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Abstract: Our research focuses in finding original solutions in software 
engineering for medical image processing and analysis using MRI images, 
with applications in Parkinson’s Disease prognosis. We propose new image 
processing algorithms, independent on the patient variability, for detecting 
specific anatomical structures as volumes of interest. Our system is fusing 
information extracted from different medical image types. A rigid 
registration with automatic detection of the geometrical parameters, allows 
a fusion phase, by eliminating the volume variability. The analysis is 
possible by tracking the neuromotor fibers, even in the gray matter, and 
defining new metrics for the extracted fibers. The whole approach is 
automatic. Detecting the specific geometrical 3D features in each volume 
overcomes the inter-patient variability. 
 We study Parkinson’s Disease (PD) using an automatic approach based on 
an intuitive specialized atlas. A total of 143 subjects, among who 68 
patients diagnosed clinically with PD and 75 control cases, underwent DTI 
imaging. The EPIs have lower resolution but provide essential anisotropy 
information for the fiber tracking process. The two volumes of interest 
(VOI) represented by the Substantia Nigra (SN) and the Putamen are 
detected by our original algorithms on the EPI and FA respectively. We use 
the VOIs for a geometry-based rigid registration, before fusing the 
anatomical detail detected on FA image for the Putamen volume with the 
EPI. 
 After a 3D fibers growing, we compute the fiber density (FD) and the fiber 
volume (FV). Furthermore, we compare patients based on the extracted 
fibers and evaluate them according to Hoehn&Yahr (H&Y) scale. The 
determined fibers, evaluated with our own metrics, represent the source for 
the analysis module. This element uses the extracted features and using an 
Adaptive Network-based Fuzzy Inference System (ANFIS) adapted for our 
needs, performs PD diagnosis and prognosis. 
 This work introduces the method used for automatic volume detection and 
evaluates the fiber growing method on these volumes. Our approach is 
important from the clinical standpoint, providing a new tool for the 
neurologists to evaluate and predict PD evolution. From the technological 
point of view, the fusion approach deals with the tensor based information 
(EPI) and the extraction of the anatomical detail (FA and EPI). 
 PDFibAtl@s represents a platform built for clinical Prove of Concept for 
Parkinson’s Disease prognosis, including the image analysis technology 
proposed here, the artificial intelligence tools and the medical knowledge. 
We introduce a new approach for VOI detection, image segmentation and 
image analysis levels. 
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Pronostic de la Maladie de Parkinson basé sur la fusion des 
caractéristiques d’Images par Résonance Magnétique de 
Diffusion 
 

Mots clès : Traitement d’Images Médicales, Analyse d’Images Médicales, 
Détection automatique des VOI, Diagnostic, Pronostic, Maladie de Parkinson 
 
Résumé : Notre étude concerne un système automatique de détection et de 
pronostic d’évolution de la maladie de Parkinson. L’étude est basée sur le 
traitement et l’analyse des images IRM (Imagerie par Résonance 
Magnétique). Nous proposons des algorithmes de détection des volumes 
d’intérêt du cerveau, relevant pour le diagnostic de la maladie de Parkinson. 
Cette nouvelle approche élimine la variation inter-patients. Une fusion de 
données au niveau des volumes d’intérêt est présentée, en utilisant un 
récalage basé sur la géométrie du cerveau. Cette fusion permet l’application 
d’un algorithme de détection des fibres motrices du cerveau.  
 
Notre étude est basée sur une cohorte de 143 sujets : 68 patients avec la 
maladie de Parkinson et 75 cas de contrôle. En utilisant les images EPI 
(écho-planar) nous procédons à la détection des volumes de mésencéphale, 
la formation anatomique qui contient la substantia nigra, celle qui produit la 
dopamine, un des principaux neurotransmetteurs qui détermine la maladie 
de Parkinson. L’autre volume d’intérêt est le Putamen, une formation 
anatomique cérébrale traversée par les fibres motrices. 
 
Ce volume d’intérêt est déterminé sur l’image FA (Anisotropie Fractionnelle) 
qui est après alignée avec l’image EPI et un recalage entre les deux 
volumes permet l’utilisation des volumes pour limiter l’algorithme de 
croissance des fibres qui résident au niveau du mésencéphale et 
passent par le Putamen. En analysent les fibres extraites, nous intégrons la 
connaissance médicale pour mettre en place une stratégie de pronostic en 
utilisant des techniques neuro-floues (Adaptive Network-based Fuzzy 
Inference System - ANFIS). L’évaluation de notre système se fait en 
prenant en compte l’échelle de Hoehn & Yahr, utilisée habituellement par 
les cliniciens pour estimer la sévérité de la maladie de Parkinson. 
 
Notre étude présente un intérêt à la fois technologique et médical. Du point 
de vue technologique (imagerie et aide a la décision), l’algorithme de 
détection des volumes ainsi que l’algorithme d’analyse et d’aide au 
diagnostic / pronostic, représentent des nouvelles approches dans ce 
domaine. Du point de vue médical, ce système représente un moyen pour 
les neurologistes de vérifier leur diagnostic/pronostic (seconde opinion). Un 
prototype, intitulé PDFibAtl@s a été construit pour mettre en œuvre, 
illustrer et valider cliniquement nos algorithmes, sous la forme d’un atlas 
IRM spécialisé dans la maladie de Parkinson. 
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As currently diagnosis on Parkinson’s Disease (PD) is based exclusively on cog-
nitive testing, an alternative method taking into account the image specification can re-

veal additional information and augment the prognosis rate. Our work offers the possibility to
include an alternative source of information on the diagnosis process and additionally extends
the utilization of the features extracted for prognosis functionality. Presently, there are no
systems that estimate the severity of Parkinson’s disease. Our approach performs this task,
together with the placing of the patient on a severity scale used for cognitive test in order to
have a common ground with the usual clinical a posteriori method.

O u r a i m i s t h u s t o u s e m e d i c a l i m a g i n g , i n p a r t i c u l a r D T I
i m a g i n g , a s a b i o - m a r k e r f o r P D d i a g n o s i s a n d p r o g n o s i s . This
approach offers a measurable value of the severity of the disease and including in the diagnosis
process the image features as well. But to reach this purpose we must study the modality in
which the medical image can offer assistance for PD and the features that can be extracted
from the images. The medical studies provide these features, specific for PD, and our research
resides at not just verifying the medical suppositions, but also in finding a correlation between
the image extracted ones and the severity of the disease. That is because even if the medical
theories are correct and proven, the medical images could not always be able to provide with
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the needed accuracy at the anatomical level for the needed features and even in this case, the
elements need to be extracted from the images.

Pursuing this purpose, our work introduces new image processing and analysis methods for
medical image information extraction from specific features, relevant for PD. It also develops
segmentation and registration techniques with disease specific analysis rules, thus giving the
user a quantification of the disease at the image level. Managing the information specific to
medical imaging is achieved in our methods by using mathematical morphology and algorithms
for automatic segmentation based on medical knowledge. These methods are integrated at
the image interpretation level and 3D volumes of interest are extracted. By co-registering
the extracted 3D volumes for a fiber growth modified algorithm, new features are introduced.
Defining new metrics for these features permits an evaluation of the disease. Introducing
specific artificial intelligence approaches using rule-based classification and fuzzy logic allow
us to perform this analysis.

We perform an initial study on the specific characteristics of the medical images currently
used by the medical doctors, as well as technical details of the different protocol procedures
that apply on PD. We briefly present the Digital Imaging and Communications in Medicine
(DICOM) standard, since it is used at large scale in most of the hospitals and also compli-
ant with the database applied to this study. The Analyze standard for medical images is
presented as well, as we use it in the processing stage for intermediate storing of processed
images. We perform a deeper study on the Magnetic Resonance Images (MRI) images, with
detailed presentation of the Diffusion Tensor Images (DTI) protocol. The image quality is
very important, as it influences the performances of the processing algorithms and determines
the pre-processing steps used to eliminate the noise and artefacts. This is the reason for eval-
uating the quality of the images in our database. Only after this evaluation can we identify
the problems at the processing level, what these images are able to provide, and envision
a competent approach for using them by creating new algorithms at the image level. The
medical images were employed to determine the fractional anisotropy (FA) and the apparent
diffusion coefficient level in order to determine the relevance of these indicator relative to PD.

According to our medical expert, the skull influenced too much the value of the FA on
the computed images. This is the reason for removing the skull at the preprocessing step on
our approach. Furthermore, although we can obtain the FA image from the ecoplanar images
(EPI) by computation, for our system, the medical doctors provide directly this type of images
from the scanner, eliminating an additional step at the processing level. The scanner provides
the fractional anisotropy images by taking into account the diffusion at the voxel level together
with the ecoplanar image (EPI) acquisition. All our work is performed at the 3D level, using
as basic information the voxel value. A voxel is a pixel in the volumetric space, defined more
accurately in 2.1.2. Concurrent systems existing in the state of the art are tested on our
database and the results compared with our own approach.

This study provides specific characteristics of the images allowing us to better exploit
the features. Thus, specific metrics for PD in the DTI images are introduced to evaluate to
provide a numerical value attached to these features : the fibre density (FD), the fiber density
relative to the volume of interest (FDrel) and the fiber density at the 3D level (FD3D).

We retrieve the 3D volume image of the brain from the image level, treat the volume
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14 Chapter 1. Introduction

by examining the interesting areas, extract the motor fibers and compute their density and
relative volume.

In the first phase of the processing, we detect the volume of interest as being the source
of the dopamine, where the neural fibers from the motor tract are growing. These are the
main indicators, together with the cognitive tests, for the installation of the disease on a
subject. A global study of the brain is performed on specific areas of the brain and used to
analyze the medical images and to make a correlation between the disease and the image
characteristics. Our system detects the relevant features for PD. Based on these features, we
develop a diagnosis and a prognosis system. Following the presented principles, we developed
a prototype - entitled PDFibAtl@s - to accomplish a diagnosis analysis based on 3D image
processing, as a Proof of Concept (POC) of the new methods at the image and analysis level.

1.1 Motivation. Purpose. Idea
Parkinson’s disease affects a population that has, on average, 61 years, even if it begins around
40 years [PD 2009]. From this point of view, the continuous aging of the population, combined
with the actual late detection (impossibility to reverse or stabilize the PD evolution) justifies
strong concerns for a prediction system. By the time the disease is detected, the patient
has already lost 80-90% of the dopamine cells [Today 2009], those that represent one of the
main neurotransmitters. The treatments are less effective after the disease develops. Thus,
a prognosis of this disease could diminish the effect of the PD or even reverse it. Analyzing
the current diagnostic procedure, our idea aims at augmenting the trust of the diagnosis by
adding the image in the process of detection of the disease and making the detection possible
at an early stage as well (prognosis).

For introducing and using the medical image in prognosis of PD as bio-marker, there are
three main steps in the research demarche:

• Determining and finding the bio-markers at the anatomical level from the medical point
of view - stating the PD diagnosis at the anatomical level and defining the medical
theories behind our approach

• Determining the feasibility and the applicability of the medical theories at the image
level: proving that the bio-markers from the medical theories are indeed found at the
image level and that they can be used for PD evaluation

• Finding and developing methods to extract the features from the images and analyse
them.

For the first two steps our neuro-radiologist collaborator from the Singapore General Hos-
pital (SGH) provided us with the medical knowledge, as well as the image database for the
entire study. The standard rating on the severity used currently for PD provided the ground
truth for validating the tests.
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1.1. Motivation. Purpose. Idea 15

1.1.1 Current diagnosis for Parkinson’s Disease
Currently, PD’s diagnostic procedure relies on cognitive testing of the patients. According to
their cognitive testing scores the patients are placed on a predefined scale: Unified Parkinson
Rating Scale or H&Y. This manner of diagnosis does not take into account the information
provided by the images. Performing an analysis of the images and finding an association
between the effect of the disease represented by image specific indicators, we can integrate
this perspective in the diagnose decision as well. Following this new procedure presents the
advantage of compounding the cognitive aspects with the anatomical and even physiological
ones. Our medical team provided us with the H&Y scale for all the patients as a ground truth
for the relation between the parameters computed and the PD severity.

According to the study performed by our collaborators neuroradiologists [Chan 2007], there
is a match between the dopamine level in the Substantia Nigra and the Parkinson’s disease
evolution [Atasoy 2004]. The study takes into account the manually detected area where the
Substantia Nigra(SN) is supposed to be anatomically placed. This segmented area is further
studied to determine the correlation between the PD patients and the dopamine level in this
area. A correlation has been found indeed, but to make the difference for diagnoses purposes,
this correlation is not enough and unreliable. David Vaillancourt, assistant professor at UIC
has scanned the part of the brain called Substantia Nigra on Parkinson’s patients using DTI
images and has discovered that the number of dopaminergic neurons in certain areas of this
region is 50% less [Vaillancourt 2009]. His study includes 28 subjects from which half have
symptoms of early Parkinson’s disease and another half do not have these symptoms.

A study performed to show the relationship between cerebral morphology and the expres-
sion of dopamine receptors conducted on 45 healthy patients, reveals that on grey matter
images, there is a direct correlation at the SN level. This study [Woodward 2009] uses T1
weighted structural MRI images. Using Voxel-based morphometry (VBM) the authors create
grey matter volumes and density images and correlate these images with Biological Paramet-
ric toolbox. Voxel-wise normalization also revealed that the grey matter volume and SN are
correlated. On the brain fiber tracts the dopamine should flow from the back of the brain
(posterior area) toward the front (anterior area) and from the top of the head towards the
basis of the brain. In [Lehericyr 2004] a manual detection of the regions of interest in the
basal ganglia area has been operated and some differences are observed. One of the main
effects of Parkinson is represented by the lost of mobility, perceived as a trembling effect on
the patients. In order to quantify this impact, we study the motor tracts in order to determine
if there is a direct link to the loss of dopamine and the degeneration of the neural fibers of
this tract. A statistical analysis of the number of fibers and their density is able to reveal a
relationship between the fibers and the PD severity.

1.1.2 Thesis Objectives
After defining the medical background on the PD and the actual procedure used for PD
detection, the theoretical hypothesis and anatomical elements relevant to PD are stated so
that they can be determined in the images. These represent the state of the art for using the
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16 Chapter 1. Introduction

image as a bio-marker.
Developing methods based on an Adaptive Neural Fuzzy Inference System (ANFIS) modi-

fied represents the final aim of the thesis. The features employed in the prognosis system are
extracted from several medical image modalities, fused by developing a geometrical registra-
tion method. For the feature extraction, we develop specific volume segmentation methods,
completed by pre-processing methods that determine geometrical features. The features ex-
tracted at the image level are volumes of interest (VOI) that are further used by a tractography
method in order to extract the fibers from the neuro-motor tract.

In order to identify the right bundle of fibers from the motor tract, we choose the seed
and the target volumes of interest such that all the fibers that do not cross the two VOIs
at the same time can be eliminated. As the dopamine is produced in the Substantia Nigra
volume, the starting point (seed) for these fibers is represented by the midbrain, containing
this specific anatomical region. Then, using a global deterministic tractography, we choose
the Putamen volume as the second volume (target) for the selected fibers.

As shown in figure 1.1 there are several levels where the information is manipulated:

• Image level

• Feature level

• Knowledge Level

Our prototype - PDFibAtl@s - implements the methods described in this thesis and takes the
images from the medical station, by processing and analyzing them and finally by extracting the
significant features and quantifying them. The first level of information, the image level, deals
with the medical image standard files and extracts the primary information from it, making the
difference between the image and the protocol elements. At the feature level, a preprocessing
step is needed on the image file from the medical standard. The information retrieved by
feature extraction encapsulates medical knowledge as well. When developing the algorithms
for the analysis step, we introduce new measures for the specific features extracted. Having
as input the quantization of the features by using these measures we develop the algorithms
at the knowledge level that perform diagnosis and prognosis evaluation. The knowledge from
the medical domain provided by radiologists, acquired when defining the specific problems
related to PD detection, determine the technical challenges in the anatomical details and the
images used.

The fact that each brain structure is different from one patient to the other (e.g the
placement of the Putamen with regard to the center of mass of the brain and/or the size of
it) represents a challenge from the specificity point of view. A brain image has a different
aspect, just like the portrait photo differs from one person to another. This is the reason why
determining a certain anatomical aspect from a brain image is similar to determining the nose
position or the mouth in a portraits database.

Detecting an anatomical volume automatically on a medical image can be compared with
the same challenge on a 3D image of a person. While there are several algorithms that can
provide the position of the eyes and/or the mouth - face recognition specific algorithms-, we
cannot say the same things for the brain images. Atlases for the brain have the same meaning
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Figure 1.1: Thesis methods and data in workflow - PDFibAtl@s

BUPT



18 Chapter 1. Introduction

as image patterns applied for portraits. On the portraits all the anatomical elements are
known, but not the same things are applicable for the brain images - there are formations
that can be placed in different positions with respect to the center of mass of the image or
of the brain; different sizes with regard to the other elements inside the same brain. This
is the reason why an atlas applied like a pattern or a mask on a brain will not necessarily
give a correct result when detecting a specific anatomical element. A specialized algorithm
for detecting an anatomical volume inside a brain that does not rely on the specificity of an
image is much needed at this point. This kind of algorithm must have robustness and be exact
as well on determining the needed elements. Technically, this represents a challenge and relies
on finding undeviating points in the anatomy of the brain, as well as relative positions for the
searched areas.

There are special limitations regarding the medical images resolution and specificity for
such an algorithm. One of the main tasks is to find the appropriate slice in which to look for
the volume of interest. Each slice contains different information and we rely on volumetric
information when choosing the slice of interest for each of the segmentation algorithms. The
position of each patient in the image is different, as is the size and shape of the head, and
this aspect determines volumes of the brain taken lower or higher on a patient (starting from
the nose level or from the eyes level) or for the same number of slices the whole brain or only
a part of it ( for smaller skulls the whole brain can be scanned, whereas for bigger ones, only
a percentage of it, even if the scanning starts at the same level). This aspect determines an
evaluation of the volume content in the image stack provided. This evaluation relative to the
center of mass of the brain determines the position on the stack of images for the midbrain.
The position of the Putamen is determined relative to the midbrain.

The Putamen is not symmetrically placed on the left and right side of the middle axis that
separates the hemispheres, neither at the same relative position with regard to the center of
mass of the brain. This is one of the challenges together with the fact that the right side
Putamen can have a different shape and size from the left side and be placed higher or lower
than the other one. Tough finding the midline that delimits the two hemispheres of the brain is
another bid as it must be determined. The two hemispheres are not symmetrical and the line
is not necessarily perpendicular on the horizontal axis of the image. The need to determine
this axis with no connection to the specificity of the patient determines also a need for an
automatic overall approach to determine it.

The specific algorithms that detect the volumes of interest take into account the voxel
intensity and are defined and presented in Chapter 3.

Registration represents another major objective of this study, as the T1/T2 images have
high resolution, but the intensity of the pixels does not permit an accurate limitation for the
detection algorithm, applied on the FA image. This provides an accurate result but needs
to be registered with the EPI image for further use in the fiber growth algorithm. Although
the geometrical rigid registration algorithm by itself does not represent a new approach, the
detection of the parameters for applying this algorithm does. We make the detection for
the algorithm by using specific geometrical parameters, such as the middle hemisphere axis,
determined by an original approach as well.

The final aim in determining the diagnosis is represented by the limitation of the grown
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1.2. General presentation of our scientific demarche 19

fibers and finding the appropriate image interpretation algorithm in order to be able to use
the extracted information not only as a diagnosis value, but also for prognosis purpose. The
algorithm does not make any difference between the tensors at the fiber level, their anatomical
placement and the tract that they belong to. We only need the motor tract for PD and we
are using the detected volumes to select the fibers that pass through both volumes of interest
so that we are analyzing just the needed tract.

1.1.3 Proposed Approach
We need to automatically detect from the Echo-Planar Images (EPI), using the DICOM
standard as an input and reading the header file, the slice where the midbrain area is located
and the Substantia Nigra resides. Substantia Nigra represents the area of the brain where the
dopamine is produced. This area is not anatomically defined in the specialized atlases and
does not have clear boundaries for a detection approach. This is the reason why we identify
the midbrain area, as it surely contains the Substantia Nigra. The Putamen area is not well
defined on the EPI images, or in the T2 images, but the FA images have a clear boundary
of it. We try using the FA images to locate and extract the specified volume of interest.
Mathematical morphology will be used for preprocessing the DICOM images and the 3D stack
can be constructed and aligned.

Working with 3D images, the medical theories provided two volumes of interest for PD
represented by the midbrain (2 slices), as apparently 80% of the Substantia Nigra can be found
in a 4 mm slice [Chan 2007], and the Putamen by using several slices each time (3 slices). We
start the tracking process from the midbrain toward the Putamen, but as one of the volumes
is identified on another image type, image registration is required. This processing step is
based on the brain geometry and uses automatic detection of landmarks. The fibers selected
by the program are then statistically analyzed using the T-Test. We examine the correlation
between the coefficients determined on the fibers and the evolution of the disease integrating
the extracted features on an image interpretation model.

1.2 General presentation of our scientific demarche
As the medical theories hold the motor tract responsable for the trembling effect manifested
on the PD patients, this particular tract could be indicative of the disease installation and/or
evolution. The fibers constituting the motor tract are usually determined in the EPI images.

Another medical theory sustains that the lack of dopamine, produced by the SN, is the
cause of the deterioration of the motor tract, and thus the cause of tremblement in PD
patients. This theory imposes the SN area as one of the volumes of interest. As this area at
the image level is not well defined, the midbrain containing the SN represents the volume of
interest that should be extracted at the image level.

Analyzing the images taken form PD patients graded on the H&Y scale we grow the
fibers from the motor tract and study the relation between the situation of the fibers and
the rated values. After this analysis, as the identification of the volumes of interest should
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be automatic and adaptive for each case, replacing the standard atlas approach by using an
automatic dedicated adaptive atlas for PD regions. Making a variation function to show the
PD evolution, based on the fibers coefficients,and furthermore extrapolating this function, we
can determine the values of the coefficients for the early PD cases. This extrapolation factor
gives a prognosis value that can be used and tested on the early PD cases.

The approach taken at the processing level for image segmentation includes a new au-
tomatic detection algorithm for the midbrain area together with a geometric approach for
detecting the Putamen as a basis for an automated PD specific atlas of the brain. We refer
the proposed segmentation as an atlas because it is based on the relative position of the
anatomical regions at the brain level and it is capable to identify the specific volumes inside it.
We modify an existing algorithm for fiber growth by limiting the fibers using the automatically
detected volumes.

The metrics introduced as support for evaluating the value at the fiber level are computed
separately for each hemisphere of the brain as the disease impact is distinct on each side
[Chan 2007]. These metrics at the fiber level - the three levels of fiber density - relative to the
whole brain (FD), relative to the volume of interest (FDrel) and to the 3D representation
(FD3D) - together with the relative position of the midbrain on the brain volume (Pslice)
evaluated at the image level, represents our own metrics. The methods at each level of
information work together as a system, integrated as the prototype PDFibAtl@s, and not as
independent modules, but provide all the numerical values extracted at each level for further
analysis.

1.3 Thesis structure
Starting from the whole brain analysis, we move onward by determining the neural fibers from
the motor tract and PDFibAtl@s design. The interpretation step and the analysis algorithm
performing the prognosis part represent the final part of the thesis. The image analysis and
the specificity of the medical image standard used are presented in chapter 2.1. After a general
view on the standard medial images, an overview of the specific head imaging types and their
characteristics is given in chapter 2.1.2. We need to refer to the specific protocol used for
our database as well (see section 2.3.2), as it influences the modality in which we conceive
the algorithms for the processing. An overview of the existing systems in the head image
processing using DTI images, in section 2.5.1, helps us identifying the existing problems and
placing our system among the others. The specific parameters used to acquire the images
are presented in next chapter at section 3.1. A preprocessing step with the image acquisition
and information analysis is detailed next in 3.3. These methods determine the position of the
center of gravity for the brain, eliminating the skull and the artefacts. Also the axis limiting
the two hemispheres is determined by a methods described in the same chapter. All the
elements determined by these methods provide the parameters for the automatic methods for
segmentation and registration presented next.

The methods developed for the volume segmentation and registration are provided in
chapter 4, together with a modified version of an algorithm of tractography. We developed
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individual algorithms for the midbrain volume and the Putamen volumes - on the left and
right side. The Putamen is detected on a different type of image so registration is needed.
The method for registration using the geometrical elements extracted by the pre-processing
methods is presented in 4.4. The modified tractography method is presented in 4.6.

Emphasizing the applicability of the new developed methods and the importance of their
applicability is presented the following chapter 5, with the diagnosis method and the new
introduced prognosis mechanism as well. For the new introduced algorithms we need a way
to evaluate them and the results and this step is presented by the chapter 6. An overview of
the new methods with the scientific perspectives and conclusions are presented in chapter 7.

1.4 Conclusion
The purpose of our work is to detect and predict the evolution of the PD. We implement
several algorithms for detection and segmentation of the volumes of interest and registration
in order to integrate a fusion of information from the two types of modalities involved: EPI
and FA. From the detected volumes of interest we grow the fibers and using their density
we analyze the effects of the disease by implementing an image interpretation step used for
prognosis.

At the theoretical level, we attempt a manual testing on a limited amount of patients to
confirm the hypothesis basing our research. At this level, additional problems arose from the
preliminary testing.

Considering the medical needs we have several problems to solve from the technical point
of view:

• Automatic detection of volumes of interest

• Fusion of image information

• Medical image registration

• Fiber tractography using the detected volumes of interest

• Determining the coefficients to evaluate the conditions of the fibers - defining metrics

• Introducing a function that uses the extracted features in a correlation with the H&Y
scale for prognosis

To reach these goals we need also to solve issues related to:

• Efficient algorithms for DICOM header management and

• Medical image preprocessing at the mathematical morphology level as well.

These are the main contribution developed in this thesis and illustrated at the end by an
open-source prototype: PDFibAtl@s, able to be used by all the research community and easy
integrable in the ImageJ environment. From the clinical point of view, translational researches
are necessary by next to go from the Proof of Concept to the Proof of Value (POV).
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Medical imaging includes the techniques used to acquire images from the hu-
man body using specialized techniques and machines. These types of images provide

information that can define human anatomy in 3D providing volume information. Our inter-
est at the image level resides at the anatomical level as we need to establish which medical
image contains the medical data useful for our research and which can be better processed
to evaluate and extract this particular data data. Also, the need for the motor tract as a
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marker for PD extracted from the image, determines using a dedicated image technique for
this purpose.

The fact that in medical images the human body provides views acquired in-vivo, while
the patient is alive, breathing, all the internal organs are functioning, the heart is oscillating
as well as the lungs, so that all these movements make the final image full of artifacts. These
movements, combined with the fact that the acquisition time for the image is long, leads to
blurred images. Another specificity of the medical data is the complex information contained
in each medical image, as there are several tissues overlapping, together with bone fragments
and liquids as blood. These kind of problems are rarely encountered in non-medical images
and aspects like larger pixels combined with lower resolution provide low fidelity for the image
acquired [Sonka 2009]. As the surfaces of the anatomical details varies from one subject to
another, we need an algorithm to determine major differences from non-medical images and
to define the requirements for special handling.

These are problems specific to medical images and they need specialized algorithms and
handling. The purpose of medical imaging - developing a specific approach for visualization,
processing and analysis - intersects with our own vision on using the medical images as bio-
marker.

An overview of the main medical imaging methods used for head images is presented in
this chapter, with higher emphasis on the ones we are using. The characteristics of those types
of medical images provide specific features used for diagnosis purpose. Those characteristics
provide the motivation for using a specific type of medical images. The feature extraction
process represents the area where our new methods are developed thus an overview on the
existing methods and sets of algorithms is needed. We test the existing algorithms using our
own cohort to evaluate our algorithms and to place our methods among the existing ones.

2.1 Imaging Modalities
Working with medical image processing provides supplementary specific information on each
image, but medical standards include more information in a file than just the usual general
standard image. There are several medical imaging standards, providing, together with the
medical image, some basic information about the patient and the protocol used to acquire
the medical image.

We further define the medical image standards used for our imaging modalities, their speci-
ficities and the way we use them for processing further on. Also specific imaging techniques
attached to the imaging modalities are analyzed.

2.1.1 DICOM standard
Digital Imaging and Communications in Medicine (DICOM) is a standard used for
managing medical imaging. This standard has its own file format definition as well as a
network communications protocol [NEMA 2008].
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24 Chapter 2. Imaging modalities for Parkinson’s Disease Diagnosis

From the technical point of view, the relevance of the system resides in the automatic
detection of the volumes of interest and the management of the medical images, as well
as the fiber growth algorithm. For the medical image processing we deal with the DICOM
format. This specific medical image format consists of a header file and the image information
encapsulated in the same DICOM file.

The header file contains the patient information, as well as the angulation and the type of
the image. We are parsing the images from a folder reading the patient identification number
(patient id) and the image type. Once we know the type of image that we need for processing
(EPI / FA), we read the slice number and the direction of diffusion for making the volume for
the patient that we are dealing with. All this preliminary steps are performed using imageJ 1

toolbox in Java.
The DICOM file format contains a header and the image data. The header file contains

information about the patient and the technique used for acquiring the image, as well as
some characteristics. Another file format used for medical imaging is called Analyze, but
in this case for each instance of a medical file two files are created: one containing the
header information (*.hdr file) and the other containing the image data (*.img) file. The
DICOM file format has the advantage of compressing the files in order to reduce the image
size [University 2008][NEMA 2008]. In the case of neuroimagery, we need to transform these
files into Analyze format, in order to be able to perform a normalization on the images using
Statistical Parameter Mapping (SPM) . Also the Analyze standard offers separately the image
information and the hearer and occupies less space.

The DICOM header is contained in the first 794 bits of the digital image. This header
contains the image characteristics, as well as image information about the parameters of the
scan. In this file we have the elements 0002:0010 encapsulating the information about the
structure of the image data described by the ’Transfer Syntax Unique Identification’. The
image characteristics are stored for some color images (e.g. RGB) on 3-samples per pixel (one
each for red, green and blue) and the monochrome images store on only one sample per image.
For each image there are 8-bits (256 levels) stored or 16-bits per sample (65,536 levels), even
if some scanners save data in 12-bit or 32-bit resolution. A RGB image that stores 3 samples
per pixel at 8-bits per can potentially describe 16 million colors (256 cubed) [NEMA 2008].

These characteristics determine the format of the DICOM header, providing the physical
characteristics of the images and the contextual information regarding the patients, used in
our case for statistical purpose.

Digital image processing is concerned with working with programs that manage the digital
images in order to modify their characteristics. The methods implemented in this area take
as input images and provide the same number of images as output. The Image Analysis is
concerned with extracting information linked to the context of the image, but not to alter
the image, as it is the case with the digital image processing domain [Burger 2008]. In this
case the methods developed take as input images, but the output can be only one image or
numerical data. Our system also deals with the Computer Vision domain, as it will interpret
the medical images together and understand the diagnoses at the end. These three domains

1imageJ -http://rsbweb.nih.gov/ij/
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are the ones in which our work is placed.
For each image type we are trying to extract common features, as well as specific elements

that are better presented in that type of image. This is the reason why for each image we have
different techniques applied for preprocessing and for the analysis. In the preprocessing step
we are using a Java program that contains imageJ features and is able to extract and store
the information from the DICOM headers into the MySQL tables. The imageJ software is a
platform for digital image processing and analysis, able to deal with several types of medical
images.

2.1.2 Medical Images used in PD
In the medical standard, there can be several imaging types included in the image files (*.img
file). These standards represent the actual visual information displayed when we want to see
one of the images (e.g. MRI, ultrasound, X-ray image, tomography). When we refer to a
certain imaging type, we actually mean the technique used (e.g. DTI, fMRI) to capture the
image appertaining to a specific imaging modality (e.g. MRI). Medical Images are digital

(a) Sagital slice (b) Axial slice (c) Coronal slice

Figure 2.1: Head MRI slice views

representation of aspects on human anatomy - body parts, tissues, organs - by using ad-
vanced techniques and processes that allow visualization inside the body for clinical purpose
[Dictionary 2010]. Depending on the imaging angulation, there are several sectional views
that provide human body images: axial view, sagital view and coronal view (see Fig. 2.1).
The 2D images (ex. Fig. 2.6) that represent consecutive sectional views constitute a 3D
image, a volume (ex. Fig. 3.4). In our study, we are working with medical image sequences
or slices - consecutive sectional views (see Fig. 2.2) - stored in a medical standard format,
together with the acquisition protocol and information regarding the patient and the clinic
where the acquisition/diagnosis is performed. If at 2D level we are working with pixels when
representing digital images as numeric format, at the volume level we are using voxels. A
voxel does not posses its position encoded, it is relative to the other voxels, but they represent
the empty and occupied space in a volume. They possess sizes that make possible volume
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Figure 2.2: Example of consecutive axial views - slices of a stack

estimation. The voxel can be defined as a three dimensional pixel, a volumetric pixel. For
a correct 3D representation of the sequence of 2D acquired images, an alignment between
the consecutive image slices is needed, in order to obtain smooth and continuous anatomical
details.

For the head images, we analyze by next the CT and MRI imaging modalities, as they are
the most used for neuroimaging.

Computer Tomography (CT) Images are obtained using a tomograph, which produces an
X-ray beam that parses the 3D volume of the body in a process known as windowing. The
digital image obtained for the head images does not have the detail that we need for brain
analysis in PD.

Magnetic Resonance Images (MRI) are used in radiology for the detailed visualization of
the internal structure of the human body. The contrast offered by these types of images is
enough to make the difference between the soft tissues inside the body, especially in neurology.
This is the reason why our study focuses on this type of images. There are several types of MRI
scans that differ according to the protocol parameters, the techniques used at the modality
level and the purpose.

T1 weighted use a gradient echo (GRE) sequence with short echo time (TE) and short
repetition time (TR)

T2 weighted use a spin echo(SE) sequence with long TE and long TR
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Specialized MRI scans are based on more complex techniques for acquisition of images,
depending on the application area:

• Diffusion MRI represents the diffusion of water molecules at the tissue level - is
able to acquire several types of imaging types : diffusion weighted imaging (DWI),
echo planar imaging (EPI)

• Fluid attenuated inversion recovery (FLAIR) is based on the inversion-recovery
pulse sequence that has null signal from fluids

• Functional MRI (fMRI) is able to measure signal changes that represent neural
activity in the brain

There are other types of MRI sequences, as well as other specialized MRI scans that combine
techniques in order to obtain better images. At this moment each of the MRI sequence has
been developed for a certain type of application, for a certain part of the body and specific
to a disease. The DTI is used in the study of the brain as it offers the possibility to examine
areas of the brain at the axon level. The water molecules in the biological tissues have special
comportment.

2.1.3 Using DTI specificity
Naturally the water molecules do not have a regular movement, but at the tissue level, the
diffusion of these molecules can be anisotropic. Due to the fact that the axon of a neuron
does not usually cross a myelin membrane, the water molecule will be diffused along the neural
fiber. We use this propriety and by analyzing the diffusion in different directions, we are able
to detect the main neural fibers by tractography. The study of the fibers, as presented in
Chapter 1 represents one of the main challenges.

2.1.3.1 DTI sequences characteristics

Figure 2.3: Echo planar axial 2D
image example

Our medical partners offered us the possibility to study sev-
eral DTI scans before making a decision on the one that
our system would work on. The fact that each DTI scan
has different purpose, supply us with different characteris-
tics that can be combined and can complement each other
for a more accurate analysis.

The Echo Planar (EPI) sequence represent a volume
image in each diffusion direction. These DTI images have
been generated using a value of B0=800 and 13 directions
(12 directions + image with no diffusion) of scanning as
specified in table 3.1. The image acquired with no diffusion
is used for computing the ADC value and it is used as a
reference image for this purpose. The B value is used for
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changing the level of sensibility for diffusion - diffusion weighting value (e.g. standard value
for adults is 1000 and for children is 500) [Rorden 2008].

The diffusivity is computed in one direction at the time for all the directions in which
the diffusion was produced (different gradients). DTI images use tensors for expressing the
direction of the diffusion. The tensor has three directions that generate eigenvectors and
eigenvalues. If we are working with more directions then the image, features are better
emphasized, but in this manner, we can induce noise more easily among the features and the
trust degree in the extracted data is diminished [Curran 2005].

We will apply an algorithm that uses functions from the SPM and VBM for computing
the anisotropy and diffusivity values : FA and ADC. The FA gives us the value of the water
diffusivity and in this manner makes the difference between tissues. The ADC represents the
directionality of the diffusion and it reveals the fiber orientation in the brain. These values are
computed for each stack image that has been segmented into GM , WM and CSF. We will
have a value for each tissue segment on the 27 images. For characterizing the entire volume
(see figure 3.4) of the brain, we compute the average values of these functions on all the
images.

Figure 2.4: Axial 2D FLAIR slice
image example

Analysis and processing for FLAIR is usually used
to suppress the CSF in multiple sclerosis (MS) analysis. In
this case of DTI images we only perform the tissue segmen-
tation and spatial normalization with the Statistical Param-
eter Mapping (SPM5) and the Voxel Based Morphometry
tool(VBM5) on a stack of images constituted by all the
19 images acquired (see Fig. 2.4). The resulted images
constitute a single volume image. Afterwards, the diffusiv-
ity functions are applied on each processed image and a
mean value is computed for all the images that represent
the same tissue, for characterizing the whole brain. For
this type of images we are performing a segmentation pro-
cess as explained in subsection 2.1.3.1 using SPM5. The
gray matter (GM) and white matter (WM) segmented are

used then to create a volume value. At this level we perform the analysis using VBM5 and we
compute the FA and ADC value as well. An angular correlation is used at this point in order
to overcome the different values of the diffusion and to achieve similar image brightness for
all slices. Even with additional optimization on the obtained images, the final result does not
provide the same quality as the one generated directly by the scanner.

T2 DTI overlay and T1 imaging sequences have a high level of detail and are usually used
by the neurologists in the diagnosis process. The acquisition process in this case is the same
one used for the AX FLAIR images. When collecting the data from the scanner, turning the
gradients to their maximum value generates a more accurate image but it can introduce eddy
currents as well. These currents manifest as distortions in the image acquired by the scanner
[Rorden 2008]. Computing of the FA value must take into account the motion effect induced
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by these currents and in order to overcome the effect, an eddy currents correction function is
used.

Figure 2.5: T2 axial slice image
example

As the DTI images are characterized by their water dif-
fusion anisotropy in the tissues and by combining the data
from the images taken in several directions (the ones gen-
erated by the tensor values) we can compute the FA and
ADC, as well as construct neural fibers [Chetelat 2005].
We are computing the anisotropy values for these types of
images. After eddy-currents correction a correct segmen-
tation is possible on T1 and T2 images (e.g. fig.2.5).

2.1.3.2 Motivation for using this type of images

There are three main steps for managing the medical im-
ages from our database. The provided images in DI-
COM format are pre-processed using spatial normalization
[Ashburner 2000] and robust smoothness [Kiebel 1999] im-
plemented in statistical parameter mapping(SPM). After

this step, the resulted data is segmented using the fMRI module implementing the Tairarchi
atlas. The resulted white matter(WM) map is further used for the computation of FA and
ADC values that replace the actual voxel values, providing new images.

The DICOM images and header information are stored into a MySQL database along with
a list of features ordered according to the patient identification number. Each patient has all
the imaging types associated with it and the additional specific information. Data specific
to each image is stored as well (e.g. image size, type etc). During this pre-processing stage,
images representing the same slice from the brain, but taken with different tensor values, are
placed on a stack. Each image is also preprocessed using the Anisotropic diffusion filter in
order to obtain a better boundary for the anatomical elements. A contour plotter function
implemented in imageJ is used to extract the brain from the background image by using
the pixel value. In this manner, we obtain areas with certain geometrical values stored at
the level of each image as well. Generally in MRI images, the uniformity of the slices (see
figure 2.6) in a stack is not the same - the positioning of the brain inside the image shifts.
Thus, extracting the brain in this manner is not suitable due to the misalignment during
the volume reconstruction. Another reason is the fact that the intensity of the voxels that
represent the head and brain do not have always the same exact value for intensity - inter-
patient variability. This is the reason why we store this information, momentarily for statistical
comparison only and we do not perform the segmentation with this function. Even with the
additional algorithms including spatial normalization and Bayesian coefficients for maintaining
the deformation ration at the anatomical level, the final images are low resolution. After the
atlas-based segmentation into gray matter (GM), white matter(WM) and cerebro-spinal fluid
(CSF), we store these images. The stacks generated at this level are then transformed into
Analyze format for a better management.

