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"When we think we know something, that’s precisely the moment
when we should look deeper into the thing."

Frank Herbert

Foreword
The software industry is increasingly facing the issues of understanding and maintaining

software systems, and the research community is continuously concerned with designing and
developing tools and techniques to address them.

A significant number of the modern, large-scale software systems are designed as dis-
tributed applications. There are different types of distributed systems, and while they are
usually implemented in an object-oriented fashion, their inherent nature implies particularities
that raise very specific, technology-dependent, understandability and quality assessment chal-
lenges. Distributed systems are different from their ’locally-concerned’ counterparts, and the
differences have a dual nature: on one hand, they represent obstacles that limit the applica-
bility of ’classic’ understanding approaches, and on the other they constitute valuable sources
of information for an approach built specifically for this class of systems. My doctoral thesis,
which I present in this book, describes the methodology I developed for understanding object-
oriented distributed systems through a reverse engineering process driven by the technological
and domain-specific particularities of such systems. The approach starts with the source code
of the application, and makes both system-wide and class-level characterizations, capturing
an overview of the system’s distributed architecture, providing detailed understanding of the
system traits, and supporting its restructuring.

There are many people I’d like to thank for the help they gave me during the various stages
related to the dissertation. As is customary, this is the point where I can start enumerating
their names and the things I’m grateful for, so that they get the recognition their efforts
deserve. As I am not very experienced in this kind of writing, I’d like to ask the reader to
accept these paragraphs as they are, without assuming the existence of any hidden agenda,
and, more important, I must apologize to those whose names I forgot to include.

I express my gratitude to Professor Ioan Jurca, who, besides being the scientific advisor
for my doctoral studies, is one of the rare persons that are actually capable of earning their
collaborators’ appreciation and respect, rather than making them feel artificially obligated
to do so. I have a very good professional relationship with Prof. Jurca, and I hope our
collaboration will continue at least with the same efficiency as today. I thank Prof. Jurca
for the continuous encouragement and support during the research and development of this
thesis, and for the rewarding discussions we regularly have, on various interesting topics.

I would also like to thank the professors at the Department of Computer and Software
Engineering, for their contribution to my development as software engineer, especially to Prof.
Ioan Jurca, Prof. Vladimir Creţu, Prof. Horia Ciocârlie, Prof. Ştefan Holban, and Prof. Petru
Eles.

Good teachers shape one’s future – I will never forget the person that directly influenced my
most important choices in high-school, Professor Adrian Niţă. His dedication and involvement
in supervising the Informatics Lab (Cercul de Informatică) at the Emanuil Gojdu High School
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in Oradea made me discover this wonderful field of Computers and Software, which became
both my main hobby and the career choice. I am grateful for this, and I hope I’ll eventually
find the time to pay the old school a visit.

I also want to thank my friend Adi Takács, for being my best friend since the first year in
High School. I only wish we could meet more often in Oradea or elsewhere, to discuss our
favorite topics about Computers, Software and Universe.

I’d like to thank the Sava Technologies company in Timişoara for providing me with access
to the source code of several software applications developed in-house, which I was able to
use as test cases for the various phases of my analisys approach.

I must make a particular note regarding the research group I am part of (LRG), a fine
selection of researchers that continuously provided a great environment to work in. I therefore
thank my colleagues Cristina Marinescu, Petru Mihancea, and Mihai Balint, and I hope the
high quality principles the group follows will continue to influence the development of our
local scientific community.

I owe the most special gratitude to my friend and colleague, Radu Marinescu, without
whose continuous encouragement and effort the research that lead to this dissertation would
not have been possible. His invaluable feedback and selfless involvement was essential, and I
will never forget the long and fruitful meetings that helped me both focus my ideas, and put
them to good use. Thanks a lot, Radu!

I thank my parents for raising me well, and providing me with the proper perspective on
the world and its remarkable features. I hope I’ll be able to provide a similar environment
to my daughter, too. I thank my sister Diana, for her guidance and for being a good friend.
I also thank my dear wife Janina, for her love, support and encouragement, and for always
being there for me.

Timişoara Dan Cosma
13.05.2009

Dan-Călin Cosma
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Abstract: This dissertation presents the author’s original approach in analyzing object-
oriented distributed software systems through a process of reverse engineering. It describes
a comprehensive methodology to assess the application’s characteristics by exploring its
structural and architectural traits. The process provides detailed system understanding,
at both the system and class level, and presents support for restructuring. The approach
is enriched by software visualization, and is supported by a comprehensive tool infrastruc-
ture.
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Introduction

The continuous development of the society, along with the emergence of new technologies and
communication infrastructures have paved the way for the wide adoption of a class of software
systems that became more and more important in the everyday life: the distributed applica-
tions. From programs that provide direct, person-to-person communication via the Internet
to complex systems that manage the numerous resources of large organizations dispersed over
the world, distributed software has become essential for the functioning and growth of the
civilization.

1.1 Background
Distributed applications are basically systems that consist of several, sometimes many, software
components, each running at a different geographic location, collaborating to each other to
fulfill a common goal. The components are involved in complex interactions, and are interested
in both the communication with their remote counterparts, and in providing functionalities
that are specific to the local environment they run on. Consequently, they are inherently
complex, and their development and maintenance are tasks that imply thorough preparation
and elaborate approaches in all the phases related to the systems’ life cycle. Moreover, they
work in inherently dynamic environments, as they serve communities that evolve themselves.
Therefore, to a higher degree than in the case of classic software applications, the requirements
they must address change at a fast pace. For example, it is frequent the case when a distributed
software system must scale up significantly to serve a suddenly larger or more demanding client
base, or when the resources it processes have grown significantly in size or number. Another
usual change scenario is when the system must cope with the evolution of the organization it
supports, by providing the new features it needs, or by adapting its existing functionality to
better fit the new characteristics of the environment.

In an ideal world, these challenges are addressed and overcome by designing the systems so
that they easily cope with change, and by ensuring that their architecture is flexible enough to
allow for both the easy integration of new functionalities and the modification of the existing
ones. While the software engineering community continually develops new techniques to
approach this goal, their experience shows that such a system is hard to develop, and it does
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12 1. INTRODUCTION

not exist in the real world. The reason is that the requirement changes are so diverse, and
depend on so many factors – some of them unexpected –, that their prediction is simply not
possible to make, at least not in a sufficient degree. This opens the way for software engineers
to adopt a more pragmatic, and at the same time cost-effective perspective, that of working
on the existing applications, analyze them, and develop strategies to change and improve their
design and functionalities. Besides circumventing the quixotic nature of a ‘perfect’ design,
the insight on the existing applications presents several important advantages. First, adapting
the old applications to fit new requirements will provide the users with a familiar environment
that supports their needs in a way they were accustomed to, rather than forcing them to
change their habits to follow the particularities of a new system. Next, a change in an already
established application may be sometimes easier and faster to make than developing from
scratch a new solution. Moreover, such an enterprise is often cheaper than investing in the
initiation of a separate software system, which may add a lot of new and unexpected issues
that were not encountered with the original application. Finally, the continuous restructuring
and change of operational software applications is a natural part of their life cycle, determined
by the correlation of feedback and refinement that is characteristic to all the dynamic and
productive long-term enterprises.

The most important part in approaching existing software systems is the exploration that
provides knowledge about their properties. This knowledge is not always available per se,
even when the software is maintained by the same organization that developed it. Teams of
programmers change or move on to different projects, and the information about a system that
was developed not so long time ago can be lost to a significant degree. Moreover, a frequent
case is when the software must be approached by parties that had nothing to do with its
development, as the maintainers are often not working for the same company or department
that developed the system. While they may be provided with documentation and initial data
about the system, there are numerous instances when this information proves inaccurate or
incomplete, as it describes an outdated version or it simply failed to capture all its relevant
attributes. Consequently, in order to be able to restructure or transform the application, the
main thing engineers need is to understand the system in depth, to extract its characteristics
through a dedicated process of analysis.

1.2 Goals
This dissertation presents our approach in analyzing distributed object-oriented software sys-
tems through a process of reverse engineering that starts with the application’s source code.
We define and develop a comprehensive methodology that involves a series of automatic tasks
that assess the application’s characteristics by exploring its structural and architectural traits.
At the same time, the experience of the engineer is held in high regard, by allowing the user
interaction at all the critical steps of the pursuit. The procedure is driven by the goal of
understanding the main characteristic that provides for the system’s distinctiveness, that of
being a distributed application. The impact of the distribution-specific functional traits on
the system entities is analyzed, so that an in-depth comprehension of the system is achieved.
Moreover, the approach integrates support for the basic restructuring of the application by
consistently using the same concepts and techniques that produced the system understanding.
This way, the task of restructuring comes as a natural continuation of the analysis enterprise,
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rather than necessitating additional preparation and effort in its undertaking.
The methodology aims to inspect the software system in an efficient way, focused on

the important parts of the application, and to minimize the computational power needed for
exploring large systems. Therefore, one of the traits of the approach is that, at a core step
in the analysis, it selects only a core set of entities that are representative for the system’s
distribution-related functionality [21]. The value of this technique is that it helps the efficiency
when applying computationally-intensive algorithms, and it allows the engineer to focus on
a small set of highly relevant objects in order to inspect them closer, even with a manual
approach if necessary.

The approach strives to understand in depth the distributed functionality of a software
system without detecting the distributed components in their entirety, and without using
deployment information, as this information is usually scarce. This enables the analysis to
obtain essential and sufficient knowledge of the system by only looking at the source code of
the application.

1.3 Approach
The technology of the software communication infrastructure the application relies on is used
by the process of understanding as a very important source of information about the system.
As we need to assess the system’s distribution-related functionality, the points where the
application communicates over the network are the parts of the system that provide the first
relevant knowledge. Considering the communication technology helps the identification of
these parts of the application, as they are directly influenced by the constraints the technology
usually imposes. As we will show during this work, the constraints are often detectable as
source code patterns, and can provide us with methods of isolating the relevant entities. While
built to be extensible to other types of technologies, our approach is applied on Java RMI
applications.

One of the main concepts we define in this dissertation deal with the impact of the
distribution-related features on the structure of the system. Our previous experience with
distributed systems [18, 17, 106] made us interested in the importance of the features provided
by a distributed system for shaping the application’s characteristics. In the early stages of our
research, we have explored the way the features (as a concept) can be used as basic blocks
for building the software [16], and how they can be employed to design complex behaviors
(as code migration). The author of this dissertation has also supervised a diploma project
that developed a prototype framework as a proof of concept [7]. In the research we present
in this thesis, we have approached the importance of the distributed features from an entirely
new perspective: they are the elements that provide essential knowledge about a distributed
system. The way the system entities participate in providing distributed features is indicative
of the fundamental nature of the system.

The feature participation assessments, as well as the other types of system evaluations
are done using a set of measurements based on software metrics we developed specifically
for this purpose [21]. The numerical representations are based on calculating the strength
of dependencies between the application classes, and the relations these dependencies reveal
when considering the distributed features.
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14 1. INTRODUCTION

The restructuring support included in our approach is based on a technique that allows
the engineer to experiment with scenarios of structural modification on the different parts of
the system. The scenarios can be performed and their impact measured and evaluated, in an
iterative and repetitive process that provides a basis for the selection of the best projected
restructuring solution.

The outcome of the analysis approach is the understanding of the main system properties,
to a degree that provides the engineer with extensive control on the analyzed system. It
includes assessments related to the distributed architecture, the structure of the distribution-
aware functionalities in the system, and the relation between the system entities and the
distributed and local features.

To support the understanding and facilitate the identification of the various patterns that
provide knowledge about the application, the entire analysis approach (including the restruc-
turing support) is enriched with a set of software visualization techniques [20]. They present
the attributes of the system entities so that the important patterns to be identified visually,
as a method for driving the process of selecting their relevant traits.

The methodology is supported in all its phases by a complete tool support [19], that we
developed and used when evaluating the approach. The tool infrastructure provides all the
automatic tasks implied by the various activities related to the analysis, while always allowing
the user to evaluate and validate the intermediary results, as well as to control the parameters
of the algorithms that are employed during the assessment of the distributed application’s
characteristics.

1.4 Main Steps
The methodology we describe in the following chapters consists of several parts, driven by a
set of specific goals:

• Define a model for distributed object-oriented software applications tailored for the goal
of software understanding;

• Extract the core distribution-related functionality of the system and isolate the distinct
distributed features in the application;

• Provide a view on the system’s distributed architecture;

• Assess the impact of the distribution aspect on the system’s overall design;

• Understand the patterns of collaboration between the system entities (classes) in respect
to the distributed and local functionality;

• Provide support for restructuring the application.

1.5 The Structure of the Thesis
The next chapters in this thesis are organized as follows: Chapter 2 presents the main con-
cepts involved in reverse engineering distributed software, and Chapter 3 analyzes the state
of the art in the field.
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1.5. THE STRUCTURE OF THE THESIS 15

As a prerequisite for our methodology, in Chapter 4 we introduce a representation for
object oriented distributed systems that we have built to support the system understanding,
as well as the considerations that stay at its base.

The actual methodology, its evaluation through case studies, and the tool infras-
tructure we have developed are described in the next five chapters. They should be regarded
as a whole, as they are steps that describe a single, unitary approach. Chapter 5 describes the
details involved in the core system analysis, including the isolation of the system’s distributed
features, and the architecture-related assessments. Chapter 6 presents the approach that eval-
uates the impact of distribution on the system’s features, and the extraction of the relevant
patterns of collaboration, while Chapter 7 presents the restructuring support provided by the
methodology. Chapter 8 describes the methodology evaluation we have conducted through
case studies, and Chapter 9 presents the tool support we have developed.

The presentation ends in Chapter 10 with a set of conclusions and the list of contri-
butions of our work to the field of reverse engineering distributed software applications. The
same chapter analyzes the potential future developments that will enrich and continue our
work.
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2

Distributed Software Engineering

As presented in the Introduction, this dissertation describes our approach in analyzing dis-
tributed object-oriented software systems. For this purpose, we define a methodology of
reverse engineering tailored to this particularly important class of systems, by emphasizing
the fact that they present particularities strongly influencing any analysis that targets system
understanding.

This chapter presents the basic concepts related to the field of reverse engineering software
systems, then analyzes several aspects that are specific to the distributed applications. The
distribution-related characteristics, highly dependent on the communication technology, can be
used by the analysis to extract the relevant knowledge that drives the process of understanding
by providing helpful hints on the parts of the system directly responsible for the distributed
functionality. Moreover, a synthesis of the different types of architectures specific to this field is
important when interpreting the architectural information recovered by the reverse engineering
process, by placing it in the correct context that describes the system’s distribution awareness.

2.1 Reverse Engineering
2.1.1 Definition
The Merriam-Webster Collegiate Dictionary [77] defines the verb “reverse engineer" as “to
disassemble and examine or analyze in detail (as a product or device) to discover the concepts
involved in manufacture usually in order to produce something similar”.

The definition has definite origins in hardware, and relates to the more ‘traditional’ indus-
tries such as manufacturing or electronics. Reverse engineering is used since the beginnings
of technology, both to improve the products of the same company, or to understand the inner
workings of those made by an external, even competing party.

Software reverse engineering is a relatively newer concern, and it basically refers to two
types of enterprises:

1. Disassembling the binary form of a software application to understand how it works,
what features does it provide, and so on. One of the most famous cases of reverse engi-
neering binary code was the disassembly of the IBM PC BIOS (about 1983) to develop

BUPT



18 2. DISTRIBUTED SOFTWARE ENGINEERING

hardware clones of the machines that basically started the era of personal computers.
The knowledge gathered through reverse engineering was employed in building a de-
tailed specification of software features and behavior. The specification was then used
in an independent development process that produced a BIOS program from scratch,
making it legal to include in the IBM PC compatible machines.

2. Analyzing the source code of a software system in order to understand it. It may imply
activities such as the recovery of its architecture, the application redocumentation, and
so on, and it is strongly related to the fields of software maintenance and reengineering
[10].

We consider the above distinction to point out the different emphases used by the two
approaches. The first one is arguably closer in concept to the original meaning of the term, as
its main concern is to disassemble a finished product and to understand its internals in order
to replicate or improve. It inherently implies that the target object belongs to a different party,
and the emphasis is placed on the process that transforms the machine-specific executable
format to a representation (such as a program) that is analyzable by a human engineer. On
the other hand, the second approach considers that the program itself is already available, thus
placing the context of reverse engineering closer to the aspects related to the maintenance
and evolution of software.

For the purpose of this dissertation, we are using the latter interpretation when we ad-
dress the issue of reverse engineering. We are interested in the techniques, processes and
methodologies that aim to extract as much information as possible about a software system
by analyzing its source code, which is considered to be available in its entirety to the analysts.

Requirements Design Implementation

Forward 
Engineering

Forward 
Engineering

Reverse 
Engineering

Reverse 
Engineering

Reengineering Reengineering

Restructuring Redocumentation,
Restructuring

Restructuring

Figure 2.1: Reverse engineering and the related terms (adapted from Chikofski and Cross II
[10])

Regarding the terminology related to the field of reverse engineering, we adhere to the
widely-accepted taxonomy introduced by Chikofski and Cross II in [10]. They define the main
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terms involved, as follows (Figure 2.1):

1. Forward engineering. "The traditional process of moving from high-level abstractions
and logical, implementation-independent designs to the physical implementation of a
system."

2. Reverse engineering. "The process that analyzes a subject system to

• identify the system’s components and their interrelationships, and
• create representations of the system in another form or at a higher level of ab-
straction"

3. Restructuring. "The transformation from one representation form to another at the
same relative abstraction level, while preserving the subject system’s external behavior."

4. Reengineering. "The examination and alteration of a subject system to reconstitute it
in a new form and the subsequent implementation of the new form."

2.1.2 Application
The various approaches to reverse engineering use different types of techniques in order to
extract information about the system. Some may be purely static, by only analyzing the
software in its inactive form, while others may make extensive use of dynamic information,
by analyzing the runtime interactions between the system components, or by approaching the
running software as a black box in order to detect its functional traits.

In our case, we adopted a static approach, and the entire methodology we present is based
on analyzing the system as it is, without the need to run it in the process. This has a few
advantages. First, it does not have to rely on particular tools or environments that capture
and trace events at runtime, thus making it platform-independent. Moreover, it can be applied
to systems that cannot be started in execution for various reasons such as the unavailability
of the needed libraries or runtime environments, the lack of the necessary processing power
to dynamically analyze complex systems, or even because the system itself is missing auxiliary
items needed when running (such as configuration data, deployment information or appropriate
production environments).

Scenarios for reverse engineering are very frequently encountered in modern software de-
velopment -related contexts. The need to understand a system whose source code is readily
available is justified by various reasons, related to the development process or to the inherently
complex nature of modern software applications. It may be useful both to external parties,
and to the original developers of the respective software system, and may be caused by several
issues, such as the following:

• Legacy software. This is the case when a software system is inherited, is received from
a different company, or the team that originally developed it is no longer available.
The system needs to be understood so that modifications that improve its performance
or add new features are performed, or in order to build new systems with the same
specifications.
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20 2. DISTRIBUTED SOFTWARE ENGINEERING

• Outdated documentation. While the team of developers may be (largely) the same
as when the software was first built, the development process failed to document the
software so as to describe it accurately and to date. There are frequent cases when
the documentation is heavily outdated, and the many changes make the software too
complex for the developers to track its status.

• Inaccurate documentation. This is a variation of the above case, when the documen-
tation of the software proves inadvertently ambiguous or inaccurate, and may present
misleading facts about the system’s architecture, behavior or purpose. A reverse engi-
neering process is in this case necessary to correct the mistakes, and to synchronize the
documentation with the actual state of the software.

• Insufficient documentation. This is the case when the documentation, while accurate
and to date, is insufficient to understand particular aspects of the system. The respective
aspects may have been outside of the original documentation’s focus for various reasons,
but became nevertheless important at an ulterior stage in the software evolution. A
reverse engineering process is needed to build new or different views on the software’s
characteristics, so that the unaddressed issues are covered.

• Design changes. This case is directly related to the issue of software aging [85], where
the current design of the application no longer meets the initial system goals. A reverse
engineering approach would help the developers or maintainers to identify the problems
that made the system change in time and the places where the modifications occurred,
so that the necessary corrections are made.

The outcome of the reverse engineering process varies with the approaches, and depends on
the reasons that made it needed in the first place. The most frequent result is a representation
that describes, at a certain degree of detail, the architecture of the application. The process
may also generate new views on the system’s high-level structure, and can provide insights
into the lower-level details of the interdependencies between the system entities. The roles
of the different entities can also be assessed by an analysis, and the features provided by
the application can be discovered. Other types of results include updates to the existing
documentation, system specifications that can be used in a new development, and so on.

The process of reverse engineering can be conducted by different parties, depending on
its purpose: the original developers, the engineers that must maintain the system, various
types of auditors, or programmers that must continue developing the system without being
involved from the start. During the presentation in this thesis, we will use the term engineer
to describe any human actor that may be involved at a stage or another in the process.

2.2 Distributed Software Systems
2.2.1 Definition
Referring to a larger context that includes both hardware and software, A.S. Tanenbaum
defines a distributed system as "a collection of independent computers that appears to its
users as a single, coherent system"[108]. The various components of the system are dispersed
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at different geographical locations, and act together to fulfill the same goals. The inter-
comunicating hardware nodes are connected to each other by a large variety of communication
infrastructures, and many of the architectures implied are heterogenous in nature.

The continuous evolution of the society lewd to the current state of human activities,
where organizations, companies or even communities depend on distributed infrastructures
to communicate, collaborate and work. The wide variety of interdependencies between the
components of our civilization, and their impact in creating and maintaining highly integrated
networks of inter-related activities need to be supported by equally complex and developed
technological solutions. Therefore, modern distributed systems could not serve their purpose
without advanced and elaborate software applications to provide the diverse functionalities
specific to each of the different types of problems addressed by the distributed contexts. The
distributed software systems are not simple conduits for the casual communication between
parties, they must be designed to address the complex issues of intermediating and coordi-
nating the distributed interaction.

A distributed software system can be defined and represented as a set of an arbitrary num-
ber of processing elements running at different locations, interconnected by a communication
system [114]. The processing elements are relatively independent software components that
run on different hardware nodes and communicate to each other so that the design require-
ments are met. The communication is done via an infrastructure, implemented itself in soft-
ware, that provides services for transporting data between the remote locations, coordinating
asynchronous events, managing the concurrent interactions between the system components,
and so on. The infrastructure can be represented by various layers of software, some being
distributed systems themselves: services implemented in the operating systems, specialized
middleware such as object request brokers [103, 94, 39], message-centered communication
providers [82], application servers that provide distribution services ([81]), etc.

The different software nodes usually act as independent entities. That is, an important
part of their activity is concerned with providing local features, such as interacting with the
user or performing tasks that process local resources. The communication with the other
components over the network is done only at the moments it is needed to maintain the overall
system functionality, and many distributed components tend to minimize the communication
as it usually implies significant costs.

Nevertheless, there are systems that consist of components that heavily communicate to
each other during the entire running order of the application. They are either deployed on
infrastructures able to provide high bandwidth and low latency for the data transfer, or the
communication is done in short bursts that do not overload the network.

The aspects related to the communication and the system-wide inter-dependencies be-
tween the application entities are specific to its distributed architecture. The distributed
architecture of the system is a view on a system’s structural characteristics that present the
relations that are established over the communication infrastructure. It specifies the com-
munication channels, the roles of the components that communicate remotely, and it usually
ignores the other architectural traits that were defined at the design time.

Consequently, extracting the distributed architecture of a system is not always the same
as the general architecture recovery enterprises that treat the application without considering
its distributed nature. Indeed, applying such a process to a distributed software system ends
by providing architectural views on the system, by analyzing the various types of dependencies
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between the system entities. However, as the process did not analyze the nature of these
dependencies in relation to the distribution-aware function of the application, it may miss
the most significant trait of the application, the fact that it is distributed and the way the
distribution impacts its design.

For example, if we were to analyze a simple chat system from a point of view that is not
interested in its distributed aspect, the analysis will find that the application is one heavily
concerned with providing a way for the user to enter text data via an interactive window,
storing the text content when the user chooses to, checking the spelling of the phrases as
they are typed, and managing the user/password information for authentication purposes.
Dependencies on other instances of the chat component may be detected, however, they will
not tell us anything about the fact that the communication is done remotely and the main
concern of the application is the sending and receiving the messages, rather than storing them
locally. In this respect, the application wouldn’t seem that different from a rather simple text
editor.

Understanding the importance of the application’s nature – as distributed, in our case –
leads to the analysis of two core aspects of this class of systems: their type of distributed
architecture, and the technology that is used for communication.

We will analyze these characteristics in the following subsections , emphasizing the main
issues that are involved, and the most common realizations of the architectural and techno-
logical traits.

2.2.2 Distributed Architectures
There are several types (patterns) of distributed architectures that are adopted by most appli-
cations that are made of components communicating over the network. A single application
can be designed as following exactly one of these ‘classic’ architectures, or – most frequently
– it employs a combination of the basic types, components having different architectural roles
according to the purposes of the system.

2.2.2.1 Client-Server

The most common, widely-used distributed architecture is the client-server one (Figure 2.2).
It implies the existence of two types of components:

• Server. Usually large, this component is designed to provide a set of software services
that are available to the remote parties. The services are described in a manner de-
pendent on the particular communication technology, and may be more or less related
(functionally) to each other. This type of component implies a significant amount of
centralization in the system, as it is the single place that implements complex function-
ality.

• Client. This component is traditionally designed as lightweight, and its main purpose
is to use the services provided by a server. By doing so, it employs a usually limited
functionality that processes the data received from its counterpart, and in most cases it
presents it to the user.

BUPT



2.2. DISTRIBUTED SOFTWARE SYSTEMS 23

Client Server

Client

Client

Figure 2.2: Client - Server

In a client-server architecture, the usual deployment scenario implies a single server (or
few ones) and a comparatively higher number of clients. The centralization specific to this
architecture can create several problems at the runtime, such as the following:

• The communication to the single server can become too intense, especially when the
number of clients is large. This may cause high traffic to the server’s network node,
which in turn may create service availability problems.

• The server may act as a bottleneck in the system that limits the system’s performance
and usability. Depending on the server’s efficiency in providing the services, and on the
computational power provided by the hardware and software environment it relies on,
this may become a significant problem, especially when the system must be scaled up
to serve large numbers of clients

• The limited number of servers (usually only one) may present problems for the system
availability. As the entire application functionality depends on the functioning of the
server, a software or hardware issue that stops it from working effectively renders the
entire application inoperable.

• The maintenance of a centralized server can be difficult, especially when it provides
many, loosely-related functionalities. Servers can become too big and too complex, and
the restructuring or reengineering needs that may arise at a point in the system’s lifetime
can imply significant engineering problems.
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Modern distributed application developments tend to overcome these problems by adopting
other architectures, by distributing the services to several independent servers, or by designing
the servers to be easily scaled or split into several entities if necessary.

2.2.2.2 Peer-to-Peer

In this architecture (Figure 2.3), the components of the distributed system have equally
important roles. Each component (a peer) can provide services for others to use, and, at the
same time can use the services provided by the others. In a way, a peer acts successively as
server and client, according to the system needs at a stage or the other in its functioning.

Peer

Peer

Peer

Peer

Peer

Figure 2.3: Peer-to-peer

The fundamental trait of this architecture is that the components are balanced, and there
usually is no centralized point in the system. This effectively counteracts the disadvantages
of the server-client architecture, by providing a way of designing highly scalable and flexible
distributed software applications.

