

Towards Understanding and
Quality Assessment of Enterprise

Software Systems

Teză destinată obţinerii

titlului ştiinţific de doctor inginer
la

Universitatea “Politehnica” din Timişoara
în domeniul “Ştiinţa Calculatoarelor”

de către

Cristina Marinescu

Conducător ştiinţific: prof.univ.dr.ing. Ioan Jurca

Referenţi ştiinţifici: prof.univ.dr.ing. Mircea Petrescu

 prof.univ.dr. Dana Petcu

 prof.univ.dr.ing. Horia Ciocârlie

Ziua susţinerii tezei: 20 Martie 2009

BUPT

Seriile Teze de doctorat ale UPT sunt:

1. Automatică 7. Inginerie Electronică şi Telecomunicaţii
2. Chimie 8. Inginerie Industrială
3. Energetică 9. Inginerie Mecanică
4. Ingineria Chimică 10. Ştiinţa Calculatoarelor
5. Inginerie Civilă 11. Ştiinţa şi Ingineria Materialelor
6. Inginerie Electrică

Universitatea „Politehnica” din Timişoara a iniţiat seriile de mai sus în scopul
diseminării expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul
şcolii doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006,
tezele de doctorat susţinute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica – Timişoara, 2009

Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea
acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea
ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă
formă este permisă numai cu respectarea prevederilor Legii române a dreptului de
autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea

Universităţii „Politehnica” din Timişoara. Toate încălcările acestor drepturi vor fi
penalizate potrivit Legii române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,

tel. 0256 403823, fax. 0256 403221

e-mail: editura@edipol.upt.ro

BUPT

Foreword

I would like to thank the advisor of my thesis, Prof. Ioan Jurca, for helping me with
choosing the topic of this work. I also wish to thank him for the confidence and
encouragement he gave on many occasions over all these years, and for the time he

spent carefully evaluating the various aspects of my work. His support helped me to
significantly improve the thesis.

I would like to thank Prof. Dana Petcu for accepting to be an official reviewer and for

the material support provided as the head of the e-Austria Institute in the early
years of my doctoral studies. I thank Prof. Horia Ciocârlie and Prof. Mircea Petrescu

for promptly accepting to be part of the PhD committee. I also thank Prof. Octavian
Proştean for accepting to chair the examination.

I would like to thank Prof. Vladimir Creţu, the head of the Computer Science and
Engineering department, for his logistical support, especially through the difficult

times of my last year as a PhD student.

I want to thank Marius Minea for sharing with me his huge research experience and
for sacrificing his time to review one of my papers. All these provided me with lots
of valuable ideas that shaped my thesis. I am grateful to Tudor Gîrba for our many
stimulative and fruitful discussions (almost every time he come to Timişoara), as

well as for presenting one of my papers.

I would also like to to thank Océ Software, and Mr. Marius Pentek in particular, for

the 2006 grant that financially supported my research in a difficult period of time.

I would like to thank all my colleagues that have contributed to the development of
iPlasma. Without their work, implementing the DATES tool, that I created for

evaluating the different techniques presented in my thesis, would have been much
harder: Radu Marinescu – the initiator of the platform, Daniel Raţiu and Mircea Trifu
– for the contributions brought to the MEMORIA meta-model, Petru Mihancea and
Andreea Ionete – for developing JMondrian, Cristian Caloghera – for creating the
insider front end, Mihai Balint – for writing a lot of tests and, last, but not least
Violeta Voinescu – for her effort regarding the implementation of software metrics.

I am also grateful to all those who helped me with implementation effort for the

DATES tool: Diana Flacăr – for enabling DATES to extract the database model also
from Microsoft Access, Tamaş-Selician Domiţian – for serializing the database
model. I would also like to thank Ioana Verebi and George Ganea for their full-

hearted collaboration on various research projects.

To all of my friends: Irina – I am so sad I can’t invite you anymore to my PhD

defense, Adina and Roxana – for sharing your marvelous experiences with our Lord,
Oana – for being such a dear and reliable friend and, last but not least, Janina, for
sharing with me your experience in child raising.