The programs using SPM and VBM run under Matlab 7.0. These toolboxes provide us
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Figure 2.6: Slice view in 3D - voxel level

with the segmented images. The script that computes the FA and ADC takes these images
and, using the B0 value and a threshold of 50 for the diffusion values, computes the diffusion
tensors values.

The diffusion FA (equation 2.2) and ADC (equation 2.1) values are computed at the image
level and the mean value at the stack level. The value that characterizes the image is the
mean value from all the values of the stack. The functions that compute the FA and the ADC
values are created in Matlab by Craig Jones [Jones 2008] and use the FA/ADC equations from
2.2 and 2.1. The values computed for FA take into account the λ value that represents the
eigenvalues determined from the diffusion tensor vectors [Facon 2005]. This value is expressed
using the ADC value from equation 2.1.

fADC = λx + λy + λz

3 = λ (2.1)

where λx, λyandλz represent the eigenvalues computed from the x, y and z tensors on these directions.

fF A =
√

3
2

√
(λx − λ)2 + (λy − λ)2 + (λx − λ)2

(λx
2 + λy

2 + λz
2)

(2.2)

The formulas of these parameters represent standards from the points of view of the diffusion.
By computing the value of each of these parameters at the voxel level, we obtain the FA
and ADC sequences (Fig. 3.5). These new sequences developed using either directly the
pixel/voxel information or from the scanner, represent the value of anisotropy and the diffu-
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sivity on a certain patient. The information provided at the image level is low-level and we
are extracting it for further use together with medical knowledge in diagnosis and prognosis.

This chapter presents the specific medical imaging techniques used for the head images
with emphasis on the techniques used for our database and their characteristics. CT images
and MRI are mostly used when performing a head related scanning. As the specific elements
of CT recommend this technique for other head injuries (see 2.1.2) rather than the neuro-
degenerative diseases, we are studding the MRI. We are starting our analysis by first following
the most used techniques in MRI imaging and especially in DTI images (as stated in 2.1.3).

Most of the medical doctors, when analyzing a patient, they first turn to T1 and T2
images to see if there are any abnormalities. These MRI techniques have good anatomical
details, which represents an important criterion for using them. Also, when analyzing a patient,
comparative MRI stack images are opened in parallel because each of them offers a different
type of detail for the diagnosis. When the medical doctor detects an abnormality, he inspects
the specific imaging MRI that offers information about the disease he might be suspecting.
For neuro-degenerative diseases, the medical doctors usually analyze the DTI image. The DTI
image technique is an MRI type of image where the diffusion of the water molecules is used to
follow the neural impulse through the brain tissues. Following the water molecules in several
directions we have the impulse propagation in those directions. The more directions we are
following, more complex the image of the neural fibers that conduct the neural impulse is. By
trying to fuse the medical knowledge and offer the visual possibility of checking the accuracy
of the fusion, we are offering the medical doctors the possibility to analyze one type of image
with the features from the others as well.

Afterwards, we follow the approach taken by the medical doctor when analyzing the
MRI images also emphasizing the elements needed by the specialists to determine the neuro-
degenerative suspicion based exclusively on the image analysis. Several systems that achieve
this have been tested using the same imaging technique chosen for our approach.

2.2 Segmentation Techniques with applicability on DTIs
The aim of segmenting images is to classify sections of pixels based on their intensities making
regions of pixels with the same intensities and/or similar intensity. These regions have a certain
homogeneity that is defined based on a scale or on the fractal features. They can also be
defined by their boundaries or their interior. When defined by their boundaries, a contour-
based approach tests by whether each pixel appertains or not to the specified contour. For the
second case of definition for the regions, based on the interior, there are several features that
help this definition: compactness, projections, moments, texture and co-occurrence matrix
[Sonka 2009].

Analyzing the co-occurrence matrix we can define a histogram so that the features defined
for the morphological features are applicable for classification of the pixels. In this case we
can use the energy as a direct measure of homogeneity and the entropy as an inverse measure
of it. Using the maximum probability and the contrast as a measure of local image variation
the texture can be classified. Also the correlation can be used to differentiate among regions

BUPT



32 Chapter 2. Imaging modalities for Parkinson’s Disease Diagnosis

of pixels at the histogram level.
When talking about classification many approaches can be taken, but it all depends on

the final goal of the process: for a pathologist, a classification might be needed to distinguish
between sizes of cells, when for a radiologist, is more useful to know if the textures in certain
regions are similar, such that the choice of features used for classification can be made. These
features are entered on a classifier and produce the class decision. For a robust classification,
knowledge of the medical area can be used, but only if this data is available. In this case, we
can define a parametric classifier [Bankman 2009].

We can use the discriminatory power of the features for classification, but we need classifier-
independent feature analysis(CIFA). Feature analysis for classification usually treats the dis-
criminatory power from the classifier point of view - classifier oriented - by choosing the
classifier and then the classes are determined by running the classifier with the selected fea-
tures. The accuracy of the classification represents, in this case, the discriminatory level of
the used feature. When choosing a data-oriented approach, the features are ranked using
inter-class specificity. CIFA is specific to diagnosis problems as its purpose is to optimize
the classification performance. This is possible by performing a feature analysis based on the
structure of the features extracted, determining thresholds based on the discriminatory power
of the features and using these thresholds for a more accurate classification.

Computing the relative feature importance (RFI) offers the possibility to rank the fea-
tures according to their importance and to include, at the same time, the medical knowledge
in the ranking process as a diagnosis criterion for classification. The algorithm proposed in
[Sonka 2009], estimates the separation between classes using each new feature. In this case,
the weighted absolute weight size (WAWS) defines the limits between classes using eigen-
vectors and eigenvalues. For estimation on the RFI, in order to choose a distance metric,
accurate KNN is usually used. Also, a weighting factor after estimation of these features can
be attached so that the features lead towards a correct diagnosis.

I n t r a - p a t i e n t v a r i a b i l i t y can change the segmentation results and RFI is able
to remove this factor. Knowledge-based segmentation takes into account the features, their
spatial constraints and the anatomical elements. For a low-level segmentation the spatial
constraints are included in the algorithm, with the ROI specificity set as boundaries. For
segmentation with active contours, fuzzy logic is applied for a high-level segmentation. In
this case, for more accuracy in active contours for internal and external constrained forces
additional knowledge is introduced. For the same purpose - more accuracy for edges and
regions - some rules can be introduced, rules based on the medical knowledge, the intensity or
the spatial structure values. Uncertainty can be taken into account not only with fuzzy logic,
but also by modeling and classifying the anatomical variability, with multiple subject analysis
and evaluation of spatial distribution in normal anatomy.

2.3 Medical Image Registration overview
When talking about registration, a distinction and definition of the terms is needed. A clear
distinction between fusion, warping and registration must be made. Transforming one image
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so that it matches another one represents the process of r e g i s t r a t i o n. According to
[Tretter 1995] it is meant to find an optimal geometrical transformation between two homol-
ogous images. The demands with respect to similarity and what is suitable for each matching
determines the registration approach.
I n t e g r a t i o n defines the case where useful data from separate images are complementary
put together.
Using elastic deformation to fit an image onto an existing one defines the w a r p i n g process.
The local warping adapts the shape of a certain anatomical feature to an individualized atlas.
This process is constituted by the feature specification followed by the warp generation.

The m o r p h i n g process uses warping to turn one image into another using cross-fading
(cross-dissolving). This technique introduces distortions in one image coming from the other
image.

For registering two images, the suitable spatial transformation must be found so that from
two images that are not aligned, we have the template images (transformed, moving image)
mapped into the reference image (fixed image). The movement of the template can induce
artifacts due to variation of different objects. A similarity measure is used to evaluate the
difference between the two images - the distance between the template and the reference must
reach a minimum estate. The transformation process is the one that "moves" the image to
match the template.
The MedINRIA module that preforms the registration, called "Image Fusion" as it uses two
initial images as input for the module and the result is the target image obtained by moving
and/or changing the initial target image. This module provides several methods for registra-
tion: manual, diffeomorphic, affine etc. The process of fusion can be integration or a warping
in this case. This is fusion defined at the image level. In our approach we fuse information
feature, at the second level using registration as a tool for fusion. In our case, the registration
only helps for the fusion performing an alignment between two images.

The algorithms for registration can be classified in many manners, d e p e n d i n g o n
t h e p a r a m e t e r s o n t h e t w o i m a g e s , t h e w a y t h e y a r e d e t e c t e d
a n d t h e w a y t h e i m a g e s a r e t r a n s f o r m e d b a s e d o n t h e s i m i l a r -
i t y m e a s u r e s u s e d .

2.3.1 Registration algorithms
In the registration algorithms, there are several main steps to be done: choosing the fixed
image and the transformed one, choosing the landmarks, evaluation of the differences between
the two images and the transformation of the moving image. Depending on the way these
steps are performed, the registration algorithms can be evaluated. Taking one at the time
these steps we have several classifications:

• Landmarks: Landmark-based (Finite Element Method (FEM) registration) vs. non-
parametric registration(Fluid registration, Elastic registration)

• Differences: Geometry-based (affine registration, BSpline based registrations: NURBS)
vs. Intensity-based (Standard Intensity Based Registration (SIB))
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• Transformation: Rigid (Affine registration, Iconic registration) vs. Non-Rigid(Fluid reg-
istration, Diffeomorphic registration)

The limits between all these categories are not well defined, as there are registrations that
can be included in two or all the three categories, as they use one of the elements from each
category. We are now presented the characteristics of several main registration methods with
the elements that include them in a specific category.

Based on the landmarks and the way they are chosen, the landmark-based registration is
performed, when using hard landmarks (prospective) or soft landmarks (retrospective) with
respect to the imaging process. If an image is evaluated based on the mass distribution
there can be applied a principal axes transform (PAT). If the appropriate distance is used for
similarity evaluation, the registration can be improved. There are several ways to choose the
appropriate distance: based on the intensity, on the correlation or on mutual information. All
these cases define an optimal linear registration.

The non-parametric image registration techniques are based on force computation to solve
the difference until the two images converge. The elastic registration is justified by the
deformation of a body or the tissue. Tensors are used to limit the boundaries for the shape
matching. The fluid registration compared with the elastic registration uses the basic fluid
mechanics for regularization. These techniques are not recommended for hand and brain
images registration, as these tissues do not deform following the mechanics included in these
techniques.

For a finite difference approximation in the partial difference equation a gradient-based
regularization defines a diffusion registration. Starting from this approach, Thirion in 1995
[Tharin 2007] [Vaillancourt 2009] defined a performing non-rigid registration based on "demons"-
diffusion functions. The main idea in this approach is the placement of each demon in the
image domain. The "demons" are functions that decide the movement of particles on the
template image so that the disparity is minimal. This approach is recommended on large
dimensional image data, but measuring smoothness by oscillation of gradients and the fact
that it does not represent the actual physical image characteristics are drawbacks.

If the fluid and diffusion registration depend on pre-registered checkpoints in the image
domain, the curvature registration does not need that. This type of registration does not
depend on the initial points and data, but it changes the shape of the image elements.

Another registration method that uses deformation is the Finite Element Method (FEM),
included in the ITK library. This method is based on BSplines and computed the displacement
between the images evaluated on a grid. This grid defines a mesh that can be considered
adaptive, uniform or even anatomy-based. Using physical transformation (Triangular, hexahe-
dral, tetrahedral, etc) the moving image is deformed to the model. This approach is linked
to the specifications given for the geometry and the behavior of the elements, as well as the
boundary conditions.

From the non-rigid image algorithms the iconic feature based registration represents the
intersection between the geometrical and the standard intensity based registration. The Stan-
dard Intensity Based (SIB) registration use the intensity similarities to quantify the quality of
the registration. The Iconic Feature Based (IFB) registration uses the geometric approach
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for distance evaluation for corresponding features, however the correspondence is based on
the pixel intensities [Thomopoulos 1994]. Free From Deformation (FFD) method proposed in
[Parker 2004] is based on the idea of deformation of the solid with B-Spline basis or NURBS
(Non Uniform Rational B-Spline), but it is computationally large and sometimes insufficient
deformed.

The main problems in registration are encountered at the beginning, when analyzing the
data that the registration is meant to align. The mono and the multi-modality determine
different approach on the distance measures, as well as on the transformation techniques.
The same elements differ also when talking about intra or inter-patient registration where
patient variability determines transformation. Depending on the content of the medical im-
age, limitations are introduced for transformation and to determine a rigid versus non-rigid
approach.

A transformation that includes translation, rotation, scaling and other affine transforms
represents a linear transformation and does not affect the image information. This trans-
formation defines an affine registration. When using the local affine transformation guided
by a global affine transformation with mutual information and anatomical mask, the piece-
wise affine registration is performed. Completing this approach by using mutual information
generated by mutual information-based thin-plate spline defines a piecewise affine initialized
spline-based registration. The landmark and intensity based registration methods are part of
the non-rigid category of algorithms. A combined method that combines the landmark-based
method with the thin-plate spline uses both landmarks and intensity information to estimate
the transformations.

Feature-based registration or geometric registration extracts the feature points and, com-
puting the displacement between these points, is able to fit a transformation with or without
regularization. The intensity-based registration prepares the transformation for optimization
of the similarity by directly minimizing its value. The voxel-based methods change the image
gray level without prior segmentation. The dispersion in the distribution of the image gray
values is evaluated by the entropy.

All the registration algorithms follow a few main steps:

Feature Detection choosing the boundaries, the contour lines and intersections; distinctive
objects spread on the image; common to the two images; not sensitive to image defor-
mation

Feature Matching correspondence points between features; similarity measures are used
combined with spatial relationship among features;

Transform Model Estimation estimates the alignment of the two images; differences be-
tween images have to be removed by registration;

Image Transformation mapping functions and transformations with interpolation techniques;
the trade-off between the accuracy of the interpolation and the computational complex-
ity
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Specific to medical domain an anatomy equivalence class (AEC) can be introduced for rep-
resenting the anatomical equivalence, individualized on patients and useful in estimation of
distance and the actual transformation process. This manifold of elements defined as pairs
[transformation, residual] is able to eliminate confounding data and produce an optimal reg-
istration strategy based on the individual anatomy. This approach needs a template and
specificity features for each patient for evaluation [Bankman 2009].

Another specific medical feature is defined by the computational anatomy, a parameter
that characterizes anatomical differences between the registered images.

2.3.2 Registration Methods
When presenting the modalities used on the evaluated systems for the registration, we are
considering the fact that the tests are done using our own images, the checkpoints for us are
represented by the fornix and the AC/PC line - the slice that contains that specific axis. We
test the registration modalities for intra-patient registration, the images taken at the same
time, but different type of images (EPI B0 and FA, T2 with EPI B0). For volumetric deficits
on Alzheimer diagnosis Jacobians are used. For a brain development follow-up diffusivity is
recommended as approach because it characterizes fractional anisotropy. In our case we will
test the diffusivity approach, as FA is important and we are working with this type of image,
but also a geometric approach can be useful as we are having intra-patient registration. Using
a tissue density map (TDM) a distribution of the anatomical tissues can be achieved. On the
second step of the registration process mutual information must be found in the two images.
This step enhances the mutual information in the two images without a priority model.

The Diffeomorphic Demon registration (Image Fusion module from MedINRIA) was
tested on the T2 and EPI images, but the information was mixed for the resulting image, in
this case we have lost the accuracy of T2 image as it was compromised by adding noise from
the low level image. We could not use the registered image for ROI detection. For some
patients the resulting image was ambiguous and the anatomical detail was not good enough
even for manual ROI detection.

Another registration possibility with this module is represented by the manual registration
algorithm, when the checkpoints are manually detected. This algorithm was unable to de-
termine when to flip the image and the angulations for this procedure. For some patients it
performed well, for others it did not, depending on the accuracy and the position of the check-
points. In the manual approach, the subjectivity of the human input affects the performance.

An atlas based registration is tested on the EPI images using SPM5. The images are
mapped on an atlas and depending on the position of the main anatomical structures with
regard to the ones in the atlas, the transformation is applied. The problem for our images
was the final result as the images were folded on the results and we could not use them
further. This registration method includes an anti-folding method, K-fold cross-validation but
this method is conceived for the fMRI images, not DTIs.

BUPT



2.4. Tractography elements and algorithms 37

Complementary to deformation based morphometry (DBM) and tensor based morphometry
(TBM), the Voxel Based Morphometry method is tested. In DBM the group difference is
established using local deformation, whereas in TBM the tensor information provides the local
displacement. In VBM the differences in the local concentration of volume, depending on the
tissue type detected at the voxel level, determine the registration landmarks. Completing
this method with a voxel-wise statistical analysis for exact determination of the landmarks,
offers a better accuracy for this method. The warping transformation represents the final step
providing the transformed image.

Another registration method based on regions of interest used as landmarks is provided by
the 3D Slicer. This approach is similar with the manual approach as the used chooses manually
the corresponding regions and landmarks in these regions. This technique is strongly linked
on the checkpoints and the accuracy of the evaluation for these checkpoints. The system
offered results only for a few patients, as it was not able to complete the process for most of
the volumes provided.

2.3.3 Applicabilities of Registration on our database
We are using this technique as the first one or the VOI is determined on the EPI B0 image
and the second one is extracted from the FA image. We need to perform registration in order
to map the extracted VOI from the FA image on the EPI.

For our database we need a rigid body registration as we are performing intra-patient
registration. Also, the evaluation for the transformation should be determined automatically
using geometrical elements to eliminate inter-patient variability from the algorithm. A rigid-
body transformation completes the registration that we need.

The mapped VOI is used in the tracking algorithms for choosing the fibers.

2.4 Tractography elements and algorithms
The tracking algorithms are used to evaluate the water diffusion represented by the tensor
information in the EPI images and, following the angulations, to reconstruct the neural fibers.
These algorithms are defined for WM fiber tracking, where all the fibers run in the same
direction. Although this is not the case for us, as we are working in the GM, we evaluate the
algorithms on our images.

There are two main approaches on the tractography using DTI images: deterministic and
probabilistic. The deterministic approach connects neighbor voxels starting form an initial set
of points until the angulation or the FA values reach the threshold values. Probabilistic trac-
tography considers uncertainty of the fiber orientation and uses probabilistic density function
to determine the fibers. Using DTIs both methods are able to track the fibers and the fiber
density even if there is fiber disruption and reductions, but each method has drawbacks. For
a d e t e r m i n i s t i c a p p r o a c h the initial points need to be known and there is certain
sensitivity in the estimation of the principal direction of diffusion. T h e p r o b a b i l i s t i c
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a p p r o a c h needs more computational time due to the probability functions, but its results
are better on partial regions. At the voxel level, determining the next step when tracking the
fibers, the approaches can be classified in local and global. L o c a l t r a c t o g r a p h y uses
a seed voxel or a ROI as starting point for initialization of the fibers. This tracking takes small
steps determining at each time the direction of the fiber. For determining this direction when
using the deterministic approach only one possible direction is provided as next step, whereas
on the probabilistic approach there are several possibilities for the next step. The downside
when using the local tractography is the fact that there is no target region defined and ex-
tracting a specific bundle of interest in these conditions is challenging. The other approach
of following the tracts is by setting up the source seed voxel or ROI and a similar one for the
target. Using the deterministic method for choosing the direction of diffusion provides only
one possible path and the probabilistic method provides more paths again, depending on the
probability distributions. The global tractography is constrained to a specific connection and
symmetry between the source and the target [Yendiki 2010].

Based on these approaches new methods of tractography have developed, taking into ac-
count other parameters when tracking the neural fibers. Descoteaux et al. in [Descoteaux 2007]
use the sharp fiber orientation distribution function (ODF) for a reconstruction from Q-Ball
Imaging. This type of imaging uses probability distributions instead of tensors combined with
tomography used in high angular resolution diffusion imaging (HARDI) approach. Fillard et
al. [Fillard 2009] propose the use of spins with potential energy to trace the fibers on global
tractography - the spin glass tractography method (SGT).

Our approach already has the initial volumes of interest representing a global approach as
it aims on detecting just the fibers starting at the midbrain VOI and reaching the Putamen
VOI: the strationigral tract. We try to achieve this aim using our own images with several
systems that perform tractography.

Taking all the fibers determined on the entire brain is time and computational power
consuming. This is the main reason why the local probabilistic Slicer tracking module could
not complete the estimation of the fibers on our images. It also did not offer the possibility
to choose just a bundle from all the fibers or to insert an ROI before tracking.

The DTI tracker from MedINRIA system performs fiber tracking for all the brain and,
inserting a VOI, it can extract just the bundle that passes through that specific region/volume.
Also the direction of the fibers could not be chosen.

We tested the second order Runge-Kutta method for tracking using the Diffusion Toolkit
from TrackVis 2, which is a probabilistic method as it offers for each voxel multiple diffusion
directions. We tested this method on our images and applied a global tractography by defining
the ROIs manually in TrackVis. The tractography generates, like the DTI Tracker (MedINRIA),
all the fibers, but the choice of the bundle of interest can be achieved by using two or more
regions of interest (see fig. 2.7). Even if this is a fast method and very close to what we need
as final result from the tractography, the generated fibers include also noise. Another global
probabilistic tractography is proposed by FreeSurfer 3: TRActs Constrained by UnderLying
Anatomy (TRACULA). The preliminary testing before release on this method uses 60 gradient

2TrackVis - http://www.trackvis.org/-last accessed on July 2010
3FreeSurfer - http://surfer.nmr.mgh.harvard.edu/-last accessed on July 2010

BUPT

 http://www.trackvis.org/
http://surfer.nmr.mgh.harvard.edu/


2.5. Algorithms and their applicability on our database 39

Figure 2.7: The motor tract detected on TrackVis

directions and DWI images of 2x2x2 mm or T1 images of 1x1x1 mm [Yendiki 2010]. We did
not test this software as it has not been released yet.

SPM and VBM do not offer tractography as an application and, considering the long time
needed just for ROI extraction, we eliminated this system from the testing batch.

2.5 Algorithms and their applicability on our database
For our fibers, we need an algorithm that economizes time at the growing step by evaluating
just the tensors from a defined VOI and starts the growing towards the other determined VOI.
We will grow, in this manner, just the fibers that are interesting for us and we will validate
only those that reach the second VOI.

2.5.1 Software using DTI images
There are systems using DTI images for analysis and processing, offering different features
and data for the user. To present the capabilities of these systems we test them against our
own also by using our database, we have a way of evaluating the new prototype PDFibAtl@s
by comparing the results obtained with the other systems. All the systems presented are
freeware and are dedicated to the medical image processing for DTI images. Other systems
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have been tested, but the images either did not provide any result or have managed to close
during processing or even stop the machine while processing the data. The systems presented
provided the best results for our images. The systems are tested from several perspectives:

• Management of DTI images (12 diffusion directions)

• Registration capabilities

• Tracking algorithms using one or two regions of interest

• Segmentation procedures

First, we evaluate the results on our images for all these perspectives, with validation from
the neurologist. Afterwards, we analyze the algorithms used for achieving the tasks. Next we
present the systems and then we compare them from the perspectives presented above.

MedINRIA4 represents a French project by INRIA laboratory in Sophia Antipolis and pro-
vides a series of applications for medical image processing and visualization. As provided by
the Asclepios site the main interest points provided by this software are the Log Euclidian
metrics - metric for tensor estimation, HARDI - high angular resolution diffusion imaging,
fiber tracking, block matching, diffeomorphic demons- defined in registration and DT-RefinD-
registration technique. This project is structured in independent modules, implementing dif-
ferent algorithms, that offer just specific features when needed: the DTI Track module or the
tensor viewer module. The system is implemented using ITK5 for image processing and VTK6.
As we are working with DTI images, the DTI tracker was one of the tested modules, together
with the Image Fusion module, the one providing several methods for image registration.

3D Slicer, provided by the MIT AI Lab with the Surgical Planning Lab at Birmingham
and Women’s Hospital, as presented on the home page7, the software application represents
a collection of algorithms and applications dedicated to medical imaging. The application
provides not only a 3D image viewer for DTI images, but also tracking algorithms, as well as
registration ones. The Slicer provides also an atlas for segmentation of the brain, specialized
for DTI images(Fig. 2.8). The system is developed in Visual C, using visualization libraries
and advanced computing algorithms like VMTK (vascular modeling toolkit).

Matlab based systems (SPM and VBM) - Statistical Parametric Mapping (SPM)- is
a plug - in software that extends statistical processes dedicated to the functional imaging
data. The software package performs analysis of brain imaging data sequences8. This plug-in
software is designed for the Matlab environment. The version of SPM5 accepts DTI images
for processing and provides alignment and preprocessing using the fMRI dedicated module.

4MedINRIA - http://www-sop.inria.fr/asclepios/software/MedINRIA/ - last accessed on May 2010
5ITK - imaging toolkit http://www.itk.org -last accessed on May 2010
6VTK - visualization toolkit http://www.wxwidgets.org - last accessed on May 2010
7Slicer - http://www.slicer.org/ - last accessed on May 2010
8SPM site -http://www.fil.ion.ucl.ac.uk/spm/ - last accessed on May 2010
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Figure 2.8: Result image when using the 3D Slicer Atlas

Voxel Based Morphometry (VBM)9 represents another module that can be integrated in
Matlab with SPM, as a plug-in in SPM5. This module is able to make segmentation in WM
and GM based on voxel-wise comparison.

The TrackVis10 with the dedicated Diffusion Tracking module uses linear least- squares
fitting method and offers Q-Ball/Hardi reconstruction [Wang 2007]. It uses standard FACT
for fiber tracking, but we test the Runge-Kutta method as we are using a similar method in
our approach. The difference between the results obtained with this approach and our method
consists in the obtained fibers that include also noisy elements, specific to the probabilistic
global approach. This methods are implemented in C and the visual elements as well as the
image processing is created using the VTK library. The Diffusion tracking module performs
the image processing taking the DICOM standard images and delivers the computed fiber
tracts. The TrackVis module offers visualization for the fibers and the possibility to segment
the images and extract bundles of interest from the computed tracts.

9Voxel based morphometry (VBM) -http://en.wikipedia.org/wiki/Voxel-based_morphometry - last
accessed on May 2010

10Diffuion toolkit -dtk - http://www.trackvis.org/dtk/
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2.5.2 Classification and segmentation
There are several ways to manage tissue classification to determine detection of anatomical
structures or organ limitations. One way used for head images is represented by the brain
atlas, a pattern that can be applied on any brain to determine the position of anatomical
structures inside the brain. There are several brain patterns used in segmentation algorithms.
The inconvenience of this approach is represented by the fact that these algorithms do not
take into account the patient variability as it has to provide an atlas for all the demographic
type of patients (Asians, Europeans, African). Also a registration between the atlas and the
image is needed for a correct detection.

For the other approach the intuitive way is used for detecting the main tissue types: bone
(skull), WM, GM, CSF. This technique analyzes the pixel intensities and is able to determine
the similar pixels that constitute the same type of tissue. This technique is dependent on the
image quality and the threshold set by the user to make the difference between tissue types,
managing the sensitivity in this way. Computing the entropy values and setting up a threshold
for the main tissue type we are classifying, this algorithm parses the images and places the
pixels according to the threshold and entropy values. In this case, the sensitivity represents
the main challenge.

The systems that we are testing have different approach on the segmentation algorithms.
MedINRIA provides a way of manual definition for the regions of interest, as this is the most
accurate way of segmentation. The same accuracy using the manual approach is provided also
by the TrackVis module. 3D Slicer and SPM provide atlas-based approaches, but 3D Slicer
does not manage to finish the computation for our images and the SPM results are blurry and
not accurate.

2.5.3 Segmentation based on atlas
The brain atlases describe a representation of the brain, with anatomical elements and their
spatial relationships, the proportionality between these structures and used in registration,
warping strategies and annotation systems. There are specialized atlases of the brain image,
but there are limitations on the demographic parameters and the imaging types used. One
of the most used atlases is the Talairarchi Brain Atlas, integrated in several systems (SPM
is using this atlas). There are also deformable brain atlases where the anatomic variability is
managed by spatial normalization schemes. The drawback of these atlases is represented by
the fact that not all the brain structures can be captured and molded by these algorithms.
When talking about brain, the variability is manifested on every metric.

We use the atlas approach on these images for reconstruction of the brain image in 3D
and analysis of the basically diffusion characteristics: the Fractional Anisotropy (FA) and the
Apparent Diffusion Coefficient (ADC). In the case of an equality on all directions for the value
of the FA, a low anisotropy is revealed and if its value is produced high in certain directions,
a high anisotropy is present. The movement of the water protons and their diffusivity at the
voxel level is determined by the ADC value.

The Java program that uses imageJ, after identifying the image being processed as an
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EPI DTI image, searches the images that are taken on the same step and contain different
gradient levels. Once we have all 12 slices that represent the same image for different diffusion
values - values specified in table 3.1 - we generate a stack from these images. The stack is
then processed and analyzed in Matlab using SPM and VBM algorithms.

Statistical Parameter Mapping (SPM) is an academic software toolkit used for analyzing
functional imaging data in image processing and analysis [Guillaume 2008]. In our work, we
use several functions provided by SPM. We use Segmentation features in order to perform bias
correction and spatial normalization within the same time as segmentation. In combination
with VBM5 (see paragraph 2.5.3), which performs region-wise volumetric comparisons among
several subjects, SPM5 requires images that have been spatially normalized. For revealing the
physiological elements we need the images to be segmented into different tissue classes. The
smoothing process offers us a clearer image which we need prior to performing statistical tests
[Friston 2000].

Voxel Based Morphometry (VBM) is used in our system in the image processing stage.
We use VBM5 in our work as it completes itself very well with SPM5 toolbox and extends its
capabilities. It can use previous segmentation for further analysis [Gaser 2008] and performs
a voxel comparison for tissue concentration. Its disadvantage is the susceptibly to registration
and segmentation errors and its sensitivity to image characteristics. The image must be
preprocessed before VBM5 is applied, as it does not work with any type of image. This
preprocessing is done in our case using SPM5. We are using the functions from the brain
extraction process for our images and for normalizing GM and WM. With VBM, registering
the brain to a template and smoothing the result by applying an average value for each voxel,
between itself and its neighbors, overcome the differences between brain anatomies.

The maps from these segmentation algorithms (SPM combined with VBM) provide the
results presented in 3.2.1 and they represent a preliminary testing technique applied on our
database to evaluate the usefulness of each tissue type. We applied the values computed with
equation 2.2 and 2.1 in order to obtain 3.5(a) respectively 3.5(b).

2.6 Conclusion
The medical imaging standard provides not only the image information, but also the demo-
graphic parameters for statistical study and knowledge-based analysis. We call "demographic
parameters" the specific parameters to each patient: age, sex and brain volume. The image
protocol from the header image contains also the necessary elements for the 3D volume recon-
struction using the 2D sequences. Though when searching or extracting a certain anatomical
structure from a 3D volume, the 2D slice containing that particular structure must be found
first. This is a challenge as the human bodies are different therefore the volumetric elements
differ and the positioning of the patients in the scanner is different as well.

When performing the medical image analysis we are confronted also with inter-patient
variability, as each patient has different dimensions for the same anatomical structure, as well
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as the placement on a general basis, relative to a model perspective. There is also the intra
-patient variability due to the different imaging techniques that reveal in different manners
the same anatomical detail. Overcoming these variations represents a big challenge for the
entire medical image processing systems.

MRI sequences have the clarity for the anatomical detail, but also the diffusion value for
the neural fiber determination. The MRI sequences have different features that combined
become complementary and have greater value together - fusion applicability.

The specificity of the medical images must be taken into account when processing head
images, as well as patient variability. The systems tested are specific for the head images
processing and allow DTI images to be analyzed.

These systems, together with the associated algorithms, offer a view on the selection
criteria for the suited algorithms, interpretations of image features and their applicability on
the diagnosis.

Analyzing the medical images, we will use the EPI further for processing and analysis as
they offer the tensors for the tractography method. Due to the low resolution, the anatomical
detail of these images does not recommend them for segmentation. This is the reason why we
use the FA images provided in our database, as they contain the anisotropy and the diffusion,
emphasizing the Putamen area. The method chosen for segmentation is based on the voxel
entropy, in order to avoid the folding or misplacement caused by an atlas approach.

After testing several registration methods, an automatic approach based on parameters,
using the brain geometry. This is a rigid registration that takes landmarks representing specific
geometrical parameters and uses affine transformation.

For the tractography we use a deterministic global approach, detecting the fibers that are
part of the segmented midbrain area and validating only those that reach the Putamen area.
We have tested the probabilistic global approach using the Diffusion Toolkit (TrackVis) and
the result included noise. Also the metrics provided by the statistical module for the bundle
of interest had a very high value for the number of tracks.

We tested all these methods using our own database in order to include the specificities
provided by the acquisition protocol at the image level. This protocol and its importance are
presented in the next chapter.
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There are several aspects we must take into account when defining the algo-
rithms for the implementation of PDFibAtl@s. As the images represent the input, their

quality influences the overall results and the approach used for the algorithms.
Given the images provided by our medical partners, we further consider several technical

facts related to the specificity of the medical images. In order to have the best results on the
detection and analysis performed on the images, the quality of these images has to compel
with the needs of our algorithms: good resolution and anatomical detail. Another important
aspect is represented by the patient identity factor that interferes with our analysis: each
patient has a specific anatomy and the slice of interest for different patients is not the same
one. As the volume of the brain is not similar for all the patients and as the anatomical detail
differs among the cases, the automatic detection of specific areas should be based on the
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x y z
1.000000 0.414250 -0.414250
1.000000 -0.414250 -0.414250
1.000000 -0.414250 0.414250
1.000000 0.414250 0.414250
0.414250 0.414250 1.000000
0.414250 1.000000 0.414250
0.414250 1.000000 -0.414250
0.414250 0.414250 -1.000000
0.414250 -0.414250 -1.000000
0.414250 -1.000000 -0.414250
0.414250 -1.000000 0.414250
0.414250 -0.414250 1.000000

Table 3.1: Gradient Values used in our protocol for diffusion images

geometrical display of the brain anatomy. In addition, a correlation between the patient’s age
and sex must be taken into account since we should exclude the atrophy and other geriatric
specific elements, as well as differences in the volume of the brain due to sex differentiation.

We will extend in this chapter the analysis at the image level by presenting the protocol
for the DTI images that we are using and the specifications for each type appertaining to
the DTI imaging method. These characteristics determine the selection of the imaging types
used in our study. The pre-processing steps performed on the images are presented in this
chapter as well, as they are the result of the specificities of the imaging types further used in
our methods.

3.1 Database characteristics - Diffusion Tensor Images
We are presenting the medical image characteristics specific for the DTI images emphasizing
on the images that we are using and the specific characteristics of these images.

A number of 68 patients diagnosed clinically with PD and 75 control cases underwent
DTI imaging (TR/TE 4300/90; 12 directions; 4 averages; 4/0 mm sections; 1.2 x 1.2 mm
in-plane resolution) after giving informed consent. This represents, as far as we know, one of
the biggest cohort of PD patients implicated in a study. The heterogeneity of the patients -
Asians, Eurasians and Europeans - can also be used to characterize a general trend for PD
prognosis. For this type of DTI images, we have 351 images (e.g. Fig. 2.3) that represent
slices of 4mm of brain structures taken in 13 directions at each step (one step represents a
position on the vertical brain axes). In this case, we have 27 images that constitute a 3D
brain image - contain all the possible position in order to show a complete image of the brain
in 3D format.

From the database patients we have chosen a cohort of 22 patients and 25 control cases,
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correlated as age and sex, for preliminary testing and development of the pre-processing
methods. As shown in Figure 3.1, the characteristics of the images taken into account for

Figure 3.1: Input database

the study present some limitations for certain patients. From this point of view, the image
stacks taken for the volume analysis can be placed higher or lower on the body of the subject;
hence we have some incomplete studies. The image resolution does not permit an automatic
detection in some of the cases as it is not able to detect a significant difference in the contours
of certain anatomical regions.

Working with the DTI technique, we rely on the fact that water diffusion is highly
anisotropic in white matter (WM) and the reason for that is that the water molecules were
restricted in the axons. The DTI images that we are using were taken with a Siemens Avanto
1.5T( B=800, 12 diffusion directions).
All the images are in DICOM format. This format is specific to the medical images, containing
the header file and the image encapsulated in the "dcm" (DICOM) file. In the header, all
the information regarding the patient is contained together with the technical information
regarding the parameters for the acquisition. Reading this file, we are able to establish the
order of the slices and create the volume image using the same type of DTI. There are several
types of DTI images that differ among them by the fact that the coil that takes the images
is differently placed and/or the diffusion is performed in several specific directions.
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3.1.0.1 Echo-planar images(EPI)

From the DTI images the EPIs (Fig. 3.2) are among the ones with the lowest resolution. The
advantage of this type of DTI is that they contain the tensor information as matrixes, giving
the actual orientation of the water flow defining the brain fibers. The diffusion directions have
each, as result, one volume of images. In this way, we use for each volume 351 EPI images
with 12 diffusion direction, one without diffusion and 27 slices. This is the reason why the
tensor computation, which takes the 12 directions into account, has a good accuracy coming
from many images.

The tensors are obtained as a result of water diffusion on the neuronal fibers and they are
stored as matrix with diffusion directions. This information can give the direction of diffusion,
as well as the anisotropy values stored as tensor values. To make use of this information,
we limit the value of the anisotropy for noise elimination. The tensors are computed using
the diffusion directions and the B0 image as ground truth. Represented as directional-related
indices, the tensors offer information regarding the angle between the current location of a
fiber and the possible evolution of the same fiber. This angle is limited in our case at 60
degrees minimum, to avoid the noise.

Managing the information coming from the EPI This type of image is not appropriate
for the anatomy extraction and analysis, but the tensor and anisotropy values stored represent
the bottom line of fiber reconstruction, as well as the source for other images. We perform
the entire image preprocessing on the EPIs, as they provide the tensor for the fibers as well.
A preprocessing step for these images represents a contrast enhancement of 0.5% for a better
detection of the skull and the volumes of interest.

We perform the skull removal process next for detecting the center of mass only on the
brain. The contour of the brain can be extracted next for detecting the starting point for
the inter-hemisphere axis. The removal of the skull is needed because the results have shown
influences of the voxels that are not brain tissue on the anisotropy analysis. We perform the
removal task on this type of images because they contain the anisotropy values and the tensors
that are used further in the detection of the fibers. They must be uninfluenced by any voxel
intensity other than the brain tissue.

3.1.0.2 FA and ADC specific features used

Fractional anisotropy images result from the computation of the anisotropy level for each voxel
on the EPI images (Fig. 3.3). They contain not only the anisotropy values, but also the color
code for it. This type of image represents the diffusion direction inside the fibers. Because of
that, the Putamen area is well defined as the motor tract reaches it and stands out as contour
with high anatomical detail, therefore we use it in the automatic detection of this volume of
interest.

After a registration of the obtained volume of interest extracted from this image we can
use it together with the tensors from the EPI to limit the fibers that we take into account. At
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Figure 3.2: Axial slice of an EPI Figure 3.3: Axial slice of a FA image

this point, there is an exchange of information from one image type to another, by information
fusion.

3.2 Preparing the image for processing
Due to the complex structure of the medical image encoding manner for the DICOM format
we need to take the useful information from the header file. During the processing and analysis
steps we only make use of the image by itself, without the additional information. This is
the reason why we transform the image from the DICOM format to Analyze and store it as
stacks of images that represent an entire brain volume for each patient sorted according to
the imaging modality.

The Analyze format is similar to the DICOM one, except that the header file and the
image file are stored separately. Also, the header file does not contain as much information
as the DICOM one: it does not have any information regarding the acquisition method and
parameters (e.g. angulation for the acquisition plane, the series type for the image, the slice
number, the diffusion direction). When placing the images on a stack, the alignment between
the slices is highly needed. This gives us a clean volume image providing a clean contour for
the anatomical volumes.

For the axial plane, the images that we have in our database are taken in AC/PC plane
- Anterior Commissure/Posterior Commissure. This axis is significant from the anatomical
point of view and it is used by the radiologist because it is distinguishable in all the MRI
images. The sagittal plane and the coronal one are not used by our approach.

We evaluate the possibility to apply certain methods onto our database by conducting
preliminary testing with the systems presented in the previous chapter. In this section, we
present the evaluation and performances together with the applicability of these methods
included in other systems. This approach also emphasized the importance of our system in
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comparison with other systems, as well as the efficiency of the new algorithms compared with
the existing ones.

We first test the FA and ADC values on the whole image, without segmentation, to see
if there are any significant differences between the patients and the control cases or among
different patients. Then, we evaluate the same parameters on the midbrain area, where the
dopamine is produced, so that relevant differences can be discovered among patients and fiber
orientation can be discovered for the tracking algorithm.