However, the architecture has an important problem, and it is related to its very basic
principle of balancing the components. The fact that there is no central point, may create
difficulties in the process of the component discovery at the runtime. That is, the system must
implement strategies that make the already running components of the application reachable
by the newer ones. This is done by including the component deployment information in each
node of the application, or – more frequently – by using a server-based functionality to register
and locate the running components. The latter method affects in a degree the balanced nature
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of the system, but as it is involved only on a single, very specific point in the component’s
lifetime, it is usually accepted as a minor compromise.

2.2.2.3 Three-Tier

This architecture (Figure 2.4) describes the application as consisting of three logically-distinct
sets of functionalities. Each tier consists of system entities with a very specific role, and the
architecture is an extension of the server-client architecture, as the dependencies between the
tiers are unidirectional. That is, the third tier acts as server for the second one, while the
second provides services to the entities in the first tier.

Presentation Business Data

Database

User

Figure 2.4: Three-tier Architecture

The architecture defines three tiers. In the software-specific context, they can also be
referred as functionally-distinct software layers:

1. Presentation. The entities in this layer are responsible for the functionality that inter-
acts with the user. They are lightweight software components that present data to the
user (via an interface) and allow the user control and data validation.

2. Logic or Business. This layer is responsible for the implementation of the main func-
tionality of the application, such as the algorithms that process data, and provide the
features requested by the user.

3. Data. The entities in this layer are responsible for managing the persistent data objects
manipulated by the business layer. It usually implies a database that stores the informa-
tion, and consists of the software entities that model the stored data (as object-oriented
data abstractions, for instance).
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2.2.2.4 Multiple Tiers

This is an extension of the three-tier architecture, and refers to the case where several layers
are involved in providing the software functionality, as more that three logical functionalities
are considered necessary for the design.

The most frequent implementation is when the user services are provided by more than one
application. For example, this is the case when a web application forwards the user requests
to a three-tiered enterprise application, specialized to provide the requested feature.

2.2.2.5 Other architectures

The design of distributed software applications is not limited to the above types of architec-
tures. The designers may use a combination of the "mainstream" approaches, and can also
consider the specific issues required by the system’s functionality. For example, if a system
must consist of several equally important peers, at a point in its functioning, there may occur
the need of electing a component as temporary leader. For this purpose, the requirements of
the chosen leader election algorithm have to be taken into consideration, and the components
can be – for instance – designed as connected in a synchronous ring, to fulfill the respective
algorithm’s constraints [65].

Moreover, components can be connected to each other in more complex ways, such as
trees or even generalized graphs of inter-communicating entities that act as clients and servers
to each other at the same time.

2.2.3 Communication Technologies
In order to communicate remotely, distributed applications depend on specialized infrastruc-
tures that provide the lower-level functionality of sending or receiving data over the network,
in a synchronous or asynchronous manner, depending to the system requirements.

The infrastructures distributed software systems use for communicating are important in
that they directly influence the way the distributed architecture is implemented. Some tech-
nologies imply a specific architecture, while others allow several or even unlimited architectural
choices. More importantly, the communication technology usually imposes a set of specific
constrains on the development of the application, that are frequently in the form of specific
constructs in the applications source code. This makes the technology-related information
highly relevant in an analysis, for detecting the distribution-related concerns within a software
system.

We describe briefly the most frequently used communication technologies, and their main
characteristics.

2.2.3.1 Protocol stacks

The protocol stacks [107] describe facilities included in the modern operating systems that
provide support for network communication to the application level.

The design of a protocol stack is dependent on a chosen reference model that represents
the software architecture of the parts of the operating system providing the network services.
A stack describes several layers of abstraction, each introducing protocols that deal with a
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particular problem related to the data transmission and reception. The most frequent case
of such a design is the ubiquitous TCP/IP stack, present in virtually all current operating
systems capable of providing network connectivity.

Application

Transport

Internet

Network Access

Figure 2.5: The TCP/IP stack

The TCP/IP stack (Figure 2.5) is based on a respective TCP/IP layered model. It consists
on four layers, with the following roles:

• The Network Access Layer deals with all the details concerning the transmission of
the data provided by the superior layer, its encoding and the transmission of datagrams
to a remote host.

• The Internet Layer represents the network as a set of interconnected sub-networks,
and deals with the routing of data from a host to another. This layer defines the IP
address that identifies the network interfaces and is used when routing the information.

• The Transport Layer defines protocols that deal with the higher-level concerns in
transmitting data, such as maintaining the communication channels, error control, frag-
mentation and sequence of data arrival. There are two specific protocols at this layer,
one being connection-oriented (TCP), and one connectionless (UDP).

• The Application Layer describes protocols used by the applications, such as FTP (File
Transfer Protocol), HTTP (Hypertext Transfer Protocol), SMTP (Simple Mail Transfer
Protocol), and so on.

The TCP/IP stack is accessible from the application through primitives specific to the
operating system and to the programming language. Such a primitive is the one known
as the socket, with is widely used implementation as a BSD Socket. In UNIX, sockets are
implemented (from the application’s perspective) as descriptors that can be created and used
by the programs. The language-specific libraries provide specific functions that create and
manipulate these primitives, which in turn call the correspondent operating system services.
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As the functions or methods that are called by programs when creating and configuring the
sockets are very specific, an analysis can easily detect the lines of code that access the sockets.
This way, an approach is provided with a valuable mean for isolating the code fragments that
are responsible with the network communication, thus being directly related to the distributed
aspect in the application.

2.2.3.2 Remote procedures or methods

This technology places itself at a higher level of abstraction than the direct usage of sockets.
The purpose is to provide the programmers with communication-related services that are used
in programs in the a natural way, specific to the programming language.

The chosen strategy is to allow the program to call procedures remotely, that is procedures
that reside on a program running at a different location. The most representative case is the
Remote Procedure Calls technology [105] specific to the UNIX [104, 98, 15] environments.
Similar mechanisms are employed by more complex middleware systems, such as CORBA
[90, 39].

Client

Stub

Java Virtual Machine

Network

Server

Skeleton

Java Virtual Machine

Naming 
Service 

(RMI Registry)
registration

lookup

Figure 2.6: Remote Method Invocation

In the object-oriented context, this technology translates in invoking methods of objects
instantiated at a remote location. One of the most representatives technologies is the Remote
Method Invocation (RMI), specific to the Java environment [94, 39, 18]. In RMI (Figure
2.6), an application that wants to communicate via the network must follow a set of specific
requirements related to the implementation:

• The methods that need to be made available remotely must be gathered in spe-
cial Java interfaces called remote interfaces. Each remote interface must extend the
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java.rmi.Remote interface provided by the standard Java packages, as a marker for
the methods’ network-aware functionality.

• The actual implementations of the methods are done in server classes that implement
the remote interfaces, either directly, or via a hierarchy of interface extensions. The
server classes must either inherit a RMI-specific provided class (called UnicastRemote-
Object), or explicitly call a static method in that class that exports its functionality to
the network.

• The client classes use the server functionality by referring the remote interfaces. They do
not have direct dependencies with the server classes; instead, the Java virtual machine-
specific implementation will hide the actual communication and provide the clients
with remote references to the servers. In the earlier versions of Java, this implied the
automatic generation of a set of infrastructure classes called stubs, and skeletons which
represented the actual channels of communication between the parties.

• The server classes can register themselves to a naming service, so that they are discov-
erable by the clients. Both actions imply specific calls of RMI-provided methods.

The usage of RMI in applications is detectable by an automatic analysis by isolating the
specific code constructs it implies. For instance, the server classes can be isolated as being
the classes that implement remote interfaces, which in turn are easily identifiable as extending
java.rmi.Remote. Clients are the entities that directly refer the remote interfaces, and the
network-aware actions are the calls to the methods these interfaces describe.

2.2.3.3 Messaging systems

Services for communicating via the network can be also provided by systems that may be
implemented as applications on their own. An example of such applications are the message-
oriented service providers, which are complex systems dealing with the creation, manipulation,
and persistence of application-defined messages. Applications can connect to the messaging
systems and use them as intermediaries that send or receive messages; components of the
application can send a message, and other components may receive them, all details of the
actual sending or receiving being dealt with by the infrastructure.

An example of messaging infrastructure is Java Message Service (JMS [83]. As it is, JMS
is not an actual system, but a specification of messaging systems that vendors may implement
in order to provide standardized message-oriented communication in the Java environment.
A JMS application consists of the following system actors (Figure 2.7) :

• Clients, that are the entities that create, receive and send messages;

• Messages, used in communication, with a content defined by the application;

• JMS Provider, the actual implementation of the messaging system.

The JMS messaging infrastructure must provide the following set of communication-related
primitives, that can be used by the applications depending on the type of messaging they need:
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Figure 2.7: Java Message Service

• A Connection Factory, which is used to create the connection between the client
application and the messaging system

• A set of JMS Destinations, representing the resources the clients access, and that deal
with the message manipulation. JMS defines two types of destinations, as support for
the two major paradigms in message-oriented systems:

– Point-to-Point, represented with message queues available for the clients to enter
or extract messages;

– Publish-Subscribe, represented by the so-called Topic destinations, that can be
used by clients for publishing messages or subscribing to various message types.

The usage of JMS is visible in the source code through the specific references to the JMS
destinations, and the method calls that send or receive, publish or subscribe to messages.
Again, an analysis can make use of these constructs to identify the parts of the application
that are interested in the distribution-related system functionality.

2.2.3.4 Application Servers

A different class of technologies is represented by the Application Servers. An application
server is a software environment that manages the application by providing it with a set of
specific, high-level services. The application is deployed inside the application server, and is
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heavily dependent on it. The entire development of the application must follow strict rules in
both its design and implementation, and the deployment-specific configurations.

A very popular platform that employs an application server is Java2 Enterprise Edition
(J2EE), with its Enterprise Java Beans technology [9]. The applications that use this envi-
ronment must be built using the three-tier architecture, and the technology provides means for
creating the different types of entities, and services for distribution, persistence or transactions.
EJB defines the following types of application entities, called enterprise beans:

• Entity beans, placed at the data layer, representing the entities that model in an
object-oriented approach the data stored in a database;

• Session beans, places at the business layer, implement the logic functionality in the
system. They can be of two types:

– Stateful, that are able to maintain their internal state between the client calls,
– Stateless, that do not maintain the state and are consequently lightweight in com-

parison with their counterparts;

• Message-driven beans, specialized entities able to subscribe and react to messages in
a JMS environment, so that asynchronous application behavior can be implemented.

The clients at the presentation layer are normal Java applications (classes) that connect
using specific techniques to the enterprise beans. The constraints the technology imposes on
the application are very strong, and a complex analysis can be developed to detect various
characteristics related to the system, including the distributed functionalities, and the various
architectural traits. As significant parts of the structural information are available through
specific, uniform descriptors, important data can be extracted automatically, thus encouraging
the development of a flexible and feasible reverse engineering process.

2.2.4 Component Deployment
One of the important aspects that must be taken into consideration when designing or an-
alyzing a distributed software system is the information that specifies the way the different
components of the system are dispersed over the network. The deployment information is
sometimes vital to understand the core characteristics of the system, as it is directly related
with its distributed architecture. The deployment information is specified in various ways, and
it is highly dependent on the communication technology the system relies on. The information
can specify one or more of the following attributes of the distributed application:

• The network-specific address of each system component. This is a specification that
shows which parts of the system (modules, packages, sets of classes) are deployed on
which hardware nodes in the network.

• The relation between the component deployed in a node and the other local entities
that may be related to the system, such as libraries, databases, application containers
and so on.
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• The dependencies between a component and its other remote counterparts that belong
to the distributed application. Sometimes, configuration information specifies which are
the addresses of the remote parties, or which are the component’s “neighbors” (nodes
to communicate with) in the particular distributed architecture of the application.

As it depends on the concepts specific to the communication technology (addresses, ports,
service names, etc.), the deployment data is different from an application to another. It can
also include parts that are dependent on the application design, by containing data that refers
to the particular system entities or their runtime environment (such as component or service
names, name service identification information, and so on). Moreover, the presence of the
deployment information is not mandatory for a system design, as there are many cases when
the deployment is done differently from an installation instance to another, to fit the particular
needs of the users. Consequently, the deployment information, while important to understand
the system, cannot be an item to rely on when building an approach for analyzing distributed
software systems. Therefore, a reverse engineering process must be developed so that even
when the deployment data is not present, the system understanding is achieved.

The approach we have developed and present in this dissertation addresses this problem by
implementing a technique for extracting the system’s distributed architecture characteristics
without relying on the deployment information, and using only the information that is always
available, the source code of the application.
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Analyzing and Understanding
Software

The issue of analyzing software systems is often being addressed by the software engineering
research community. Identifying the structure of the application is central to many approaches,
and usually involves finding the functionally-distinct components or partitions within the code.

This chapter discusses the state of the art in the field of reverse engineering software
systems through a selection of the approaches showing the most interesting traits in gathering
the information that provides system understanding. The selection is driven by assessing the
core techniques applied by the different researchers, and the ways the existing methodologies
make use of the information sources that provide knowledge about the system.

The main concern in any approach that aims to understand a software system by ana-
lyzing its source code is to capture the architectural traits in the application. Systems are
usually large, and the main architectural components must be detected in order to focus the
analysis, and to isolate the different types of functionalities. The field of software architecture
reconstruction [89] is therefore highly important, and the approaches vary with the techniques
used for decomposition.

3.1 Clustering-Driven Architecture Reconstruction
The vast majority of approaches that target the reconstruction of software architectures use
at one stage or another in the process a specifically-built version of clustering techniques. A
comprehensive survey and classification of clustering techniques and algorithms is presented
by Wiggerts [113].

Systems are usually represented as graphs, and the detection of the clusters drives the
process of separating the groups of system entities (source files, modules, classes, etc.) that
are related to each other according to the specific criterion the approach considers important
for its purpose. The separation is done with the main goal of partitioning the system so that
the engineer that needs to understand it be able to focus only on some of the partitions when
analyzing the system. Many approaches have the clustering technique at their core, and the
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main focus is on identifying the best similarity measures that are used for grouping the entities
together, and on improving the performance of the clustering algorithms.

3.1.1 Structural-Based Clustering
The majority of approaches view the software system as a graph of entities linked together
by their relative structural interdependencies. For example, a system can be modeled as a set
of vertices, each vertex representing a source file, while the edges are the usage dependencies
between the functions or methods in the respective file. The system graph is built using
manual or automatic techniques, then a clustering algorithm is applied to separate the system
into several groups of entities.

R. Koschke [52, 53] proposes a unification of 23 techniques based on clustering to produce
a classification of component recovery approaches. Moreover, he presents a semi-automatic
method of analysis aimed to overcome the issue of the insufficient detection quality of such
techniques. The method works incrementally [51], and combines improved versions of the
techniques, integrated through an intermediate representation [55]. The techniques are run
successively and are validated by the user. The work also includes a metric-based technique
called Similarity Clustering, which is evaluated along with other techniques, using an evaluation
scheme that measures the recall and precision of the analyzed component recovery techniques.
Moreover, in [54] Koschke and Eisenbarth propose a framework for experimentally evaluating
clustering techniques.

Clustering is also used by Andreopoulos et. al. [1] to produce decompositions of large
software systems. They choose an approach that enriches a previously developed clustering
algorithm [2] by considering both static and dynamic information. The approach takes into
consideration the multi-layered structure of the analyzed applications, which is regarded as
a very frequent case of modern software systems. The dynamic information is used by the
algorithm which associates weights with the dependencies between the application files and
incorporates them into the clustering.

Chiricota et. al. [11] propose an efficient clustering algorithm that separates related
clusters of software within an application represented as a graph. The method is based on
computing the strength of an edge in a graph by only considering the neighborhood of the
two vertices.

The main assumption the approach is built on refers to the fact that software systems
are usually organized in cohesive clusters of entities that are loosely connected to each other.
The assumption is present in extensive research [68, 69, 3, 79, 80, 63], and it captures an
important property of the software systems.

The goal of the algorithm in [11] is to detect the weak edges in the graph representing
the software system.

The weak edges are, in fact, the connections that link the cohesive groups of entities,
and their detection is of significant importance when isolating them from one another. The
algorithm defines the strength measure by considering the edges that originate in the two
vertices of a given edge. The metric is calculated using the ratio of the number of paths
(cycles) of length three or four that exist between the two vertices, in relation to the maximal
number of such paths.

The algorithm is applied to all the edges in the graph, and the ones with the lower
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strength values are considered as weak, thus as possible links between different clusters of
software entities.

This algorithm proved useful in our approach, where we adapted it to help the detection
of code-level dependencies that artificially linked groups of classes that represented distinct
functionalities in the target object-oriented distributed applications. By ’artificial’, we mean
those dependencies that were not related to the interactions relevant to our approach, being
rather trivial in comparison. An example of such a dependency is the relation two components
may have with a same, utilitarian, library: it links them together (they both need, for instance,
to convert weight units), but it does not expresses a main architectural trait.

Brian S. Mitchell [78] proposes an approach to extract architectural information from
the source code via a clustering-driven process. The system is represented as a Module
Dependency Graph (MDG), and a series of search-based algorithms are applied to detect the
functional clusters within the code. The approach works by randomly generating partitions of
the graph and calculating fitness functions for them, evaluating the quality of the respective
generated cluster. The clustering is supported by meta-heuristic search algorithms so that
the quality of the generated partitions be high. Hill-climbing and genetic algorithms are
involved. The result of the process is a set of clusters that represent subsystems in the
analyzed application.

3.1.2 Semantic and Dynamic Clustering

Despite the fact that many approaches consider the structural relations established between
system entities, this doesn’t always provide all the necessary data about the system. For
this reason, researchers sometimes look for alternate sources of information, and tackle the
problem of recovering the architecture from different perspectives.

Kuhn et al. [56] focus on a type of information often ignored by software analyses, the
semantics inherently present in the code artifacts such as comments or identifiers. They use
Latent Semantic Indexing [22, 67, 70, 71] to analyze the spread of the relevant terms through
the source code, and use clustering to group the entities that use similar terms. The approach
is complemented by structural analysis, so that the technique can be applied to applications
at different levels (to classes, methods, etc.).

Bauer and Trifu [4] address the issue in clustering-based decomposing of software systems
where the clustering techniques are exclusively based on assessing syntactic dependencies
rather than considering higher-level semantic data. They propose a method of gathering
information about the architectural traits of the application by searching for architectural
clues that in turn collaborate to suggest architectural patterns in the system. The high-level
information obtained this way is therefore used to calculate a similarity measure which is
applied in a clustering algorithm that produces the decomposition.

Xiao and Tzerpos [116] approach the problem of software clustering from a different
perspective. Instead of considering statical information about the system, they perform the
clustering using as a similarity measure the dynamic dependencies between system entities.
After applying the approach on a large open source application, they conclude at the end of
the paper that the consideration of dynamic information when performing the clustering is an
interesting research topic, and can provide useful information about the systems.
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3.2 Design-Driven Approaches
Some approaches focus on analyzing the system architecture in relation to the known traits of
the system. They assume some external information about the system does exist, and it refers
to the various roles of the design elements in the system (such as architecture requirements,
functional roles of the system entities, etc.)

Schmerl et al. [102] address the issue of determining whether an application’s actual
architecture is the same as it was originally designed. They aim to provide an approach
applicable to a large class of systems, that dynamically discovers the architecture of the
applications by analyzing them at the runtime. For this purpose, they develop a framework
that facilitates the mapping between the implementation styles to the architectural styles.
The mapping is used at runtime and is able to help detecting patterns that show whether
the various actions of the system represent "architecturally significant" activities, i.e., provide
information from which architectural knowledge can be extracted. They have developed a
tool called DiscoTect [117], that feeds on captured and filtered running events and produces
architectural information to build incrementally the recovered architecture.

Deursen et al. [111] synthesize their experience by presenting the Symphony process of
evaluating the actual system design (and the impact of its prospective future evolution) by
reconstructing the architecture. The approach is based on designing the viewpoints that are
needed for understanding a particular system, and extracting the corresponding views from the
system itself. The process is iterative, and involves concept analysis extracted from discussions
with the interested parties, mapping the hypothesized views to the system-extracted ones, and
gathering and interpreting the information from the actual system by applying established
techniques.

Christl et al. [12] improve the Reflexion Model technique [84] of mapping source-level
models to specified or hypothesized high-level representations of the systems. The goal is
achieved by enriching the method with automatic clustering techniques to support the user
in the mapping process. The result is a semi-automatic process that provides better results
than the original method.

Jakobac et al. [45, 44] propose a user-guided approach that analyzes software systems by
separating the architectural concerns to facilitate understanding. The concerns in the system
are observed from two perspectives: the purpose view assessing the processing, data, and
connection roles of the architectural elements [87], and the usage view that describes what
parts of the system are shared and which are exclusive to individual entities. The analysis
uses the available sets of clues specific to the application domain to label the different types
of entities, and propagate the labeling to the related parts of the system to support the
understanding of the application’s architecture.

3.3 Concept Location
Extensive work related with the domain of software comprehension has been done in the field
of concept location [92].

Eisenbarth et al. [31, 6] propose an approach that aims for the identification of selected
features in the source code of a software system. They only focus on the features that
are considered relevant for the system analyst, and start the identification by describing and
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performing the scenarios that make the respective feature manifest itself. The scenarios are
runtime sequences performed by the user to invoke a particular needed feature. The approach
uses concept analysis [35] and both static and dynamic analysis to create feature-unit maps
that describe which system entities implement a set of features considered important.

Salah et al. [100] describe an approach for comprehending large software systems based
on dynamic analysis. The process extracts different views of the system (use case, module
interaction and class interaction) to support the location of features within the application.
The analysis is done by performing on the system a set of scenarios extracted from the use
cases, and analyzing the execution traces. The approach is different from Eisenbarth’s in that
the features are identified during the user’s interaction with the system, therefore eliminating
the need to end the program after each scenario. Moreover, the approach is capable to analyze
larger software applications, and generates different types of views [101, 99].

Edwards et. al. [28] use dynamic techniques based on causal ordering of events to address
the feature location in distributed software systems, while Poshyvanyk et. al. [91] use a
combination of Latent Semantic Indexing and scenario-based probabilistic ranking of events
to identify the features in the source code.

3.4 Distributed Systems Analysis
This section gathers several approaches specifically built to analyze distributed software that
we consider representative for the issues we discuss in this dissertation. The approaches
analyze different types of systems, and combine various reverse engineering techniques and
sources of information to provide system understanding or specific architecture recovery.

Mendonça and Kramer propose in [74, 75, 76] an approach for recovering distributed ap-
plications. They apply the work to systems built as C/C++ projects in the UNIX environment,
and analyze them starting with the source code.

The approach is static, and combines several techniques for architecture recovery, focusing
on identifying the executable components and their potential interaction at runtime.

The first technique is called component module classification and aims to find which are
the compilation modules that make each of the executable components in the system, and
classifies them as exclusive or shared, depending on the number of executables that use them.

The next technique in the approach is called syntactic pattern matching, built for specifying
and executing queries on a syntactic representation of the source code, in order to identify
the typical interactions between the system components. The patterns are described using
a library of Prolog predicates, and are applied on an abstract syntax tree representing a
program. Usages of the queries include the identification of basic program-specific patterns,
such as assignment expressions and subroutine calls, along with any combination that describe
a more complex code pattern. For example, the authors present the description and usage of
specific queries that provide identification for the socket creation patterns in C, at both the
client and server side, patterns for shell invocation or process creation, and so on.

The third technique, structural reachability analysis is used to determine which compo-
nents use the various runtime features encapsulated in the shared modules in an application.
For this purpose it builds an activation graph that models the activation units in the system
(functions, methods, etc.) and the relations between them (as being the function calls or
method invocations), and computes the transitive closures of the graph .
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Pinzger et al. [88] propose an approach that extracts information from three-tiered
distributed software applications based on the COM/COM+ component framework.

The goal of their techniques is to use the extracted data about the system so that the un-
derstanding of the respective application is supported. They have developed a semi-automatic
approach that investigates the architectural characteristics of the analyzed system by under-
standing the attributed of the COM+ components. They build a model that describes the
various encountered aspects, such as the persistence, security, transactions and error handling.
Moreover, they analyze the dependencies that are established between the components, so
that they extract the relevant information.

The abstract model is built using several sources related to the target application. They
use the IDL definitions in the source code to understand the descriptions of the components,
and search for the particular COM+ statements that indicate architectural characteristics,
such as those that are specific to handling transactions. The process uses the COM+ API to
extract the type library information that contains data about the interfaces provided by the
various components, thus avoiding the need to parse IDL files that, as the authors remark,
are not always available for analysis. Moreover they use the COM+ registry data to estimate
the architectural characteristics specific to the deployment of the components. To identify
the components in the application they start with the presentation layer, that represents the
client to the rest of the application. By analyzing its code, and searching for instantiation
statements, they determine all COM+ components it uses. After assessing the interface
definitions from the meta-data stored in the type library, the configuration information is
processed to extract data about the transaction semantics and security settings specific to the
deployment of the application.

The approach is similar to our case, especially as it is highly aware of the technology-
related constraints, by . following the major architectural patterns implied by the COM+
framework, and using them to detect the information that provides the system understanding.

Li and Tahvildari [60] propose a service-oriented componentization framework for systems
written in Java. The purpose of their approach is to process an existing Java software system,
and transform it into a service-oriented one to support component reuse. The developed
framework supports the identification of the business services that exist in the application,
and transforms each identified service in a separate, independent software component. The
initial application’s architecture is thereby transformed by the approach to become service-
oriented, that can be used and deployed as such.

The process consists of several phases: the architecture recovery, the service identification,
the component generation and the actual system transformation. The approach models the
system as a graph by representing the classes and interfaces as vertices, and labeling them with
their name and package information. The edges represent the relations between the classes or
interfaces, such as inheritance, realization, aggregation, association, usage, and composition.

Regarding the system’s architecture, they distinguish between the so-called top-level ser-
vices, as those that are not used internally by other services, and the low-level services that
comprise of functionalities that collaborate to form a top-level service.

The process uses a combination of top-down and bottom-up procedures to identify the
services. The top-down technique heavily relies on applying graph processing to identify the
various inter-related system components. The bottom-up approach describes an algorithm
that iteratively agglomerates the atomic services that are highly related to each other to
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obtain at each iteration a higher granularity service. The user is presented each intermediary
result, and can decide the termination or the continuation of the process. The final stages
encapsulate the resulting top-level services and their related low-level ones into self-contained
components that follow a service-oriented architecture.

As it uses graph processing, the approach resembles to some degree our methodology in
what regards the separation of the distinct features. Nevertheless, their purpose is different
i.e., to transform the object-oriented design of the application into a service-oriented one, and
it does not focus on the distributed aspects in the system.

Han et al. [40] describe an approach that aims to reconstruct the software architecture
for J2EE web applications. They use the Siemens Four Views approach [43, 13] to separate
the architecture into four views: conceptual, module, execution and code architecture.

The approach consists of an iterative process that analyzes the views in a non-sequential
order. The first step considers the code architecture and execution views to extract basic
understanding about the structure of the system, such as the directory structure of the sys-
tem files, their probable functionality, the runtime dependencies and so on. The next step
describes the module view by understanding the static relationships between the entities in
the application. They consider all the classes, JSP files and other source entities, and the
basic dependencies between them. The next phases of the process focus on the conceptual
view to modify the already extracted information about the modules. Then, a second pass on
the execution and code views adds the new information regarding the mapping between the
modules and the entities in these views.

The approach focuses in particular on the dependencies between the different entities in
the application. The authors distinguish between the usage dependencies (such as method
invocations) and the other relations, described as "knows" dependencies (instantiations of
classes without calling the methods of the respective class, objects that are received just to
be passed to another entity, etc.). The approach is entirely manual, though the possibilities
of automating the process are analyzed in detail.

