operates in idle cycles of the system.
However, if the system is facing a request while operating the test, its normal
functionality must be restored as soon as possible. This behavior is usually
implemented in a software approach, which, by use of an interrupt system, assures
system’s responsiveness and fast switching from test to normal operation. As
presented in [20] and [22] the test is structured, in this case, as firmware or
software routines.

The functional BIST in Fig. 3.5 ensures the system satisfies its design
requirements. It is usually based on the design’s specifications and is constructed
from system’s high level description (at the algorithm or RTL level). The structural
BIST, on the other hand is concern with assuring that the system preserves its
underlying structure. It usually targets the logic structure (at the gate level)
because structural testing for lower levels is performed through parametric testing.
The structural off-line BIST can be internal, as the solutions we propose, as well as
external, when it is performed with Automated Test Equipment.

As already mentioned, the VLSI integration poses significant challenges to
the test process, mainly due to the clock’s frequency scale up, and increase in
integration density. The cost of testing newly produced units using Automated Test
Equipment is escalating firstly because of ATE’s costs and secondly because of the
high latency associated with the test application. The cost of such a tester increases
with the maximum frequency at which it can execute the test programs and with the
number of probes (pins) required for performing tests: in [21] is illustrated a case
study for an Automated Test Equipment performing at a frequency of 1GHz with a
cost per pin of $3000. Also in [21] is mentioned that typically, the Automated Test
Equipments “remains” behind, in terms of the clock frequency, compared to the
devices they are testing, this in turn, being the justification for the higher test
process latency.

The on-line BIST class not only preserves characteristics of the on-line test,
being able to check device’s correctness during its normal operation, but, more
important, it can detect transient or intermittent faults affecting the device during
its functioning. This BIST strategy also implies some performance degradation due
to the added circuitry responsible for integrity validation. On the contrary, off-line
BIST has a lesser performance degradation because, as with any other off-line test
mechanism, it is performed after device’s normal operation was interrupted.
Nevertheless, it cannot detect transient and intermittent faults, or, at least not the
ones affecting the device during its normal operation, when the off-line test is not
performed.

BUPT

49

Figure 3.6 Off-line Built-In Self Test design from [72]

That being said, the design in Fig. 3.6 turns out to represent a typical off-

line BIST structure. The test approach depicted in the figure is suitable for
combinational networks capable of being separated into distinct sub-networks.
Whenever a module to be tested contains storage elements, the test process is
better managed if the system is partitioned into combinational sub-modules
surrounded and linked by registers. This observation eliminates the elaborate issue
of unknown values and unknown states [62]. The main components of an off-line
BIST are presented in the followings.

Test controller supervises the test process. It receives control from device’s
control unit, after the testing mode was installed. It enables the generation of
stimulus vectors and directs them to the inputs of the module to be tested.
Concurrently, it drives the compaction mechanism in accepting the responses
generated at circuit’s outputs and pack them into a single signature. After the entire
stimulation and signature compression was performed, the obtained signature is
compared with the correct golden value in order to assess module’s integrity.
Finally, the control is returned to the system’s control unit. The BIST method can be
applied hierarchically to the system level, board level, chip level, and eventually
module’s under test level, as described in [21], with each test controller being
responsible for validating elements at its level and below. This solution might also
benefit from test reuse (test vector sets or compaction schemes reuse).

Test vector generator has the role of stimulating the Circuit Under Test in
order for the possible faults to manifest through erroneous circuit’s responses. The
test generator can be implemented according to [21] as:

 Linear Feedback Shift Registers (LFSR): which is also the “preferred”
solution both in academic and industrial designs

Test
Controller

MUX

Circuit
Under
Test

Test Pattern
Generator

Input

Output

Response
Compactor

Correct
Signature

Comparator

Error

BUPT

50

 Binary Counters
 Storage elements: ROMs containing a reduced test set specially crafted

by an Automated Test Pattern Generator, or a combination between
ROMs and LFSR in order to ameliorate the ROM’s increased area
requirements

 Cellular Automata
 Weighted generation logic (typical use for weighted LFSR) [68]
Dependent on the properties of the sequence produced by the test vector

generation unit, the test is said to be exhaustive, pseudo-random or pseudo-
exhaustive [21]. It is important to assure that generated test vector set is able to
stimulate at least every single stuck-at-fault. Only an exhaustive approach would
assure all single and multiple faults are stimulated.

When it comes to choosing a particular test pattern generator, it is
important to analyze the costs of including it into design, both in terms of
performance and area requirements, and evaluate the coverage in terms of
detectable faults. Usually coverage is expressed in terms of the single stuck-at fault
model. Moreover, the detection rate usually doesn’t take into consideration the
multiple faults conditions (the number of multiple stuck-at faults grow exponentially
dependent on the number of single stuck-at faults as already discussed).

A comparison between the test pattern generators is presented in [68],
where the test generation techniques presented in Table 3.1 were evaluated. It
reveals the LFSR structure demand the most reduced circuit area. Moreover LFSR is
able to offer 100% single stuck-at fault coverage because a careful selection of its
generator polynomial (also referred to as characteristic polynomial) provides a
maximal test set sequence (which can further be enhanced with generating also the
all-zero vector) for generating exhaustively all Circuit’s under Test inputs sequences.
For obvious reasons this approach is appropriate for modules with reduced number
of inputs: the test process latency depends exponentially on the number of inputs.

Test pattern
generation

Number of
flip-flops

Number of
EXOR gates

Number
of gates

Number of gate
inputs and outputs

LFSR 8 3 8 33
Weighted LFSR 12 3 15 51

Cellular Automata
(CA)

8 9 8 51

Counter 8 8 15 69
Finite State

Machine (FSM)
9 9 19 94

Table 3.1 Comparison of test pattern generation mechanisms adapted from [68]

Test compactor: is expected to identify as many faulty conditions as
possible, being known that the detection of all erroneous situations is almost
impossible to obtain in the context of responses compaction. The detection relies on
comparing the obtained signature with the correct one. For a detected error
condition, the gathered signature is modified as a consequence of the erroneous
responses generated by the faulty Circuit Under Test. However, the reason a
compaction scheme cannot offer 100% detection is due to the aliasing probability.
The aliasing is defined in this context as the situation in which a faulty module being
stimulated with a set of test vectors generates at its output a set of response

BUPT

51

vectors compacted by the signature analyzer into a correct signature. In [21] are
presented some of the most notable compaction mechanisms:

 Parity checking: a possible implementation would verify that the
obtained signature has the expected parity. More complex parity
detection mechanism can be devise as well.

 One counting: verify that the number of logic 1s in the response vector
set is the expected one

 Transition counting: similar to the previous one but counts the
transitions in the response stream

 Single Input Shift Register (SISR) or Multiple Input Shift Register (MISR)
based on LFSR structures

There are also solutions for compaction using cellular automata. However,
the LFSR-based approach, due to its reduced hardware overhead and low aliasing
probability is preferred. It can be demonstrated that the aliasing depends on the
length of the LFSR register: the larger the LFSR, the smaller the aliasing occurring.

The gold signature is computed with respect to the correct device. It is
usually obtained through simulations and is hardcoded into the detection scheme.
The comparator is only activated at the end of stimulation and compaction process,
communicating module’s integrity status to the control unit.

Upon detecting a defective situation, the system’s control unit can be
designed to halt system operation, set an error indicator, and wait for authorized
personnel to evaluate system’s condition. In the context of cryptographic units
however, detected faults are handled differently, with emphasis on preserving the
security of the sensitive data.

In the following, the security requirements for a cryptographic
implementation will be presented, as they were prescribed by the Federal
Information Processing Standards [73]. They can be summarized in the following
rules:

 The system should never allow access to plaintext, key material or
partially processed data

 The system should detect and indicate as soon as possible any system
failure

 The system should detect immediately any unauthorized accesses and
consequently erase all key material, and sensitive data while hinder
normal operation

 The system should periodically reassess its reliability.
Once again it can be observed that the first three rules favor an on-line

detection mechanism while the last recommendation best suits an off-line test
solution.

3.2.2 Linear Feedback Shift Register

It is a typical structure employed both for BIST test pattern generation as

well as for response compaction. Its generated sequence is pseudo-random [23]. A
LFSR structure is generated by a characteristic polynomial. There are two distinct
configurations that can be constructed for a particular generator polynomial:
internal and external LFSR graphically described in Fig. 3.7 and Fig. 3.8
respectively.

Both LFSRs in Fig. 3.7 and Fig. 3.8 were generated using the x4+x+1
primitive polynomial. The operation of internal LFSR is performed faster because

BUPT

52

Figure 3.7 Internal Linear Feedback Shift Register architecture

Figure 3.8 External Linear Feedback Shift Register architecture

any EXOR gate is placed between two storage elements, as opposed to the external
solution in which the gates are placed on the feedback connection (from the last
stage up to the input of the first stage). For the examples on Fig. 3.7 and Fig. 3.8
this observation is not relevant due to the reduced number of terms in the
characteristic polynomial; however for a LFSR with a significant number of outputs
(64, 128) and inner terms of the generator polynomial, the observation is pertinent
and can save valuable time. Moreover, it can be shown that both structures share
the same pattern generation properties.

The internal operation of LFSR in Fig. 3.7 can be interpreted as
multiplication by monomial x, performed in the finite field constructed from LFSR’s
associated characteristic polynomial. That means the resulting value after one clock
cycle execution will be the remainder obtained by dividing LFSR’s previous value
multiplied by x, with LFSR’s characteristic polynomial. As a consequence, the LFSR
structure can be analyzed and evaluated based on its characteristic polynomial. In
its most generic form, the characteristic polynomial, for an n-stage LFSR is
described in equation (3):

n n 1 n 2 2
n 1 n 2 2 1

i

g(x) x c x c x c x c x 1,

c {0,1},0 i n

(3)

For each non-negative coefficient ci an EXOR gate is inserted

correspondingly in the LFSR structure (internal or external). The LFSR’s behavior,
with respect to the generated vector set, is dependent on the properties of the
generator polynomial. It can be shown that the maximal sequence (or maximal
periodicity) for the output set is obtained only for primitive characteristic
polynomials [74].

The content of LFSR can be interpreted as a polynomial of degree n-1 (this
approach was already employed when detailing the functioning of the internal

D D D D

CLK

Q Q Q Q

Parallel outputs

Reset

Parallel outputs

CLK

D D D DQ Q Q Q

Reset

BUPT

53

LFSR). Considering the current content of an LFSR with characteristic polynomial
(3), expressed by polynomial ai(x) as in (4), the content of the register after one
clock cycle, namely ai+1(x), is described by equation (5):

 n 1 n 2 2
i n 1 n 2 2 1 0a (x) a x a x a x a x a (4)

n 1 2
i 1 n 2 n 1 n 1 1 n 1 2

0 n 1 1 n 1 0

a (x) (a a c)x (a a c)x

(a a c)x a c

 (5)

The LFSR generates its periodic output sequence one pattern every clock

cycle. The update mechanism, knowing that advancing the LFSR’s content can be
interpreted as multiplication in a finite field, is described in equation (6), with the
LFSR’s content after ith cycle being referred to by the Si variable, and LFSR’s initial
state by S0. Si can be computed iteratively using (5).

 i
i 0S (S x)mod g(x) (6)

A graphical representation of the state transition for the internal LFSR in Fig.

3.7 is represented in Fig. 3.9. Firstly it is a maximal sequence of 24-1 elements due
to the characteristic polynomial being primitive, the one missing element up to the
maximum of 16 (for a 4 stage register) being the all-zero state. Secondly it can be
understood that in order to properly generate the maximal sequence, the LFSR must
first be initialized with any vector different than all-zero vector.

Figure 3.9 State transition diagram for the internal LFSR in Fig. 3.7

0000

1111

11
10

11
01

1
10

0

10
11

10
10

1001
1000

0111

0110

0101
010

0

0011

0010

0001

BUPT

54

3.2.3 Signature Registers

Signature analysis is extensively used as a test result compaction method. It
is based on the theory of cyclic redundancy checking as presented in [75]. A Single
Input Signature Register (SISR) is built upon a typical LFSR structure. The
architecture for a SISR constructed from the internal LFSR in Fig. 3.7 is presented in
Fig. 3.10. Recalling from the LFSR description, the progress of an internal LFSR
content, after each clock cycle, can be more easily understood as polynomial
multiplication in the finite field of its characteristic polynomial. However, a LFSR
structure by itself is a close system having no other input line than the clock. In
order to use it as a compaction element, an additional EXOR gate is added at
register’s least significant stage, for adding the value of feedback connection with
the input line. The input stream for compaction, advances each clock cycle.
Although a LFSR cannot progress when loaded with all-zero patterns, the SISR is
usually cleared before its use in order to correctly evaluate the resulted signature.
 Starting from the all-zero value, the structure will capture the next bit each
clock cycle. However, because the content of the register can be interpreted as a
polynomial, the mathematical expression representing the state of the SISR at the
next clock cycle is obtained by multiplying the mathematical representation of the
current state by x, adding the current bit from the input stream to the result, and
performing the modulo operation with respect to SISR’s characteristic polynomial.
 The SISR functioning can be described mathematical as in equations (7). We
considered an approach similar to that used for LFSR, considering the current SISR’s
content to be described at the clock cycle i by the polynomial ai(x), and the input
stream being referred to by the ri variable, also at moment i.

0

1 0

2 1 0

i i 1 i 1

a (x) 0

a (x) r

a (x) (r r x)mod g(x)

a (x) (r a (x) x)mod g(x)

(7)

Because of the mathematical properties of modulo operator, ai(x) can be
rewrite as in equation (8):

 2 i 2 i 1
i i 1 i 2 i 3 1 0a (x) (r r x r x r x r x)mod g(x) (8)

Figure 3.10 Single Input Signature Register

Serial input

Parallel outputs

D D D DQ Q Q Q

CLK

Reset

BUPT

55

In other words, when initialized with the all-zero configuration, the SISR
interprets the input stream as a polynomial delivered one coefficient every clock
cycle, and performs division of the received polynomial by SISR’s characteristic
polynomial, with the remainder being stored as the SISR content. The remainder
obtained from division is the final signature. This operational principle reveals an
elegant compaction scheme. In order to obtain a fixed-size signature from a
possibly very long stream, the SISR would contain the remainder of division (the
quotient is variable-sized). Division is used because of its efficient implementation in
terms of only shifts registers and EXOR gates (binary multiplication in a finite field
has a higher complexity [76]).
 With respect to the error detection capability, suppose the input polynomial
R(x) described in (9) is applied to SISR’s input. Correspondingly, after R(x), have
been serially entered into SISR, the obtained signature is m(x), with m(x) ai(x).
Considering the R(x) polynomial to be the sequence of correct responses generated
by a Circuit Under Test (at most one line of the CUT’s outputs) we define the “gold
signature” to be m(x). When dealing with possible faulty units, the test responses
are expected to differ from the correct ones, this being expressed in terms of an
error polynomial, E(x), to be added to the R(x) polynomial.

 2 i 2 i 1

i 1 i 2 i 3 1 0R(x) r r x r x r x r x (9)

According to equation (8) the new signature will be different. As pointed out

by (10), the difference between the correct and the faulty signature, appears due to
the e(x) component, which confirms module’s defectiveness.

ia (x) (P(x) E(x))mod g(x)

P(x)mod g(x) E(x)mod g(x)
m(x) e(x)

 (10)

It is possible now to express the aliasing problem, mathematically, as the

condition that determines e(x) to be 0, while E(x) is non-zero. In other words,
SISR’s characteristic polynomial divides the error polynomial. In the following, the
aliasing probability will be detailed. Considering an input sequence of m bits in
length, that is to be compacted by an SISR with n stages (n<m), each of the 2m
possible input streams will be compacted into one of the 2n signatures. According to
SISR’s linearity all possible input streams are divided into 2n classes of 2m-n input
stream configurations to which the same signature corresponds. Among the 2m input
configurations, only one will correspond to correct circuit all other 2m-1
corresponding to erroneous circuits. However, there are 2m-n-1 other input
configuration that will be compacted into the same signature. And thus the aliasing
probability is computed as in (11):

m n

alias m
2 1

P
2 1

 (11)

When m is much larger than n, the above probability can be fairly

approximated to 2-n, this being the reason for the aliasing probability to be strongly
coupled with the number of stages for the SISR.

BUPT

56

 It must be noted that the computed probability doesn’t take into account the
structure of the SISR, or the architecture of the Circuit Under Test. It might turn out
that not all of the 2m-1 erroneous response can actually be produced by a faulty
device, especially when considering permanent faults.

With respect to the two different SISR designs (corresponding to internal
and external LFSRs), in [77] are presented methods for converting between the
signature of the external solution into the signature generated by the internal one
when the two share the same characteristic polynomial. In consequence both
internal and external SISR provide the same detection capability and aliasing
probability.

When trying to use SISR for Circuit Under Test with multiple outputs, one
possible solution would be to provide a dedicated SISR for each output line.
However the complexity and especially the area requirement are multiplied by the
number of outputs. The same observation stands for the other single output
compaction methods like one-counting and transition counting.

A more efficient approach would be to use Multiple Input Signature Registers
(MISR) as a generalization of SISRs. MISR drives the concept of adding the input
stream to the signature further: it constructs the signature by concurrently
analyzing a number of streams equal to its number of stages. The input streams are
added in the same way the single input was added for SISR by using EXOR gates for
implementing modulo-2 addition.

The architecture of a MISR based on the same LFSR of Fig. 3.7 is depicted in
Fig. 3.11. Each stage has an additional EXOR gate to allow the input stream
corresponding to that stage to be compacted. When analyzing the MISR structure,
one important observation is that a MISR with m stages can be interpreted as an m-
stages SISR [30]. Considering the m input streams described by the polynomials
Ri(x), the equivalent SISR input polynomial is expressed in (12):

m 2 m 1
0 1 m 2 m 1R(x) R (x) R (x) x R (x) x R (x) x ,

0 i m

 (12)

Figure 3.11 Multiple Input Signature Register

Another important aspect for MISR is the fact that it behaves very similar to

SISR with respect to the aliasing probability. And this turns out to be an important
advantage: being able to save a significant amount of chip’s area without degrading
the error detection accuracy.

Parallel outputs

Parallel inputs

D D D DQ Q Q Q

CLK

Reset

BUPT

57

3.2.4 Built-In Logic Block Observer

We have presented so far methods for test set generation and response

compaction, in a typical BIST structure. A particular Circuit Under Test, be it a sub-
module of an architecture or an entire unit, requires specific design adaptation in
order for the BIST strategy in Fig. 3.6 to be added. The next step toward easy
integration of BIST into a typical digital design is to imagine a solution that can be
customized for a regular design, with smallest effort and minimum preconditions
needed to be satisfied. One such BIST solution is the Built-In Logic Block Observer
(BILBO) technique [78].

The method is applicable for designs capable of being partitioned into a
network of combinational logic modules interlinked by storage elements. One can
also observe that for some combinational structures, a much simpler testing solution
would be to insert an additional register in order to allow BILBO procedure to
operate the components rather than trying to construct a test vector set to
collectively cover all components.
 BILBO alters each register by supplementing them with additional
functionality. We observed during the previous sections that LFSR and MISR are
effective mechanism for generating the stimuli vector set and for response analysis
respectively. However they required to be connected to the Circuit Under Test inputs
and outputs respectively, similar to the solution in Fig. 3.6. BILBO’s unique design
goal is to transform, a regular register into a LFSR or MISR, whose functionality
depends on two command lines. Additionally to the pattern generation and signature
compaction modes and its normal parallel load operation, a BILBO register have a
forth operation mode similar in functionality to the scan chain method, for shifting
data serially.