BUPT

I would like to thank my grandparents and parents for the way in which I grew. I
also wish to thank my sister Meli and my brother Licu for being close to me. I want

to thank my other sister, Diana, for being a true friend, with whom I enjoy talk and
debating almost any topic. I want to express my gratitude to Ani and Brutus for the
way they supported me in many occasions.

My special thanks are for Mihăitză – for behaving so well and letting me finish the
writing of the thesis, and for Radu for all the joys that shared together in the past
eight years.

But above all, I would like to thank The One who gave us the greatest joy: the
experience of living together with Him.

Marinescu, Cristina

Towards Understanding and Quality Assessment of
Enterprise Software Systems

Teze de doctorat ale UPT, Seria 10, Nr. 16, Editura Politehnica,
2009, 139 pages, 69 figures, 17 tables.

ISSN: 1842-7707

ISBN: 978-973-625-847-3

Abstract,
The scope of this Ph.D. thesis is the research field of software
engineering, while its main goal is to address the issue of high and
constantly growing complexity of enterprise software systems and
the issue of their permanent need for adaptation to always meet

new requirements. In this context, the thesis introduces new
techniques and software instruments, which are helpful in order to
evaluate and enhance the quality of this type of systems.

BUPT

Contents

1 Introduction 13

2 Enterprise Applications 17
2.1 Characteristics of Enterprise Applications . 17
2.2 The Object-Oriented Model . 19

2.2.1 Design Flaws in the Object-Oriented Model 20
2.3 The Relational Model . 21

2.3.1 Design Flaws in the Relational Model 22
2.4 Principles and Patterns in Enterprise Applications 23

2.4.1 Patterns for Mapping Objects to Tables 24
2.4.2 Patterns within the Data Source Layer 27

3 Techniques for Assessing the Design 29
3.1 Understanding the Design in Regular Systems 29
3.2 Object-Oriented Design Quality Assessment 34
3.3 Assessment Methods in Enterprise Applications 38
3.4 Research Directions . 41

4 Analysis Infrastructure for Enterprise Applications 44
4.1 Modeling Enterprise Applications . 44

4.1.1 Modeling Object-Oriented Entities 44
4.1.2 Modeling Relational Database Entities 45
4.1.3 Modeling Object-Relational Interactions 45

4.2 Automated Model Extraction . 48
4.2.1 The iPlasma environment . 48
4.2.2 The DATES module . 55
4.2.3 Groups. Properties. Filters . 58

4.3 Characteristics of the Case Studies . 60
4.4 Evaluation of the Approach . 62

5

BUPT

6 CONTENTS

4.4.1 Storing entities from the relational database 63
4.4.2 Classifying entities of the data source layer 63
4.4.3 Capturing the accesses between the object-oriented and the relational

paradigms . 65
4.5 Direct Applications of the Meta-Model . 66

4.5.1 Finding entities that belong to more than one layer 66
4.5.2 Finding the Interactions with Databases 69
4.5.3 Visualizing how Tables are Accessed in Code 71

5 Relational Discrepancies Detection 79
5.1 Relational Discrepancies . 79

5.1.1 Missed Constraint: An Example . 80
5.2 Detection of Relational Discrepancies . 84

5.2.1 Build the Groups of Related Tables 85
5.2.2 Detect “de Facto” Constraints . 86
5.2.3 Identify the Missed Constraints . 88

5.3 Evaluation of the Approach . 88
5.3.1 The KITTA Application . 89
5.3.2 The TRS Application . 90
5.3.3 The Payroll Application . 90
5.3.4 The CentraView Application . 91
5.3.5 Identified Relational Discrepancies according to

the percentage of using the tables together in
the source code . 93

6 Objectual Meaning of Foreign Keys 95
6.1 Objectual Meaning of Foreign Keys . 95

6.1.1 Relations between Tables and Classes 96
6.1.2 Refined Semantics of Foreign Keys 96

6.2 The Approach . 99
6.2.1 Discovering the N, U and S Relations 99
6.2.2 Discovering the D, A and I Relations 101

6.3 Evaluation of the Approach . 102
6.3.1 The KITTA Application . 102
6.3.2 The Payroll Application . 103
6.3.3 The CentraView Application . 104