Di Lucca et al. [62] analyze the limitations in web applications comprehension approaches
that render the applications in visual representations. According to the authors, the respective
techniques are incomplete, as the size of the modern web applications is usually too big for the
representation to be manageable by the user. The proposed solution uses a set of clustering
techniques, along with a coupling-based measure to produce a hierarchy of clustering. The
metric is specifically built considering the target system type (web applications), and therefore
it is based on intuitive assessments on the characteristics of the respective system. Thus, the
typology and the topology aspects of the dependencies are considered, and the manner in
which they produce different types of coupling between the components is analyzed. They
weigh the importance of each type of connection in the strength of collaborations between
components, so that the metric to ensure a proper capture of the domain-specific traits.

Like the metric, the clustering algorithm is specifically built for the web applications field.
It is based on an agglomerative approach, that starts with individual items (such as web pages)
and groups them in clusters, iteratively. Once applied, the algorithm provides a hierarchy of
clustering, each level in the hierarchy containing a set of system entity clusters. The selection
of the appropriate level in the hierarchy that provides the most relevant set of clusters is
based on specific quality measurements. The paper defines a quality of a clustering metric
that is used for this purpose: the clustering that exhibits the maximum value for this metric
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is considered the best candidate partition of the application components. Consequently, the
value is used to find the cut-height in the already obtained hierarchy of clustering for the
optimum set of identified clusters.

Ricca and Tonella [96] propose an interesting approach aimed at identifying the static
Web pages in a site that are best candidates to be transformed in dynamic versions of them-
selves. The approach supports the migration from entirely static web sites to sites that are
built using web application techniques.

The process identifies the common structure of the pages, by isolating the parts that
are variable, that change from one instance to another while the rest of the page remains
the same. The differences are cataloged and entered into a database, and a special script
generates automatically the migrated pages.

The main technique uses clustering to group the similar pages in the web site. The
clustering is based on a similarity metric that tries to identify pages which share the same
template, and may be candidates for transformation in a dynamic counterpart.

The algorithm is agglomerative, and it is based on the Johnson’s algorithm described
in [113]. It produces a hierarchy of clustering that is then processed by a technique that
increments the cut-height starting from the level of individual pages (height 0), and stops
when the current level contains a cluster having a number of pages greater or equal to a
specified threshold value. The respective set of clusters (at the corresponding height in the
hierarchy) is then selected as the entities to be transformed in dynamic pages.

The actual transformation consists of several phases, such as the extraction of the tem-
plates, and the generation of the dynamic information to be inserted in a database. The
process is semiautomated, and the user interaction is specifically important when recognizing
the templates in the pages that were clustered at the different levels in the hierarchy, and for
refining the final templates and the information that is stored in the database.

In the same line of supporting the analysis, maintenance and development of web sites
and applications, the authors also use a visualization technique [95] that presents the Web
site evolution over time.

3.5 Visualization
Analyzing software systems is a complex enterprise and often implies large amounts of data
that must be processed by the analyst. The information related to the various system entities,
at the several levels of abstraction the approaches focus on is usually multifaceted, thus the
assessment of the attributes is not an easy task. To help the analyst, many methodologies
make use of software visualization to represent the critical attributes as intuitive, easy to
handle, views on the system. Research in this domain focuses on visually capturing the most
significant data, while avoiding the cluttering and allowing the user to detect the relevant
patterns that serve the analysis purpose.

3.5.1 Fisheye Views
One of the first visualization techniques in software was the fisheye views introduced by
Furnas [33]. The idea is to assign degrees of importance or relevance to the entities in the
system (such as the line codes) and visualize them accordingly. The entities that have higher
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importance are emphasized and shown with higher level of detail, while the ones that are not
relevant to the particular context are represented with smaller sizes, or even ignored. This
way, the structure of the program can be assessed in an easier way, by concentrating to the
main aspects, while also seeing (with lesser detail) the rest of the system.

Storey and Muller [66] propose a visualization that uses fisheye views to document archi-
tectural diagrams and design patterns on several abstraction levels. The approach represents
software systems as nested graphs and emphasizes in a fisheye view the regions of interest.
This way, the details of a certain part of the graph can be easily viewed, while the overall
structure of the system is still visible.

Turetken et al. [110] propose the application of fisheye views to the field of software design
and analysis, especially by integrating the technique in Computer-Aided System Engineering
(CASE) Tools. The different degrees of details are used in their approach to focus the attention
of the engineer in both process and data modeling.

Jakobsen and Horbæk [46] analyze fisheye view visualizations applied on single source code
files in Java programs, and assess the applications to other text-only data. The views focus
on the selected portions of code, while presenting an overview that still shows the structure
of the respective file and its general outline. Moreover, a second view shows only the lines
of code that are computed as relevant with a degree of interest function, while the others
are represented with very small fonts that make them unreadable. For example, the function
may select only method signatures, and hide the actual implementations in order to obtain an
overview of the respective class. The authors conducted an experiment where 16 participants
used the fisheye views and compared them with the normal, linear ones in Eclipse.

3.5.2 Structural Representations
Structural patterns and relations in the systems are assessed in various ways by the researchers.
Ducasse and Lanza [27] introduce a visualization of object-oriented systems that targets to
depict the characteristics of multiple methods at the same time. They develop the microprints,
pixel-based visual representations that show different aspects that may be of interest when
assessing the methods: the state access, the relations derived from method invocation and
the control flow.

Eick et al. [30] introduce a visualization technique that depicts various statistics about
the lines of code in a format that allows quick identification of interesting patterns. Each line
in a source code is drawn as a thin segment in a different color, according to the value of
the chosen statistic, for example, the lines most recently changed are drawn in red, and those
least recently modified in blue. The tool called Seesoft visualizes about 20 sources files at the
same time, providing the user with an useful overview at a single glance.

Other interesting structural-related views in literature are the graph-based representations
discussed in [86, 14], and the design pattern visualizations in [57] or [50].

3.5.3 Dynamic and Semantic Sources
The dynamic perspective on the system is also helped by visualization. Hill et al. [41, 42]
introduce a method that facilitates the visualization of the runtime object structure of object-
oriented applications. They developed the ownership trees that extract the encapsulation
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structure from the runtime object graph. A runtime object A "owns" another object B if
and only if all paths from the root (main) object to B include A. That is, were A to be
deleted, B would be unreachable in the runtime system, and removed by the garbage collection
mechanisms. The view facilitates the understanding as it presents in a intuitive manner the
inherent relations within the running system, which also facilitates the program debugging.

Jerding et al. [47] analyze and visualize the execution of object oriented systems by
capturing the runtime interactions in order to understand the dynamic behavior of the system.
The visualization tools allow the user to browse the event traces in real time, and view the
message interaction patterns that are detected. The views are complemented by a visualization
of the source code, used as reference when assessing the system behavior. An approach that
uses both static and dynamic information when visualizing software systems is presented in
[97].

A visualization technique for finding the interactions between the components in a RMI
application is presented in [5]. They use dynamic monitoring of the RMI calls to detect
the relations between the components, and the structure of the components is not taken into
consideration, as only the remote interactions are analyzed by this technique. The visualization
is depicted as a sequence diagram, and the basing interactions between the RMI components
is shown.

The data for the visualization can also be extracted from the semantics in the analyzed
system, such as in the approach proposed by Lungu et al. [64]. They present a visualization
that explores in an interactive manner the clusters of classes that share the same terms. They
use the approach based on Latent Semantic Indexing in [56] for driving the clustering, and
the visualization consists of three perspectives: Exploration, Map, Detail.

3.5.4 Metrics-Driven Visualization
Software visualization is often used in conjunction with software metrics to produce charac-
terizations of the various attributed of the system entities at different levels of abstraction.
Termeer et al. [109] present an approach that enrich UML diagrams with metrics visualiza-
tion. The views are highly customizable, and the metrics are applicable both at the system
level and to individual entities, such as elements or relations.

An interesting approach is presented by Wettel and Lanza [112], who develop a visualiza-
tion that represents the attributes of the system components in tridimensional perspectives
that resembles cities. Different metrics are used on each dimension, so that entities (classes)
are drawn as parallelepipeds, each one representing a "building" in the "city" (the system).
The different heights of the "buildings" and the area they occupy are indicatives of the entity
properties.

Lanza and Ducasse [58] introduce the concept of Polymetric Views, a visualization tech-
nique using software metrics. They represent up to 5 metrics on the same node representing
a single entity in the system. The measured values are depicted in the node size (width
and height), node color, and node position (in a bidimensional coordinate system). The
multi-faceted representation allows for easy visual recognition and identification of several
characteristics of the entities at the same time.

Polymetric Views are used to capture runtime information [25], to assess the structure and
interactions of the packages in an object-oriented system [26], or to visualize the evolution in
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time of the class hierarchies [37, 38]. The view is enriched with a third dimension in [115].
In our work, we define a particular case of Polymetric Views when we represent system

properties (Chapter 5) and use an extension of the concept when we represent the class
participations to the different functionalities in the system (Chapter 6).

3.6 Reverse Engineering Distributed Software
The approaches in the literature cover various cases of software systems and use a wide set of
techniques to extract knowledge about the applications. However, we have found that there
are several areas that are not fully covered by the current state of the art, especially when
considering the analysis of distributed software applications.

First of all, the majority of approaches apply to a too large class of systems, thus
missing the benefits in considering the specificities of the various classes of applications. This
is more evident in the case of distributed systems, where the very distributed nature is not
consistently taken into consideration as a relevant source of information.

In our opinion, when analyzing distributed software, the knowledge related to the applica-
tion domain is essential for driving the process of understanding. Specifically, we believe that
the main information that should be taken into consideration is the technology the software
is built on, the one related to the communication infrastructure used for establishing connec-
tions between the system components. Technology should be the main concern that drives
the process of extracting knowledge from distributed systems, as it should also represent a
main concern in the process of their design.

The choice of technology strongly influences the architecture and the lower-level structure
of a distributed application. When architects choose a communication technology they in-
herently limit the possibilities of developing the application, in that the technology constrains
the development with a set of specific, well-defined rules in designing and writing the appli-
cation. The developers must use the services provided by the communication infrastructure
in a given, technology-specific way, they must follow strict rules related to the system archi-
tecture (such as describing and implementing the service descriptions in the way requested by
the technology), and they must closely follow the specific development steps the technology
imposes.

The various types of constrains provide the effort of understanding such systems with
valuable information, because generally they impact the code in constructs visible as detectable
patterns. Moreover, the technology-related specificities of the architecture provide information
that can be used to help the identification of the functional units within the system. For
example, in an EJB application, the very type of the component (visible directly from the
inheritance declaration of the main class) provides information about the role it plays in the
system: it is concerned with the persistent storage of data (the entity beans), it defines
the functionalities that perform business processing (the session beans, that offer further
information when detected as stateful or stateless), or deals with asynchronous events (the
message-driven beans). In RMI, the existence of a remote call provides information about a
direct dependency in the system, established over the network to a service provided by the
system. This is important knowledge as this particular type of dependency is highly relevant
for understanding the distributed nature of the application; the technology-related information
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clearly distinguishes this dependency from the usual class-to-class dependencies that exist in
any object-oriented system and do not provide equally important data.

The information about the type of the technology used in distributed applications is one
that can be easily obtained in most of the cases. The choice of communication infrastruc-
tures is not excessively wide, as most of them are based on standardized network or application
protocols. Moreover, the knowledge is usually implicitly available in the system’s basic de-
scription. For instance, in a software company (or any other organization qualified to start an
understanding process) it is easy to know that the application they analyze was built using
CORBA or RMI, because most probably this was one of the main traits that distinguished it
from other applications built by the same company.

Therefore, this kind of knowledge does not present a problem for the analysis, at least it
implies an effort highly rewarded by the gains.

Another type of concern is that many generic approaches for reverse engineering software
systems are computationally intensive, as they are applied on the entire system without dif-
ferentiating between the basic system entities. For example, clustering techniques are usually
based on graph partitioning algorithms, which are known as being NP-hard problems [36].
While the researchers aim to address this problem by optimizations or application of heuristic
methods, the computational effort is still significant when applied to large applications.

Especially when assessing the structure of a well-defined class of applications (as the
distributed ones), we believe that any approach should start by considering the basic nature
of the system, and defining a goal regarding the data to be extracted. The analysis should
place value on all the available information about the technological aspects known about the
application and about the nature of the items the approach is interested in. In the case of
distributed systems, knowing their nature can focus the search in an efficient manner, and
allows the process to concentrate on extracting the very core functionalities that define the
system, rather than generically detecting functional aspects, without considering whether they
are all of the same relevance to the system understanding effort.

In short, the analysis should direct its efforts on understanding the distribution-aware
functionalities, and the entire process of understanding must be driven by this purpose, by
conceptually isolating the most relevant partitions in the code in respect to the main system
nature, that of being distributed.

Another problem is that many fully automatic approaches (such as clustering-based tech-
niques) do not detect the partitions that define the architecture correctly [52]. More-
over, system entities cannot always be placed in clearly delimited partitions, each
representing a distinct functionality. Basic entities, such as classes, often participate to more
than one feature, therefore a clear-cut partitioning or clustering scheme does not accurately
capture the characteristics of the application.

Consequently, the entities should be specifically analyzed so that their participation to the
different functionalities is clearly assessed. Aside from the fact that this would complement
the partition techniques by pointing out the places where they failed to capture the system
traits, a detailed analysis of the participation of system classes to the various functionalities
would provide knowledge at a finer grain in the system. Moreover, it will also address the
important issue that systems usually include significant numbers of entities that are shared
between more than one functionality, rather than being participants to a single feature.

Finally, a common characteristic of the reverse engineering techniques is that they usually
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focus on a single, large goal, such as clustering the application in a set of subsystems, and
leaves the rest of the work to the engineer. That is, they do not offer support for the other
activities related to the maintenance or evolution, at least not in a manner that is consistent
with the analysis itself. As the system understanding is usually followed by a process of
changing the structure of the system in a way or another, we believe that a comprehensive
approach should be enriched with at least basic restructuring support, which uses the same
concepts and works with the same system-related assumptions as the process of understanding.

The next chapters of this dissertation present our approach to reverse engineering the
distributed object-oriented software systems, driven by the considerations we made above.
The targets of the methodology we developed are, consequently:

1. Use the information related to the technology the system is built on to capture the
distributed nature of the application;

2. Isolate the core system entities responsible for the distributed functionality, thus focusing
the computationally-intensive tasks on a minimum amount of relevant information, so
that the detection of the distributed functionalities is efficient;

3. Assess the participation of the system entities to the various detected distribution-
related functionalities to both complement the functionality detection and understand
the collaborations in the system;

4. Provide support for application restructuring by applying the knowledge gained about
the system and consistently working with the same concepts and techniques that were
used in the understanding process.

The methodology is designed to be supported as much as possible by automatic tools
(which we have also developed), while benefitting from the experience of the engineer at
the particular stages of the approach where it is essential for attaining optimum results.
Nevertheless, the interaction with the user is kept in reasonable limits, to minimize the effort
the analysts must make in order to understand the characteristics of the target applications.
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Representing Distributed
Software for Analysis

Approaching the goal of understanding distributed systems can be done only by analyzing the
actual issues that must be studied by the engineers. The process has to start by defining the
actual need of understanding by clearly delimiting the goals, and must continue by expressing
them in a way that enables the research to produce a detailed description of the analysis
techniques. As in any scientific field, we need to make use of a representation of the system
which, while being only a simplification of the real world, provides all the necessary means
for delimiting, measuring, and analyzing the relevant characteristics of the system. The
representation must define and describe all the structural or functional units that provide
the necessary views on the studied aspects, and enable easy and precise observations on the
attributes of interest.

In itself, a system representation is of little use without an approach that also considers
the actions that must be done to actually understand the system. Therefore, any model must
be enriched by describing a method or methodology of analysis which processes the model
entities in an ordered, consistent, and repeatable manner. For this purpose, building the model
must consider these issues, and it must support the development of the needed methodology.

This chapter is concerned with two main goals:

• finding the criteria that describe the necessity of understanding a distributed software
system, specifically the elements related to distribution and remote interaction between
components

• defining and describing a representation of distributed systems that serves the process
of understanding.
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4.1 Criteria for Understanding Distributed Software Sys-
tems

Distributed software systems are the natural outcome of the continuous and complex process of
evolution software applications witnessed over the time. They represent the industry’s way of
answering the very important requirement of the modern society of integrating in an efficient
yet transparent manner the diverse, inter-related and geographically-distributed day-to-day
human activities. At their first beginnings, distributed software systems targeted specific,
isolated, problems like simple remote communication between parties or remote transfer of
(limited) digital resources, being mainly complementary pieces of software for the already
established applications, enriching them with a single main feature: the ability to act as
inter-related separate components running on different computers. Nevertheless, this single
characteristic represented a serious paradigm shift, and the heterogenous, loosely-related in-
dependent applications rapidly evolved into complex, specifically designed, distribution-aware
systems. This evolution promoted the distributed nature of a system to the rank of being a
veritable frontier that separated this class of applications from the more ’traditional’, locally-
acting ones. Indeed, the issues implied by the distribution have large implications in designing
and maintaining these systems, and there are many cases when formerly established techniques
are insufficient for both their developing and analyzing.

On the other hand, no distributed application is purely so – that is, the purposes it serves
are more frequently a mix of local and distribution-aware concerns, and its behavior is in-
fluenced by the both aspects. Moreover, fairly large parts of the applications are designed
without directly being interested in the distributed concerns, especially when complex frame-
works or infrastructures are used, specifically-targeted for providing communication-related
services. Consequently, the task of analyzing and understanding such an application must
balance the techniques it utilizes, in that it must make the most of the already established,
’traditional’, analyzes, while emphasizing the inherent value of the characteristics that make
the application distributed.

With these considerations in mind, we must asses which are the main needs an engineer
has when aiming to understand a distributed system. As a prerequisite for this assessment,
we start with a set of assumptions that outline the scope of our concerns, and delimits the
types of activities we are supporting. For the purpose of this thesis, we make three such main
assumptions about the target system:

• The software system is available to the engineer at the source code level;

• The original developers of the system are not available for questioning, or at least they
are not able to provide all the required information; the documentation is also not
enough for fully understanding the system;

• The system must be understood so that it can be maintained, restructured, or further
developed.

As can be easily seen, the above assumptions describe in a fairly accurate degree a pattern
often occurring in the software industry: legacy or long-term developed applications that are
still needed, while the original team of developers are either not available anymore, or work
on other assignments.
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Further on, we must describe the nature of the system itself, and - for our purposes - it
has the following characteristics:

• it is object-oriented

• it has an important distribution-aware functionality that actually defines the very na-
ture/purpose of the application

As these two attributes further delimit the scope, they have two important implications
on the structure and focus of the techniques that must be involved in the effort of analyzing
and understanding the system:

• the approach must rely on existing object-oriented analysis techniques to capture the
general characteristics of the system

• it must focus on capturing and understanding the distribution-related concerns, the
characteristics that can never be fully covered by an object-oriented-only perspective on
the system.

The latter implication is one that describes the actual relevance of the approach, by
bringing into focus the aspect where ’traditional’ techniques fail to provide useful information.
We will enter a short divagation to look into this matter closely.

Distributed applications are built for various purposes and needs, but for most of them the
distribution-related context actually defines the application’s nature, and makes them very
different from their ’classic’, locally-acting counterparts. A good example to consider is the
case of an electronic mail delivery system. Such applications are widely used, and their utility is
beyond argument. Let’s assume we look at a mailing system and try to understand its structure
without being aware or even considering the possibility that it has a pronounced distribution-
related functionality. We can read the source code, analyze the internal relation between
the composing entities, and isolate the main functionalities of the system, such as the most
intensive tasks it performs on the (local) resources, and the main activities related to storing
and processing data. We can do it by ignoring the nature of the libraries or infrastructures
the application uses, thus treating the providers of remote communication (like middleware
or operating system services) as any other utility the system happen to use. From this
perspective, we can arrive at a very probable conclusion: the system is very much concerned
in storing text and related binary files in organized databases, and it has advanced features
for managing the users that can access and manipulate those files. If we continue to close
the eyes to the distributed aspect, we will definitely miss the most important functionality the
system actually provides, that of sending and receiving to/from remote locations user e-mails.

The main conclusion we can draw from this assessment is that the understanding of the
specific distribution-aware properties of the system is essential for the accurate understanding
of the system’s actual functionality. Consequently, a representation of a distributed system
will have to describe these properties by adopting a perspective that facilitates the valid
exploration of the system’s distribution and communication-related functionality.

The distribution awareness of a system is best expressed by its interface with the com-
munication medium, by the actions it does by using or providing resources over the network.
When describing the functionalities a distributed component of a system provides for remote
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parties, we usually refer them as services available or published by the respective piece of soft-
ware. Different components provide and/or use services at the same time, and the correlation
between the usage scenarios form the actual distributed footprint of the larger application.
The communication itself plays a particularly significant role, as it represents the connexions
between the various remote parties. In virtually all modern applications, the communication
is not a task accomplished entirely by the application software. Instead, specialized software
infrastructures are used, that virtualize and manage in an efficient way the data transmission,
so that the application focuses on its main goals rather than on the details regarding the
remote sending or receiving information.

To capture the distributed footprint of an application in a representation usable for detailed
analysis, we believe that an approach must provide means for describing the following main
aspects:

• the set of functionalities (services) the entities in the system provide as available for
remote locations;

• the remote communication between parties, at a level of abstraction that allows for a
good delimitation between the functionalities that belong to the studied system and
those provided by external infrastructures;

• the relation between the distribution-related parts of the system, and the ones that only
address local concerns.

The latter aspect has to be understood not as a clear-cut delimitation between "dis-
tributed" and "local" entities, as in most systems such a straightforward approach is hardly
realistic or useful for that matter. Entities in the system may have a lower or higher degree
of interest in the distributed activities, and ’pure’ functionalities are rarely present, if any.
Thus, the representation must provide a way of describing the degree of involvement in one or
the other types of functionality, enabling the analysis to asses the various roles of the system
entities.

Finally, a description of a distributed system must allow for the integration in the analysis
of the issues concerning the particular type of technology the application relies on. Differ-
ent technologies – mainly related to the network communication – are used when building
distributed software, and the problem is that they usually have a great impact on the applica-
tion’s design and functionality. A representation must be as general as possible, thus cannot
specifically be built for a particular technology: in fact, it must be created at the highest
level of generality available so that it is applicable regardless of the particular technological
constraints.

4.2 Building Blocks for Capturing the Distributed Nature
of Software

Distributed software systems are essentially made of an arbitrary number of processing ele-
ments that run at different locations and are interconnected over a network [114]. Figure 4.1
presents a general schematic of such a system, as a basic view on the involved entities.
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Network

Figure 4.1: A general schematic of a Distributed System

In most cases, the remote transfer of information is handled by a special communication
system, usually external to the distributed application it supports, and often being a fairly
complex distributed system itself. Its purpose is to hide the details of transferring data
between the remote locations, and to provide higher-level primitives that describe the data
formats and control the communication-related activities. It acts as an actual infrastructure
the system is built on, and it plays a very important role in both the design of the application,
and on its distributed behavior. The presence of the communication infrastructure influences
the analysis of a distributed system at least because of its following attributes:

• It may consist of distributed components itself, some of them running at the same
locations as the application entities. When processing the application’s source code, the
analysis approach must differentiate between the entities that belong to the analyzed
system, and those that are part of the infrastructure

• It effectively defines the language the application uses when communicating remotely.
The infrastructure provides a set of primitives (like sockets, remote object stubs, mes-
sage queues, etc.) and a number of rules for manipulating them. This imposes certain
constraints on the application, and the analysis can make use of the information related
to their nature to better detect or understand the interactions between the compo-
nents of the application and the communication providers. The reason is that the
communication-related interactions describe the very core of the distributed nature of
the system, which is the main focus of the analysis itself.
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One important aspect here is that the communication infrastructure is not necessarily an
entirely independent entity. There may exist several layers of software between the application
core and the network, some of them implemented ’in house’ by the developers, some being
third party products employed by the application, and others being mainstream, widely used
and general-purpose communication infrastructures (e.g. middleware, language-specific or op-
erating system services). The important task in this respect is to draw the line that delimits
the relevant application-specific system entities from those that only address the communi-
cation. By ’relevant’ we refer to those system parts that actually represent (and work for)
the application’s goals, those that implement the design use cases and provide the specific
functionality that justified the development of the application.

Because of these concerns, our representation of distributed systems clearly separates the
’relevant’ application from the communication infrastructure. We use the term Communica-
tion Mediator (or, in short, Mediator) to designate all the entities, third party or not, that
concur to the basic tasks of just sending and receiving data (however complex these tasks may
be), and are not involved in the actual system-specific functionalities. As an important com-
ponent in our model we define the Application-Mediator Frontier, as the imaginary line that
separates the two sets of entities: on one side will reside only the code fragments belonging
to the application, and on the other the ones that implement the communication. Drawing
this line is not always easy, and it may be highly related to the task of defining the scope
of the analysis. The engineer may experiment with drawing the frontier at different levels in
the application’s layered model (if such a model exists) to include the parts of the system
that are more involved in what is considered the application-specific functionality, rather than
belonging to the part that implements the ‘communication infrastructure’.

In most cases, though, applications use either general purpose communication infras-
tructures, or rely on easily separable libraries or framework instantiations that deal with the
communication details. They may be independent applications, services included in the op-
erating system, and may imply constructs specific to the programming languages themselves.
Examples of widely used infrastructures are CORBA, Java/RMI, BSD sockets, Java JMS
providers, etc. All define clear and documented constraints on the application, and their parts
(as libraries or binary components) are easily identifiable when looking at the system. Consid-
ering their relatively limited number and high degree of usage in the industry lead us ascertain
the fact that they allow for an easy delimitation of the relevant application entities in most
instances of analyzing systems in order to understand their distribution-related functionalities.

Figure 4.2 shows the relation between the communication mediator and the application
components, as a refinement of the previous picture we have drawn. The Mediator entities are
the smaller, gray boxes. They can reside near the application components, at their particular
geographical location, to act as proxies in the communication, or can be distributed over the
network, interacting to provide the data transfer services. Due to the higher level of detail,
the communication channels are becoming more visible, and the application-mediator frontier
is easily identifiable.

The above diagram is, however, insufficient for describing the analyzed distributed ap-
plication under the requirements we have already established in the previous section. The
internal structure of the Communication Mediator is not always of interest for the analysis,
and in fact can often be an unnecessary level of detail that only hinders the process. Specif-
ically, we are interested in the structure of the application entities, rather than the details
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Network

 Application - Mediator 
    Frontier

Figure 4.2: Application-Mediator interaction

regarding the basic communication, and the above picture does not reveal much about it. We
must, consequently, further refine the model, so that it provides a more accurately targeted
information.

Moreover, when analyzing an application starting from its source code, we have a very
particular and somewhat limited view on the system, which remarkably excludes, in many
instances, a very important aspect of the distribution: the information describing the actual
deployment of the system components over the network. This information is usually scarce,
and may reside in various places in the system. Some independent components may have their
code written in separate compilation units (packages, for instance), but this is far from the
norm, as they may at least share utilities, common feature providers and other entities that
will easily break this rule. On some systems, the deployment information may be specifically
written down in dedicated descriptors (as is the case of Enterprise Java Beans applications),
but these cases are very particular and cannot be generalized to become the foundations for
a model suitable for a larger range of applications. On other systems, there is effectively no
deployment information per se, the task of assigning parts of the system on the various nodes
belonging exclusively to the engineer that performs the installation.

Bottom line, the representation must be built so that it follows the realities, rather than
limit the approach to the more straightforward cases where the deployment information is
readily available. For this purpose, our approach starts with a specifically-targeted, intentional
assertion in this matter: we are certain that we can gather a deep enough knowledge about
the system, and can understand it in an accurate and sufficient degree even without using
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the deployment information at all. Further more, we theorize that, while definitely useful,
the deployment of the components is far from being the main issue in understanding the
functionality of the distributed system. This assertion is meant to lead us to a methodology
of analyzing distributed software that works well using the information that is realistically
available in the most frequent industry-specific scenarios, that is, when the only usable artifacts
are the programming fragments as encountered in a large, undiscriminating, source code
repository.