3.2.1 Preparing the images for 3D handling

Having a small cohort from our database for working with (21 patients and 25 control cases),
we are taking the Parkinson patients and for each of them we have four modalities for the
image processing step. In this case the amount of images is enough for performing a well-
documented study. Depending on the image modality the quality of the images varies.

For measuring the quality of the images we look for images that have a high degree of
clarity and accuracy for revealing the anatomical details. Also the fact that we are dealing
with medical images, DTIs, we have black and white images, with grey levels. As the images
represent slices of 4 mm, the grey level is different from one slice to another due to the fact
that the patient can move slightly - when breathing and/or trembling - the resulted image is
most of the time blurry.
To overcome this effect, we apply the spatial normalization and inter-slice alignment for
constructing the 3D image.

The segmentation is evaluated by assessing the result of the segmentation, the segments
- the GM, WM and CSF- the volume obtained by putting all the resulted segments together
- the stripped brain, without the skull area. At the image analysis, we are currently working
with two parameters: FA and ADC. The obtained values must be close to the value of 1
[Chan 2007]. For our images, we obtain an anisotropy average of 0.56 for each slice image
and 0.52 average for the whole brain on the GM images. For the CSF images we have a lower
value, as expected, and for WM slightly lower values than for the GM.

For augmenting these values, we change the processing procedure and the preprocessing
as well. These results depend on the image processing but also on the diffusion values and
the tensor directions. When performed on more diffusion directions, we obtain higher stacks
and better the accuracy as well.

For evaluating the analysis step, we are using the H&Y scale (see annex C) where the
Parkinson patients are annotated on a scale from 1 to 5, according to the severity of the
disease. We are trying to achieve the same classification using the FA and ADC values like
the one in the H&Y scale, making the difference between the affected cases and the healthy
ones by computing the values for the parameters on the patients as well as on the control
images. Also, the different severity of the disease like in the H&Y scale can be determined by
the functions that analyze the images.
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Figure 3.4: 3D Image Stack generated with imageJ

3.2.1.1 FA and ADC computation

An optimization for the brain images is represented by the normalization of the image to a
standard space by matching the grey matter to a reference one and eliminating, in this manner,
the scalp [Friston 2000]. This process generates grey matter (GM), white matter (WM) and
cerebral spinal fluid (CSF)-see Fig. 3.7. In figure 3.6 we have the requirements from VBM
functions before processing with this tool [Yaasa 2004]. These requirements are attained by
using SPM functions. Performing normalization for an image in the warping process, distur-
bances introduce some differences. Modulation is used for compensating these differences. By
performing modulation the amount of grey matter is preserved in the normalized image. (E.g
when a lobe has half the volume of the image in the template, then during normalization the
volume could be doubled, but the voxels will be affected in this case because their number
will be doubled). Using the modulation process the coordinates in the normalized image will
be restored to their original values by using the deformation field values [Friston 2000]. For
the normalization process, we can use one or more template images. The algorithm minimizes
the sum of squares difference between the image and the templates. The first step creates a
match between the images of the head with the skull. The next step performs a matching be-
tween the brains and registers the result. The registration step uses a Bayesian framework that
searches for the solution that maximizes the a-posteriori probability [Friston 2000]. At this
point, in the SPM segmentation algorithm, the deformations are estimated for the modulation
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(a) FA image (b) ADC image generated

Figure 3.5: FA 3.5(a) and ADC 3.5(b) example of images

Figure 3.6: VBM Preprocessing requirements [Yaasa 2004]
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(a) GM (b) WM (c) WM smoothed (d) CSF

Figure 3.7: Images Processed:GM, WM, Smoothed WM and CSF

part.
The registering process for the tissue probability maps and the processed image uses a

minimization of the sum of the two terms -the two images. This process is performed by the
warping function. For this function, the portability of the data and the parameters are used.
We obtain a smoother deformation. The cutoff value included in computing the warp function
depends on the point of view of our image. Having a smaller value for the cutoff allows more
detailed deformations to be modeled, but the processing time is longer[Friston 2000].

We use a smoothing function from the SPM in order to eliminate the noise or deformations
acquired during the processing part. This function performs the smoothing with the Gaussian
kernel. This system provides also pathology detection with deformation-based morphometry
integrated with pattern theoretic approaches - deformation maps of the variations in normal
anatomies based on continuum mechanics [Thomopoulos 1994].

By processing these types of images, we extract specific information from the brain images.
At this point we are able to extract the white matter (WM), gray matter (GM) and cerebral
spinal fluid (CSF) from all the types of images used. The images containing WM and the
smooth modulated images with WM are then used for FA and ADC computation (Fig. 3.5).
FA is a useful measure in the DTI images as it reveals the connectivity at the brain level. Again,
for all types of images the values are taken and for each patient an average is computed for
expressing the values at the volume level. The values used for the images in figure 3.5 are
computed using the equations 2.2 and 2.1 on each slice of the volume. The mean value
obtained from all the slices for the FA and ADC represents the values that we are studying.

3.2.1.2 Analysis

When processing the images, several parameters are set for the SPM function to generate
the maps [Yushkenvich 2008] [Fillard 2002]. We choose the Eastern Asian brain maps for the
segmentation phase. This choice was the closest for the population included in our database,
but it is restrictive nevertheless. Also regarding the bias regularization, we use the heavy
threshold for this purpose, as it eliminates the surrounding noise. These features are then
used to characterize each patient from the three perspectives.
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3.2.2 Midbrain study - manual approach
We are moving the FA image so that it perfectly overlaps the EPI B0 image of the same
patient. As presented in 2.3, there are several main steps to follow when registering two
images.

3.2.2.1 Preliminary testing

Our preliminary work is based on the determination of the first region of interest - volume of
interest where a study is performed on the FA images considering the color-coding specific for
this type of images. The colors for this type of image represent the direction of diffusion into
the fiber tracts:

• Red color pixels - for anisotropy orientated from Left to Right (LR);

• Green color pixels - for orientation in Anterior - Posterior directionality (AP);

• Blue color pixels - for orientation in Up - Down directionality (UD);

We analyze the green channel to see if the fibers running in the AP direction are similar for
the patients or are degraded depending on the PD level. The easiest way to analyze the green
channel is to generate the histogram for this area. The histogram represents the number of
pixels that have a certain intensity: N(bi)

P (bi) = N(bi)
N

(3.1)

where N represents the total number of pixels.
Based on the fact that the motor tract, according to the brain pathology, follows the ante-

rior -posterior direction, we perform a color analysis on the volume of the midbrain extracted,
in order to see whether the fibers starting from this area oriented in AP direction have a
correlation with the H&Y scale.

Figure 3.8 represents the main steps in the analysis of the green channel. We make the
detection of the midbrain area and compose the volume of interest on the EPI image and then
place the determined volume on the FA image for the green channel extraction, performing
an alignment between the two image types. Once we split the volume obtained from the FA
image on the three channels and take the green one, we perform the histogram and extract the
values for the range of interest. This range is chosen in a way that we can exclude the noise
and we place it in between 10 and 100. These values are then correlated using PASW 18.0
(Predictive Analytic SoftWare, formerly SPSS- Statistical Package for the Social Sciences)
tool with the H&Y values. An analysis of the methods used for correlation, as well as the
testing procedure used is presented in chapter 7.

After this study, we continue with the fibers growing, to examine their density and the
relation at a higher granularity level with the disease.

This analysis offers the opportunity to see if the PD and the correlation between the disease
and the level of green affect fibers starting from the midbrain area, where the dopamine is
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Figure 3.8: Green channel analysis

produced. This level of green represents the anisotropy level as well and this particular area is
the one that is correlated with PD, as the motor tract represents most of the fibers going in
AP direction. In this case the anisotropy level, if correlated with the H&Y scale represents an
indicator of the disease at the midbrain level. Therefore, we are able to determine that the
starting point for the fibers we want to grow is relevant for our study.

3.3 Pre-processing algorithms
These algorithms came as a natural need after the pre-testing results. There are several sys-
tems that offer the possibilities for performing the processing we needed. Before defining our
algorithms we have tested the images on other systems, to evaluate afterwards our own algo-
rithms performances. The need for our new algorithms came due to the images characteristics
presented in section 3.1 combined with patient variability. All these methods are performed
on the entire image slice, all the slices in the volume stack and represent a global approach.

As the FA values estimated on the whole volume proved to be indecisive as a PD feature,
the medical doctor suggested that removing the skull could offer better results, with less
residual elements, eliminating the bone tissue. This is the reason why we performed the skull
removal process. Together with the bone tissue, the noise surrounding the head images must
be eliminated as it represents noise. Next, preparing for the feature extraction algorithms we
needed landmarks applicable to all patients that can guide our algorithms without any inter-
ference from the patient variability. These elements, together with the hemisphere detection
algorithms, set up the elements for the automatic detection of the location where to apply
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the feature extraction algorithms.

3.3.1 Skull removal
As the systems considered in section 2.5.1 provided algorithms that performed the skull re-
moval as well, we have tested these algorithms first and then developed our own. The systems
are tested using our own images with the characteristics specified in section 3.1 and we are
using EPIs, as they are the ones providing the elements for the fiber growth. We need these
algorithms for the FA images to eliminate the problem presented in section 3.2.1. We use
the atlas-based skull removal method offered by SPM and the one based on the pixel entropy
(MedINRIA) because the method based on the atlas offered by Slicer is too slow on our
images.

Using the atlas based approach (SPM) , the segmentation detects the skull, as the tissue
surrounding the brain. With this approach due to the EPI image quality, some of the other
types of tissue were removed or not correctly identified due to patient variability.

The algorithm based on the voxel intensity (MedINRIA)[Fillard 2007] is affected by
the the exterior elements and noise and its sensitivity did not provide good results for our
database. This is the reason why the exterior noise had to be removed - not to affect the
other processing algorithms.

Our own algorithm was applied on the EPI image and it uses KMeans classification for the
tissue to detect the bone tissue. This algorithm is implemented in java and was available as a
plug-in in imageJ1. Actually the FA image containing the anisotropy provides the intensity for
the skull voxels similar to the one representing the GM. This is the reason for the noise at the
FA computation. We used for our purpose a four class evaluation to distinguish between the
bone tissue and the GM, WM and the CSF. The algorithm was not sensitive to the exterior
noise as we have applied a noise removal filter provided by the same library. In this way all
the elements outside the skull perimeter was considered as noise and eliminated.

At his point the brain tissue represents the only information in the image. Estimation,
analysis and processing on these images offer correct results on the brain tissue state.

3.3.2 Retrieving the geometrical elements
Having only the brain as information in the whole volume representation, offers us the pos-
sibility to sets landmarks based on the whole volume estimation so that we can eliminate at
least a part of the patient variability. This is the reason why we retrieve, using an imageJ
plug-in algorithm -object counter2, the brain center of mass at the volume level and we are
able to perform the same feature extraction at the slice level. This landmark is able to offer

1KMeans in imageJ: http://ij-plugins.sourceforge.net/plugins/clustering/index.html - last ac-
cessed on June 2010

2imageJ plug-in Object Counter : http://rsbweb.nih.gov/ij/plugins/track/objects.html - last ac-
cessed on June 2010
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us an alignment for all the patients based on their volume, a central axis placement through
the aligned volume. Next, we needed a manner in which to find the limit the left and right
side of the brain and in thus have another landmark for the patient alignment.

3.3.3 Hemisphere detection

Figure 3.9: Brain edges detected for
variability function evaluation

This detection is further needed for patient alignment
at the volume level to provide, together with the cen-
ter of mass, a plan that passes through the center
of the brain, making the distinction between the two
hemispheres. For this detection we determine the
outer boundary of the brain (Fig. 3.9). We analyze
this boundary as a variation function determining the
maximum inflexion point on the function correspond-
ing to the occipital sinuses at the base of the Occipital
Bone of the skull.

This point together with the center of mass of
the brain determines a sagital plane between the two
hemispheres. Also, used on an image with the center
of mass from that image provides a horizontal axis
indicating the orientation of the brain in the image.
This will be used for registration.

3.3.4 Importance of the performed pre-tests
The whole image testing evaluates the FA and ADC values on the whole volume of the entire
image. The mean value on each patient does not offer an average to distinguish between the
PD and the control patients, therefore we need further study. The medical doctor suggested
that the bone tissue might be affecting the overall FA/ADC values and changes the meaning
of the testing. The FA and ADC images obtained computing these values reveal a good image
of the dopamine paths of interest. The Putamen is better defined in the FA image level and
a more insightful study on this area is possible on this type of image.

From the study of the green channel the AP positioning of the fibers reveal a pattern
that follows the disease severity that makes us think that the dopamine flows in this direction.
Studying the flow at the midbrain level, where the dopamine is produced and using the FA
values from the image, a fiber disposition that follows this direction coded as green on the
image, makes the distinction between the fibers that we need for study and the tracking
direction to make the distinction on these fibers.

The preliminary testing algorithms validate the medical theoretical hypothesis and offer as
well the measure of the image dependability. In this manner the images provide the solution
of the following algorithms developed for PDFibAtl@s. By extracting the same features at
the pre-testing level and at a higher granularity level, we are able to evaluate the performance
of our algorithms on the feature extracted. The green channel analysis is done based on a
similar variation on the histogram for the volume of interest on this channel, indicating that
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the fibers all follow in AP direction and that there is a correlation between the anisotropic
green channel and the H&Y values. Furthermore the fibers that start from that area and grow
towards the Putamen have an even stronger correlation with the PD evolution scale.

We will use the image without skull, as apparently it interferes as shown in the whole
image processing step. Also, the hemisphere distinction provides a good limitation for the
processing and tracking algorithms. PD is more obvious in the left side of the brain, therefore
an analysis on this side should be more relevant.

3.4 Conclusion
The H&Y scale represents our system of reference in analyzing the results and elements
indicative of the PD. This scale stands for the diseases degree, 1 being the mildest and 5 the
most severe. Unfortunately, for several patients there is no clear classification (1.5 or 2.5 on
H&Y scale) and for those cases our system would be a confirmation for placing the patients
on the 1 or 2 classes for sure, but at this point, our system might put these patients on either
of the classes with no mistakes.

The preprocessing step performed on these images represents a system able to gather
specific DICOM images and place them on a volume stack. The mild processing for the EPI
and FA images is meant to enhance the success of the automatic detection of the volumes of
interest and prepare the images for that purpose.

Performing the testing on the entire image we have a global view of the features that
the image offers and the possible applications on the image. Also, it is able to give us a
starting point for the analysis of our algorithms as it shows the image importance regarding
the features. From the whole image study, a more concentrated study on an anatomical region
of interest offers a better image of our diagnosis.

Studying the fiber positioning and the link with the FA value offers the image of the fibers
that are the most used by the dopamine and the way they are placed at the volume level.
Performing the image analysis on the colored FA image on a specific anatomical volume of
interest, we are provided with the orientation of the fibers used by the dopamine flow in that
anatomical region.

The pre-processing algorithms used prepare the image for the processing step, offering the
preliminary geometrical elements, as well as a clear distinction for the two hemispheres for
feature extraction and analysis purpose.

BUPT



Chapter 4

Image Processing Methods
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After presenting the types of images that we are using and the way that we
intend to handle the images, in this chapter, we focus on the image processing, locating

the volumes of interest(VOI) and their extraction methods. Prior to these objectives, let us
enhance the challenge that we are taking in at this point.

After a view on the systems able to process the images from our database in chapter
2 and a closer look on the image characteristics in chapter 3 we are now presenting our
algorithms dedicated to the segmentation, registration and tractography. Our methods are
meant to eliminate the inter-patient variability and the demographic characteristics using a
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fully automatic approach. We present an overview of the main methods and the problems
that these methods aim to solve.

4.1 Overview on the system
Testing several systems dealing with specific treatment of DTI images, we construct our
approach based on the clinical needs, as well as on the results obtained from other systems.
First, by testing other systems with our own images (section 2.5.1), we evaluate the possibilities
that we have of using our images and the flows that these images have. At the same time,
we evaluate existing algorithms and their effects on our images by analyzing the results these
images provide using our database. From figure 4.1, we define the main processes that our
information undergoes from the image level to the knowledge level. We start using EPI images,
where we extract the midbrain area first. The FA are used for automatic Putamen detection
and, registering these images on the EPI, place the detected volumes at the right position on
the EPI images. Once these volumes of interest are placed, the algorithm for fiber growth is
applied on the EPIs and the fibers extracted are analyzed, together with the detected volumes
of interest. Another part is represented by the diagnosis step followed by prognosis. These
steps are described in Chapter 5 together with the algorithms implemented. At this stage we
are presenting the image processing algorithms, the features analysis being the subject of the
next chapter.

We first analyze the flows of our images, the needs of the medical filed meeting the results
acquired by the algorithms implemented in other systems and presented in section 2.5.1.

4.1.1 Comparison with other type of images and correlation with cur-
rent diagnoses system

For the use of the Fusion Image module (MedINRIA system) that performs the manual,
automatic affine registration and the diffeomorphic registration, each patient must first be
processed using the DICOM dedicated image handler, Image Viewer. This module provides
the image format needed by the Fusion Image module. There is no inconvenience except when
having a large database. The fact that the registration does not perform with the accuracy
needed on our images for enabling us the correct fibers represents the major drawback at the
registration level. Also the fact that we cannot limit using two volumes of interest for the
chosen fibers, makes us regard another option altogether. Even though, because of technical
reasons, manual registration would be optimum for our case, we cannot use the DTI track
module that performs the global tractography using Log-Euclidian metrics on a deterministic
approach (MedINRIA) because it would mean choosing only one volume of interest, which
cannot separate only the bundle of interest.

The probabilistic global approach on tractography is implemented in Diffusion Toolkit
(TrackVis). This approach offers several methods for computing the propagation of the dif-
fusion: FACT, second order Runge Kutta, Interpolated Streamline and Tensorline. We are
testing the second order Runge Kutta, as it is the closest on our approach. Using a previous
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Figure 4.1: Tasks and Processes in PDFibAtl@s
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mask for the volumes of interest does not perform well on our data, but the possibility of lim-
iting the computed fibers using a manual ROI or even two VOIs provides the needed bundle
of interest. The drawback is the fact that this approach needs to compute all the fibers and
limit them afterwards. We do not need all the fibers and this time-consuming process can be
avoided with the mask volume. This possibility exists in the Diffusion Toolkit, but our mask
volumes could not be read either by the Diffusion Toolkit or the TrackVis module. This aspect
constrained us to perform the manual segmentation. With the manually VOIs the results on
the fibers were either null or noisy.

Testing Slicer 3D we are offered with the possibility to choose two volumes of interest
for limiting the fibers. The registration for the images is done manually by choosing interest
points. This time, the system is unable to complete the fibers due to the great number of
images loaded corresponding of the directions of diffusion. This make the algorithm stopping
before complete computation of the fibers (section 2.4).

Typically, the brain atlases are used for taking the volumes of interest into account. This
is not accurate due to the fact that we have a brain database from Singapore that contains
not only Caucasians, but also Asians, so that a mapping with the brain has small chances
of being correct. Testing Statistical Parametric Mapping algorithms (Maltlab SPM toolbox)
we obtain results only on the entire brain analysis and due to the image quality, the skull
extraction cannot be properly performed and thus, we have interferences with the results
on the anisotropy. A specific atlas that contains automatically detected anatomical volumes
represents a tool that can be applied to any type of patient.

At this point, we choose a specialized library that provides us with the elementary image
processing elements: medical image reading and writing, basic filters and plug-ins, enables
us to use algorithms already implemented and to begin our processing at a higher level of
data management. Indeed imageJ1 is a useful open source Java based library conceived for
medical image processing and analysis that offers the possibility to develop a Java application
that can be used for testing further in this library as a plug-in. It also has the advantage
that developers using this library are continuously updating it by offering their contribution
as plug-ins. The entire functionality is contained in ij.jar for easy integration in a program,
as well as for developer testing. In this manner the newest algorithms can be tested with the
available images and further development can be made more quickly. Besides, it offers the
possibility to test several approaches before deciding on a certain algorithm or approach by
directly analyzing the results. This allows us economize effort and time, in this way we used
elements from the library together with our own code.
Another reason to use this library is its portability. We wish PDFibAtl@s to be used at
any medical station for integration with the systems currently working on these stations. It
offers the possibility of using libraries already developed as VTK2, as a plug-in with several
algorithms.

1ImageJ website -http://rsb.info.nih.gov/ij/ - last accessed on June 2010
2ij-VTK -http://ij-plugins.sourceforge.net/ij-vtk/index.html - last accessed on June 2010
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4.1.2 Proposed approach on image processing

From our preliminary studies, we have seen that the motor fibers are relevant for the progres-
sion of PD. By building a specific Parkinson’s Disease atlas, we intent to segment, visualize
and quantify VOI characteristics, together with the motor fiber tracts. Substantia Nigra (SN)
and the Putamen represent the two extracted VOI, as they represent the origin and the target
of the dopamine flow inside the tract, from where we extract the bundle of interest. For these
VOIs to be accurately used on the same image, as they are extracted from different image
types, we need an intra-patient registration due to the characteristics of the image protocols.
Geometrical characteristics of each patient are the landmarks for this geometry-based regis-
tration [Zitova 2003], used to align the volumes for FA and EPI. The registration provides a
common space for the diffusion tensors -provided by the EPI- and the anatomical elements ex-
tracted from the FA, due to the anisotropy flow that makes the contours of the Putamen more
visible than other image type. The registered volumes are fused, by acquiring the anatom-
ical part from the FA and applying the aligned mask on the EPI images. This inter-image
information fusion enhances the anatomical importance from the color image (FA), taking
also into account the anisotropy level provided. On the registered volume of interest on the
EPI, we perform fiber growth between the two volumes of interest and we extract the fiber
density (FD) and the fiber volume (FV). At this point, our approach differs from other fusion
techniques, since we are fusing the images at the information level, using the registration for
spatial alignment on the brain volume. We do not rely on prior atlases created for structural
MRI and no manual intervention is needed in the process [Lehericyr 2004] [Vaillancourt 2009].
Also, we do not perform prior segmentation on white matter (WM) and grey matter (GM) or
use any maps for alignment and registration purposes [Deisseroth 2009] [Woodward 2009].

From the fusion point of view, we have two ways of information fusion: from EPI to FA
and on the opposite way as well. We must first take into account the specific characteristics
of each image type. The FA image represents the fractional anisotropy on the dopamine
flow inside the whole brain, color coding on this image indicating the direction of diffusion as
presented in section 2.

EPI volumes contain the tensor matrices that provide the direction of the fibers for the
fiber growth algorithm. From this standpoint, the color analysis approach is better on FA
image and for the fiber growth we must consider the EPIs. However, on the FA image, the
detection of the midbrain area is not possible since the algorithm takes a part of the Cerebro-
Spinal Fluid (CSF) as well, and this interferes with our further analysis. Hence, we must work
on the midbrain detection on the EPIs. On the other hand, there are problems with detecting
the Putamen area even on the T1/T2 images because of unclear boundaries between this area
and the surrounding ones. On the FA image, due to the dopamine enhanced by color-coding
we are able to make a distinct limitation of the Putamen. We use both regions of interest for
each step of the analysis part, together with the obtained new parameters at the fiber level.
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4.1.3 Main tasks that meet PD diagnosis challenges
Before detecting the volume of interest, we must perform several steps for image preprocessing.
This is due to the low resolution of the EPI and the problems presented at the beginning of
the chapter and emphasized during the system testing: brain size differences, anatomical
difference based on particularities specific to each individual, as well as elements of brain
atrophy related to aging process.

The preprocessing part has to overcome the low resolution of the EPI, as well as the
demographic characteristics of the patients (age and sex differences). In our study, we
surmount the sex differences by computing the volume of each brain, as there is a difference
between female and male volume of the brain, based on smaller skull usually recorded for
women.

For detecting the elements related to the volume of interest, we consider the relative
position of anatomical elements to a fix point. We have chosen this point to be the center
of mass of the brain (Xc, Yc, Zc). In order to determine this point, we need to consider the
brain, without the skull. Another problem that we have to surmount is the human interference
in the segmentation algorithms. The segmentation algorithm methods perform the detection
inside the axial slices. In order to start the algorithms at the right place on the right slice,
the position of this slice must be determined first. This position represents the placement of
the axial plane (Ox and Oy axis inside the volume) relative to the coronal(Ox and Oz axis of
the volume) and the sagital (Oy and Oz axis of the volume) planes, on the Oz axis of the
brain volume. This aspect provided us with the right placement of the algorithm at the slice
level - the placement at the volume level. We need to find the anatomical region inside
the axial image for which we need the volume definition - placement inside the slice, with
identification of the right place for the volume detection.

From the segmentation point of view, solutions like the one proposed by SPM that performs
the entire head segmentation are not applicable, as we need only our volume of interest, not
a certain type of tissue. Due to the patient variability, we need robust VOI segmentation
algorithms.

As one of the volumes is detected using an image stack (FA stack) different from the
stack where we later use it (EPI stack),registration is needed. The problems with registration
reside at the landmark level and influence the accuracy of this process. With no interference
from the user, we perform a geometry based intra-patient registration with the geometrical
landmarks automatically detected at the preprocessing level.

For the bundle of interest choice we use the two VOIs to limit the tracking starting
from the midbrain area by selecting just those that reach the Putamen : deterministic global
tractography. At this point, we compute measures based on the density of the fibers in the
entire volume of the brain or in the volume of interest.

FD = FNr

V olBrain
; FDrel = FNr

V olV OI
(4.1)

where FD represents the fiber density computed as the number of fibers - FNr - in the
volume of the entire brain - V olBrain and FDrel represents the fiber density relative to the
volume of interest- V olV OI . We try to overcome the age difference as well, by taking the
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mean age on the testing batch, as close as possible between the PD patients and the control
cases. Computing the fiber volume and the brain volume an analysis is possible to detect the
geriatric effects on the brain and on the neural fibers al well.

FV = FNr ∗ Vheight ∗ Vwidth ∗ Vdepth ∗ Fleng (4.2)

where FV represents the fiber volume computed as the product of fiber number (FNr), fiber
length (Fleng) - constant as the fibers must pass through both regions of interest and the voxel
dimensions: Vwidth, Vheight, Vdepth. According to the medical manifestation of the disease,
the fiber density and volume should be diminished for the PD patients, compared with the
control cases. The degradation of the fibers should also be correlated with the severity of
the disease specified by the H&Y scale. Before reaching the evaluation and diagnosis part for
our algorithm, we present our work at the processing level, where we extract the basic image
features.

4.2 Image Initialization
There are several steps to be followed in transforming the information from the visual level
into cognitive quantitative information. The preprocessing level prepares the image for the
algorithms that extract specific information concealing the anatomy and pathology of the
subject. These preliminary algorithms eliminate the noise and provide specific landmarks and
features used for feature extraction.

When we are talking about image processing, we refer to transforming an image f in
another image g. The first and most used technique is to apply a specific operator ϑ so that:

g = ϑ(f) [Sonka 2009] (4.3)

In this case, the operator is meant to perform a specific task but preserve the image infor-
mation. These operators are part of mathematical morphology and are usually used for the
preprocessing step of the image systems to remove noise, artifact, to enhance certain aspects
as the contours. The image operator ϑ must satisfy two properties: distributivity and trans-
lation invariance. These properties guarantee the preservation of the initial image attributes.
The distributivity means that the effect of the operator on the combined image can be deduced
from the individual image and the translation invariant offers the same result on a translated
image as it does on the original one [Sonka 2009].

Mathematical morphology is used for image processing and analysis as it offers the possibil-
ity to represent any translation invariant operator between complete lattices using elementary
morphological operators. We are using the morphological operators at the preprocessing step
of our approach. We perform image reconstruction by extracting desirable parts from the
image, together with some marking algorithms.

For our system, we need several elements of image preprocessing for a good image quality,
before processing. This is prevailed with morphological operators, together with segmentation
algorithms and de-noises filters. Our main concerns are linked to the movement artifacts from
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our images that must be eliminated for a proper analysis. Due to early study and analysis, the
bone tissue constituting the skull needs to be eliminated for a better further processing (section
3.3). At the processing level, another important matter that must be solved is preparing the
parameters for our own algorithms, so that the processing algorithms can accomplish the
optimal detection of the VOIs : slice detection at the volume level and adaptive anatomical
detection at the image level.

4.2.1 Volume management and slice detection
At the volume level, for the slice detection, we use the determined center of mass with the
imageJ plug-in by Fabrice Cordelires and Jonathan Jackson called Object Counter 3. This
plug-in detects the 3D objects from image stacks and provides their volume, surface, the
center of mass and the center of intensity. We use the volume provided for demographic
parameter elimination and the center of mass for an inter-patient alignment.

Detecting the slice of interest starting from the center of mass of the brain is done by
taking into account the placement of the anatomical regions that we consider as volumes of
interest. For the midbrain, on a first attempt, we consider the slice of interest 8 mm lower
than the center of mass and for the Putamen area 2 slices higher than the center of mass,
thus 8 mm higher than the slice containing the center of mass as well. Due to this manner of
placing the slice of interest according to the center of mass, there are several patients that do
not perform well. These are the patients that, in the volume acquired in our images, do not
have the entire brain and the content is shifted towards the neck more than the brain. In this
way, the patients do not have all the slices containing all the upper part of the brain (e.g.the
hand commissure- often used as a landmark in alignment and/or registration).

This approach was not very helpful due to the fact that each patient is positioned differently
on the image stack - some of the patients are higher on the image, others are lower positioned.
The center of mass in this case is relative to the object inside the image, which can contain
the entire brain or just a part of it. For the cases with smaller brain volume, the slices could
contain the entire brain, the others cannot. In order to establish the position and the content
of the brain volume, we select the first and the last slice and extract the volume of the objects
from these slices. We establish levels for defining the position of the midbrain relative to the
determined center of mass of the brain.

Pslice = V olZslice

V olF slice
∗ 100

ST
(4.4)

where V olZslice and V olF slice represent the volumes of the objects in the slice with the
determined center of mass, respectively the first slice on the stack; ST is the slice thickness
(4 mm) and the values place the midbrain with relative to the determined center of mass with:

• Slice 0 if Pslice<60

• Slice 1 if 60<Pslice<70
3Object Counter -http://rsbweb.nih.gov/ij/plugins/track/objects.html - last accessed on June

2010
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• Slice 2 if 70<Pslice<85

• Slice 3 if 85<Pslice<100

These threshold values represent the statistical established studies with regard to the midbrain
position and its placement relative to the percentage determined value. If the stack is not
correct - if it does not contain the minimum slices for the midbrain and the Putamen detection
- we transmit an error value for the slice of interest (-1). Once this position is determined,
the Putamen algorithm starts with two slices above the midbrain slice - one slice is with the
midbrain, and the second one has to contain the AC/PC line. We adjust the Putamen slice if
the detected volume is too small (20 pixels) or if it is placed too near to the midline. If this is
the case, it means that the brain is bigger and we find the Putamen one slice above the one
we have placed the algorithm.

4.2.2 Finding the starting point for anatomical segmentation
Once we have the slice of interest detected for each of the volumes used on the tractography,
we need algorithms that determine the placement in the image slice of the anatomical region
that we are segmenting. Knowing the location of the regions based on the brain physiology,
we design specific algorithms for each volume in order to determine the stating point for the
active detection algorithm.

The extraction of the volumes of interest is possible only on the images that provide a clear
boundary for the anatomical regions that represent our volumes of interest. The algorithms
for extraction must be placed at the right anatomical area in the 3D image volume, for this
detection to be as accurate as possible. The automatic detection is possible only after the
starting point for the active volume is set. The difficulty in this case lies in finding, in the
slice of interest, the right region for the active volume growth.

Detection for the starting point of the volume of interest in the midbrain area is done
similar to the detection of the slice of interest and it is combined with the division in hemi-
spheres of the brain. We need the hemispheres separately on account of the study of Dr. Chan
[Chan 2007] which states that there are different stages of development of PD in the left side
of the brain and the right side. Usually the left side of the brain has more fibers grown in
between the two chosen volumes of interest. The actual algorithm that makes the division
into hemispheres for the brain takes the contour of the brain in the slice of interest. Based
on the inflexion point with the maximal value we mark this point as a part of the medial line
and together with the center of mass detected in the slice of interest the two points represent
the medial limit in between the two hemispheres of the brain (fig. 3.9). This limit is used
when we detect the volumes of interest, as we want the algorithm to consider only the needed
hemisphere. The algorithm for finding the midbrain starts from the center of mass of the
volume inside the slice of interest and following the inter-hemispherial axis searches for a gray
matter region placed next to this point or above it.

Detecting the starting point for the Putamen detection algorithm is different from the
one used for the midbrain, as the Putamen is not placed on the inter-hemispherial axis and
does not have a geometrically detectable point or standard distance -patient variability is
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present here. We are working on the FA image as it contains the anisotropy that follows
the dopamine flow and makes the Putamen more distinguishable than on the other type of
images. Our algorithm is also based on the placement of the two areas relatively to the
center of mass of the image as well. As this is a more complex matter there are several
steps performed for achieving an adequate positioning inside the image and eliminating the
inter-patient variability:

• Classification of images (SOI) based on the head shape

• Segmentation on tissue type based on the voxel intensity

• Validation of the Putamen region based on the placement with reference to the center
of mass

The first step represents a rough categorization of the head based on the sex variance, as well
as on the subject provenance (e.g the shape of eurasians is different of those of Europeans
and Afro-Americans). We detect three main classes based on the position of the center of
mass with regard to the middle of the image. The second step is meant to distinguish the
anatomical areas and make easier the search for the Putamen. This segmentation is performed
using the KMeans4 plug-in based on [Jain 1988]. We establish the number of clusters based
on the tissue types the image now contains and the tolerance is left at the default value
together with the randomization seed. The image containing all these clusters represents the
map for the algorithm that established the volume of interest. Based on this image and the
medical knowledge our algorithm starts at the center of mass and follows the hemisphere axis.
Depending on the category established at the first step the algorithm chooses the proper level
for hemisphere exploration on the left and the right side. Passing two tissue types and reaching
the CSF area we then reach the Putamen. At this point, the volume tracking algorithm can
be applied.

4.3 Volume Segmentation Algorithms - Active volume seg-
mentation

The process of active volume determination is placed at the slice level and the stack level at
the same time. At the slice level, after determining the starting point for the active tracking
algorithm on the SOI, we move on to the growing step of the volume determination. We are
thus performing a segmentation using the active contour algorithm and setting the threshold
for it as voxels appertaining on the other classes rather than the one we are exploring. At this
point the algorithms differ much depending on the anatomical region we want to extract, as
well as on the hemisphere we are exploring. Nevertheless, after this exploration is finished, we
apply this approach on the next slice and in this way we extract volumes by making a stack
of the extracted ROIs.

4IJ Plugins: Clustering http://ij-plugins.sourceforge.net/plugins/clustering/index.html - last
accessed on June 2010
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The segmentation process is part of the mathematical morphology as well, as it labels areas
in an image according to their intensities. The watershed-based segmentation, applied on
overlapping and non-overlapping particles represents one of the reference algorithms together
with the gray-based algorithm. For our imaging types we have a complex color image, we use
KMeans based segmentation again and work on the map image stack, this time for the EPIs
in the midbrain detection. Like in the rule-based segmentation, we have a priori knowledge
describing how the object is placed in the image, helping to recognize it and segment it
correctly [Bankman 2009]. Also, using spatial adjacency of the anatomical structures and
completing it with the medical knowledge, we store the tissue types next to the volumes of
interest, as in most "normal" brains, the relative position of the anatomical structures shifts
only when a tumor is present. This is not the case for our patients, therefore the anatomical
structures have the same adjacency (e.g. for all the patients the "left lateral ventricle" is left
of the "left caudate nucleus" [Kretschmann 2003]).

Regions are typically identified on their internal homogeneity, however the size of the
shape is important when defining the homogeneity and fractal features can provide additional
information from this perspective. The shape of an object can be defined by the boundary
of the region (c o n t o u r - b a s e d) or by the interior (r e g i o n - b a s e d)[Sonka 2009]. As
we are using this volumes on the tractography, we need the entire region detected.

When extracting a region or a volume, there are techniques based on initial parameters
and those that perform segmentation without initial setting. For the nonparametric feature
extraction technique, we need a separation between different types of pixel intensities, where
each feature has its own potential for separation. For that purpose the separation need to be
measured and a discriminator identified for the class separation.

Considering a generalization on the active volume-tracking algorithm, there are several
main steps to be followed:

• Seed placement inside the ROI

• Considering new points for the ROI extension

• Comparison with the voxels in the ROI and threshold elements

• Validation of the considered voxel as part of the ROI

These steps are further adapted and refined to fit our image resolution and the anatomical
shapes at the same time. In the algorithm for detecting the volume of interest in the
midbrain area, we have two steps for detection: the definition and detection of the region of
interest and the volume detection. For the region of interest, we use a snake-based algorithm
applied on a segmented image with KMeans in imageJ. We segment the EPI stack in imageJ
for which we intent to make the difference between the Cerebro Spinal Fluid (CSF) surrounding
the midbrain and the area we want to detect. As in the image we have white matter (WM)
tissue, gray matter (GM) tissue and CSF, elements due to the image low quality, together with
noise and artifacts, a classification algorithm based on the intensity of the pixels is needed.
We use these types of tissues and elements as classes for the KMeans algorithm, obtaining
a map. On the gray matter class obtained we perform the snake-based algorithm that has
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(a) EPI with detected midbrain
and fibers

(b) EPI with detected Putamen
and fibers

(c) 3D image of fibers detected
passing through VOIs

Figure 4.2: EPI with detected VOIs in 4.2(a), 4.2(b) and 4.2(c) with 3D fibers on an example

the starting point as the center of mass in the slice of interest and depending on the side of
the brain that we want to explore, our algorithm selects each pixel and compares it with the
anterior pixel. This exploration step ends when there is a difference between the new pixel
and the previous one or we step on the midline of the brain. After finishing the algorithm on
one slice we explore the slice above in similar manner. As we know from the study presented
in [Starr 2009], almost 80% of the SN is found in one slice (4 mm) thus we want to make
sure that in our volume of interest this anatomical region is contained and for this purpose,
we take the two slices that most probably contain the midbrain.

In figure 4.2(a) appears the detected volume of the midbrain for both sides of the brain
hemispheres and the fibers projected on the EPI. In figure 4.2(b), after detecting volume
of interest on the FA images and registering it on the EPI for both sides, we use it for
choosing the fibers. On the image 4.2(c), we have a 3D view of the fibers passing through
the detected volumes of interest. The algorithm for detecting and growing the fibers is the
one presented in [Westin 2002]. This algorithm is made for the WM fibers that are grown in
the same direction, unlike the ones in the GM. The VOI containing SN is GM tissue hence
we must adapt our algorithm for our purpose, to have better fibers and clearer result. For
the Putamen volume detection, we take into account the shape of this specific anatomical
region and we construct a totally different algorithm, that must overcome several obstacles:
the placement of the Putamen that is not necessarily at the same level in both sides, the
size of it differs very much from one hemisphere to the other, as well as its shape. As the
FA image offers a better contour of the Putamen than the other type of images due to the
dopamine flow, we perform the detection on this type of image.

The Putamen shape on the slice of interest - the slice above the one containing the AC/PC
line- is triangular, whereas the slice above this one is more quadrilateral. This is the reason
why if we want a high accuracy, we have two kinds of algorithms for the Putamen tracing.
One of these algorithms starts from a triangle placed at the seed place. This triangle moves
its vertices only on the class of voxels appertaining to the ones from the seed. It stops when

BUPT



4.3. Volume Segmentation Algorithms - Active volume segmentation 71

(a) FA image clustered (b) FA image with detected Puta-
men on the left side

(c) FA image with detected Puta-
men on the right side

Figure 4.3: FA image with Putamen detected[Sabau 2010]

reaching another class (3-5 consecutive voxels different from the ones constituting the VOI).
The same manner of operating is applied for the other approach, except the fact that it starts
from a quadrilateral shape, moving at each step four vertices. We adjust the obtained shape
by comparing the left and right limits and the level of the VOIs on the two hemispheres.

As shown in the flowchart from figure 4.4, after the positioning at the volume level in
the slice of interest, described in section 4.2.1, the algorithm has to determine the relative
position of the head inside the image. Depending on that position, we choose the starting
point for the active volume detection. Once the starting point positioned, we choose the
suitable algorithm for the shape extraction. We apply the t r i a n g u l a r s h a p e g r o w -
i n g for the right side and the q u a d r i l a t e r a l one for the left side and the upper slices in
the volume determination. These algorithms divide the starting point into three respectively
four points (fig. 6.4). The three-point algorithm follows the triangular shape of the Putamen,
which is more obvious on the slice with the AC/PC line. The choice was made by statistically
determining the difference between the two algorithms and the manually segmented images
that represents the ideal segmentation shape.