7 Roles-Aware Detection of Design Flaws 108
7.1 Roles in the Data Source Layer . 108

7.1.1 Design Roles and Quality Assessment 109

BUPT

CONTENTS 7

7.2 Extracting Roles in the Data Source Layer 109
7.2.1 Roles in the Data Source Layer . 109
7.2.2 Identifying Roles in the Data Source Layer 110
7.2.3 Design Information for Identifying Roles 112

7.3 Roles-Aware Detection of Design Flaws . 112
7.3.1 Data Class versus Data Transfer Object 113
7.3.2 Enhanced Detection Rule for Feature Envy 114

7.4 Evaluation of the Approach . 115
7.4.1 Identification of Roles . 117
7.4.2 Roles-Aware Detection of Design Flaws 119

8 Conclusions. Future Work 122

A Visualizing Accesses to Tables 131
A.1 Tables Accesses. Implementation . 131
A.2 Distribution of Operations. Implementation 133

B Roles-Aware Detection of Design Flaws 135
B.1 Table Data Gateway. Implementation . 135
B.2 Data Transfer Object. Implementation . 137

BUPT

List of Figures

2.1 Layers in a well-designed enterprise application. 18
2.2 Persistent classes in the domain layer. 24
2.3 Single Table Aggregation. 25
2.4 Foreign Key Aggregation. 25
2.5 Single Table Inheritance. 26
2.6 Class Table Inheritance. 26
2.7 Concrete Table Inheritance. 27

3.1 The core of the FAMIX meta-model [76]. 31
3.2 Table books. 32
3.3 Class Book. 32
3.4 Design information must be extracted both from the code and the database

schema. 33
3.5 Quality assessment process for an object-oriented system. 34
3.6 System Complexity - an example. 36
3.7 Quality assessment process for an enterprise application. 37
3.8 Class Book which embeds SQL syntactical errors. 39
3.9 Research directions. 43

4.1 A simplified meta-model for object-oriented systems. 45
4.2 A Meta-Model for Relational Databases. 46
4.3 Entity Method Annotated. 47
4.4 The iPlasma analysis platform. 49
4.5 WOC Metric Implemented in Java. Numbers on the left are used for referencing

the important lines of code in the text that explains it. 52
4.6 The implementation of the filter is Public. Numbers on the left are used for

referencing the important lines of code in the text that explains it. 53
4.7 WOC metric implemented in SAIL. 54
4.8 INSIDER - a snapshot. 55

8

BUPT

LIST OF FIGURES 9

4.9 Modeling the structure of a database. 56
4.10 AnnotationDATES – the introduced properties. 57
4.11 The group of accessed tables - implementation. 58
4.12 isUsedTable Filter - implementation. 60
4.13 The Overview Pyramid associated to KITTA. 61
4.14 Classes with design flaws in KITTA. 61
4.15 The Overview Pyramid associated to CentraView. 62
4.16 Method getButton_show of class ShowReservation. 67
4.17 Method search_person_car of class ShowReservation. 68
4.18 Tables Accesses. Representation. 71
4.19 Distribution of Operations. Representation. 72
4.20 Tables Accesses in KITTA. 72
4.21 Distribution of Operations in KITTA. 73
4.22 Tables Accesses in TRS. 73
4.23 Distribution of Operations in TRS. 74
4.24 Tables Accesses in Payroll. 75
4.25 Distribution of Operations in Payroll. 75
4.26 Tables Accesses in CentraView. 77
4.27 Distribution of Operations in CentraView. 78

5.1 Two types of relational discrepancies. 80
5.2 Library database schema, with no explicit constraints among tables. ([PK] marks

the primary keys). 80
5.3 Domain Classes for Library example. 81
5.4 The BookDS data source class. 83
5.5 The PublisherDS data source class. 84
5.6 The meta-model of main entities that connect the source code with the database. 85
5.7 Building the group of related tables. 87
5.8 KITTA: The discovered related tables. 89
5.9 CentraView: Some discovered related tables. 92
5.10 Computing the percentage of having (T, R) together. 94