Not being able to use the deployment data, we need to assess what is the information that
we do have, in correlation with the representation depicted in Figure 4.2. Regarding the nature
of the system, a relevant information at this point is that the application is object-oriented,
and it is distributed. Therefore, we have two main items of interest:

• A set of classes, browsable at the source-code level;

• An orientation towards network communication in the system.

The latter information is highly relevant, and must be explored in detail, as it is directly
related to the main goal of understanding the distributed aspects in the application. As noted
above, distributed applications are usually built over a communication infrastructure (the Me-
diator) that deals with all the details of sending and receiving data over the network. Because
this is an important aspect that directly influenced the design, in most of the cases the na-
ture of the Mediator and the technology it implies are known or can be discovered without
a significant effort. The number of ’popular’ infrastructures or communications technologies
is low enough to limit the search for this information even if it were not available. Usually,
though, the engineers just know that they analyze an application that – for example – com-
municates through sockets, or one that is built using RMI or CORBA, and so on. This is
valuable information for a very simple reason: it provides us with the tools of actually finding
the frontier between the application and the Mediator, and the relation between it and the
application classes.

Every technology for network communication imposes a set of rules or constraints the ap-
plications must follow in order to use its features. In many cases, these constraints are directly
visible in the application’s source code, and can be relatively easily detected when needed.
For example, BSD sockets imply calling specific functions available in a provided library, in
a quasi-standard order when establishing a TCP connection. Sending and receiving data is
done using specific, identifiable library calls, so that the classes that deal with these tasks are
easy to isolate. In Java RMI or in CORBA, specific interfaces must be written to describe
services (see Chapter 2), and the classes that implement them can be identified looking at
language-specific constructs in the code. Of course, there are cases where the constraints are
not fully identifiable through the source code, one example being the applications using Java
JMS-compliant message services. In the JMS case, components use an external provider to
publish or send messagas, and a part of the interaction is described dynamically, at runtime.
Nevertheless, there still exist elements that influence the code, so the case is definitely not
lost.

The constraints specific to the technology are useful when determining the relation between
the system classes and the Mediator. In our approach, we use these constraints to identify

BUPT



4.2. BUILDING BLOCKS FOR CAPTURING THE DISTRIBUTED NATURE 55

the frontier classes, which we define as those classes or interfaces1 in the system that either
directly use Mediator services or they are built to follow Mediator-specific rules in order to
export system services or otherwise interface with the Mediator facilities. For example, in
RMI, we consider as frontier:

• all interfaces that extend java.rmi.Remote, because they effectively represent the
service declarations, and are built so that they follow the RMI-specific rules for this
purpose

• all the classes that call methods of such interfaces – they are the parts of the system
directly involved in remote communication.

Not all the classes in a system concern themselves in a relevant degree with the distributed
aspect of the application. Moreover, our experience and studies have found that for each
system, there is a relatively small set of classes that have a significantly higher distribution-
related role than the others. They usually represent the kernel functionality of the provided
remote services, or form the main entities that use remote services as clients. We believe that
the identification of this core of functionality is very important to understand the distributed
nature of the system, for two main reasons:

• it is small in terms of number of classes, therefore it is easier to understand

• it concentrates the distributed functionality, being highly relevant when trying to un-
derstand the distributed nature of the system

The distributed software system representation that we are building must include the core
entities as elements of the model, as the main concepts the analysis is involved with. However,
we cannot consider them without relating to the goals of the analysis, so that we have to
follow them trying to understand how they describe the actual distributed functionalities of
the software system. With this issue in mind, two essential assertions can be made:

• systems usually do not provide a single distributed function or feature, therefore there
exist, in fact, several cores of classes with important distributed functionality, rather
than a single core;

• the purpose of the core classes are directly related to the features the system provides
or uses remotely.

The second case is very important, as the aim of the approach is to understand the
distributed functionalities of the system. For this purpose, we define, through a structural
approach, an important concept of our methodology: the distributable feature .

A distributable feature is a group of classes classes that either

• implement or contribute to a distributed functionality provided as sets of remotely ac-
cessible services, or

• are themselves users of remote services, working together to implement the same func-
tionality.

1For simplicity, we only use the term ’frontier classes’ although at some points we also include Java
interfaces in this category
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These features use or depend on the communication infrastructure to comply to their
design goals, and they are either deployed at distinct locations, or are good candidates for such
deployment. An important observation here is that the feature is not a distributed component
deployed at a certain location in the network. A component may consist of several distribut-
able features, and moreover, the same distributed functionality may be provided by several
components. In fact, this observation is related to one of our main goals of the methodology,
related to the one we described when considering the deployment information: we aim to
detect the relevant distributed characteristics of the system without targeting a thorough
component identification. Instead, we detect distributable features, and analyze the system
in respect to them. As this dissertation will show, this approach allows us to make good
assessments without using other information about the system than the source code.

As noted above, we are interested in isolating the core distributed functionality to focus the
analysis. Adding to this purpose the concept of distributable features, we can identify within
the code, a set of cores of distributable features , as smaller sets of highly distribution-aware
classes, that represent the main parts of each distributable feature in the system.

The rest of the classes in the system provide more or less distribution-aware functionality,
depending on their design. In our methodology, we see them as having a measurable degree
of involvement in providing the distributed functionality, by having various degrees of ac-
quaintance with the system distributable features. We call these classes feature acquaintance
classes , and we analyze their characteristics separately.

4.3 A Representation of a Distributed Software System
Synthesizing the aspects discussed in the previous section, we can define a model that repre-
sents distributed software systems, built from a structural-centric point of view, intended to
describe the aspects of the system that provide a good understanding of its distribution-related
functionalities.

4.3.1 Model Concepts

To describe a distributed object-oriented software system, the model defines and uses a set of
concepts that delimit the relevant entities. They are discussed in the following paragraphs.

System. The entity describing the entire software system.

Communication Mediator or, in short, Mediator. The infrastructure that provides the
means of communicating between remote locations, providing methods for sending, receiving,
and otherwise manipulating information over the network. It may consist of operating system
services, frameworks, middleware, in-house or third party applications or libraries, and so
on. The technology it implies and the constraints imposed by it must be identifiable and
manageable, so that the relation between the system and the Mediator can be characterized
in the analysis.
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Figure 4.3: Main model concepts

System-Mediator Frontier. The imaginary line that separates the classes belonging to the
analyzed system from the entities specific to the communication infrastructure. It is used
as a means of identifying and characterizing the particular system classes that directly and
consistently act as receivers , senders, subscribers, publishers, etc. of information via the
network.

Feature. A feature is a part of the system that provides an identifiable functionality in the
system. Features can be provided for other system entities to use, or may represent aspects
the systems is concerned with when working to fulfill is design goals.

Distributable Feature. A feature to which the distribution-related functionality is central.
It may be made of one or more services provided for other features or system entities, or may
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represent a client functionality for other system or external features. It relies on communicating
with remote entities to fulfill its goals, and therefore it contains classes acting at the System-
Mediator frontier.

Service. A specific, closely-related set of functions, grouped in a single, design-specific,
unit that describes a partial functionality provided remotely by a Distributable Feature. A
Distributable Feature can contain one or more service descriptions, and their classes can
indiscriminately participate in providing one or more such services. Depending on the technol-
ogy and the programming language, service descriptions can sometimes be identified in the
source code as interfaces or similar language-specific constructs. In these cases, the service
descriptions are also considered Frontier Classes.

Distributable Feature Core. A minimal subset of the distributable feature classes that
concentrate enough distribution-aware functionality so that they can be used to identify the
distributable features within the system and characterize their main interactions. All dis-
tributable feature cores form the distributable core of the system.

Class. A class in the system.

Frontier Class. A system class that directly acts at the frontier with the Communication
Mediator by describing, providing or using remote services. It either represents a definition of
a service – therefore complying to technology-specific requirements –, or is a class that uses
the Mediator to send or receive data over the network, to generate or be informed of remote
events, or to otherwise manipulate remote data during the system runtime.

Core Class. A class belonging to a Distributable Feature Core. It cannot belong to two
such features at the same time, but it may be involved in providing one or more services that
work for providing the same feature.

Acquaintance Class. A system class that does not belong to the Distributable Feature
Core. Its main attribute is the Feature Acquaintance which measures the degree in which
it participates to one or more of the distributable features in the system. Its involvement
decides whether it is actually a part of a distributable feature or is only concerned with local
functionalities. Such a class may be involved with more than one distributable features, and
it can have both distribution-aware and local concerns. This concept models the majority
of the classes in a real-world system, where the entities that exclusively provide a single,
distribution-related, functionality are relatively few.

Figure 4.3 shows the concepts discussed in this section, and highlights the relations between
them. For clarity, the Service-related concern is drawn in a separate view (Figure 4.4).

Figure 4.5 presents an overview of the model, by exemplifying how a distributed system
can be represented in an analysis approach. There are several remarks that must be made at
this point:

• The distributable feature cores are disjunct entities, having no shared classes between
them or with other model entities. While they may be connected to each other through
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Figure 4.4: Model concepts - the service view

relations of mutual dependency, these connections must be loose enough to be safe to
ignore when analyzing the characteristics of the feature cores in isolation.

• On the other hand, the distributable features themselves can share classes, both be-
tween them and with the local features provided by the system. In fact, in real-world
systems, the shared classes are usually numerous, and the same class can participate in
many features at the same time, regardless of their distribution-related characteristic.
Consequently, the distinction between the core and the larger feature around it becomes
a significant one. The core can represent the information that uniquely identifies a fea-
ture, and therefore can be utilized with a higher degree of success when characterizing
the respective feature and its relations with the rest of the system.

• The local features may include classes that also participate to the distributed aspect.
However, they may contain classes entirely separated from the distribution-related func-
tionality. The ratio of predominance of the less involved classes in the system is a very
interesting indicator that shows the degree in which the application was actually built
for distribution, rather than being mainly focused on local activities.

4.3.2 Attributes and Relations
The model for understanding object-oriented distributed systems can be augmented with
a set of attributes and relations related to the concepts described above. They cover the
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particular characteristics of the model entities that are considered relevant for understanding
the distributed functionality and the structural concerns that need to be identified within the
system.

We define the following relations between system entities:

• Remote Dependency. Describes the relation established between entities that coop-
erate over the network. The ends of the relation can be distributable features, services,
or distributable feature cores.

• Acquaintance. Represents an internal (in-system) dependency established between two
entities that work together in a higher or lesser degree. It applies to relations between
classes and distributable feature cores, classes and generic class groups, classes and
services, and to the relations between arbitrary groups of classes in the system.

For the purpose of characterizing different aspects of the model entities, we define a set
of generic attributes. During our approach, they will translate in numerical values based on
software metrics, either calculated directly, or by involving specific algorithms. The attributes
are described as follows:

• Entity size. Characterizes the relative extent of the entities, so that they can be
compared. In our methodology, it is applied to the distributable feature cores.

• Coupling. Characterizes the strength of dependency between two arbitrary entities of
the system. When classes are involved, the attribute refers to the different dimensions
of the coupling-related measurements, and it is mainly used to calculate the degree of
acquaintance. The attribute is also applicable to the relation between a class and groups
of classes, including that between a class and a distributable feature core.

• Degree of acquaintance. This is a calculated attributed, based on coupling, meant
to characterize the specific relation identified as acquaintance above. It is particularly
useful to characterize the relations that show the involvement of the acquaintance classes
in the various distributable features, or those that show the classes’ participation in the
provided services.

• Distribution awareness. This is an attribute that characterizes the importance the
distributed aspect has in the design of the system. Low distribution awareness can
suggest a system that wasn’t actually or properly built as distributed, and which is is
mainly a locally acting application that was augmented with a few distribution-aware
features that are not highly significant in its functionality.
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Core System Analysis

As the previous chapters have shown, software engineers are often confronted with the problem
of understanding software applications they have to manage without relying on the often
insufficient system documentation, and without having access to the system developers. The
process of understanding is not an easy one, especially when dealing with large and complex
projects. The engineers must rely on fairly complex tools and methodologies that are developed
to support the process of extracting meaningful information from the source code, which must
be tailored to fit the necessities occurring from the particularities of the analyzed system.

Distributed software applications are very demanding in this respect. They are not easy to
understand because of their very structural particularity, as they consist of separate compo-
nents dispersed over the network which take part in fairly complex interactions in order to fulfill
the design goals. Moreover, they rely on communication infrastructures that heavily influence
their design, and impose patterns of collaboration not usually encountered in ’classic’ software
applications. Supporting the understanding of distributed software must be done with both
these issues in mind. The methodologies and tools must provide specific means for extracting
the distribution-specific particularities, while being aware of the many important ways in which
the communication technology influences the application’s design and functionality.

This chapter presents the first part of the methodology we have developed to address these
issues, by describing the core system analysis that provides the main items of understanding
regarding the analyzed application. The next four chapters describe the rest of the methodol-
ogy, evaluate it, and introduce the tool we developed as part of the process. All five chapters
should be regarded as a whole, as they are steps that describe a single, unitary approach.

5.1 Goals
The purpose of our methodology is supporting the understanding for distributed software
applications. Synthesizing the criteria discussed in the previous chapter, the minimal charac-
teristics the target systems must have in order to be analyzable with our approach are:

• They are object-oriented applications;

• They are available to the engineers at the source code level;
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• The information about the communication technology or platform the system relies on
is readily available.

In particular, we have applied the techniques presented in this dissertation on distributed
Java applications which use Remote Method Invocation as the means of communicating over
the network. Nevertheless, the methodology is designed to be as general as possible so that it
is adaptable to any object-oriented language and to most of the communication infrastructures
mainstream applications currently use.

The approach follows the considerations brought up by the previous chapter, and aims to
build a representation of the particular analyzed systems in the terms of the model introduced
there.

Analyzing a system with this approach focuses on the application’s distribution-aware
characteristics, and provide a set of essential items of understanding:

• Finding how important the distributed aspect is in the application;

• Identifying the parts of the system intended to be distributable, and the respective
distributable features;

• Revealing the main interaction patterns between the identified distributable features;

• Assessing the impact of distribution in the entire system, by measuring it at the class
level (involving the concept of feature acquaintance classes);

• Providing support for restructuring by a structural, extraction-driven technique.

The entire process aims at minimizing the effort the engineer must employ when tackling
the system, by providing a set of techniques that are easily automated, and by supporting the
necessary tool infrastructure in this respect. Moreover, the main steps of the methodology
focus the engineer’s attention to minimal sets of entities to analyze directly, so that the human
intervention is limited to only the really important aspects of the analysis approach, those that
involve well-targeted, high-level process-related decisions. The approach is structural-based,
and aims to extract all the possible information on the system by in-depth looking at its source
code.

In order to further support the understanding, the methodology is enriched with a set of
visualizations which dramatically improve the engineer’s insight on the structural character-
istics of the application and on the complex interaction patterns, while also simplifying the
process of system restructuring.

The approach consists of several steps, presented in detail in this dissertation, each step
designed to address a specific concern of the understanding process (Figure 5.1).

Step 0. Start with the source code. This is not an actual step of the methodology, but
rather an observation regarding the perspective which the process takes when considering the
system. Object-oriented applications can be represented in various ways, but at this point,
we are interested in a particular type of view on the system: the application is made of a set
of classes, which relate to one another by calling methods, referring attributes and so on. In
other words, we are interested in a relatively simple model that represents the dependencies
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Figure 5.1: Methodology for understanding distributed object-oriented systems
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between the application’s classes and interfaces. The particular nature of the dependencies
we are interested in, and the way they are used to extract the needed structural insight is
described in detail in the following sections.

Step 1. Build the dependency graph of distributable features. This step focuses on find-
ing within the code a minimal set of classes that represent to a higher degree the distribution-
related functionality. It relies on using the established class-to-class dependencies, and building
a core graph that represents the target set.

Step 2. Separate distinct cores of distributable features. The core graph of classes
being identified and built, is consequently partitioned into a set of clusters that are relatively
independent on each other, in that they provide different functionalities within the system.
This step uses both technology-aware heuristics, and cohesion-related clustering techniques
to separate the groups of classes, and present the outcome for the engineer to review.

Step 3. Capture coarse-grained architecture of distributable features. As the main
cores of distributed functionalities were identified at this point, the approach provides the
first assessments regarding the overall qualities of the system, by creating an overview of the
distribution-related architecture of the system.

Step 4. Assess impact of distributable features. At this step, the focus of the analy-
sis moves on the rest of the classes in the system, that were not processed by the previous
phases. As the previous assessments specifically and intentionally targeted a small number of
representative classes, the entities involved at this point are in fact the vast majority of the
classes in the system. They are analyzed by looking at their relation with the cores of dis-
tributable features, and their participation to providing these features is measured. Moreover,
their level of involvement in non-distributable functionalities is taken into consideration so
that the importance of the distribution is assessed both at the system and at the class levels.

Step 5. Support for restructuring. While definitely a very important goal in itself, under-
standing a system is often a part of a larger concern, that may involve complex redesigns of the
target application. In the case of distributed systems, the most frequent scenarios of redesign
imply the restructuring of the code so that it better meets the requirements for a balanced,
decentralized deployment. Consequently, very often, engineers need support for extracting
parts of the system that must be deployed at different locations, and must assess the impact
of such an enterprise. This step in our methodology proposes an approach to restructuring
that simplifies the process of extraction, and provides direct feedback by estimating the impact
of the projected modifications in the system.

5.2 Initial System Representation
As noted in the previous section, the initial representation of the object-oriented applications
that the approach relies on describes the system mainly as a set of classes that depend on
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Figure 5.2: The initial dependency graph

each other. This section deals with the details regarding this representation, and the reasons
behind them.

First of all, we have to analyze what are the most basic information artifacts that we
always have when reading a source code, and, at the same time, we unmistakably need for
extracting the relevant information.

The goal of the methodology is finding information about functionalities related to the
distribution and remote communications. Functionalities imply sets of activities performed
by system entities to accomplish specific goals. While executing activities, the entities (in
our case system classes) must collaborate with each other, make use of each others’ built-
in capabilities in a controlled, pre-designed manner. Different functionalities imply different
design goals, and lead to different types of collaborations between different sets of capabilities.
Therefore, distinct features are usually provided by distinct groups of entities (classes), that
collaborate with each other in a higher degree than they collaborate with other classes in the
system. In other words, distinct functionalities are provided by distinct, highly cohesive clusters
of classes. This is a very important particularity of systems, and the software engineering field
is often concerned with its consequences [11, 69].

In our case, as we are interested in object-oriented software systems, we are interested in
the object-orientation-specific dependencies between the application classes that define in an
accurate manner the way they collaborate for achieving the design goal. For our purpose, we
take into consideration the following dependencies:

• method calls,

• attribute references,

• inheritance.

Another aspect is that we are interested in knowing the strength of collaboration between
classes, rather that the direction in which they depend on each other. The reason is that the
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main concern of the approach is finding which classes are related to which when working for
a common goal, rather that the details of the particular flow of activities necessary to achieve
the goal itself.

Therefore, when analyzing a dependency between a class A and a class B, we do it by
looking at both sides – that is, by looking both at the way class A depends on class B, and
the way B depends on A. This bidirectional dependency is also assessed from a quantitative
point of view, to accurately characterize the strength of the relation.

5.2.1 Class Dependency Information
As a consequence, the first requirement of the methodology we present in this dissertation
is that the analyzed system should be represented initially in a way that allows building an
undirected graph of class dependencies (Figure 5.2), with the following structure :

• The vertices are the classes in the system

• An edge exists between two vertices if at least one of the following dependencies are
established between the respective classes:

a) one class calls at least a method of the other one
b) one class refer at least one attribute of the other one
c) an inheritance relation is established between the two classes

This does not imply that at this point the graph itself has to be effectively built by the
engineer, it rather specifies a precondition for the first steps of the approach. The involved
algorithms will use this information, and graphs will be built only when necessary.

Because the source code of the application is available to the engineer, this requirement
is not unrealistic, instead it is one that can easily be fulfilled when analyzing object-oriented
systems. All the dependency information is inherently present in the OO language-specific
constructs, and therefore can be extracted when necessary. Moreover, the actual process of
extraction of the class dependencies is a feature present in most current software engineering
support infrastructures and tools. In our case, the Memoria model [93, 72] employed by the
iPlasma environment directly addresses these issues, and the infrastructure provides methods
for direct interrogation of the basic object-oriented structure of the system.

We must note that the above requirement does not imply that the information regarding
the direction of the dependencies will be ignored for the entire approach. Further more, this
information will be used in selected parts of the analysis process, and at the respective points
it will be regarded as complementary data about the system, besides the dependency graph(s).

Once the above requirement is fulfilled, the first steps of the methodology can be applied.

5.3 Identifying the Frontier
The main goal of the approach is to find relevant information about the system’s distributed
functionality, while minimizing the effort the of engineer during the analysis. The first step
of the process is concerned with identifying a minimal set of classes that concentrate most of
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the distribution-related functionality, in other words, acting as representatives for the system’s
distributable features.

At the initial point, there is not much information about the system. All we have is a
set of classes available as source code, from which we can extract dependency information as
discussed in the previous section. Therefore, the process needs to find additional data, and
this information must be closely related to the goal of understanding the system’s distributed
behavior. To be able do do this, we must identify the best possible starting points that
inherently provide data about the system’s involvement in communication over the network.
In our methodology, these points are represented by the frontier classes, that directly act at
the frontier between the system and the Communication Mediator, as defined in Chapter 4.

We define two categories of frontier classes:

• Frontier actors. They are classes that directly send or receive information over the
network. They can either be active entities – they produce or specifically request data –
or can be passive – they are listeners for events or asynchronous receivers of information

• Service descriptions. This category includes all classes or interfaces that follow the
rules specific to the Communication Mediator to specify sets of remotely-available func-
tionalities grouped in specifically-designed services. They are very important, as they
specifically provide essential information about the distributed functionality of the sys-
tem, available to be used both by external clients, and by the other components of the
system itself.

As they directly depend on the mediator to send, receive, or otherwise remotely manipulate
data or events, the relation of the frontier classes with the distributed functionality is beyond
question. Therefore, the reason we start with the frontier classes is valid: they are the most
significant representatives of the communication-related system functionality, the best first
classes to look for when studying the distributed nature of the system.

The interaction between these classes and the mediator is highly dependent on the tech-
nology used in communication, because they must be directly aware of all services provided by
the mediator, and comply to all the constraints implied by these services. As already stated,
the particularities of the constraints imply specific manners of coding the frontier classes, by
applying the technology-related patterns that allow the interaction to be completed prop-
erly. This an important aspect, as it represents the main tool that enables us to search the
source code for the specific patterns and therefore accurately identify the frontier classes in
the application.

The active frontier actors can be identified by analyzing the code, and looking for occur-
rences of Mediator-specific calls that send or receive data over the network. The passive actor
classes can be isolated by knowing and identifying within the code the constructs specific to
the particular mechanisms provided by the Mediator which facilitate the registration of classes
as listeners or otherwise declare them as consumers of data or events.

In the case of Java Remote Method Invocation (RMI), to have both services and service
clients directly represented, we mark as frontier entities the following entities in the application:

1. All Java interfaces that extend java.rmi.Remote. In this particular technology, the
respective interfaces represent the actual descriptions of the services published by the
system components for other components or systems to use over the network. The RMI
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terminology identifies them as remote interfaces. We use them as the representatives for
the system entities that provide the services, that is entities that communicate directly
over the network at the request of the clients.

2. All the classes in the system that call methods of the remote interfaces in the
application. These are the classes that communicate directly over the network by using
the services published by other parts of the same system. This is an important aspect, as
it provides, besides frontier entities, initial information regarding the distribution-related
interactions that are established within the components of the analyzed application,
therefore can form the base for consequent architecture-related assessments.

At this point we must make an important remark: the assumptions on which we base our
technique rely strictly on generally applicable rules (related to distributed communication)
that fit both well-structured programs, and poorly designed systems. Indeed, at any point in
the approach, we avoid making assumptions regarding the particular aspects of the system’s
design, about the patterns that were used or the architectural decisions that were made.
This holds true for our entire methodology, and thus, the feasibility of the approach is not
dependent on the quality of the system’s design, as we limit its assumptions to elementary
rules and patterns that are enforced by technology (e.g., RMI) specificities, and which must
be implemented by all applications.

5.4 Building the Core
Finding the frontier classes is an essential step, but they are not enough to capture and
understand the actual functionality of the system’s distributable features. Therefore, the next
step in our methodology focuses on finding a set of additional classes in the application that
add significant knowledge about the distribution-related functionality of the system. Moreover,
the cardinality of this set should be as small as possible, so that it can be analyzed in detail by
the engineer. In other words, we try to identify the very core of the distribution-aware nature
of the system, to select from the great number of classes only those that provide the most
valuable information.

The best place to find these entities are in the immediate vicinity of the frontier classes,
as they are most likely strongly involved in the activities related to the remote communication
over the network, and therefore provide us with significant knowledge about the distributed
structure of the system.

This is the point where the considerations we made in Section 5.2 regarding the depen-
dencies between system classes come to value. In the system’s dependency graph, classes are
connected by edges that show their collaboration: they call each other directly, refer each
other’s attributes, or are linked by inheritance relations. We can use the dependency graph
as the framework that defines the relation of ’neighborhood’ between classes, in terms of
structural dependence, in fact in terms of their inherent collaboration for fulfilling the design
goals of the system. Classes will be ’neighbors’ to one another if they are directly linked by
an edge in the graph, and they are ’close’ if the distance between them is relatively low.

To capture this structural trait, we defined a technique that starts with the already iden-
tified frontier classes and builds around them a structure we call the Dependency Graph of
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Distributable Features (DGDF). In this graph, each class is a vertex, and the edges repre-
sent the direct dependencies between classes, as discussed in Section 5.2. As the distributed
communication is usually bidirectional we are interested only in the fact that the two classes
are related with each other, not in the precise direction of their collaboration; therefore the
DGDF will be undirected. An edge will be created in the graph between any two vertices (i.e.,
classes) if at least a dependency exists from one class to the other. For this purpose, we take
into account three types of structural dependencies: (i) method calls; (ii) attributes accesses;
and (iii) inheritance relations.

The DGDF is built iteratively and incrementally starting with the frontier classes as initial
vertices, through an algorithm that we describe in the following paragraphs.

5.4.1 The Algorithm for Isolating the Distributable Core
5.4.1.1 Prerequisites.

The algorithm tries to detect the minimal dependency graph between the classes that encap-
sulate the core distribution-aware functionality of the system. The algorithm is described in
terms of its implementation in an object-oriented language, and it includes the considerations
that are specific for analyzing applications built using Java RMI.

Besides the concepts introduced in Chapter 4, there are a set of notions that must be
defined before describing the algorithm:

• Build strategy. Implements the approach used at each step for finding the set of
classes that will be processed at the next step. In our implementation, a build strategy
consists of two utility classes, the first for the initial step of the algorithm, the second
for the rest of the steps. A build strategy class provides methods that return Memoria
model entities related to the current set, one method for each type of relevant relation.
For instance, the UsersOfAllMembers class (one of our build strategies) has a method
called methodRelated() that returns all methods calling (methods of) the current
entity.

• Build Rule. A specification (realized in the form of a class) of the sequence of build
strategies that are to be applied for building the graph. The build rule is instantiated by
the concrete algorithm, i.e. by a class derived from the class AbstractGraphBuilder.
Example: RMIBuildRule adds, in order, the following two strategies: UsersOfAllMembers,
AllUsedMembers and is instantiated by the RMISystemGraphGenerator.