Both algorithms consider the extension of the region of interest by taking each pixel next
to the ones that represent the initial points in the clustering area. If the pixel appertains to
the cluster of the initial points, it becomes one of the shape defining points - the edge of
the triangle for the three points segmentation algorithm, or the edge of the quadrilateral for
the four points segmentation algorithm. The active volume determination finishes when other
clusters are encountered.

The determined area is placed with respect to the one determined on the other hemisphere.
When the positioning of the two determined area is finished, the algorithm is repeated for the
upper slice for the volume determination. The regions thus determined are transformed in
mask images that are further transformed according to the parameters determined in the
registration algorithms.
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Figure 4.4: Putamen detec-
tion on the FA image

As the two volumes of interest are detected using different
stacks of images and for further processing we need both de-
tected volumes on the EPI, we perform a registration between
FA and EPI and we transform the volume stack with the Puta-
men mask image.

4.4 VOI Registration
When talking about registration, we refer to matching or bring-
ing the modalities to spatial alignment by finding the optimal
geometrical transformation between corresponding image data.
The challenges for performing the registration reside in find-
ing the best landmarks in both image types, finding a suitable
spatial transformation and, for our type of images, preserving
the tensor direction. In our case, we perform i n t r a - s u b -
j e c t r e g i s t r a t i o n, as we match images appertaining to
the same subject. Our registration is a r i g i d one, as it con-
tains only translations and rotations, affine transformation, and
it is fully automatic. Also, due to the fact that we are using ho-
mologous features that are mapped using geometrical distances,
our registration is a geometrical-based one.

For the midbrain area we use the EPI, as it is clear enough
for this purpose, even if the resolution for this type of image is
poor. We cannot do the same thing for the Putamen area and
even on the high-resolution images like T1 and T2 the contour of
this anatomical region are not well detected by the algorithms.
In this case, we use the FA image and take advantage of the
anisotropy difference presented in this type of image as intensity
difference. This makes possible detection on the FA image of
the Putamen. However, when we use the detected Putamen we
want to do that on the EPI image and we need to know that
the extracted volume is on the right place.

4.4.1 Automatic detection of checkpoints
For this purpose we verify the placement of the volume of in-
terest relative to the center of mass of the brain, as well as
the external limits of this volume related to the same point. In
order to determine the directionality of the image we use the
symmetry axis and its orientation. It gives us the angle with the
horizontal and vertical image axes for the rotation and the dis-
placement parameters. All the transformations are performed
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on the mask image extracted from the FA stack, keeping the EPI as model.
Analyzing the technique we used we can say that we perform an iconic registration

[Cachier 2003] because we use on one hand the geometrical relations and placement of the
center of mass and the external limits, but on the other hand we use the anisotropy val-
ues for defining the volume that we register. As we are not using that information directly
for the transformation of the image, our registration is more geometrical [Gholinpour 2007]
[Maintz 2000].
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4.4.2 Transformation of the image
Representing the transformation applied on the FA image in equation 4.5 we represent the
rotation, translation and skewness. The rotation angle for the transformation is computed
by taking into account the symmetry axis determined for delimitation of the two brain hemi-
spheres. The θx value is the angle between the axis and the Ox axis of the image and the
θy is the angle between the same axis and the Oy of the image. We compute this angle
for each image type and the difference between these angles represents the values for the
transformation.

sinαx = SPy

I1SP
(4.6)

sinαy = SPx

I2SP
(4.7)

where SP is the starting point of the hemisphere axis given by the inflexion point (occipital
sinuses at the base of the Occipital Bone of the skull) placed on the lower part of the brain
(posterior area of the brain) and the SPx and SPy are the projections of the SP point on
the Ox respectively Oy axis; I1 is the intersection between the axis and Ox and I2 is the
intersection between the axis and Oy.

We compute the α angle for the FA image and the β angle for the EPI image. The θ
angle is the difference between α and β and we use it for the rotation. The translation valued
from the transformation matrix from equation 4.5 (dx, dy and dz) represents the difference
between the centers of mass in the two types of images. Another aspect of the transformation
is represented by the axis orientation. The difference between the orientations of the axis
determines us to flip the transformed image. This orientation is determined by the placement
of the starting point (SP) and the center of mass on the image axes. Different orientation of
the axis determines a flipping of the image in horizontal and/or vertical plane.

Because the FA images are generated on the AC/PC plane as well as the EPIs, there could
not be any skewness problems or resizing aspects, thus we are concentrating our registration
efforts on the translation and the rotation aspects. As the FA images have different orientations
we need to be sure that the volume of interest is correctly placed on the model image.
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Figure 4.5: Geometrical view of the registration parameters

4.5 Feature Fusion
Fusing two images refers to the process of morphing them or warping them, at the image
level. Both these techniques represent registration methods used and alter one of the images
by incorporating the information from the other image. In this case, we are talking about
fusion from another point of view, as we do not want to change the image, we put together
information extracted from the image with different meaning.

The mean diffusivity represents the knowledge encapsulated in the diffusion tensors from
the EPI images. It reveals the displacement of the molecules together with the overall presence
of obstacles represented by brain anatomical structures. The degree of anisotropy is the
expression of the molecular displacement in space and together with the orientation in space
of the anatomical structures is found in the FA images. For an accurate determination of
the fiber tract trajectories, we need all these information. The tensors from the EPIs cannot
be moved, as they represent a huge amount of data, having values for each voxel. Looking
at the FA level, the anisotropy guides and helps detecting the Putamen with accuracy in
segmentation and helps us decide on the volume of interest needed for the fiber growing
algorithm. This justifies extracting the information from the FA level and infusing it into the
fiber tracking.

Putting together information from different sources enhances common characteristics and
adds the specific elements from each source. In our case, we fuse by putting together the
displacement of the molecules and the anatomical regions, with the space displacement from
the EPI respectively the FA images. We fuse the information in by taking the detected mask for
the Putamen from the FA image and placing it with the tensor information in the EPI. We fuse
the two images without blending them [Zitova 2003] or warping them [Gholinpour 2007], just
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taking the needed information from one image and inserting it into the other one by using the
registration [Maintz 2000] [Wirijadi 2001]. In this manner, after the images are segmented in
the means explained in section 4.3 the information from the FA image is registered to the EPI
and used further for extraction and validation purposes. The information about the diffusion
reveals the trajectories of the neural fibers and this information at the tissue level is stored on
the architecture of each voxel of the EPI. This is the reason why, for the tracking algorithm,
there are several important steps to be followed.

4.6 Tractography
The initial method introduced by Basser [Basser 2000] takes into account the diffusivity di-
rections and the values of the tensors and Le Bihan [Le Bihan 2001] takes into account the
anisotropy characteristics at the tissue level for a better detection of the fibers. We choose this
approach because it represents a fundamental way of tracking the fibers, which we can further
develop and modify according to out needs. Our approach is a g l o b a l d e t e r m i n i s t i c
t r a c t o g r a p h y as it uses the neighbor voxels in tracking the fibers, providing the seeds
as the volume of interest and using the thresholds of 0.1 for the FA value and 0.6 for the
angulations. It is a local method as it determines just a specific set of fibers, by selecting
from these, the bundle of interest.

Before developing the modality to detect and to select the neural fibers, a definition for
this concept is necessary from the medical point of view. From the anatomical point of view,
the gray matter(GM) is the dendrites of the neuron and the white matter (WM) is the axon
of the neuron. Neural fibers represent the linkage between the axon of a neuron with the
dendrite of another neuron. The anisotropy enhances the neural flow passing through the
axons. The effect of diffusion on the MRI signal is attenuated (A) depending on the tissue
type encountered by the water molecules.

A = exp(−bD) [Le Bihan 2001] (4.8)

It all depends on the diffusion coefficient b and the tensor D that characterizes the mobility
on each direction of the water molecules [Basser 2000].

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 [Le Bihan 2001] (4.9)

A, the attenuation, represents the effect of diffusion depending on the tensors and the b
coefficient as shown in equation 4.8 and can be expressed as in equation 4.10.

A = exp(−
∑

i=x,y,z

∑
j=x,y,z

bijDij) [Le Bihan 2001] (4.10)

For the DTI images, we must first estimate the values for Dij using multiple linear registration
on equation 4.10 and the diffusion tensor computation for the degree of anisotropy from each
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voxel. This process followed by the determination of the main direction of the diffusivity of
each voxel completes preparation of the information of the diffusion value of each voxel. Once
this step completed, the trace of the fibers can be studied. For this purpose the diffusion
is represented as ellipsoids at 3D level. The tracking based on the diffusion tensor values is
computed using equation 4.11.

Tr(D) = Dxx + Dyy + Dzz [Basser 2000] (4.11)

For estimation of the fiber trajectories on the 3D space curve, the Feret equation describes
it and, with a tangent vector associated with the tangent eigenvalue, an estimation of the
tensor is achieved.

t(s) = ε1(r(s)) [Basser 2000] (4.12)
where t(s) is the trajectory of the curve s determined by the arc r(s) and represented by the
normalized eigenvector ε1 associated with the tangent eigenvalue. Finding a solution for r(s)
can be achieved by using the Euler method, the Runge Kutta or the Gear’s method. Gear’s
method is preferred in [Basser 2000] and we follow the same approach.

Taking this approach we are determining the fibers passing trough the midbrain area,
the first volume of interest, and arriving to the Putamen volume on both sides of the brain
hemispheres. The approach used by our system is presented as data flow in figure 4.6.

The midbrain area, where the SN resides, is a gray matter volume. The process of growing
the fibers starting from the EPI means actually taking the tensor information and, based on
the anisotropy value, choosing the starting point of the fibers. In the white matter area, the
placement of the fibers is more obvious because the axons represent this area and the neural
flow is very intense. That is the reason why it is very challenging to make the fiber recognition
and to grow them starting from the midbrain area, where the predominance of the tissue is
the GM. At first, we implement a classical fiber growth algorithm based on the white matter
(WM) area in order to compare our algorithm on the same set of images with an existing one
and to verify the position of the fibers in the volumes of interest.

For our system, we consider the approach presented by Basser in [Basser 2000] and for the
tensors approach we use the approach proposed by Bihan in [Le Bihan 2001]. In the Basser
approach, the algorithm is based on the Fernet equation for the description of the evolution
of a fiber tract. This approach is specific to white matter, as the axons are the white matter.
The midbrain area is gray matter. Growing fibers from the gray matter is a challenge since the
number of axons in this area is much less than in the white matter and the fibers are not as
well aligned as the ones in the white matter. We apply this algorithm in order to see if there
are relevant fibers that we can grow between the two VOIs ( Fig. 4.2(c)). We use these VOIs
to choose the bundle of interest and separate the fibers that we need from the ones that are
not part of the motor tract. Although we grow all the fibers from the midbrain, we validate
only the ones starting from the midbrain area that also reach the Putamen area. Fibers too
small, with anisotropy higher than 0.1, or those that do not go towards the Putamen area,
whit angulation that exceeds 0.6 degrees, are not validated. The threshold values are the
same used in [Basser 2000] [Le Bihan 2001] [Karagulle Kenedi 2007]. In this manner, with
the second region of interest, taking a global tractography approach, we have an element that
validates the grown fibers, without needing the SN clearly defined.
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Figure 4.6: Algorithm used for fiber tracking

4.7 Conclusion
The technical challenges taken by our approach in using the medical image as bio-marker
are presented in this chapter at the algorithm level. These methods are adapted for medical
images in general and the workflow is specific to our purpose, on our approach.

At this point, we are able to automatically detect the volumes of interest by selecting the
slice of interest where we are exploring the anatomical regions. Automatically determining
the limit between the two hemisphere allows us to make a differentiate analysis for each side
of brain. We need this possibility as the PD condition has different level on each side of the
brain for the same patient. That is the purpose for separating the left and right side of the
brain for the tractography algorithm.

The registration combined with the fusion factor is specific for our imaging types, as well
as for the related anatomy. This is based on the geometry registration enhanced by the brain
anatomy elements.

As presented in figure 4.7, we define new methods at each informational level to transfer
data from the image level to the knowledge level by extracting the features needed for our
analysis. This figure represents the workflow in PDFibAtl@s, integrating the methods pre-
sented in chapter 3 and 4. For each level of processing, we emphasize the original methods
and the results after each step. The figure represents the information hierarchy, starting with
the DICOM standard and finishing at the evaluated value for PD. In the next chapter, the
methods for diagnosis and prognosis are presented.
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Figure 4.7: Our new methods in the PDFibAtl@s workflow
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Features extraction represents an important step in medical image processing
and analysis. Mixing the anatomy knowledge with the conditions taken at the pathology

level, the extracted image features can be interpreted in the context of diagnosis and prognosis.
The overall system becomes than a Computer Aided Diagnosis (CAD). In our approach, as
in the prototype elaborated from it, managing the features extracted from the image level to
the diagnosis and prognosis level is achieved.

Just like the neural network that we are tracing by fiber tracking connects the neurons,
a neural network structure constructed as a graph can be used to define concepts or classify
features. Using similarity, as well as medical knowledge to define rules can be another way to
classify and determine the place of a concept. Passing different levels of abstraction aims at
bridging the semantic gap. At this point in our system, already having the features extracted,
for the analysis phase, we need to bridge this semantic gap for medical knowledge inclusion
and interpretation, for diagnosis and prognosis purpose.
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Figure 5.1: Computer Aided
Diagnosis System

In this chapter, we present the use of fuzzy logic to make the
transfer of information from the extracted and processed fea-
tures of the motor fibers to the PD diagnosis. Several aspects
need to be considered therefore at the diagnosis level:

• The difference between the control patients and the PD
cases

• The differences among PD patients with different disease
ratings

Pushing this analysis at the next level, we analyze the varia-
tion of the fiber parameters in correlation with the disease level.
Diagnosis aims at making specific identification of a problem -
a disease [Bankman 2009], whereas prognosis follows the prob-
lem evolution to reveal the early cases, reaching towards the
source of the problem. While diagnosis is concentrated on the
whole picture at a given time/snap - the raw images features
analysis, the prognosis requires more granularity and reaches on
to the detail, as it discovers and correlates the variation of the
parameters for early diagnosis purposes.

5.1 Computer Aided Diagnosis (CAD)
The results obtained at the image processing stage that are
further analyzed using the tractography provide the input data
for this module. The correlation tests performed at each stage
informed us that statistically there is a link between the fea-
tures variation and the severity of the disease, but studying the
diagnosis criterions and their applicability helps us to integrate
the medical knowledge at the rule level. We analyze the H&Y
scale, and since there is a correlation between the features ex-
tracted and this scale, we transform the statistical correlation

by implementing the rules of the polynomial function. This link is made visible by attaching a
variation function onto the features so that the evaluation of the function provides the disease
degree (in section 5.2). Following the function, estimating the value of the features for cases
that are uncertain could reveal the early cases.

At this stage, our system uses the extracted features for diagnosis. As presented in figure
5.1, there are several stages when defining a Computer Aided Diagnosis (CAD) system. In
our case, the first stages with image pre-processing and feature extraction have already been
treated in chapter 4 and we need the clustering phase at this stage, with the pre-normalization
of the extracted features, to provide diagnosis. Different combination of features gives different
classification performances and for a robust classification, fewer parameters are recommended
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[Sonka 2009]. As clinically PD is manifested more visible on the left side of the brain, the
features extracted on this side will have a higher trust degree in our CAD.

Jain et al. [Jain 1997] have a large categorization for feature selection as deterministic
methods - stepwise feature selection, stochastic methods - genetic algorithm feature section,
optimal methods - exhaustive search of all possible feature combination. The stepwise feature
selection is based on successive inclusion of features in the classification algorithm. Each new
feature should improve the classification result. In our case, we have only the fibers and the
VOIs and we include the fibers first in the classification process and then the volumes for
a more refined selection. Genetic algorithms are based on the idea of evolution in nature.
The solution for these algorithms must be a string and there must be a fitness function for
correspondence between the input string and the output one. This variant of classification is
not applicable for our case, as we have no strings. The classifiers that usually apply in image
based CAD are pattern classifiers. The initial image is processed and features that represent
the pattern are extracted and fed to the classifier that returns the proper decision class.
When using a classifier, a training stage defines the known classes. The linear discriminant
analysis and the classification trees can also be applied to medical image analysis. The linear
discriminant analysis makes the difference between two classes using a linear decision boundary
[Sonka 2009]. This approach is not applicable to our data set. The artificial neural networks
(ANN) work like the linear discriminants, but they use nonlinear approach. It highlights the
underlying density functions of the classes without assuming any rigid form of limitation.
For using this approach we must first determine the densities and their attached functions.
Another approach on the classifiers part is the Bayes decision rule or Bayes optimal discriminant
function. It incorporates a priori information into the determination of the classifier parameters
for an optimal discriminant function that follows the Bayes function. A Rule based system of
detection also includes the medical information. The result is not represented by a decision
variable in this case. The Multi objective genetic algorithms (MOGA) addresses the difficulties
of the optimized rule-based schemes by maximizing or minimizing the n component of an
objective vector function - optimization of the Receiver Operating Characteristic (ROC) curve.

As presented in section 2, PD diagnosis is achieved by cognitive testing. The score obtained
by the patients for this standard tests place them on a severity scale of the disease: UPRS
(Unified Parkinson Rating Scale) or H&Y (Hohen & Yahr). Our system extracts the features
and by estimating them is able to provide a diagnosis on the same scale. For the database
provided by Singapore General Hospital (see specification in section 3.1) the H&Y values for
each patient is provided, as a ground truth. This ground truth is not always exact, as it is
placed on a scale from 1 to 5, but for certain cases, when the neurologists were not absolutely
sure of the disease severity, there are ".5" values (e.g. 1.5 when the disease does not have
certain cognitive aspects that most of the 2 degree patients have).

We need a decision-based method to analyze the features and give an exact placement
of the case on the PD scale. We can take into account rule-based systems, as they include
predicates with medical knowledge. Considering fuzzy logic, we can capture the behavior of
the system. Statistical methods include all possibilities for the features, but the selection of a
decision threshold is very challenging and subject to sensitivity.

Working with non-probabilistic uncertainties, fuzzy sets, determines an approach based
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on fuzzy models. A fuzzy inference system, or fuzzy model, can adapt itself using numerical
data. A fuzzy inference system has learning capability and using this aspect the link between
the fuzzy controllers and the methodologies for neural networks is possible using the Adaptive
Network-Based Fuzzy Inference Systems (ANFIS). These networks have the overall input-
output behavior influenced by a set of parameters. These parameters define functions that
determine adaptive nodes at the network level. Applying the learning techniques from the
neural networks to the fuzzy sets allows us to determine an ANFIS structure. For us the
fuzzy sets represent the values extracted at the tractography level. These sets are defined
in intervals and determine the If-Then rules. Together with these rules, the database (fuzzy
sets) and a reasoning mechanism determine a fuzzy inference system. At the reasoning part,
we have to take into account the inference model [Jyh-Shing Roger 1995].

As shown in figure 5.2, the features extracted go into a pre-processing stage - normalization
process for the data set - and they get to the inference model next. We can choose between
the Mamdani and the Takagi-Surgeno-Kang (TSK) method [Roussinov 2001]. In Mamdani
systems, each rule has a fuzzy set attached, whereas in TSK, each rule has a linear function
on the input set of points. While the first approach has as result sets of points, the second one
provides one or more real functions. The fuzzy sets resulting from the first method need an
additional defuzzification step [Gabrys 2005]. Choosing the inference model is not a problem
as we need functions as output so we take the TSK approach. Before defining the rules, a
classification of the input data is necessary in order to define the output data. We define
the classes that are represented by the points and using the TSK inference method we define
a rule-based system for diagnosis. This system is able to provide us, based on the features
extracted, the values of the PD. The problem with this system is that it can only detect what
it has learned, so if we do not have early cases of PD it will not know to diagnose that level.
This is where the prognosis functions come into place, as they evaluate the patients using
polynomial functions and following the variation of those functions we can extrapolate for new
cases and place them on the PD scale.

Figure 5.2: Fuzzy Expert System Flowchart

Once the fuzzy inference system is defined, we can apply different learning techniques
to link the neural network to the defined system - neuro-fuzzy modeling. There are several
architectures and learning procedures for adaptive networks. The most popular ones are the
back-propagation neural network (BPNN) and the radial basis function network (RBFN) .
The BPNN has the property of learning by propagating the information from the network
output to its input. This determines an error rate that permits an adaptive approach on the
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learning process. The learning rules can be adapted to the data and use different computation
methods (e.g. LSE - least squares estimation or a combination of gradients and LSE). The
RBFN method uses Gaussian functions to compute the radial basis functions. This adaptive
system represents a hybrid learning method.

A typical ANFIS system possess five layers [Jyh-Shing Roger 1995]:

• Input layer- determines using a function the premise parameters

• The rule strengths

• Normalized firing strengths - weights definition

• Consequent parameters - determined using the weights and the variation functions

• Output - decisional output based on the computed consequence parameters

Following an ANFIS [Bonissone 1997], we can combine the fuzzy control offered by the medical
background and statistical analysis with neural networks. The fuzzy features represent the
a priori knowledge as a set of constraints - rules. Using Fuzzy Modeling (Fuzzy Inference
Systems), we can take a subjective or an objective approach. We have tested the objective
approach that uses a clustering algorithm and fuzzy system identification to determine the
fuzzy rules. This approach did not perform well on our data. Thus, we determined the
intervals for the rules manually for the first learning set. One of the application of ANFIS is
presented as a mode to explain past data and predict behavior. In our approach we use as
Fuzzy Control (FC) a fuzzy set, which represents a type II typology ( type I is a monotonic
typology and type III is a linear function of state). For the FC technology we use rule inference
where we make the difference between the disease stages. We adapted this approach, but as
the neural networks separately did not perform well, we use adaptive interpolation functions.

In our approach, we follow the ANFIS layers, from the input data to the results, adapting
the system to our needs. The ground truth is represented by the Hoehn & Yahr (H&Y) grade
provided by the medical experts.

5.1.1 Hoehn & Yahr scale
PD severity is most commonly described on a clinical basis using either the Hoehn and Yahr
(H&Y) staging system, or the Unified Parkinson’s Disease Rating Scales (UPDRS) . One of
the standard staging systems used worldwide is the H&Y scale, provided by our neurologists
as a basis or a ground truth.

Table 5.1 shows the original Hoehn and Yahr scale, that includes stages 1 through 5, but
due to ambiguity at level 2, there are two other stages included on the scale: the 1.5 and
2.5. Stage 1 and Stage 5 are rarely diagnosed; this is the reason why for our database we
do not provide values for this stage of the disease. Stage 1 on the scale represents the mild
PD cases, the early stage of the disease. The detection for this stage is not possible yet with
the cognitive tests. For stage 4 and 5 the patients suffer from tremor so the images, even if
they are taken, do not offer valid information. This is the reason why most of the diagnosed
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Value H&Y standard scale H&Y modified scale
(currently employed by SGH)

1
Unilateral involvement
only usually with minimal
or no functional disability

Unilateral involvement only

1.5 Unilateral and axial involvement

2 Bilateral or midline involvement
without impairment of balance

Bilateral involvement
without impairment of balance

2.5 Mild bilateral disease
with recovery on pull test

3

Bilateral disease: mild to
moderate disability with
impaired postural reflexes;
physically independent

Mild to moderate bilateral
disease; some postural instability;
physically independent

4
Severely disabling disease;
still able to walk or
stand unassisted

Severe disability; still able
to walk or stand unassisted

5 Confinement to bed or
wheelchair unless aided

Wheelchair bound or
bedridden unless aided

Table 5.1: H&Y scale differences

patients are stage 2 and 3. We are using the original scale for our system for starters, as
differences between stages 1, 1.5 and 2 have not sufficient granularity, but as we base our
feature analysis on each hemisphere and the differences between the old scale and the new
one is based on this type of analysis we are able to make the system sensitive to these values
from the new scale as well.

5.1.2 Prognosis approach
In numerical analysis when talking about interpolation methods we are referring to a method of
creating new data points within the range of a discrete set of known data points. The features
representing the points will be followed by the function variation. Trying to go through the
data points by curve fitting or regression is the approach that we need four our data. There are
several manners to follow the data points, but only several interpolation techniques offer the
variation required for the needed dispersion. A linear interpolation or a piecewise one would
not be able to follow the data, as the features represented are dispersed. We implement a
combination of spline and polynomial interpolation techniques. We first study the rule-based
fuzzy systems for diagnosis.

Defining the input data and determining a function to normalize these data represents
the first stage for an ANFIS system. We perform these steps by determining the features
correlated with the diagnosis and then by clustering them.
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5.1.3 Feature Clustering

Figure 5.3: Diagnosis
based on features -our
CAD system

In the clustering process we analyze the features used for this
step, their correlation with the clusters and the Statistical Param-
eter System (SPSS) is used for estimation and pre-evaluation as
presented in chapter 6 in table 6.4. Preparing the data for the
clustering includes normalization of data and new definition of
features for a global view.

FD3D = NrF ∗ V

V olBrain
(5.1)

We define at this point the fiber density at 3D on each side
as presented in equation 5.1 where NrF represents the number
of fibers detected on the hemisphere that we are analyzing; V
represents the voxel size and V olBrain is the brain volume of the
patient.

Once we have the features defined, computed and then nor-
malized, the learning stage for the clustering includes intervals of
variation on each feature. These intervals are defined using fuzzy
classes. We thus have in this case the five severity stages, the con-
trol cases class, 0 value, and the −1 value for the undetermined
cases. As we have patients for training only for PD stages 2 and
3, the other levels of PD are defined using the variation functions
from the prognosis definition. After the interval definition, the
rules supporting the intervals on each feature are implemented,
including the medical knowledge.

For a characterization of a case using all the features, we
introduce new metrics based on the fibers and the hemisphere
attendance. In this manner, we evaluate a case globally and also
at the local level, including the specificity as well.

For adaptive systems used for this purpose, the learning rules
are more complex using together with a basic learning rule, a
batch - off-line learning - and a pattern - on-line learning - rules.

When talking about classification methods, the problem of su-
pervised and unsupervised approach is an important aspect. This
aspect places the features either into predefined classes, or into
unknown ones - the number of classes being unknown. As we
want to place the diagnosis onto the same scale used by the
medical doctors, we already know the number of classes for our
diagnosis so the supervised approach is more appropriate. Among
the methods used in the supervised classification, statistical clas-

sification is our choice due to the fuzziness of our data and the overlap of the clusters. As
table 5.2 shows, we take the normalized data and make intervals depending on the H&Y
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Variable Stage on H&Y scale
0 2 3

FD 0.0351 - 0.0353 0.0328 - 0.035 0.081 - 0.096
0.0413 - 0.0417 0.0353 - 0.0413 0.122 - 0.163
0.0413 - 0.0417 0.0417 - 0.048 0.272 - 0.279
0.068 - 0.081 0.050 - 0.068 0.302 - 0.318
0.96 - 0.106 0.163 - 0.180 0.575 - 0.607
0.180 - 0.187 0.187 - 0.272
0.279 - 0.302 0.318 - 0.372
0.372 - 0.575 0.607 - 0.855

FD3DL 0.00270 - 0.00272 0.0025 - 0.0027 0.0062 - 0.0068
0.00318 - 0.00371 0.00272 - 0.00318 0.0072 - 0.007
0.0052 - 0.0062 0.00371 - 0.0052 0.0094 - 0.0130
0.0068 - 0.0072 0.0081 - 0.00941 0.0210 - 0.0216
0.0076 - 0.0081 0.0130 - 0.0138 0.0233 - 0.0245
0.0138 - 0.0144 0.0144 - 0.0210 0.0353 - 0.0445
0.0215 - 0.0233 0.0245 - 0.0249
0.0249 - 0.0353 0.0445 - 0.047

R1vol 7808 - 8064 8064 - 8192 9056 - 9120
8192 - 8448 8448 - 8832 9664 - 10240
8832 - 9056 9120 - 9184 10496 - 10752
9184 - 9664 10240 - 10496 10976 - 11040
10944 - 10976 10752 - 10944 15808 - 17312
11040 - 11584 11584 - 12192
12192 - 13024 13024 - 13728
13728 - 14112 14112 - 15808
17312 - 25888 25888 - 50000

V olavg 8432 - 8688 8348 - 8432 8244 - 8368
9040 - 9056 8688 - 9050 9120 - 9344
9344 - 9504 9056 - 9120 10048 - 10352
9536 - 10048 9504 - 9536 11456 - 11536
10560 - 10592 10352 - 10560 16800 - 17536
11360 - 11456 11248 - 11360
11872 - 11920 11536 - 11872
12176 - 12640 11920 - 12176
13248 - 14448 12640 - 13248
17536 - 26816 14448 - 16800

26816 - 50000

Table 5.2: Data Intervals corresponding to the H&Y stages of Parkinson’s Disease.[Pataca 2010]
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values. We use these intervals for training purpose in the rule-based diagnosis. Each interval
determines a fuzzy set that has a rule attached for defining the link between the values and
the H&Y level.

5.1.4 Relationship between features and H&Y scale
Using predicates in IF-THEN rules is challenging from the point of view of electing the rules,
but at the same time, at this level we can include medical knowledge at the decision point -
diagnosis must be based on medical knowledge. There are though two steps in a rule-based
system:

• Clustering the features

• Define the input-output relationships

For the first step, using subtractive clustering can bring automatic clustering with fuzzy infer-
ence systems. The potential for each data point can be determined by computing the distance
between the new points with regard to the other points. The greatest potential value gives
the cluster center. The systems characteristic behavior can be estimated by a fuzzy rule after
each cluster.

This approach has the advantage of using a priori knowledge and integrating complemen-
tary information with the extracted features. It is also used in expert systems and permits
interpretation of features. The fuzzy sets at this level although it can include uncertainty and
object recognition in a procedural form is better used in labeling. Using neural networks even
if it is less restrictive than linear discriminant analysis (LDA), does not perform very well for
our data, as it is not so exact and not sensitive enough to small differences on the input data
(Fig.5.3).

We decide to use the rule-based approach, as the medical knowledge can be included, it
can take into account different features at different stages of analysis and we can refine it.
As presented in Chapter 6 at the evaluation stage, there is a clear relation between the fibers
parameters on the left hemisphere of the brain and the severity of the disease. There are cases
that do not register the fibers due to the image quality or the tracking method, but in those
cases we consider the midbrain detected and the right side fibers, if there are fibers detected.
This approach is used also when a case can be placed in more than one class - for tangent
clusters.

Even if our first approach considered neural networks for clustering, the features do not
offer a clear boundary according to the disease. The diagnosis obtained in this manner is
not reliable, due to the dispersedly placed values and the overlapping nature of the intervals
appertaining to distinctive classes of diseases. We have tested a simple KMeans approach,
knowing the number of classes we need. The results were not nearly as good as those obtained
with the fuzzy approach.

The definition of the rules for diagnosis includes not only medical knowledge, but over-
comes inter-patient variability. It takes into account the hemisphere of the brain, the density
of the fibers, the volume of interest where the dopamine flow starts and the 3D density of the

BUPT



88 Chapter 5. Diagnosis and Prognosis Algorithms

fibers. As presented in equation 5.2, after defining the clusters using the fiber density- HYF D-
and based on the midbrain volume- HYV OIV ol

- we evaluate the threshold and place a new
case depending on these features. When conflicts appear and a decision between clusters is
not obvious, another feature is used for diagnosis. If we do not have a positive positioning of
the case on the feature axis, than the VOI is not correctly determined due to image quality or
insufficient slices on the volume. These conflicts generate the set of rules that we use for the
expert system that determines a classification of the cases, depending on the disease severity.
The fiber density (FD) values are classified on the H&Y scale in the first row of the table
5.2. These classified FD values from the table are used next for defining the rules in equation
5.2. These rules determine the H&Y value based on the intervals in table 5.2 and considering
the correlation between the features in the table and the severity scale. When the left side
fiber density does not provide a reliable value for diagnosis, the right side bundle of fibers is
taken into account and if the fibers are not determined, the volumes of interest are taken as
measures for diagnosis. Testing the rules in equation 5.2 we obtained the variation function
of the FD according to the severity of PD represented in figure 5.4.

Figure 5.4: Classification with FiberDensity values on the left side [Pataca 2010]
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If(HYF D = HYV OIV ol
∧ HYF D ̸= −1) then HY = HYF D

If(HYF D = −1 ∧ HYV OIV ol
̸= −1) then HY = HYV OIV ol

If(HYF D ̸= −1 ∧ HYV OIV ol
= −1) then HY = HYF D

If(HYF D ̸= −1 ∧ HYV OIV ol
̸= −1) ∧ (HYF D ̸= HYV OIV ol

)) then
If(FD3D ̸= 0) then HY = 2
else HY = 0

If(HYF D = −1 ∧ HYV OIV ol
= −1)then The image is invalid!

(5.2)

For the moment, at this level, only the difference between the control and the PD cases is
possible using this rule-based algorithm. At the PD level, only cases rated stage 2 and 3 can
be classified. For new cases, as well as for variation study on the features, we take the clusters
and determine their variation.

In an ANFIS architecture the next step is represented by the rule strengths definition. We
define a set of rules based on the detected clusters and include the medical knowledge as well.

Figure 5.5: Classification based on the FD3DL [Pataca 2010]

Based on the intervals determined in table 5.2, each variable determines a set of data to
be part of a rule: the FD variable determines the first rule from equation 5.2 and delivers the
HYF D scale value (Fig.5.4), the FD3DL determines the HY3DL from the same equation (Fig.

BUPT



90 Chapter 5. Diagnosis and Prognosis Algorithms

5.5) and the HYV OIV ol
value is determined using values from R1vol row in the same table,

the V olavg row on the same table holds the average values for the volume of the midbrain on
the right and the left side. Figure 5.5 is based on the second row of the table 5.2.

5.2 Prognosis method
From diagnosis to prognosis, there is apparently only one step. While the diagnosis based
on the rules is matching the patients into the classes that it was trained to recognize, the
prognosis can place patients at levels that are not learned by the system. The diagnosis makes
a classification of the patient by placing him in one of the disease stages or the control case.
The prognosis offers the value of the correlation between the disease and the affected features
and by extrapolation is able to find the evolution stage of the features for early cases of the
disease.

Prognosis systems learn from the formerly acquired data and by analyzing and studying it,
a pattern is revealed and used for new cases. Prediction systems using artificial intelligence can
be based on neural networks, on fuzzy logic, on genetic algorithms or on expert systems. The
interference among different PD levels at the feature level does not provide a clear boundary
for classification using neural networks. We tested the KMeans and KNN approaches and
they did not provide satisfactory results on our data. The interference among different feature
groups at the class level represents a fuzzy dispersion on the features space. The rule-based
expert system, using the fuzzy feature classes identifies the known stages of PD, but it does
not have the possibility for prognosis.

At this stage, the learning and classes are already defined and we intend to find a function
by using interpolation among the existing points, representing the patient features on the
disease severity. The ANFIS architecture at this point has already defined the functions for
determining the consequence parameters that provide the final decisional value. In our case
we define the interpolation functions for this purpose. The intervals with their limitations can
be considered as weights in defining the interpolation functions for the ANFIS approach. Like
the RBFN model, in this case the weights represent the medical constraints, encapsulated
in the intervals, and the variation functions are in our case the interpolation functions. The
function found in this manner should be used for extrapolation onto disease areas that are
not detectable at this moment. The function describes the disease variation based on features
and for any new patient, a correct placing of the case on the PD scale.

For interpolation method definition there are several steps that must to be taken:

• New data points within the existing range of acquired data

• Meshing the points

• Using the mesh determines the function that approximates the real data variation

The interpolation methods are based on the shape of the mesh function, which can be: linear,
polynomial or spline. Analyzing our data set, a linear approach is not possible due to the
dispersed points on the plot. A polynomial approach is challenging at the parameter level
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and at the degree level as well. The cubic spline interpolation method has weights attached
to each flat surface to guide the bending of the variation function, but the challenge at this
point is to find the correct variations among the weights.

Looking at the polynomial approach, the Lagrange function that determines the parameters
and can be adapted easily is a good choice for our data. This is a good choice also because
each time we have a new input, the basis polynomials are recalculated and thus we improve
our prediction each step of the way. With the help of weights we can improve the polynomial
functions and define the spline as Lagrange functions.

5.2.1 Function definition
We use a combination of functions for estimation purpose. The Lagrange polynomials provide
us with the coefficients for the spline functions used for interpolation. These methods are
quick and easy, but not very precise. We gain precision by dividing the data set. By defining
a Lagrange function on all the test points we obtain a 40-degree function because we have 41
points and we want the function to pass trough all those points.

For a definition of a polynomial using the Lagrange approach we need the coefficients
determined using equation 5.3. In this function, the points (xi,yj) represent the features
extracted in table 5.2 at the image level.

L(x) =
n∑

i=0
yi ∗

n∏
j=0,j ̸=i

x − xj

xi − xj
(5.3)

The 40 degree polynomial that obtains the coefficients using equation 5.3 is hard to handle,
as it becomes very complicated and in the case of new points in the data evaluation takes a
lot of time and is not accurate. At this point, we divide the feature points in the H&Y space
into sets and define a variation function for each set of points. A two point set definition
determines a linear function and we already know that the variation is nonlinear; therefore
we start from three set points. A five-degree polynomial function becomes too complicated
so the highest degree of polynomial representation on an interval is a four-degree polynomial
function.

C2 = y1
(x1−x2)(x1−x3) + y2

(x2−x1)(x2−x3) + y3
(x3−x1)(x3−x2)

C1 = −(y1
x2+x3

(x1−x2)(x1−x3) + y2
x1+x3

(x2−x1)(x2−x3) + y3
x1+x2

(x3−x1)(x3−x2) )
C0 = y1

x2x3
(x1−x2)(x1−x3) + y2

x1x3
(x2−x1)(x2−x3) + y3

x1x2
(x3−x1)(x3−x2)

(5.4)

The prediction function is different on each set of points for the PD stage and we need sub
functions defined for each subset of values corresponding to the severity degree. As presented
in equation 5.4 we define the parameters for the second degree polynomial function for each
set of points.

The polynomial function that gets the parameters defined in equation 5.4 is the second
degree Lagrange. Due to the fact that the scale is limited on the upper values at level five,
and on the lower boundary at level zero, we apply the same limitations to our functions.
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For the forth degree polynomial representation we determine the coefficients as presented
in equation 5.5 but for this case, on the last interval, we have points that are far apart for each
other. The testing on the whole database will be able to decide if we need the tree-points
sets or five-points sets.

C4 =
4∑

i=0
yi

4∏
j=0,j ̸=i

1
xi−xj

C3 =
4∑

i=0
yi(

4∑
j=0,j ̸=i

−xj

4∏
k=0,k ̸=i

(xi−xk)
)

C2 =
4∑

i=0
yi(

4∑
j=0,j ̸=i

xixj

4∏
k=0,k ̸=i

(xi−xk)
)

C1 =
4∑

i=0
yi(−

4∑
j=0,j ̸=i

xi(
4∑

m=0,m ̸=j

xm∗
4∑

n=m+1

xn)

4∏
k=0,k ̸=i

(xi−xk)
)

C0 =
4∑

i=0
yi(

4∏
j=0,j ̸=i

xj

4∏
k=1,k ̸=i

(xi−xk)
)

(5.5)

There are intervals where a certain polynomial function works better than another one -
constraints determined by the intervals that represent the weights. This is the case with
the last points on the forth degree polynomial approach, as the second degree polynomial
performs better here. This is the reason why we need to consider not only the interval
where the new points are placed when extrapolating the polynomial functions, but also the
surrounding intervals and their own functions.

In the four-degree interpolation function, for the last interval, there are not enough points
for the interpolation. For this function, a simple linear function follows much better the
interpolation points.

5.2.2 Evaluation approach
When we provide a new case for analysis, we extract the fiber features and we try to place it
on an interval, determining the left and right closest values. Defining the interval where the
new value needs to be placed, we determine the H&Y values corresponding to the interval
and the middle value of the same interval. The three H&Y values provide the data for the
rule-based diagnosis system. This system provides the final value for the new case. When a
new point is to be evaluated and its H&Y value determined, we have several steps to perform.
We perform this estimation using the "ideal" set of points. The position of the new point (X)
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Figure 5.6: Independent Adaptive Polynomial Evaluation (IAPE) data management for intro-
ducing a new element

among the others is determined by finding the next point higher (XM ) and lower (Xm) - figure
5.6. For identifying the H&Y value for the new feature X we are using the algorithm from
figure 5.7. We estimate the final value using the neighbor values. We start by determining
the polynomial function using the next four points smaller than X: LF 1, those higher than it:
LF 2 and those that are centered in X: LF 3. If at least two of these three functions have as
result the same H&Y value for X, then we save this value as HY1. Otherwise we determine
the functions using just the three points - second-degree polynomial functions. We can only
arrive at linear functions that ultimately produce the value for HY1. A second value, HY2,
represents the H&Y value for X determined using the linear function that passes through
the points associated with the XM and Xm values. The final value is given by HY1 if the
difference between this value and HY2 is not higher than three levels on the scale, otherwise
the mean value between the two HY is the final estimated value for the disease severity. This
algorithm describes an Independent Adaptive Polynomial Evaluation (IAPE) method as it is
applied both on PD and controls determining the most likely polynomial that can be applied
on these data. This method is a hybrid ANFIS approach as it uses as back-propagation the
difference between polynomials at each stage but it works like the RBF using the Lagrange
polynomials. An extension of this approach, adapted for PD cases, is called PD Adaptive
polynomial evaluation method (PD-APE). The estimation function is used basically for the
PD patients, adding the condition that if HY1 or HY2 have as result 0, the other value is
taken as result. This condition does not affect the results of the overall performance. The
variation function with this condition performs the best on the accuracy level. From the
ANFIS point of view this method takes into the second layer the firing strength given by the
PD appurtenance.