A BILBO structure is more easily constructed from an external LFSR for
characteristic polynomials with reduced number of inner terms (in order to avoid
including 2 EXOR gates on the input logic of each stage), which due to its
resemblance and possibility to be converted into an internal one, can successfully
replace the internal LFSR. Among the many implementation solutions for a BILBO
register, we adopted the one presented in [79] and described in Fig. 3.12. The
BILBO register in Fig. 3.12 is constructed based on the external LFSR in Fig. 3.8.

Figure 3.12 Built-In Logic Block Observer Register adapted from [79]

B1

B2

Shift
in

Shift
out

D Q D Q D Q D Q

Parallel outputs

Parallel inputs

CLK

Reset

BUPT

58

Control Lines
BILBO Behaviour

B1 B2
0 0 LFSR-based pattern generator
0 1 Shift register, capturing in the stream on Shift In input
1 0 MISR mode, based on the same LFSR structure
1 1 Typical parallel buffer register (parallel input)

Table 3.2 BILBO register modes of operation adapted from [79]

 The register will operate according to the description in Table 3.2,
dependent on the two control lines B1 and B2.

BILBO technique can be used also as a scan chain approach provided that all
BILBO registers in the design are connected through their Shift In and Shift Out
lines correspondingly. However, it remains to be discussed the mechanism for
signature comparison. A possible solution would be to hardcode the correct
expected signature into each BILBO register such that at the end of stimulation, a
simple network of AND and OR gates to evaluate signatures equality. In this
scenario, however, the BILBO register can detect errors only for the combinational
structure it was design to test. For example, suppose that to the input of the BILBO
register is connected the output of a multiplexer, selecting the result of two different
modules. In this case, it is more effectively in term of time and test length to treat
each module separately, and test them at different intervals. Although it remains to
be solved the testing process for the multiplexer, this approach is more effective
than treating all three components as a whole and deriving test vectors for the
complex construct. However, in this case, the gold signature cannot be hardcoded
anymore. Instead, they are transmitted to the local test controller for test modules’
integrity validation.

Discussion is also required concerning the length of the test sequence and
the mechanisms to control it when using a BILBO approach. A possible solution
would be to perform an exhaustive test procedure for each combinational node in
which the design was partitioned. Another solution would be to hardcode into each
BILBO’s register LFSR mode the required length of the test sequence for the
combinational node connected on its outputs, i.e. whenever the required coverage is
reached, the LFSR will automatically reset itself to the sequence’s initial vector.
However, in this case the BILBO register connected on CUT’s outputs will also
require adaptation of its MISR mode for the new test sequence.
 The testing process using BILBO strategy is described in Fig. 3.13. The test
process comprise of two stages: in Fig. 3.13 the combinational networks A and C
are first tested, that is the BILBO registers on their inputs, configured as LFSRs,
generate the test sets while the BILBO registers on their outputs, configured as
signature analyzers, verify circuits’ integrity. In the second phase, the BILBO
registers are reconfigured so that the combinational units B and D to be effectively
tested. Moreover, as reference [79] presents, the entire process could be
coordinated in a scan chain fashion, with all BILBO registers being serially linked. In
this context, the process would require two scan procedures, extremely expensive in
terms of test latency: a scan-out for retrieving the signature and a scan-in for
initializing the BILBO registers. When shifting out the signatures, control unit can be
concurrently verifying their correctness. Proper initialization can also be performed
by a dedicated reset circuitry with all-zero for the MISRs and a specific initialization
pattern for the LFSRs. The cost of BILBO’s design is non-negligible as stated in [79].
The BILBO approach tends to double the size of the typical registers.

BUPT

59

Figure 3.13 BILBO test strategy adapted from [68]

A particular adaptation of the BILBO technique, called Concurrent BILBO

(CBILBO), increase the performance significantly, by allowing the test generation
and signature compaction operations to be performed concurrently [62]. It achieves
this by incorporating in each storage element two registers: one with a LFSR
function and another one with a MISR behavior. The two operations (test generation
and response compaction) are simultaneously selected by the same control lines
configuration. The other operations of a CBILBO register are serially shift and
parallel load.

Combinational
network A

BILBO MISR

Combinational
network D

B
IL

B
O

 L
F

S
R

B
IL

B
O

 L
F

S
R

Combinational
network C

BILBO MISR
Combinational

network B

BILBO LFSR

Combinational
network A

Combinational
network D

Combinational
network C

Combinational
network B

B
IL

B
O

 M
IS

R

BILBO LFSR

B
IL

B
O

 M
IS

R

BILBO LFSR

BILBO MISR

Phase I - testing modules A and C

Phase II - testing modules B and D

BUPT

60

Figure 3.14 Self-testing using MISR and parallel SRSG architecture adapted from [62]

A particular adaptation of the BILBO technique, called Concurrent BILBO

(CBILBO), increase the performance significantly, by allowing the test generation
and signature compaction operations to be performed concurrently [62]. It achieves
this by incorporating in each storage element two registers: one with a LFSR
function and another one with a MISR behavior. The two operations (test generation
and response compaction) are simultaneously selected by the same control lines
configuration. The other operations of a CBILBO register are serially shift and
parallel load.

Yet another similar approach is the so-called Self-Testing Using MISR and
Parallel SRSG (STUMPS) architecture [62]. It is a BIST adaptation to be used in
architectures designed in a scan-chain manner. In other words, the design is
partitioned into easily testable scan chains, but in order to avoid using external
modules or ATEs to generate test vectors and analyze response, the architecture
include the Shift Register Sequence Generator (SRSG) structure and a MISR unit,
servicing all the chains as described in Fig. 3.14.

3.3 On-line Testing

The previous chapter focused on defining the behavior of a digital system in
the presence of solid faults [16]. However, as already presented in Chapter 1, digital
circuits can be affected by intermittent faults. Field literature unanimously
appreciate that intermittent faults, due to their temporarily nature, are not
addressed by the test process targeting conventional fault models [80], [81], [82].
In fact, their presence can only be indicated by a permanent monitoring of the
circuit’s correct behavior. The test process directed toward stuck-at, stuck-on,
stuck-open fault models is usually implemented in a non-concurrent manner,
implying the circuit’s normal operation is hindered in order for the prepared test
activity to perform. Among the conventional non-concurrent, or off-line, test
strategies, as already mentioned one can name the Built-In Self Test, the Scan

S
ca

n
C

ha
in

Test Pattern Generator

Signature Analyzer

S
ca

n
C

ha
in

S
ca

n
C

ha
in

S
ca

n
C

ha
in

BUPT

61

Chain approach and external testing relying on Automated Test Equipment. The test
process, in correlation with the off-line testing techniques, implies the stimulation of
the Circuit Under Test by applying a predetermined set of test vectors, acquiring the
response vectors and comparing them to the expected correct response. As already
discussed, the off-line test is usually applied after the circuit is manufactured, as
part of the more thoroughly manufacturing test, and is also used periodically during
system’s lifetime, in maintenance tests.

The on-line test techniques is conventionally used in order to assure
reliability in critical systems such as railway control, satellites, avionics,
telecommunications, automotive systems, medical devices to name only a few [83].
As already presented throughout this work and observed in the field literature, the
cryptosystems’ vulnerability toward attacks and faults require a consistent on-line
test discipline.

One reason for the lag between the development of on-line and off-line
testing techniques concerns the lack of CAD tools support for automatic on-line test
insertion, compared to the support offered for Design for Testability measures such
as Scan Chain and off-line BIST. A possible reason relates to the design complexity
an on-line solution amounts, making a difficult task for automated development
tools to evaluate a good trade-off for the potential solutions.

The permanent validation of circuit integrity is referred to as on-line testing,
concurrent checking or concurrent error detection. The main concern for the on-line
test is to detect any modification in circuit’s behavior as soon as possible. Although
such a deviation can be the result of either a permanent or an intermittent fault
affecting the device, the situation is more critical for intermittent faults, because
they affect system’s dependability: although the system fails because of the fault,
the proximal off-line test will not detect this failure as its effect disappeared. In
summary, the two characteristics of the transient faults which make this type of
defects especially hard to detect are:

 The limited manifestation duration
 The unpredictability of their occurrence
The permanent faults are also unpredictable with respect to their apparition;

however, concerning the off-line test process the moment of their emergence is not
relevant, i.e. after the off-line test passed, a clear conclusion is drawn whether the
fault was manifesting (so already emerged) or not. It is not the same with
intermittent faults with respect to the on-line detection: because the goal of the

Figure 3.15 On-line test mechanism strategy

Circuit
Under Test

On-line Test
Solution

Error
Indicator

Datapath

M1

M2

M3

BUPT

62

concurrent error detection mechanism is to determine the defective condition as
soon as possible, the precise manifestation of the fault is crucial. Moreover, for the
permanent faults their effect remains constant for a sufficiently large period of time,
allowing the off-line test mechanism to identify them. The intermittent faults
affecting a combinational network can have no effect over the correct behavior of
the circuit if the latency for the signals propagated through an affected node toward
the nearest storage element is greater than the remaining duration of the clock
period. However, in a worst case scenario the apparition and duration of the
intermittent defect determine a system failure.

The effect of intermittent fault can be described in terms of the gate-level or
transistor-level fault models. However, the detection solution resorts to verifying
circuit’s correct behavior during its normal operation. Moreover, because of this
requirement, a typical test sequence as constructed in order to detect faults at
various design abstraction, cannot be used. The verification structure is expected to
determine the correctness while the CUT is operational. As a consequence for each
output response the correctness needs to be verified, by inspecting the CUT’s inputs
and outputs: the integrity of the circuit is evaluated and signaled to the control unit
or to the system’s user through an error indicator line as Fig. 3.15 depicts.
According to Fig. 3.15 the CUT is a component element of the system’s architecture;
and it is individually protected by the on-line test mechanism, while performing its
operations as part of the architecture’s datapath.

The concurrent checking mechanism, as described in reference [84],
conventionally relies on hardware redundancy or time redundancy principles. The
typical hardware redundancy measures consist of predicting one property of the
CUT’s output and verifying that the respective property stands for each CUT output.
In [85] the hardware redundancy implementation is dissected into a predictor and a
checker similar to the structure in Fig. 3.16.

A distinction can be made regarding the application of the on-line test
mechanism. A concurrent checking mechanism can be

 Intrusive: the CUT requires design modifications in order for the test
strategy to be effectively introduced. The main disadvantage of this
approach relates to the negative effect over the systems performance as
a result of increasing CUT’s latency. An example is the time redundancy
approaches, which involves applying the same CUT operation at a
successive moment in time, i.e. while the CUT is not used by the
datapath (it is idle state) a previously applied input vector is re- applied

Figure 3.16 Hardware redundancy concurrent checking

Circuit
Under
Test

Predictor

Checker

Input

Output Error

BUPT

63

to CUT’s inputs and the result is compared against the value obtained
previously. For this mechanism to be functional a distinct storage
element and a multiplexer is required to be included in the system for
allowing to store the result and select the normal or the test utilization
of the CUT. The multiplexer however affects the datapath’s
performance. Another example consists in adapting a code-redundancy
measure to the CUT. As will be presented, transforming the regular
inputs of the CUT into specific codewords affects also the internal
structure of the CUT or at least requires a codification and decodification
stage assembled in the datapath before and after the CUT’s inputs and
outputs respectively, in order to transform codewords from and into
non-codword vectors.

 Non-intrusive: the design in Fig. 3.15 and Fig. 3.16 depicts such a
technique involving no modification of the CUT. It can be applied
regardless of the specific implementation details of the CUT. No
additional elements are required and it has no negative effect on
datapath’s performance. Moreover, a careful design of the error
detection mechanism, involving buffering the error control line prevents
the error indicator line to increase the overall system’s latency.

The concurrent error detection techniques operate with a specific
terminology regarding the ability of a detection scheme to protect the CUT against
faults, especially intermittent faults. The following notions are presented in [17] as
relevant for on-line testing:

 Self-testing: a CUT extended with a concurrent error detection
mechanism is self-testing with respect to a set of faults if for every
possible fault from the set there exist a CUT input for which the CUT’s
outputs are erroneous (a failure was triggered) [80].

 Fault secureness: a CUT extended with a concurrent error detection
mechanism is fault-secure with respect to a set of faults if for every
possible fault affecting the circuit the detection mechanism identifies the
error at CUT’s outputs [80].

 Totally self-checking: A self-testing, fault secure CUT is said to be totally
self-checking (TSC). This property is crucial for reliable implementations.

With respect to self-testing property, as presented in the previous sections,
there are fault conditions which cannot be detected (Fig. 2.7). We concluded that a
circuit for which a defect remains undetected is redundant, a term also used in
conjunction with designs whose structures can be further reduced by Boolean
minimization, while the undetected fault is referred to as redundant fault. In order
to preserve the self-testing and in consequence the TSC property, a redundant
design need to be simplified.

An important aspect concerning the error detection capabilities of an on-line
scheme relates to the correctness of CUT’s inputs. Both Fig. 3.15 and Fig. 3.16 use
the input vectors reaching the CUT directly, thus without verifying their correctness.
In order to verify the validity of input vectors, either the datapath module supplying
the CUT’s input vectors (module M1 in Fig. 3.15) will have to have the TSC attribute,
or the vector exchanged between the two components will need to belong to an
error detecting code [80]. The second solution relies on the property of the code-
based mechanism to check codeword validity. However this alternative can also be
interpreted as implementing the TSC attribute for the M1 module. The conclusion is
that a TSC system is composed of TSC components.

BUPT

64

A general criterion for evaluating the on-line test mechanisms is offered in
[80]: a proposed concurrent checking solution is “of interest” provided that the
resulting design (the area for both the CUT and the on-line test mechanism) is
“considerably smaller” than 220% of CUT’s area and the single stuck-at detection is
higher than 90%. This observation clearly evaluates concurrent test solutions with
respect to the simplest on-line testing method: hardware duplication. Moreover, the
important metric in evaluating on-line test solutions’ detection rates remains the
stuck-at fault model.

The self-testing, fault secureness and totally self-checking attributes
previously defined, are evaluated with respect to a set of faults. Reference [80]
alleges that the single stuck-at fault model “is used as a set of technical faults in
almost all cases“ with respect to the on-line testing. The rationales behind this
decision are the following [80]:

 The majority of concurrent error detection mechanism are constructed
based on the stuck at model and targets these faults.

 The “strong belief in the community” [80] that a fully covering stuck-at
fault detection assures protection against most errors caused by faults
not physically manifesting as stuck-at faults.

 The resemblance between the N-detect test vector set, targeting stuck-
at faults and the totally self-checking attribute. There are literature
references such as [86] and [87] whose experimental results confirms
the ability of stuck-at fault model to detect not only different fault
models but even unmodeled faults. Intuitively, an N-detect test vector
set employs at most N, or the maximum number of test vectors, capable
of detecting each stuck-at fault. Constructing such a test set reveals
that more input vectors can be used to detect some of the stuck-at
faults. While operating in the datapath, the CUT can receive any input
configuration. Corresponding to the self-testing attribute, when affected
by intermittent faults, erroneous outputs are produced by the CUT more
than a single time allowing the detection scheme to detect the error
multiple times.

Another motivation for stuck-at fault model’s pertinent use in conjunction
with concurrent checking mechanism can be justified by stuck-at fault’s simple error
manifestation. Regardless of the underlying cause of the fault (be it at the gate-
level, transistor-level or layout-level related) the fault determines a failure,
according to the terminology introduced in Chapter 1, provided that a deviation of
system’s behavior is detected. For the respective clock cycle, the circuit behaves as
being stuck-at to an incorrect output vector. If more than a single line is affected,
the cause could be an internal stuck-at line, whose effect manifests to more than a
single output line, or the situation might as well be interpreted as a multiple-stuck-
at fault. In other words, any variation from the correct output behavior, observed
during a single clock cycle can be interpreted as a stuck-at fault, even if it is
determined by a delay or bridging fault.

3.3.1 On-line Testing Techniques

The concurrent checking methods detailed in the literature are testing

techniques proposed and “developed in the past” [83] and augmented by the
current research in order to reflect the new realities of the VLSI technology. An
authoritative reference with respect to the on-line testing mechanism is the survey
performed by Michael Nicolaidis and Yervant Zorian, both of them being important

BUPT

65

figures in the testing community. The article [83] reviews an impressive number of
124 references in order to structure an on-line test compendium of solutions.
Another, more recent reference, dealing with the on-line testing measures is [80]
which doesn’t presents the on-line testing solutions as a complete set of techniques,
but instead focuses on code-based concurrent checking with emphasis on various
error detection codes, and the associated circuit design strategies required for
adapting the code-based on-line test mechanism to a particular architecture.

The different approaches to concurrent error detection are grouped together
in classes, which are then briefly described in order to introduce the solutions
proposed in chapter 5. In [83] the on-line techniques are differentiated into:

 “Self checking designs” [83]: encompassing error detecting code
solutions, hardware duplication, time-redundancy approaches as well as
all custom designs, providing concurrent verification mechanism and not
covered by the next categories.

 “Signature monitoring” [83]: introduces the signature based on-line
testing, with the test generation, response compression and response
comparison. Moreover, in [83] the on-line signature mechanism is
presented as an appropriate method for protecting the design of a Finite
State Machines (FSM)

 Concurrent monitoring of circuit’s physical parameters, such as the
quiescent current, the operating temperature, the signal delays, the
clock frequency, and the “radiation dose” [83].

 Specific BIST mechanism appropriate for the concurrent error detection
[83]

 Specific Scan Chain techniques relaying on serializing the circuit’s state
for on-line verification of circuit’s correct behavior using external test
units [83]

 Fail-safe VLSI techniques [83]
 “Radiation hardened designs” [83] capable of performing correctly in the

presence of ionizing radiation.
One reason for integrating on-line error detection techniques into current

VLSI designs, as reference [80] asserts, relates to the increasing difficulty of
attaining more than 99.0% fault coverage for non-stuck-at permanent faults in the
current integration technology. The difficulties in achieving high coverage can be
summed into the following:

 Increasing design dimensions: For designs with an ever increasing
number of transistors (such as the Intel Prescot’s 125 million
transistors) the time required to test the design in order to fully cover all
the fault models detailed in the previous chapters is impractically long,
to such an extent that an on-line solution, permanently assessing chip’s
integrity is preferred [80].

 The decrease in transistor gate length: At smaller transistor dimensions,
the parametric variance can easily develop into a defect. For example,
high resistance shorts or high resistance opens, not affecting the logical
behavior at lower clock frequencies, might provoke delay faults at the
circuit’s normal frequency. In order to detect these types of faults after
fabrication, the test process is required to operate at the clock
frequencies for which the delay faults provoke failures. The cost of
Automated Test Equipment is increasing with the maximal frequency at
which it operates. A possible alternative is the BIST strategy, which, for
a fully covering test process would require an extensive period of time

BUPT

66

as already detailed. The remaining solution is that of the on-line test
paradigm [80].

 An increasing number of intermittent faults. The transient defects are
usually considered to be provoked by “-particle and cosmic radiations”.
Their effect over integrated circuits are more pronounced with the
decreasing transistor size and lower voltage levels [80]. Moreover, the
effect of “crosstalk error delay faults”, marginally dependent on the
particular environment and operating conditions, can only be interpreted
as intermittent because of their non-repetitive behavior. These
intermittent faults, as presented at the beginning of this chapter, can
only be detected by means of on-line detection mechanisms [80].