The algorithm is parametrized with a specified maximum depth of search, a user-configurable
item that limits the search for relevant classes.

In our implementation, the core algorithm is encapsulated by the abstract Abstract-
GraphBuilder class. The actual, technology-aware, algorithms are implemented in a class
derived from it. For the case of Java RMI applications, the class we implemented is called
RMISystemGraphGenerator.

5.4.1.2 Generating the Dependency Graph.

This step tries to build a graph that shows a set of dependencies between the system classes.
Relations as "calls method", "method called by" and "ancestor of" will be used as represen-
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tatives.

General description. The algorithm starts with a set of classes as root entities and builds the
graph. The root classes include, but are not limited to, the frontier classes already identified.

Selecting the Root Classes. This is a technology dependent step, i.e. it is specific to a
technology-related instantiation of the algorithm.

For RMI, the selection of root classes is done by the algorithm as follows:

a) selects all interfaces extending of java.rmi.Remote, as well as the classes that refer
them, and marks them as FRONTIER;

b) selects all classes that implement remote interfaces;

c) the union of these two sets is returned as the initial set.

Building the graph. This is a generic part, i.e. it does not depend on the technology. The
sequence of actions that build the core graph of classes directly related with the distributed
functionality of the system is described in Algorithm 5.4.1

5.4.1.3 Implementing the Build Strategies

As hinted by the algorithm description, the build strategies are facilities that are able to
generate, for each class that was added to the core dependency graph, a set of knowledge
items that can be used to determine the next set of classes to be considered by the algorithm.
This is a very flexible approach, as it provides means for easily adapting the algorithm to
various criteria in selecting candidate classes.

In the instantiation of our algorithm that we specifically used when conducting the test
cases, the strategies we have implemented provided two types of information:

• method-related items, such as methods that are related to the current class, belonging
to system classes

• attribute-related items, such as entities accessing attributes of the current class

Different strategies generate different sets of results, depending on their purpose. As
previously noted, we have used two such strategies when we applied the approach to Java
RMI systems:

• UsersOfAllMembers which generated at each step:

– all methods calling the current class;
– all methods accessing attributes of the current class.

• AllUsedMembers which generated at each step all the methods called by the current
class, except those of the class itself
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Algorithm 5.4.1: buildCoreGraph(root class set)

mainfor each class in root class set

do
{
mark as ROOT
call generateSubgraph(class)

procedure generateSubgraph(class)for each build rule

do
{
for each strategy in the rule
do call buildDependencyGraph(rule, strategy , class)

procedure buildDependencyGraph(rule, strategy , class)

if specified maximum depth was reached
then return

use the current strategy to select the next set of "interesting entities".
The "interesting entities" are those that provide useful information about
the next set of classes to be added to the graph, such as methods
called by the current class, methods calling methods of the current class,
or attributes referred by the current class.
The strategy class is selected depending on the current depth in
the graph: in the beginning the first class in the pair is used as information
provider, then the second. A set of entities (as methods or attributes)
is returned by the information provider’s methods.

compute the set S1 of classes resulting from the entities obtained above.
S1 contains the classes related (in terms of dependency) with the
current class: classes containing the called/caller methods and the
referred attributes. This covers the called-by/caller-of and attribute-related
dependencies.

compute the set S2 of classes that are ancestors to the current class

for each class in S1, S2
do call buildDependencyGraph(rule, strategy , class)

To exemplify the degree of flexibility gained by this approach, we should add that, at some
point in our experiments we have also defined a strategy called UsersOfMembersByFieldType
which provided the following entities:

• all methods in other classes that accessed attributes of the current class, with the
attribute type specified as an argument;

BUPT



74 5. CORE SYSTEM ANALYSIS

• all methods in other classes that called methods of the current class which in turn
accessed a subset of its own attributes identified by type.

5.5 Reviewing the Results
The graph generated at this point includes only a part of the classes in the system. This is
exactly as required by the considerations we made above, as the classes we obtain are the most
important ones in what concerns the identification of distributed behavior. In our experiments
on real-world applications, less than 20% of the system classes were designated as belonging
to the cores of distributable features, which is very valuable for narrowing the focus of the
analysis.

During each iteration, the algorithm identifies the new classes that are linked by depen-
dencies (i.e., method calls, attribute accesses, inheritance relations) with the classes that were
already added to the graph.

The process continues until a specified depth of search has been reached. While the
search depth can be set by the user, we found that a depth value of 6 to 8 is appropriate
for building a DGDF that includes only classes that are close enough to the detected frontier.
This minimizes the chances to include classes that are only slightly involved in the distributed
parts of functionality.

Besides specifying the search depth for the above algorithm, at this step in the analysis the
engineer is given an additional opportunity to improve the relevance of the classes belonging
to the DGDF. In our approach, the engineer can fine-tune the automatic construction of the
graph, by manually adding and removing classes to the dependency graph. This way the
engineer can control the core set of classes that represent the main distributed functionality
of the system.

The decision of adding new classes to the core highly depends on the engineer’s experi-
ence, and can be based on various assessments made by looking at the set generated by the
Algorithm 5.4.1 and the neighboring classes in the system dependency graph:

• classes that are directly linked with entities already included in the core, and are not
connected with any other class in the dependency graph;

• classes that have many connections with the generated set, and significantly fewer
connections with other classes;

• classes that have names resembling or suggesting logical connections to the names of
the classes that were included in the core;

• classes that implement an interface already included in the set, and the algorithm hap-
pened to miss (because of an improperly tuned search depth);

• classes that suggest (by name) that are directly related to the distributed aspect, but
were ignored by the algorithm for various reasons.

To remove classes, the engineer can consider one or more of the following criteria:

• classes that are loosely connected with the other classes included in the core, while
exhibiting stronger connections with other classes in the system dependency graph;
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• classes that have names suggesting different purposes than for the majority of classes
in the core. This criterium should be applied with care, as these classes may actually
represent different distribution-related functionalities, rather than classes inadvertently
included in the core set;

• classes that strongly suggest (by name) functionalities that are not related to the dis-
tributed aspect;

• classes that seem to be general-purpose utilities, such as string manipulators, format
converters, etc. Keeping them adds no significant information regarding the distribution-
related functionality, as they are built to be neutral entities, usable in many different
circumstances.

Nevertheless, we noticed during our case studies that even without any human intervention
we usually end with a relatively small number of classes, most of them highly relevant to
our purpose, and which encapsulate sufficient knowledge about the basic distribution-related
functionality of the system. While different applications may need different levels of user
intervention at this step, the algorithm provides a reliable starting point for a successful
analysis.

5.6 Identifying the Distributable Features
Once the core set of classes related to the distribution-aware functionality was isolated, our
methodology takes a step further in representing the system through the model we have
introduced in Chapter 4. Its goal is the identification of the distributable features, so that
the distinct aspects of the distributed functionality of the system are extracted and analyzed
separately.

The approach is based on the observation that, in general, distinct functionalities within
a system are represented by loosely coupled units of system entities [69], that can be isolated
with properly tuned semi-automated techniques.

Considering this observation by representing the system as a dependency graph, we can see
an object-oriented application as being made of a set of loosely- connected clusters of classes,
each cluster representing a different feature provided by the system. In order to extract these
features, we need a technique that is able to separate the functional units, by using all the
information available about the system to detect, separate and analyze the relevant clusters.

In our approach, we are already at the point where we separated the core distributed
functionality from the rest of the system classes, We continue the analysis by applying the
above considerations to separate this core into a set of functionally-distinct clusters of classes.
To do this we apply the following method:

• We analyze the graph obtained at the previous step, and use a set of heuristic rules to
detect the edges that link separate functionalities.

• we then temporarily eliminate these edges from the graph, and

• apply a general-purpose graph algorithm to isolate the set of connected components in
the modified graph.
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• Each connected component will represent a candidate for a core of distinct functionality.
As the processed graph was already the one that represented the system’s distributed
nature, the connected component will in fact represent a core of a distributable feature
in the system.

• The result is presented to the engineer for review.

The essential component of the technique is the identification of the edges or vertices that
are to be eliminated so that we remain with a set of connected components in the graph. In
other words, the goal is to eliminate all entities that prevent us from easily identifying the
functional units that provide distinct features.

In our opinion, we can obtain valuable information in this respect by a careful analysis of
all the available data describing the inherent nature of the system. This is especially true in
the case of distributed software, where the constraints the Communicator Mediator imposes
on the application have direct and identifiable consequences on the source code. Knowing
the particularities of the system can provide useful data about the types of dependencies
established between classes, so that we are able to find which of these dependencies can be
safely ignored (removed) for the purpose if isolating loosely-connected functionalities.

This approach, aware of the system’s distribution-related particularities would be able to
pave the way for applying a more general technique (applicable to other classes of systems as
well) able to separate the loosely coupled units. Considering this aspect, our approach uses
two types of rules that are applied on the system in order to detect and eliminate edges from
the graph:

• rules derived from analyzing the specificities of the technology the application is built
on, specifically the technology of the Communication Mediator,

• graph-oriented rules, built for extracting the loosely-connected cohesive clusters of
classes in an object-oriented system.

5.6.1 Technology-Aware Heuristics
Knowing the constraints the Mediator-specific technology imposes on the application’s source
code enables us to create a set of rules that identify several types of dependencies between
the classes which are not central to providing a distributable feature. The edges in the
graph representing these dependencies can be consequently temporarily removed so that the
identification of the loosely-coupled cohesive functionally-distinct clusters is easier.

For the case of distributed, object-oriented software applications that use Java RMI as the
communication infrastructure, we have made several observations that enabled us create and
apply a set of heuristic rules for this purpose.

5.6.1.1 Remote calls.

In Java RMI, the descriptions of services provided over the network are encapsulated in remote
interfaces, that is Java interfaces that extend java.rmi.Remote. Consequently, calling a
method of a remote interface usually means that the caller class belongs to a component that
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is located at a different location, and thus it has a good chance of belonging to a different
functional unit.

The first heuristic we apply temporarily eliminates all edges in the graph that represent
remote calls. Note that, even if the respective call refers to an interface in the same functional
cluster, this rule does not diminish the chances of correctly identifying it: to belong to a single
functionality, the classes must be related to each other in several additional ways, so that
eliminating a single edge will not make a big difference. Moreover, this case is very rare, as it
is not feasible to use RMI to call methods that are already available locally.

On the other hand, the case where the two classes linked by a remote call (through
an interface) belong to different, functionally-distinct, components is greatly served by this
approach, as most probably, their dependency in the graph is only represented by such remote
calls. Eliminating them will effectively decouple the two functionalities from each other.

5.6.1.2 Stub classes.

Most of the RMI applications include with their source code the automatically generated stub
classes specific for this technology. The stub classes are the entities that are responsible
with providing the communication channels that implement the remote calls, therefore can
be considered a part of the communication infrastructure, rather than components of the
application. Their existence not only fails to add useful information when trying to understand
the system, but they artificially raise the number of classes the engineer has to review when
trying to analyze the system.

Our approach eliminates all the vertices corresponding to stub classes from the dependency
graph, along with the edges that connect them to the rest of the system.

5.6.1.3 Utility classes.

Virtually every application makes use of classes that are not specifically built for the purposes
of the system and are rather general-purpose utilities that can be used in many different types
of applications. This category may include classes that perform conversions between different
formats for representing information, can provide features for the manipulation of strings, can
provide means for accessing proprietary or open format archives, etc.

Moreover, the application itself may define specific classes providing features that are not
central to the goals of the system, but are nevertheless used by several different units of
the code. When trying to separate functionalities, these classes may artificially link different
functional clusters, for the simple reason that more than one functionality happened to need
the respective features.

Our approach defines a rule that detects some of the utility classes, and removes them
along with edges that link them with the rest of the system. The heuristic that detects the
utility classes is presented in Algorithm 5.6.1.

We must note that, in this particular case, the technique makes use of the information
regarding the direction of the dependency between the classes. Thus, the source of the edge
is the class that has a dependency, and the target of the edge points to the class it depends
on. Although this information is not directly available in the undirected dependency graph, it
is easily extracted from the source code.
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The heuristic basically eliminates all the classes in the system that only have incoming
edges and are neither interfaces, nor classes that other classes inherit. The main assumption
for this heuristic is that classes that never use (by calling methods or accessing attributes)
other classes are either the base for an inheritance hierarchy, or represent utilities. This is
true for most of the cases, and we found that the rule had provided good results in helping
decoupling functionally unrelated system clusters.

Algorithm 5.6.1: isUtilityVertex(current vertex)

main

entity ← the class corresponding to the current vertex
if entity is an interface
then return ( false )

if there are classes derived (inheriting) from entity
then return ( false )

for each edges connected with the vertex

do
{
if edge source vertex is the current vertex
then return ( false )

return ( true )

5.6.2 Cohesion-Based Clustering
To eliminate further edges that connect the functionally-distinct units in the code, we have
applied a technique for graph processing based on the clustering algorithm described in [11].

The algorithm, which we adapted to our dependency graph, calculates for each edge
a measure that characterizes the “strength” with which it connects the two vertices. The
approach considers the density of the existing edges in the neighborhood of the two vertices,
so that an edge is considered ‘weak’ when it is likely to connect two otherwise loosely connected
clusters (see Figure 5.3).

To control the algorithm, the engineer is given the opportunity to specify and tune a
threshold value for this measure. Edges with the strength under this threshold are eliminated
from the graph, while the rest are left untouched.

5.7 System-Level Understanding
Applying the two categories of rules described above transforms the dependency graph rep-
resenting the core distributed functionality. At this point, we are prepared to make the first
valuable assessments about the analyzed application, as the methodology is ready to provide
the first items of system understanding.

For this purpose, the next step of our approach continues the processing by applying a
general-purpose graph-related algorithm that detects maximally connected components. As
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Figure 5.3: Loosely-connected cohesive clusters

the edges removed by the previous steps were specifically selected aiming the separation
of distinct functionalities, the set of connected components represent, in fact, the set of
separated functional units. Because the graph contained the most representative classes for
the system’s distributed nature, the clustering provides us with the set of functional cores for
the distributable features in the application.

Consequently, the analysis so far has provided us with the following:

• a relatively small set of classes representing the core distributed functionality of the
system

• a number of partitions in the above set, each representing the a distributable feature
the system provides

To ensure the validity of these findings, the engineer can analyze the outcome of the above
processing. In both our methodology and the implemented tool infrastructure, the result can
be modified at will by adding or removing classes to clusters.

5.7.1 Identify the Remote Communication Channels
One of the most important aspects when doing static analysis on a software application
is analyzing the interactions established between the various entities in the system. While
some of the system attributes can be gathered looking at the entities in isolation, the actual
understanding requires an in-depth assessment of the way the components work with each
other to meet their design goal. For this purpose, the analysis must necessarily focus on
identifying the relevant dependencies between the studied entities, especially the direct entity-
to-entity relations.
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In the context of distributed applications, the most important dependencies are those that
provide information about the distribution-aware characteristics of the system. Consequently,
this requirement translates as the need of identifying the remote communication channels
between the various parts of the system, the data paths established via the Mediator that link
them over the network. This information is highly relevant, as it can provide the analysis with
a first preview of the system’s actual distributed architecture.

The entities that we have already identified are the distributable features in the analyzed
system. A very important observation at this point is that the distributable features are
not the direct expression of the various distributed components as they are deployed when
installing the application in a network. Instead, they are functional units directly related to
the distributed functionality, and they may or may not be deployed at distinct locations at
runtime. The analysis so far has not used any information regarding the deployment, and,
as we stated in Chapter 4, we are confident that such information is not vital to actually
understand the system.

The communication channels that are established over the network, however, have every-
thing to do with the component-to-component relations specific to the analyzed application,
because their very existence in the system points to a direct need of communication between
components deployed at different locations. Therefore, identifying the remote-established
channels in the context of our approach does not only provide us with just another type of
dependency within the system, it represents the next important information we need to find
about the distributed architecture of the system.

Another important observation is that, as we place the core of our approach in being aware
of the relation between the system and the entity we have identified as the Communication
Mediator, we are in the position of finding the communication channels without actually need-
ing the information about the component deployment. This is because, as we have stated
before, we can benefit from a inherent characteristic of this relation: the Communication Me-
diator always defines a set of rules that translate in a set of constraints imposed on the design
of the application. These constraints are often identifiable as technology-specific constructs in
the code, therefore we can use them directly in the static analysis we employ on the respective
system.

The direct consequence of these two observations is that the distributable features and
the communication channels represent two knowledge items that together provide much more
relevant information than studied in isolation:

• on one hand, the distributable features represent distinct functionalities directly related
with the distributed aspect in the system

• on the other hand, the communication channels reflect the over-the-network dependen-
cies between remotely-deployed components of the system

The natural conclusion is that while combining the two types of information does not nec-
essarily guarantee the extraction of deployment information, it effectively provides us with
information of a much greater value: the remotely-established dependencies between the
distribution-aware system entities, that is, effectively, the architectural footprint of the dis-
tributed system itself.
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Because the components communicate remotely to each other, finding the communication
channels that connect them is a highly technology-dependent step, depending on the type of
the communication mediator involved.

For applications using Java RMI for communicating over the network, we make use of
their specific way of describing remote services. As previously noted, this involves creating
Java interfaces that extend java.rmi.Remote. The very existence of remote interfaces in the
application’s code is the expression of the need to publish a set of services available for remote
locations. Therefore, any reference to such an interface usually indicates a communication
between two entities deployed at different locations. For each pair of distributable feature
cores already identified, the communication channel between them is consequently made of
all references to remote interfaces that link one feature with the other.

The different types of dependencies that represent communication channels can be used to
reveal different types of distributed architectures [108] in the analyzed system. For instance,
we can detect a client-server dependency by observing features that call each other in a
single direction. Peer-to-peer communication will be represented by bidirectional dependencies
between distributable features, and this approach would also allow us to observe more complex
interactions, as layered communication, rings of communicating entities, and so on.

5.8 Visualization - The Distributable Features View
One of the most important aspects when understanding structures is representing them by
the means of visual elements. Architectures, plans, abstract models, and any other conceiv-
able arrangements of inter-related entities are better communicated and understood when
represented through a well-drawn picture.

This is the reason our approach in understanding a widely-used category of systems makes
an important point in providing a set of relevant software visualization [24] techniques specif-
ically built for analyzing distributed object-oriented systems. The visualizations we have
developed were first presented in [20], and complement the main analysis techniques our
methodology provides.

In accordance with our chosen terminology, we introduce the Distributable Features View
as a visual means to representing all the concurrent structural-related interaction facets we
find relevant for understanding distributed systems. It consists of two perspectives, the first
one is detailed below, and the other one will be introduced later in our presentation.

5.8.1 The Distributed Architecture Perspective
In this perspective, we are concerned with representing the knowledge we have gained by
identifying the distributable features and the communication channels they are linked with
each other via the Mediator infrastructure, by drawing the first preview of the distributed
architecture of the system.

In Figure 5.4 we have exemplified the perspective by drawing the distributable feature cores
we have identified in some of our case studies. The features are represented as rectangles of
the same width, their height being proportional to their size in terms of number of classes.
From this point of view, the Distributed Architecture Perspective is a simple case of polymetric
view [58].
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Figure 5.4: Example of Distributed Architecture Perspective

The communication channels between distributable features (in this case the remote calls
made by the classes belonging to the different cores) are depicted in this visualization using
directed arrows.

In the context of vizualizing the system attributes to improve the understanding, the
Distributed Architecture Perspective has a double role:

1. It enables the engineer to actually see the architectural relations between the various
distributable features, as represented by their core classes. This helps drawing the
first conclusions about the distributed architecture of the system to identify client-
server dependencies (features calling each other in a single direction), peer-to-peer
communication (bidirectional calls), and so on.

2. It visually associates each distributable feature with a color. This is an essential element
for the interpretation of the further visualizations (which we discuss later), where this
‘color coding’ will be used as a key.

The tool infrastructure we provide for the understanding process automatically generates
the visualizations as soon as the necessary information was gathered from analyzing the ap-
plication’s source code.
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Impact of Distribution

The steps of the methodology described in the previous chapter focused the attention of
the research to a relatively small set of classes that represented the core of the distributed
functionality of the application. The process was very useful in capturing the main system
attributes related to the distribution-related concerns, by greatly reducing the effort of the
engineer and provided a first view on the system’s distributed architecture.

Nevertheless, the vast majority of the application’s classes were not yet taken into consid-
eration, and an approach that aims to understand the system would never be complete without
analyzing them, too. This chapter describes the techniques we have employed to understand
the positions these classes take in respect to the already gathered knowledge about the sys-
tem. Specifically, we analyze them in relation to the identified distributable feature cores, so
that we understand in a better degree the application’s relation with the distribution-related
tasks.

For this purpose, we analyze for each class outside the previously processed core its in-
volvement in providing the already discovered distributable features. We define and use a set
of metrics that characterize this relation and interpret them so that we gain a deeper under-
standing of the system. The approach is complemented by visualization, which facilitates the
capturing of the most interesting patterns of collaboration that occur within the system.

6.1 Acquaintance Classes and Metrics
In order to do so, we have to measure the degree in which a particular class participates in
providing a certain distributable feature. We call this involvement affiliation to the distribut-
able feature’s goals, and the class itself becomes an acquaintance of the distributable feature .
A class is ‘better acquainted’ to a feature if it plays a more important role in providing it, while
classes ‘less acquainted‘ are mainly involved in other activities, distributable or otherwise.

When measuring, we are interested in two main characteristics of the target class:

1. The degree of affiliation of the class to the general distribution-related functionality in
the system;
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2. The level of involvement of the respective class in providing each of the distributable
features identified in the previous steps of the analysis.

The first coordinate provides information about the overall importance of distribution in
the application’s design, while the second focuses on capturing the details regarding the way
each of the distribution-related functionalities are provided by the system.

6.1.1 Bidirectional Coupling Metrics
The first measurement that we need when assessing the above characteristics of the system is
directly related with the way individual classes are related to each other. We have already used
an important property in this respect when we built the core graph of distributable features,
the direct dependency between classes in terms of coupling.

For building the set of metrics that will help us extract further attributes of the system,
we define two coupling-related measures at the class level. We calculate the coupling on two
coordinates: the coupling intensity, which assesses the strength of interaction between the
classes in terms of the number of collaborations that make the dependency, and coupling
dispersion which quantifies the number of collaborators within the classes [59]. On the other
hand, as mentioned earlier, we are interested in both aspects of coupling (bidirectionally),
namely the import and export ones [8]. We introduce two metrics:

The Bidirectional Coupling(BC) between class A and B is the pair.

BC (A, B) =
{

BCI (A, B), the coupling intensity
BCD(A, B), the coupling dispersion

The coupling intensity is defined as:

BCI (A, B) = CallsI (A, B) + AccI (A, B)
+ CallsI (B, A) + AccI (B, A)
+ Inh(A, B)

where

CallsI (X , Y ) = the total number of method invocations from methods
in class X to methods in class Y,

AccI (X , Y ) = the total number of accesses from methods
in class X to attributes in class Y, and

Inh(A, B) is defined as

Inh(A, B) =
{

1, when A inherits from B or B inherits from A
0, otherwise
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The coupling dispersion is:

BCD(A, B) = CallsD(A, B) + AccD(A, B)
+ CallsD(B, A) + AccD(B, A)
+ Inh(A, B)

where

CallsD(X , Y ) = the number of distinct method invocations from class X to methods in class
Y. If a call to the same method is made several times between the two classes, it is only
counted once,

AccD(X , Y ) = the total number of distinct accesses from methods in class X to attributes
in class Y. If an access to the same attribute is made several times between the two
classes, it is only counted once , and

Inh(A, B) is the same as above.

The Total Bidirectional Coupling (TBC) of a class A is

TBC (A) =
∑

All K∈System

BC (A, K )

where K is a class in the system to which A is directly coupled. This metric measures basically
the degree in which the class directly collaborates with all the classes in the system. As above,
it can be computed on two coordinates, so that we have TBCI (A) (the total coupling intensity),
and TBCD(A) (total coupling dispersion.

6.1.2 Acquaintance Metrics
The coupling measures can be used for assessing the collaboration between a class and a
distributable feature, for instance by adding all the BC values between a certain class and all
the classes in the cluster representing the distributable feature core. However, in real-world
applications it is not enough to calculate the simple class-to-class dependencies, as the relation
between a distributable feature and the other classes involve more complex collaborations.
Classes that do not belong to the cores may be directly coupled with the classes that form
the core of a particular feature, but they may as well collaborate with the distributable feature
core via intermediary classes. Therefore, our measurements must take into consideration the
indirection levels between classes, so that the assessment is applicable to all the classes in the
system.

6.1.2.1 Class-to-Feature Acquaintances

In order to measure the strength of collaboration (acquaintance) between a class C and a core
of distributable feature F , we define a metric that we call Acquaintance with Distributable
Feature (ADF). Its definition has two parts as follows:
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Direct Acquaintance. If class C is directly coupled (has a direct dependency) with at least
one class K that belongs to F we consider that class a direct acquaintance of the distributable
feature F . We calculate the ADF value for such a class as:

ADFdirect(C , F ) =
∑

classKinF

BC (C , K )

In other words, for direct acquaintances the ADF metric is the sum of the intensity of all
bidirectional couplings (BC ) between the acquaintance class and the classes belonging to the
distributable feature core. For example, in Figure 6.1 the middle class in column labeled 0
is directly coupled with both classes of the distributable feature core and therefore its ADF
value is 9 = 3+6

Indirect Acquaintance. Classes that are not directly coupled (do not have direct depen-
dencies) with classes in the distributable feature core are called indirect acquaintances.

We say that an indirect acquaintance class belongs to the n-th indirection level when, in
the dependency graph, there are n − 1 classes between it and the closest class belonging to
the distributable feature core. For such a class, the ADF metric is computed relative to the
ADF values of the classes belonging to the (n-1)-th indirection level, the one that is closer to
the distributable feature.

The metric is defined as follows:

ADFindirect(Cn, F ) =
∑

classKn−1

ADF (Kn−1, F ) · BC (Cn, Kn−1)
TBC (Cn)

We compute the Acquaintance with Distributable Feature between each class K and a
given distributable feature F using an iterative calculation that starts with the classes that
are directly coupled with the respective distributable feature core, then considers the rest of
the classes in the system. The procedure is presented in Algorithm 6.1.1.

The values of the Acquaintance metric for the classes that are not directly coupled with
the given distributable feature core (F ), are calculated by taking into consideration their
dependency on the classes that were processed at the previous steps in the algorithm.

A weight is applied to each acquaintance values taken from the neighbors, which is a
subunitary number that is calculated as the ratio between the coupling of the class with its
neighbor and the total coupling of the class with the entire system (BC(C ,Kn−1)

TBC(C) ). Thus, we
ensured that the influence of the distributable feature core is getting lower at each step farther
from it. The applied factor is in fact the degree in which the dependency on the neighboring
class is important in the class’ collaboration with the entire system. A low factor means that
the class is mostly involved with other classes in the system, rather than with the neighbor
that links it with the distributable feature core; therefore, the influence of the distributable
feature core via this neighbor is not that important in the class’ purposes. Reversely, the more
class C is involved in collaborations with classes that are closer to a distributable feature, the
more it “receives” from their ADF value.
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Algorithm 6.1.1: computeADF(C , F )

main

currentSet ← all classes directly coupled
with the feature core

for each class K ∈ currentSet

do ADF (K , F ) = ADFdirect(K , F )

while true

do



prevSet ← currentSet
currentSet ← all classes directly coupled with the
classes in prevSet

if currentSet is void
then break

for each class K ∈ currentSet

do


ADF (K , F ) = 0
for each class L ∈ prevSet

do


if L neighborOf K
then ADF (K , F ) = ADF (K , F )

+ BC(K ,L)
TBC(K) · ADF (L, F )

For example, in Figure 6.1, the ADF value for the upper class in the n-th indirection level
is computed as follows:

ADF = 4 · 2
8

+ 8 · 1
8

= 2

Note that we assumed that all the classes it depends on are visible in the picture and therefore
the Total Bidirectional Coupling (TBC) is 8 = 2+1+2+3.