Determining the control and the PD cases first and then applying the function that provides
the best interpolation for the set of points represents a fuzzy adaptive method for prognosis.
This variation function uses for the control cases the second-degree polynomial method and
for the patient cases the PD adaptive polynomial evaluation method. The variation function
using this fuzzy adaptive approach is represented in figure 5.8.

5.3 Conclusion
D i a g n o s i s b a s e d o n a r u l e - b a s e d s y s t e m is able to rate the patients but
as it does not provide a variation function, we are not able to track new data or extrapolate
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Figure 5.7: Independent Adaptive Polynomial Evaluation (IAPE) data flow specific for this
method

for early diagnosis.
T h e P r o g n o s i s a p p r o a c h based on polynomial functions provides not only more

accuracy, but it is able to provide a measure of the severity of the disease, even for the early
stages. This approach can be also used as extrapolation for the new cases, as well as for new
levels of disease. The polynomial degree of the function determines the granularity of the
data set and the sensitivity of the function.

For the prognosis method, our approach proposes an ANFIS architecture based on a fuzzy
inference system with a rule-based definition and several hybrid approaches at the network level.
We define the required polynomials for each set of input data and adapt to the constraints
imposed by the medical knowledge when delivering a prognosis value.
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Figure 5.8: The prognosis function variation based on the Fuzzy Adaptive Evaluation (FAE)
method
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Evaluation and Results
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Evaluating and validating our methods are as important as the algorithms them-
selves. We first determined by manual approach if the anatomical detail needed can be

determined in the image. The features extracted at the image level could not be indicative
of the disease. This is the reason why the c o r r e l a t i o n between the features with the
disease validates that the image can actually be used as a bio-marker. Another level of testing
is represented by the validity of the algorithms. The test are concerned with the validity of the
demarche - of they extract what is needed, nothing more and nothing less. The f e a t u r e
e v a l u a t i o n and t h e p e r f o r m a n c e s of the entire system are the final goal of our
approach.
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Figure 6.1: The Results Window
[Teodorescu 2009c] [Teodorescu 2009a]

This chapter treats the manner in which
we evaluate and validate each of the new al-
gorithms, as well as the results obtained for
each validated method. The evaluation can
be done by comparing our results with the
ones obtained with other software/algorithms
on the same image database. While the eval-
uation is performed using a testing batch
with PD and control cases, the final test
is performed on the entire database. We
note that the results and the algorithms pre-
sented in this study have been successfully
selected (at the methodology level) and pre-
sented in radiologic and scientific communica-
tions ([Teodorescu 2010] [Teodorescu 2009a]
[Teodorescu 2009b].

There are several stages of evaluation of
our system. As presented in chapter 4, a first
stage of evaluation consists in performing an
analysis of the green channel from the FA im-
age on a segmented volume of the midbrain.
This study, presented in [Teodorescu 2009a],
determines if there are fibers correlated with
the PD severity on the AP diffusion direction.
The Putamen segmentation is performed then
in the direction of diffusion indicated by the
fibers staring from the midbrain area. This
automatic detection method is then evalu-
ated at the image processing level as well, by
comparison with the fibers detected manually.
Then the fusion is performed using the VOI
detected on the FA stack automatically and
registered afterwards on the EPI image. The
registration method is a fully automatic geo-
metric registration. This method was visually
validated as well, in collaboration with the ra-

diologists. For each stage, we apply an evaluation and a validation of the proposed methods.
On the first stage, we take into account the heterogeneity of the subjects from the demo-
graphic point of view and we analyze the effects of each element in the testing area, in order
to find a test that less sensitive to the inter-patient variability.

For the medical relevance, we use the T-Test for correlation between the obtained values
and the cognitive evaluation (ground truth). We validate the volumes obtained by running the
results under the supervision of our partner neurologist to verify the placement of the detected
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elements on the initial images. The automatic detection is validated also using the manually
detected volumes and by performing a logical AND between the two detected images. The
result image represents the non-overlapping areas. These areas represent the error rate for
the automatic segmentation.

For the fibers, we can only verify that the ones chosen are approximately on the SN
area. This is also done by our neurologist, but their number can be checked and provides the
performance of our method.

Figure 6.1 represents the features extracted for each patient after the image processing,
volume extraction and fiber tracking.

Before evaluating our methods, we define the metrics used for estimating the performance
of each method, the significance of the measures and their relevance.

6.1 Evaluate the image algorithms
The performance level of the CAD systems is given by the sensitivity (true-positive rate) of the
detection and the false-positive detections - the specificity. When detecting abnormalities in
an image, the true and false refer to the decision of the algorithm compared with the clinician
decision (Fig. 6.1).

• TP true positive - the algorithm detects correctly the abnormality

• FP false positive - an abnormality is detected while it is not in the image

• TN true negative - no abnormality exists and the algorithm does not detect one either

• FN false negative - the algorithm does not detect an abnormality when it is there

In the segmentation and detection process, these terms are defined having as ground truth,
the manual detection. Therefore, when defining the sensitivity and specificity of an algorithm
we use:

sensitivity = TP

TP + FN
(6.1)

The sensitivity represents the abnormality rate detected on a set of problematic patients and
it is a percentage of success of the algorithm - equation 6.1. The specificity on the other hand
represents the normally detected cases and it is a percentage measure as well - equation 6.2.

specificity = TN

TN + FP
(6.2)

The sensitivity reflects the positive cases identified correctly and the specificity represents the
negative cases identified as such. Usually, several indices exists for evaluation of computerized
methods, like ROC and FROC analysis. This curve represents the space of tradeoffs between
the sensitivity and the specificity of an algorithm.
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Figure 6.2: True and False positives and
negatives [Bankman 2009]

For a view on the entire data set, the accu-
racy of the system is computed as presented in
equation 6.3.

accuracy = T P + T N

T P + F P + T N + F N
(6.3)

In our case, we have two stages where we can
evaluate our system: at the image processing
level, depending on the fibers detected, and at
the analysis level, evaluating the diagnosis. In
this way, at the processing level, when evaluat-
ing the fibers, we can consider fibers not apper-
taining to the strationigral tract. Together with
the cases that did not provide any valid fibers
after the tractography, these cases represent the
errors for the first stage. For the second stage,
we evaluate the variance of the disease severity:
classifying a patient with PD among the controls

or classifying a control case among the PD patients. The variance of the disease determines
another error rate among the PD patients - considering a patient more or less affected by the
disease than it really is the case.

When computing the sensitivity and specificity of the image processing module, we achieve
0.63, respectively 0.87. The same evaluation is momentarily impossible for the diagnosis, as
we need confirmation for the FP and FN cases which is achieved by to follow up on the control
cases for validation.

Another statistical parameter for defining and estimating the methods proposed is a Re-
ceiver Operating Characteristic (ROC) curve representing sensitivity versus specificity. This
curve applies to our final methods, at the diagnosis and prognosis level of our approach.

The curve estimates the accuracy of the method and ideally has the shape presented in
figure 6.3, where the distributions do not overlap. On the diagonal, all the distributions overlap.
The Area Under the Curve (AUC) represents an overall measure of the test performance and
allows comparison between different methods. This area is interpreted as a distance between
the disease and control test results. Next, we evaluate our algorithms used at each level of
the medical image processing. Presenting the evaluation method provides us with the testing
batch needed for a proper evaluation.

6.2 Test sets and requirements
Testing procedures must assure that they are sensitive to our parameters, and robust to other
exterior factors. Thus, we construct several testing batches by varying parameters that we
need our test to be robust to. We apply this procedure for the demographical parameters, as
shown in table 6.1.
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Figure 6.3: Receiver Operating Characteristic (ROC) curve

Test H&Y Age Male/all
nr [avg] Patients Controls Pat Control
1 2.312 64.5 59.37 11/16 6/16
2 2.375 63.31 60.93 9/16 9/16
3 2.375 64.06 58.5 8/16 7/16
4 2.467 62.75 61.5 9/16 8/16

Table 6.1: Test batches characteristics [Teodorescu 2009b]

6.2.1 Test parameters and characteristics

In order to evaluate the different stages in image processing, we introduce several testing
groups - testing batches - of patients so that we can evaluate the robustness of each stage.
The PD diagnosis and prognosis is then evaluated on the whole database, not only on the
test batches.

We prepare four test batches from the 42 patients available - 21 PD cases and 21 controls.
Age variation can affect the disease by introducing brain atrophy and making the neural fibers
harder to detect. This is the reason why we introduce this factor as a parameter in our tests.
The patient’s gender can affect the detection as the female have smaller skulls. The detection
and segmentation of the images is than more difficult. Together with these parameters, the
H&Y value represented as the severity degree of the disease could affect the diagnosis and/or
prognosis values.

The whole database contains 66 patients and 66 control cases that managed successfully
to generate the segmented areas. We dispose of 68 patients and 70 control cases, but due to
the image stacks unable to provide the entire volume between the midbrain and the Putamen,
2 patients and 4 controls were eliminated from the test. We use this database to evaluate the
methods developed using the test batch.
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6.2.2 Choice of test procedure
The test groups are chosen so that one of the demographic parameters varies and the other
are correlated among patients and controls. Big differences on the results from one test to
another mark the sensitivity of the test on the demographic parameters. A consistent test for
all the test batches is not sensitive to the variation parameters (see table 6.1). If the testing
procedure has similar results on all the test groups, we can further analyze the results of that
particular test, depending on its interpretation and input data. At the image processing level,
we have as input data the images and we test the automatic detection against the manual
one. At the feature level, we have as input data the extracted values for the neural fibers
on the left and the right side, the detected volumes on both sides and/or the new computed
parameters: FD, FD3D, FDrel, FV .

For the diagnosis and prognosis, the ground truth is represented by the H&Y value given
by the medical doctors using the cognitive tests. The neurologist also performs the validation
of the fibers, so that we can be sure of detecting the right bundle of fibers for further study.

6.2.3 Green Channel analysis on the midbrain area
For the green channel study, we have a batch of 42 cases (21 patients and 21 control cases).
From this batch, we take out randomly 5 cases from the patients and controls in order to
eliminate the subjectivity - the influence of the demographics - from our study (table 6.1).
The T-Test is applied on the histogram obtained from the midbrain area by eliminating the
noise. This procedure aims at detecting a correlation between the value of the histograms and
the H&Y values. The histograms represent the anisotropy value on the AP direction in the
midbrain area, which should indicate the motor fibers and in PD could be characteristic for
the progression of the disease. Examining this correlation, we vary the age difference between
the patients and controls and the number of male subjects in the testing batch, as well as the
mean value on the H&Y scale.

The results on the green channel study performed on the patients with the characteristics
from Table 6.1 are presented in Table 6.2. This table contains several T-Test methods and their
results regarding the correlation between the green channel histogram values and the H&Y
values. When we analyze the Independent Sample T-Test, we have a large variation between
the values of P, which can be explained only by the variation of demographic characteristics
of the patients. In our case, this type of study is affected by demographic characteristics,
especially on the left side (e.g 12% - 83 %). We almost have the same range of variation on
the Bivariate test, visible on the left side as well. The ANOVA test is the most consistent and
has good results, being reliable and adequate for our purpose. An initial approach and the
associated results have been presented on the RSNA conference [Teodorescu 2009b] from the
clinical point of view. We emphasize here the technical asset. The testing on the green channel
was performed on a cropped volume containing the midbrain. The green channel represents
the AP direction of diffusion. The information from this image is the anisotropy level on the
AP direction. This study confirmed that there is a correlation among the anisotropy on the
AP direction and the H&Y severity scale. This correlation was interpreted as fibers staring
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Test
Independent

Sample
T-Test

Correlate
Bivariate ANOVA

nr Left Right Left Right Left Right
1 24.4 74.0 13 8 0.872 0.937
2 12.2 69.3 7 8 0.906 1
3 75.5 65.3 3 6 0.937 1
4 83.6 71.4 7 7 0.937 0.906

Table 6.2: Study on Green channel on the left and right side [Teodorescu 2009b]

from the midbrain that are correlated with the H&Y scale. The fibers at the midbrain level
that are affected according to the PD severity, represented by the H&Y scale, are with no
doubt the motor ones. Therefore the motor fibers starting from the midbrain are indicators
of the PD severity and have AP directionality. The ANOVA test provided a good correlation,
but not applicable for quantization of the disease.

6.2.4 Evaluation of the segmentation algorithms
There are several characteristics when analyzing the result of a region-based segmentation.
Comparing an image segmentation result to ground truth segmentation - the manual detected
one from the specialist- represents one way of evaluating the automatic segmentation. Another
way would be to estimate the overlap between the ground truth image and the segmented
one. There can be over-segmentation or under-segmentation when the two images overlap,
but one of them is bigger than the other one. When there is a ground truth region that the
segmentation does not contain, we are dealing with a missed region. A noise region manifests
as a region identified in the segmented image, but not contained in the noise region.

Midbrain automatic detection is preformed on the EPI stack with no diffusion direction.
The algorithm providing the segmentation presented in section 4.3 is applied on the test set
and the results are studied by our specialist. Validating the algorithm actually means verifying
if it managed to segment the whole midbrain and just this part, without taking part of the
surrounding tissue or the CSF (see fig. 4.2(a)). This is the criterion followed by the neurologist
in validating the algorithm.

For the Putamen detection the evaluation is performed by comparing the manually
segmented images with the automatically detected ones. Performing a logical AND operation
at the image level between the two Putamen slices at the pixel level. We are using the imageJ
Image Calculator on the segmented volumes. We compute the number of the non-black
pixels at the same position on both images. The difference area gives the error rate of our
segmentation algorithm. As shown in table 6.3, the area difference between the two methods
determines the values found in column two and three of the table and determines the results
in column four and five of the table.
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(a) FA image clustered (b) FA extracted Putamen man-
ually extracted on left side

(c) FA extracted Putamen auto-
matically detected on left side

(d) FA image clustered (e) FA extracted Putamen man-
ually extracted on right hemi-
sphere

(f) FA extracted Putamen auto-
matically detected for the right
hemisphere

Figure 6.4: Putamen segmentation

Also a validation done by our neurologist is necessary for this step. For the registration per-
formed on the detected volume, we use medical knowledge for validation and visual evaluation.

The results show a smaller error rate for the left Putamen area, which has more clear
boundaries than the right Putamen area. This is consistent with the medical approach as PD
patients usually are more affected on the left side of the brain by this disease.

6.2.5 Evaluation of the registration method
The registration has the purpose of aligning two images so that they overlap. We need it for
aligning the segmented volume of the Putamen from the FA stack with the one in the EPI stack.
As presented in the previous chapters, other algorithms do not deliver satisfactory results from
the medical point of view four our images. This is the reason why we propose our own method,
specific for the protocol of the images that we are using. For the registration, we tested the
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Pat.ID Left area
of Putamen

Right area
of Putamen

Relative error
for left
Putamen
detection [%]

Relative error
for right
Putamen
detection [%]

1 77.491 33.005 33.33 26.10
3 24.395 10.045 58.02 77.50
7 61.706 58.836 6.17 30.61
9 64.576 70.316 11.11 57.43
27 50.225 77.491 13.58 73.49
132 66.011 24.395 13.56 45.38
168 66.011 21.525 13.56 51.80
177 54.530 61.706 6.17 38.15

Table 6.3: Preliminary results on Putamen detection [Sabau 2010]

rigid registration automatic method from TurboReg 1 but as it was not developed for head
images, it did not perform as expected. The registration is very important, as we have seen
also testing the fusion module providing the diffeomorphic demon registration and a manual
rigid registration from the Image Fusion module (MedINRIA platform) [Vercaunteren 2008a]
[Vercaunteren 2008b] [Modersitzki 2004]. These methods, either changed the target image -
the diffeomorphic approach, or are totally dependable on the accuracy of the used in finding
the landmarks - the manual approach. Also the fact that our protocol included 12 diffusion
directions, instead of 6, like the testing data for the software was offering, slowed down the
fiber computation. Due to the registration, we did not find the fibers that we needed for the
analysis, as the DTI tracking module offered just the possibility to choose only one region
of interest for limitation of the bundle of interest. The 3D Slicer [Ceritoglu 2009] performed
good on the manual registration. However, this method was not only time consuming, but
also from the resources point of view disappointing as it stopped the machine each time, even
before completing the computation.

In our approach, the registration process with the acquired parameters determined in
section 4.4 is fully automatic. It uses the EPI stack with no diffusion and the FA one. The
results can be visually verified as we are applying the transformation on the Putamen mask
and we transpose the image on the EPI. Thus, we verify the correct anatomical position.

6.2.6 Tractography evaluation
The motor tract is automatically detected in our case by growing the fibers between the
two volumes of interest: midbrain area and the Putamen. This is consistent with a global
tractography method. After computing the FD and FV on each side of the brain, we study
the effects of PD in each bundle of interest. For this purpose, we perform the T-Test making
the correlation between FD/FV and H&Y scale. As the FD is dependent on the FV, the

1TurboReg - http://bigwww.epfl.ch/thevenaz/turboreg/- last accessed on November 2009
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two parameters have the same variation. For the medical relevance on correlating the H&Y
parameter with the fibers, we test the obtained values using WinSPC (Statistical Process
control Software). For the simple correlation purpose, we analyze Pearson’s parameter (see
Table 6.4 column 2 and 4). We have chosen for testing in this case the ANOVA method: one
way ANOVA, General linear model ANOVA (MANOVA) and we test the equal variation on
density considering the Lavene parameter.

This evaluation is performed when developing the method and the statistical tests are
performed using the test batch with the tests defined in section 6.2. When we perform
the global testing taking into account 80% of our data, we obtain p=0.05 for the group
homogeneity in the H&Y assigned cases classified using the left fiber results. On the ANOVA
test for the same cases, the significance is 83% with an N=35 subjects randomly taken by the
software from the 42.

Figure 6.5: 3D View of the grown fibers from PDFibAtl@s

Taking a closer look on the testing batches, we can follow the variation of the relevance
degree depending on the demographic elements and with regard to the test taken.

A significant value for correlation is given when the value of Pearson variable is lower
than 0.01. In table 6.4 we perform the testing for correlation between the H&Y value and
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Test Left Side Right Side
nr Pearson P-value Pearson P-value
T1 0.041 0.825 -0.096 0.599
T2 0.107 0.555 0.023 0.898
T3 0.010 0.955 -0.037 0.841
T4 0.108 0.555 -0.101 0.581

Total 0.054 0.735 -0.098 0.541

Table 6.4: Simple correlation between the fiber volume (FV) and H&Y
values[Teodorescu 2010]

Test One-way
ANOVA MANOVA

nr FV FD FD
Left Right Left Right Left Right

T1 0.00 0.00 0.00 0.00 0.105 0.515
T2 0.00 0.00 0.00 0.00 0.638 0.067
T3 0.00 0.00 0.00 0.00 0.138 0.404
T4 0.00 0.00 0.00 0.00 0.329 0.404

Total 0.00 0.00 0.00 0.00 0.149 0.629

Table 6.5: ANOVA testing [Teodorescu 2010]

the FV. Our conclusion after this test enhances the influence of the testing batch taken into
account. For the test batch 3 on the left side, we have both variables indicating a very strong
correlation, while the other test vary and appear not to be significant.

For the results presented for the fibers, we perform the same method of testing used for
the green channel analysis. This time, we test our batches of patients taking into account the
correlation and the regression coefficients. We can distinguish a difference between the two
hemispheres of the brain on the results tables. The variations among the testing batches are
due to the differences between the subjects. One-way ANOVA test is used to compare three
or more unmatched groups and that is the reason we test our results using this test (first 4
columns in table 6.5). MANOVA results are presented in columns 6 and 7 from the same
table.

On the ANOVA One-way test, the value considered significant is 0.00. In table 6.5, we
can conclude that this test shows a strong significance on all the testing batches, while the
MANOVA and the Lavene variable do not show a significance. In some of the cases, the equal
variation of density could not be computed due to lack of a certain type of cases (Table 6.6),
while the Lavene parameter is significant only for the whole database on the left side. These
T-test show the medical relevance of our system, but from the technical point of view, we
have to evaluate the robustness of the algorithms and their speed, as well as their accuracy
compared with the manual detection and extraction.
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Test
Test variation

of density
P-value

Lavene

nr Left Right Left Right
T1 0.499 - - -
T2 0.932 0.855 1.33 0.04
T3 0.888 - - 0.57
T4 0.733 - - 0.721

Total 0.742 0.542 0.000 0.921

Table 6.6: Variation of density [Teodorescu 2010]

When estimating the entire database after the tractography step, we obtain 2 patients
with "NaN" due to the segmentation and 22 with 0 fibers, from the tracing algorithm. From
the control cases 14 have as result 0 fibers.

6.3 Method performances
We are presenting next the results obtained at different stages along the way of the processing
system and then move towards the extracted features that are first tested with correlation to
the disease severity level. After this correlation is established, the whole database is analyzed
at the feature level for determining the sensitivity of the system to the image quality and its
performance at the diagnosis and prognosis level. All the evaluations are performed using the
entire database with our own methods.

We have to consider several parameters like the technical efficacy, the diagnostic accu-
racy and the error rates for our system. As presented in [Sonka 2009] various computerized
methods, the use of different database affects the results. The subtle cases give a lower perfor-
mance level. The database characteristics influence the training and the objective measures.
The way that the database is used affects the performance of a method.

6.3.1 Segmentation results
The results obtained with automatic image segmentation for midbrain and Putamen have a
great influence on the fibers detected, especially the Putamen area. The difference in the
number of fibers detected with the manually segmented Putamen and the automatic one,
for the same patients offer us the error rate for the automatic detection. This error rate is
measured by the relative error presented in equation 6.4.

Errrel = x − X

X
∗ 100[%] (6.4)

where x represents the measured value and X is the average value of all the measurements -
in our case, the difference between the manually detected Putamen area and the automatic
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one. When using just the triangular segmentation of the Putamen we detect an error rate
of 34.66% on the left side and 35.75% on the right side of the brain. When evaluating the
alignment algorithm based on the center of mass the relative error rate is 37.16% on the left
side and 39.6% on the right side.

As the Putamen correct placement determines the validation for the strationigral fibers,
its placement together with the correct detection of the volume determines the number of
fibers and directly affects the analysis results.

6.3.2 Tractography results
For fiber evaluation, the number of fibers identified for each patient represents the measure
of a correct or incorrect segmentation. The tracking algorithm does not change, but it is
sensitive to the Putamen area. This is the reason why values for the fibers above 20 represent
a misplacement of the Putamen area or an incorrect detection - this happens when our
algorithm detects more than just the strationigral tract. Based on these elements, we define
the metrics for the sensitivity, specificity and accuracy.

• TP - PD patients that have a correct segmentation compared to the manual approach
that have less than 20 fibers

• FP - PD patients with a correct segmentation and more than 20 fibers

• TN - Patients that do not have correct identification of the volumes of interest

• FN - Patients with volumes detected that provide no fibers after tracking

With these classes of patients we obtain 89% specificity, 80% sensitivity and 82% accuracy
on the PD patients for the combined with triangular approach on the left side detection for
the Putamen and the combined triangular and quadrilateral approach algorithm. The same
approach on the control subjects offers values of 37% specificity, 82% sensitivity and 75%
accuracy. Analyzing the overall performance of the algorithms on the data we have 63%
specificity, 81% sensitivity and 78.5% accuracy.

6.3.3 Diagnosis performance
Having the features extracted from the image level, we evaluate the extracted data using the
fibers density defined in equation 4.1 and the recalculated values in equation 5.1 from the
normalized extracted data at the patient level. We perform pretesting on 26 patients to test
the implemented functions. The diagnosis is achieved by using the rule based system on the
intervals defined in table 5.2 of the extracted normalized features. We test the system on the
intervals of the left fiber density, after training it on the test batch and we retrieve a 61.53%
success rate [Pataca 2010]. The cases that are placed incorrectly are due to the fact that the
fiber detection does not identify fibers on the motor tract.
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6.3.4 Prognosis results
Using the second and the forth degree polynomial determined in section 5.2 we test the
prognosis module on the first 26 patients and obtain on the second degree polynomial function
a 19% error rate on the training set and 34% with the forth degree polynomial function success
rate. This function is determined using the fiber density normalized values on the left side
[Pataca 2010].

We first evaluate the Fuzzy Adaptive Evaluation prognosis function on a test batch, rep-
resenting the manually processed Putamen detection (37 PD patients and 52 control cases
that provided valid features after the fiber extraction). Together with the manual Putamen
data, in the training function, we include five PD patients from the initial valid 42. With a
rate of 32.43% on the patients and 46.15% on the control data, the overall system provides
a 40.44% correct rate. When updating the Putamen detection, we perform a reevaluation of

Figure 6.6: The Sensitivity, Specificity and Accuracy of the prognosis methods

the diagnosis and prognosis module on the entire automatic methods applied on the database
(68 patients and 66 controls). These results are presented in figure 6.6. For computing the
values for the parameters in figure 6.6 using the equations 6.1, 6.2, respectively 6.3, the values
for the coefficients represent the following:

TP cases with PD correctly identified

FP control cases identified as PD

TN control cases correctly identified
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FN unidentified PD cases

The patients are characterized by the value of the sensitivity - maximum value for the Indepen-
dent Adaptive Polynomial Evaluation (IAPE) approach with62.16%. On the control cases, the
specificity represents the evaluation value that characterizes it - maximal value for the second
degree polynomial approach is 43.9%. The accuracy represents the overall performance of the
algorithms that performs the best on PD Adaptive Polynomial Evaluation (PD-APE) method
offering a 44.87% value.

The overall performance of the prognosis module is provided by the ROC curve. We
compute this metric using the SPSS 17.0 (Statistical Package for the Social Sciences) for the
patient estimation, as the prognosis functions are applied for establishing the severity degree
of the disease. Evaluating the IAPE method for this case, the area under the curve (AUC)
is 0.705, whereas for the PD-APE the value is 0.959 (see figure 6.7). This indicates a much
better performance on the patients data for the second method.

Figure 6.7: ROC curve for PD-APE
prognosis method on the patient data.
The AUC value for this case is 0.959
on the 68 PD diagnosed patients from
the database.

We evaluate the prognosis performances on the control and patient data to estimate the
overall capacity of the proposed methods at this level. We compare the ROC curves for
different methods and for this purpose we use the MedCalc2 software. This software provides
two approaches for the ROC curve estimation: De Long and Hanley & McNiel. Using the

2MedCalc 11.3.3.0 - www.medcalc.be
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database results on IAPE, the AUC values for these two ROC estimation approaches were
the same. We further use the De Long approach when evaluating the ROC, as the error rate
provided on the same test is slightly lower compared with the McNiel approach (0.1%). For
the PD-APE method of prognosis, we obtain a value of 0.569 for AUC and for IAPE the same
metric has a value of 0.745 (see figure 6.8). Comparing the two curves, the difference between
the areas is 0.176 - figure 1.9.

Figure 6.8: The ROC curve represent-
ing the IAPE prognosis method ap-
plied on the whole database: 68 PD
cases and 75 controls. The AUC for
this test is 0.745.

6.3.5 Computational speed and requirements
We use Java for all the systems with imageJ toolbox and bio-medical imaging plug-ins 3.
The simple image processing for the preprocessing part is done by enhancing the contrast for
the EPI images and removing the noise. For the removal of the skull we use K-Means for
making the segmentation based on the pixel intensity. By removing the skull we remove the
outside noise surrounding the entire brain, the aura effect induced by the scanner. For the 3D
visualization we are using the Volume Viewer from imageJ 4.

The algorithm is tested on Intel core Quad CPU Q660 (2.4GHz; 4.0G RAM) and the
average time for each patient is 4.68 min with the automatic detection and the fiber growth
algorithm. If with DTI tracker from MedINRIA took us 1-5 min to have the fibers, with our
prototype it takes us an average of 2 min. The reason of this computation efficiency is related
to the limitation of the area for the fibers performing a global tractography, whereas the

3Bio-medical image -http://webscreen.ophth.uiowa.edu/bij/ - last accessed on May 2010
4Volume Viewer 3D - http://rsbweb.nih.gov/ij/plugins/volume-viewer.html - last accessed on March 2010
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Figure 6.9: The two ROC curves for IAPE and PD-APE methods applied on the database
(143 cases: 68 patients and 75 controls). The AUC values for IAPE and PD-APE are 0.745,
respectively 0.569. Evaluating the ROC difference between the two tested methods the AUC
indicates a difference of 0.176.

method proposed by the DTI tracking module (MedINRIA) takes a local approach without an
ending point for the fibers, selecting at the end the fibers passing through a specific volume
of interest. The 2 mins represent for our system all the processing time with the automatic
volume detection, registration and tractography. A similar time (1.2 min) is provided using a
probabilistic global method with the Diffusion Tracking module(TrackVis)for image selection
and the tractography, without segmentation and computation for the fiber metrics.

6.4 Conclusion
After determining a correlation between the features and the disease, using the features as
a measure for the disease represents a valid option at this point. The modality of using the
features representing the technical challenge estimated form several points of view, at each
stage and as whole as well.

From the point of view of the evaluation and testing criteria, the contribution revealed in
this chapter reside in the testing technique. This technique mixes the cases for revealing the
effects of the cognitive parameters and the tests that are not affected by these parameters. The
green channel analysis has already been presented in [Teodorescu 2009b] [Teodorescu 2009c]
[Teodorescu 2009a]. The original approach on the segmentation of the Putamen was presented
in [Sabau 2010]. The fibers and the PDFibAtl@s prototype is presented in [Teodorescu 2010]
and as a demo version at [Teodorescu 2009b]. As the diagnosis and prognosis was the final
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stage, their preliminary methods using the second and forth degree polynomial approaches
were presented in [Pataca 2010].

Another important aspect at this point is finding the appropriate test for the evaluated
data. For the green channel study we take into account the one-way ANOVA test as it is not
affected by inter-patient variability and detects the correlation between the PD and the fiber
directionality. For the fibers density, due to the fact that the nature of the evaluated data
has changed, we find a test that reflects more appropriately the correlation and regression
values for this type of data: one-way ANOVA, MANOVA, Pearson’s variable and the Lavene
parameter.

Evaluating the obtained volumes of interest, as well as the techniques implemented, proved
to be appropriated for the type of image that we are dealing with, as well as for the resolution
of these images. The speed of computation reveals a system that performs in a few minutes
the detection of the regions of interest, as well as the computation of the fibers.

We have found a way to evaluate our algorithms separately and the whole approach as
well, using the PDFibAtl@s prototype. We need to tune the diagnosis and prognosis functions
for a better detection rate. These functions have been created using the manual data with
additional five cases from the PD cases.

All the elements in the system affect each other. The Putamen accuracy determines a
higher accuracy on the fibers and the fiber accuracy is essential to diagnosis and prognosis
module.
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In the work presented in this thesis, we have several levels where new scientific
methods are developed. Proposing a way for estimating the severity of the PD based on

the information provided by the image, represents altogether a new demarche. The prognosis
represents another scientific act, based on measurable functionality and specific features, to
determine at a higher scale the diseases severity, even on early cases. These scientific aims are
reached by studying the images and the possibility to extract and use the information specific
to the disease from these images. This research corresponds to the learning and understanding
part on the image modality study and specific elements. The methods developed for preparing
the images and volume-based analysis are created for sustaining the more complex systems
corresponding to the volume segmentation algorithms. The tractography method, using the
extracted volumes of interest, offers not only a much better time on processing but also the
selectivity needed by the diagnosis and prognosis model.

P D F i b A t l @ s , t h e p r o t o t y p e s y s t e m that encapsulates all the new pro-
posed methods and algorithms presented in this thesis, is meant to be an aid for a more
complete image on the PD field, offering quantitative unbiased information from the medical
image level. In this manner, by using the computerized analysis of the images according to
recent studies [Sonka 2009], the performance of the radiologist increases. We eliminate the
observer from the image study, by modeling and including at the same time its experience,
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therefore we aim at being more accurate at the feature detection and quantification phase.
O u r a p p r o a c h i s i m p o r t a n t f r o m t h e c l i n i c a l p o i n t o f v i e w ,

o f f e r i n g a n e w m e t h o d f o r t h e n e u r o l o g i s t s i n P D a n d a m e a n
t o v e r i f y / c o n f i r m t h e i r d i a g n o s i s a n d p r o g n o s i s . From the technical
standpoint, the fusion is novel, as it combines the tensor based information and the anatomical
details. This system provides data for H&Y estimation and PD prognosis.
Analyzing the results obtained by each new method, we have to take into account the fact
that the image quality together with patient variability, influence the algorithms.

The pure geometrical analysis of the specificity of each patient together with the noise
elimination represents only the preparation step for the image processing method we developed.
The segmentation offers an error rate of 37-40%, that affects the tractography performance.
When developing our new segmentation method, the upgrade on this method determined
better results on the tractography as well, resulting on an increase of 19%. This aspect
reveals the importance of the Putamen in the tractography as well as the robustness of the
segmentation method with the direct implication at the feature extraction level.

T h e p e r f o r m a n c e s o f t h e t r a c t o g r a p h y with a level of 78.5% accuracy
provide a feature database that can be further used for the diagnosis and prognosis purpose.
The metrics introduced for the fibers evaluation provide viable data for the prognosis functions
so that a value of 45% accuracy can be obtained. The importance of the segmentation is
given also by the fact that unlike the manual segmentation, the automatic approach is much
faster and is not influenced by the specialist skills and his capacity to distinguish between
close levels of entropy on the image voxels. The computational speed is superior also on the
tractography, due to the use of less memory as we are taking into account only the fibers
starting from the midbrain and we are validating only those reaching the Putamen volume.

The main breakthrough initiated by this study is represented by t h e m e t h o d a b l e
t o p r e d i c t P D b y o f f e r i n g a v i e w o n t h e e a r l y c a s e s a s w e l l, not
only on those starting from the second stage of the disease. This evaluation method based
on the image attributes, on the anatomical and neurological aspects of the patient offers a
measurable value of the severity of the disease. As the H&Y test is based on the cognitive
facet, our method is complementary to the test, but is placed on the same scale.

PDFibAtl@s is a new system, able to automatically detect the volumes of interest for
PD diagnosis using the DTI images and a geometrical approach. The algorithms included
in this platform are original and are based not only on the brain geometry, but also includ-
ing medical knowledge by taking into account the position of different anatomical struc-
tures at the brain level, hence the atlas dimension. C o n c e r n i n g t h e f u s i o n c o n -
t r i b u t i o n o f o u r w o r k , i t b r i n g s t o g e t h e r t h e F A c l a r i t y a t t h e
P u t a m e n l e v e l w i t h t h e t e n s o r s m a t r i x f o r t h e f i b e r t r a c k i n g
a l g o r i t h m s . Our algorithm automatically detects the elements that until now were ob-
tained by user interaction: detection of the slice of interest, detection of volumes of interest,
automatic detection of the registration parameters. Introducing parameters for fiber evalua-
tion and eliminating the demographic factors at the atlas level, as well as at the volume level
represents another important contribution of this thesis.
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7.1 Scientific Contribution
The scientific aspect refers to the originality and the impact of the method, as well as its
necessity on the area where this method is employed. Both technical and medical areas have
to gain from new methods in the medical image processing domain. Combining medical
knowledge with new technical approaches, we are able to offer new information that can be
exploited for a new overview on the PD. At this point, we are analyzing the originality of the
methods, the challenges overcome and the difference with other proposed approaches.

T h e t h e s i s p r o p o s e s u s i n g t h e m e d i c a l i m a g e s , p a r t i c u l a r l y
t h e D T I s , a s a b i o - m a r k e r f o r P D p r o g n o s i s . This represents the main
scientific contribution as the diagnosis is based exclusively on the cognitive testing and the
visual information is not exploited. Using this information provides as well the quantitative
measure of the severity of the disease for the prognosis values as well.

T h e t h e o r e t i c a l h y p o t h e s i s t h a t t h e n e u r a l f i b e r s c o n s t i t u t -
i n g t h e m o t o r t r a c t c a n b e u s e d a s i n d i c a t o r f o r P D i s t e s t e d
i n o u r w o r k a n d w e v a l i d a t e d i t b y f i n d i n g a c o r r e l a t i o n w i t h
t h e s e v e r i t y o f t h e d i s e a s e . At the same time, it represents also the informa-
tional potential gained from the medical image level and further used for the prognosis.

T a k i n g t h e t h e o r e t i c a l e l e m e n t s t o t h e p r a c t i c a l l e v e l , w e
d e v e l o p m e t h o d s a b l e t o a u t o m a t i c a l l y p e r f o r m n o t o n l y t h e
i m a g e p r o c e s s i n g , b u t a l s o t h e a n a l y s i s o f t h e e x t r a c t e d d a t a
f o r p r o g n o s i s .

At the technical level, our scientific contribution starts at the pre-processing level where
we develop methods to overcome the noise specific for head DTI images, with even higher
interference in the low resolution images. According to our preliminary study, the skull influ-
ences the overall results at the anisotropy level. The method removing the skull performs the
noise removal as well, so its utility is doubled. The contributions at this level are:

• Finding and defining an automatic algorithm for detecting the slice of interest at the
volume level

• Finding and defining specific algorithms that detect at the axial level the placement of
each region of interest: the midbrain and the putamen tissue on each side

• Developing an algorithm that determines the axial limitation between the two hemi-
spheres

For the volumetric measures, used further at the volume segmentation level, additional study
and more complex methods are developed. The success of the segmentation approach together
with the registration is linked to these determinations. This gives the importance of the method
for determining the geometric parameters. The fact that these parameters are independent
on the patient’s demographics offers inter-patient independence as well and overcomes this
barrier making possible the automation of the other methods. The inter-hemisphere axis used
for the volume segmentation and for the registration method, overcomes the intra-patient
variability as well. This axis provides information on the image orientation and the position
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of the patient in the image. The algorithms, together with the slice detection method, are
totally independent on the patient data and the image type.

The slice detection method procures the automatic placement of the segmentation image
for the volume segmentation algorithm and takes into account the volumetric and anatomical
aspects of the brain. This method considers the position of the patient in the image - patients
having smaller or bigger skulls or slices starting higher or lower on the patients skull (e.g.
at the ear level or under the level of the nose). Using this algorithm, we overcome these
differences between patients and we provide a robust placement for the volume segmentation.

In this manner, the sex difference transposed as volume difference is overcome, together
with the race difference resulting also in volume difference. The fact that we take into account
these variables from the demographic of the population constitutes a contribution by itself.
This variability is transposed into parameters at the geometric level providing the elements an
automatic approach on the segmentation and the registration methods.

The specificity of each patient is given also by the shape and the placement of the volumes
of interest inside each image - some patients have one hemisphere more developed than the
other and the anatomical regions are thus differently developed. The volumes can be placed at
different levels on the axial plane as well. This variability is surmounted by the methods that
establish the starting points for the active volume detection. These algorithms are based on the
anatomical map of the brain and the relative placement of the volumes of interest inside the
brain. Depending on the volume of interest the algorithm that detects the relative placement
in the axial image is different. The midbrain volume is placed on the inter-hemisphere axis
and the Putamen is placed on the superior part of the brain, next to the anatomical area
named Globus Pallidus. This relative placement is based on the anatomy of the brain, like an
atlas. The atlas mapping of the brain offers just the relative position, the actual positioning is
given by the intensities of the pixels. This method for identifying the area where to apply the
segmentation represents a new approach and overcomes the inter-patients variability given by
the different positioning and size of the anatomical structure in each individuals brain. The
difference from an atlas approach is given by the segmentation method. Using the anatomical
relative positioning inside the brain like an atlas or a map, but not segmenting these areas
by using the actual atlas and applying it is as a mask, represents a new method for the
segmentation at this level. This method had just the placement of the anatomical region and
determines for each case the ROI/VOI including the specificity of the patient.