 The unmodeled defects, for which the failure’s cause or manifestation is
not yet fully understood, cannot be targeted by off-line test process as
no fault model was constructed for them. This category of defects is
prevalent at smaller feature sizes, and can only be detected by on-line
tests [80].

A description of the presented on-line test classes is described in the
following sections together with relevant circuit design consideration for efficient
implementing of the concurrent checking mechanism.

3.3.2 Self Checking Designs

The range of concurrent self-checking mechanisms conventionally encloses

hardware duplication, code-based solutions and time-redundancy methods.
Hardware duplication together with code-based mechanisms refers to hardware-
redundancy methods, because the error checking uses additional hardware modules
for correctness verification. For the case of hardware duplication, the CUT is copied
as an additional instance and the correct behavior is verified by comparing the two
instances’ outputs while the two modules are driven by the same inputs. The second
module, for obvious reasons is redundant. The secondary instance need not
necessarily be a perfect copy of the CUT. It can also implement the same
functionality by using a different approach as presented in [79] for the case of
modulo 2n+1 multiplication.

The code redundancy mechanism verifies that the output of the CUT
preserves an invariant property. For a CUT for which the internal operation is known
in terms of a truth table, for which no Boolean expression is provided for the
outputs, and for which the space of inputs vectors is unrestricted, there is no
evident invariant property. Trying to mathematically determine such a property or
relation between inputs and outputs can become computationally intractable for
circuits with numerous input and output lines. In consequence, the solution is to
modify the input vector into a codeword for which an invariant property can be
easily constructed, modifying the CUT accordingly, if necessary, and designing a
checker for the respective invariant property. In this scenario, the predictor of Fig.
3.16 is expected to predict the invariable property of the output codeword based on
the input codeword while the checker will compute the property for the current
output vector and compared it with its predicted value.

The vector space for the codewords for which the invariant property is used
is larger than the original vector space. However, the new codeword’s vector space
encodes the same amount of information: in other words, the error detecting codes
have more bits than the original codes, but the number of possible correct input and

BUPT

67

a b

Figure 3.17 Duplication code (a) and Two-rail code (b) architectures adapted from [80]

output configurations remains the same. It follows that the supplementary
bitsadded by the error detecting code are redundant: they carry no useful
information. The code-based error detection thus supplements the output and the
input vectors with redundant information bits and extends the CUT in order to
accommodate the new code. The difference between the number of all possible
configurations associated with the codeword length and the number of initial words
(or the number of correct codewords) refers to the erroneous vectors. The validity
of the output codewords assures CUT’s correctness.

It must be noted that the error detecting code can be: separable, or non-
separable [83]. Separable codes are also known as systematic codes and the non-
separable codes as non-systematic codes [80]. A separable code maintains the
initial code (non-redundant information bits) and forms the error detecting code by
attaching a set of redundant bits. In this way, the bits of the initial code can be
easily separated from the redundant data. In a non-separable code, the “information
and the check bits are merged” [83]. This observation has a direct effect over the
concurrent checking architecture: for separable code, the design is non-intrusive,
while for non-separable the detection mechanism is intrusive.

For separable codes, the CUT remains unmodified because the new
codeword can be separated into the initial code and redundant data. The CUT
operates over the information bits while the predictor computes the redundant
information for the output codeword from the input codeword. The checkers will
compare the predicted redundant information with the actual redundant data
obtained from CUT’s output.

With respect to these definitions the hardware duplication can be interpreted
as a separable error detection code, which doubles the initial code length. The
redundant bits are exact copies of the information bits, the predictor is replaced by
the second CUT instance and the checker is a simple comparator. This code is
known as duplication code [80] depicted in Fig. 3.17a. A similar approach is the
two-rail code for which the CUT is not duplicated but instead is redesigned in order
to generate the complementary output vector when both modules are stimulated
with the same input vector [80], as represented by Fig. 3.17b. The redundant
information consists of the complemented information bits. There are sufficient
literature references concerning the two-rail code circuit design, such as [88], [35],
[37].

Another code for error detection is the parity code, which attach a parity bit
to the information bits. The redundant bit can be computed using the even or odd

Circuit
Under
Test

Input

Output

Copy of
Circuit
Under
Test

Comparator

Error

Circuit
Under
Test

Input

Output

Inverted
duplication
of Circuit

Under Test

Two-rail
checker

Error

BUPT

68

parity: for even parity all codewords have an even number of ones in their
configuration. For odd parity a similar rule is defined. However, in order to use a
single parity bit for a CUT with multiple output line, the circuit is required to be
developed so that “there is no sharing among the logic cones generating each
output” [84]. For this scenario, a single stuck-at fault, as assumed in [84], will
affect only one output line. If the logic cones for the outputs would share elements,
a single output could affect an even number of erroneous outputs, resulting in
aliasing situation for the parity code. The error is detected by recomputing the
parity bit from the outputs and compared it with the predicted parity bit.

In order to alleviate the requirement of non-sharing output cones, group
parity codes were introduced: all output whose logic cones share no elements are
attributed to a distinct group. Each group is associated a parity bit. Output logic
cones can share gates with cones belonging to other groups. If a single error affects
the circuit, at least one parity bit will signal the error. Another parity related error
detection code is the checksum computation [89], for which the summation of all
words that are transmitted is performed. The different precision at which the
checksum is computed and its various forms are described in [89].

Cyclic codes can also be used to determine faults. The codes are called
cyclic because a rotation of the codeword (cyclic shift), results in another codeword.
Their computation consists of multiplying the initial codeword by a primitive
polynomial; however this approach results in a non-systematic code. A systematic
cyclic code is obtained by multiplying the original codeword, represented as a
polynomial, by the monic polynomial xn-k, with n being the total number of bits of
the codeword and k the number of information bits; the result of multiplication is
then divided by the generator polynomial and the residue, which forms the
redundant data, is attached to the initial information bits [89]. For error detection
the systematic cyclic codes are preferred, and the detection consists in re-
computing the redundant bits after the operation was performed and comparing it
with the predicted value. The cyclic code having x+1 as its generator polynomial is
the parity code: this observation makes the cyclic codes a generalization of the
parity detection principle. The error detection using cyclic codes (also known as
cyclic redundancy check) is used in [90].

Another class of error detection codes are the unordered codes [83]. For this
category of codes one codeword does not cover other codeword, i.e. there is no
codeword for which another codeword has a one in every position in which the first
codeword has one. The invariant property for these codes is the non-covering
property of codewords. It can be showed [83] that multiple unidirectional errors,
that force the codeword bits in the same direction, for example, 10 can be
detected because the affected vectors does not maintain the non-covering property
[83]. Conventional unordered codes are m-out-of-n codes, Berger codes and Bose-
Lin codes.

The m-out-of-n codes are non-systematic codes, for which each codeword
has exactly m ones out of the total n number of bits. The Berger codes are
systematic codes: the redundant information is constructed as the binary
representation of the number of zeroes within the information bits. Another variant
of the code represents the binary complement of the number of ones from the
information bits into the redundant portion of the code. The number of data bits for
Berger codes need to be less or equal to 2N, with N being the number of redundant
bits. Bose-Lin codes resolve this shortcoming allowing a smaller number of
redundant bits to service a larger number of information bits. However, this comes
at the price of being able to detect maximum N unidirectional errors using N

BUPT

69

redundant bits as opposed to Berger codes which can detect unidirectional errors of
any multiplicity [80], [84].

In order for the unordered codes to detect faults in a circuit, the CUT needs
to be constructed so that for each node susceptible to faults, all paths from the node
to the output will have the same inversion parity (either an even number of
inversions or an odd number of inversions) [83]. There are references presented in
[83] treating the transforming of a CUT into a design compliant with these
restrictions.

The class of arithmetic codes is represented by the residue codes which can
be both systematic and non-systematic. The separable code implementation
constructs the redundant data as the residue of the information data computed
modulo the code’s base [83], [84]. The inverse residue code is defined similarly in
[83]. Non-systematic arithmetic codes compute the codewords by multiplication of
the original vectors by the base. The separable arithmetic codes are preferred
provided that the base is carefully chosen in order to perform the residue operation
efficiently. Usually the base is of form 2n-1. A modulo 3 residue code can detect any
single error, using only 2 redundant bits.

It must be noted that error detection and correction codes are also used,
which, besides detecting errors also permit correcting a limited number of them.
Examples are SEC/DEC Hamming codes, Reed-Solomon codes, BHC codes just to
name the conventional solutions.

With respect to the checker, the first observation is that an error affecting
the checker can mask any other defects in the CUT. Circumventing this issue is not
an easy task: first of all, it raises the well-known problem of “who checks the
checker”. As reported in [83], for the proposed error detecting codes, the research
literature have extensively developed self-testing checkers. The task of constructing
such units is difficult because on one hand the checker is expected to generate an
erroneous response for every erroneous output codeword, and a correct response
for a correct output codeword. Moreover the self-testing principle requires that
under the influence of a fault, the checkers have to signal an error for a correct
output codeword.

Moreover, in order to avoid the critical effect of a stuck-at fault affecting the
checker’s error indicator, the checker is recommended to signal the error status
using two lines. A two-rail code could be employed for which only two of the 4
configurations are valid. A detailed discussion regarding the particular
implementation details for the CUT and the checker with respect to the previous
discussed error detecting codes is offered in [83], [80] and [84].

The linear error detection codes, such as parity codes, cyclic codes,
hamming codes, BCH codes, have the disadvantage of dividing the set of all possible
errors into two disjoint sets: one from which all errors are detected and one for
which none are detected [80]. Dependent on the dimension of redundant data, the
covered errors prevails or in the worst case the two error sets have the same
cardinality. The simple parity method, using a single parity bit can detect only odd
errors and none of the even errors. In [80] is described a category of error
detecting codes called, non-linear split error detecting codes. These codes divide the
possible errors into fully covered, completely undetected, and covered with a ½
probability [80]. Usually there are only a few uncovered faults. The non-linearity is a
consequence of using both the AND (or NAND) and OR (NOR) operators in
constructing the code.

Concerning the time redundancy measures, as already stated, the simplest
form involves enhancing the CUT’s input with a multiplexer, storing the CUT’s result

BUPT

70

a b

Figure 3.18 Simple time redundancy (a) and Re-computing with shifted operands (b) strategies

for particular input vector in a register and in idle cycles reapply the specific input to
the CUT in order to compare the result with the previous one. Apart from affecting
the CUT’s latency this method requires monitoring the CUT’s inputs for determining
the specific input vector. This approach is depicted in Fig. 3.18a.

One disadvantage of the simple time redundancy check as observable also
from Fig. 3.18a is that permanent faults are not detected. A variation of this method
is re-computation with shifted operands as presented in [91]. It avoids the use of
the same CUT inputs in order to be able to test for permanent faults also. This
approach is depicted in Fig. 3.18b. As can be seen from the figures, whereas the
simple time redundancy mechanisms, stimulates the CUT with the same input
vector, the re-computation with shifted operands, modifies the input vector by
applying an supplementary function f(x), and after the CUT results are obtained, the
inverse of f(x) is applied in order to compensate for the modified CUT input. When
choosing the additional function and its inverse the designer need to assure the final
result for the correct circuit is equal to the result of the CUT not altered by these
two functions otherwise a compensation mechanism is required. For arithmetic units
(adders, multipliers) an efficient f(x) function is the cyclic shift, for which the inverse
function is easily constructed and devising the compensation mechanism allowing
comparing the original result with the re-computed one is straightforward.

Another time redundancy mechanism, as presented in [84], is the alternate-
data retry. It is a reliable error correcting mechanism, which depends on
retransmitting the erroneous data (the temporal characteristic of the method) but in
an alternative form. The alternative codification for the codewords is specifically
constructed in order to compensate for various stuck-at faults affecting the
communication lines.

The code-redundancy methods and hardware duplication can be combined
as in [80]. The method requires that the CUT would consist of two separable sub-
modules. One module (the one receiving the CUT inputs) is protected by means of
code redundancy while the second module is entirely duplicated. Efficient protection
mechanism can be obtained when the trade-off between code-redundancy fault
coverage and hardware redundancy complexity is carefully selected.

Circuit
Under
Test

Input

Output

MUX

Test vector

Register

Comparator

Error

Test
controller

Circuit
Under
Test

Input

Output

MUX

Test vector

Register

Comparator

Test
controller

Error

f(x)

f -1(x)

BUPT

71

3.3.3 Supplementary Concurrent Checking Mechanisms

Reference [80] describes other concurrent error detection mechanism used
either as a complementary detection method (physical parameter monitoring) or as
strategies at the system’s architecture-level for performing the test process (BIST,
Scan Chain).

The previous chapter presented the usefulness of quiescent current
monitoring for detecting physical defects otherwise difficult to detect by the
presented fault models. The physical parameter monitoring is concerned with non-
logical properties of a circuit. As reference [83] underlines, these methods “include
in a natural way the invariant property required for on-line monitoring”.

The IDDQ monitoring can be performed using external sensors or by
incorporating Built-In Current Sensors (BICS) into a design [83]. These monitoring
mechanism are operating at the circuit’s normal clock frequency, being able to
detect physical defects at-speed. However, there are some drawbacks associated
with BICS, as [83] details:

 The integration process is the same for BICS and for the circuit
containing it. However, the parameter variance for BICS is required to
be much smaller in order to improve sensor’s detection quality [83].

 The BICS might increase the circuit’s latency [83].
 For IDDQ, the current is measured at the quiescent regime, however, for

fast integrated circuits, the logic levels are established before the circuit
reaches the quiescent state. And because the sensors takes the logic
levels as reference for determining the moment of current measuring,
the clock signals are required to be slowed down for this measurement
to take place.

In order to resolve these issues, the BICSs are not placed along the circuit’s
critical path. Another solution would be to perform the monitoring task periodically.
However, the reliability of this monitoring approach suffers by not being able to
detect the errors produced between two consecutive tests.

Other reliability indicators can be monitored [83], such as the operating
temperature, the dissipated energy, voltage levels, the outputs steadiness and the
radiation total dose [83]. More recently robust low clock frequency detectors were
proposed in [92] for those specific cryptochip attacks which force the cryptographic
system to operate at lower frequencies in order to efficiently identify the algorithm’s
steps and derive the key.

Another concurrent checking mechanism relies on signature monitoring.
Apart from being an important component of a typical off-line BIST design, the
signature monitoring as presented in [83] and [79], can be used also to test the
finite state machines of a design. Typically, the control unit, for a hardwired
implementation (as opposed to the microprogrammed solution) is implemented in
terms of an automaton. In [79] the finite state machine implementing the control
unit, and being designed as a Mealy or Moore solution is transformed into a
Medvedev state machine, whose structure resemble a Linear Feedback Shift
Register allowing to assign a signature corresponding to the automaton state
transitions.

Fail safe designs are concerned with assuring the outputs of a circuit in the
presence of a fault are either correct (fault unaffecting the outputs) or safe [79].
The quality of being safe is defined with respect to the systems and operations the
circuit’s outputs command. This design feature is a necessity in critical-oriented
systems (avionics, railway control).

BUPT

72

Figure 3.19 Conventional BIST architecture adapted from [68]

Figure 3.20 Conventional Scan Chain architecture

The Built-In Self Test methodology was already presented. As for the Scan

Chain design, it relies on architecture extensions permitting to serialize the internal
state of the device. The method typically connects all or the majority of the storing
elements (registers, flip-flops) of a design into a single or multiple chains,
addressable from the exterior, allowing to read or write the content of the registers
for testing purposes. Scan Chain is conventionally an off-line test mechanism. The
two paradigms: BIST or Scan Chain are evaluated and selected at the very
beginning of the design phase as they usually embed all the testing activities for the
design. The two architectures, namely the BIST and Scan Chain approach, are
depicted in Fig. 3.19 and Fig. 3.20 respectively.

M
U

X

Test pattern
generator

Circuit
Under
Test Response

evaluation

Control
Unit

Input

Error

Output

Scan
cell

Combinational
Network C1

Combinational
Network C2

S
ca

n
ce

ll

Combinational
Network C3

Input

Scan in

Scan out

Output

Scan
cell

Scan
cell

Scan
cell

Scan
cell

Scan
cell

Scan
cell

Scan
cell

S
ca

n
ce

ll

BUPT

73

Chapter 4
Advanced Encryption Standard

For a long period of time, cryptographic systems were employed only for

protecting communications between military and governmental officials. As a
consequence, the information was protected through algorithm’s secrecy due to the
fact that very few individuals had the required competence in cryptosystem’s field.
Moreover, the cryptographic systems were operated only on few communication
mediums such as teletype, telex, facsimile, voice, radio and data [93]. However, as
our society pass into the so-called “information era”, the information protection
became an absolute necessity, triggering the rapid embracing of the cryptographic
services at a large scale. The advent of large scale integration (LSI) and eventually
the very large scale integration (VLSI) allowed implementing security algorithms in
hardware for increased performance. The need for standardizing enciphering
algorithms led to the selection of Data Encryption Standard as Federal Information
Processing Standard in 1976. Another important step toward general cryptographic
primitives’ proliferation was the development of Secure Socket Layer allowing for
secure communication over the Internet. One of the first promoters for
cryptography development and its integration into everyday’s life was businesses’
need for effective protection. Cryptography’s applicability was driven to such an
extent that it covers Internet credit card payments, bank transfers, ticket
reservation, medical assistance, pay-per-view television services, electronic mail,
mobile phone communication to name only a few.

Cryptography is formally defined by the following security services [94]:
 Confidentiality: assures that only the entities authorized to access the

protected information will have this right. It is typically achieved by
using the encryption security mechanism.

 Data integrity: is a security service assuring the data is not accidentally
or deliberately modified during its transfer from the source to its
destination (by replacing, deleting or inserting new data into the
message). Hash functions, as a mechanism of digital signature, are
effective mechanisms for enforcing data integrity.

 Authentication: offers the receiver of the message the assurance that
the received data is coming from the source it claims to come. It is
automatically enforced by encryption (if the receiver possesses the
correct encryption key used by the sender, it will be sure the message
was sent by the entity using the same key). Digital signatures can also
be used for authentication.

 Non-repudiation: none of the entities participating in a secure
communication can repudiate its participation. This service protects
against an individual denying receiving or sending data. It can be
manifested as non-repudiation with proof of delivery or with proof of
origin. Digital signatures can be used for this purpose.

A taxonomy of cryptographic primitives used for achieving these security
services is presented in Fig. 4.1.