6.1.2.2 System-wide acquaintance measurement

Another metric we defined so that we characterize the classes involvement in the system’s
functionalities is the Total Acquaintance with Distributable Features (TADF). It is calculated
as the sum of all ADF values for the respective class:

TADF (Cn) =
no.offeatures∑

i=1
ADF (Cn, Fi )

The Total Acquaintance with Distributable Features of a class is a metric that measures the
degree in which the respective class is involved in all the distributable features. This means,
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Figure 6.1: Computing the ADF metric

effectively, that we have a way of quantifying the contribution each class has in providing the
distribution-aware functionalities of the system. Consequently, we can consider the TADF
values of the classes in the entire system to obtain information about the overall involvement
of the application in the distributed activities. For this purpose we define and use an Average
TADF, as follows:

AverageTADF (System) =
∑

K∈System TADF (K )
NOC (System)

where NOC (System) is the number of classes in the application.
High values for the Average TADF are specific to systems that are mainly concerned with

distribution-related activities, while low values show that the system is mainly involved with
local tasks.

6.2 Interpretation
When analyzing the classes outside the distributable feature cores, the metrics we introduced in
the previous sections provide means for a detailed characterization of the system’s distribution
awareness.

These assessments can be described in form of detection strategies [73], in fact metrics-
based rules for

• drawing conclusions regarding the properties of the system classes or of the application
itself which are relevant to the study
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• describing patterns that identify design fragments with a correlated set of quantifiable
properties.

One key element in writing such detection strategies is to find the adequate thresholds
for the metrics involved in the detection strategy, and to use these thresholds to classify
or discriminate between the target entities. Choosing the threshold values is a well-known
metrics issue, and it is mostly done based on experimental evidence [61, 59]. For this reason,
we decided to use threshold identifiers for the detection strategies described next, rather than
raw numbers, as these identifiers do better encapsulate semantics than particular threshold
values, and are less volatile. Based on experimental evidence, the threshold identifiers will
be associated with actual numbers later in this dissertation when we will describe the case
studies .

In this section, we will interpret the metrics defined above and describe a set of detection
strategies that quantify this interpretation.

6.2.1 Involvement in Distribution
At the class level, the Acquaintance with Distributable Feature metric shows for each class its
involvement in providing a distributed feature. In our approach, we measure all the possible
ADF values for the classes outside the core, that is, for all the identified distributable features.
We can consequently observe the various degrees in which a class participates to the distri-
butable features, and find patterns of involvement characteristic to the analyzed system.

The Total Bidirectional Coupling metric shows the collaboration of a class with the entire
system. We can use this measure in combination with the TADF values to understand what is
the proportion of the class’ involvement in distribution-related tasks over the local-concerned
ones. We can thus identify more classes that are specifically built for distribution, besides those
that we have already isolated as belonging to the core. As a consequence, we can consider
these newly detected classes as part of the distributable features themselves. Moreover, we
can find the classes that mainly or even exclusively participate to local features, so that we
can isolate the parts of the system that are not concerned with the distribution.

6.2.1.1 System Distributed Awareness

The Average TADF is an important metric through which we can make system-wide char-
acterizations. Furthermore, the extent of involvement of an application in distribution-aware
activities can provide useful information regarding the way the respective distributed system
was designed.

For example, if a system claims it was specifically built to be decentralized and distributed
but its average TADF is low, we can suspect that the respective system either doesn’t follow
its claims, or it has some distribution-related design flaws.

We use the Average TADF to make assessments about the Distributed awareness of the
system, and our first detection strategy classifies the entire application as:

• distribution-aware when the average TADF is high

• locally-concerned when the average TADF is low

The ‘high’ and ‘low’ identifiers are assigned values depending on the size of the application.
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6.3 Patterns of Acquaintance
Up to this point, our analysis approach has identified the main distribution-related function-
alities, by isolating their core entities. We are already able to make assessments on their
nature, and we can also assess the interactions between them via the network. Further, by
applying the Average TADF measure, we have gained the capability of measuring the overall
distribution awareness of the system, the importance the distribution plays in its design goals.
With these important items of understanding in mind, we can now proceed to analyze at a
finer grain the interactions that the system entities are part of in respect to providing the
distributable aspect of the application.The metrics presented above were specifically built for
this purpose, and it is time to put them to good use.

Our goal is to understand how the system classes are involved in the distribution function-
ality, and how separated the already identified distributable features really are in the system’s
code. Moreover, we need to assess the relation of the distribtion-aware parts of the system
with those that are only concerned with local activities, and thus to be able to identify the
classes that do not depend on the distributed aspect.

For this purpose, we analyze each system class in turn, apply the acquaintance metrics we
defined, and assess its collaboration with the different types of functionalities in the application.
The class involvement is different from case to case, as some can be built to contribute to a
single functionality, while others can be used by more than one features in the system. In order
to understand them, we need some sort of classification of the different types of involvement,
so that we can label the classes in rapport to their utility in the system. We consequently
need to identify the most relevant patterns of collaboration within a distributed system, and
the analysis needs to find how the system classes meet these patterns.

This section presents the patterns related to the analysis of distributed software systems
that we have identified as relevant for making important assessments about the distribution-
related functionality. We define them in terms of detection strategies made at the class level,
that can be applied by the analysis in order to discriminate between classes. In accordance to
the metrics they are built on, we call these strategies patterns of acquaintance and use them
to quantify the class involvement in providing distributable features.

The patterns of acquaintance are all metrics-based, and focus on the relative proportions
between the total acquaintance and the total coupling metric for a class. This technique
provides us with a clear view on the ration between a class’ involvement in a particular aspect,
and its total collaboration in providing the features of the system, thus making possible
accurate assessments on its importance for the studied aspect.

The two main metrics we use at the class level are:

• the Total Acquaintance with Distributable Feature (TADF) and

• the Total Bidirectional Coupling (TBC), as defined in Section 6.1.

6.3.1 Significant Feature Acquaintance
One of the most important aspects when studying the classes that are outside the core of distri-
butable features is understanding their involvement in the distributed functionality, specifically,
identifying those classes that are strongly related to the distributed aspect. They are highly
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relevant when an analysis aims to understand where a line can be drawn that delimits the
distributed part of the system from the local one.

This provides the engineer with the information that allows for decisions related to the
system’s evolution in respect to its distributed nature. For instance, it can indicate which
classes are most affected when the communication-related technology changes, and which
classes are to be restructured when the importance of the distribution-related system activities
needs to be reevaluated.

AND
Significant 

Acquaintance of 
Distributable 

Features

Total coupling with
distributable features is high

Class is mostly coupled with 
distributable features

TADF
TBC ≥ AV ERAGE

TADF ≥ HIGH

Figure 6.2: Significant Acquaintance

The classes most involved in distribution are those that work together in a higher degree to
provide distributable features, and their activity outside this concern is limited. In terms of our
metrics, this translates in a high ratio between the total acquaintance with the distributable
features (TADF ) and the total bidirectional coupling of the respective class (TBC ). Indeed,
the TBC shows how involved the class is in the overall system activities (distributed or other-
wise), while TADF shows the involvement in the distribution-related features. Nevertheless,
this is not sufficient to make a correct assessment. In any application there may be many
classes that follow this pattern (have a low TADF/TBC ratio), but their actual contribution is
so small that they can’t actually be considered important. This is why our detection strategy
for this case also considers the size of the distribution-related contribution when selecting the
classes. We call the classes that have a high contribution with the distributed functionality
Significant Feature Acquaintances, and the strategy that detects them is presented in Figure
6.2.

A class that conforms to this pattern has a substantial collaboration with the distributable
feature(s), as most of its dependencies are related to the distributed part . At this point, we
can analyze the classes at a deeper level, and can distinguish two subcategories that fit this
description:

• Classes that have a high TADF because of their high acquaintance with a single distri-
butable feature. In other words, one ADF value for the class is very high, while the
others are minimal, or even zero. This kind of classes are basically built for providing
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that single feature, therefore they are highly relevant for understanding that distributable
feature itself.

• Classes that have a high TADF because of balanced collaboration with two or more
distributable features. These classes are not exclusive to a single functionality, they
rather provide services for several distribution-related tasks. They may link the features
together, and they can be classified as a special category of distribution connector
classes. As their TADF is high, these classes are important in a restructuring context,
qualifying as the main candidates for redesigning when trying to completely separate
the features (e.g., in order to deploy them on different locations).

6.3.2 Local Feature Contributor
The other case of entities that must be isolated when assessing the ratio between the dis-
tributed and local functionality is that of classes that are very little involved in the distribution-
related activities. Many distributed systems contain an important number of such classes, and
their presence can be an indication of various traits of the application.

Locally-concerned classes and their activities can be necessary to support the distributed
functionalities, by, for instance, logging the system runtime events, managing the authorization
processes for users, archiving data or providing user interfaces. On the other hand, there are
applications where classes that act only locally represent the vast majority of classes in the
system, and the distributed aspect is the one that plays only a supporting role. Identifying
these classes and assessing their characteristics in rapport with the distributed functionalities
is consequently very important for an insightful analysis.

AND

Class is strongly coupled with the 
other classes in the system

Class has (almost) no relation   
with the distributable features

TBC ≥ HIGH

Local Feature 
Contributor

TADF

TBC
≤ LOW

Figure 6.3: Local Feature Contributor

Unlike the significant feature acquaintances, the collaboration of these classes with the
distributable features is low, while their other collaborations occupy their entire activities. Us-
ing the metrics we defined in Section 6.1, this means the ratio between the total acquaintance
with the distributable features (TADF ) and the total bidirectional coupling of the respective
class (TBC ) is very low. Moreover, to eliminate classes that have a small overall involvement
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in the system (which, as in the previous case, would make their study of little relevance), we
must also consider their absolute TBC value when selecting the relevant cases.

We call the classes that have significant involvement in local features Local Feature Con-
tributors, and the strategy that detects them in the application is presented in Figure 6.3.

The classes that fit this pattern can be of two types:

• they implement one of the system’s non-distributed feature;

• they are local utility classes that the local or distributable features use.

6.3.3 Connector Class
Not all classes in a distributed software system can be placed with a high certainty in the
category of distribution-concerned entities or in the locally-acting one. More often than not,
there are classes that actually place themselves at the frontier between the local functionalities
and the distribution-aware concern of the system.

There is seldom a clear separation between the two aspects, and it is natural that the col-
laboration between the two parts is usually a strong one, as the overall goals of the subsystems
are the same. Consequently, the classes that link the two types of functionality become highly
relevant for understanding the system, as they can provide indications on how the distributed
and non-distributed parts work together for achieving the design goals.

We call this type of entities connector classes, and we have built a strategy that detects
them among the classes in a distributed software system.

AND

Class has significant coupling with 
the distributable features

Class has significant coupling with 
other classes in the system

TADF ≥ AV ERAGE

LOW <
TADF

TBC
≤ AV ERAGE

Connector 
Class

Figure 6.4: Connector Class

Ideally, classes that link the local and distributed functionalities, would have an equal
involvement in both of them. In terms of the metrics we defined in Section 6.1, their total
acquaintance with the distributable features (TADF ) over the total bidirectional coupling of
the respective class (TBC ) would be equal or very close to to 0.5.

However, we must analyze the class involvement in respect to the other classes in the
system, and therefore the characterizations must take into consideration the overall involve-
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ment of the other classes, too. Therefore, we consider that all the classes that have a low to
average TADF/TBC ratio can be candidates for inclusion in the connector class category.

The next filter is based on the fact that we are interested in the linkage between distributed
features and the local ones, with a particular emphasis on the distribution. Moreover, as in the
previous cases, we need to avoid considering classes with small involvement, as they cannot
add relevant enough information to our knowledge.

Therefore, we take into consideration only the classes that have an over-the-average TADF .
In combination with the other criterium, our strategy of detecting connector classes addresses
those classes that have a significant amount of collaboration with the distributed part of the
application, while most of its collaboration is still with the other classes in the system. The
strategy is described in Figure 6.4, and applying it helps us understand the main linkages
between the two parts of the application.

6.4 Visualization
Calculating the values implied by the metrics, and applying the detection strategies above on
the system classes provide the analysis with comprehensive data regarding the collaborations
within the application, and the ratio of importance of the distributed functionality over the
non-distributed one.

Nevertheless, the software understanding field often necessitates insights that can be only
obtained by relying on the engineer’s experience and direct involvement. As processing large
amounts of raw data is usually difficult for a human being, an approach that aims to improve
the efficiency of the understanding enterprise must provide means for presenting the data to
the user in a way that facilitates easy identification of the studied system traits.

In this respect, our methodology places the human at the heart of the process, by providing
a set of visual representations of the system characteristics. Similar to the parts of the
methodology described in Chapter 5, we believe that the identification of the various patterns
of collaboration is greatly facilitated by using software visualization techniques.

Using software visualization, the approach synthesizes the large amounts of gathered data
into a set of diagrams that present the collaborations between the system classes and the
distributable features, while capturing the total bidirectional coupling traits of the classes.
The characteristics are presented simultaneously, so that the engineer is able to see at a single
glance all the cooperating aspects that describe the system.

The specific visualization perspective we have defined enables the engineer to easily rec-
ognize the categories of classes identified by the pattern detection strategies described in the
previous section. The visualization is called Feature Affiliation Perspective, and it it is part of
the Distributable Features View we introduced in Chapter 5.

6.4.1 The Feature Affiliation Perspective
This perspective (Figure 6.5) uses visual elements to show the impact the distributable features
have on the classes that were left outside the core graph by the first phases of the analysis.
It is designed to reveal to the engineer the level and profile of the collaboration between the
classes and the distributed features of the system, so that the category the class belongs to
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is easily identified. At the same time, the total collaboration for each class is shown, so that
the collaborations can be put in perspective.

Figure 6.5: Example of Feature Affiliation

Each of the classes that do not belong to a core of distributable features is drawn as
follows:

• Total collaboration. A light gray rectangle shows the total bidirectional coupling of
the class with the other classes in the system. The height of the rectangle is propor-
tional with the intensity of the coupling (number of collaborations), while the width is
proportional with the dispersion of coupling (i.e., number of collaborators)[59].

• Distribution-related collaboration. Within the light gray rectangle, we display a set
of colored rectangles, one for each distributable feature which the class collaborates
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with. The color of the rectangles corresponds to one of the colors from the Distributed
Architecture Perspective we described in Chapter 5.
The height of each colored rectangle is proportional with the intensity of the Acquain-
tance with Distributable Feature metric value calculated between that class and a par-
ticular distributable feature. The width is proportional with the dispersion of that same
metric.
The colored bars are placed in the upper-left corner of the gray rectangle, so that we
can visually ascertain the ratio between the colored and gray areas, actually seeing the
importance the different distributable features have in the functionality of the respective
class.

From the point of view related to the software visualization field, the Feature Affiliation
Perspective effectively extends the concept of polymetric view introduced by [58], by “embed-
ding” within one polymetric rectangle a set of other (correlated) polymetric rectangles. We
call this Composed Polymetric View, and to the best of our knowledge it was not used before
as such.

Figure 6.5 presents an example of the Affiliation Perspective for several classes in one of
our case studies.

6.4.2 System-level Visual Assessment
In Section 6.2.1 we identified a strategy that assesses the system distributed awareness by
calculating the Average TADF. Systems having a high value for this metric are strongly
involved in distribution-related activities, while application with a low Average TADF are
mostly concerned with local tasks.

Using visualization, the engineer is able to assess these traits without measuring the system
directly, by simply looking at the diagram we build with the Feature Affiliation Perspective.
The picture contains all the classes in the system, with their collaborations depicted as de-
scribed above. The engineer only has to look for the overall presence of color in the diagram,
and can make a rapid evaluation of the system’s distributed awareness:

• a visualized system where color is visible in many places and is relatively dominant over
the grey areas is one that has a high involvement in distribution-related tasks;

• a diagram containing mainly areas where gray is visible is concerned with local activities,
and its distribution awareness is low.

Most application fall somewhere in between the above extremes, and the visual evaluation
is very helpful in assessing the global relation between distribution-aware and locally-acting
system entities.

6.4.3 Visual Patterns of Acquaintance
When applied to the system classes, the visualization technique provides means for easy
identification of the collaboration patterns we have introduced in the previous section. The
engineer can identify the relevant classes that belong to one category or another by simply
looking at the diagram, and by seeing the colored patterns for each drawn class.
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Figure 6.6: Example Big Color Spot class

For each of the detection strategies related to the collaboration traits, we have identified
a visual pattern that the engineer can use as reference when looking at the visualized system
classes. The patterns represent the direct interpretation of the visualization technique, and
are presented below.

6.4.3.1 Pattern 1: Big Color Spot

This pattern corresponds to the detection strategy that identifies the Significant Feature
Acquaintance classes.

Classes with this pattern, appear in a Distributable Features View as having one
or more dominant color spots, so that only a small gray area is visible (Figure 6.6). This
fits the definition of the detection strategy, which considered only high values for the TADF
metric (corresponding to the colored spots in the view), and higher than average values for
the TADF/TBC ratio (visible as little gray in the image).

As when describing the detection strategy we can identify the two types of significant
acquaintance classes:

• Classes where only one color is dominant, are the significant acquaintances for a single
distributable feature, as one ADF value is much higher that the other ADF values for
the respective class, which makes a single color dominantly visible.

• Classes where two or more colors are visible in sufficiently large areas to be easily spotted
represent the classes participating in more than one distributable feature. They have
at least two relatively balanced ADF values, and qualify for the category we previously
called distribution connector classes.

6.4.3.2 Pattern 2: Big Gray

This pattern corresponds to the detection strategy that identifies the Local Feature Contributor
classes in the system.
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Figure 6.7: A Big Gray class

A Big Gray class (Figure 6.7) can be observed in the visualization as one that presents a
large gray area, while the colored areas are small in comparison. The large grey area is present
because their total bidirectional coupling with system classes (TBC) is high, therefore they
have significant participation in the system’s functionalities, yet most of these functionalities
are local. The trait is confirmed by the fact that the colored areas are comparatively small
(or even non-existent), therefore the TADF/TBC ratio is low.

6.4.3.3 Pattern 3: Color Spotted Gray

This visual pattern corresponds to the detection strategy responsible for finding the classes
that act as connectors between the distributed and non-distributed functionalities.

The visualized classes in this category are shown as dominantly gray rectangles, yet sig-
nificant color spots are also visible. Figure 6.8 shows an example of such classes. The ratio
between the colored and gray areas can be put in perspective with the other classes in the
system, so that the connector functionalities are identified in relation with the overall system
traits.

The dominant gray areas fit the description in the detection strategy where the TADF/TBC
ratio is considered below average. The colored spots are the expression of classes having higher
than average Total Acquaintance with Distributable Features, which is again in accordance
with the specifications of the detection strategy.

The view has the advantage that the engineer can easily identify the connector classes,
and, moreover, by looking at the color spots he or she can see without further analyzing the
code which are the particular distributable features that depend in a higher degree on the

BUPT



6.4. VISUALIZATION 99

Figure 6.8: A Color Spotted Gray class

non-distributed functionalities of the system.
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Restructuring Support

The previous steps of our methodology defined a process that starts with the source code
of an existing distributed application, and uses the information about the communication
technology to extract valuable information about the system. The approach isolates the
separate distribution-aware functionalities, offers an architectural overview of their remote
interactions, and provides means to thoroughly understand the involvement of every system
class in providing the respective functionalities. Complemented by a visualization technique
and a software tool that automates most of the tasks, the process enables engineers to
significantly add to their understanding of the analyzed systems.

Software systems understanding is a very important task for an engineer, often being a
goal in itself, as the knowledge items gained through detailed analyses represent valuable tools
for long-term controlling and maintenance of the applications. Software applications are in a
continuous process of evolution, therefore their internal structure tends to degrade in time. A
methodology for understanding software can consequently be enriched by providing at set of
techniques that enable the engineer to reason about the restructuring needs, and support the
process of redesign.

We believe that, when addressing this issue, an approach should concentrate on finding
simple yet highly relevant means of manipulating the code when trying to change its structure.
They must be relevant to the domain describing the target systems so that the approach fits
the most important issues that occur within the respective application class, and they must
be simple in order to keep the interaction between the engineer and the code artifacts at an
easy, manageable level.

Distributed object-oriented applications differ from their ’locally-acting’ counterparts in
that they are designed to fit the necessities of (usually) heterogenous networks of human
activities, systems of tasks executed at geographically distinct locations. Organizations need
to integrate their workflow in the wide dispersion of their worksites, and this usually requires a
complex distributed system consisting of balanced, sometimes relatively autonomous, software
nodes working together for the same goal.

Unfortunately, the real-world applications are, in many cases, far from such a scenario.
Many ’distributed’ applications consist of several or many instances of the same (or few)
lightweight client(s), connecting from different locations to a single, oversized server, that
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centralizes the entire workflow. The server provides all the features needed by the network,
even though most locations may actually need only a subset of these services, those that
specifically address their local concerns. Such a system is unpractical, and will not be able
to function efficiently for long, as it will not cope with the situations like the growing of
the organization it serves, or the evolution of the features it must provide. Consequently, at
some point in its future, the system will have to be restructured, particularly by extracting
the individual services and (possibly) deploying them at or near the locations that need them
most.

This chapter presents our approach to restructuring distributed object-oriented applications
by focusing on the nature of the restructuring needs that often arise during the system’s
lifetime. It uses an extraction-based technique which isolates inter-related pieces of software,
providing means to both assess the layout and the cost of the redesign, and to enhance the
understanding of the system.

Extraction of services and, generally, of groups of interrelated software entities is the
basic method we use in our approach to restructuring distributed software. At the point the
restructuring step occurs in our methodology, a lot of valuable knowledge about the system
was already gained by the engineer, therefore the extraction itself begins with a lot more than
qualified guesses about the ’what’, ’where’ and ’how’ concerns of restructuring.

7.1 Criteria for Restructuring
Regardless of the technology involved, a distributed application must be designed so that it
serves efficiently its purpose. If structured as a set of services, it must provide them so that
they both minimize the network communication, and make intelligent use of the geographical
distribution of the components. Most commercial distributed applications manage the re-
sources and workflow of real-life distributed organizations, such as companies having multiple
branches, or individual sites that need to integrate their work. We argue that, in order to be
efficient, the services in such a system must be:

• Small. Regarding the actual size of the service, we believe it should consist of as few
classes as possible, so that it is manageable both by the developer, and the user. A
smaller service will be easier to maintain, and easier to configure in the production
environment, for instance by deploying it at a different location without affecting the
overall system functionality.

• Focused. In what concerns the application’s goals, a focused service is one that,
regardless of its size, limits its functionality to a specific, accurately targeted purpose,
rather than combining several, loosely-related, features that may or may not be needed
by all its clients. Keeping the purpose in sharp focus during the entire life cycle of the
services will provide the users of the system with a great degree of flexibility in assigning
(and changing) the functional roles of the different locations the organization is involved
in.

• Decentralized. By decentralized we refer to services that balance their functionalities
and minimize their inter-dependencies, rather than encapsulating features needed by the
entire system. A centralized feature needed throughout the system will almost always
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become a communication bottleneck when the system is deployed, and the dependance
of the other components on the centralized activities will hurt the system’s performance,
flexibility and usability.

Designing the services under the above three coordinates will help create a system that is
well-distributed, i.e. it has an optimum services/locations ratio. Small and focused services
deployed at the locations they are needed most will ensure better scalability, by providing
easier methods of extending the system when the demands grow. Adding decentralization to
the mix will help avoid situations when a lot of the components connect to the same location
while their actual purposes are very different (heterogenous) and would be better served by
several custom services. Moreover, the three qualities above will provide a highly maintainable
and evolvable system, because their adoption minimizes the in-system dependencies.

Real-life systems are definitely not optimal [23, 32], and this may happen because of at
least two reasons:

• they are poorly designed from the start – many applications are simple, client-server,
architectures that consist of a single, centralized server and one or several clients using
its services. The services themselves are gathered together at the server location for
no other reason than the simplicity of doing so. Many systems are deployed in appli-
cation servers, that provide a specific functionality needed by the system: web-based
user interaction, transaction management or persistency. While the application servers
themselves do not impose architectural constrains that prevent a flexible design, it is
simply easier to deploy all the main functionality at their precise location, avoiding an
arguably more complex approach that distributes the system features over the network.

• they evolved in time, due to change requests arrived at different points in the system’s
life, and the current structure does not follow anymore the (otherwise good) design
principles it started with.

The need to restructure a distributed system will arise whenever the conditions above are
met, and approaching this necessity implies two important phases:

• understanding the system, by mainly identifying the distribution-aware features and their
relation to the available services;

• manipulating parts of the code (services, features and/or other groups of inter-related
classes) so that the accurate focus and size of the remote acting entities is achieved.

Our approach addresses these concerns, by providing both a methodology and a tool to
tackle the issues of understanding and restructuring distributed software applications.

7.2 Restructuring the System
Applying a process that analyzes the software can help the engineer gain a significant un-
derstanding of the system, detailed enough to enable complex activities like those related to
the maintenance and evolution. The next step is to provide a flexible way of manipulating
the code artifacts as a means for system restructuring. This goal can be viewed from two
perspectives:
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• a characterization of the restructuring results, which should isolate suppler (more flex-
ible) entities, easier to maintain and/or redistribute over the network,

• a characterization of the restructuring process, which should provide easy ways to try
different restructuring scenarios and to select the best one as the outcome.

The first perspective is definitely the most important one, and our approach follows it
while also considering the issues implied by the second one. This way, we achieve a fair,
natural, degree of consistency between the process itself and its projected outcome.

Our restructuring approach is built around a simple, yet versatile technique: the extraction
of those subsets of the system classes that may or will form the core for a distinct, suppler
system feature.

In order to find the best restructuring scenario, the engineer can apply the process to
obtain two types of work items that can be used both as intermediary results in iterative
exploration of the various possible versions of restructuring, and as the final outcome of the
approach, to characterize the future layout of the chosen scenario:

1. The forecasted layout of the redesign or (as an intermediary result) the forecasted
layout of the extraction/redesign attempt. This provides an overview of the changes
that will most probably be necessary after extracting a specified set of classes from the
system.

2. The cost of the redesign or extraction attempt, a numerical score that shows how
difficult will it be to extract the respective classes from the existing code.

7.2.1 Extraction Units
The first step in our approach is building an extraction unit, which we define as the set of
classes that represent the starting points for the extraction, the classes that definitely need to
be extracted in order to delimit an independent feature within the system.

The reasoning which includes classes in extraction units is applicable to different sets of
system entities, as follows:

• analyze the already isolated entities (such as the distributable features) and find classes
that seem to be working together in a tighter manner than the other ones;

• look at the system from a strictly service-oriented perspective and identify the frontier
classes that seem to provide different features than other frontier classes in the same
group;

• apply the same approach of finding functional clusters to the locally-acting groups of
classes.

In other words, we have to be able apply the same type of reasonings at any level of detail,
from looking at small sets of individual classes to approaching the entire system – the one
thing we would need in any of these cases is a way to narrow our search for interesting cases
to be selected as members of extraction units.
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7.2.1.1 Choosing Classes for the Extraction Units

We support this need by focusing the extraction process to two versions of class selection
strategies that, in our opinion cover the most interesting cases in the context of object-
oriented distributed systems.