The segmentation process is based on automatic detection of the region based on the
voxel intensity. This approach determines the volume of interest independent on the size
of the anatomical region and its angulation or positioning inside the brain. Our method is
automatic but also adaptive to each patient. The volumes of interest are specific for the
disease - the substantia nigra and the Putamen - and the manner in which they are detected,
by combining the image specific processing methods, together with the geometrical elements
and by integrating the anatomy elements. The method is applicable to any patient as it does
not take into account the provenance of the case, for shape variability, or the volume of the
brain, that vary according to the sex of the subject. For these reasons, this method is a
complex one, integrating concepts from the medical knowledge for technical purpose.

A t t h i s l e v e l o u r c o n t r i b u t i o n r e s i d e s i n d e v e l o p i n g n o t o n l y
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a n a c c u r a t e a l g o r i t h m f o r t h e m i d b r a i n a n d t h e p u t a m e n d e t e c -
t i o n , b u t o n e t h a t i s i n d e p e n d e n t o f t h e i n t e r - p a t i e n t v a r i a b i l -
i t y a n d i s u s e d a t t h e v o l u m e l e v e l .

For the midbrain area, we are using the clustered EPI image that is able to determine the
midbrain even if one hemisphere is more developed than the other side.

At the Putamen level, the algorithms are different on the left and the right side of
the brain, as we take into account the differences between the two hemispheres. Also, the
shape is taken into account at different levels of the volume by applying the triangular or
quadrilateral approach. This versatility makes the difference between our approach and the
classical atlas based approach. On the manual segmentation directly on the FA image, the
anisotropy with the piercing fibers on the image determines "holes" on the volumes due to the
difference between the voxels. Our approach using the clustered image with the geometrical
segmentation does not have this problem and eventual fibers passing through the Putamen
are validated, which is not the case for the eventual fibers passing through "holes" on the
manual determined volume.

The registration method combines the manual method and the geometrical approach,
but it is automatic, as it detects the geometrical elements at the pre-processing level. The
robustness of the geometrical approach, combined with the fact that this method eliminates
the inter-image variability as well, represents upgrades to the manual approach, which does
not beneficiate of the accuracy and objectivity of an automatic approach, this being our con-
tribution at this point. This method actually fuses the information extracted by segmentation
form the FA image to the EPI volume.

T h e m o s t i m p o r t a n t a s p e c t o f t h e o r i g i n a l i t y o f t h e a p p r o a c h
i s t h e c o m b i n a t i o n b e t w e e n t h e a u t o m a t i c v o l u m e d e t e c t i o n i n -
t e g r a t e d o n t h e g l o b a l t r a c t o g r a p h y . The metrics used for estimating the
fibers are specific to this approach and are meant not only to evaluate the fibers, but also to
overcome demographic variation.

The tractography methodology that uses the volumes of interest is faster than the
original one by the fact that it uses only a small volume of the brain for the fiber growth: the
midbrain, it researches 2-4 slices and validates only the fibers reaching the Putamen. The
originality is given not only by the computational time, but also by the ability to automatically
separate the fibers we need from all those residing on the midbrain. Using the fibers to
evaluate the PD evolution is highly reliable, as in previous studies only our first volume of
interest has provided enough data to reach this purpose. Our method adds the 3D aspect in
the evaluation, by including the fibers.

The anatomy of the brain incorporates the medical knowledge to the approach, supports
the technical elements and is able to link the processing algorithms by offering decisional rules
for the detection steps of our system.

It is very valuable to be able to take the images from the files directly and by an automatic
approach, without considering the identity/demographic information from the patient, to
deliver comprehensive information to the clinician regarding the disease. At the ROI/VOI and
registration level not only the actual registration is automatic, but also the determination of
the parameters for this purpose. Having an original take on the DTI image processing and
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the detection of PD specific volumes adds up to the overall value of the methods. The fiber
algorithm has a new perspective by limiting the fibers to the bundle of interest.

From the analysis and interpretation perspective, using just the fuzzy rules from an
ANFIS architecture for diagnosis proved to be a good approach, but this approach is limited
by what the system knows, by what it has learned. This is the reason why a variation function
on the features is more suitable for diagnosis and extrapolation. The contribution at this level
is given by the function performance and its rate of transfer of knowledge from the feature level
to the semantic level. T h e p r o g n o s i s e v a l u a t i o n u s i n g t h e A N F I S a r -
c h i t e c t u r e r e p r e s e n t s a f i r s t a p p r o a c h w i t h t h e a d d i t i o n a l L a -
g r a n g e p o l y n o m i a l f u n c t i o n s . T h i s a p p r o a c h d e f i n e s n o t o n l y
t h e f u n c t i o n s b u t a l s o a h y b r i d a d a p t a t i o n u s i n g o u r n e w f e a -
t u r e s - I A P E m e t h o d - a n d f o r P D - P D - A P E m e t h o d . Our method
that combines the knowledge form the fuzzy systems with the mathematical evaluation of the
features from the neural networks offers exactitude.

7.2 Clinical Impact and Prognosis potential
Being able to confirm the cognitive test performed to place the patient on a severity scale is
helpful for the medical doctor and offers the possibility to augment the degree of trust on the
diagnosis. Having a test based entirely on the image is a robust and reliable way to evaluate
the patient and his current estate.

Another important aspect is represented by the fact that the diagnosis is directly liked to
the severity of the disease, as it can be cognitively detected and placed only after it passes
the second level on the H&Y scale. Based on a technical measurable system, with a high
granularity, our approach offers the possibility to apply it on any patient at any level of severity
of the disease.

The lightness of these algorithms is contained in the versatility, as these volume algorithms
can be applied on other types of medical images. For the fibers, we need the tensors, but
these algorithms can be perfected by including a tensor analysis based on the green-channel
study presented in chapter 6.2.3. We can extend this approach to other similar diseases
like Alzheimer by determining in the same manner the specific bundles of interest. We can
envision an automatic intuitive atlas of the brain by using the detection of all the anatomical
structures. The advantage in this case would be that mapping is not involved and therefore,
the demographic aspect is not a problem anymore.

The diagnosis and the prognosis are highly dependable as the early diagnosis is unreachable
without having the prognosis step defined. This step is reached by evaluating the patients
from our database and placing them on an evolutive function. By extending this function and
extrapolating towards the low values of the scale, the early stages of the disease evolution
is reached. Having the values for this level of the disease offers the information necessary
for placing new patients at this level and making diagnosis for these patients as well. In this
manner we use the prognoses for establishing new diagnosis support. The medical doctors
can study the detected early cases provided by the prognosis functions and define tests at the
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cognitive level for diagnosis.
With the first results from the feature extraction module, we are able to estimate the

severity of the disease, using standard polynomial functions (section 5.2). Modifying these
standard functions by adding medical knowledge as well as cases for the stages that were not
present in our database, will certainly improve this part of PDFibAtl@s.

7.3 Scientific Perspectives
The scientific contributions offer new perspectives and can be further improved as well. The
thesis represents a study at the image level with new methods that provide measurable values
of the PD severity. As these types of images have not been used in this manner, our approach
opens new perspectives for other methodologies and represents a comparison element for
future approaches.

From the technical perspective we have a robust system, PDFibAtl@s that encapsulates all
the necessary image treatment starting from the scanned images to the motor fibers and their
density. Automatic detection of the volumes of interest contours an atlas-based method en-
tirely independent on the subject. Even if this approach is specific for the disease, the proposed
detection methods can be used for other diseases, once the specific VOIs related to the specific
disease have been identified (with the support of neuro-radiologists). O u r c o n t r i b u -
t i o n s c a n b e f u r t h e r u s e d f o r o t h e r m e d i c a l i m a g e s , a s w e l l a s
f o r o t h e r d i s e a s e s . T h e m e t h o d s d e v e l o p e d t o i n c l u d e t h e i m -
a g e a t t h e p r o g n o s i s l e v e l r e p r e s e n t t h e m s e l v e s i n i t i a l s t e p s
a n d c a n b e f u r t h e r d e v e l o p e d a n d a d a p t e d , b u t a l s o i m p o r t a n t
s t a r t i n g p o i n t s f o r o t h e r m e t h o d s a s w e l l . The main upgrades that we
have as perspective at this moment are:

• At the preprocessing level

– Adding and extracting more geometrical elements to gain accuracy at the other
levels

– Determining other axes for a better volume handling
– Using more accurate images can augment the performances of the overall system

as well

• For the segmentation

– With more geometrical elements, the region of interest can be limited with more
accuracy

– A putamen detection that bends more on the shape of the tissue could bring more
accuracy for the volume

• For the tractography we envision trying the probabilistic approach

• At the prognosis level
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– A dedicated function developed for the nature of the data that we are working
with

– Functions that follow better the variation of the data and can include additional
knowledge for the expended H&Y scale

Additionally the perspective of using the new algorithms developed here for other images,
diseases and/or purposes altogether is possible as well.

• The idea of using the geometrical landmarks for excluding the inter-patient variability
and automatizing the image treatment for the patients can be applied for different
head-related projects

• The contour detection with the inter-hemisphere axis is important and can be used in
brain stroke and/or tumors

• The automatic segmentation

– Can be extended to other brain anatomical volumes (structures) and further used
for other diseases and/or images

– If all the anatomical structures are determined, we envision an automatic atlas,
without sensitivity to the demographic parameters and/or to the unequal develop-
ments in the two hemispheres

– A follow-up on the same structures can provide additional information on the
volume of the specific anatomical regions and théier degree of sensitivity to the
disease

• A follow-up on the same patients provides a study of the variation on the extracted
parameters and can be further used in the prognosis process providing the variation
function for a heathy patient, as well as for the PD ones

Having the main perspectives stated, we can envision specific use of the other aspects of our
study as well. The pre-processing methods used for eliminating the noise and the skull,
independent on the shape of the head and its volume, can be applied on any type of head
medical image. The fact that our approach provides good results on low-resolution images
like EPIs, means that on high resolution images the result can be improved. The geometrical
feature detection is a useful tool on any type of image, independent on the anatomical region.
Also the inter-hemisphere axis determination has multiple applicability, offering not just a
limitation for the segmentation algorithm, but also directionality on the positioning of the
patient in the image, useful in registration methods, warping or fusion. This particular element
has its utility in other diagnosis methods that need a comparison between the two hemispheres
(e.g. brain stroke or tumors).

At the segmentation level, our method can be applied for any anatomical volume of the
brain, as long as its relative position inside the brain volume and its position at the axial level
are known. The fact that the active tracking algorithms are either based uniquely on the
voxel entropy, or on the geometrical limitations, provides a wide range of applicability. In case
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of an anatomical region well defined, the method developed for the midbrain segmentation
can be useful, together with the algorithm for determination of the initialzation point (e.g.
the caudate nucleus positioned on the inter-hemisphere axis and having well defined contour).
The algorithm developed for the Putamen can be applied for structures that are not positioned
on the hemispherical axis (e.g. the fornix formations).

We can even envision an automatic specific atlas that combines our segmentation methods
and uses geometrical adapting algorithms for the anatomical elements that provide this infor-
mation, together with the malleability of the free-form intensity based algorithm developed
for the midbrain area. In the case of such an atlas, the anatomical regions that do not consist
of a specific form and/or clear limitation can be detected using the surrounding structures as
limitations. This type of atlas differs from the classical one, by the fact that it uses only the
relative positioning contained in a classical approach, but it is entirely molded on the specific
structures of each patient. In this way, a much more correct evaluation of the structures can
be achieved.

A follow-up study using our method of segmentation on the volume of specific anatomical
regions of the brain can be used to determine the geriatric effects on a normal brain on the
control cases, by comparison with those affected by the disease. Similarities among control
patients at the volume level define a "normal" aging brain. Volumetric elements that are
similar among PD cases but differ from the controls, represent specific metrics for the disease
and its severity and can be used for a PD model definition.

The registration method, fully automatic, based on the geometric elements can be
further developed for determining skewness elements. Also starting form our method, other
type of DTIs can be fused at the information level, even if they have different size and
orientation. This purpose can be reached as we already have the volumetric elements and
relative positioning of the patient in the image, therefore the ration between two different
images as size and skewness should be straightforward. Not only fusion can be achieved in this
manner, but also other similar processes like warping and alignment. The automatic method
for determining the corresponding structures for the registration algorithm can be applied
for other registration approaches that use parameters, as these elements are not affected by
changes at the structural level of the brain (e.g. tumors and/or brain stroke). An iconic
registration, using the geometrical parameters determined with our method and computing
the affine elements as presented like we did could be upgraded and automatized as well.

Another very important aspect of our approach is the tractography algorithm based on
the anatomical elements: the deterministic approach for the the fibers - the WM importance
and the way the motor tract is placed inside the human brain used for the global methodology.
The method itself can be improved and the angulations limitation eliminated as only fibers
having certain directionality will reach the second volume of interest. Also the information
at the voxel level providing the directionality of the fibers can be further used to verify if the
same fiber passes more than once trough the same slice, eliminating in this way a source of
error. This approach is only feasible when having a limited amount of fibers, just like our case,
otherwise the computational effort would be much too heavy on the memory capabilities.
Another application of this approach using a limited amount of fibers can be detected in
annotating the fibers and by performing comparison between patients to measure the difference
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on the severity of the disease between the left and right side. Performing the same study at
different time lines on the same patient can provide information on the way that those fibers
are affected, the most affected ones and/or the anisotropy levels that are critical for the most
affected fibers.

Actually, the automatic detection of the volumes is based on the anatomy of the brain and
the relative placement of the detected structures in the brain geometry. The limits imposed
for the fiber tracts are not only for imposing a certain granularity for choosing the bundle of
interest, but also to validate the obtained bundle from the anatomical point of view, by the
neurologist - validation based on the placement of the fibers in the volumes of interest. These
volumetric elements can determine also other bundles of interest, depending on the volumes
that these fibers pass trough.

Refining the fiber detection method and making it specific to the gray matter can augment
the degree of trust for the diagnosis and add reliability to the system. It can also offer a higher
correlation factor between the diagnosis success rate and the detected fibers. These fibers offer
the possibility to study not just the effects of this particular disease, but also the dopamine
flow changes and the degeneration of the fibers depending on the severity of the disease.
Applying the global tractography approach for PD on the same patient and providing a follow-
up in time, the fibers value reveals the disease progression. Our metrics at the fiber level can
be further used as well, as they are based on the relation of these fibers with regard to the
volume of the brain. This metrics would not be affected by an atrophy that is unavoidable in
geriatrics.

The tractography provides the fiber metrics independent on the two hemisphere and this
method can provide the information to make the distinction at the 1.5 and 2.5 H&Y severity
levels. Also the fact that the disease affects more the left side, can be verified using the
fibers obtained, as well as the degree in which the left side is more affected than the right
one. This information included in the diagnosis and prognosis method makes the difference
between the old H&Y scale and the new one. This information is able to refine the results
from the prognosis method and to update the diagnosis set of rules.

Using a newer tractography method can provide more accurate results and augment the
prognosis rate. A probabilistic approach can be used as well because we need just a bundle
of fibers and thus the computation time would not be too long, like in the Diffusion Tracking
module from TrackVis, but in this case, the noise must be eliminated.

The diagnosis and prognosis are linked together by the variation function of the fibers
parameters on the H&Y scale. This function has to be determined on a heterogenous database
and should be sensitive only to the fibers metrics, not to the demographic aspects. By
introducing the fuzzy expert system in the analysis module, we acknowledge the dispersion of
the fiber values - the fuzzy adaptive evaluation method. This approach provides the system
with a reliable and flexible way to include an evaluation based on medical knowledge, but
also the possibility to change the set of rules by adding new ones that can provide a better
clustering. A combination of expert systems and neural networks can provide also better
granularity on the diagnosis step.

The prognosis provides values for new cases, even for the early cases of the disease. Our
own method for prognosis based on Lagrange polynomial functions can be upgraded by using
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functions that have a higher sensitivity to the metrics that we are using. As the detection
of the polynomial degree that better determines the severity of the disease has proved to be
a good step on the right direction. Introducing the new cases correctly detected among the
initial points can augment the rate of prognosis. A mathematical analysis of the variation
function can provide a better evaluation at this point. Different metrics provided for the
prognosis step can result in different values for this function, but our approach can be still
used. Using the anisotropy level from the Substantia Nigra, or a combined value between
this value and the fiber density, can be used with the same prognosis method. This prognosis
method can be applied in other systems or for other diseases as well because it is entirely
independent.

Using the medical image as bio-marker for the PD is not only a new approach, but it
shows potential for other neurodegenerative disease as well. It offers a measurable value
for the disease, based entirely on the value of the source of the disease, the dopamine level
represented on the image. We have developed a manner not only to validate the medical
theories at the image level as well, but also a working system independent on the patient that
performs the prognosis.
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Chapitre 1

Pronostic de la Maladie de
Parkinson, basé sur la fusion des
caractéristiques d’Images par
Résonance Magnétique de
Diffusion
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Les algorithmes qui font l’objet de cette étude représentent un systéme de détection,
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de diagnostic et de pronostic de la maladie de Parkinson en utilisant les images de type
DTI. Notre système propose une alternative à la détéction basée sur des tests cognitifs. On
utilise un système capable de détecter automatiquement des volumes d’intérêt utilisés pour
le diagnostic de la maladie de Parkinson. Le système utilise ces volumes via un algorithme
de détection des fibres neuronales responsables du mouvement - le nerf neuromoteur. Une
méthode d’évaluation basée sur les valeurs de ces fibres permet une analyse quantitative de
l’évolution de la maladie du patient, en effectuant un diagnostic précoce - pronostic de cette
maladie.

Selon des récents résultats de nos collaborateurs radiologues [Chan 2007], la dopamine, un
des neurotransmetteurs responsable du flux d’information dans les fibres du tract neuromoteur,
réside dans une composante mésencéphale qui s’appelle Substantia Nigra. On considére que
le manque de mobilité cumulé avec le tremblement constaté chez les patients de Parkinson
est le résultat de la perte de ce neurotransmetteur. Selon une étude récente [Today 2009], la
maladie de Parkinson est détectée seulement quand la perte de dopamine arrive a 80-90%.
Cette détéction intervient trop tard pour engendrer un traitement réellement éfficaces. La
détection utilisant les tests cognitifs est réalisée quand la maladie est au deuxiéme niveau sur
cinque sur l’échelle de la gravité - en occurrence, l’échelle Hoehn & Yahr (H&Y) (voire annexe
C).

Au lieu de focaliser directement sur le tissu de SN, nous effectuons la segmentation de
la région mésencéphale, vu que cette région anatomique contient le SN. Pour déterminer
seulement les fibres du tract neuromoteur, on utilise une autre région traversée de maniére
certaine par ces fibres. Cette région est le Putamen, qu’on segmente dans les deux hemisphéres
pour obtenir séparément le tract pour chaque coté. L’analyse des fibres de chaque coté est
basée sur le fait que selon les études médicales [Today 2009], la maladie affecte plutôt la
partie gauche du cerveau.

Vue que les valeurs extraites des fibres ne présentent pas une règle de dispersion ou
une uniformité, la logique flue nous permet de définir des ensembles de données comme
des ensembles flous. Ces ensembles nous permettent de définir les règles pour déterminer le
diagnostic basé sur l’apprentissage apriori. Un système d’inférence floue ou un modèle flou
permet l’apprentissage tout en permettant l’adaptabilité pour prendre en compte l’imprécision
et l’incertitude dans les données. Le lien entre les contrôleur flou et les réseaux neuronaux qui
déterminent la classification des données est représenté par les systèmes Adaptive Basées sur
Des Réseaux d’Inférence Flous (Adaptive Network-Based Fuzzy Inference Systems (ANFIS)).
On utilise cette architecture ANFIS pour le diagnostic et la prédiction. En utilisant les règles
floues pour le diagnostic, on est capable de faire la différence entre les cas correspondant aux
patients malades et á ceux qui sont sains (contrôle). Pour déterminer l’inférence, on défini des
fonctions polynomiales et en utilisant le modèle de Takagi-Surgeno-Kang (TSK) on évalue la
possibilité de prédiction des cas précoces.

Aprés la présentation des principaux objectifs de notre approche, comme dans le chapitre
1 de la thése, dans ce résumée, on présente une vue d’ensemble des nouvelles méthodes
développées au niveau du traitement des images (voir chapitre 4) avec la partie prétraitement
(en 4.2.1) et segmentation des volumes d’intérêt (section 4.3). Dans la partie dédiée á l’analyse
des fibres, on propose l’utilisation des algorithmes d’intelligence artificielle (voir chapitre 5).
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Á la fin du résumé, nous présentons brièvement les résultats obtenus (voir chapitre 6), ainsi
que l’importance de cette étude, ainsi que les futurs développements des algorithmes et les
perspectives de recherche ouvertes (voir chapitre 7).

1.1 Presentation des objectifs de la thèse
La thèse vise des objectifs médicaux et des objectifs techniques, traduisant des solutions
innovantes pour les problèmes médicaux. Détecter la maladie de Parkinson est le but principal
du système. Pour arriver á cet objectif, le défi est de trouver les fibres cérébrales, permettant
d’effectuer un diagnostic de lévolution de la maladie. Comme présenté dans la figure 1.1,
notre démarche fait la transition entre le domaine des caractéristiques des images, qui son
extraites et interprétées, vers le domaine des caractéristiques spécifiques des images et de
l’anatomie cérébrale mais aussi de la connaissance médicale. Ces caractéristiques représentent
les valeurs qui sont analysées et qui sont traduites dans le domaine des connaissances au
niveau sémantique pour permettre une interprétation de la gravité de la maladie. Nous avons
á ce point le défi technique : générer des fibres qui appartiennent seulement au tract moteur
et les analyser afin de trouver la corrélation avec la maladie. Pour arriver aux fibres et les
séparer des autres, on doit trouver les volumes d’intérêt : la Substantia Nigra et le Putamen.

Pour trouver ces volumes automatiquement, il faut trouver dans le volume du cerveau,
la position de notre volume d’intérêt automatiquement - cela peut être plus haut ou plus
bas, selon le cas, peut-être plus grand ou plus petit, vers le milieu ou vers les deux cotés -
la variation démographique imposée par la différence de sexe, race et âge. La différence de
sexe détermine des volumes plus petits pour les femmes - la boite crânienne est plus petite ;
la différence de race détermine des différences entre la forme de la tête pour les asiatiques, les
européens et les africains ; l’âge détermine l’atrophie cérébrale pour les personnes plus âgées et
les formations anatomiques peuvent être comprimées ou/et déplacées. Ces problèmes doivent
être pris en compte pour avoir un systéme automatique capable de fonctionner sur n’importe
quel cas.

Pour déterminer les volumes anatomiques d’intérêt dans chaque image, on doit savoir leur
position et faire la différence entre le volume recherché et les tissues qui l’entoure. Vu qu’on
fait une évaluation sur chaque coté, on doit savoir la limite entre les hémisphères et déterminer
la position des volumes par rapport á cet hémisphère. Pour valider les volumes, on définit des
seuils minimum et maximum pour le volume, la distance par rapport aux hémisphères et par
rapport aux limites extérieures, ainsi que la position des volumes par rapport á la position du
cerveau dans l’image.

Une fois les volumes déterminés, on applique l’algorithme de génération des fibres de
[Le Bihan 2001], mais pour les valider, elle doivent passer au même temps par les deux volumes
d’intérêt de chaque hémisphère. On a des seuils pour la longeur des fibres et leur angulation.

Dans la partie détection et traitement des images, on défini des métriques spécifiques pour
éliminer les facteurs démographiques et suivre la variation de la corrélation entre la maladie et
ces fibres motrices. Les métriques déterminent les données pour la partie analyse du système
qui génère la valeur de la fonction de pronostic. Cette partie doit trouver la fonction de
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Figure 1.1 – PDFibAtl@s processus
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variation des fibres correspondant aux différents niveaux de la maladie. Á ce point, nous nous
retrouvons devant deux défis : fair la différence entre les cas malades et les cas sains et trouver
la gravité de la maladie pour les cas atteints de la maladie de Parkinson.
Les résultats sont déterminés par la qualité des images et de leurs caractéristiques, ce qui
constituent l’objet de la partie traitement et extraction des volumes d’intérêt.

1.2 Caractéristiques et utilisation des images DTI

Notre base de données contient, pour chaque patient, des volumes d’images basées sur l’IRM
(Imagerie de Résonance Magnétique) , des images de diffusion(DTI), spécifiques pour l’étude
de ce type de maladie. Nous disposons de 68 patients qui ont été identifiés et diagnostiqués
par notre neurologue avec la maladie de Parkinson, et de 75 cas de contrôle. Ces patients ont
donné leur accord pour participer a cette étude et ont été examinés pour prélever des images
de type DTI (TR/TE 4300/90 ; 12 directions ; 4 moyennes ; 4/0 mm sections ; 1.2 x 1.2 mm
résolution en-plane), des T1, des T2 et des images écoplanaires (EPI).

Nous n’utilisons pas les T1 ou T2, vu que ce genre d’images, même si possèdant une
trés bonne résolution, ne contiennent pas les tenseurs pour déterminer les fibres neuronales.
Cette propriété est spécifique seulement aux images EPI, qui contiennent les 12 directions
de diffusion. Nous disposons de 351 images pour chaque cas, avec les directions de diffusion
et les images sans diffusion, des images de 4 mm - tranches axiales (slices). Nous avons 27
tranches pour chaque patient, pour obtenir un volume sur une seule direction de diffusion.
Les tranches axiale sont prélevées en Commissure Antérieure/ Commissure Postérieure (plain
AC/PC).

Nos images sont acquises en utilisant un scanner Siemens Avanto 1.5T (B=800). Les
images sont prélevées en format DICOM, chaque fichier contient une image et un fichier header
attaché, qui contient le protocole d’acquisition et des donnés du patient. Avant d’utiliser les
images et de préparer les volumes, on extrait les donnés sur le patient et sur chaque image -
le niveau dans le volume, la direction de diffusion et le type de DTI.

Nous utilisons les images EPI parce qu’elles contiennent les tenseurs et nous offrent la
possibilité de reconstruire les fibres neuronales. Avant l’utilisation directe de ces images, on a
besoin d’éliminer le bruit et d’augmenter la clarté des détails anatomiques.

Dans ce sens, nous effectuons une augmentation du contraste de 0.5%, en utilisant le filtre
de imageJ1 et on élimine le crâne pour une meilleure segmentation du tissu cérébral. Les images
d’d’anisotropie fractionnaire (FA) obtenues directement du scanner, contiennent l’information
du niveau de la diffusion et de la dopamine. Ce type d’image permet une segmentation précise
grâce á la diffusion pour le Putamen, meilleure que celle des images T1 ou T2, dont la résolution
est par contre supérieure.

1imageJ : http://rsbweb.nih.gov/ij/ -accède en May 2010
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1.3 Nouveaux Algorithmes pour la préparation des images
Pour manipuler les images on a différents niveaux de définition des algorithmes dans le trai-
tement des images : au niveau de la préparation des images, pour la segmentation et pour
l’élimination les artefacts. Pour préparer les images, on doit éliminer les bruits, le crâne et dé-
terminer des éléments géométriques marqueurs. On considère toutes les opérations éffectuées
sur les images avant la segmentation comme des algorithmes de préparation de l’image.

Nous avons testé des systèmes concurrents sur les images de notre base de données, afin
d’avoir une quantification des capabilities de nôtre méthodes, en comparaison avec les autres
(voir chapitre 2.5.1). On évalue la possibilité de segmentation des tissus en matière blanche,
grise et liquide intracrânien avec SPM2 et le VBM3). Le SPM est un système dédié aux
images DTI, intégré a Matlab - VBM. Ce système accomplit la tâche de segmentation des
tissus cérébraux alignés entre les tranches axiales. Ceci étant, le système n’est pas automatique
et il est sensible aux éléements d’influence démographique. La segmentation est grossière et
basée sur l’atlas Talirarchi [Guillaume 2008] [Gaser 2008] qui propose des versions spécifiques
pour chaque race - on a utilise celle pour l’Asie de l’Est (origine de la base d’images utilisée).

Pour voir la qualité des images et la possibilité de segmentation des regions d’intérét nous
testons d’abord le 3D Slicer4 et le DTI tracker de MedINRIA5. Les deux systèmes offrent la
possibilité de délimiter la région d’intérêt dans les tissus pour la segmentation et l’alignement
automatique avec des techniques de recalage. Le 3D Slicer n’est pas capable d’accomplir le
recalage ou la segmentation en utilisant des moyens de calculs ordinaires. Avec la méthode
automatique de recalage, "diffeomorphic demons" du module Image Fusion (MedINRIA), les
contours anatomiques ne sont pas exacts. On teste avec le même module, la méthode au-
tomatique : "automatic affine registration". Cet module de MedINRIA permet d’effectuer le
recalage, mais seulement une méthode manuelle offre un résultat acceptable. Par ailleurs, la
segmentation offre comme résultat, des fichiers spécifiques á ce système, mais il ne permet
pas limiter les fibres en utilisant deux volumes d’intérêt (tractographie globale).

Pour la tractographie, on peut aborder une méthode déterministe ou probabiliste. La
première méthode utilise la géométrie des donnes de la diffusion et l’autre est basée sur les
statistiques des mêmes donnes. La méthode locale de tractographie utilise une source pour
les fibres, pendant que celle globale prend en considération la source et la destination des
fibres. Le module DTI tracker (MedINRIA) utilise une méthode locale déterministe, mais dans
ce cas, on n’est pas capables de séléctionner uniquement les fibres motrices. Une méthode
probabiliste globale intégrée dans le module Diffusion Toolkit (TrackVis6) offre le résultat le
plus proche de nos besoins.

A ce point, après avoir testé ces systèmes existants, nous sommes en mesure d’identifier
les problèmes majeurs que notre système doit être capable de surmonter.

2Statistical Parameter Mapping (SPM) http://www.fil.ion.ucl.ac.uk/spm/ -accède en May 2010
3Voxel Based Morphometry (VBM) http://en.wikipedia.org/wiki/Voxel-based_morphometry - ac-

cède May 2010
4Slicer - http://www.slicer.org/- accède en May 2010
5MedINRIA - http://www-sop.inria.fr/asclepios/software/MedINRIA/- accède en May 2010
6TrackVis - http://www.trackvis.org/- accède en Juillet 2010
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• Initialisation des images

– éliminer les bruits
– éliminer la calotte crânienne
– détéction des hémispheres
– récupérer les éléments volumétriques

• Identification des volumes d’intérêt

– identification de la tranche d’intérêt
– détection de la région anatomique

• Segmentation automatique

• Recalage géométrique intra-patient

• Tractographie déterministe globale

• Diagnostic et Pronostic

Les deux premiers problèmes sont résolus en utilisant la classification de l’intensité des voxels
avec KMeans7. De cette manière, nous sommes capables de déterminer le tissue crânien et
d’éliminer ce tissu avec tous les artefacts en dehors du périmètre de la tête. On élimine ainsi
tous les éléments de l’image autour de la tête, c’est á dire, les bruits entourant l’image.

Pour la détection des hemisphères, on utilise l’image sans la calotte crânienne. Afin d’iden-
tifier le contour du cerveau, on détermine le point de séparation entre les deux hémisphères.
En utilisant ce point et le centre de gravité, on est capables de définir l’axe central entre les
hémisphères (voir la figure 1.2). On fait les mesures des éléments volumétriques en utilisant
ImageJ (object counter8). Le centre de masse de l’image avec le point d’inflexion, détérmine
la limite entre les deux hémisphères ; le centre de gravité du cerveau est utilisé par la suite
pour déterminer la tranche d’intérêt dans la segmentation des volumes d’intérêt.

1.4 Algorithmes de segmentation des images DTI
Pour la segmentation des volumes, á cause de la variabilité inter-patient, nous devons définir
des algorithmes spécifiques pour chaque region anatomique et pour les deux hemispheres.
On détecte les volumes d’intérêt en choisissant chaque fois dans le volume de cerveau, la
tranche d’intérét. Dans cette image, on détermine la position du volume d’intérét pour la
détection intuitive automatique. La segmentation commence une fois que la tranche axiale où
les algorithmes de détection des volumes doivent s’appliquer a été détectée.

1.4.1 Position de la tranche d’intérêt
7KMeans en ImageJ : http://ij-plugins.sourceforge.net/plugins/clustering/index.html accède

en Juin 2010
8ImageJ plug-in Object Counter : http://rsbweb.nih.gov/ij/plugins/track/objects.html -accède en

Juin 2010
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Figure 1.2 – Contour du cerveau in-
duisant la variabilité et le positionne-
ment du sinus occipital

La position du mésencéphale dans le volume du cer-
veau relatif au centre de masse est approximativement
4-8 mm plus haut, c’est à dire 1-2 tranches au dessus
de la tranche contenant le centre de masse. Pour dé-
terminer cette position, nous prenons en compte le
volume du cerveau pour chaque patient. Le fait qu’on
ait des volumes qui contiennent 80-90% du cerveau
d’un patient ou 50-60% pour un autre, fait partie de la
variabilité inter-patients que nous devons dépasser. Le
rapport entre l’aire de la première tranche et celle en
contenant le centre de masse, nous permet d’évaluer
le volume du cerveau pour chaque patient (équation
1.1). En prenant en compte ce rapport, on divise en
quatre categories les patients, selon le volume contenu
dans les tranches prélevées (voir 4.2.1).

Pslice = V olZslice

V olF slice
∗ 100

ST
(1.1)

ou V olZslice et V olF slice représente les volumes de cerveau contenu dans la tranche avec le
centre de masse et respectivement la première de l’ensemble utile correspondant au patient ;
ST représente l’épaisseur de la tranche (4 mm). La valeur calculée nous offre une des quatre
catégories de la position de la tranche d’intérét relative au centre de masse.

• tranche +0 si Pslice<60
• tranche +1 si 60<Pslice<70
• tranche +2 si 70<Pslice<85
• tranche +3 si 85<Pslice<100

Les valeurs choisies pour classifier le pourcentage du volume du cerveau sont établîtes en
utilisant les études statistiques regardant la position relative du mésencéphale par rapport au
centre de masse. La position du Putamen est avec 8 mm plus haute que celle du volume du
mésencéphale.

1.4.2 Detection automatique du mésencéphale
Cette région anatomique est située au milieu du cerveau et l’axe qui limite les hémisphères doit
passer et diviser cette région. C’est pour cette raison qu’on détermine le centre de gravité de
la tranche d’intérét et en suivant la direction de l’axe de symétrie une fois le tissue différèrent
de celui du Corpus Callosum trouvée dans cette direction, on a trouvée le mésencéphale. L’axe
sépare la partie gauche et droite du mésencéphale (figure 1.3).

On prend les images des tranches d’EPI B0 qu’on classifie en utilisant les cartes des
tissues obtenu avec KMeans9. Cet classificateur est utilisée pour déterminer quatre types de

9KMeans in imageJ : http://ij-plugins.sourceforge.net/plugins/clustering/index.html- accède
en Juin 2010
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(a) EPI avec le mésencéphale dé-
tectée et les fibres

(b) EPI avec le Putamen détectée
et les fibres

(c) Image 3D des fibers détectées
en passant par les VOIs

Figure 1.3 – EPI avec les volumes d’intérét (VOIs) détectées dans 1.3(a), 1.3(b) et 1.3(c)
avec les fibres 3D sur un example

tissus dans les images EPI : matière blanche, matière grise, liquide intracrânien et bruit. Sur
ces images, on identifie la région du mésencéphale- matière grise- et le repérage des voxels
appartenant a cette région. Tous les voxels qui appartiennent á la méme classe du tissue
comme celle de la région sur l’axe de symétrie, á coté du centre de gravité, sont considérés
partie du mésencéphale (voir chapitre 4 de la thèse).

On élimine les bruits dans la détection du mésencéphale en utilisant des seuils. Les voxels
valides comme volume d’intérêt sur les deux tranches qui constituent le mésencéphale sont
transformés dans une image masque. Ce masque est utilisé pour sélectionner le volume d’inté-
rêt dans le processus de génération des fibres. La détection de cette région est réalisée sur les
images EPI, mais pour le Putamen, les marges ne sont pas claires, méme dans les images de
haute résolution. On peut donc utiliser seulement les FA pour ce but, puisque ce type d’image
est la seule qui contient le flux de dopamine qui entoure le Putamen et rend visible le contour.

1.4.3 Detection automatique de Putamen
Les images FA sont traitées comme les images EPI, en appliquant le classificateur de KMeans
sur quatre catégories de tissus. Cette fois, dans les images FA, on ne traite pas le tissu, mais
le flux de dopamine. Pour ce type d’image, les quatre classes représentent les couleurs (RGB),
qui codifient les directions de diffusion, et le bruit.

Sur la carte des classes de l’image FA, on considère de nouveau la limite entre les deux
hémisphères. Le centre de masse du cerveau et la limite supérieure du cerveau représentent les
limitations imposées a cette détection. On classifie les images selon la position du cerveau, en
trois catégories : centrée, en haut et en bas de l’image. Dans cet objectif, on utilise la position
du centre de masse dans l’image. En fonction de ces repères on obtient des algorithmes qui, en
passant par deux régions (classes des voxels) différentes, arrivent á la troisième dans l’image
de la carte.
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(a) Classification du tissue sur une
image de FA

(b) Putamen détecté sur la partie
gauche

(c) Putamen détecté sur la partie
droite

Figure 1.4 – Detection de Putamen supposé sur des images FA [Sabau 2010]

Le fait que cette région anatomique ait la forme géométrique comparable avec un triangle,
nous permet d’utiliser un algorithme intuitif, initialisé comme trois points mobiles sur une
surface compacte. On translate ces points jusqu’á ce que le limites de cette surface sont
atteintes. Dans les tranches plus hautes, le Putamen a la forme d’un quadrilatère et on
initialise l’algorithme avec quatre points mobiles. Les voxels valides sont ceux qui ont la même
intensité que ceux initialisées. La condition d’arrêt est obtenue quand une région plus grande
qu’un nombre minime de voxels différents, n’appartenant pas á la même classe que notre
région, sont détectées - pour pas prendre en compte les bruits (des " trous ") - figure 1.4. Les
masques de ces volumes des deux cotés du cerveau doivent étre appliqués sur les images EPI,
et pas sur celles oú ils ont été détectés. Pour cette raison, on a besoin d’un recalage entre les
images EPI et les images FA.

1.4.4 Recalage
Pour un alignement correct entre la pile d’images EPI et FA, les méthodes basées sur l’intensité
des voxels ne donnent pas un bon résultat à cause de la dispersion de la masse cérébrale. Notre
approche utilise des éléments géométriques automatiquement détectés :

• le centre de masse

• les limites extérieures du cerveau

• l’axe de limitation entre les hémisphères

Ces éléments détectés déterminent les coefficients pour la translation, la rotation et les
obliques. La différence entre le centre de masse dans les deux piles d’images, nous donne
les valeurs pour la translation : dx, dy et dz, ainsi que l’angulation entre l’axe de limitation
des hémisphères et les axes de l’image. On détermine la direction de cet axe pour pivoter les
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images en plan vertical ou horizontal.

[
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=
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z
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 (1.2)

Les transformations effectuées sont contenues dans la matrice 1.1. Ces transformations sont
appliquées sur la pile contenant le Putamen, extraite de l’image FA. Nous obtenons la valeur
de θx qui représente l’angle entre l’axe des hémisphères et l’axe Ox de l’image ; le θy est
l’angle entre le même axe et Oy dans l’image. La différence entre ces angles déterminées sur

Figure 1.5 – Determination géométrique des coefficients du recalage
l’image FA et l’image EPI nous donne l’angulation pour la transformation de la pile avec la
masque du Putamen. Cet angulation est déterminée en utilisant les équations 1.3 et 1.4 avec
les projections sur les axes de l’image du point situé á la base de la partie occipitale de la
boite crânienne, qui correspond au sinus occipital. Ce point est déterminé sur le contour du
cerveau par un point d’extremum qui délimite les deux hémisphères. Les angulations pour les
images FA et EPI sont nomées respectivement α et β. Leur différence nous donne la valeur
pour θ.

sinαx = SPy

I1SP
(1.3)

sinαy = SPx

I2SP
(1.4)

Comme on extrait l’information sur le Putamen de l’image FA, qui représente le niveau de
l’anisotropie dans le tissu, et cette information est utilisée dans l’image EPI pour générer les
fibres, on obtient ainsi une fusion de caractéristiques provenant de modalités différentes.
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1.4.5 Détection des fibres
Les caractéristiques des images d’EPI contiennent les tenseurs, qui représentent la direction de
diffusion dans l’angulation au niveau de chaque voxel. La valeur de l’angulation est contenue
dans les tenseurs et c’est par cette information que nous pilotons la direction de généra-
tion des fibres. On utilise les algorithmes de Bihan [Le Bihan 2001] et Basser [Basser 2000]
comme méthode de détection et on impose les limitations utilisées en général pour ce type
d’algorithmes : l’angulation des fibres doit étre plus grande que 60 degrés et la valeur de
l’anisotropie doit étre plus grande que 0.1. Cette approche est une méthode déterministe, qui
commence la croissance des fibres seulement du mésencéphale. On valide seulement les fibres
qui passent/arrivent dans la région détectée du volume du Putamen. La source des fibres est
le le volume du mésencéphale et leur destination est représentée par le volume du Putamen.
Cette façon de détecter les fibres est spécifique, étant liée á l’approche globale de détection.