6.1 The objectual meaning of a foreign key, as revealed in the source code. . . . 97
6.2 Objectual meaning of foreign keys. 98
6.3 Detect a Data Keeper Class. 100
6.4 Discover the D, A and I Relations. 101
6.5 Duplicated fields related to the Child table. 103
6.6 Some discovered S Relations between tables and Data Keeper classes. 105
6.7 The D Relations between tables. 106

BUPT

10 LIST OF FIGURES

7.1 Relations between a design entity, roles and layers. 109
7.2 Identification of roles in the data source layer. 111
7.3 Table books. 113
7.4 Class BookDataSource. 114
7.5 Class Book - a Data Transfer Object. 115
7.6 Class BookDataSource revised. 116
7.7 Detection of Data Transfer Object. 116
7.8 Roles of methods in KITTA. 117
7.9 Roles of methods in Payroll. 118

BUPT

1

Introduction

The scope of this Ph.D. thesis is the research field of software engineering, while its main
goal is to address the issue of high and constantly growing complexity of enterprise software
systems and the issue of their permanent need for adaptation to always meet new requirements.
Having in mind the powerful and competitive software industry, we adress also the need to
create useful platforms, methodologies and tools for dealing with very complex systems [28].

In a society characterized by frequent changes, the software must evolve together with the
society, more precisely together with the modeled business domain. In order to be able to
evolve and adapt to new requirements it has to be prepared for changes. This means a high
design and implementation quality [40]. It is well known both in the software engineering
theory and in practice that large-scale, complex applications which exhibit a poor design and
implementation are very dangerous because of the delayed effect of these structural problems
[17]. The applications are going to run correctly a period of time, but their adaptation to new
requirements is going to be unfeasible from the economical point of view. A late discovery
of this problem can be dangerous because rebuilding the application can be expensive while
in the case of large enterprise applications it is virtually impossible [16]. This emphasizes the
need to analyze the software from multiple points of view in order to detect on time the design
and implementation problems that could inhibit or make very expensive the evolution of the
system.

Another important problem regarding the evolution of a software application is connected to
the permanent necessity of its understanding.

In the recent years, as object-oriented systems became increasingly complex, a novel category
of software systems emerged, namely enterprise applications. These systems are about the
display, manipulation, and storage of large amounts of often complex data and the support or
automation of business processes with that data [27].

As a reflection of our society, enterprise applications are characterized by a huge amount
of heterogeneity (e.g., various implementation languages used in the same project, multiple

BUPT

12 1. INTRODUCTION

programming paradigms, multiple coexisting technologies). As we rely more and more on such
systems, their understanding and quality assurance are crucial concerns.

From the point of view of design and implementation these systems can be regarded as object-
oriented ones, usually consisting of three primary layers called presentation, domain and data
source [24]. Therefore, apparently, the assessment of design quality could be based on the
principles, heuristics and best practice of object-oriented design (e.g., [60, 72, 29]). But is
this enough?

It is clear from the state-of-the-art literature reflected in [27, 35, 56, 66, 59] that, within an
enterprise application, the presentation layer, the data source layer, and also their interaction
with the domain layer, are governed by a novel set of principles and patterns which state more
specifically what is “good design" for an enterprise system. Furthermore, comparing these
specific design rules with the ones used for the design quality assessment of “regular” object-
oriented systems (object-oriented systems which do not involve persistency) we notice that
sometimes they are even conflicting. For example, a Data Transfer Object (DTO) [27, 56]
which in an enterprise application is a class carrying data between a client and a server will
be always detected as a Data Class [26] design flaw. Thus, using a strict object-oriented
perspective we are in danger of getting incomplete and inaccurate results.

Consequently, as the number and the complexity of enterprise systems is increasing, the need
to maintain and evolve these systems will require more and more specific means both to
understand and to assess completely and accurately the quality of their design.

In the context of software understanding, finding flaws of object-oriented design has a twofold
relevance:

• flaws like Data Class, Feature Envy [26] hamper the understanding of the code as data
and the functionality that uses the data are placed in different locations.

• design flaws like Large Class or Long Method [26] aside from their malign nature have
also the “side effect" of helping us localize the classes and methods where a large part
of a system’s intelligence is placed. In other words, the location of design fragments
affected by particular design flaws is also useful for an initial understanding of a legacy
system.