Strategy 1. Service identification. This strategy is based on the premise that in distributed
applications, a description of a service (made in RMI through a remote interface) usually refers
to an independent feature the system provides. As many components that run on a location
publish more than one service description, it is very interesting to see how the extraction
of each such description and the related classes influence the structure of the system. For
Java/RMI, this translates to defining an extraction unit that consists of one remote interface
and the classes that implement it. In this particular case, when a class implementing a remote
interface is in turn the base for an individual hierarchy, we include the hierarchy too, as the
classes in the hierarchy are certainly directly involved in providing the service.

Strategy 2. Identification of functional clusters. This strategy covers a more general
case where we need to identify sets of semantically-related classes that seem to act together
more closely than the other classes in the group. By ’group’ we mean any set of classes we
try to split/reconfigure at a certain point in our redesign, such as a distributable feature,
a previously extracted service, or even the entire system. The strategy does not focus on
the semantics themselves, but uses a coupling-related metric to identify the most interesting
classes: we define for each class C in group G the In-group adequacy metric (IGA):

IGA(C , G ) =
∑

class K∈G

BC (C , K )

where BC is the bidirectional coupling between two classes: the total number of method
invocations and attribute accesses occurring between them, to which we add 1 if the classes
share an inheritance relationship (Section 6.1).

Being a coupling-based measurement, IGA provides information about the quality of col-
laboration between a class and the target group. The higher the value, the stronger the
collaboration of the class with the classes in the group, i.e. the higher chance that the class
is better fitted for the respective group (hence the metric name).

For all coupling-based metrics in our approach, we calculate both dimensions of coupling:
the intensity of the coupling (number of collaborations), and the dispersion of coupling (i.e.,
number of collaborators) [59].

7.2.2 Visualization as Support for Selection
To support quick and easy identification of the most interesting classes, we defined and used
a visualization of the IGA for all classes in a group (Figure 7.1). For this purpose, we calculate
two IGA values, one for the intensity, and one for the dispersion. The visualization draws the
dependency graph of the group, each vertex being a class and edges representing bidirectional
dependencies between them. If more than one dependency between two classes exist, only
one edge is drawn. The In-group adequacy is visible in the shape and size of the classes: each
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Figure 7.1: In-group adequacy

node is an ellipse, the size of the vertical axis being proportional to the coupling intensity, and
that of the horizontal one with the coupling dispersion. As intensity is always larger or equal
than dispersion, all classes will have a vertical major axis.

The IGA values can be used to analyze the classes in the group in order to find candidates
that can be included in the extraction unit. The most visible classes are those that the
visualization draws larger, as their IGA values are high. The interpretation of the shapes we
encountered in our case studies is the following:

• Large Round Shape - classes drawn as large, almost circular ellipses (Figure 7.1,a):
both intensity and dispersion IGA values are high, meaning that the respective class
cooperates intensely with many entities (classes) in the group. Classes falling in this
category are tightly linked with the group, so that probably extracting them will imply
a high cost. At the same time, they might represent a complex feature, and if several
such classes are found in different regions of the graph, it may be an indication that
several distinct features may occur in the group.

• Large Elongated Ellipse - classes drawn with the major (vertical) axis significantly larger
than the horizontal one (Figure 7.1,b) – the IGA intensity is high while the dispersion
is low: the class collaborates intensely but only with few classes. This may describe a
localized feature, as the respective class does not need most of the other classes in the
group. Classes in this category therefore become good candidates for extraction.

• Small Ellipse - classes drawn as small nodes in the graph (Figure 7.1,c) – while their
collaboration with the other classes is low and thus they might be easy to extract, the
small degree of collaboration also may suggest they are not interesting representatives
of features, they probably are only ’accessories’ to such features (such as interfaces,
utility classes, etc.)

The consequence of the above observations are that the best candidates for including in an
extraction unit are the classes in the first two categories. They definitely represent interesting
cases, and they are worth looking at in detail when trying to isolate an independent, extractable
feature within a given group of classes.
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7.2.3 Extraction Process
With the extraction unit prepared, the actual process of extraction can start. Extraction can
be done at any step of the redesign, both as a means of quantifying the projected final results,
and as a part of a trial-and-error approach which explores possible scenarios of separating
parts of the code.

As stated above, the outcome of the extraction consists of two items of interest: a preview
of the post-extraction structure of the original group of classes, and a number quantifying the
extraction cost.

7.2.3.1 Forecasted Layout of the Extraction

The first item is obtained by applying an algorithm that separates the original group by isolating
the extraction unit and the closely related classes. To this purpose, we use a variation of the
Acquaintance with Distributable Feature metric we have introduced in Section 6.1. The
Acquaintance with Class Group between a class C and a group of classes G is therefore
defined as:

a) If Class C is directly coupled with one or more classes in group G:

ACG (C , G ) =
∑

class K∈G

BC (C , K )

b) If class C is indirectly coupled with the classes, and it sits at the n-th indirection level
against the group (there are n−1 classes between C and the closest class in the group),
the metric is calculated iteratively, using the indirection levels:

ACG (Cn, G ) =
∑

class Kn−1

ACG (Kn−1, G ) · BC (Cn, Kn−1)
TBC (Cn)

c) If class C is completely disconnected from all classes in the group:

ACG (C , G ) = 0

BC is the bidirectional coupling between two classes, and TBC is the total bidirectional
coupling for a class (see Section 6.1).
The algorithm iterates through all the classes in the group (except for those already
included in the extraction unit) and calculates for each their acquaintance with the
group of classes in the extraction unit. The user can specify a threshold factor t which
is applied to perform the actual extraction: all classes for which

ACG (C , G ) > t ∗ avg(ACG (G ))

are gathered with the extraction unit classes and are separated from the rest of the
group. avg(ACG (G )) is the average value of all the calculated acquaintances. We only
use the intensity side of the coupling measure, as it better expresses the strength of
dependence between the entities.
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7.2.3.2 Extraction cost

The extraction cost is a measure that characterizes the effort that would be needed when
performing the actual extraction. Given that the algorithm provides two sets of classes,
S1 and S2, we consider the cost is proportional with the degree these sets are actually linked
together in the current system: the larger the number of calls or references between the classes
in the two sets, the higher the cost to actually separate them. We define the extraction cost
as follows:

EC =
∑

C1∈S1, C2∈S2

BC (C1, C2)
NOCs

where NOCs is the number of classes in the entire system.
The extraction cost is particularly useful when trying different possible scenarios of ex-

traction, in an iterative, exploratory, manner. It provides the engineer with a useful way of
distinguishing between paths that may lead to cost-effective restructuring scenarios and those
that represent ’dead ends’ because the cost becomes too high.

The actual values for the extraction cost vary from system to system, but are consistent
(comparable) within the same application. When assessing the costs, the engineer must first
conduct a set of preliminary extractions to determine the range of the costs throughout the
system. Low values will be obtained by extracting loosely connected individual classes, and
high costs are specific to classes that have many dependencies (i.e., they are the origin of
many edges in the graph), with medium to high IGA values.

7.3 Improving the Understanding
The extraction process described above can be used not only to support the system redesign
as a tool, but also to improve the knowledge one has about the analyzed system. Isolating
clusters of related entities by starting with a few classes (the extraction unit) can prove an
useful tool to capture functional aspects in the system that were not obvious from the start.

The analysis can include steps that focus on interesting classes in the system, suggested
by the visualization or by other techniques, and find which are the entities that are closely
linked with them, and how isolated the set is from the other classes in the system. The same
group of classes can present different types of "interesting classes", and the approach can
use each of them separately as extraction units to get various views on their impact in the
group: different sets of classes will be generated for each extraction case, and analyzing their
layout will help identify both isolated sub-functions (clusters that follow only one or few of the
extraction units) and general-purpose functionalities (the intersection between the generated
sets).

The information received this way can prove useful to identify new dependencies between
some "interesting classes". For example, two or more may exhibit similar behavior when
extracting: they cluster around them virtually the same classes. They have a good chance
of being related to each other functionally, so that the next step should group them in a
single extraction unit and restart the extraction process. Iteratively, this approach can identify
functionally-related sets of classes that were not identified as such by the previous steps of
the analysis. The granularity of the iterations is subject of experimentation: the threshold
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factor for extraction can be tuned to determine the inclusion of less or more classes in each
extraction result.

Bottom line, once focused on relatively structured units of code (such as the distributable
features), an extraction-based exploratory analysis can help isolating functionalities at an even
finer degree of detail.
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Evaluation of the Approach

The previous chapters presented the methodology we developed in order to support the pro-
cess of understanding distributed object-oriented systems. The approach is based on a process
of reverse engineering existing software applications which starts with the source code and
analyses them so that the aspects related to the main system functionalities are extracted.
The methodology provides a set of integrated techniques for isolating the distributable fea-
tures in the system and for assessing the participation of classes in providing them. Moreover
the remote dependencies between distributable features are detected so that the interactions
specific to the distributed nature of the system can be assessed. The process uses a set of
detection strategies to identify the most relevant traits of the system and to understand the
patterns of collaboration between the classes. Moreover, the aspect of distributed software
restructuring is supported by a technique that enables the engineer to both change the sys-
tem’s layout at different levels of detail, and to better understand the interactions within
the application. The approach is metric-based and uses software visualization techniques as
support for an in-depth understanding of the system.

The goals of the methodology are to provide, by means of structural analysis the following:

1. System-level assessments regarding

(a) The importance of the distributed aspect in the system
(b) The layout of the distributed architecture

2. Class-level assessments concerning

(a) The collaborations with the distribution-related functionalities
(b) The relation with the non-distributed part

3. Techniques for supporting system restructuring by assessing the dependencies between
groups of classes and facilitating the extraction of separate functionalities

To evaluate the methodology and the techniques it implies we have applied the process to
real-world distributed software applications provided by sources in the industry, and to systems
available as open-source projects. The applications were designed and built using Java and

BUPT



112 8. EVALUATION OF THE APPROACH

RMI as the communication infrastructure, and were of medium to large size in terms of number
of classes.

This chapter presents the case studies we conducted and analyzes the results of applying
the methodology described in the previous chapters. The goals of the evaluation were:

• To reproduce the real conditions that occur in industry when the need of software
understanding arises;

• To use only the source code as input for the analysis;

• To assess the findings by confronting them to the available information sources about
the systems.

8.1 Experimental Setup
During the development of our methodology we have analyzed a number of 5 software projects.

All projects were available at the source code level, and were analyzed in similar conditions,
as follows:

• The source code was used as they were provided, without any kind of tampering. This
simulates the cases when projects need to be understood without knowing anything
about their structure;

• The analysis was made without referring to any sources with additional information on
the systems (as documentation or developers). This simulates a frequent case when the
engineers that need to understand the system cannot contact the original developers,
and when the project documentation is insufficient;

• All the steps of the methodology were followed in order;

• We have combined the detection strategies and the visualization techniques to improve
the understanding;

• After extracting each item of understanding, we have confronted the results with the
external sources (documentation, developers). This step was needed to assess the
validity of the approach.

Table 8.1 shows the size attributes for each of the analyzed projects and presents the main
system-level metric values we have calculated for each.

Carol (Common Architecture for RMI ObjectWeb Layer ) 1 is a library that allows ap-
plications to use different RMI implementations, making Java server applications independent
of RMI implementations. It is a medium-size project, and it is widely used as infrastructure
for developing applications. jotm (A Java Open Transaction Manager) 2 is a distributed
transaction manager that implements a set of standard application interfaces for Java. It is
also medium-sized open-source Java project. As jotm was built using the carol library we
decided to analyze them together. The application we have called sprc is a small student

1http://carol.objectweb.org/
2http://jotm.objectweb.org/
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Name NOC NOC in Distr. Distr. Sum of Average
Feat. Cores Feat. TBC TADF

CAROL 155 28 4 1762 14
JOTM+CAROL 218 65 9 4437 29
SPRC 24 9 3 57 4
EHCACHE 93 16 5 717 9
FWS 362 35 2 1051 3

Table 8.1: The case-studies in numbers

project we included because its size allowed us to manually inspect the entire application and
thus assess our techniques with more precision.

This chapter presents in detail the findings related to two projects we consider highly
relevant for the purpose of exemplifying the our analysis approach. They are relevant because
they have distinct domains of application, and they present significant particularities as far as
the distributable features and the overall system functionality are concerned:

fws is a code name we have given a commercial framework for building and executing
workflow systems. It was developed by a local software company in Timişoara, and we had
access to the entire source code of the framework. Moreover, the actual source-code of fws
that we analyzed contains not only the framework itself, but also some small test applications
written to exercise the framework, which provided us with a very interesting situation to
analyze.

In the fws terminology, a workflow is a sequence of local or remote activities executed by
pieces of software called agents.

The framework’s user is a developer (or a team of developers) who instantiates it by
writing a set of Java agents that meet the necessities of the particular workflow that is to
be enacted. The workflow itself is specified as a state machine whose description is stored in
a specific XML file. The agents can be configured to run all on the same machine, or they
can be distributed over the network. The communication between agents and the engine that
supervises the workflow is done via RMI.

This case study brought an important advantage to our evaluation approach: we had direct
access to the developers, thus we were able to verify in detail the validity of our findings.

The ehcache system is a widely used, open-source, Java distributed cache for general
purpose caching 3. Its distributed aspect is directly related to the fact that the caching can
be done by a group of separate, and distinctly deployed cache peers which act together over
the network as a distributed cache system. The communication related to the data exchanges
between the peers, is done remotely through RMI.

The documentation for the system was available, and it included design-related data which
allowed us to verify the assessments of the methodology. Moreover, the project proved to be an
interesting case of peer-to-peer technology, which both differentiated it from the ‘mainstream’

3http://ehcache.sourceforge.net/
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applications and provided us with the opportunity of applying our techniques on an interesting
type of distributed architecture.

8.2 System-Level Characterization
By analyzing the characteristics of the application, our methodology provides two types of
information at the system level:

• An Overview of the Distributed Architecture, by identifying the cores of distributable
features and analyzing the dependencies between them that constitute the remote com-
munication channels;

• A Characterization of the Distributed Awareness of the system by assessing the impor-
tance of distribution on the system’s design. This is accomplished by measuring the
involvement of the classes in the distribution-related activities, based on the Average
TADF value. As the TADF metric expresses the strength of the relation the class
has with all the distributable features, the average TADF tells us about the overall
importance of the distributed aspect in the system.

8.2.1 Overview of the Distributed Architecture
8.2.1.1 FWS

By applying the core isolation and clustering techniques, the automated process detected for
fws two distinct cores of distributable features. The first core is made of 28 classes, of which
5 were identified as frontier classes. One of these 5 is a class that calls methods in a remote
interface situated in the other detected core. The rest of the frontier entities are remote
interfaces themselves, that provide a set of functionalities to remote actors.

We have analyzed the dependency graph representing the first core, and looked at the
names of the classes. Doing so, we have found a set of several entities that qualified as
interesting classes because their name seemed to suggest the functionality of the respective
distributable feature.

This set included remote interfaces (Interpreter WorkflowManager), and classes like
WorkflowContainer, ActiveWorkflow etc.. Their name suggested that the feature dealt
with the control of the workflows. We have found that the name of the frontier class that called
methods of remote interfaces in the other core was Executer. Looking at its dependencies in
the graph, we have also noticed that it was directly linked by an edge with the Interpreter.
This information consolidated our impression that the feature was concerned with executing
workflow tasks.

We have contacted the developers of fws, and they confirmed that the identified classes
are indeed the central part of a component of the system called Workflow Engine. It represents
the main functionality that deals with creating and executing of the different instances of
workflows configured by the users.

The second core of distributable feature consisted of only 7 classes and interfaces. The
main entities were two remote interfaces called AgentEngine and AgentHandler. The core
also contained a class called AgentEngineImpl which was linked by an edge in the dependency
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graph to another class, called Agent. Our assumption was that the corresponding distribut-
able feature is concerned with the tasks of handling (running) the user agents that are part of
the workflow. When we referred to the developers, they confirmed again our assumption. The
classes we discovered were the main part of a component named Agent Engine that creates
and manages the agents running on different machines than the one that hosted the Workflow
Engine.

The next step was to analyze the communication channels between the two feature cores.
The channels were automatically detected by our tool as direct RMI remote calls. We have
identified four communication channels. Two of them consisted in calls from the Executer
class to the remote interfaces in the second core, while the other two were calls made by a
frontier class in the second distributable feature core to remote interfaces belonging to the
first one.

This bidirectional dependency strongly suggested that the distributable features established
a peer-to-peer relation, acting in turns as client and server one to the other. This assumption
was confirmed by the developers of the framework: the Workflow Engine contacted the Agent
Engine when the creation of a new agent was needed in order to be run at a remote location.
On the other hand, the Agent Engine component communicated with the Workflow Engine
each time the status of the running agents needed to be reported back.

8.2.1.2 EHCACHE

For this system, the core detection and separation approach detected a number of 5 distinct
cores of distributable features.

We have called the largest core Cache Peer Manager because it seemed to be built around
a remote interface (CachePeer). It consisted of a total of 7 classes, from which we noticed
the CacheManagerPeerListener, RMICachePeer, and EhCache.

A very interesting aspect that effectively surprised us as we didn’t know anything about the
system beforehand was that CachePeer was the only remote interface in the entire system.
The other identified cores didn’t contain remote interfaces, the only frontier entities in their
case being classes that referred this singular interface. The other distributable feature cores
consequently suggested that they represent different functionalities related to each other.

For example, one of those cores contained class names suggesting involvement in replicat-
ing caches over the network (CacheReplicator, RMISynchronousCacheReplicator, etc.).
Following the names, we called the respective core Replicator.

Another distributable feature core, that we called Bootstrap was obviously dealing with
initializing the cache, as it contained clases called (BootstrapCacheLoader, RMIBootstrap-
CacheLoader). A different core contained a class called CacheManagerPeerProvider, and
we assumed that it was probably related closely to the listeners in the first core (we called
this Peer Provider).

The fact that only one remote interface was present, complemented by the above observa-
tions consolidated our perception that the discovered features were not parts of distinct remote
components, but functional aspects of a single structural, communication-aware, entity.

To confirm our findings we consulted the online documentation of the system [29]. It
showed that the distributed caching aspect involved several different tasks, such as peer
discovery, replication, the capability of bootstrapping from remote caches. All the tasks were
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executed by a set of several identical components, running on different network locations, and
communicating with each other through the CachePeer interface.

The documentation allowed us to link the functional units we have discovered with the
real design-specific functionalities in the system, We confirmed the role Cache Peer Manager
and Peer Provider distributable feature cores identified by our approach, which proved to
be features involved in the peer discovery and management, as distinct parts of code that
can each communicate remotely for this task. We successfully confirmed the accuracy of two
more distributable features cores (namely Replicator and Bootstrap) by reading the document
describing the architecture of ehcache.

Although we were unable to also link the fifth core our algorithms identified to a doc-
umented feature of the application, the approach appeared to be again useful for correctly
recovering an overview of the distributed architecture of ehcache.

8.2.2 Characterization of the Distributed Awareness
8.2.2.1 FWS

As our methodology specifies, in order to assess the overall importance of distribution in the
system’s design, we need to calculate the Average TADF metric.

For the fws system, the Average TADF is 3, which is rather small compared to other
systems we have processed (see Table 8.1).

This suggests that there is a significant amount of functionality in fws that is definitely
not directly related with the identified distributable features, therefore it is not involved in
providing distribution-related functionalities.

Particularily, we have looked at the classes with very low TADF values, and identified a
group of almost 80 classes that had a TADF of 0. This shown that the respective entities were
totally unrelated with any of the identified distributable features in the system. By looking
deeper at the group and considering their names, we have seen elements that suggested a
functionality related with an event-driven user interface. By referring to the developers, our
assumption was confirmed. The classes were all part of a utility for creating and editing XML
workflow specifications, which indeed heavily relies on user interaction.

When we asked about the seemingly low distribution awareness, the developers told us
that the system was initially designed for executing only local tasks, and only later a it was
adapted to run remotely-available agents. This explains the low Average TADF , because most
of the activities the system was involved in, were still local, on the Workflow Engine side.

8.2.2.2 EHCACHE

For this system, the calculated Average TADF value was 9, significantly higher than for fws.
Assessing the values for individual classes, we noticed that most of them are acquaintances

of the Cache Peer Manager distributable feature. At the same time, we noted that this feature
is the largest distributable feature in the system, which did not surprise us, as most of the
functionality of ehcache was related to the issue of cache management. Moreover, by reading
the design documentation of this system we found out that since version 1.2 the ehcache
underwent a significant redesign that transformed it from a monolithic into a modular and
distributable system, having the concept of cache peers at the core of its architecture.
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The higher TADF value (i.e., high distributed awareness in the system) was consequently
verified, because a high value is typical to applications that were specifically designed (or
redesigned) with the distributed functionality in mind.

8.2.3 Visualization

The process of evaluating the methodology made extensive used of the visualization techniques
we have defined, so that we would be able to assess how they help the effort of system
understanding.

8.2.3.1 Overview of the Distributed Architecture

Figure 8.1: Distributed Architecture Perspective of the case-studies

For the part that captured the distributed architecture overview, we found that the vi-
sualization was useful to easily understand the dependencies between the classes. This way,
the architectural traits (as the peer-to-peer relations) were directly visible in the picture and
helped us make the assessments we have discussed above.

Figure 8.1 presents the architectural previews for the two case studies we discuss in this
chapter, specifically the corresponding Distributed Architecture Perspective parts of the Dis-
tributable Features View.
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8.2.3.2 Characterization of the Distributed Awareness

As mentioned earlier, the Distributable Features View is a visualization of the entire
system that captures the impact of the system’s distributable features, the functionalities
which were intended to be distributed. The dependencies on the distribution are shown in
color, while the overall collaboration of classes with the system is shown as gray rectangles.
The grey rectangles are overlapped by the colored ones, so that for a class with a mostly
distributed functionality, the grey area is less visible.

Therefore, the engineer can look at a Distributable Features View and see is the
relative proportion between colored and gray visual elements. If the colors dominate, then the
entire system is strongly oriented towards providing the distribution-related functionalities. I,
on the other hand, gray is dominating the picture, the system may also be providing other
types of features, that are not directly related with the remote communication.

8.2.3.3 Analysis of FWS

A high-level look at the Distributable Features View diagram for fws showed a lot
of gray spots. This means that a lot of features in the system do not directly relate to the
distributed functionalities.

Moreover, we have seen that there were many classes drawn with large amount of gray,
classes having significant collaboration that was not related to the two distributable features.

The visualization was the technique that actually helped us to rapidly identify the almost
80 classes we have discussed above, that represented the strictly local, user interface -based,
functionality.The respective classes didn’t have color spots at all, which showed clearly their
exclusively locally oriented nature.

8.2.3.4 Analysis of EHCACHE

When looking at the Distributable Features View for ehcache, we noticed signifi-
cantly more color than in the case of fws.

Looking at the color, we have seen that most of the classes were acquaintances of the
Cache Peer Manager distributable feature, which we have also seen that was the largest one
in the system. Consequently, we were able to draw the conclusion that the respective feature
is the most important one in the system.

The visualization provided us with means for easy identification of the inherent distributed
nature of ehcache, which was also shown by the metric-based assessment above and con-
firmed by the system documentation.

8.3 Patterns of Acquaintances
This step of the evaluation is responsible for assessing the validity of the collaboration patterns
and the related detection strategies we have introduced in Section 6.3.

For this purpose, we have applied the strategies to the analyzed case studies separately,
and analyzed the classes that were filtered by them.

As discussed in Section 6.2, the detection strategies were described in terms of threshold
identifiers, rather than actual numbers. The process of associating them with raw values is
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Figure 8.2: Overview of FWS

BUPT



120 8. EVALUATION OF THE APPROACH

Figure 8.3: Overview of EHCACHE
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Metric Threshold label Threshold value

TADF HIGH 15
AVERAGE 8

TBC HIGH 20
TADF
TBC

AVERAGE 1/2
LOW 1/8

Table 8.2: Experimental threshold values

dependent on the class of the analyzed systems, and done through experiments [61, 59]. For
the case of the applications we analyzed, we have chosen, based on our repeated observations,
the values in Table 8.2.

At this point, we need to note that we are confident that the threshold values we have
chosen can be used for the analysis of similar systems, that is Java RMI projects with 100-
400 classes. They can be tuned further if the need arises, especially if analyzing systems
significantly larger than the ones we analyzed, yet we believe that the thresholds for such
systems will vary only slightly. The reason is that our class-level metrics measure coupling
between classes, and class-to-class coupling is not a relation expected to increase proportional
with the number of classes.

We present next the patterns of collaborations we identified in the two case studies we
focus on, and show the way visualization helped in isolating the most interesting entities.

8.3.1 Significant Feature Acquaintance
This pattern is specific to the classes that have a significant participation to the distributed
functionality in the system. They are highly relevant for understanding the distributable
features, and often must be taken into consideration at the same level with the classes that
were already included by the approach in the distributable feature cores.

8.3.1.1 Analysis of FWS

By applying this detection strategy in the case of fws we have found 5 such classes, all related
to the distributable feature we have identified as the largest, the one we named Workflow
Engine. They were called - ActiveInterpreter, PassiveInterpreter, PersistentWf-
ContainerData, ActiveWorkflowContainer, ProcessDefinition. At a closer analysis,
we have found that the ActiveInterpreter, and the PassiveInterpreter were related,
and their names also linked them to several classes in the core, which confirmed they were
indeed close to the respective feature.

When asking the developers of fws, they confirmed that the 5 classes, along with those
in the identified distributable feature core are enough to understand the main properties of
the Workflow Engine feature. The fact that we found relatively few such classes related to
the distributable features showed that the functionality of these features is very well located
in the system.
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8.3.1.2 Analysis of EHCACHE

The ehcache system is significantly smaller than fws. Nevertheless, when searching for
significant feature acquaintances, we found more than 12 such classes. As with fws, they
were all related to the core corresponding to the largest distributable feature in the system
(Cache Peer Manager).

Nevertheless, these feature acquaintance classes were different from those found in fws,
as the values were smaller while the TADF/TBC was very close to 1. This showed that these
respective classes are particularly dedicated to the distributable feature, and therefore serve
a specific role. From this point of view, the names of the classes were also relevant: Mutex,
Sync, ConcurrencyUtil.

8.3.1.3 Local Feature Contributor

The classes in this category are classes that are mostly concerned with the local functionality
of the system. While the focus of our approach is to assess mainly the distribution-related
traits, these classes are very important in understanding the actual characteristics of the non-
distributed functions of the system, thus putting the distribution-related parts in perspective.
They can show whether the non-distributed part of the system is only ancillary, or it actually
represents the main functionality of the application.

8.3.1.4 Analysis of FWS

As noted above, we have found in the fws system a set of almost 80 classes implementing
a tool for visually editing workflow specifications. This was the most striking case of local
feature contributors, that actually had nothing to do with the distributed functionality.

This case has also shown a very interesting side effect of our approach, highly appropriate
when trying to understand a system. The tool for editing workflow specification was not
actually a part of the framework that users extended in order to build workflow systems. It
was rather an additional tool, that helped them in the process of specifying the activities in
the workflow, a task that could also be done without using the tool at all, by directly editing
an XML file.

Our approach managed to immediately isolate and categorize the classes in the tool as
an extreme case of local contributors (thus helping us see their real significance), without
being provided any information that the respective set of classes was not a part of the main
system. Without our approach, the large number of the respective classes could have posed
real difficulties in understanding the system, distracting the engineer from analyzing the really
important classes.

In addition to the classes in the tool the detection strategy identified a set of other 6 classes,
all of them belonging to other features. For example we found the class WorkflowIsPersistent
which deals with making a workflow persistent on the file system, and the class MyWorkflow-
Listener which belongs to one of the test applications, thus it is not part of the fws
framework.