La diffusion est calculée dans toutes les directions des gradients. Les tenseurs contiennent
les trois directions qui génèrent les vecteurs propres et les valeurs propres [Rorden 2008]
[Curran 2005]. L’anisotropie se calcule en utilisant les tenseurs augmentent les valeurs du le
flux neuronal passant par les axones. Le degré d’anisotropie pour chaque voxel est calculé
en utilisant la diffusivité des tenseurs fournissant la direction de diffusion. La trace des fibres
est déterminée en calculant la direction principale de la diffusivité avec la méthode de Gear
[Basser 2000] qui représente la diffusion comme des ellipses en 3D [Le Bihan 2001].

Les fibres détectées en utilisant cette technique sont évaluées en utilisant notre propre
métrique. Pour éliminer la variation du volume cérébral entre les patients, due a l’atrophie
cérébrale ou a la différence de sexe, on utilise un rapport entre le nombre de fibres et le volume
du cerveau ou celui du mésencéphale.

FD = FNr

V olBrain
; FDrel = FNr

V olV OI
(1.5)

ou la valeur de FD représente la densité des fibres calculée en utilisant le numéro des fibres -
FNr - détectées dans le volume de cerveau - V olBrain et la valeur de FDrel représentant la
densité des fibres relative au volume d’intérêt - V olV OI .

Le volume des fibres computée est présenté dans l’équation 1.6.

FV = FNr ∗ Vheight ∗ Vwidth ∗ Vdepth ∗ Fleng (1.6)

ou la valeur de FV représente le volume des fibres calculé comme un produit entre le nombre
de fibres (FNr), leur longeur (Fleng) et les dimensions des voxels Vwidth, Vheight, Vdepth.

Ces valeur extraites au niveau des fibres sont analysées dans le module de diagnostic et
de pronostic médical.

1.5 Analyse des caractéristiques des images. Diagnostic et
Prognostic médicale

Á ce point, dans notre système, on prend les valeurs des fibres et en utilisant des algorithmes
d’intelligence artificielle, on trouve une corrélation entre la maladie et les valeurs obtenues avec
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nos métriques pour les fibres. Deux requétes sont utilis’ees pour l’analyse de ces données : la
diagnostic et le prognostic. Pour le diagnostic, on doit faire la différence entre les cas sains et
les cas affectées par la maladie. Le prognostic évalue la gravite de la maladie en utilisant les
valeurs des fibres. Le modèle architectural utilisé pour le diagnostic et le pronostic comporte
cinq étapes :

• Donnes d’entrée - les valeurs extraites des fibres

• Les règles floues et leur poids

• Définition des poids

• Le calcul des paramètres de conséquence - déterminés en utilisant les poids et les fonc-
tions de variation

• La sortie - la décision qui donne la valeur finale

Les deux premières étapes nous fournissent les valeurs pour le diagnostic. Dans notre cas, les
poids représentent le degré des polynômes de Lagrange définis dans la quatrième étape. Cette
définition des polynômes et les modalités de décision finale représentent une approche hybride
correspondant á un système de type ANFIS.

Le diagnostic dans notre système est déterminé en utilisant une approche bassée sur des
règles. On défini des classes de valeurs en considérant un groupe de test et basée sur ces
classes, on défini les règles dans 1.7. Ces règles prennent en compte la densité des fibres -
HYF D- et le volume de mésencéphale - HYV OIV ol

. En évaluant le seuil avec ces règles, on
peut placer le cas dans une des catégories sain (HY=0) ou malade (HY=2 ou HY=3).

If(HYF D = HYV OIV ol
∧ HYF D ̸= −1) then HY = HYF D

If(HYF D = −1 ∧ HYV OIV ol
̸= −1) then HY = HYV OIV ol

If(HYF D ̸= −1 ∧ HYV OIV ol
= −1) then HY = HYF D

If(HYF D ̸= −1 ∧ HYV OIV ol
̸= −1) ∧ (HYF D ̸= HYV OIV ol

)) then
If(FD3D ̸= 0) then HY = 2
else HY = 0

If(HYF D = −1 ∧ HYV OIV ol
= −1)then The image is invalid!

(1.7)

On a encore besoin de la fonction dévaluation de la maladie, puisque dans les cas oú on dispose
de malades de deuxième et troisième dégré sur l’échelle H&Y. Ceci est le résultat du fait que
la diagnostic courant n’est pas encore capable d’effectuer le diagnostic pour les patients de
premier dégré. Pour le quatrième et le cinquième dégré, c’est difficile de prélever des images
valides.

La fonction de pronostic utilise les valeurs de la densité des fibres dans la partie gauche,
comme la dégénération est plus prononcée de cet coté. On place ces valeurs dans l’espace
de l’échelle H&Y et en utilisant l’interpolation entre ces points, on détermine une fonction
de variation (méthode d’inférence TSK). Vu que les points sont très dispersés, on essaye de
construire des fonctions pour les intervalles des valeurs. Ces intervalles prennent en compte
sois trois, sois cinq points (dans un objectif d’utilisation clinique courante de cette méthode,
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nous avons préféré nous limiter á cinq points, pour des raisons de simplicité d’utilisation. Par
ailleurs, un grade supérieur nous éloigne trop de la variation réelle de la diffusion.

L(x) =
n∑

i=0
yi ∗

n∏
j=0,j ̸=i

x − xj

xi − xj
(1.8)

Pour cette estimation, nous considérons des fonctions polynomiales composées de polynômes
de Lagrange (équation 1.8). Les coefficients pour le cas ou on considère un polynôme de
deuxième degré (trois points), sont donnés par : 1.9.

C2 = y1
(x1−x2)(x1−x3) + y2

(x2−x1)(x2−x3) + y3
(x3−x1)(x3−x2)

C1 = −(y1
x2+x3

(x1−x2)(x1−x3) + y2
x1+x3

(x2−x1)(x2−x3) + y3
x1+x2

(x3−x1)(x3−x2) )
C0 = y1

x2x3
(x1−x2)(x1−x3) + y2

x1x3
(x2−x1)(x2−x3) + y3

x1x2
(x3−x1)(x3−x2)

(1.9)

Pour le cas d’un polynôme de quatrième degré (cinq points), on obtient les coefficients sui-
vants :

C4 =
4∑

i=0
yi

4∏
j=0,j ̸=i

1
xi−xj

C3 =
4∑

i=0
yi(

4∑
j=0,j ̸=i

−xj

4∏
k=0,k ̸=i

(xi−xk)

)

C2 =
4∑

i=0
yi(

4∑
j=0,j ̸=i

xixj

4∏
k=0,k ̸=i

(xi−xk)

)

C1 =
4∑

i=0
yi(−

4∑
j=0,j ̸=i

xi(
4∑

m=0,m ̸=j

xm∗
4∑

n=m+1

xn)

4∏
k=0,k ̸=i

(xi−xk)

)

C0 =
4∑

i=0
yi(

4∏
j=0,j ̸=i

xj

4∏
k=1,k ̸=i

(xi−xk)

)

(1.10)

Une méthode d’évaluer des nouveaux patients et de leur associer un pronostic est celle appelée
Independent Adaptive Polynomial Evaluation (IAPE). Cette méthode évalue un nouveau cas
en utilisant des polynômes de différèrent dégré pour arriver á un résultat plus exact. On place
dans l’espace H&Y une nouvelle valeur(X) de la densité des fibres et on trouve les deux
plus proches valeurs entourant la nouvelle valeur(Xm et XM ) - figure 1.6. Si la valeur de la
fonction obtenue en prenant en compte les densités plus basses pour le nouveau point (LF 1)
est égale avec celle obtenue pour les points plus grands (LF 2) ou avec la fonction centrée sur
la nouvelle densité(LF 3), cela détermine le niveau H&Y pour la nouvelle densité (HY1). Le
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Figure 1.6 – Independent Adaptive Polynomial Evaluation (IAPE)

nombre de points voisins pris en compte, donne le dégrée polynomial des fonctions utilisées
pour le calcul. On prend en compte au début quatre points et on obtient les polynômes
Lagrange de troisième dégré. Si aucune fonction ne donne une valeur égale avec une des
autres deux fonctions, on passe au calcul des valeurs des polynômes de deuxième dégré. Á la
limite, les fonctions linéaires donnent des valeurs égales. Une autre estimation est calculée avec
la fonction obtenue en prenant les deux points voisins : Xm et XM . Cette fonction estimée
pour la nouvelle densité, donne la valeur de HY2. Les deux estimations obtenues, HY1 et HY2
sont comparées par la suite. Si la différence est plus grande que trois niveaux sur l’échelle
H&Y, on fait la moyenne pour obtenir la valeur finale de H&Y pour le nouveau cas. Cette
manière d’utiliser les polynômes de Lagrange fait partie des fonctions adaptives d’interpolation
(Figure 1.7). Comme le modèle a des similitudes avec les réseaux de propagation arrière (back
propagation) correspondant á la prise en compte de l’erreur pour améliorer l’inférence. Les
polynômes de Lagrange ont la même utilité dans notre système que les fonctions Gaussiennes
dans les réseaux RBF (Radial Basis Function). Une variation de cette technique prend en
compte seulement les cas de la maladie et élimine les contrôles (PD Adaptive Polynomial
Evaluation(PD-APE)). De cette façon, on introduit dans la seconde étape de l’architecture
ANFIS, la condition supplémentaire donnée par l’appartenance du cas.

1.6 Analyse des résultats
Au niveau technique, les résultats concernent la détection des volumes d’intérêt en termes de
précision comparée avec la détection manuelle ; la sensibilité pour les tissus entourant les zones
d’intérêt et de la spécificité. Le niveau technique du module d’analyse nous procure la précision
pur la diagnostic et le pourcentage de prédiction. On dispose de 68 patients diagnostiqués
avec la maladie de Parkinson et 75 cas de contrôle.

La detection de mésencéphale du au fait que cette région anatomique est très bien dé-
limitée, est plus facile. Pour la détection du Putamen, on effectue la comparaison entre la
détection manuelle et celle automatique de notre système. On évalue le ratio d’erreur, en
faisant la différence entre les deux détections. Le ratio d’erreur pour la détection basée sur la
méthode de triangulation, est de 35% pour la partie gauche et de 45% pour la partie droite.
Dans le cas de la détection basée sur la méthode du quadrilatère, on obtient une erreur relative
de 46% sur la partie gauche et la même sur la partie droite.
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Figure 1.7 – La diagramme pour la méthode Independent Adaptive Polynomial Evaluation
(IAPE)

En ce qui concerne la détection des fibres, pour toutes les cas de notre base de données,
les valeurs pour la spécificité sont de 63% et pour la sensibilité de 81%. Pour le niveau de
précision, on obtient un 75.5%. On utilise 41 patients (21 contrôles et 20 patients avec la
maladie de Parkinson) et on crée les polynômes de Lagrange utilisés pour le diagnostic et le
pronostic. On considère ces données comme idéales, du au fait que la segmentation manuelle
du Putamen nous offre probablement les meilleurs résultats. On utilise le diagnostic de Dr.
Chan comme réalité de terrain pour l’apprentissage. Pour ce groupe de patients, le diagnostic
basé sur les règles donne une valeur de précision de 61%, les fonctions d’interpolation de
deuxième dégré une précision de 34% et celle de quatrième dégré, de 43%. On introduit dans
l’ensemble des patients d’apprentissage, 9 nouveau patients des premiers tests et la précision
des algorithmes augmente de 19.2% pour le polynôme de deuxième dégré et de 6% pour
l’autre polynôme.

Les fonctions de prédiction nous offrent un ratio de succès de 62.26% pour la méthode
IAPE appliquée sur les patients (68 cas de la base de données). Pour le cas de contrôle, on
obtient 43.9% pour le polynôme de deuxième dégré. La sensibilité des fonctions est donnée
par les patients ayant la maladie ( max. 62%) et la spécificité est donnée par les valeurs des
cas de contrôle (max. 43.9%). Pour les patients et les contrôles, la méthode PD-APE, qui fait
la distinction entre les cas de la maladie et les contrôles, donne une précision de 44.87%.

En utilisant les statistiques, on calcule la courbe ROC du pronostic. Le logiciel de SPSS
17.0 (Statistical Package for the Social Sciences) utilisé pour l’estimation de la méthode
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Figure 1.8 – Sensibilité et spécificité de polynômes de prediction

IAPE sur les patients, nous donne une valeur de 0.705 pour l’aire située en dessous de la
courbe (AUC). Pour la méthode PD-APE, la valeur pour la même aire est de 0.959. Les
performances des fonctions de pronostic recommandent la méthode IAPE come la même pour
les cas de contrôle et de maladie, avec une valeur pour l’AUC de 0.745 (testées avec le logiciel
MedCalc10). La variation dans la détection du Putamen affecte les résultats des fibres et le
ratio d’erreur est propagé dans le système d’analyse. On peut améliorer le résultat en utilisant
un meilleur algorithme de détection des points d’initialisation pour le Putamen.

1.7 Conclusions et perspectives de recherche
En utilisant deux types d’images de DTI, on est capable d’identifier les volumes d’intérêt
utilisés pour déterminer les fibres du tract moteur. On effectue toutes ces détéctions automa-
tiquement et les fibres détectées sont analysées par notre module de diagnostic et pronostic
qui nous offre la possibilité d’estimer la sévérité de la maladie en générant une valeur sur
l’échelle H&Y.

Note prototype qui inclue les méthodes présentées dans ce résumé prend les images en
format DICOM et fournit les valeurs pour les fibres et la valeur du pronostic. Cet prototype,
PDFibAtl@s, contient des nouveau algorithmes de détéction automatique de la tranche d’inté-
rêt et des éléments géométriques pour le processus d’alignement volumique et pour le recalage.
La segmentation du mésencéphale et celle du Putamen représentent une approche globale de

10MedCalc 11.3.3.0 - www.medcalc.be
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Figure 1.9 – Les courbes ROC sur les méthodes IAPE et PD-APE appliquées sur la base de
données (143 cas : 68 patients avec PD et 75 contrôles). La difference des performances pour
les deux approches est de 0.178 pour l’AUC entre la valeur de 0.745 pour la méthode IAPE
et 0.569 pour PD-APE.

génération des fibres. La diffusion est calculée en utilisant une approche déterministe. On
introduit des nouvelles mesures pour les fibres afin d’éliminer le facteur démographique de la
détéction. Ensemble avec la partie analyse implémentée en utilisant la logique floue et les fonc-
tions polynomiales dans une architecture ANFIS, nous proposons un système complètement
automatique basé entièrement sur les informations extraites des images, pour le diagnostic.
Le fait que l’information provienne de plusieurs types de DTI constitue la partie de fusion des
images au niveau informationnel.

Les résultats peuvent être améliorés au niveau de la détéection du Putamen, menant á une
meilleure détection des fibres utilisées pour le diagnostic. Notre système offre une alternative à
la détection basée sur les tests cognitifs utilisés par les neurologues pour cette maladie. Notre
système offre aussi la possibilité de visualiser les fibres du strationigral et de les évaluer, en
utilisant notre mesure quantitative.

On peut améliorer les résultats au niveau de la détéection du Putamen qui va déterminer
une meilleure détection des fibres utilisées pour la diagnose. Notre système offre une alter-
native à la détection basée sur les testes cognitives utilisés par les neurologistes pour cette
maladie. Notre système offre aussi la possibilité de visualiser les fibres du strationigral et de
les évaluer en utilisant notre mesure quantitative.
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Figure 1.10 – PDFibAtl@s : système integrant nos méthodes
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Prognoza maladiei Parkinson
bazată pe fuziunea
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Introducerea imaginii ca bio-marker în cadrul detecţiei şi al predicţiei maladiei Parkinson
reprezintă scopul lucrării de faţă. Demersul complet în acest sens presupune atât studiul
metodelor curente de diagnoză, al teoremelor privitoare la caracteristici anatomo-fiziologice
care sunt legate de maladie, cât şi a determinării unei modalitaţi de a utiliza imaginea pen-
tru extragerea caracteristicilor, împreună cu proiectarea şi dezvoltarea algoritmilor. Această
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parte presupune proiectarea şi dezvoltatea de tehnici capabile să extragă automat caracteris-
ticile specifice de la nivelul imaginii medicale, alături de tehnici de analiză şi interpretare a
rezultatelor extrase pentru prognoză.

Soluţiile tehnice dezvoltate sunt parte integrantă a unui sistem de diagnoză şi prognoză
bazat pe imaginile RMN (Rezonanţa Magnetică) de difuzie. Utilizând acest tip de imagini
oferim o alternativă detecţiei exclusiv bazate pe teste cognitive, cu ajutorul cărora sunt mo-
mentan detectate cazurile de Parkinson şi clasificate de către neurologi. Abordarea prezentată
în această lucrare se bazează pe analiza şi prelucrarea automată a imaginilor medicale, care
oferă informaţii complementare celor cognitive. Metodele propuse se referă la un algoritm
complet automat de detecţie şi segmentare pentru volumele de interes, care după o recalare
geometrică oferă posibilitatea de detectie a fibrelor tractului neuromotor. În functie de starea
şi numărul fibrelor, realizăm un sistem automat de diagnoză evaluând codiţia bonavilor dată
de prognoză, oferim o valoare estimativa a severitaţii maladiei.

Dr. Chan [Chan 2007] a realizat un studiu conform căruia cazurile de Parkinson sunt
corelate cu diferenţe sesizabile în zona din mezencefal numita Substantia Nigra (SN). Această
zonă este responsabilă cu producerea dopaminei, unul dintre principalii neurotransmiţători.
Studii recente au constat că o pierdere a nivelului de dopamină în cazurile de Parkinson. Mal-
adia este detectată doar când dopamina este pierdută în proporţie de 80-90% [Today 2009].
Aceasta reprezintă motivaţia pentru o detecţie precoce, bazată nu doar pe elemente cogni-
tive, ci completând aceste elemente cu elemente măsurabile introduse de la nivelul imaginior
medicale. Corelând evaluarea maladiei bazată pe imagistică prin plasarea pe scala Hoehn &
Yahr (H&Y), aceeaşi ca şi cea folosită în testele cognitive, putem valida şi verifica rezultatele.
Deoarece Substantia Nigra (SN) nu este usor detectabilă ca zonă de interes, segmentam
mezencefalul, deoarece SN este conţinuta în acest volum. Cum foarte multe tracturi neu-
ronale pornesc din mezencefal, avem nevoie de un al doilea volum de interes, ca să putem
face distincţia între fibrele neuromotorii şi celelalte care pornind din mezencefal nu fac parte
din cel neuromotor. Ştiind că tractul neuromotor parcurge Putamenul- regiune anatomică
cerebrală situată superior în volumul cranian - utilizăm această regiune în procesul de trac-
tografie. Identificând aceasta zonă şi limitând fibrele validate la cele care parcurg cele doua
volume de interes, determinăm doar fibrele de care avem nevoie.

Deoarece valorile care caracterizează fibrele extrase nu urmează o regulă de dispersie şi nu
prezintă uniformitate, logica fuzzy este cea care ne permite sa definim seturi de date sub formă
de seturi fuzzy. Aceste seturi permit ataşarea regulilor pentru diagnoză. Un sistem de inferenţă
fuzzy sau model fuzzy permite o învatare adaptata setului de date, luând în considerare im-
precizia sau incertitudinea de la nivelul acestora. Legătura dintre contolerele fuzzy şi reţelele
neuronale determină un sistem de clasificare Adaptiv Bazat pe Reţele de Inferenţă Fuzzy (Adap-
tive Network-Based Fuzzy Inference Systems (ANFIS)). Utilizăm această arhitectură ANFIS
pentru diagnoză şi prognoză. Utilizând setul de reguli fuzzy suntem capabili să clasificăm
fibrele extrase şi să le plasăm în seturi, potrivit nivelului de severitate al maladiei pe scala
H&Y, aşa cum sistemul a fost învăţat. Diagnoza face diferenţa dintre cazurile sănătoase şi
cele afectate de maladie, pentru nivelele cunoscute şi detectabile. Prognoza determină nivelul
la care maladia afecteaza cazul analizat, chiar şi pentru cazurile precoce. Pentru prognoză,
realizăm un sistem de inferenţă bazat pe modelul Takagi-Surgeno-Kang (TSK). Acest sistem
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realizează pre-clasificarea datelor şi utilizând polinoame Lagrange realizăm prognoza.
Baza de date utilizată în demersul nostru este pusă la dispoziţie de către Singapore General

Hospital (SGH) prin intermediul colaboratoarei noastre, Dr. (MD) Ling-Ling CHAN. Acelaşi
specialist ne-a furnizat pentru baza de date şi valorile corespunzătoare severităţii maladiei
pentru fiecare caz pe scala H&Y. Această informaţie este utilizată ca "ground truth"( valoare
de adevăr) în testare si validare.

Rezumatul de faţă urmăreşte structura tezei cuprinzând o prezentare generală a metodelor
şi obiectivele tezei. Structura tezei pe capitole cuprinde în cadrul capitolului 1 al tezei alături
de obiective, o prezentare generală a prototipului PDFibAtl@s, care conţine noii algoritmi
proiectaţi şi dezvoltaţi. Urmatorul capitol include o prezentare a standardului medical care
înglobează imaginile utilizate de sistemul nostru, cu o secţiune pentru imaginile de RMN şi
specificaţii ale imaginilor RMN de difuzie. Capitolul 3 din teză conţine o prezentare a proto-
colului specific utilizat pentru achiziţia imaginilor din baza noastră de date. De asemenea, în
acelaşi capitol avem o prezentare a procedurii de preprocecsare a imaginilor pentru eliminarea
artefactleor şi detecţia elementelor geometrice utilizate în continuare. Capitolul 4 conţine
noile metode care sunt parte a prototipului PDFibAtl@s, sistem care preia imaginile în stan-
dard medical DICOM şi utlizând implementarea metodelor noastre, este capabil să realizeze
prelucrarea imaginilor medicale cu extragerea caracteristicilor. Acelaşi sistem conţine şi mod-
ulul de diagnoză şi prognoză ale cărui pasi sunt prezentati în capitolul 5. Evaluarea acestor
metode şi rezultatele obţinute sunt prezentate în capitolul 6, iar concluziile şi perspectivele
ştiinţifice, împreună cu impactul metodelor, sunt prezentate în capitolul 7 din teză. Acest
rezumat urmează aceeaşi structură, cu o mai mare detaliere la nivelul metodelor tehnice şi nu
la nivelul teoretic al demersului ştiinţific.

2.1 Prezentarea obiectivelor tezei
Integrarea imaginii ca element definitor pentru a determina severitatea maladiei Parkinson
reprezintă scopul principal al lucrării noastre. Pe lângă un studiu al imagisticii medicale,
in scopul de a determina în ce măsură premizele teoretice ale utilităţii acesteia sunt atinse,
este nevoie de proiectarea unui sistem care să realizeze practic premizele teoretice. Acest
sistem utilizează elemente existente din cadrul procesării imaginlor medicale, dar noi prop-
unem un model unitar şi în acelaşi timp automat pentru prognoză. Deşi obiectivul principal
este medical, demersul în sine se bazeaza în totalitate pe imaginile medicale, iar soluţiile dez-
voltate reprezintă obiective tehnico-ştiinţifice. În acest caz, obiectivele medicale determină
dezvoltarea metodelor tehnico-ştiinţifice. Este cazul detecţiei de fibre neuronale, care deşi e
un obiectiv medical, este atins doar prin procesul de tractografie, pe baza imaginilor de difuzie.
Aşa cum e prezentat în figura 2.1 metodele din cadrul PDFibAtl@s fac transferul informaţional
din domeniul imagistic în cadrul celui bazat pe cunoştinţe medicale, trecând prin cel al carac-
teristicilor. Caracteristicile analizate ne oferă posibilitatea de a determina severitatea maladiei.
Provocările tehnico-ştiinţifice se conturează pe baza celor medicale şi sunt plasate pe fiecare
nivel informaţional al fluxului de date: creşterea fibrelor care aparţin în exclusivitate tractului
neuromotor şi analiza lor pentru corelarea fibrelor cu severitatea maladiei. Pentru selecţia trac-
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Figura 2.1: Fluxul de date la nivel de PDFibAtl@s
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tului neuromotor avem nevoie de două volume de interes: Substantia Nigra (SN) si Putamen.
Principala provocare la nivel logistic este realizarea un sistem c o m p l e t a u t o m a t

care să realizeze nu doar segmentarea volumelor de interes, dar şi determinarea plasării al-
goritmilor de segmentare în interiorul volumului cerebral. Această poziţonare a volumelor de
interes relativ la volumul cerebral depinde de subiect: volumul căutat poate fi poziţionat pe o
tranşă (slice) axială superior sau inferior celei care conţine centrul gravitaţional al masei cere-
brale. în aceeaşi masură volumul de interes poate fi poziţionat în tranşa axială mai aproape
sau la distanţa mai mare faţă de axa dintre emisfere. Pentru acest scop avem nevoie de cen-
trul de greutate al masei cerebrale, precum şi de axa dintre emisfere. Variaţiile de poziţionare
se datorează diferenţelor demografice : diferenţe de vârstă, sex şi rasă (e.g. volum mai mic
pentru populaţia asiatica; formă diferită a craniului pentru populaţia africană). Diferenţele de
vârstă se concretizează în atrofie cerebrală pentru populaţia în etate, care determină modificari
în volumul cerebral şi deplasări ale poziţiei volumelor anatomice. Diferenţele de sex determină
diferenţe ale volumului cutiei craniene, care la rândul lor, determină diferenţe ale volumu-
lui cerebral. Astfel, pentru o abordare complet automată, aceste diferenţe trebuiesc luate
în considerare, iar reperele geometrice asemeni centrului de greutate şi a axei interemisferiale
reprezintă una dintre soluţiile propuse de noi. Repere în interiorul imaginii pentru determinarea
şi plasarea algoritmului de segmentare sunt necesare pentru a nu depăşi regiunea de interes.
Elemente geometrice care sunt independente de factorii demografici şi includ specificitatea
cazurilor: determinarea punctului de inflexiune corespunzător limitei occipitale a sinusurilor,
limitele superioare şi limitele interioare ale volumelor de interes.

După definirea şi detecţia volumelor de interes, algoritmul determinist de creştere al fi-
brelor neuronale, care preia abordarea clasică Bihan [Le Bihan 2001] şi Basser [Basser 2000]
şi adaugând volumele de interes oferă o tractografie globală.

După detectarea şi extargerea fibrelor definim metrici necesare corelării fibrelor cu severi-
tatea maladiei. Aceste valori sunt cele care introduse în modulul de analiză generează datele
de intrare pentru modulul de diagnoză şi prognoză. Acest modul are doua scopuri: difer-
enţierea între cazurile de control şi cele afectate de maladie, pe de o parte, iar pe de altă
parte determinarea gradului de severiate al bolii în cazul pacientilor afectaţi de maladie.

2.2 Caracteristicile şi utilitatea imaginilor de difuzie
Baza de date pe care o utilizăm e recoltată în Sigapore, oferind variabilitate demografică
şi conţine pentru fiecare caz medical diferite volume de imagini de difuzie RMN. Dispunem
de 68 de pacienţi care au fost identificaţi şi diagnosticaţi de către specialistul neurolog cu
maladia Parkinson, alături de 75 de cazuri de control. Toţi pacienţii şi-au dat acordul scris
pentru utilizarea imaginilor în cadrul studiului. Imaginile de difuzie (DTI) (TR/TE 4300/90;
12 direcţii de difuzie; 4 medii; secţiuni de 4/0 mm ;rezoluţie în plan de 1.2 x 1.2 mm ),
cuprinzând imagini de tip T1, T2 şi imagini ecoplanare (EPI).

Imaginile de tip T1 si T2 nu le utilizăm deoarece, deşi au o rezoluţie bună comparativ cu
celelalte imagini de difuzie, nu conţin tensori pentru determinarea fibrelor neuronale. Acest
tip de informaţie se găseste la nivelul imaginilor de tip EPI, cele care conţin cele 12 direcţii
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de difuzie. Astfel dispunem de 351 de fisiere DICOM de tip EPI pentru fiecare pacient. Cum
avem 12 direcţii de difuzie, obtinem 27 de tranşe axiale în fiecare volum cranian pentru fiecare
direcţie de difuzie. Tranşele axiale sunt prelevate în plan AC/PC- Comisura Anterioară/
Comisura Posterioară.

Imaginile bazei de date sunt prelevate utilizând un sistem Siemens Avanto 1.5T (B=800).
Acestea sunt achiziţionate în format DICOM, fiecare fişier conţinând alături de imaginea
propriu-zisă şi un fişier "header" atasat care oferă informaţii referitoare la protocolul de achiz-
iţie, precum şi date referitoare la pacient. Utilizând fişierul header putem extrage informaţii
referitoare la pacient - identificatorul pacientului (PatId), vârstă şi sex - care le utilizăm ulterior
pentru fiecare caz.

Utilizăm imagini de tip EPI datorită tensorilor şi al posibilităţii de reconstruire pentru
fibrele neuronale. Efectuăm o amplificare a contrastului cu 0.5% utilizând filtrul imageJ1 şi
efectuăm o eliminare a craniului pentru a utiliza doar ţesut cerebral în analiza ulterioară în
scopul segmentării.

Imaginile de anizotropie fracţionara (FA) obţinute direct, în urma scanării, conţin informaţii
legate de nivelul de difuzie şi de valorile de dopamină. Acest tip specific de imagine permite
o segmentare competitivă a Putamenului datorită difuziei care pune în evidenţă această zonă
anatomică. Aceast tip de informaţie nu este prezentă în imaginile cu rezoluţie superioară, cum
sunt cele de tip T1 sau T2, iar acurateţea anatomică a acestor imagini nu permite o conturare
a Putamenului.

2.3 Noi algoritmi de procesare şi analiză a imaginilor med-
icale

Pentru manipularea imagnilor la diferite nivele informaţionale avem nevoie de metode supli-
mentare pentru tratarea acestora: la nivelul pregătirii imaginilor, segmentarea lor şi elim-
inarea artefactelor. Pentru partea de pregătire a imaginilor trebuiesc eliminate artefactele şi
zgomotele. Determinarea elementelor geometrice este necesară în partea de segmentare. Al-
goritmii aplicaţi pentru pregătirea imaginilor înainte de metoda de segmentare sunt metode
de preprocesare.

Am testat cateva metode implementate în cadrul unor sisteme existente ca să determinam
comportamentul imaginilor pe care le avem pe de o parte, iar pe de altă parte, să avem în
vedere punctele slabe ale acestor sisteme ca să încercam să le îmbunătăţim (Capitolul 2.5.1).
Evaluăm diferite metode de segmentare la nivelul imaginilor medicale. Metoda globală de
segmentare în cazul imaginilor cerebrale se referă la extragerea diferitelor tipuri de ţesut
cerebral: materie alba (WM), materie cenuşie (GM) şi lichid intracranian (CBF). Această
metoda este adoptată în implementarea Matlab SPM2 şi VBM3. SPM este un sistem dedicat
imaginilor de fMRI (RMN functional), cu aplicabilitate şi pentru DTI (Imagini RMN de difuzie),

1imageJ : http://rsbweb.nih.gov/ij/ -accesat în May 2010
2Statistical Parameter Mapping (SPM) -http://www.fil.ion.ucl.ac.uk/spm/ -accesat în Mai 2010
3Voxel Based Morphometry (VBM) -http://en.wikipedia.org/wiki/Voxel-based_morphometry -

accesat în Mai 2010
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având ca modul VBM. Acest sistem îndeplineşte atât segmentarea, cât şi alinierea la nivelul
tranşelor axiale. Problema acestei abordări în cazul imaginilor noastre este faptul că nefiind
o abordare automată, este sensibilă la parametrii demografici. O segmentare a regiunilor
anatomo-cerebrale se poate realiza cu ajutorul acestui sistem, doar că fiind bazată pe atlasul
Talairarchi [Guillaume 2008], este asemeni unei matriţe, nu se calează la nivelul fiecărui pacient
în funcţie de factorii demografici [Gaser 2008]. Imaginile rezultate sunt "împăturate" nefiind
utilizabile în continuare nici măcar pentru a valida sau compara elementele extrase.

Pentru segmentarea regiunilor de interes specifice, pe lăngă metoda bazată pe atlas, abor-
darea manuală este eficientă. Această metodă oferă acurateţea dorită de sistemul nostru şi
am testat-o pe imaginile DTI utilizând un sistem nou dezvoltat pentru aceste imagini: 3D
Slicer4. Asemeni lui, modulul DTI track din cadrul sistemului MedINRIA5, oferă funcţii dedi-
cate segmentării volumelor anatomice, dar şi tractografiei. Ambele sisteme oferă posibilitatea
segmentării în regiuni de interes atât în funcţie de tipul ţesutului, cât şi în funcţie de regiunea
anatomică, dar şi recalarea automată. 3D Slicer nu este capabil de a realiza recalarea sau
segmentarea lucrând pe capacitatea de memorie oferită de noi. MedINRIA poate realiza re-
calarea, dar doar metoda manuală oferă acurateţea dorită pentru o segmentare ulterioară în
regiuni de interes. Faptul că la final acest sistem generează fişiere specifice care nu pot fi
utilizate de alte sisteme, nu este un punct bun. De asemenea în tractografie nu putem utiliza
mai mult de un volum de interes in DTI tracker, iar meroda de tractografie globală nu poate
fi realizată, ci doar o tractografie locală. Faţă de abordarea deterministă implementată în
cadrul sistemului nostru, am testat şi o abordare probabilistă globală cu Diffusion Toolkit de
la TrackVis6. Această metodă tractografică oferă rezultate bune, dar cuprinde zgomote în
detecţie.

Testând astfel baza de date putem identifica punctele problematice în metodele testate.
Definim în aceste condiţii barierele de surmontat la fiecare nivel al modulului:

• Preprocesarea imaginilor

– eliminarea zgomotelor
– eliminarea calotei craniene
– detecţia şi limitarea emiserelor cerebrale
– recuperearea parametrilor volumetrici specifici

• Detecţia tranşei de interes

• Detecţia zonei anatomice de interes în plan axial

• Segmentarea volumelor de interes

– segmentarea mezencefalului
– segmentarea Putamenului (emisfera stângă şi dreaptă)

4Slicer - http://www.slicer.org/- accesat în Mai 2010
5MedINRIA - http://www-sop.inria.fr/asclepios/software/MedINRIA/- accesat în Mai 2010
6TrackVis - http://www.trackvis.org/ - accesat în Iulie 2010
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• Recalarea imaginilor FA în funcţie de cele de EPI

• Tractografierea deterministă globală

• Diagnoza şi prognoza

Figura 2.2: Conturul cerebral deter-
minat pe imaginea EPI cu B0

Primele două probleme sunt depăşite prin uti-
lizarea clasificării KMeans7 în clase de voxeli core-
spunzând tipurilor de ţesut intra-cranian: materie albă
(white matter - WM), materie cenuşie (grey matter -
GM), lichid intracranian (cerebro-spinal fluid - CSF) şi
ţesut osos provenind de la cutia craniană. Eliminând
ultimul strat aparţinând ţesutului osos şi elementele
care se află în exteriorul acestuia, eliminăm şi arte-
factele care înconjoară cutia craniană.

În continuare pentru toţi algoritmii de procesare
utilizăm imaginile fără calota craniană. Trasând
conturul cerebral şi determinând punctul de inflexi-
une interemisferiala, corespunzător anatomic sinusu-
lui occipital de la baza cutiei craniene din zona
occipitala, alături de centrul de masă, determină
axa limita dintre emisferele cerebrale (figura 2.2).
Realizăm măsurătorile volumetrice utilizând ImageJ

(object counter8). Centrul gravitaţional este utilizat în continuare ca reper pentru metodele
de determinare ale tranşei de interes şi plasarea algoritmilor de deecţie pentru volumele de
interes.

2.3.1 Poziţionarea în cadrul volumului de interes
Variabilitatea inter-pacienţi atrage cu sine parametrii pentru abordarea automată a segmentării
pentru eliminarea specificităţii. De asemenea cele două emisfere cerebrale pot fi dezvoltate
diferit din punct de vedere anatomic, motiv pentru care metodele pentru segmentarea vol-
umelor de interes la nivelul celor două emisfere sunt diferite - variabilitate intra-pacienăi.
Pentru detecţia volumelor de interes detectăm întâi tranşa cu imaginea axiala care conţine
volumul respectiv. În această tranşă detectăm poziţia relativă a volumului de interes în raport
cu centrul de greutate al creierului şi de axa care separă emisferele.

Poziţionarea mezencefalului în cadrul volumului cerebral relativ la centrul gravitational
este 4-8 mm superior, ceea ce corespunde la 1-2 tranşe axiale deasupra celei care conţine
centrul gravitaţional. Pentru o mai bună detecţie a tranşei de interes luăm în considerare
poziţionarea pacientului în cadrul volumului. Acesta poate fi poziţionat mai sus sau mai jos
în plan axial al imaginii, iar datorită diferenţelor demografice, volumul extras poate conţine

7KMeans în ImageJ: http://ij-plugins.sourceforge.net/plugins/clustering/index.html accesat
în Iunie 2010

8ImageJ plug-in Object Counter : http://rsbweb.nih.gov/ij/plugins/track/objects.html -accesat
în Iunie 2010
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mai multe informaţii anatomice în cazul unei cutii craniene mai mici. Faptul că 80-90%
din volumul cerebral e conţinut în volumul prelevat sau un volum de 50-60%, reprezintă un
neajuns care trebuie depăşit. Raportul între volumul conţinut în prima tranşă şi cel din tranşa
cu centrul de masă ne permite sa aproximăm volumul achiziţionat, exprimat în ecuaţia 2.1.

Pslice = V olZslice

V olF slice
∗ 100

ST
(2.1)

unde V olZslice şi V olF slice reprezintă volumul cerebral conţinut în tranşa cu centrul de masă,
respectiv tranşa initială pentru fiecare pacient; ST reprezintă grosimea tranşei (4 mm). Val-
oarea calculată oferă posibilitatea poziţionării volumului în una dintre cele patru categorii,
relativ la centrul de greutate conţinut în tranşa notată cu 0:

• tranşa +0 si Pslice<60
• tranşa +1 si 60<Pslice<70
• tranşa +2 si 70<Pslice<85
• tranşa +3 si 85<Pslice<100

Valorile cosiderate pentru clasificarea procentajului volumului cerebral sunt stabilite prin analiză
statistică. Poziţia Putamenului este cu două tranşe mai sus în volum decât cea a mezence-
falului - aproximativ 8 mm.

2.3.2 Detecţia automată a mezencefalului
Metoda de detecţie lucrează în plan axial doar în interiorul tranşei de interes. Regiunea
anatomică mezencefaliană este situată în mijlocul masei cerebrale, iar axa care limitează cele
două emisfere trece cu siguranţă prin interiorul acestui volum. Centrul de masă al volumului
din tranşa de interes împreună cu punctul de inflexiune din zona occipitală determină axa de
simetrie. Tipurile de ţesut care se regăsesc alături de centrul de masă pe axa de limitare a
emisferelor aparţin unor regiuni anatomice diferite. Utilizăm o clasificare KMeans9 pentru a
determina mai uşor tipul de ţesut căruia aparţin pixelii şi în acest fel a distinge pe cei care
aparţn regiunii de interes, ştiind tipul de ţesut căruia îi aparţine. Mezencefalul se află pe
axa dintre emisfere şi este regiune de materie cenuşie, spre deosebire de corpus callosum sau
lichidul intracranian. Pornind de la centrul gravitaţional în direcţia axei dintre emisfere cand
atingem o zonă care e materie cenuşie ştim ca am atins mezencefalul (figura 2.3). Pentru
detecţia mezencefalului considerăm imaginile EPI B0 pe care aplicăm KMeans. Voxelii care fac
parte dintr-un volum de interes, detectat pe cele două tranşe axiale ale mezencefalului, sunt
transformaţi în mască. Aceasta mască este utilizată în selecţia mezencefalului în procesul de
tractografie. Pentru mezencefal această detecţie se poate realiza direct pe imaginile de EPI,
dar pentru Putamen acest lucru nu este posbili datorită rezoluţiei şi diferenţei de contrast.
Deşi pentru mezencefal detecţia se poate realiza şi pe aceste imagini, pentru Putamen le
utilizăm pe cele de FA.