BUPT

74

Figure 4.1 Cryptographic primitives taxonomy adapted from [94]

Security
Primitives

Unkeyed
Primitives

Arbitrary
Length

Functions

One‐way
Permutations

Random
Sequences

Symmetric‐key
Primitives

Symmetric‐key
Ciphers

Block Ciphers

Stream Ciphers

Arbitrary
Length Hash
Functions
(MACs)

Signatures

Pseudorandom
Sequences

Identification
Primitives

Public‐key
Primitives

Public‐key
Ciphers

Signatures

Identification
Primitives

BUPT

75

Advanced Encryption Standard became the new Federal Information
Processing Standard in 2001 after being selected by National Institute of Standards
and Technologies as the successor of Data Encryption Standard (DES). After a
significant period of use, DES lost its security strength. Even close to DES’s
selection, it was argued that a machine capable of performing known plaintext
attacks can be designed. At Crypto ’93 Rump session, a detailed description for a
DES key search design was delivered by Michael Wiener [95]. Although the
proposed machine was never constructed, in 1998 the “DES Cracker” was built,
capable of finding a DES key in 56 hours. Using today’s computational power DES
can be broken in a “few hours by launching a brute-force attack” [2]. The process of
selecting a DES replacement was initiated in 1997. AES was required to operate
with 128 bit data blocks, supporting 128, 192 and 256 bit keys and being royalty-
free available. The selection process evaluated the candidates based on security,
cost and implementation characteristics. The cost refers to resource requirements
for implementing the algorithm on various platforms such as Application Specific
Integrated Processors, Field Programmable Gate Arrays, Smart Cards and in
software. The most important characteristic sought for AES was simplicity and
algorithm flexibility. The Rijndael was eventually adopted as the new AES because of
its implementation efficiency, flexibility and long-term foresaw security. National
Institute of Standards and Technologies expects the security lifetime for 128-bit
keys symmetric encryption algorithms (including AES) to last beyond 2030 [96].

When extending a cryptographic system with tamper-resistant features, the
range of possible applications widens considerable. This combination first appeared
in conjunction with securing military communication lines. The secure cryptosystems
eventually opened its path into the commercial sector, being firstly adapted for
Automated Teller Machines. In the following a brief description of the applications
that can be served by a cryptosystem is presented [97]:

Automated Teller Machine: the main sector that still employs “high-volume
use” of tamper-resistant security hardware. It also propelled the use of encryption
hardware into civil services from its military-only use. Hardware Security Modules
were first used as a mean to authenticate customers to ATMs. Currently the
cryptoprocessors control all operations related to the PIN in a typical ATM (PIN
acquisition from the keypad, PIN validation as well as PIN generation).

Electronic Payment Services: the natural tendency was to integrate security
modules in financial services, similarly to the case of ATMs. In consequence, by
using secure communication lines between banks or between bank and its costumer
(individual merchant, supermarket, chain store) electronic payment systems have
emerged. This new platform is required to be able to store verification keys specific
to the bank in order to authenticate card payments. All-in-all, the general tendency
with respect to this domain is to assure ubiquitous home banking (some attempts
have already been made, by introducing stand-alone authorization devices).

Prepayment Electricity Meters: allows for a better budgeting with respect to
electricity consumption. It is usually employed by electricity suppliers when the
customer cannot sustain regular payments on their bills. In this case, it is evident
the evolution: from the initial mechanical prepayment meters up to the reliable
digital systems, that uses SmartCard technology. The meter recognizes authentic,
encrypted information supplied by user through a prepayment key. Based on the
current counter value stored inside and the payment information from the “credit
token” it supplies energy. Once again, the Hardware Security Module is required to
offer a trusted platform for storing the counter value and encryption keys. Thus,

BUPT

76

cryptography allows the power companyes to deliver inexpensive meters without
being threatened by energy theft frauds.

Trusted Computing: is baked by the Trusted Platform Module objective to
integrate cryptographic modules into PCs and mobile devices. Currently it is used in
Lenovo ThinkPad Laptops (for disk encryption among other services). However, the
new generation TPM chips aim to accommodate other security related tasks, such as
authentication to other trusted machines, certifying a specific property (such as
whether or not a particular program is executing), and assuring security in the
Microsoft’s trusted Windows OS. In order to offer a general approach for
cryptographic interface construction, TPM will work in conjunction with a micro-
kernel responsible for cryptographic primitives. The most important utilization would
be for Digital Rights Management, sustaining the development of secure on-line
services. A service provider would be confident that the information was sent to a
valid customer rather than to a malicious one. It is easy to understand the vendors’
benefits in a trusted computing platform when looking to the current DRM attained
by software obfuscation, which eventually is tampered. DRM could also control the
“flow of information within organizations“ [97].

Military Equipment including devices to transport keys, tamper-resistant
cryptographic devices using classified algorithms and even a command and control
environment for secure management of the nuclear arsenal can also be mentioned
as possible application of cryptographic processors.

4.1 AES Hardware Implementation

Advanced Encryption Standard as defined by Daemen and Rijmen [98] is a
block cipher, operating encryption and decryption on data blocks using a secret key.
It is a substitution permutation network, operating in an iterative manner, with a
particular sequence of operations (collectively described as around) being repeated
a certain number of times. The AES operations are byte-oriented, which is also the
reason for its performance on resource-limited processors as well as on current 32
and 64-bit architectures. The design criterions were guided by Shannon’s notions of
diffusion and confusion as presented in his “Communication of Secrecy Systems”.
Diffusion will disperse the plaintext and key information into the ciphertext and is
typically achieved in cryptographic algorithm by use of permutations. The confusion
property achieves a complicated relation between the inputs (plaintext and the key)
and the encrypted output, and is usually implemented by use of substitutions, or
SBox-es.

The AES algorithm operates with 128-bit data blocks and accepts keys of
128, 192 and 256 bits. Dependent on the key length the algorithm is performed by
iterating a different number of times the round transformations. The most used
implementation, and the one analyzed in this thesis, as well as the one provisioned
by NIST to maintain its security beyond 2030 [96] is based on 128-bit keys. AES
belongs to the key-alternating block cipher class because its common round
transformation is parameterized only by the key, and in consequence both
encryption and decryption round depends on its correspondent round key.

The AES encryption algorithm is described in Fig. 4.2. The simplicity at the
algorithm level manifests in its symmetry and the use of basic mathematical
operations [98]. This property in turns allows for rigorous mathematical analysis of
its behavior against common known attack strategies, also confers implementations
higher performances (both software and hardware) and allows a higher degree of

BUPT

77

reusability by designing a single round which will iteratively performs the algorithm.
From a software point of view, Daemen and Rijmen mentioned AES’ implementation
efficiency on 8, 32 and 128 bit processors [98]. The modularity of the algorithm
strongly linked with its simplicity is responsible for its flexibility, being capable of
implementations on limited platforms (“on a grain of sand” [99]) as well as
targeting high speed applications. The modularity allows to add subsequent
instances of the same operation for an increased performance, i.e. because
SubBytes transformation operates on all the bytes of the state and it is also the
most complex unit, on a SmartCard platform the AES unit would contain a single
SubBytes instance with algorithm’s control flow and datapath correspondingly
modified in order to share the expensive module, while for a high speed Terabit
network controller, the maximum number of SubBytes instances will be present for
a high speed parallel processing. The same observation stands also for MixColumns
transformation. The downside of this observation is the fact that instances’
multiplicity has an important role over the power consumption.

Besides allowing constructing mathematical proofs for algorithm strength,
the use of basic mathematical operations permits, in addition, simple, efficient and
straightforward implementations for the most AES operations. All the mathematical
operators involved are defined over the Galois Field - GF(28) - specific to the AES
algorithm: the field generated by the irreducible polynomial m(x) represented in
equation (13).

 8 4 3m(x) x x x x 1 (13)

The intermediate results of applying AES’ round to an input plaintext are

denoted by the term state. The state can be interpreted as a byte matrix with 4
lines and 4 columns. During encryption the plain text represents the initial state and
the final cipher text denotes the final state. The four transformations that builds
AES’ typical round are: SubBytes, ShiftRows, MixColumns and AddRoundKey.
Correspondingly, for decryption, the inverse transformations are defined:
InvSubBytes, InvShiftRows, InvMixColumns and InvAddRoundKey. The sequence of
the four transformations within a round as well as the manner in which each of them
affect the state is represented in Fig. 4.2.

4.1.1 SubBytes

SubBytes is a non-linear transformation transforming each input byte into

an output byte and affecting all 16 bytes of the state [7]. For a high throughput
implementation, 16 instances of the SubBytes transformation will concurrently
process all state bytes. Literature reports that in a high-speed AES design the
cumulated SubBytes instances together with the design’s registers demands as
much as 85% of chip’s area [100] making SubBytes the most critical element of a
hardware design as well as of a software implementation [98].

Literature presents various implementation methods, with the simplest one
(conceived by the very creators of AES) using lookup tables in order to compute the
SubBytes’ result. However, by inserting the ROM-based lookup tables, the chip’s
area increases considerably, especially for the case of encryption-decryption AES
designs, in which both SubBytes and InvSubBytes are required. Another alternative
is to compute the two transformations using their mathematical definitions by

BUPT

78

Figure 4.2 AES encryption algorithm

applying the affine transformation to the result of the multiplicative inversion
performed in the finite field associated with AES.

As literature reports reveal, the inversion operation in finite fields is non-
trivial, the AES’ GF(28) making no exception. In consequence, in [101] is presented
a hybrid solution that use look-up tables only for implementing the Galois Field
inversion. SubBytes and InvSubBytes however will require the additional step of
affine operation and inverse affine respectively. This solution is more efficient from
hardware resources’ point of view (both transformations share the same finite field
inversion unit). For some designs (ASIC for example) the presence of ROMs can
become inconvenient when designing for a higher throughput due to their well-
known resistance against pipelining methods.

Yet another solution implements the field inversion as a combinational
design. This class of implementations relies on Daemen and Rijmen observation
regarding the composite fields and the ability to construct an isomorphism between
AES’ Galois Field and a composite field. The Galois Field GF(28) is isomorphic with
the field GF(24)2, that is, a mapping function can be found such that any element of
the GF(28) to be associated to a pair of elements from the GF(24) (the elements pair
is interpreted as a degree I polynomial with coefficients in the GF(24) field). There

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
SubBytes ShiftRows MixColumns AddRoundKey

Common Round
(repeated N-1 times)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Plain Text AddRoundKey

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
SubBytes ShiftRows AddRoundKey Cipher Text

Final Round

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Initial Round

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

BUPT

79

are literature references documenting the process of generating the isomorphism
matrices starting from the polynomials used to construct the field GF(28) and the
composite field GF(24)2 [102]. However supplementary combinational logic is
required for the initial map of one GF(28) element into the corresponding two GF(24)
elements, and, after computing the inverse pair of GF(24) elements, for the final
mapping in order to obtain the associated inversed GF(28) element. Although the
solution is desirable when the unit’s area or power consumption is an issue, the
unit’s performance is degraded by the two mapping stages. Other research, as
proven in [103], drove the composite field applicability forward by reducing
inversion in GF(24) to inversion in GF(22). Inversion in the latter finite field is even
simpler to implement because it operates only on 2-bit values.

SubBytes transformation is also employed during the round key generation
process requiring four instances of the operation. For a design computing the round
keys on-the-fly, the 4 instances can be either shared with 4 of the 16 instances from
the datapath or be separately implemented. It must be noted that a shared
implementation requires additional control logic, as well as registers within the
datapath in order to multiplex the inputs for the mutually used modules. Besides
these, each round would require 2 clock cycles for completing in order to schedule
two executions of the SubBytes transformation, leaving unresolved the problem of
operations balancing for each cycle.

 a b

Figure 4.3 SubBytes implementation alternatives: lookup table (a) and
composite field (b) adapted from [104]

SubBytes
(lookup-table)

Register

Register

Composite field mapping

X2 X2

X-1

Affine transformation

Register

Register

e

Composite field mapping-1

BUPT

80

A concise description for the most notable SubBytes implementations
solutions including lookup table ones and composite fields approaches is presented
in [104]. Experimental results are also documented regarding the speed-up for each
particular design. For a complete analysis, the pipeline acceleration techniques were
taken into account revealing that the most efficient implementation is the one that
uses as many inner pipeline registers as possible.

Figure 4.3a depicts a typical lookup table SubBytes design while Fig. 4.3b
illustrates a composite field combinational implementation. The mathematical
relations in the latter case were derived by expressing one GF(28) element in terms
of two elements of GF(24). The inversion unit uses addition, multiplication and
squaring in the GF(24) field, operations which can be efficiently implemented using
simple binary operators.

4.1.2 ShiftRows

ShiftRows is a row-wise transformation, modifying all four bytes of each

state matrix row [7]. Each row is shifted to the left by a number of times dependent
of the row’s index. InvShiftRows, correspondingly shifts each row to the right in
order to reverse the effect of ShiftRows. In a 128-bit architecture, for which each
round transformation process the state matrix in a single pass, these two operations
reduce to mere lines’ re-routing. However, in a resource-constrained architecture, in
which a reduced number of SubBytes instances are implemented (possible only
one), the ShiftRows requires a dedicated stage.

4.1.3 MixColumns

MixColumns operates column-wise over the state matrix [7]. Each column is

interpreted as an element of the GF(28)4 composite field, i.e. each bytes of the
column is a GF(28) coefficient of a degree-3 polynomial. The extension field is
generated by the polynomial M(x), represented in (14) and the new column is
obtained by using a linear transformation which multiplies the initial column by the
constant polynomial c(x) represented in (15).

 4M(x) x 1 (14)

 3 2c(x) {03}x x x {02} (15)

In the mathematical equations during this thesis, elements of the GF(28)

field are written between curly brackets. Because all the GF(28) coefficients involved
in this operation are small the multiplication can be realized efficiently:
multiplication by 2 is implemented by the xtime() operator and multiplication by 3
reduces to a multiplication by 2 and one addition in the finite field. The inverse
operation, InvMixColumns requires multiplication with the inverse polynomial d(x)
from equation (16)

 3 2d(x) {0B}x {0D}x {09}x {0e} (16)

In order to implement multiplication by 11, 13, 9 and 14, the same method,

used for multiplication by 3, is applied, but with evident lower performances due to
the high coefficients involved. This can become an important issue when

BUPT

81

implementing AES designs capable of performing both encryption and decryption. A
design in which both the MixColumns and the InvMixColumns instances are present
will unnecessarily increase design’s area. Moreover, although MixColumns performs
faster compared with InvMixColumns, the overall performance will be given by the
largest latency of the two operations, which also conditions the fastest clock that
can correctly drive the design. In consequence, a design that exhibits hardware
reuse between the two operations is desirable.

To solve this issue, Rijmen and Daemen presented an efficient realization
method for InvMixColumns based on the mathematical property between d(x) and
c(x) described in (17).

 2d(x) ({04}x {05})c(x) (17)

Corresponding to relation (17) InvMixColumns can be obtained from the

MixColumns transformation result by using a subsequent multiplication. Another
alternative for integration of the two transformations would implement a single
module for reduced area requirements. To the authors’ knowledge, this method was
first introduced in [101]. The innovation introduced by this approach relies on the
mathematical similarities between the common factors that can be shared between
the two transformations. The driving concept of this alternative is to obtain a set of
mathematical relations to describe both transformations, parameterized by a single
variable that would select the appropriate operation.

However, the mathematical relations in [101] are subject to a mathematical
incoherence for the InvMixColumns implementation. Starting from this solution’s

Figure 4.4 MixColumns–InvMixColumns unit adapted from [101]

a0 a1 a2 a3

xtime(•)

Generate
y,z

y z

b0 b1 b2 b3

e/d

xtime(•) xtime(•) xtime(•) xtime(•)

a0 a1a2 a3

10
MUX

e/d

y z

xtime(•)

xtime(•)

xtime(•)

xtime(•)

xtime(•)

xtime(•)

10
MUX

BUPT

82

main goal (to share as many elements as possible in order to save up silicon area)
we constructed the correct mathematical expression for obtaining the desired
implementation. The design is described in Fig. 4.4 (the module operates over a
single state column) in which the encrypt/not decrypt line selects one of the two
operations. The entity that generates Y and Z parameters required in computing the
final result is detailed in the left side of Fig. 4.4.

4.1.4 AddRoundKey

AddRoundKey adds every round the current round key to the state [7]. In

the GF(28) field, addition is implemented as bit-wise EXOR between the two
elements. And because EXOR function is its own inverse, AddRoundKey implements
also its inverse round transformation.

4.1.5 Key Scheduler

The key schedule comprises of two processes [98]: one for generating the

key material and the other for selecting the current round key required by the
AddRoundKey transformation [7]. AES-128 consists of 11 round keys: in encryption
the algorithm’s initial key is also the first round key. Every round key has the same
length with the state (and also the data) block. Because AES standard can operate
with different initial key lengths: 128, 192 or 256, the process of computing the key
material and the selection of each round key differs dependent on the key different
lengths. As already stated, the most common implementation operates with 128-bit
keys, which is also the solution adopted in our designs.

Two mechanisms for generating the round keys are taken into
consideration. The first method is to pre-compute and store the entire key material

a

b

Figure 4.5 AES round key generation for encryption (a) and decryption (b)

a0 a2

ShiftRow

a1

SubBytes

b0 b2b1 b3

a3

Round
Constant

a2a1

b2b1 b3

a3a0

ShiftRow

SubBytes

Round
Constant

b0

BUPT

83

in a dedicated RAM, from where the selection process will access each round key on
demand. This approach is advantageous for situations in which the algorithm’s key
do not change too often (operating with the same initial key for subsequent data
blocks), and in consequence the computation of the same key material, during each
encryption is redundant. The other alternative is to compute keys on-the-fly. This is
possible because, hardware implementations allow for concurrent execution of
different modules. In this case one unit would be the AES’ datapath performing the
enciphering algorithm while the second unit would generate the round keys, the
only observation is that the 2 modules require appropriate control logic in order to
synchronized key scheduler with respect to the moment the AES datapath requires a
round key. The round key generation process is facilitated by its iterative nature.
On-the-fly computation of the key material is efficient when round keys change
regularly, because the initial latency for computing the keys is absorbed into the
AES execution. However, this solution might exhibit higher power consumption for
cases where RAM-based design are advantageous because the power consumption
of the key schedule is expected to be higher than that of the round keys RAM.
Structurally, the key schedule unit contains 4 SubBytes instances, a simple shift
operator and a module providing the round constant. The round constant is
introduced in order to eliminate the key symmetry [98].

In Fig. 4.5a and Fig. 4.5b are described the round key generation process
for encryption and decryption respectively illustrating the iterative property of the
key scheduler allowing on-the-fly generation as well as its invertible property with
respect to encryption and decryption.

4.1.6 AES Decryption

The straightforward decryption algorithm, executes the inverse operations

associated with each transformation in reverse order compared with AES encryption
[7], this process being similar in nature to a composition function inversion. The
operation sequence for this approach is described in Fig. 4.6. Although it can be
directly constructed, implementing an encryption-decryption AES design that makes
use of the encryption algorithm described in Fig. 4.2 and the decryption sequence
from Fig. 4.6, poses hardware implementation challenges. More precisely, although
the two algorithms have the potential for significant reuse within the operations
involved (the high complexity inversion module for both SubBytes and InvSubBytes;
MisColumns and its inverse as previously detailed), the corresponding operations
are not executed at the same stage in encryption’s and decryption’s round
respectively. For example, during encryption SubBytes is at the beginning of each
common round while in Fig. 4.6 it is at the end of the round. In order to
accommodate a common design with both these distinct processes, is required a
significant overhead for control logic as well as routing elements (multiplexers).