8.3.1.5 Analysis of EHCACHE

In the case of EHCACHE , we identified at most 5 classes that were local feature contributors.
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The most prominent case, having the highest value for the TBC metric was Cache. This
is one of the central classes in the system, modeling the very concept of a cache, therefore it
is only natural that it is heavily used through the entire system. Nevertheless, this class is not
directly connected with any of the distributable features, because these distribution-related
activities in this system features mainly deal with making the caching distributed between the
cache peers, they do not need to be concerned in the actual details of implementing the cache
and storing the data locally.

Another example is the ConfigurationHelper, a class that contributes to a local feature
responsible for managing the configuration files, which has nothing to do with the distribution-
related aspect.

8.3.2 Connector Class
This strategy identifies the classes having a significant amount of collaboration with the
distributed part of the system, but most of their collaboration is with the other classes in
the system. They represent the classes that connect the distributed and local functionalities
within the application.

8.3.2.1 Analysis of FWS

Applying this strategy we have identified 5 significant connector classes in fws.
The feedback from the developers of fws confirmed that all of these classes do indeed fit

this category. The most interesting case was the ProcessDefinition class. The value of
the TADF metric in its case was 15, and the TADF/TBC ratio was 0.2.

The next step was to analyze its relation with the classes directly connected with it in the
dependency graph. We have looked at the names of these classes, and found out that the
ProcessDefinition class links two significant features in the system. The class models in
fact the internal representation of the workflow the system uses when executing the activities,
in short, the specification of states and transitions. The classes responsible for running the
workflow, (ActiveInterpreter, PassiveInterpreter), that we already identified as being
significant feature acquaintances, intensely use (and depend on) this class. On the other side,
it is used by a class (PDParser) that showed little involvement in the distributable features,
and represents a local functionality that parses the XML files that actually store the XML
workflow description, and use them to create the internal representation.

8.3.2.2 Analysis of EHCACHE

In ehcache we have detected 6 connector classes.
The most interesting case is that of the class Element. This class represents the data

entities that form the information cached by the system. Looking at the ADF values for this
class in respect to each of the identified distributable features, and also considering the other
similar dependencies in the system, we found that this is the only class having a noticeable
relation with the Cache Replicator distributable feature. This is natural, as it is in fact the
single most important item the Replicator manipulates.
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Indeed, the purpose of replication is to exchange updated cached items, in other words
instances of the Element class. It came natural that the class consequently connects the
Cache Replicator feature with the basic, non-distributed, caching functionality of the system.

8.3.3 Visualization
The visualizations characteristic for the acquaintance patterns were very helpful as they allowed
us to easily and rapidly identify the classes that presented interesting traits. In fact, the
assessments presented above when discussing the application of the strategies were effectively
driven by visualization. The visual elements focused our attention because the interesting
classes were distinguishable among the others in several ways: featuring high color content,
being shown as mostly gray shapes, or having balanced grey/colored areas.

8.3.3.1 Pattern 1: Big Color Spot

Figure 8.4: Examples of Big Color Spot pattern

In fws (Figure 8.4) we identified the 5 classes with large color spots. They were very
visible and the color indicated their exclusive relation with the largest distributable feature
(Workflow Engine).

For all of the ehcache, classes there is again a single dominant color i.e., the one cor-
responding to the Cache Peer Manager distributable feature. They differed form the classes
shown in the case of fws, by being squarish, not very large, and almost without gray ar-
eas. This was a visual representation of the fact that the classes were strongly related to
the respective distributable feature, and served a specific role – the same fact the detection
strategies also helped us understand.

8.3.3.2 Pattern 2: Big Gray

In fws, the visualization helped us see literally in an instant the strange-looking classes that
had no participation in the distribution-specific activities, and actually implemented the above
mentioned visual tool. The other 6 classes that fit this pattern were also directly visible and
their large gray areas showed that all of them belonged to other features.
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Figure 8.5: Two Big Gray classes

In ehcache, at most 5 classes qualified as Big Gray, as noted in the previous section.
The most prominent one was the one with the largest gray area, the Cache class we have
identified as being one of the central classes in the system, but it is not directly related with
the distributed aspect. The ConfigurationHelper class which locally manages the XML
configuration files for ehcache was also easily identified.

Figure 8.5 shows an example of such classes.

8.3.3.3 Pattern 3: Color Spotted Gray

This pattern refers to the case where a feature acquaintance class is dominantly gray, but
there is also a significant color spot. The interpretation is that the class encapsulates a
piece of functionality that connects an already identified distributable feature with another,
non-distributed, one. These classes are particularly interesting, as their analysis helps in
understanding the linkage between the two types of functionalities.

In fws there were 5 significant connector classes, matching the detection strategy dis-
cussed above. In ehcache we visually identified 6 such classes, the most prominent case
being that of the Element class (Figure 8.6) the class that connects the Cache Replicator
with the basic, non-distributable, caching feature of the system.

8.4 Restructuring Support
This section presents a case study that shows the results our extraction-based approach can
provide when applied to a distributed software application. We have chosen the fws system
as the most interesting case, because the interactions we have discovered within the code are
useful in showing how our approach is applied. Moreover, as the extraction of inter-related
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Figure 8.6: Two Color Spotted Gray classes

classes needed confirmation from as authoritative sources as possible, the fact that we had
access to the developers, was in this case vital to verify the validity of our findings.

As previously discussed, the approach identified two distributable features: the Workflow
Engine, responsible for creating and executing workflow instances, and the Agent Engine,
responsible for managing and running the agents.

To find out possible scenarios of restructuring, we started by looking at each distributable
feature and found that they both included more than one remote interface, meaning that they
published several remotely-available services. Consequently, a first extraction scenario was
created focusing on finding the distinct services published by the system and the classes most
involved in providing each of them. It consisted of 6 extraction units, each of them containing
a single remote interface and the hierarchy of classes that implemented it. By applying an
extraction threshold factor of 1.3, we have obtained the 6 groups of classes closely related with
each unit. For identification, they were named after the remote interface of the respective
extraction unit: AgentEngine, AgentHandler, Workflow, WorkflowManager, MessageQueue,
and ClientManager. The most prominent (in terms of number of classes – over 40 –, and also
considering its name) was Workflow (Figure 8.7).

By looking at the visualization for this particular group, we have identified five large en-
tities, the classes called Executer, Interpreter, ProcessDefinition, Workflow and ActivityDefi-
nition. To understand their dependencies, we first used each of them as individual extraction
units, performed the extractions, and evaluated the costs. The extraction costs obtained for
each operation are shown in Table 8.3.

At this point we must note that the extraction costs throughout the system varied in
our study from values as low as 0.1 (when extracting an individual class connected with only
one other class) to the highest numbers just below 3.0 (when extracting prominent, highly
connected classes).

The similar values for ProcessDefinition and ActivityDefinition along with their sharing
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Figure 8.7: The shapes of the classes in the Workflow service group

Executer Interpreter ProcessDefinition Workflow ActivityDefinition
Extraction 1.98 1.78 2.60 2.3 2.56cost

Table 8.3: Extraction costs

of an edge in the dependency graph, suggested that they are related to each other. Indeed,
they both proved to be parts of the internal representation of workflows the system creates at
runtime, thus were both designed for the same purpose. When they were included in the same
extraction unit and we re-performed the extraction, the cost remained very much the same
(2.58) which means they are still relatively hard to separate from the system. We managed
to reduce the cost to 1.71 by including the Interpreter in their extraction unit, because we
noticed that it was included in the set of classes around the two after the extraction. The
conclusion is that the three classes (and the ones that clustered around them at the last
extraction) may represent a distinct feature, but the cost of extracting it from the group is
not very low.

Making similar explorations regarding the other entities we found that the ProcessDefi-
nition and ActivityDefinition couple is related in a similar degree with the Executer entity –
they can be extracted together, but the cost is high. This suggested that they represent an
important common feature used by both the Executer and the Interpeter. Design-related data
from the company that developed the system confirmed that the two classes (ProcessDefini-
tion, ActivityDefinition) implement a distinct functionality that stores the internal definition
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of a workflow. The Interpreter controls the transitions between states, and the Executer
starts the activities corresponding to each state. As the Executer and Interpreter entities
had different functions, the developers agreed that they could be theoretically extracted as
independent features, and confirmed that the high dependency on the ProcessDefinition and
ActivityDefinition (and related) classes would make the extraction expensive, but possible.

Applying successive extractions proved to be a versatile tool for understanding the details
of the system, and to propose restructuring scenarios. The identification of relevant classes
to be included in the extraction units was quick, and the costs consistently characterized the
redesign effort. The engineer’s experience proved to be a significant factor, and it made a
difference when selecting scenarios that lead to a better system understanding. Nevertheless,
the visualization greatly assisted this effort, both by drawing the IGA characteristics, and by
presenting the graphs of the different class groups before and after the extraction.
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Tool Support

Any process of software analysis must be supported by a tools infrastructure that enables en-
gineers to efficiently measure and interpret the system’s characteristics. Tools must automate
all the tasks involved by the analysis and provide the user with instruments that allows for the
tuning and controlling the entire process.

This chapter presents the tool we have developed to support the methodology we have
described in the previous chapters. The tool follows all the steps in the methodology, and
implements all the implied mechanisms that support the understanding and restructuring of
object-oriented distributed software systems.

The tool is called niSiDe [19], a loose interpretation of its name being non invasive
Structural insight on Distributed environments. It consists of an extensible platform that
integrates all the algorithms and automated tasks involved at the various steps of the analysis
approach. It provides a user interface for interacting with the engineer when necessary, and
implements all the visualizations that are part of the process. As our approach aimed to extend
the mainstream object-oriented analysis to distributed applications, niSiDe was integrated in
the iPlasma software analysis environment [72], developed by our group.

9.1 Tool Architecture
The architecture of the tool environment is presented in Figure 9.1. The system consists of
the following functional modules:

• The General Processing Unit is responsible for the core processes related to the analysis
approach. It reads a Memoria [72] model of the target application provided by the
iPlasma environment which is created by parsing the source code of the system. The
module implements all the generic (i.e., technology-independent) parts of the algorithms
involved in the discovery of the core distributed functionality and the identification
of the system distributable features. It is also the place where all the metric-related
computations and algorithms are implemented, and the detection strategies are applied.

• The Technology-Specific Processing Unit is the part that is built specifically for a partic-
ular type of technology of the Communication Mediator. It contains the implementation
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Figure 9.1: The architecture of niSiDe

of the algorithms that detect the frontier classes, the heuristics related to the separa-
tion of the distinct cores of distributable features and all the other technology-specific
processes. The architecture of niSiDe facilitates the integration of as many technology-
specific units as necessary, in order to provide easy extensibility. In the context of this
dissertation, we have fully implemented the module that deals with applications that
use Java RMI as the communication infrastructure.

• The User Interface module implements and controls the graphical user interface that
interacts with the engineer. It presents the option for tuning the various algorithms and
for reviewing and modifying their outcome, and shows the results of the different phases
of the approach.

• The Visualization Module is responsible for generating and providing all the visualiza-
tions that are part of the methodology, both as direct representations presented to the
user via the user interface, or as diagrams exported in a standard format that can be
later processed by visualization-specific third party tools.

To use the tool, the engineers have to open the Insider program part of the iPlasma
environment, load the project they are interested in analyzing, and start niSiDe at the system
level. Once the parameters for the tool were specified, it starts analyzing the system by
considering it an RMI distributed application.

The tool follows the steps of the methodology in order, and stops at each point that
necessitates user interaction. The results are presented to the user, and after the engineer
reviews and possibly modifies the involved parameters, the automatic process continues.
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9.2 System Representation
To support the analyses, niSiDe creates and uses the internal representation of the system,
consisting on the dependency graph of the classes we have discussed in Section 5.2. Vertices
represent classes, and edges model class-to-class dependencies.

The graph-related functionality is built using JGraphT [49], a comprehensive graph ma-
nipulation Java library. The representation of the system as a graph is built in parallel with
the Memoria model loaded in the memory, with graph vertices referring extensively annotated
classes in the iPlasma-specific model. To adapt the Memoria model to our approach, we have
extended it as follows:

• we have defined a new system-level entity that models the concept of distributable
feature;

• we have annotated the classes with information regarding the distribution-related and
analysis-specific aspects. This includes:

– marking the frontier entities,
– specifying the root (start) entities for the various algorithms,
– marking the service representatives for the extraction-driven restructuring,
– marking the special relationships in the graph, such as particular inheritance rela-

tions,
– storing for each class the measurements related to the various types of acquain-

tance, including their acquaintance with the discovered distributable feature cores.

9.3 Core Distributable Features Discovery
The first phase of the analysis is concerned with identifying the distributable feature cores,
i.e. the main units representing the distribution-aware functionality.

To achieve this goal, the tool creates the initial internal representation as a partial depen-
dency graph. It starts by using the technology-specific rules to detect the classes acting at the
frontier with the Communication Mediator, then applies the steps in the methodology that
create the entire core dependency graph, consisting of the classes that are most related to the
distribution-aware functionality. The next step uses both generic algorithms and technology-
specific heuristics to separate the distinct cores of distributable features, which will be used
by the rest of the approach.

The detected clusters of classes are presented to the user by a graphical interface. The
engineer can, at this point, modify the structure of the distributable feature cores by moving
classes from one core to another, in order to improve the outcome of the automated processing
(Figure 9.2). As noted when we presented the details of the methodology, the algorithm proved
to separate fairly well the distinct functionalities; nevertheless, the user interaction is essential
at this step, at least as a mean to validate the results.

After the user confirms the results, the system is further analyzed by enacting the al-
gorithms responsible with the detection of the remote communication channels between the
distributable feature cores, so that the first system-level characterizations can be made.
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Figure 9.2: Reviewing core content

9.4 System-Level Visualization
The results of the first steps of the analysis are visualized as described in the previous chapters,
by drawing two types of diagrams:

• a diagram of the dependencies established between the distributable features, and their
relative size in the system (see Figure 9.3);

• a set of pictures showing each feature core’s structure, depicting the contained classes,
and their inter-dependencies (Figure 9.4).

The visualizations are generated by niSiDe in two ways:

• they are exported as .dot files, a widely-used graph description text format usable by
the popular GraphViz visualization project [34]

• the parts that involve runtime user interaction or reviewing are drawn using the JGraph
graph visualization library, along with its JGraphLayout counterpart [48].

9.5 The Distributable Features View
After identifying the distributable feature cores, niSiDe follows the next steps of the method-
ology, and assesses the relation between each distributable feature and the rest of the classes
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Figure 9.3: System overview

in the system. For this purpose, the tool builds the full dependency graph of the system,
containing all the classes as nodes and their dependencies as edges. It then employs the
algorithm described in Section 6.1 and calculates the feature acquaintance for each class in
respect to each identified distributable feature in the system.

The class-distributable feature acquaintance values are attached to the internal represen-
tation (through a specific entity annotation mechanism), and are used to build the Feature
Affiliation Perspective visualization defined in Section 6.4 as a diagram showing the degree in
which each class is involved with each distributable feature (Figure 9.5). The Distributable
Features View is useful when trying to find the most interesting occurring patterns of in-
volvement, and stays at the base of the conclusions we have drawn for the test cases we
conducted.

9.6 Support for Restructuring
As presented in Chapter 7 the methodology we have developed addresses the aspect of system
maintenance and evolution by providing support for restructuring the system when such a need
arises. The approach uses an extraction-driven technique that focuses on identifying and ma-
nipulating the code units so that the engineer is able to assess which parts could be extracted
as individually-separable functionalities. To implement the technique at the tool level, niSiDe
makes extensive use of the JGraph library, which is used for drawing the interactive diagrams
that show the various parts of the system, each represented as a dependency subgraph of a
certain group of classes.

The tool gives the user the opportunity of analyzing the respective group and selecting
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Figure 9.4: The structure of feature cores
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Figure 9.5: A Distributable Features View

the classes of interest to create an extraction unit. The tool then employs the algorithms that
identifies which classes will be automatically extracted with the extraction unit and calculates
the costs. The result is presented in a new window containing two class dependency graph
diagrams, one for the classes that were extracted along with the extraction unit, and one for the
rest of the classes. The extraction cost is shown, to inform the user about the estimated effort
that will be necessary when actually restructuring the respective group by actually performing
the separation. The resulting groups are shown in windows with the same characteristics and
interaction features as the original group of classes, so that the user can perform subsequent
extractions, as long as they are necessary.

As presented in Chapter 7, the user is assisted in the process of selecting the classes that
are to be included in an extraction unit, by visualization. niSiDe applies for each class the
coupling-based metric that calculates its degree of collaboration with the other classes in the
group, and presents the results visually drawing the vertices with different shapes and sizes.
Any set of classes can be selected by the user as parts of the extraction unit, and the user
can consequently analyze various scenarios of extraction.

When the restructuring user interface starts, niSiDe provides the engineer with a default
set of initial class groups:

• the entire system, as a comprehensive dependency graph;

• the set of all distributable feature cores detected in the system, each presented in a
separate, manipulable diagram;
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Figure 9.6: Extraction example
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• all services detected in the system.

All the above groups are presented by the tool as starting configurations for perform-
ing extraction scenarios, and the engineer can analyze their structure and perform as many
subsequent extractions as needed.

Figure 9.6 shows an extraction result (in the foreground window), and a part of the initial
group, visible in the left side of the background window.

The functionality of providing restructuring support specific to niSiDe proved to be a ver-
satile and useful tool both for evaluating different extraction scenarios, and for understanding
the isolated functionalities within the code at a finer grain than with the previous steps of the
approach.

9.7 Extensibility
As pointed out throughout the description of the methodology and the tool, the current
version of niSiDe is built for analyzing Java RMI systems. Nevertheless, it was designed to
be easily extended for the purpose of analyzing applications based on other communication
technologies.

All aspects that are dependent on a particular communication mediator are designed so that
other types of technology-dependent aspects can be plugged in when necessary. Moreover, the
vast majority of tasks representing the main methodology-related system functionality (graph
processing, the abstract algorithms, the visualizations) are designed as independent from the
technologically-specific details.
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Conclusions

This dissertation presented our approach in analyzing distributed object-oriented systems,
using a process of reverse engineering that inspects an existing application. The analysis
starts by inspecting the source code, and builds an internal representation of the software as
a dependency graph of classes. The representation is used by the subsequent steps to extract
the most important application characteristics that provide essential system understanding.

10.1 The Methodology
The methodology builds, step by step, a representation of the distributed system that presents
it from the perspective that describes its distributed nature. The main concept in this model
is the distributable feature, and the main relations describe the participation of the system
entities in providing the features, in the form of feature acquaintances.

The distributable features are discovered through a process that focuses the analysis to a
small part of the code, that contains the core distribution-related functionality. The core is
detected by using the important clues provided by the technology of the Communication Me-
diator (the communication infrastructure), and starts with assessing the interactions specific
to the System-Mediator frontier.

Applying a set of rules, partially extracted as heuristics dependent on the particular tech-
nology, the core of distributed functionality is separated in a set of cores of distributable
features that are used as representatives for the main distribution-related distinct function-
alities provided by the software system. This provides the approach with the first important
result, in the form of a characterization of the system’s distributed architecture that describes
the distribution-related functionalities and the relations established remotely between them.

The distribution-aware features are identified without relying on the existence of deploy-
ment information regarding the application. This way, a wider selection of distributed ap-
plications can be analyzed in order to extract the significant items of understanding the
methodology provides. Moreover, the entire process is applied without making assumptions
on the quality of the system’s design or on the structural or architectural patterns that were
used, to make the approach applicable to both well-designed and poorly-designed software
applications.
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The next step switches the focus on the rest of classes in the system (that form the
majority of the system entities), and evaluates their relation to the already identified features.
A set of coupling-based software measurements are employed, and the numerical values that
result are interpreted in the context of the classes’ participation in providing the features.

The approach centers its attention on describing and identifying the main relevant patterns
of collaboration that can occur in an application, and which describe the actual impact of the
several distribution-aware features in the design of the system. The impact is evaluated both
at the system level, thus characterizing the system distribution awareness, and at the finer
grain of the class level, by assessing each entity’s acquaintance with distributable features.

The final step of the approach provides support for system restructuring by facilitating
the experimentation with different restructuring scenarios, through a process driven by the
extraction of inter-related clusters of classes. The engineer can conduct extraction scenarios
in any part of the system, and the methodology provides means for evaluating the projected
outcome of the structural modification, and the costs the change implies. In order to maintain
consistency with the rest of the approach, the restructuring support uses the same concepts
and similar techniques with the parts that focused on system understanding. Moreover,
experimentation with extraction scenarios can provide the engineer with an additional way of
adding to the knowledge about the system, through assessing the classes’ inter-dependencies
from a different perspective.

10.2 Conference Publication

The main aspects covered by this thesis were recently published as conference papers, both for
communicating the results of our research, and to receive valuable feedback from the software
engineering community.

The methodology for understanding object-oriented distributed systems was described
in the 2008 paper [21] published at one of the major conferences in our field, 12th European
Conference on Software Maintenance and Reengineering (CSMR 2008), Athens, Greece.

The visualization techniques we introduced, as well as the visual patterns and their inter-
pretation were presented in a paper [20] at one of the main conferences focusing on software
visualization: the 4th International Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT 2007), in Alberta, Canada.

The tool infrastructure and its applicability was described in the paper [19] we pub-
lished at 10th International Symposium on Symbolic and Numeric Algorithms for ScientiÞc
Computing (SYNASC 2008) Timisoara, Romania.

The first two papers are ISI-quoted, and also indexed by other major databases (Inspec,
IEEExplore, etc.), while the latter was published in the SYNASC post-proceedings volume
(IEEE Proceedings), and, according to the conference organizers, may also be indexed by
ISI.

We have also published several other conference papers and two books that are related
with our field of research, as referenced throughout this thesis.
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10.3 Contributions
The major contributions of this thesis to the field of reverse engineering software systems are
presented as follows.

A methodology for understanding object-oriented distributed systems. The overall
contribution of the thesis is a methodology that is novel and comprehensive, built to pro-
vide consistent and sustained support for each and all the needed steps in an analysis that
understands a distributed system through reverse engineering, up to, and including the point
in which it provides means for system restructuring. While it sometimes makes use of some
existing techniques, such as the algorithm that eliminates ‘weak edges’ as a secondary step in
separating the features, the major processes we have presented are entirely developed by us,
and are new.

As a confirmation of this claim, when we have presented the core of our approach [21]
at one of the major software reengineering conferences in our field1, we have received very
positive reviews, and the fact that we introduced our work as novel was unchallenged by the
reviewers. Moreover, one of the three reviewers characterized the technique as "quite original
and useful to the software practitioner", while another reviewer summarized the paper as "a
different than usual approach in understanding distributed object-oriented systems by isolating
the ‘purely distributed features’ and examining their impacts on the overall system.". The
latter also characterized the approach as "technically solid" and remarked that the content
we presented was actually "too long for a conference paper".

A model for object-oriented distributed systems. The representation of an object-oriented
distributed system is specifically built for the goal of understanding and for the con-
text of this methodology. It captures all the system characteristics that provide valuable
knowledge about the target class of applications, while using a small yet representative set of
specific concepts.

The concept of Distributable Feature. This is one of the main concepts in the thesis,
and it is designed as a means of characterizing the system’s distributed functionality, without
depending on isolating actual distributed components or deployment units. The overlapping
nature of the various distributable features in a system allows for a more flexible approach,
which is able to better fit the real-life applications, where the concerns related to the various
functionalities are not always clearly delimited.

The concept of Class Acquaintance and the Patterns of Acquaintance. This concept
characterizes the classes’ collaboration with selected features or even with groups of entities.
By analyzing each class’ relation with the distributable features, and identifying the pattern it
conforms to, the assessments can provide valuable insights on the importance of the distributed
aspect in the application.

112th European Conference on Software Maintenance and Reengineering (CSMR 2008), Athens, Greece
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The concept of System-Mediator Frontier. In the context of assessing the core interac-
tions, this concept is introduced and used as a highly relevant starting point for capturing the
distributed aspects of the application. This way, it provides essential information about the
system, and ensures an accurate focus for the reverse engineering process.

The Distributable Features View. The novel visualization technique we developed is de-
signed as a key tool for both capturing the interesting patterns of collaboration, and for de-
tecting the particular classes that follow these patterns. The two visual perspectives it consists
of, the Distributed Architecture Perspective, and the Feature Affiliation Perspective facilitate
both system-wide characterizations, and class-level collaboration-related assessments. The
latter introduces a Composed Polymetric View as an extension of ’classic’ polymetric views,
to better capture the visual clues describing the system.

A set of reverse engineering techniques. The techniques we have developed extract the
knowledge providing system understanding. We use a technology-driven focal point in the
analysis that values the clues given by the technology in order to extract complex information,
such as the system features. We achieve the isolation of a core, representative set of classes
to focus the techniques that isolate features, rather than analyzing the entire application,
so that efficiency and accurate focus on the relevant aspects is obtained. Further, we use
of a combination of technology-related and generally-applicable heuristics for separating the
functional partitions within the core.

An architectural overview on the application is extracted without depending on the (usually
missing) deployment information, while avoiding to complicate the approach with an aim on
detecting the exact shape of the distributed components. The concept of distributable features
was sufficient to provide significant knowledge.

Focusing on the concept of system Distributed Awareness, extracted from the measured
aspects in the application, we accept the fact that system entities cannot always be placed
in clearly delimited functional partitions, and develop a collaboration-centric approach that
allows for the observation of the overlapping concerns, such as the participation of a class to
multiple features.

We assess two aspects of the collaboration of the system classes that provide the under-
standing related to the system:

• the one that captures the overall importance of the distributed aspect in the class’
design goals, and

• the one that characterizes the participation of the class in each features of the system
that are distribution-related.

A set of metrics assessing system characteristics. The metrics we have developed (such
as the various acquaintance metrics or the In-Group Adequacy), capture the aspects that
provide system understanding. They are used both when applying of the detection strategies,
and for driving the visualization techniques.

BUPT



10.4. FUTURE WORK 143

Restructuring support as a natural extension to the understanding techniques. The
specifically-targeted restructuring support is a part of the methodology, and provides in
a manner consistent with the other steps the means for:

• assessing the change scenarios, and

• achieving additional insight on the system’s functionality.

Comprehensive tool support. The tool infrastructure we have developed addresses all the
steps in the methodology, including the evaluation of the system restructuring scenarios. It
automates all the tasks implied by our reverse engineering process, while allowing for user
interaction.

A targeted literature survey. The survey in Chapter 3 captures the state of the art, driven
by the goal of characterizing the techniques that are relevant for the field of reverse engineering
software applications, while considering the needs of a comprehensive analysis approach for
distributed systems.

10.4 Future Work
While our research described in this dissertation proved to provide a solid approach in reverse
engineering object oriented distributed systems, there are still as set of concerns a future
development of the methodology can address. The main directions that we can follow in our
future work are described below.

• Extend the approach to other distributed technologies. While our methodology was
designed from the start to be extensible, it would be interesting to apply the gathered
experience to other types of distributed technologies than Java RMI.
At the time of this writing, the author is already supervising a student diploma project
that aims to extend our main techniques to distributed applications built using Web
Services;

• The process of identifying the core distributed functionality and the separation of fea-
tures can be enriched by defining additional heuristic rules, and by possibly improving
the existing ones. A larger experimental base would also provide data for building new
heuristics;

• The measurements that provide information used for assessing the class-feature par-
ticipations can be applied for automatically adding in the set representing the core of
distributable features the classes with strong involvement on the distributed aspect;

• The support for restructuring can be extended by assessing additional aspects in the
projected change scenario, such as automatically calculating the scenarios with minimal
cost by identifying and evaluating a set of candidate scenarios;

• The visualization techniques can be extended to capture the characteristics of the pro-
jected restructuring scenarios to facilitate their comparison.
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