In order to achieve the mentioned goals, the heuristics and patterns of enterprise applications
design must be be taken into account. In the last ten years various valuable techniques have
been defined for quality assessment in object-oriented systems [11, 21, 37, 57, 58].

Yet, regarding them from the perspective of enterprise applications, almost all of these ap-
proaches are limited in the following aspects:

• they rely exclusively on principles, heuristics and best practices of object-oriented design.

• they are based exclusively on a structural view of the source code, without integrating
any additional information (e.g., the database schema).

BUPT

13

• they do not provide features for understanding and evaluating the quality of the rela-
tionships existing within the relational part of the system (i.e., the persistency layer)
and of the interrelationships between the relational and the object-oriented parts.

Due to the mentioned aspects the current quality assurance techniques (e.g., techniques for
detecting design flaws in object-oriented systems) are necessary but not sufficient. A novel
layer of dedicated quality assurance techniques is needed in order to address properly the
multiple aspects of heterogeneity in design and implementation.

In this dissertation we aim to lay the foundation for a new approach of understanding and
assessing the design of enterprise applications. The contributions we bring are presented
below:

• different design-related analyses regarding the interactions between the object-oriented
part and the relational part of an enterprise application.

• a novel approach for detecting relational discrepancies between data-base schemas and
source code in enterprise applications.

• a novel technique for determining a refined understanding of the relations among the
persistent data, by correlating the information extracted from the database schema with
the way the data are used in the source code (i.e., objectual meaning of foreign keys).

• a mechanism which help us to identify the classes and methods that fulfill design roles
which are specific for enterprise systems, and which are described in literature in form
of various patterns (e.g., a class that acts as a Data Transfer Object [27]). In this
context, we define a suite of automatic detection techniques for several design roles.
The ability to identify such roles is a further step towards a specific understanding of
an enterprise application’s design. Next, we show how the detection accuracy of two
well-known design flaws (i.e., Data Class, Feature Envy) can be improved by taking into
account these identified design roles.

In order to introduce the features we define and use specific structural analyses based on a
representation (model) of a software system that contains and correlates relevant entities and
relationships from both the object-oriented (e.g., classes, method calls) and the relational
parts (e.g., tables, columns, accessed tables) of an enterprise application.

Organization. The thesis is structured as follows: in Chapter 2 we present the main char-
acteristics of an enterprise application and several principles and patterns of good design in
enterprise applications.

In Chapter 3 we present some techniques for understanding and quality assessment in object-
oriented systems, as basically all enterprise applications use an object-oriented back-bone and
some representative solutions that fall in the assessment for enterprise applications. We also
emphasize that a new meta-model specific to enterprise applications is needed. Chapter 3 is
concluded by summarizing the research directions we identified during the studies presented
in Chapters 2 and the first part of Chapter 3.

BUPT

14 1. INTRODUCTION

In Chapter 4 we introduce a description of the proposed meta-model that is used in order to
understand and assess the design of an enterprise application. We continue the chapter by
providing a detailed description of the tool support that ensures the automation of the entire
approach. We end the presentation of the introduced meta-model with a suite of applications
that are used as case studies in this thesis.

Chapter 5 presents a novel approach for detecting relational discrepancies between database
schemas and source code in enterprise applications.
Chapter 6 proposes a mechanism for capturing the semantics of the relations between the ele-
ments of the persistency layer within an enterprise application, by correlating the information
extracted from the database schema with the insight provided by the usage of the database el-
ements within the source code. The mechanism enriches the semantics of data-base relations
established by means of foreign keys by revealing its objectual meaning (i.e., if the foreign key
denotes an inheritance or an aggregation relation).

Next (Chapter 7), we introduce the notion of a design role attached to a design entity (e.g.,
class, method) and a suite of techniques for automatically identifying several design roles that
are related with the data source layer of an enterprise application. By taking into account the
design roles introduced, we revise the detection method for two design flaws in order to make
it more accurate for enterprise applications.

All the introduced approaches are accompanied by different experiments based on four case-
studies. The conducted experiments are intended to reveal the applicability and the accuracy
of the introduced features.