Daemen and Rijmen proposed reordering the typical decryption round
swapping the position of InvShiftRows and InvSubBytes because of their non-
interfering algebraic definition (InvShiftRows transpose each byte having no effect
over their values). Analyzing the reordering of AddRoundKey and InvMixColumns
(seeking to construct the same sequence as for encryption), in order for the
AddRoundKey to succeed the mixing operation an additional InvMixColumns
application to each round key is required [98]. But, this additional InvMixColumns
not only increase the hardware cost but also increase the latency of the key
generation unit. This can be avoided by allowing the AddRoundKey and

BUPT

84

Figure 4.6 Straightforward AES decryption algorithm

Figure 4.7 Modified AES decryption algorithm

Common Round
(repeated N-1 times)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
AddRoundKey

Final Round

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Initial Round

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

InvShiftRows

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

InvSubBytes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
AddRoundKey

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

InvMixColumns

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

InvShiftRows

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

InvSubBytes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
AddRoundKey

Cipher Text

Plain Text

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

InvSubBytes InvShiftRows InvMixColumnsAddRoundKey

Common Round
(repeated N-1 times)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

AddRoundKey

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

InvSubBytes InvShiftRows AddRoundKey

Final Round

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Initial Round

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Cipher Text

Plain Text

BUPT

85

InvMixColumns to be executed at different stages in encryption and decryption. The
generic decryption algorithm that takes into account these observations, as well as
the algorithm used in our AES implementations throughout this thesis, is depicted in
Fig. 4.7.

When considering the natural definition of decryption as the inverse
sequence of encryption’s transformations it is obvious that the decryption process
requires the set of round keys provided in reverse sequence compared with
encryption. Except from the case of RAM-stored key material, this task is also non-
trivial. One reason for key generation complexity is computing the initial decryption
key. Considering that the initial encryption key has NK bytes (in our design NK=16,
however, for larger keys the next observation still remains valid), the initial
decryption key is formed by the last NK bytes of the key material computed during
encryption. In consequence the initial decryption key can be obtained either by
executing the typical encryption key schedule and selecting the last NK bytes, or by
being supplied from the user as decryption’s initial key, similar to the case of
encryption. The pre-computation solution implies significant algorithm latency for
the initial key derivation phase, apart from the additional power cnsumption, and in
consequence the decryption would require supplementary clock cycles for execution.
If all the round keys are pre-computed and stored in a RAM, the decryption is
greatly improved only if the same initial encryption key is used (all the round keys
are already computed and need only be correctly selected); in all the other cases no
speedup is gained, on the contrary.

4.2 AES Architecture

Synthesizing the observations presented in this thesis as well as other
information provided by literature with respect to AES hardware realization, we
developed an AES architecture based on the observations presented in the plenum
of the “The Claude Shannon Workshop for Coding & Cryptography” [71]. The
datapath’s architecture is described in Fig. 4.8 and is capable of performing both
encryption and decryption. With respect to AES’s hardware design the datapath
structure presented in Fig. 4.8 is our contribution regarding high speed cryptochip’s
implementation. The structure in Fig. 4.8, however, do not uses the combined
MixColumns/InvMixColumns unit for reduced overhead as already presented, in
order to simplify the control logic. Furthermore as it can be observed, the SubBytes
and InvSubBytes modules share the multiplicative inversion modules, but in order to
avoid the two multiplexers required for implementing both transformation in a single
block and using a single inversion unit (as detailed in [105]) the affine
transformation and the inverse affine transformation were separated out and
duplicated into the datapath in order to obtain smaller latency both for encryption
and decryption. This was achieved by balancing the amount of activity on both
cipher operations. This can benefit the cipher’s resistance against side-channel
attacks by exhibiting similar power consumption for both operations. Additionally,
the operations succeeding the multiplicative inversion stage are separated into two
distinct sub-datapaths because of the modified decryption algorithm, presented in
Fig. 4.7, which performs the mixing transformation and key addition differently in
encryption and decryption.

Another observation pertains to the selection of final result: in order to
avoid the multiplexer on the AES’ encryption datapath branch required to prevent

BUPT

86

Figure 4.8 High speed AES datapath

MUX11 000110

Input Data
Block

Register

16 Galois Field
Inverter Instances

ShiftRows

InvShiftRows

4 MixColumns
Instances

4 InvMixColumns
Instances

16 Inverse
Affine Instances

Register

Output Data Block

Round
Key
Unit

Initial Key
Block

MUX 10

16 Inverse
Affine Instances

16 Affine
Instances

BUPT

87

Figure 4.9 High speed AES key unit

the execution of MixColumns in the final round, a supplementary addition unit was
inserted. The key scheduler design is graphically represented in Fig. 4.9. The
modules performing finite field addition on 32-bit vectors, as defined in [98] were
duplicated in order to avoid the high latency and area penalties incurred by typical
multiplexers, selecting the appropriate addition terms for encryption and decryption
respectively.

An less customized AES architecture, similar to the structure presented in
Fig. 4.8 and Fig. 4.9, targeting the Cyclone II FPGA platform was detailed in the
paper “A High-Speed AES Architecture Implementation" presented at the ACM
International Conference on Computing Frontiers, 2010 [106].

Register

MUX
1100 01 10

Initial Key
Block

Round Key
Block

[31÷0]

[63÷32]

BUPT

88

Chapter 5
On the testable design solutions applied to

Advanced Encryption Standard

This chapter presents our proposed testable design methods applicable to a
high speed AES hardware design, as well as a particular on-line and off-line test
strategies targeting the AES’ multiplicative inversion module. A brief description of
the related work concerning AES design with test facilities is also presented. The
existing approaches serve as a motivation and justification for the importance of
adding testability measures to the AES: both on-line and off-line. The chapter
continues with detailing the proposed test mechanisms: one regarding an on-line
Built-In Self Test method to detect faults in AES’ datapath unit, another one
analyzing the applicability of the off-line BIST architecture to the multiplicative
inversion unit and the last one constructing an on-line error detection strategy for
protecting the AES round. The chapter will finally draw a conclusion regarding the
applicability of the presented methods for the on-line and off-line testing of AES.

5.1 Related Work on AES Testability

When reviewing the literature, one can observe a vivid interest for
enhancing an AES design with testability solutions. The majority, as will be
presented, employs on-line error detection techniques, however, there are
approaches targeting the off-line domain as well. With respect to the on-line
testability, there are references tackling the problem of concurrent checking for the
AES’s finite field inversion module. The presented references also emphasize the
importance granted to testability in the context of AES implementations.

The mathematical definitions of SubBytes and InvSubBytes reveal the
inversion module to be a component of the two transformations. As a consequence
a test mechanism applicable to any of the three operations can usually be adapted
for the other two [72]. With respect to the three non-linear operations of the AES,
to the best of our knowledge, the majority of literature references treat the
protection of the SubBytes transformation. However the mechanisms are expected
to be adaptable for the inversion module also.

References explicitly considering test solutions for the inversion module are
[107], [108], [109] and [110]. In [107] and [108] arithmetic relations are
constructed linking the input and output of the inversion module. A similar relation
is proposed for the SubBytes operation as well. The relations are described in terms
of matrix operations, and permits predicting the parity bit of the output [107]. Both
references construct a test mechanism independent on the particular
implementation of the protected operations. Moreover the solutions are non-
intrusive with respect to the AES round transformations. As already remarked, the
solution in [107] is a parity based one, which groups the SubBytes with ShiftRows
and the MixColumns with the AddRoundKeys, in order to make the test solution
more competitive with respect to its area complexity. The parity detection

BUPT

89

mechanism for the SubBytes and InvSubBytes is generalized from the inversion
module’s parity protection solution [107]. The code-based parity solution of [107]
was detailed by the same authors in [111] also, where more specific details of the
architecture are presented. Moreover the approach in [111] considers the Galois
field multiplicative inversion to be implemented using a composite field approach
[104].

The parity-based concurrent error detection was also considered in [112]
and [113]. The solutions presented in these two references extend the SubBytes
with a single parity bit for error detection. In [112] the reconfigurable design
principle is employed: a “data cell” detected to be faulty is avoided and “replaced”
by a backup one. It worth noting that the reconfigurable and parity based solutions
were applied to the highly modular AES design, presented in [114]. Moreover the
effort of the authors came as an extension to their analysis of parity-based error
detection procedures for the AES, presented previously in [58]. The parity-oriented
error detection described in [58], was further developed in reference [113] by
taking into account the observations from [115] regarding the error propagation
properties in the context of AES implementations.

Yet another parity concurrent checking solution is described in [116] in
which both the parity of the SubBytes’ output is predicted from its input as well as
input’s parity is predicted from module’s output. The solution is shown to offer a
better fault coverage than the approaches employing only output parity prediction.
The FPGA implementation of a single parity bit protection for SubBytes is detailed in
[117].

The reference [109] proposes two scenarios for non-linear operations’
protection. In the first approach the InvSubBytes and the SubBytes modules are
considered to be present in the architecture, and while one of them is actively used
by the datapath, the second one is idle and can be used for error detection. The
result of the SubBytes is subsequently processed by the InvSubBytes and the final
result compared against SubBytes’ input. This is a form of hardware duplication
necessitating specific control logic and multiplexers for directing the SubBytes result
to the InvSubBytes module. However this solution can also be implemented as a
form of time-redundancy concurrent checking as previously presented. The second
approach presented in [109] considers the specific protection of multiplicative
inversion modules. The operation is implemented using lookup tables: the ROM
stores the sum between inversion’s output and input. The second solution can be
showed to cover only partially the possible faults.

In [110], the first protection mechanism targets the finite field multiplicative
inversion, relying on the property of inversion that multiplying the module’s result
by the module’s input yield the multiplicative neutral element of the field. If the
inversion’s input is the neutral element of field’s addition operator (the so-called
field’s zero) the multiplication of module’s input and output yield zero. In order to
avoid the inherent area complexity of a complete field multiplier, the authors
considered computing a limited number of the result bits. They observed that only 2
bits are sufficient for their intended fault coverage. This approach does not follow
the conventional on-line design strategies as presented previously, however it
belongs to the hardware redundancy measures. The protection mechanism is
differentiated for the linear and non-linear blocks: the non-linear SubBytes being
protected by the multiplier solution already detailed and the linear operators being
protected by linear codes constructed as systematic codes for which the redundant
data is computed by summing the 4 bytes of each column (a parity-based detection
mechanism). Yet another solution is presented in [110] pertaining to the code-based

BUPT

90

approaches, which uses “non-linear (cubic) robust error detecting codes”. It
collectively protect an entire AES round, however it requires the predictor to be
constructed, which in the case of AES round implies considerable area complexity
due to SubBytes’ non-linearity. The predictor also implements signature
compression by means of addition in the finite field. Consequently a supplementary
module is required at the round’s output to compute the same signature. Both the
predicted and the actual signatures are raised to the power of 3 in the finite field
(cubic code), and the checkers compares the two results.

Another hardware duplication solution is presented in [100], in which every
group of 4 SubBytes is extended by an additional one, used for correctness
verification. Only one of the 4 SubBytes can be tested each round by properly
selecting the routes through the input multiplexers. Different testing scenarios can
be constructed by properly controlling the multiplexers.

Another hardware redundancy method is presented in [118] in which
distinct encryption and decryption datapaths were designed within the AES chip.
While the chip performs an encryption, the decryption datapath is used to
subsequently process the result from encryption’s flow, and compare the obtained
result with encryption’s input. It is evident that this solution requires a careful
control mechanism in order to accommodate the normal operation and the test. In
the same article various error detection levels are discussed together with their
associated implementation overhead and latency.

Moreover, the reference [119] presents a hybrid protection scheme,
consisting of a parity-based detection mechanism for the linear elements and a
hardware redundancy approach for the non-linear (SubBytes, in essence) modules.
The approach, as the authors admit, can be interpreted as a partial circuit
duplication [80].

5.2 Concurrent Error Detection for AES Round

The error detection method to be presented is based on reference [90]. It
represents a typical on-line BIST solution for enhancing AES architecture with non-
intrusive error-detection mechanisms based on parity prediction of AES’ round
output. The fault detection is performed at the round level in order to reduce the
complexity of the added BIST circuitry. The parity control mechanism relies on cyclic
redundancy codes (5,4) associating a parity byte to every 4 bytes of AES’ matrix.
The proposed solution is compared with respect to performance, area requirements
and power consumption with the basic architecture which synthesizes parity control
solutions proposed by field’s literature, such as [109] and [58]. The two
architectures differ mainly in the way parity bytes are computed from the state
matrix, distinction from which derives the other differences. Our proposed solution
exhibit a parity prediction channel completely decoupled from AES’ datapath, which
correspond to the classical definition of a parity prediction checker as found in
[120].

The basic structure depicted in Fig. 5.1, associates a parity byte to each
column of the AES state matrix. It makes use of the solution already presented in
other references for implementing an efficient parity control mechanism for the AES.
As outlined in [109], AES’ datapath can accommodate cyclic redundancy codes of
various redundancy levels: from CRC(17,16) up to CRC(5,4). However, apart from
the higher detection capability of the CRC(5,4), both the MixColumns and the round
key generation unit favors CRC(5,4) codes.

BUPT

91

Figure 5.1 Basic on-line error detection strategy for AES round

It is also important to note that due to the AddRoundKey transformation

being a binary operator, the same prediction scheme needs to be implemented for
key unit in order to correctly predict the parity for round’s output. The similar
column-wise parity computation is easier to obtain due to key scheduler’s compact
structure. Moreover, because the key unit contains only a SubBytes instance, a
shifting operation and addition in the finite field, the parity prediction for the key
unit uses parity prediction modules already constructed for the operations on AES’s
datapath.

The efficiency goal sought when designing this architecture was to include a
BIST mechanism as small as possible. We refer to the parity prediction channel as
the sequence of parity module designed to computed the predicted parity of the
output for each AES transformation. The typical solution is to cascade all prediction
modules in order to obtain the final round parity. Whenever the parity prediction
channel is hindered by operations in AES datapath for which the parity prediction
cannot be integrated into the channel (due to its different computation), the extra
control logic and combinational logic required to reconcile the two different parity
predictions will in fact increase size and complexity of the error detection
mechanism.
 Analyzing the four AES transformations, it is observed that for column-wise
parity, ShiftRows transformation requires a totally different prediction method,
because it operates on state matrix lines. The simplest solution is to add all
predicted parity bytes before executing ShiftRows and comparing the result with the
added parity obtained from all 16 bytes of the state after the operation was
performed. In addition, the column-wise parity bytes need to be re-computed from
the state matrix after ShiftRows’ application. The inability to construct a completely
decoupled parity control channel differentiates the basic solution from the non-
intrusive detection principle. This observation has impact over the effective error
detection capability of the scheme: when verifying correctness for ShiftRows, a

16 SubBytes
Instances

ShiftRows

4 MixColumns
Instances

MUX

Round Input

Output Parity
Extension

ShiftRows Output
Parity Prediction

Recompute State
Parity

Round
Key

Verify Predicted Parity

Round Key
Parity

Round Output Error

BUPT

92

comparison between the predicted parity byte and the current parity byte is
performed. In consequence the level of redundancy for ShiftRows verification is one
fourth of the redundancy employed for the other transformation.
 One advantage of the basic architecture is a mathematical relation that
permits trivial computation of parity prediction for the MixColumns and its inverse.
More precisely, in [109] is demonstrated that MixColumns do not affect column-wise
parity bytes. This is the reason for no parity prediction module in the parity channel
associated to the transformation as observed in Fig. 5.1.

Regarding the error resilience policy, when detecting an erroneous
condition, the control logic halts algorithm’s execution, clears the storage elements
and sets an error indicator.
 The issue imputed to any parity-based error detection relates to its inability
in detecting an even number of errors. However, in this case the function to be
protected using parity prediction, namely the AES round, is constructed based on
the diffusion property as already remarked. This property manifests in that the
influence of each input byte is spread across as many state matrix bytes as possible.
Even when taking into consideration only a single round, the effect is dispersed over
entire matrix as a result of the ShiftRows and MixColumns operations. As a result
the effect of a single fault is distributed within the state matrix. In consequence for
multiple faults, the error diffusion creates the premises for error detection. In fact
reference [109] computed the fault coverage for an architecture similar to the one
in Fig. 5.1 obtaining a detection rate higher than 98%.
 The proposed structure, graphically described in Fig. 5.2, employs the same
amount of redundancy as the previous architecture, organized in a different
manner: a parity byte is associated to each state matrix’ row.
 The first observation would be that ShiftRows does not affect the parity
channel anymore as the parity bytes are associated row-wise which is also how the
transformation affect the state matrix. The second observation is that in this
configuration, the ShiftRows’ prediction is trivial and requires no dedicated module.
 The MixColumns benefits no more from the mathematical property of not
interfering with the parity bytes. However, it can be showed that the parity bytes
can be predicted by applying the MixColumns transformation to the input parity
bytes.
 Considering the state matrix defined as in (18), the parity bytes
computation for the proposed architecture is expressed in (19).

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

b b b b
b b b b
b b b b
b b b b

 (18)

0 4i

3
1 4i 1

2 4i 2i 0
3 4i 3

p b
p b
p b
p b

 (19)

In the equations to follow a prime symbol represents the new value

obtained after applying an AES transformation, both for regular bytes and for the
parity bytes.

BUPT

93

Figure 5.2 Proposed on-line error detection strategy for AES round

The parity bytes of the state matrix, after the MixColumns has been applied

are expressed in (20). The effect of the MixColumn transformation over a column of
the state, as described in [98], can be expressed as in (21).

0 4i

3
1 4i 1

2 4i 2k 0
3 4i 3

p b
p b
p b
p b

 (20)

4i 4i

4i 1 4i 1

4i 2 4i 2

4i 3 4i 3

b b{02} {03} {01} {01}
b b{01} {02} {03} {01}
b b{01} {01} {02} {03}
b b{03} {01} {01} {02}

 (21)

From (20) and (21), after reduction, we compute the parity bytes associated

to the transformation’s output in equation (22)-(23)

0 4i

3
1 4i 1

2 4i 2k 0
3 4i 3

p b{02} {03} {01} {01}
p b{01} {02} {03} {01}
p b{01} {01} {02} {03}
p b{03} {01} {01} {02}

 (21)

16 SubBytes
Instances

ShiftRows

4 MixColumns
Instances

MUX

Round Input

Output Parity
Extension

Verify Predicted Parity

Round Output Error

1 MixColumns
Instance

MUX

Round
Key

Round Key
Parity

BUPT

94

0 4i

3
1 4i 1

2 4i 2k 0
3 4i 3

p b{02} {03} {01} {01}
p b{01} {02} {03} {01}
p b{01} {01} {02} {03}
p b{03} {01} {01} {02}

 (22)

0 0

1 1

2 2

3 3

p p{02} {03} {01} {01}
p p{01} {02} {03} {01}
p p{01} {01} {02} {03}
p p{03} {01} {01} {02}

 (23)

The result in (23) support our initial assessment that the parity of the

MixColumns output can be predicted by applying the transformation to the parity
bytes of the inputs. The same property can be shown to stands for InvMixColumns
also.

Additionally, the parity prediction for key will be different for the proposed
solution compared to the basic one. For computing the parity prediction mechanism
for the key unit, we consider the bytes of the round key organized as in (24) and
the associated parity bytes expressed as in (25).

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

rk rk rk rk
rk rk rk rk
rk rk rk rk
rk rk rk rk

 (24)

0

0

0

0

rk
4i

3rk 4i 1

4i 2rk i 0
4i 3rk

p
rk

p rk
rkp
rkp

 (25)

Taking into consideration that the parity prediction for the operations of the

key generation process were already treated and by following an approach similar to
the one presented above, the predicted parity bytes for the round key in encryption
and decryption are obtained as in (26) and (27) respectively.