9KMeans in imageJ: http://ij-plugins.sourceforge.net/plugins/clustering/index.html- accesat
în Iunie 2010
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(a) EPI cu mezencefalul detectat şi
proiecţia fibrelor

(b) EPI cu Putamenul detectat şi
proiecşia fibrelor

(c) Imagine 3D cu fibrele care trec
prin VOI

Figura 2.3: EPI şi volume de interes (VOIs) detectate în imaginile 2.3(a), 2.3(b) si 2.3(c) cu
fibre 3D pe un exemplu

2.3.3 Detecţia automată a Putamenului
Pe imaginile de FA se aplică, la fel ca şi pe cele de EPI, clasificatorul KMeans identificând
patru clase de voxeli. Cum utilizăm imaginile de FA, nu vorbim de clase de ţesut, ci de direcţii
de difuzie reprezentate ca intensităţi ale voxelilor. Considerând aceste direcţii şi zgomotul la
nivelul imaginii, avem patru clase identificate în KMeans: antero-posterior, sus-jos, stânga-
dreapta şi artefacte.

Imaginea obţinută din clusterii clasificatorului este cea pe care o utilizăm în segmentare.
Pe această imagine, cu centrul de masă şi axa dintre emisfere identificate pe tranşa de interes,
avem nevoie de poziţia Putamenului pentru fiecare emisferă. Clasificăm pacienţii în funcţie
de poziţionarea pe verticală a craniului în imagine: central, superior, inferior. Poziţia este
determinată în funcţie de centrul de masă al volumului din tranşa axială. Aceste repere
geometrice care iau în considerare variabilitatea interpacienţi sunt parte a metodei de detecţie
a poziţiei Putamenului în imaginea axiala. Impreună cu axa centrală şi limitele exterioare ale
regiunii cerebrale permit poziţionarea algoritmului de detecţie.

Forma geomertică aproximativă a acestei regiuni anatomice este triunghiulară în cazul
tranşelor inferioare şi cuadrilaterală în tranşele superioare. Acesta e motivul pentru care
metoda de detecţie intuitiva porneşte de la aceasta formă şi în loc de a realiza pixel cu pixel
verificarea şi validarea apartenenţei la regiunea de interes, modifică poziţia vârfurilor formei
geometrice care reprezintă Putamenul. În cazul în care aceşti voxeli aparţin aceluiaşi ţesut ca şi
cei iniţiali, modificăm poziţia vârfurilor triunghului. La fel se întamplă şi în cazul algoritmului
cu iniţializare cuadrilaterala. Punctele iniţiale sunt deplasate doar în direcţiile specificate.
Tipul de iniţializare diferă în funcţie de emisfera şi de poziţia tranşei axiale în volumul cerebral.
Aceasta este aleasă în urma testelor statistice (testele în lucrarea [Sabau 2010]). Limitarea
regiunii minime si maxime detectate elimină erorile de detecţie. Detecţia se realizează pe
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(a) Classificarea ţesutului pe o
imagine de FA

(b) Putamen detectat pe emisfera
stangă

(c) Putamen detectat pe emisfera
dreaptă

Figura 2.4: Detecţia de Putamen suprapusă pe imagini de FA [Sabau 2010]

trei tranşe consecutive. Aliniem volumele detectate în funcţie de centrul lor de masă şi
transformăm în mască volumul cu tranşele detectate - figura 2.4. Masca determinată, deşi
detectată pe imagini de FA o vom aplica pe imaginea EPI, dar pentru acest scop cele două
imagini trebuiesc să se suprapună. Acesta e scopul algoritmului de recalare şi apoi de fuziune
informaţională prin aplicarea acestei măşti pe imaginile EPI.

2.3.4 Recalarea şi fuziunea caracteristicilor
Pentru recalarea corectă a volumelor cerebrale FA cu EPI metodele bazate pe intensitatea vox-
elilor nu oferă rezultate satisfăcătoare. SPM generează în urma alinierii imagini "împaturate",
cu MedINRIA modulul de fuziune funcţioneaza bine în varianta manuală a alegerii reprerelor.
Chiar şi în aceste condiţii, reperele manuale nu au însă acurateţe şi depind de persoana care
realizează marcarea punctelor de corespondenţă din cele două imagini. Datorită faptului că
dispunem de doua tipuri diferite de imagini aparţinând aceluiaşi pacient, vom reliza o recalare
intrapacient. Metoda propusă de noi este geometrică rigidă, în totalitate automată şi se
bazează pe elementele detectate la nivel de volum cerebral în ambele stive de imagini:

• Centrul gravitaţional cerebral

• Limitele exterioare cerebrale

• Axa dintre emisfere

Utilizând parametrii geometrici detectăm coeficienţii pentru translaţie, rotaţie şi orientarea
planelor. Diferenţa dintre centrul gravitaţional detectat în stiva de imagini FA şi EPI determină
valorile pentru translaţie: dx, dy et dz. Valoarea unghiului dintre axa emisferială şi sistemul
de coordonate ale imaginii determină orientarea în spaţiu a stivei. Diferenţa dintre unghiul
determinat pe stiva FA şi EPI ne oferă valorile pentru rotaţie. Orientarea axei dintre emisfere
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în sistemul de coordonate determină o răsturnare (90 de grade) a volumului.

[
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′
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′ 1
]

=


cosθx sinθx 0 dx

−sinθy cosθy 0 dy

0 0 1 dz

0 0 0 1




x
y
z
1

 (2.2)

Procesul de transformare al imaginii utilizând matricea din ecuaţia 2.1 presupune aplicarea
acestor coeficienţi la nivel de voxel în imaginea care este tranformată. În cazul nostru imaginea
modificată este cea care conţine masca de Putamen extrasă din FA. Valoarea θx reprezintă
unghiul dintre axa dintre emisfere şi axa Ox din imagine; θy unghiul dintre aceeaşi axa şi
axa Oy din image. Diferenţa dintre unghiul determinat pe imaginea EPI şi cel determinat pe

Figura 2.5: Determinarea geometrică a coeficienţilor de recalare
FA ne oferă valoarea unghiului de rotaţie utilizat în transformarea stivei care conţine masca
Putamenului. Această diferenţă determină valoarea unghiurilor din ecuaţiile 2.3 şi 2.4 în
punctul de inflexiune. Unghiurile pentru imaginile FA sunt notate cu α şi pentru EPI cu β.
Diferenţa dintre aceste unghiuri o notăm cu θ.

sinαx = SPy

I1SP
(2.3)

sinαy = SPx

I2SP
(2.4)

Volumul Putamenului este extras din imaginea de FA, unde informaţia reprezentată este di-
fuzivitatea, pe când în EPI, unde utilizăm masca, informaţia reprezentată este anatomică şi
tensorială. Astfel transferul de cunoştinţe dinspre FA spre EPI beneficiază de ceea ce e mai
bun în ambele tipuri de imagini.
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2.3.5 Tractografia: extragerea fibrelor neuronale
Avantajul imaginilor EPI este faptul că acestea conţin pe fiecare direcţie de difuzie valorile
care determină tensorii pentru a calcula difuzivitatea. Algoritmul utilizat pentru tractografie
este varianta clasică propusă în [Le Bihan 2001] şi [Basser 2000].

Difuzia se bazează pe faptul că moleculele de apă sunt atenuate în difuzie de materia
cenusie. La nivel cerebral materia cenuşie este constituită din axonii neuronilor, iar dendritele
constituie materia alba. Acesta este motivul pentru care trasmiterea impulsului neuronal
şi direcţia de transmitere poate fi determinată prin intermediul difuziei de-a lungul fibrelor
neuronale [Rorden 2008] [Curran 2005].

Difuzivitatea se calculează utilizând tensorii care conţin direcţiile utilizate în prelevarea
imaginilor. Utilizând valorile proprii şi vectorii proprii, calculati pe baza tensorilor, putem
determina anisotropia. Această metrică este specifică difuzivitătţii. Trasarea fibrelor în funcţie
de direcţia principală de difuzie şi de valorile tensorilor este limitată de algoritmul nostru prin
utilizarea volumelor de interes. Pentru eliminarea zgomotelor în detecţie introducem valori
limită pentru angulaţie şi anisotropie. Utilizăm valori recomandate de cei care au propus
algoritmul în acest scop.

Trasăm doar fibrele care pornesc din volumul mezencefalului şi numai cele care trec prin
Putamen sunt validate şi considerate ca şi rezultate. Această abordare este specifică trac-
tografiei globale care se bazează pe o zonă sursa - la noi mezencefalul- şi pe o zonă destinaţie
- la noi Putamenul.

Pentru a evalua fibrele determinăm densitatea lor introducând metrici proprii ca să eliminăm
atrofia cerebrală şi diferenţa de volum prin raportarea acestora la volumul regiunilor de interes
sau la volumul cerebral.

FD = FNr

V olBrain
; FDrel = FNr

V olV OI
(2.5)

unde valoarea pentru FD reprezintă densitatea fibrelor calculată utilizând numărul de fibre
determinate - FNr - în cadrul volumului cerebral - V olBrain, iar valoarea FDrel reprezintă
densitatea fibrelor relativ la volumul de interes- V olV OI . Volumul de fibre calculat în urma
tractografiei este prezentat în ecuaţia 2.6.

FV = FNr ∗ Vheight ∗ Vwidth ∗ Vdepth ∗ Fleng (2.6)

unde valoarea reprezentată de FV este volumul calculat al fibrelor ca şi produs între numarul
de fibre (FNr), lungimea lor (Fleng) şi dimensiunile voxelilor Vwidth, Vheight, Vdepth. Utilizând
aceste metrici putem evalua în continuare valorile caracteristicilor extrase.

2.4 Analiza caracteristicilor. Diagnoza şi prognoza medicală
La acest nivel informaţional în fluxul de date valorile detectate prin tractografie sunt evaluate.
Corelarea dintre valorile evaluate şi severitatea maladiei determină o prognoza a acestei boli.
Avem doua cerinţe pentru acest modul: diagnoza şi prognoza. În diagnoză trebuie facută
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diferenţa dintre cazurile de control şi cele afectate de maladie. Prognoza evalueaza severitatea
maladiei pentru cazurile afectate. Modelul arhitectural utilizat pentru diagnoză şi prognoză
conţine cinci paşi:

• Date de intrare - valorile extrase de la nivelul fibrelor

• Reguli fuzzy şi greutatea lor

• Definirea nivelelor de importanţă (weights)

• Calculul parametrilor de consecinţă- determinaţi utilizând nivelele de importanţa şi
funcţiile de interpolare

• Ieşirea - decizia care generează valoarea finală

Primele două etape furnizează valorile pentru diagnoză. În cazul nostru nivelele de importanţă
sunt reprezentate de gradul polinoamelor Lagrange, definite in etapa a patra. Această definire
a polinoamelor ca unelte decizionale reprezintă o abordare hibridă a unui sistem bazat pe
arhitectura ANFIS.

Diagnoza în cadrul sitemului nostru este realizată utilizând un sistem bazat pe logica
fuzzy care utlizează valorile metricilor de la nivelul fibrelor. Aceste valori sunt clasificate în
funcţie de valoarea pe scala H&Y determinată pe baza testului cognitiv pentru pacienţii pe care
realizăm antrenarea părţii de clasificare. În funcţie de aceste clase realizăm un sistem de reguli
pe care le utilizăm pentru determinarea valorii diagnozei ( regulile din ecuaţia 2.7). Sistemul
de reguli determină valoarea H&Y în funcţie de densitatea fibrelor - HYF D- şi de volumul
mezencefalului - HYV OIV ol

. Utilizând valorile detectate pentru fibre, în funcţie de regulile
proprii putem face diferenţa dintre cazurile de control - HY=0 şi cele afectate de maladie, dar
deoarece dispunem de pacienţi cu HY=2 si HY=3, doar aceste nivele ale maladiei le putem
evalua şi antrena sistemul.

If(HYF D = HYV OIV ol
∧ HYF D ̸= −1) then HY = HYF D

If(HYF D = −1 ∧ HYV OIV ol
̸= −1) then HY = HYV OIV ol

If(HYF D ̸= −1 ∧ HYV OIV ol
= −1) then HY = HYF D

If(HYF D ̸= −1 ∧ HYV OIV ol
̸= −1) ∧ (HYF D ̸= HYV OIV ol

)) then
If(FD3D ̸= 0) then HY = 2
else HY = 0

If(HYF D = −1 ∧ HYV OIV ol
= −1)then The image is invalid!

(2.7)

Acesta este motivul pentru care avem nevoie de funcţia de evaluare: determinarea gradului
de afectare chiar daca nu dispunem de pacienţi în baza de date care să aiba acelaşi grad -
extrapolare a funcţiei de evaluare. Astfel prin extrapolare putem determina şi cazurile precoce
- stadiul incipient al maladiei.

Funcţia de prognoză utilizează valorile densităţii fibrelor din emisfera stangă, datorită
faptului că degenerarea cauzată de maladie este, confrom studiilor, mai pronunţată pe această
parte. Plasând valorile fibrelor în funcţie de scala H&Y putem să trasăm o funcţie (metoda
TSK) pe care sa o utilizăm pentru evaluare. Având în vedere dispersia valorilor determinăm
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funcţia de evaluare pe intervale. În construirea funcţiei pe intervale luăm în considerare valorile
determinate utilizând Putamenul detectat manual. Intervalele iau în considerare trei sau cinci
puncte în construirea funcţiei polinomiale. Nu luăm mai multe puncte deoarece funcţia se
complică, iar la mai puţine puncte am avea o abordare lineara, neconformă cu amplasarea
datelor. Funcţia de evaluarea este un polinom Lagrage (prezentat în ecuaţia 2.8) cu ordinul
dat în funcţie de numărul de punctele considerate.

L(x) =
n∑

i=0
yi ∗

n∏
j=0,j ̸=i

x − xj

xi − xj
(2.8)

Funcţiile polinomiale construite pentru estimare cu ajutorul polinoamelor Lagrange au coefi-
cienţii calculaţi fie de setul de ecuaţii 2.9, fie de ecuaţiile 2.10.

C2 = y1
(x1−x2)(x1−x3) + y2

(x2−x1)(x2−x3) + y3
(x3−x1)(x3−x2)

C1 = −(y1
x2+x3

(x1−x2)(x1−x3) + y2
x1+x3

(x2−x1)(x2−x3) + y3
x1+x2

(x3−x1)(x3−x2) )
C0 = y1

x2x3
(x1−x2)(x1−x3) + y2

x1x3
(x2−x1)(x2−x3) + y3

x1x2
(x3−x1)(x3−x2)

(2.9)

Setul de ecuaţii 2.9 determină polinoame de gradul doi, iar setul bazat pe cinci puncte din
ecuaţia 2.10 determină polinoame de gradul patru.

C4 =
4∑

i=0
yi

4∏
j=0,j ̸=i

1
xi−xj

C3 =
4∑

i=0
yi(

4∑
j=0,j ̸=i

−xj

4∏
k=0,k ̸=i

(xi−xk)

)

C2 =
4∑

i=0
yi(

4∑
j=0,j ̸=i

xixj

4∏
k=0,k ̸=i

(xi−xk)

)

C1 =
4∑

i=0
yi(−

4∑
j=0,j ̸=i

xi(
4∑

m=0,m ̸=j

xm∗
4∑

n=m+1

xn)

4∏
k=0,k ̸=i

(xi−xk)

)

C0 =
4∑

i=0
yi(

4∏
j=0,j ̸=i

xj

4∏
k=1,k ̸=i

(xi−xk)

)

(2.10)

Evaluarea unui nou caz presupune diagnoza, apoi prognoza. Evaluăm valorile pentru noul
pacient cu ajutorul setului de reguli. În urma testelor polinomul de gradul doi oferă rezultate
mai bune în prognoza cazurilor de control. Abordarea intuitiva care porneşte de la funcţii
polinomiale de gradul trei, pana la cele lineare generează rezultate de o acurateţe ridicată
pentru diferite nivele ale maladiei. Incercăm să introducem noua valoare determinând valo-
rile cele mai apropiate de această noua valoare (figura 2.6). Împreuna cu valorile învecinate
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(valoarea imediat inferioară Xm şi cea imediat superioară XM ) determinăm funcţiile polino-
miale şi evaluăm noua valoare H&Y pentru densitatea fibrelor nou introdusă utilizând aceste
funcţii. Această evaluare adaptivă utilizând punctele învecinate determină funcţiile polino-

Figura 2.6: Independent Adaptive Polynomial Evaluation (IAPE)

miale cu ajutorul cărora în cazul în care valoarea în punctul nou (X) evaluată pe cel putin
doua din funcţiile polinomiale coincide, atunci luăm această valoare ca şi rezultat HY : HY1.
Pentru cazul în care valorile sunt diferite redeterminăm funcţiile polinomiale utilizând mai
puţine puncte pentru o funcţie polinomială de grad inferior. Un pas suplimentar în deter-
minarea valorii H&Y este valoarea în noul punct (X) dată de funcţia lineară care trece prin
punctele învecinate (Xm1 şi XM1) celui pe care îl introducem: HY2. In cazul în care diferenţa
dintre HY1 şi HY2 depăşeşte trei nivele pe scala H&Y, atunci facem media între cele două
valori determinate (Figura 2.7). Această manieră de a utiliza polinoame Lagrange face parte
din categoria abordărilor adaptive de interpolare, cu similitudini relativ la retelele cu back-
propagation. Această similitudine este la nivelul propagării erorii pentru a ameliora inferenţa.
Polinoamele Lagrange au aceeaşi utilitate în cadrul sistemului nostru ca şi funcţiile Gausiene
în cadrul reţelelor RBF (Radial Basis Function). În cazul în care H&Y pe una dintre estimări
este nulă, deci pacientul este caz de control, considerăm valoarea care indică valoarea de mal-
adie. Această abordare este adaptivă şi se bazează tot pe polinoame Lagrange -PD Adaptive
Polynomial Evaluation (PD-APE). Abordarea aceasta include la al doilea nivel al arhitecturii
ANFIS o condiţie suplimentară dată de diagnoză.

2.5 Evaluare şi rezultate
Sunt câteva nivele unde putem evalua noile metode dezvoltate pe baza noastră de date, dar
mai întâi trebuie specificate caracteristicile bazei de test. Metricile pentru evaluarea algortmilor
se referă la sensibilitate, specificiate si acurateţe, dar la fiecare nivel masurăm alte aspecte. La
nivelul segmentării evaluăm diferenţa dintre abordarea manuală şi metoda noastră. Aceleaşi
metrici exprimă pentru modulul de diagnoză şi prognoză metoda noastră comparativ cu cea
bazată pe testele cognitive.

Detecţia mezencefalului cu ajutorul metodei noastre a fost validată de către specialistul
neurolog. În cazul detecţiei Putamenului rata de eroare a algoritmului nostru este dată de
diferenţa dintre detecţia manuală şi cea automată. Rata de eroare pentru detecţia bazată
pe triangulaţie este de 35% pentru Putamen pe partea stangă şi pentru dreapta de 45%. În
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Figura 2.7: Diagrama fluxului de date în metoda Independent Adaptive Polynomial Evaluation
(IAPE)

cazul metodei cuadrilaterale obţinem o eroare relativă a detecţiei Putamenului de 46% atât
în stânga, cât şi în dreapta.

Evaluând valorile pentru detecţia fibrelor pe baza de date obţinem o valoare a specificităţii
de 63%, sensibilitatea ofera valori de 81%, iar acurateţea este de 75.5% . Considerăm cazurile
cu detecţia manuală ca fiind cazuri ideale - au mai puţine erori în detecţie generate de algoritm.
Acesta este motivul pentru care utilizăm valorile acestui set de date pentru setarea parametrilor
şi pretestare. Astfel dispunem de 41 de cazuri (21 control şi 20 pacienţi detectaţi cu maladia
Parkinson) pe care facem setările pentru funcţiile polinomiale Lagrange utilizate în diagnoză
şi prognoză. Utilizăm întreaga bază de diagnoză oferită de Dr. Chan ca valoare de adevăr
în evaluarea şi antrenarea sistemului. Pentru acest grup de pretest diagnoza bazată pe reguli
are o valoare de 61%, iar funcţiile de interpolare de gradul doi au valori de 34% şi cele de
gradul patru au 43%. Introducând în setul de antrenare al bazei de date 9 noi cazuri automate
din primele teste, avaând toate metodele noastre integrate, acurateţea algoritmilor creşte cu
19.2% pentru polinomul de gradul doi şi cu 6% pentru cel de gradul patru.

După setarea parametrilor şi evaluarea funcţiilor testăm metodele pe întreaga bază de date.
Rata de succes dată de funcţiile de predicţie este de 62.16% pentru pacienţi utilizând abordarea
intuitivă polinomială - metoda IAPE. Cazurile de control generează o valoare de 43.9% în
cazul acurateţii pentru polinomul de gradul doi. Sensibilitatea funcţiilor este caracteristică
pacienţilor care au maladia (max. 62%) iar specificitatea este influenţată de valorile cazurilor
de control (max. 43.9%). In cazul pacienţilor, cât şi al cazurilor de control, metoda intuitivă
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Figura 2.8: Sensibilitatea şi specificitatea pentru polinoamele de predicţie

generează o valoare a acurateţii de 44.87%.
Utilizând curbele ROC obţinem o evaluare statistică pentru metodele de prognoză. Cu

ajutorul programului SPSS 17.0 (Statistical Package for the Social Sciences) obţinem o evalu-
are a metodelor de prognoză. Pentru metoda IAPE obţinem o valoare de 0.705 pentru aria de
sub curba ROC (AUC). În cazul metodei PD-APE valoarea pentru această arie este de 0.959.
Performanţele funcţiilor de prognoză recomandă metoda IAPE pentru evaluarea întregii baze
de date, pacienţi si control, cu o valoare AUC de 0.745 - testarea comparativă efectuată cu
sistemul MedCalc10(figura 2.9). Performanţele algoritmilor de segmentare afectează perfor-
manţele metodelor de analiză. Astfel detecţia Putamenului care afecteză numărul de fibre are
efecte asupra caracteristicilor care sunt ulterior analizate în cadrul modulului de diagnoză şi
prognoză.

2.6 Concluzii. Noi perspective de cercetare
Cele două tipuri de imagini medicale de difuzie conţin informaţii complementare şi oferă posi-
bilitatea de a realiza o segmentare performantă. Informaţiile de natură diferită din cele două
tipuri de imagini se copletează şi atât în procesare, cât şi la nivelul analizei. Realizăm toate
aceste procese automat, atât în partea de procesare, cât şi în cea de analiză. Metodele prezen-
tate în cadrul tezei, puse împreună, fac trecerea de la nivelul vizual la nivelul cunoştinţelor.
Acest transfer este realizat cu ajutorul metodelor de la fiecare nivel informaţional în cadrul
sistemului nostru - fig. 2.10.

10MedCalc 11.3.3.0 - www.medcalc.be- accesat în Iulie 2010
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Figura 2.9: Grafic comparativ al curbelor ROC pentru metodele IAPE şi PD-APE aplicate
pe întreaga bază de date (143 cazuri: 68 pacienţi şi 75 de cazuri de control). Diferenţa
performanţelor celor două metode este de 0.178 pentru valoarea AUC: 0.745 pentru IAPE
faţă de 0.569 pentru PD-APE

Faptul că detecţia volumelor de interes este automată oferă nu doar timp superior în
segmentare, dar prin faptul că lucram cu măsti, nu cu elemente detectate manual, oferă
o detecţie mai bună a fibrelor datorita faptului ca nu avem "găuri" cauzate de "zgomote".
De asemenea abordarea automata nu este afectată de acurateţea persoanei care realizează
segmentarea, iar obiectivitatea este un element evident în cazul abordarii automate.

Abordarea geometrică în cazul recalării elimină o parte din variabilitatea interpacienţi, dar
prin determinarea parametrilor geometrici ca repere, abordarea propusa de noi are o nouă
utilitate. Această recalare oferă de asemenea nu doar utilitatea pentru detecţia fibrelor, ci şi
o fuziune la nivel informaţional datorită complementarităţii conţinutului imaginilor.

În tractografie metoda deterministă elimină o parte din erori în detecţie, iar abordarea
generalizată prin aplicarea volumelor de interes oferă viteza algoritmului prin faptul ca nu
generează toate fibrele. De asemenea, metoda aceasta oferă posibilitatea selecţiei fascicolului
de interes.

La nivel de diagnoză şi prognoză metodele propuse de noi iau în considerare atât cunoştinţe
medicale, dar oferă şi o alternativă la abordarea bazată pe testele cognitive. Cum abordarea
bazată pe imagini nu a mai fost utilizată, prototipul nostru este complet nou. Partea de logică
fuzzy ia în considerare dispersia şi suprapunerea intervalelor caracteristicilor, integrată într-un
sistem ANFIS permite şi prognoza. Funcţiile de evaluare sunt o prima încercare în analiza de
acest fel a caracteristicilor fibrelor neuronale, motiv pentru care abordări specifice setului de
date pot îmbunătăţi sensibil rata de succes a acestor algoritmi.
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Importanţa abordării noastre poate fi privită atât la nivel de sistem funcţional, care este
capabil să realizeze diagnoza pe baza imaginilor, cât şi ca element preliminar pentru prognoza
cazurilor precoce. De asemenea această abordare oferă complementaritate testelor cognitive şi
un nou mod de a privi diagnoza şi prognoza la nivelul maladiilor neurodegenerative. Metodele
luate separat sunt toate automate, ceea ce oferă robusteţe abordării în sine în cadrul prototip-
ului PDFibAtl@s.

Partea de preprocesare cu metoda de detecţie a limitei interemisferiale poate fi aplicată
pentru analiza atacului cerebral sau a detecţiei tumorale. Elementele geometrice permit o
recalare interpacienţi şi elimină variabilitatea de la acest nivel, aspect important în toate
abordările bazate pe imagini cerebrale. Segmentarea automată oferă alternativa la abordarea
bazată pe atlas eliminând astfel aspectul demografic legat de rasă - pentru fiecare rasă este
utilizată momentan o alta masca. Abordarea bazată pe atlas nu ia în considerare modificări
datorate atrofiei cerebrale şi variaţii în poziţia anumitor structuri anatomice, specifice fiecărui
caz în parte, fapt care nu este integrat în metoda propusă de noi.

La nivel de tractografie, o abordare probabilistică nouă poate ridica nivelul rezultatelor,
modificând şi valoarea de diagnoză şi prognoză. Acealşi lucru poate fi realizat prin aplicarea
unei funcţii dedicate în locul polinoamelor Lagrange în partea de prognoză.
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Figura 2.10: PDFibAtl@s: prototipul care include toate metodele propuse
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Index

T1, 15, 28
MRI sequence that uses gradient echo

(GRE) sequence with short echo time
(TE) and short repetition time (TR),
26

T2, 28
MRI sequence use a spin echo(SE) se-

quence with long TE and long TR,
26

TE , 46, 130, 149
echo time, 26

TR, 46, 130, 149
repetition time, 26

Adaptive Neural Fuzzy Inference System, 16
ADC, 27–30, 42, 48, 50, 53, 57

Apparent Diffusion Coefficient, 13, 42
AEC

Anatomy Equivalence Class
manifold in transformation space of the

moving image in registration, 36
ANFIS, 83, 84, 90, 93, 143

(fra) les systèmes Adaptive Basées sur
Des Réseaux d’Inférence Flous, 127

Ro sistem de clasificare Adaptiv Bazat pe
Reţele de Inferenţă Fuzzy, 146

Adaptive Networks-Based Fuzzy Inference
Systems, 82

AP, 57
green channel coding for the fibers ori-

ented from anterior position to pos-
terior in the FA color image, 54

AUC, 111

area under the ROC curve, 99, 110

BPNN
Back propagation neural network, 82

CAD, 80, 81
Computer Aided Diagnosis, 79

CIFA
Classifier Independent Feature Analysis -

measure of importance of features
when classifying an object, 32

CSF, 28, 42, 50, 56, 68, 102
Cerebro Spinal Fluid, 51

CT, 31
Computer Tomography image type, 26

DBM
Deformation based morphometry, 37

DICOM, 19, 21, 23, 24, 47, 49, 58, 173
Digital Imaging and Communications in

Medicine standard for distributing and
viewing any kind of medical image
regardless of their origin, 47

DTI, 13, 15, 20, 28, 29, 31, 39, 40, 46–48,
115, 127, 130, 131, 150

Diffuion MRI
represents the diffusion of water molecules

at the tissue level, 27

EPI, 13, 19, 21, 27, 37, 48, 56, 58, 60, 97

FA, 13, 19, 21, 28–30, 37, 42, 48, 50, 53, 57,
58, 60, 97, 130, 150
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FAE
Fuzzy Adaptive Evaluation, 95

FC
Fuzzy Control, 83

FD, 63
Fiber Density, 104

FFD
Free from Deformation registration method,

35
FLAIR, 28

Fluid attenuated inversion recovery
inversion-recovery pulse sequence that

has null signal from fluids, 27
fMRI, 40

Functional MRI
MRI image representing the function-

ality of the human brain, 36
functional MRI

is able to measure signal changes that
represent neural activity in the brain,
27

FV, 63, 104, 106
Fiber Volume, 104

GM, 28, 37, 41–43, 50, 56
Grey matter, 51

H&Y, 50, 81, 83, 105, 115
Hoehn & Yahr scale - representing the

Parkinson’s disease severity degree,
15

IAPE, 111
our prognosis method called Independent

Adaptive Polynomial Evaluation, 93
IAPE , 139
IFB

Iconic Feature Based
type of non-rigid registration, 34

KNN
k nearest neighbor, 32

LR

Red channel values for the fibers oriented
from left to right in the FA color im-
age, 54

MedINRIA, 56
collection of processing and visualization

tools provided by the INRIA labora-
tory Asclepios team, 111

MRI, 13, 25, 26, 31, 44, 49, 149
(Rom) RMN

Rezonanţă Magnetică, 146
Medical Radiography Image, 15

MRI
(Fra) IRM

Imagerie de Résonance Magnétique, 130

NURBS
Non Uniform Rational B-Spline, 35

PD, 13, 14, 19, 46, 55, 57, 58, 63, 81, 83, 99,
109, 115

PD-APE, 111
our prognosis method called PD Adap-

tive polynomial evaluation method,
93

POC
Proof of Concept, 14

RBF, 93, 140
Radial Basis Function Network, 82

RFI, 32
Relative Feature Importance - used as

metric to make a ranking among fea-
tures, 32

ROC, 98
Receiver Operating Characteristic plotted

with true positive fraction, 81
Receiver Operating Characteristic curve,

99
ROI, 36, 38

Region Of Interest, 32

SIB
Standard Intensity Based
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type of non-rigid registration based on
the pixels intensities, 34

SN, 15, 63, 70, 76, 98, 127, 146
Substantia Nigra - anatomical cerebral re-

gion located in the midbrain area;
the producer of dopamine, 15

SPM, 28, 43, 51, 53, 56
Statistical Parameter Mapping

software for analysis of brain imaging
data sequence, 40

Statistical Parameter Mapping, 24

TBM
Tensor Based Morphometry, 37

TDM
Tissue Density Map, 36

TSK, 82, 127
the Takagi-Surgeno-Kang inference method,

82

UD
blue channel coding modality for fibers

going from upwards to downwards
inside the head volume in the FA
color image, 54

UPRS, 81, 83
Unified Parkinson Rating Scale - used for

rating PD severity, 15

VBM, 28, 43, 51, 131, 151
Voxel Based Morphometry, 43
Voxel Based Morphometry system that

analyzes cerebral images by extend-
ing SPM in MathLab, 15

VOI, 16, 37, 38, 97
voxel, 13, 18, 29, 42, 48
VTK, 41

Visualization toolkit
well developed and powerful library used

in image processing and developed
using the ITK- image toolkit in C++,
62

WAWS

Weighted Absolute Weight Size - uses
eigenvectors and eigenvalues for dis-
criminant analysis, 32

WM, 28, 29, 37, 41–43, 47, 50, 56, 122
white matter, 51
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A.1 Journals
Teodorescu, R.; Racoceanu, D.; Leow, W.-K. & Cretu, V. Prospective study for semantic
Inter-Media Fusion in Content-Based Medical Image Retrieval Medical Imaging Technology,
2008, 26, 48-58

Anda Sabau, Roxana Oana Teodorescu and Vadimir Ioan Cretu. A New Cerebral
Anatomical-Based Automated Active Segmentation Method - to appear, Scientific Bulletin
of the Politehnica University of Timisoara, Transactions on Automatic Control and Computer
Science, ISSN 1224-600X, 2010.

A.2 Book Chapters
Roxana Oana Teodorescu, Vladimir Ioan Cretu and Daniel Racoceanu Medical Image Pro-
cessing and Analysis for Parkinson’s Disease Diagnosis and Prognosis - under publication,
working title "Biomedical Engineering, Trends, Researches and Technologies", ISBN 978-953-
7619-X-X, published by INTECH, 2010.

Lacoste, C.; Chevallet, J.-P.; Lim, J.-H.; Hoang, D. L. T.; Wei, X.; Racoceanu, D.;
Teodorescu, R. & Vuillenemot, N. Inter-media concept-based medical image indexing and
retrieval with umls at IPAL Lecture Notes in Computer Science, Evaluation of Multilingual
and Multi-modal Information Retrieval, 2007, 4730, 694-701.

Racoceanu, D.; Lacoste, C.; Teodorescu, R. & Vuillemenot, N. A semantic fusion ap-
proach between medical images and reports using umls Lecture Notes in Computer Science,
(Eds.): Asian Information Retrieval Symposium, 2006, 4182, 460-475.
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A.3 Conferences & Workshops
Anda Sabau, Roxana Oana Teodorescu and Vadimir Ioan Cretu. Automatic Putamen De-
tection on DTI Images. Application to Parkinson’s Disease. ICCC-CONTI, vol. 1, pages 1-6,
may 2010.

Teodorescu, R.; Racoceanu, D.; Smit, N.; Cretu, V. I.; Tan, E. K. & Chan, L.-L. Parkin-
son’s disease prediction using diffusion based atlas - poster session SPIE - Computer Aided
Diagnosis [7624-78] PS2, 13-18 Febr., San Diego CA, USA 2010.

Teodorescu, R.; Racoceanu, D.; Chan, L.; Lovblad, K. & Muller, H. Parkinson’s disease
detection using 3D Brain MRI FA map histograms correlated with tract directions - oral presen-
tation Neuroradiology (Brain: Movement and Degenerative Disorders SSC13 - 09) RSNA,95th
Radiological Society of North America Scientific Conference and Annual Meeting, November
29 to 4 December, McCormick Place, Chicago IL, USA, 2009.

Teodorescu, R. O. & Racoceanu, D. Prognosis of Parkinson’s Disease - poster session,
A*STAR Scientific Conference, 28-29 Oct., Biopolis, Singapore 2009.

Teodorescu, R. O.; Racoceanu, D. & Chan, L.-L. H&Y compliant for PD detection using
EPI and FA analysis - poster session, NIH Workshop Inter-Institute Workshop on Optical Diag-
nostic and Biophotonic Methods from Bench to Bedside, 1-2 Oct, Washington DC, USA 2009.

Teodorescu, R.; Cernazanu-Glavan, C.; Cretu, V. & Racoceanu, D. The use of the med-
ical ontology for a semnatic-based fusion system in Biomedical Informatics - Application to
Alzheimer disease ICCP Proceedings, 2008, 1, 265-268.

Teodorescu, R.; Cretu, V. & Racoceanu, D. The use of medical ontology in a semantic-
based fusion system CONTI, 2008, 1, 48-52.

R. Teodorescu and D. Racoceanu. Semantic Inter-Media Fusion Design for a Content-
Based Medical Image Retrieval System. Japanese Society of Medical Imaging Technology -
JAMIT-ONCO-MEDIA workshop, vol. Tsukuba, Japan, pages 43-47, 21 - 22 july 2007.

A.4 Technical reports
Roxana Teodorescu. H&Y Compilant for PD Diagnosis and Prognosis using EPI and FA
images. Phd report no. 2, Politehnica University of Timisoara, February 2010.

Roxana Oana Teodorescu. Feature extraction and Ontology use for Brain medical im-
ages - PhD Report No 1. Rapport technique 1, UPT and UFC, January 2009.
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A.5 Research stages
February-April 2009 Research stage in Singapore at IPAL(Image & Pervasive Access Lab)-
the Singaporean-French Image & Pervasive Access Lab under the supervision of Prof. Daniel
RACOCEANU

April -October 2009 Research stage in Singapore at Image & Pervasive Access Lab under
the supervision of Prof. Daniel RACOCEANU from French National Research Center.

18-20 February 2009 Participation at the French-Singaporean symposium at NUS and
IPAL Singapore.

July -October 2008 - Image Processing Stage in Geneva at Université de Geneve with
the MedGIFT laboratory - Collaborator Dr. Henning Müller

March-June 2007 - ONCO-MEDIA project at IPAL (Image Perception Acess and Lan-
guage) Laboratory, joint research laboratory in Singapore - CNRS (French National Re-
search Center), A* Singapore - Institute for Infocomm Research, NUS (National University
of Singapore) and UJF (Joseph Fourrier University) France - Supervisor Dr. Daniel RACO-
CEANU(UFC), collaborator Dr. Wee Kheng LEOW (NUS)

March - September 2006 - IPAL (Image Perception Acess and Language) Laboratory,
joint research laboratory in Singapore - CNRS (French National Research Center), A* Sin-
gapore - Institute for Infocomm Research, NUS (National University of Singapore) and UJF
(Joseph Fourrier University) France - 21 Heng Mui Keng Terrace, Singapore - Supervisor Dr.
Daniel RACOCEANU

A.6 Scholarship
June 2007-December 2009 Young Doctors Scholarship TD (Tineri Doctoranzi) 46/2008
from the Romanian Research and Learning Ministry.
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Appendix B

DICOM Header Example file

This Appendix contains an example of several tags used in our system from the DICOM
header files. These files are more complex and contain more tags, but we extract just the
ones presented here.

Title: 21599424
Width: 201.25 mm (448)
Height: 230.00 mm (512)
Resolution: 2.226 pixels per mm
ID: -2
Coordinate origin: 0,0
Bits per pixel: 16 (unsigned)
Display range: 0 - 754
No Threshold
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code Information

0002,0003 Media Storage SOP Inst UID:
1.3.12.2.1107.5.99.2.2716.30000008042402440731200014325

0008,1030 Study Description: headŜGH Brain
0008,103E Series Description: t2_tse_DTI_overlay_highRes

... ...
0010,0010 Patient’s Name: 001
0010,0020 Patient ID: 001
0010,0030 Patient’s Birth Date: 19411122
0010,0040 Patient’s Sex: M
0010,1010 Patient’s Age: 064Y

... ...
0018,0023 MR Acquisition Type: 2D
0018,0024 Sequence Name: *tse2d1_13
0018,0025 Angio Flag: N
0018,0050 Slice Thickness: 4
0018,0080 Repetition Time: 5700
0018,0081 Echo Time: 89
0018,0083 Number of Averages: 3
0018,0084 Imaging Frequency: 63.673778
0018,0085 Imaged Nucleus: 1H
0018,0086 Echo Numbers(s): 0
0018,0087 Magnetic Field Strength: 1.4939999580383
0018,0088 Spacing Between Slices: 4

... ...
0020,0013 Image Number: 10

0020,0032 Image Position (Patient):
-121.20970194079 -122.75359890362 -9.4565671015186

0020,0037
Image Orientation (Patient):

0.99817062741895 -0.0175064983057 0.05786986327205
0.02265170415277 0.99573051228909 -0.0894854580112

Table B.1: Example of DICOM header tags
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176 Appendix C. Hoehn & Yahr classification

Stage Symptoms
HY-I 1. Signs and symptoms on one side only

2. Symptoms mild
3. Symptoms inconvenient but not disabling
4. Usually presents with tremor of one limb
5. Friends have noticed changes in posture, locomotion and facial expression

HY-II 1. Symptoms are bilateral
2. Minimal disability
3. Posture and gait affected

HY-III 1. Significant slowing of body movements
2. Early impairment of equilibrium on walking or standing
3. Generalized dysfunction that is moderately severe

HY-IV 1. Severe symptoms
2. Can still walk to a limited extent
3. Rigidity and bradykinesia
4. No longer able to live alone
5. Tremor may be less than earlier stages

HY-V 1. Cachectic stage
2. Invalidism complete
3. Cannot stand or walk
4. Requires constant nursing care

Table C.1: Hoehn and Yahr Staging of Parkinson’s Disease [Goetz 2004].
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