The thesis ends with conclusions, summarizing the brought contributions and some final
remarks towards the future work (Chapter 8).

BUPT

2

Enterprise Applications

Among the very complex software systems that the industry is confronted with, in the last 5-7
years a new type of application called enterprise has emerged. In the first part of this chapter
we present briefly the main characteristics of enterprise applications and the object-oriented,
respectively the relational models, as every enterprise application relies on these models. We
continue by pointing out some principles and patterns of good design in enterprise applications.

2.1 Characteristics of Enterprise Applications
An enterprise application 1 is a software product that manipulates lots of persistent data and
interacts a lot with the user through a vast and complex user interface [27]. This type of
software systems includes payroll, automated tellers machines, bank accounting, management
applications, etc.

Usually, an enterprise application involves a lot of persistent data, its users manipulate the
data concurrently, has a lot of user interface screens and need to be integrated with other
enterprise applications [27].

Oftentimes, within this type of applications we need:

• to change the user interface – e.g., from an interface which allows the user to interact
with the software in a command line library to one based on windows, dialog boxes and
menus.

• to have multiple types of interfaces, for example, a stand alone one based on a graphic
library like java.awt or java.swing and another providing a subset of the operations
integrated in a web brower.

• to be able to change the way data are stored – from a simple text file into a relational
database or an object-oriented database.

1also known as an information system or data processing system [27]

BUPT

16 2. ENTERPRISE APPLICATIONS

Presentation

encapsulate

user-application interaction

Domain

encapsulate

system's logic

Data Source

ensure communication

with (relational) databases

Figure 2.1: Layers in a well-designed enterprise application.

In order to satisfy these needs, it is a good practice that the user interface is totally decoupled
from the part of the source code that ensure the communication with the persistency provider,
this practice applying also to the logic of the application (i.e., the domain). A design entity
which ensures persistency, domain and is also responsible for interacting with the application’s
users hampers the maintenance (and, consequently, the understanding) and testing of the
applications [27].

These constraints led to a multi-layered architecture (see Figure 2.1), consisting of three
primary layers namely data source, domain and presentation [24]. As we can notice from the
mentioned figure, in a well designed enterprise application there should be no dependency
going from a lower-level layer to a higher-level one (e.g., the data source and the domain
layers should not depend on the presentation). The responsibility of each layer is presented
next, according to [27]:

The Presentation Layer handles the interaction between the user and the application. The
application might have a simple presentation which allows its run in command line mode or a
graphical user interface or an interface made for working into an HTML-browser. The primary
responsibilities of the presentation layer are to display information to the user and to transform
commands from the user into actions upon the domain and data source [27].

The Domain Layer is the part of the application that performs the necessary work in order
to satisfy the needs of its users. Most of the times it performs computations based on the
existing data stored in the database and on the data received from the users and validations

BUPT

2.2. THE OBJECT-ORIENTED MODEL 17

upon the data received. Due to the wide spread use of the object-oriented technology [2],
there are many enterprise applications which are implemented in an object-oriented manner.

The Data Source Layer ensures the communication with the persistent data. Nowadays
there are a lot of persistent mechanisms (e.g., flat files, hierarchical databases, object-oriented
databases, relational databases, XML databases) but, as considered in [2], many people choose
to persist their data in relational databases.

During this work we refer only to those enterprise applications implemented using the object-
oriented paradigm, where the persistency is provided by SQL relational databases. Due to this
fact, in the next sections we briefly present the main characteristics of the object-oriented and
relational models.

2.2 The Object-Oriented Model
When the object-oriented programming is used, “programs are organized as cooperative col-
lections of objects, each of which represents an instance of some class, and whose classes are
all members of a hierarchy of classes united via inheritance relationships” [23].

According to Booch [23], the object-oriented model encompasses the principles of abstraction,
encapsulation, modularity, hierarchy, typing, concurrency, and persistence . Although when
the object-oriented model appeared those concepts were not new; bringing all of them together
for the first time had a strong positive impact on the organization of software programs.
The first four principles are considered in [23] as being major elements of the object-oriented
model and that is why we are going to briefly summarize only the first four principles’characteris-
tics.