0

1

2

3

rk
124

rk 135

146rk

157rk

p
rkrk

p rkrk
rkrkp
rkrkp

 (26)

0

1

2

3

rk
12 13

rk 13 14

14 15rk

15 12rk

p
rk SubBytes(rk) Rcon(i)

p rk SubBytes(rk) 0
rk SubBytes(rk)p 0
rk SubBytes(rk) 0p

 (27)

BUPT

95

By analyzing (26) and (27) it follows that the size of the parity prediction
modules for the key unit in the proposed scheme is smaller and much simpler to
implement compared to the one used by the basic architecture, especially for the
encryption.
 Although the parity control mechanism for the proposed architecture
incorporates the complex MixColumns transformation, it requires no parity bytes re-
computation and also requires no prediction for the ShiftRows transformation. In
addition the complexity of the key unit error detection scheme is significantly
reduced as the experimental results reveal. The error response policy is identical to
the one employed in the basic structure. It is worth noting that because of the same
level of redundancy and the diffusion property of the AES round which manifest both
column-wise (in MixColumns) and row-wise (in ShiftRows), the observations for
parity error detection efficiency with respect to detecting an even number of errors,
mentioned for the basic structure, are also valid for the proposed architecture.

Experimental results are offered in [90] regarding the synthesis of the basic
and proposed architecture. Both on-line BIST solutions were applied to AES
encryption, AES decryption and encryption-decryption capable AES designs.

 AES Design
Basic CED Design

Overhead
Proposed CED

Design Overhead

AES Round Unit
Combinational 305056 29412 25380

Registers 22528 0 0
AES Key Unit

Combinational 76924 10024 2856
Registers 23936 5632 5632

Total 428444 45068 33868

Table 5.1 Area overhead entailed by the on-line parity based
error detection architectures [μm2] from [90]

Non-CED
Design

Basic CED Proposed CED

AES Encryption 35.3 41.3 39.1
AES Decryption 39.4 45.1 45.2

AES Encryption-Decryption 55.5 67.3 65.7

Table 5.2 Power consumption associated with the on-line parity based
error detection architectures [mW] from [90]

Non-CED
Design

Basic CED Proposed CED

AES Encryption
Round Unit 4.55 5.69 5.93
Key Unit 3.80 4.34 3.88

AES Decryption
Round Unit 5.04 6.13 5.96
Key Unit 3.5 3.95 3.60

AES Encryption-
Decryption

Round Unit 4.53 6.51 6.42
Key Unit 4.97 5.40 5.02

Table 5.3 Latency entailed by the on-line parity based
error detection architectures [ns] from [90]

BUPT

96

Table 5.1 presents the area investment for including the two BIST solutions
into an encryption AES design. The incurred overhead is provided with respect to
the size of the encryption implementation. The overhead of the basic architecture,
as revealed by Table 5.1 is 10.52%, while for the proposed solution it is of only
7.90%.
 Table 5.2 summarizes the power consumption obtained by including error
detection mechanisms into the three AES designs. The power consumption was
estimated for a 100MHz clock frequency. The influence over performance of the
BIST strategies is evaluated in Table 5.3 by computing the delay on the critical path.

5.3 Analysis of Built-In Self Test Applicability for AES Non-
linear Transformations

This section deals with the error detection analysis and testability measures

presented in [72]. One of the advantages offered by an off-line BIST mechanism, as
mentioned in [72], is its ability to detect unmodeled faults and timing-related
defects [33], [86]. The tree non-linear operations targeted by this solution are:
SubBytes, InvSubBytes and multiplicative inversion in the Galois Field associated to
AES algorithm. Although neither the AES encryption nor decryption explicitly use the
inversion operator, the reference details the reason for include it in the list, as
related to efficient hardware implementation for encryption-decryption AES designs
as already suggested in this thesis. The typical BIST architecture used in this
approach is the off-line design presented in Fig. 3.6.

Analyzing the related work on AES testability, and the special literature, lead
us to the conclusion that pseudo-random Built-In Self Test was not yet thoroughly
analyzed in the specific context of AES. To the best of our knowledge, the three
non-linear transformations were not addressed by pseudo-random stimulation
coupled with signature-based error detection. The reduced size of the added BIST
mechanism linked with its simple control logic makes this solution a perfect
candidate for secure testing.

The main objectives during designing and analyzing the proposed solution
were to obtain complete single stuck-at fault coverage and error detection rate as
high as possible for multiple stuck-at faults. Moreover, due to the fact that a
deterministic selection of the most appropriate test pattern generator and signature
analyzer is considered by the literature to be a rather very complex problem (to the
best of our knowledge no generic approach exists towards this direction), we guided
our selection process by simulations.

Another important issue to be mentioned is the applicability of the proposed
solution to any of the three non-linear functions, regardless of their particular
implementation details. This, in fact, is generally true for BIST solutions, unlike the
error detection solutions which are subjected by the particular structural details of
the design to be protected (intrusive test mechanisms).

When dealing with protection strategies for testing devices’ integrity, as
already discussed, one simple question can arise, as to “who checks the checker”.
This problem, apart from its pragmatic context, lead to the development of the so-
called self-checking checkers [120], [121]. In fact, in [68], the author graphically
details the self-checking capabilities for the LFSR and MISR solutions in an attempt
to address the above inquiry.

Another important observation reveals that the probability of a fault
affecting a module in a design depends on the complexity (the size) of the module

BUPT

97

relatively to the entire architecture. Firstly, the above observation represents the
driving mobile for addressing testability on the context of the non-linear operations,
because, as detailed in [100], in a high speed AES encryption design, the 20
SubBytes instances together with the registers claim as much as 85% of the circuit’s
area. Although for InvSubBytes and inversion the percentage would be less (no
more than 16 instances of the two are required in any design), the initial
observation stands as the two operations together with SubBytes are the top three
most complex operations, being in consequence the most likely to be affected by a
fault.

A second consequence of the fact that the fault probability of being affected
is higher for complex modules is that by using simple testability mechanism with
reduced area, the probability of a fault affecting the checker is significantly
diminished. This was another criterion for selecting the testability mechanism in
[72].
 The test generation mechanism we took into consideration was the Linear
Feedback Shift Register mechanism because of its simple structure and reduced
size. Moreover, due to the off-line nature of the test, there are no necessarily
imposed conditions on its speed, so that, because of the reduced number of inputs
in the modules to be tested (8 bits for all three operations), the entire LFSR-
generated sequence was taken into consideration. However, we also compared the
performances of LFSR-based test generators with respect to other alternatives. A
similar simple structure, but with very limited pseudo-randomness, having a test
sequence only one element longer than LFSR’s is a binary counter.

As opposed to the above mentioned test generation solutions, a more
complex approach is to stimulate the modules with a specially built pattern
generator that would offer at its output a test vector sequence deterministically
constructed by an Automatic Test Pattern Generator. Such a design could include a
ROM for storing the patterns or a custom built Finite State Machine sequencing at its
output the respective test vector set. The deterministic test set was obtained using
ATALANTA tool [45]: the ATPG program was applied to synthesized designs of the
three non-linear operations to be tested. The difference in the test process between
the LFSR-based stimulation and the deterministic approach are evident when
comparing the lengths of 255 for the LFSR sequence with the length of 152 and 154
of ATALANTA’s generated test sets for the inversion module and the other two
transformations respectively.
 Another aspect worth noting and mentioned in [72] relates to the N-detect
single stuck-at fault property of the test set generated by LFSR and the binary
counter. A N-detect single stuck-at fault test set is considered in [33] “a better
metric for defect coverage compared to the traditional stuck-at fault coverage”. In
[72] is formulated a justification regarding the LFSR and the binary counter
sequences being N-detect test sets.
 The next problem faced when adopting a LFSR test method is choosing the
appropriate characteristic polynomial. At first, this has little importance, as for any
degree-8 primitive polynomial, the entire 255-element sequence will be generated.
However, a thoroughly analysis and experimental results revealed, that the
generation polynomial has an important impact over the compaction scheme. The
quest for analytically determining the most appropriate characteristic polynomial, for
test generation and signature analysis as already state is beyond the scope of this
work and the work performed in [72]. We consider the simulation approach to be a
more manageable solution in this context.

BUPT

98

Figure 5.3 On-line adaptation for a typical off-line BIST architecture

 As already anticipated, the compaction scheme adopted in [72] is the
Multiple Input Signature Register because of its reduced area requirement, making
it less probable to be affected by faults. The selection of the characteristic
polynomial was directed by simulations aiming toward the objective of 100% single
stuck-at fault coverage and multiple stuck-at faults error detection higher than
90%. As it turned out, there is no 8-stage MISR capable of completely detecting all
single stuck-at faults conditions when stimulating the circuit with the test sequence
of a LFSR, a binary counter or ATALANTA’s deterministic set. However there are 9-
stage MISRs capable of accomplishing this requirement.
 Reference [72] also presents a particular on-line BIST solution. The
approach is different from the typical error detecting code solutions, in that it uses
signature compaction as a mechanism to verify the integrity of Circuit Under Test.
Such an approach is described in Fig. 5.3. In order to adapt the off-line BIST
principle already presented, into a concurrent process, the test pattern generation
unit is no more required. As part of the AES datapath, the three transformations
receive inputs during circuit’s normal operation. In consequence an Input Sequence
Monitor is replacing the test generation, in order to track the CUT’s inputs and
detect those vectors relevant for the compaction scheme.
 However the detection process for the on-line BIST has a probabilistic
nature in that, for a complete signature to be obtained the number of cycles
required are non-deterministic because it depends on the specific input vectors
received from AES’s datapath. This is due to the statistical independence of a
cryptographic algorithm’s outputs with respect to its inputs (data block and key). In
other words, although knowing the inputs of the algorithm, its outputs can be
regarded as pseudo-randomly generated. At a smaller scale this is also the case for
a single round’s execution.

The error control consists in comparing the obtained signature with the
expected one for both the off-line and the on-line structure. A special observation
targets the on-line solution: when trying to avoid the concurrent test process, the
attacker might attempt to inject a fault on the error detection line. However, due to
the already discussed probabilistic nature for test completion and the fact that the
precise internal structure remains unknown, the attack does not guarantee that the
test module was in fact disabled. Moreover, by using two-rail encoded error
indicator, the probability of the verifier to be disabled is greatly reduced.

Circuit Under
Test

Input

Input
Monitor

MISR

OutputError

BUPT

99

 The experimental result in [72] are relevant for the process of LFSR and
MISR characteristic polynomial selection. An in-house fault simulator was
constructed in order to effectively evaluate the fault coverage for single stuck-at
faults situations and the aliasing probability for multiple stuck-at faults. The three
non-linear transformations were described using VHDL and implemented using a
sum-of-products approach.

 Gate Count Logic Levels Collapsed Faults Number

SubBytes 651 17 1798
InvSubBytes 680 15 1856
Inversion Module 657 16 1765

Table 5.4 Implementation details for the three non-linear AES operations from [72]

In Table 5.4 is presented a summarized description of the three designs
regarding the complexity expressed in number of gates and logic levels, as well as
the number of collapsed faults determined by ATALANTA tool.

As already mentioned, the MISR configuration capable of detecting all single
stuck-at faults has 9 stages, i.e. only 8 stages will receive input from the modules to
be tested. In consequence for each characteristic polynomial, there are 9 possible
MISR architectures. The total number of the 9-stages MISRs as revealed in [72] is
432. During the simulations, the connection between the LFSR structure and the
MISR compactor became even more evident, justifying once again the use of
simulation for BIST design.

Figure 5.4 Error detection rate for 2 stuck-at faults injected into inversion unit from [72]

Figure 5.5 Error detection rate for 5 stuck-at faults injected into inversion unit from [72]

200000 400000 600000 800000 1000000

99.78

99.79

99.80

99.81

99.82

F
au

lt
de

te
ct

io
n

Number of simulations

 atpg-152
 counter
 lfsr

200000 400000 600000 800000 1000000

99.77

99.78

99.79

99.80

99.81

99.82

F
au

lt
de

te
ct

io
n

Number of simulations

 atpg-152
 counter
 lfsr

BUPT

100

Figure 5.6 Error detection rate for 10 stuck-at faults injected into inversion unit from [72]

Figure 5.7 Error detection rate for 50 stuck-at faults injected into inversion unit from [72]

Figure 5.8 Error detection rate for 100 stuck-at faults injected into inversion unit from [72]

Figure 5.9 Error detection rate for 250 stuck-at faults injected into inversion unit from [72]

200000 400000 600000 800000 1000000

99.77

99.78

99.79

99.80

99.81

F
au

lt
de

te
ct

io
n

Number of simulations

 atpg-152
 counter
 lfsr

200000 400000 600000 800000 1000000

99.78

99.79

99.80

99.81

99.82

F
au

lt
de

te
ct

io
n

Number of simulations

 atpg-152
 counter
 lfsr

200000 400000 600000 800000 1000000

99.81

99.82

99.83

99.84

F
au

lt
de

te
ct

io
n

Number of simulations

 atpg-152
 counter
 lfsr

200000 400000 600000 800000 1000000

99.91

99.92

99.93

F
au

lt
de

te
ct

io
n

Number of simulations

 atpg-152
 counter
 lfsr

BUPT

101

Figure 5.10 Error detection rate for 500 stuck-at faults injected into inversion unit from [72]

Reference [72] presents also the simulation results for multiple stuck-at
faults affecting the inversion module which reveal an error detection rate higher
than 99.78%. In Fig. 5.4, Fig. 5.5, Fig. 5.6, Fig. 5.7, Fig. 5.8, Fig. 5.9 and Fig. 5.10
are presented the detection rates for a particular LFSR-MISR pair when injecting 2,
5, 10, 50, 100, 250 and 500 stuck-at faults into the inversion unit.

5.4 Concurrent Checking for AES’ multiplicative inversion

The concurrent error detection mechanism we propose in this section
targeting the AES multiplicative inversion operation is detailed in [122]. For the
experimental results we used the AES architecture from [106].

In a dual encryption-decryption AES design, the sharing of the field
inversion element is an important area saving design decision. In a high speed
design, allowing to concurrently processing all 16 bytes of the data block this
decision allows alleviating the complexity of having 16 InvSubBytes and 16
SubBytes modules embedded in the architecture. However, this decision will have
an effect over the implementation latency because of the cumulated delay
associated to the affine transformation and the inversion module. The effect of the
multiplexers selecting one of the two operations can be diminished by using an AES
datapath design similar to the one in Fig. 4.8 for which the AES datapath is split,
after the SubBytes or InvSubBytes operations are executed, into two distinct sub-
paths.

The testing mechanism relies on the following mathematical property of the
multiplicative inversion in the finite field:

Proposition: Let mα,β GF(2) , with α 0 , β 0 , α β and 1α β . The
following expression stands:

 1 1α α β β (28)

Proof: The conditions α 0 and β 0 assures that and are invertible in
the Galois Field [123]. The demonstration is constructed as a proof by
contradiction. Considering (28) to be false and multiplying both equation
members by the factor αβ , the following equalities are obtained:

200000 400000 600000 800000 1000000

99.93

99.94

99.95

99.96

99.97
F

a
ul

t d
e

te
ct

io
n

Number of simulations

 atpg-152
 counter
 lfsr

BUPT

102

2 2

2 2

α β β αβ α

α β β αβ α 0
αβ(α β) (α β) 0

 (αβ 1)(α β) 0 (29)

The equation (29) implies that either one of the αβ 1 and α β factors or
both are zero. This however contradicts the proposition’s hypothesis because

 α β 0 implies α β and αβ 1 0 implies 1α β . Thus the
demonstration’s assumption is false making the proposition true. □

The consequence of the above proposition, is that the elements of the

abelian multiplicative group [123] consisting of all non-zero elements of the finite

field can be grouped accordingly into 128 classes with respect to the relation 1α α
over the finite field. The inversion function is also defined for the addition’s neutral
element: the field element zero [98]. As a consequence for both field’s element zero
and one, the sum with their own inverse is zero.

The first verification architecture is represented in Fig. 5.11. It is a non-
typical hardware redundancy concurrent checking mechanism, similar to the one
presented in [110] in the sense that both methods rely on a mathematical property
to evaluate correctness. Moreover the architecture in Fig. 5.11 pertains to the non-
intrusive concurrent checking principle being able to protect the inversion module

Figure 5.11 First AES inversion module concurrent checking architecture

regardless of its implementation details. The truth table for the verifier (checker) is
constructed by computing, for each field element, the sum with its own inverse, and
considering only these sums to be correct when delivered at the checker’s inputs.

The concurrent error detection architecture can also be embedded into a
BIST structure, as Fig. 5.12 depicts. As opposed to the conventional BIST
architecture the solution in Fig. 5.12 requires no response compaction module
because the proposed on-line protection mechanism from Fig. 5.11 already
generates a single GO/NOGO line. The BIST structure is only required to store the
error indicator and transmit it to the control unit. In fact the error indicator buffering
is optional: a correspondingly designed control unit would test the line at the
appropriate moment, or even buffer the signal itself. A conventional BIST
architecture, as the one presented in the previous section and in [72] attains a high

Inversion
Module

Checker

Input

Output Error

i i

i+1 i+1

i+2 i+2

0

0

0

8 8

8

BUPT

103

detection probability only after the entire test input sequence was applied to the
Circuit Under Test, which in this case is the inversion module. The smallest BIST
latency, as already reported in the previous section is obtained when generating the
input test vectors deterministically using ATALANTA [45]. The test latency is of 152
clock cycles in this case and 255 clock cycles when the test input vectors are
generated using an 8-bit LFSR. As opposed to these latencies, the BIST architecture
constructed around the solution in Fig. 5.11 offers a test latency of 4 clock cycles,
because the structure detects permanent defects with multiplicity higher than 2
within 4 clock cycles, and single and double defects within only 1 clock cycle. The
reduction in test latency is significant: from 152 to only 4 clock cycles.

In order to detect intermittent faults with higher multiplicity, such as the
one injected in attack situations conducted using exposure to laser [15], a
concurrent checking mechanism with a higher detection probability was constructed.
The design principle relies on increasing the redundancy at the checker’s level.
Because the checker in the first solution uses no information pertaining to the
inversion’s input the aliasing problem can mask errors. However, by including
information regarding the current inversion’s inputs, the effect of aliasing can be
greatly diminished as the experimental results confirm.

The checker will analyze the input vector information and the sum between
this input and the inversion’s output and decides for the correctness of the
operation. In other words, compared to the first solution, the checker’s truth table
will contain also information from the input vector. The area of the checker needs to
be smaller than that of the inversion module itself, in order to obtain an efficient
concurrent checking mechanism, as already observed in the previous chapter. If all
8 bits of inversion’s input are considered as redundant information, the resulting
checker is similar in complexity with the multiplicative inversion module. As a
consequence a condensed form of the input will be used by the checker. A signature
is computed for each input vector and based on all the input vectors associated to
each signature, the correct sums between those inputs and the corresponding
inversion’s outputs are evaluated. The signatures are then associated with all
possible correct sums and based on this the checker’s operation mode is defined.
The signature applied to inversion’s input is computed by spatial compaction, not by
temporal compaction, because the signature is required in the same clock cycle. As
a result, an EXOR tree was used compacting the 8 input bits into a smaller
signature. We adopted in our experiments a signature length of 4 bits. Spatial
compaction methods with the same signature size are expected to behave similarly.
Moreover the signature size can be modified in order to adapt for the required fault
detection. The second proposed concurrent error detection mechanism is presented

Figure 5.12 BIST constructed around the proposed concurrent checking architectures

M
U

X Inversion
Module

Input
Vectors

Generator

Checker

Output to Datapath

Input from Datapath

Storage
Element

Error

BUPT

104

Figure 5.13 Second AES inversion module concurrent checking architecture

in Fig. 5.13. The same off-line BIST mechanism can be constructed around the
second architecture although the on-line mechanism detects with high confidence
any defects intermittent or permanent.

When evaluating the error detection of the second concurrent checking
mechanisms we simulated the injection of stuck-at faults of multiplicity 1, 2, 5, 10
up to 500 into a single AES round. We also simulated the injection of single stuck-
open defects into a single AES round. The simulations of defects manifesting over a
single round were performed using an in-house simulation framework. Each faulty
condition was injected 106 times in order to obtain reliable detection coverage
results. When evaluating the fault detection for defects manifesting for more than a
single clock cycle (the base AES design we used in this experiment, described in
[106], executes one round in one clock cycle) we used probability calculation. The
detection rate can be interpreted as the probability that a fault is detected by the
concurrent checking scheme. The undetected probability is defined in terms of the
complementary probability. We computed the detection probability associated to the
proposed architecture for faults affecting multiple clock cycles, using complementary
probability calculation: we compute the probability for the fault to be undetected
when manifesting over multiple cycles and by subtracting the obtained probability
from 1 the probability of detecting that fault when it influences the module for
multiple cycles is obtained.

Because of the AES’ round transformations and the fact that each AES round
is parameterize by a different round key, the input for the inversion module in each
round can be considered pseudorandom. In fact experimental results show the
probability distribution for each field element, for each of the state matrix’ 16 bytes,
at the start of a round is uniform making each element of the field equiprobable at
the inversion’s input. In consequence, the undetected probability for a fault affecting
a single cycle is computed as the number of the undetected erroneous inversion’s
outputs obtained when considering all field elements as possible inputs in the
presence of that fault. For the same fault, manifesting over 2 clock cycles, the
events in which the defect remains undetected are those for which the error
generated at the output of inversion module, in the first round and the erroneous
output of the inversion in the second round are belonging both to the category of

Inversion
Module

Input

Output Error

Compaction

Checker

i i C(i)

i+1 i+1 C(i+1)

i+2 i+2 C(i+2)

0

0

0

8

48

8

BUPT

105

Without

concurrent
checking

Hardware
duplication

First concurrent
checking

architecture

Second concurrent
checking

architecture
AES

Encryption
506912.00 782452.00 563599.00 707171.00

AES
Decryption

541400.00 815423.00 597322.00 741112.00

AES
Encryption/
Decryption

620971.00 896083.00 679743.00 830283.00

Table 5.5 Area overhead for the proposed concurrent checking methods in
comparison with the hardware duplication solution [m2]

undetected erroneous outputs. In other words the undetected probability is, in this
case, the undetected probability of the fault affecting a single clock cycle raised to
the power of 2. By induction, the probability of a fault to remain undetected when
manifesting over n clock cycles is expressed as in equation (30) to be the probability
of that fault to remain undetected when affecting a single cycle, raised to the power
of n. From equation (30) the probability of a faulty condition to be detected when
manifesting over n clock cycles is computed as in equation (31).

n n
undetectedundetectedP (P) (30)

 n n
undetecteddetectionP 1 (P) (31)

The detection probability for the first solution when considering permanent

stuck-at faults of multiplicity 1, 2, 10 and 100 is represented in Fig. 5.14, Fig. 5.15,
Fig. 5.16 and Fig. 5.17. The behavior of the first architecture with respect to stuck-
open faults is the same as for stuck-at faults: the detection rate of the design when
a single permanent stuck-open affects the inversion module is depicted in Fig. 5.18.
The performance of the second detection architecture with respect to the detection
of intermittent faults manifesting during a single AES round is depicted in Fig. 5.19.

Figure 5.14 Detection rate for the first concurrent error detection architecture when
1 stuck-at fault is injected

1 2 3 4 5 6 7 8 9 10

60

80

100

D
et

ec
tio

n
pr

o
ba

bi
lit

y
a

fte
r

X
 r

ou
nd

s

Number of rounds

 1 injected fault

BUPT

106

Figure 5.15 Detection rate for the first concurrent error detection architecture when
2 stuck-at faults are injected

Figure 5.16 Detection rate for the first concurrent error detection architecture when
10 stuck-at faults are injected

Figure 5.17 Detection rate for the first concurrent error detection architecture when
100 stuck-at faults are injected

1 2 3 4 5 6 7 8 9 10

60

80

100
D

et
e

ct
io

n
pr

ob
ab

ili
ty

af
te

r
X

 r
ou

nd
s

Number of rounds

 2 injected faults

1 2 3 4 5 6 7 8 9 10

60

80

100

D
et

e
ct

io
n

pr
ob

ab
ili

ty
af

te
r

X
 r

ou
nd

s

Number of rounds

 10 injected faults

1 2 3 4 5 6 7 8 9 10

60

80

100

D
et

e
ct

io
n

pr
ob

ab
ili

ty
af

te
r

X
 r

ou
nd

s

Number of rounds

 100 injected faults

BUPT

107

Figure 5.18 Detection rate for the first concurrent error detection architecture when
1 stuck-open fault is injected

Figure 5.19 Detection rate for the second concurrent error detection architecture when
multiple intermittent faults are injected

The area requirement for implementing the two proposed architectures is

presented in Table 5.5. The AES design area without concurrent checking is
presented in order to compute the overhead incurred by the proposed architectures
as well as their efficiency compared to the hardware duplication method. The table
reveals that for AES encryption-decryption the first method incur only 9.45% area
overhead compared to the 44.30% incurred by hardware duplication. For the same
AES design the second verification architecture incur an area overhead of 33.70%
compared to the 44.30% of the hardware duplication method.

5.5 Conclusions

The chapter presented a thoroughly description of testing solutions adopted
for the AES implementations as they are presented in the literature. A wide range of
concurrent checking as well as off-line testing solutions was covered. It also
presented our research and results concerning testability features applied to the
AES hardware implementations.

The first solution makes use of the parity prediction error detection
techniques, applied to AES’s datapath and round key in order to obtain an efficient
concurrent BIST design. Two designs were described: a basic one synthesizing the

1 2 3 4 5 6 7 8 9 10

60

80

100

 1 injected faultD
et

ec
tio

n
pr

ob
ab

ili
ty

 a
fte

r
X

 n
u

m
be

r
of

 r
ou

n
ds

Number of rounds

100 200 300 400 500
90.0

92.5

95.0

97.5

100.0

D
e

te
ct

io
n

pr
ob

a
bi

lit
y

of
 in

te
rm

itt
e

nt
 fa

u
lts

Fault multiplicity

BUPT

108

solution already existing in the field’s literature and a proposed one, constructing
the parity prediction channel in a non-intrusive manner in order to attain efficient
and reduced implementation overhead. The proposed architecture, together with the
mechanisms for predicting the parity for AES’ various modules were detailed
together with experimental results regarding the area overhead, power consumption
and performance reduction implied by both the basic and the proposed models.

The second testing strategy was directed toward off-line BIST, with the goal
to analyze the applicability of LFSR-MISR based error detection techniques in the
context of the non-linear AES operations. The rationales for selecting a MISR
configuration response compaction scheme is presented together with conclusive
remarks drawn from the experimental results of simulating the off-line BIST design
with single and multiple stuck-at faults. An on-line adaptation of the scheme is
presented detailing also the design modification it implies.

Finally a concurrent error detection mechanism was constructed based on a
mathematical property of the multiplicative inversion in finite fields. The presented
architectures correspond to the on-line non-intrusive error detection mechanism.
The first installation can detect single and double intermittent faults manifested as
stuck-at or stuck-open faults. For faulty conditions of higher multiplicity it can detect
permanent defects after no more than 4 AES rounds. For critical applications, the
second solution was constructed. Although implying a higher area overhead, the
detection capabilities are virtually the same to those of a hardware duplication
mechanism, compared to which it still saves silicon area.

BUPT

109

Chapter 6
Conclusions

The thesis undertakes the problem of secure testing in the context of
cryptographic hardware implementations. Moreover, the thesis was constructed
gradually, starting from the problems raised by defects in the VLSI technology. The
mechanisms by which a defect affects a device were described as well as the
manifestation characteristics for each fault model. The defects were traced
throughout all design phases, detailing the correspondence between fault models
and circuit description levels. At the gate level and below, the faults are
characterized by a location, and for some fault models also by size. The mapping of
lower level defects in terms of the stuck-at fault model was presented, together with
the defective situations not mapped to or not covered by the stuck-at faults. For the
physical situations not covered by the gate-level defects, the switching layer fault
models were introduced: the transistor’s stuck-open and short defects. Moreover the
perspective of physical faults from the design’s layout netlist was discussed. The
bridging defects were presented as a generalization of the short faults together with
the delay faults specific for high integration VLSI processes.

After consolidating the problematic of fault modeling, the thesis follows with
analyzing the available solutions for achieving the goal of secure, autonomous
testing. As a consequence the test engineering domain is briefly introduced,
enumerating the conventional test strategies both for concurrent and non-
concurrent error detection. The thesis describes in detail the challenges faced by the
testing process and the appropriateness of Built-In Self Test methodology, both on-
line and off-line, with respect to secure test. First it reveals the importance of
testing from an economical point of view. The provisioned test challenges for the
nanoscale integration process were given as yet another justification for our
research. Finally the BIST methodology is described, and its various implementation
methods, revealing the LFSR-based solutions to be the most appropriate secure
testing approach in terms of fault coverage and hardware overhead. The
conventional on-line testing mechanisms were also presented. The link with the fault
models is established regarding the appropriateness of stuck-at fault model in
modeling the behavior of intermittent faults. The distinction between the intrusive
concurrent checking and non-intrusive concurrent error detection mechanism was
accentuated, detailing also the advantages of a non-intrusive approach. The
presentation of the self-checking architecture and the supplementary concurrent
detection mechanism followed the same direction as the authoritative references
from the literature. The hardware duplication, code-based concurrent checking and
time redundancy solutions were presented. A special attention was given to the
error detecting codes and their implications concerning the Circuit Under Test
design, the predictor construction and the checker.

The particularities of the AES algorithm were presented also, with emphasis
on its high speed implementations in order to exploit possible advantages with
respect to implementing a secure test mechanism. Special attention was offered to
AES’ non-linear operations: being the most complex ones their efficient
implementation has an important impact on system’s overall performance. The

BUPT

110

decryption algorithm was detailed pointing the architectural issues that favor an
encryption-decryption capable high speed AES design. The AES hardware
implementation solutions were presented at the following scientific presentations:

 F. Opritoiu, M. Vladutiu: "Cryptochip implementations with Buil-In Self Test
features applied to AES standard," The Claude Shannon Institute Workshop on
Coding & Cryptography, May 19-20, 2008.

 F. Opritoiu, M. Vladutiu, L. Prodan, M. Udrescu: "A High-Speed AES Architecture
Implementation," ACM International Conference on Computing Frontiers, pp. 95-
96, May 17-19, 2010. (BDI Rated)

The thesis culminates with a detailed description of the proposed
architectural approaches for integrating test strategies into a high speed AES
design: all techniques were/are about to be presented on international conferences:

 F. Opritoiu, M. Vladutiu, M. Udrescu, L. Prodan, “Round-Level Concurrent Error
Detection Applied to Advanced Encryption Standard,” The 12th IEEE Symposium
on Design and Diagnostics of Electronic Circuits and Systems, pp. 270-275, April
15-17, 2009. (ISI Rated)

 F. Opritoiu, M. Vladutiu, L. Prodan, M. Udrescu, “Built-In Self Test Applicability
for the Non-Linear Operations of Advanced Encryption Standard,” The 5th
International Symposium on Applied Computational Intelligence and Informatics,
pp. 307-312, May 28–29, 2009. (ISI Rated)

 F. Opritoiu, M. Vladutiu, M. Udrescu, L. Prodan, “Concurrent Error Detection for
Multiplicative Inversion of Advanced Encryption Standard,” The 10th IEEE
International Conference on Computer and Information Technology, pp. 582-588,
June 29-July 01, 2010. (ISI Rated)

The first solution constructs an on-line BIST based on parity prediction error
detection mechanism: a new design is proposed justifying its efficiency through
experimental results. The second testability measure refers to an off-line BIST
strategy for which the error stimulation and detection is assured by LFSR-based
structures: a LFSR for test vector generation and a MISR for response compaction
and evaluation. The experimental results reveal a detection rate higher than
99.78% for multiple stuck-at faults. The third approach presents two architecture:
the first being appropriate for intermittent faults of small multiplicity and for
permanent faults, being also adaptable into an off-line BIST mechanism; and the
second architecture being suited for detection of intermittent faults of higher
multiplicity. The error detection architectures were analyzed with respect to the
associated area overhead and error detection probability for stuck-at and stuck-
open defects.

A brief summary of the contributions to the hardware design and test
engineering presented in this PhD thesis are the following:

 A comprehensive review of the literature concerning the secure testing
mechanism in general and their applicability to the encryption
algorithms, and AES in particular. The solution found in the literature
represented the starting point and the comparing measure for our
proposed solutions. It also defined the research directions more clearly
as well as emphasizing the importance offered by academic research to
the secure testing solutions. Moreover it presents the authors
perspective on the subject.

 A high speed iterative AES implementation, capable of performing one
round of the algorithm in each clock cycle. The solution we constructed
aims to reach a good trade-off between area overhead and operating
speed. The principal contributions refers to the construction of the
datapaths based on the reusability principle (applied to the most area-
demanding operation of the design – the field multiplicative inversion)

BUPT

111

resulting in a separation of the encryption and decryption sub-
datapaths. The key generation unit was also designed specifically to
reduce the difference in delays from encryption and decryption by
duplicating the 32-bit field adders along its datapath.

 A parity-based on-line BIST design protecting the AES round
implemented in hardware. The solution materializes as a distinct parity-
prediction channel, following the principle of non-intrusive testing. As
with the other non-intrusive solution, the net advantage relates to the
independence of the test strategy on the particular round
implementation details. The proposed solution computes the parity
bytes associated with the state matrix, row-wise, allowing for efficient
implementation of the parity predictors. Moreover, the mathematical
relations for the prediction strategies for each transformation as well as
for the key unit were derived.

 The applicability of the off-line BIST with respect to the three non-linear
operations of the AES algorithm was investigated as well. As a
consequence, the details for an off-line BIST designed protecting the
field inversion module were offered with respect to the implementation
of the stimulus generation and response validation units. The objective
of the research was to find suitable LFSR-based configurations for the
test generation and response compression. The search for appropriate
LFSR structures was guided by simulations, allowing determining the
LFSR-MISR pairs capable of detecting all single stuck-at defects. In
addition the structures were simulated with respect to multiple faults
yielding a detection rate higher than 99%. Comparative results were
provided for the LFSR-based solution with respect to similar test stimuli
generation: binary counter and deterministic generated test set.

 An on-line test mechanism adequate for the proposed AES architecture,
and the round-level AES on-line protection was proposed. It verifies the
shared multiplicative inversion units, by relying on a convenient
mathematical property of the field multiplicative inversion. Dependent
on the level of redundancy used in the verification scheme, the solution
can be used for detecting permanent faults (both stuck-at and stuck-
open) and intermittent faults of small multiplicity or multiple
intermittent faults. The detection rate for the complex solution,
targeting multiple faults is comparable to the one provided by the
hardware duplication strategy while still saving silicon.

 A fault simulation framework, capable of generating all relevant faults
for a design and simulating the architecture in a fault-free or defective
context. The software approach assures high simulation speed, allowing
to concurrently evaluating the output vectors for all input configurations.
The framework is capable of simulating gate-level defects (stuck-at
faults) as well as transistor-level faults (stuck-open, stuck-on)

The thesis is based on two PhD reports submitted and presented in the
Computer Science and Engineering Department of Computer and Automation
Faculty, Politehnica University of Timisoara:

 Flavius Opritoiu, PhD Report I, Politehnica University of Timisoara, July
2009

 Flavius Opritoiu, PhD Report II, Politehnica University of Timisoara,
March 2010.

BUPT

112

Concerning the further research in the domains of testability engineering
and security algorithms, as well as a continuation of the proposed testing solutions
and AES implementation architecture, we envision the following possible further
refinements:

 Analyzing the impact of the test level (operation, round or algorithm)
over the security of the AES on-line testing mechanisms already
proposed

 Evaluating the effectiveness of Cellular Automata based test stimuli
generators and response compactors with respect to the non-linear
operations of the AES

 Constructing a signature-based concurrent checking mechanism,
adaptable for both the non-linear as well as linear transformations of the
Advanced Encryption Standard

 Building a dedicated off-line test strategy, to take advantage of the
inherent pseudo-randomness associated with encryption algorithms in
general and AES in particular.

 Extending the simulation framework with support for bridging and gate
delay:

o fault set generation for the fault models
o fault simulation

 Factoring into the fault simulation framework the known fault
distributions in order to increase the accuracy of the simulation.

BUPT

113

Bibliography

[1] Strategic Roadmap for Cryptography, Technical Report, 2002.
[2] F. Rodriguez-Henriquez, N. A. Saqib, A. Diaz-Perez and C. K. Koc, Cryptographic

Algorithms on Reconfigurable Hardware: Springer-Verlag, 2006.
[3] “ECRYPT NoE, Technical Report,” http://www.ecrypt.eu.org/, 2002.
[4] B. Preneel, “ECRYPT II NoE,” ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/

security/2008-02-29-ecryptii_en.pdf, 2008.
[5] SIA, “The International Technology Roadmap for Semiconductors,”

http://public.itrs.net, 2004.
[6] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition: A

Quantitative Approach: Morgan Kaufmann Publishers, 2006.
[7] F. Opritoiu and M. Vladutiu, “Research Concerning Configuration of Cryptochips with

Testability Facilities,” Diploma Project, 2007.
[8] E. Larsson, Introduction to Advanced System-on-Chip Test Design and Optimization:

Springer-Verlag, 2005.
[9] R. Goering, “Scan design called portal for hackers,” 2004.
[10] Maestra comprehensive guide to satellite TV testing, Technical Report, 2002.
[11] F.-X. Standaert, L. Batina, E. D. Mulder, K. Lemke, S. Mangard, E. Oswald and G.

Piret, Electromagnetic Analysis and Fault Attacks: State of the Art, Technical Report,
2005.

[12] C. H. Kim and J.-J. Quisquater, “Faults, Injection Methods, and Fault Attacks,” IEEE
Design & Test, vol. 24, no. 6, pp. 544-545, 2007.

[13] S. P. Skorobogatov, Semi-invasive attacks – A new approach to hardware security
analysis, Technical Report, University of Cambridge, 2005.

[14] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall and C. Whelan, “The Sorcerer's
Apprentice Guide to Fault Attacks,” Proceedings of the IEEE, vol. 94, no. 2, pp. 370-
382, 2006.

[15] S. P. Skorobogatov and R. J. Anderson, “Optical Fault Induction Attacks,” in Lecture
Notes in Computer Science, Revised Papers from the 4th International Workshop on
Cryptographic Hardware and Embedded Systems, 2003, pp. 2-12.

[16] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, “Basic Concepts and Taxonomy
of Dependable and Secure Computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11-33, 2004.

[17] D. P. Siewiorek and R. S. Swarz, Reliable computer systems (3rd ed.): design and
evaluation: A. K. Peters, Ltd., 1998.

[18] M. Tehranipoor and N. Ahmed, Nanometer Technology Designs: High-Quality Delay
Tests: Springer Publishing, 2007.

[19] A. Benso and P. Prinetto, Fault Injection Techniques and Tools for Embedded
Systems: Kluwer Academic Publishers, 2003.

[20] L.-T. Wang, C.-W. Wu and X. Wen, VLSI Test Principles and Architectures: Design for
Testability (Systems on Silicon): Morgan Kaufmann Publishers, 2006.

[21] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory, and
Mixed-Signal VLSI Circuits: Springer-Verlag, 2000.

[22] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems Testing and Testable
Design: Wiley-IEEE Press, 1994.

[23] N. K. Jha and S. Gupta, Testing of Digital Systems: Cambridge University Press, 2002.
[24] M. Sachdev and J. P. d. Gyvez, Defect-Oriented Testing for Nano-Metric CMOS VLSI

Circuits (Frontiers in Electronic Testing): Springer-Verlag, 2007.
[25] K. Radecka and Z. Zilic, Verification by Error Modeling: Using Testing Techniques in

Hardware Verification: Kluwer Academic Publishers, 2004.

BUPT

114

[26] S. Ghosh and T. J. Chakraborty, “On behavior fault modeling for digital designs,”
Journal of Electronic Testing, vol. 2, no. 2, pp. 135-151, 1991.

[27] M. S. Reorda, Z. Peng and M. Violante, System-level Test and Validation of
Hardware/Software Systems: Springer-Verlag, 2005.

[28] Z. Navabi, VHDL: Analysis and Modeling of Digital Systems: McGraw-Hill, 1997.
[29] P. J. Ashenden, The Designer's Guide to VHDL, Volume 3, Third Edition: Morgan

Kaufmann Publishers, 2008.
[30] L.-T. Wang, Y.-W. Chang and K.-T. Cheng, Electronic Design Automation: Synthesis,

Verification, and Test: Morgan Kaufmann, 2009.
[31] R. D. Adams, High Performance Memory Testing: Design Principles, Fault Modeling

and Self-Test: Springer, 2002.
[32] V. V. Belkin, “Testing diagnostics of modern microprocessors with the use of

functional models,” Automation and Remote Control, vol. 69, no. 8, pp. 1398-1410,
2008.

[33] T. Chao-Wen, “An Evaluation of Pseudo Random Testing for Detecting Real Defects,”
in IEEE VLSI Test Symposium, 2001, pp. 404-409.

[34] V. G. Oklobdzija, Digital Design and Fabrication: CRC Press, 2007.
[35] S. Matakias, Y. Tsiatouhas, T. Haniotakis and A. Arapoyanni, “A Current Mode,

Parallel, Two-Rail Code Checker,” IEEE Transactions on Computers, vol. 57, no. 8, pp.
1032-1045, 2008.

[36] C. Metra, M. Favalli and B. Ricco, “Embedded two-rail checkers with on-line testing
ability,” in Proceedings of the 14th IEEE VLSI Test Symposium, 1996, pp. 145.

[37] M. Omana, D. Rossi and C. Metra, “Low Cost and High Speed Embedded Two-Rail
Code Checker,” IEEE Transactions on Computers, vol. 54, no. 2, pp. 153-164, 2005.

[38] J. Segura and A. Rubio, “A Detailed Analysis of CMOS SRAM’s with Gate Oxide Short
Defects,” IEEE Journal of Solid-State Circuits, vol. 32, no. 10, pp. 1543-1550, 1997.

[39] R. Perry, “IDDQ testing in CMOS digital ASICs,” Journal of Electronic Testing: Theory
and Applications, vol. 3, no. 4, pp. 317-325, 1992.

[40] K. Baker, “QTAG: A Standard for Test Fixture Based IDDQ/ISSQ Monitors,” in
Proceedings of the IEEE International Test Conference, 1994, pp. 194-202.

[41] M. Sachdev, “Deep Sub-Micron IDDQ Testing: Issues and Solutions,” in Proceedings
of the 1997 European conference on Design and Test, 1997, pp. 271.

[42] J. M. Soden, C. F. Hawkins, R. K. Gulati and W. Mao, “IDDQ Testing: A Review,”
Journal of Electronic Testing: Theory and Applications, vol. 3, pp. 291-303, 1992.

[43] P. Lala, An Introduction to Logic Circuit Testing: Morgan and Claypool Publishers,
2008.

[44] A. Pancholy, J. Rajski and L. J. McNaughton, “Empirical Failure Analysis and Validation
of Fault Models in CMOS VLSI Circuits,” IEEE Design & Test, vol. 9, no. 1, pp. 72-83,
1992.

[45] H. K. Lee and D. S. Ha, Atalanta: an Efficient ATPG for Combinational Circuits,
Technical Report, Virginia Polytechnic Institute and State University, Blacksburg,
1993.

[46] G. Zobrist, VLSI Fault Modeling and Testing Techniques: Ablex Publishing, 1993.
[47] J. Segura and C. F. Hawkins, CMOS Electronics: How It Works, How It Fails: John

Wiley & Sons, 2004.
[48] S. Ramachandran, Digital VLSI Systems Design: A Design Manual for Implementation

of Projects on FPGAs and ASICs Using Verilog: Springer-Verlag, 2007.
[49] J. E. Stine, J. Grad, I. Castellanos, J. Blank, V. Dave, M. Prakash, N. Iliev and N.

Jachimiec, “A Framework for High-Level Synthesis of System-on-Chip Designs,” in
International Conference on Microelectronic Systems Education, 2005, pp. 11-12.

[50] C. Hu. "Berkeley MOSFET model," http://www-device.eecs.berkeley.edu/~bsim3/.
[51] D. Gizopoulos, Advances in Electronic Testing: Challenges and Methodologies:

Springer-Verlag, 2006.
[52] R. C. Aitken, “Finding Defects with Fault Models,” in Proceedings of the IEEE

International Test Conference on Driving Down the Cost of Test, 1995, pp. 498-505.
[53] J. Emmert, C. Stroud and J. Bailey, “A new bridging fault model for more accurate

fault behavior,” Proceedings of the Test Conference (AUTOTESTCON), pp. 481-485,
2000.

BUPT

115

[54] P. Maxwell and R. Aitken, “Biased voting: a method for simulating CMOS bridging
faults in the presence of variable gate logic thresholds,” Proceedings of the IEEE
International Test Conference on Designing, Testing, and Diagnostics, pp. 63-72,
1993.

[55] S. Ma, I. Shaik and R. S. Fetherston, “A Comparison of Bridging Fault Simulation
Methods,” in Proceedings of the 1999 IEEE International Test Conference, 1999, pp.
587.

[56] A. Saldanha, R. K. Brayton and A. L. Sangiovanni-Vincentelli, “Equivalence of robust
delay-fault and single stuck-fault test generation,” in Proceedings of the 29th
ACM/IEEE Design Automation Conference, Anaheim, California, United States, 1992,
pp. 173-176.

[57] H. Takahashi, K. K. Saluja and Y. Takamatsu, “An Alternative Method of Generating
Tests for Path Delay Faults Using N -Detection Test Sets,” in Proceedings of the 2002
Pacific Rim International Symposium on Dependable Computing, 2002, pp. 275.

[58] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri and V. Piuri, “Error analysis and
detection procedures for a hardware implementation of the advanced encryption
standard,” IEEE Transactions on Computers, vol. 52, no. 4, pp. 492-505, 2003.

[59] W. J. Dally and J. W. Poulton, Digital systems engineering: Cambridge University
Press, 1998.

[60] C. Wei-Yu, S. K. Gupta and M. A. Breuer, “Analytical models for crosstalk excitation
and propagation in VLSI circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 21, no. 10, pp. 1117-1131, 2002.

[61] J. Saxena, K. M. Butler, V. B. Jayaram, S. Kundu, N. V. Arvind, P. Sreeprakash and M.
Hachinger, “A case study of ir-drop in structured at-speed testing,” in Test
Conference, 2003. Proceedings. ITC 2003. International, 2003, pp. 1098-1104.

[62] L.-T. Wang, C. Stroud and N. Touba, System-on-Chip Test Architectures: Morgan
Kaufmann Publishing, 2007.

[63] SIA, “The International Technology Roadmap for Semiconductors - Update,”
http://public.itrs.net, 2005.

[64] SIA, “The International Technology Roadmap for Semiconductors - Update,”
http://public.itrs.net, 2006.

[65] E. A. Amerasekera and F. N. Najm, Failure Mechanisms in Semiconductor Devices:
Wiley Publishing, 1997.

[66] J. Blömer and J.-P. Seifert, "Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES) " Lecture Notes in Computer Science, pp. 162-181: Springer, 2004.

[67] S. L. Hurst, VLSI Testing: Digital and Mixed Analogue/Digital Techniques: The
Institution of Engineering and Technology, 1999.

[68] C. E. Stroud, A Designer's Guide to Built-in Self-Test: Springer-Verlag, 2002.
[69] K. P. Parker, The Boundary-Scan Handbook: Springer-Verlag, 2003.
[70] K. Stanley, “High-Accuracy Flush-and-Scan Software Diagnostic,” IEEE Design & Test,

vol. 18, no. 6, pp. 56-62, 2001.
[71] F. Opritoiu and M. Vladutiu, “Cryptochip implementations with Built-In Self Test

features applied to AES standard,” in The Claude Shannon Institute Workshop on
Coding & Cryptography, Cork, Ireland, May 19–20, 2008.

[72] F. Opritoiu, M. Vladutiu, L. Prodan and M. Udrescu, “Built-In Self Test Applicability for
the Non-Linear Operations of Advanced Encryption Standard,” The 5th International
Symposium on Applied Computational Intelligence and Informatics pp. 307-312, May
28–29, 2009.

[73] “Security Requirements for Cryptographic Modules,” Federal Information Processing
Standards Publication, May 25, 2001.

[74] J. E. Gentle, Random Number Generation and Monte Carlo Methods, 2nd Ed:
Springer, 2003.

[75] T. Klove, Codes for Error Detection: World Scientific Publishing Company, 2007.
[76] S. Chang, “Reconfigurable Computing Approach for Tate Pairing Cryptosystems over

Binary Fields,” IEEE Transactions on Computers, vol. 58, pp. 1221-1237, 2009.
[77] K. K. Saluja and C.-F. See, “An Efficient Signature Computation Method,” IEEE Design

& Test, vol. 9, no. 4, pp. 22-26, 1992.
[78] R. Rajsuman, System-on-a-Chip: Design and Test: Artech House Publishers 2000.

BUPT

116

[79] H. Bonnenberg, “Secure Testing of VLSI Cryptographic Equipment,” PhD Thesis, 1993.
[80] M. Gössel, V. Ocheretny, E. Sogomonyan and D. Marienfeld, New Methods of

Concurrent Checking: Springer-Verlag, 2008.
[81] S. L. Hurst, VLSI Custom Microelectronics: Digital: Analog, and Mixed-Signal: CRC

Press, 1998.
[82] I. Voyiatzis, A. Paschalis, D. Gizopoulos, C. Halatsis, F. S. Makri and M. Hatzimihail,

“An Input Vector Monitoring Concurrent BIST Architecture Based on a Precomputed
Test Set,” IEEE Transactions on Computers, vol. 57, no. 8, pp. 1012-1022, 2008.

[83] M. Nicolaidis and Y. Zorian, “On-Line Testing for VLSI - A Compendium of
Approaches,” Journal of Electronic Testing, vol. 12, no. 1-2, pp. 7-20, 1998.

[84] S. Mitra and E. J. McCluskey, “Which Concurrent Error Detection Scheme to Choose?,”
in Proceedings of the 2000 IEEE International Test Conference, 2000, pp. 985.

[85] D. K. Pradhan, Fault-tolerant computer system design: Prentice-Hall, 1996.
[86] E. J. McCluskey and C.-W. Tseng, “Stuck-fault tests vs. actual defects,” in Proceedings

IEEE International Test Conference, October, 2000, pp. 336-343.
[87] W. Jue and E. M. Rudnick, “A Diagnostic Fault Simulator for Fast Diagnosis of Bridge

Faults,” in Proceedings of the 12th International Conference on VLSI Design - 'VLSI
for the Information Appliance', 1999, pp. 498.

[88] D. Sokolov, J. Murphy, A. Bystrov and A. Yakovlev, “Design and Analysis of Dual-Rail
Circuits for Security Applications,” IEEE Transaction on Computers, vol. 54, no. 4, pp.
449-460, 2005.

[89] I. Koren and C. M. Krishna, Fault Tolerant Systems: Morgan Kaufmann Publishers,
2007.

[90] F. Opritoiu, M. Vladutiu, M. Udrescu and L. Prodan, “Round-Level Concurrent Error
Detection Applied to Advanced Encryption Standard,” The 12th IEEE Symposium on
Design and Diagnostics of Electronic Circuits and Systems, pp. 270-275, April 15-17,
2009.

[91] K. Wu and R. Karri, “Algorithm Level RE-computing with Shifted Operands- A Register
Transfer Level Concurrent Error Detection Technique,” in Proceedings of the 2000
IEEE International Test Conference, 2000, pp. 971.

[92] O. Kommerling and M. G. Kuhn, “Design principles for tamper-resistant smartcard
processors,” in Proceedings of the USENIX Workshop on Smartcard Technology on
USENIX Workshop on Smartcard Technology, Chicago, Illinois, 1999, pp. 2-2.

[93] M. Mogollon, Cryptography and Security Services: Mechanisms and Applications:
CyberTech Publishing, 2008.

[94] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied
Cryptography: CRC, 1996.

[95] D. Stinson, Cryptography: Theory and Practice, Third Edition: Chapman & Hall/CRC,
2005.

[96] NIST, Recommendation for Key Management - Part 1: General (Revised): NIST
Special Publications, 2007.

[97] R. Anderson, M. Bond, J. Clulow and S. Skorobogatov, “Cryptographic Processors-A
Survey,” Proceedings of the IEEE, vol. 94, no. 2, pp. 357-369, 2006.

[98] J. Daemen and V. Rijmen, The Design of Rijndael: Springer-Verlag, 2002.
[99] M. Feldhofer, J. Wolkerstorfer and V. Rijmen, “AES implementation on a grain of

sand,” IEEE Proceedings on Information Security, vol. 152, no. 1, pp. 13-20, 2005.
[100] G. D. Natale, M.-L. Flottes and B. Rouzeyre, “On-Line Self-Test of AES Hardware

Implementations,” in The 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2007.

[101] N. M. Kosaraju, M. Varanasi and S. P. Mohanty, “A high-performance VLSI
architecture for advanced encryption standard (AES) algorithm,” The 19th
International Conference on VLSI Design, pp. 4 pp., 2006.

[102] Z. Xinmiao and K. K. Parhi, “On the Optimum Constructions of Composite Field for the
AES Algorithm,” IEEE Transactions on Circuits and Systems Part II: Express Briefs,
vol. 53, no. 10, pp. 1153-1157, 2006.

[103] A. Satoh, S. Morioka, K. Takano and S. Munetoh, “A Compact Rijndael Hardware
Architecture with S-Box Optimization,” in Proceedings of the 7th International

BUPT

117

Conference on the Theory and Application of Cryptology and Information Security:
Advances in Cryptology, 2001.

[104] A. Hodjat and I. Verbauwhede, “Area-throughput trade-offs for fully pipelined 30 to
70 Gbits/s AES processors,” IEEE Transactions on Computers, vol. 55, no. 4, pp. 366-
372, 2006.

[105] M. F. Elisabeth Oswald, Kerstin Lemke, Francois-Xavier Standaert, Thomas Wollinger,
Johannes Wolkerstorfer, “State of the Art in Hardware Architectures,” European
Network of Excellence in Cryptology, 2005.

[106] F. Opritoiu, M. Vladutiu, L. Prodan and M. Udrescu, “A High-Speed AES Architecture
Implementation,” in ACM International Conference on Computing Frontiers, May 17-
19, 2010, pp. 95-96.

[107] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Concurrent Structure-Independent
Fault Detection Schemes for the Advanced Encryption Standard,” IEEE Transactions
on Computers, vol. 59, no. 5, pp. 608-622, 2010.

[108] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “A Structure-independent Approach
for Fault Detection Hardware Implementations of the Advanced Encryption Standard,”
in Fault Diagnosis and Tolerance in Cryptography, 2007. FDTC 2007. Workshop on,
2007, pp. 47-53.

[109] Y. Chih-Hsu and W. Bing-Fei, “Simple error detection methods for hardware
implementation of Advanced Encryption Standard,” IEEE Transactions on Computers,
vol. 55, no. 6, pp. 720-731, 2006.

[110] M. Karpovsky, K. J. Kulikowski and A. Taubin, "Differential Fault Analysis Attack
Resistant Architectures for the Advanced Encryption Standard," Smart Card
Technologies and Applications VI, pp. 177-192: Springer-Verlag, 2004.

[111] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Parity-Based Fault Detection
Architecture of S-box for Advanced Encryption Standard,” in 21st IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, 2006, pp. 572-580.

[112] L. Breveglieri, I. Koren and P. Maistri, “Incorporating Error Detection and Online
Reconfiguration into a Regular Architecture for the Advanced Encryption Standard,” in
Proceedings of the 20th IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems, 2005.

[113] G. Bertoni, L. Breveglieri, I. Koren and P. Maistri, “An efficient hardware-based fault
diagnosis scheme for AES: performances and cost,” in Proceedings of the 19th IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems, 2004, pp.
130-138.

[114] S. Mangard, M. Aigner and S. Dominikus, “A highly regular and scalable AES hardware
architecture,” IEEE Transactions on Computers, vol. 52, no. 4, pp. 483-491, 2003.

[115] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri and V. Piuri, “Detecting and locating
faults in VLSI implementations of the Advanced Encryption Standard,” in Proceedings
of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems, 2003, pp. 105-113.

[116] G. D. Natale, M. L. Flottes and B. Rouzeyre, “A Novel Parity Bit Scheme for SBox in
AES Circuits,” in Design and Diagnostics of Electronic Circuits and Systems, 2007.
DDECS '07. IEEE, 2007, pp. 1-5.

[117] K. Wu, K. Ramesh, G. Kuznetsov and M. Goessel, “Low cost concurrent error
detection for the advanced encryption standard,” in Proceedings of the International
Test Conference, 2004, pp. 1242-1248.

[118] R. Karri, K. Wu, P. Mishra and K. Yongkook, “Fault-based side-channel cryptanalysis
tolerant Rijndael symmetric block cipher architecture,” in Proceedings of the IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems, 2001, pp.
427-435.

[119] N. Yu and H. M. Heys, “A Compact ASIC Implementation of the Advanced Encryption
Standard with Concurrent Error Detection,” in Proceedings of Circuits, Signals, and
Systems, July, 2007.

[120] E. Fujiwara, Code Design for Dependable Systems: Theory and Practical Application:
Wiley-Interscience, 2006.

[121] P. K. Lala, Self-checking and fault-tolerant digital design: Morgan Kaufmann
Publishers, 2001.

BUPT

118

[122] F. Opritoiu, M. Vladutiu, M. Udrescu and L. Prodan, “Concurrent Error Detection for
Multiplicative Inversion of Advanced Encryption Standard,” in The 10th IEEE
International Conference on Computer and Information Technology, June 29-July 01,
2010, pp. 582-588.

[123] J. Gallian, Contemporary Abstract Algebra, 7th Ed: Cengage Learning, 2009.

BUPT