Definition 2.2.1 An abstraction “denotes the essential characteristics of an object that distin-
guish it from all other kinds of objects and thus provide crisply defined conceptual boundaries,
relative to the perspective of the viewer” [23].

In other words, abstraction provides the behavior of an object related to an interesting point
of view. In this context we want to emphasize that the behavior of an object is composed
by all the services (e.g., operations, functions, methods which form the object’s interface)
provided by that object. Abstraction provides the users with information regarding what an
object does, not how the object does (implements) the provided services.

Definition 2.2.2 Encapsulation “is the process of compartmentalizing the elements of an
abstraction that constitute its structure and behavior; encapsulation serves to separate the
contractual interface of an abstraction and its implementation” [23].

Encapsulation is related to the implementation of an object which has to be hidden. One of
the major reasons for hiding the implementation relies on the fact that this implementation
might be the subject for various changes which should not affect the clients of the object.

BUPT

18 2. ENTERPRISE APPLICATIONS

Definition 2.2.3 Modularity “is the property of a system that has been decomposed into a
set of cohesive and loosely coupled modules” [23].

The main goal of the modularity is to reduce the complexity of an object-oriented application
by letting the modules be designed and implemented independently.

Definition 2.2.4 Hierarchy “is a ranking or ordering of abstractions” [23].

Within the object-oriented model there are two relevant types of hierarchies: the is a hierarchy
– which denote the class structure – and the is part of hierarchy – which denote the object
structure.

2.2.1 Design Flaws in the Object-Oriented Model
In order to reveal a good design an object-oriented application has to follow different design:

• heuristics like the ones defined in [72] – e.g., “All data should be hidden within its class”,
“Keep related data and behavior in one place”, “Minimize the number of classes with
which another class collaborates”.

• principles – The Open-Closed Principle, The Interface Segregation Principle [60].

• patterns – Abstract Factory, Observer, Visitor, Decorator, Proxy Design Patterns [29].

If the design of an object-oriented system breaks the rules mentioned above that ensure a
good design, we will encounter a lot of problems which will hamper the evolution of the
system. Fowler in [26] presents some deviations – “bad smells” – from a good design and
their consequences. Next, we present some of them.

Duplicated Code [26]. Having the same part of source code in many places hampers
drastically the possibility of modifying the software system which contains that source code.
To remove this design flaw Fowler proposes in [26] also solutions like Extract Method – when
we have the same fragment of code in more places within the same class, Extract Class –
when encountering the same piece of code among two unrelated classes.

Long Method [26]. A method which contains a significant number of lines of code raises
many problems when it has to be understood. In this context we want to emphasize that it is
difficult to say precisely which is the lower limit for the number of lines of code associated to
a method which make it long. Different authors, based on experience [42] and statistics-based
thresholds [39] tried to answer this question. Common solutions proposed for removing this
flaw are Extract Method, Introduce Parameter Object, Preserve Whole Object [26].

Large Class [26]. A large class tends to play an important part within the business logic of
a system. Usually they are complex classes which reveal a significant number of duplicated
code. This design flaw is known in the literature as God Class. Common solutions proposed
for removing this flaw are Extract Class, Split Class [26].

BUPT

2.3. THE RELATIONAL MODEL 19

Long Parameter List [26]. A method with a great number of parameters is, on one hand,
difficult to understand and, on the other hand, it might be the subject of frequent changes,
as more data is needed. In order to remove this flaw the most well-known solution is packing
the parameters as a Parameter Object (usually a data structure). This solution is especially
recommended when the same list of parameters appears in several methods throughout the
system.

Shotgun Surgery [26]. A method which is affected by this design flaw is called by a lot of
different other methods. Thus, if the affected method becomes the subject of a change, this
change will be propagated into several places.

Feature Envy [26]. When a method is interested (i.e., accesses) in the data of other classes
instead of the data from its own class, then that method if affected by the Feature Envy design
flaw. Usually, this is a sign that the method should belong to a different class.

Data Class [26]. When a class contains only data and does not provide functionality, this
might be a sign than the data and behavior are not stored in the same place. Usually, having
Data Classes into the system leads to many further design problems like:

• a lot of duplicated code, as a sign of developing new operations without knowing exactly
what current operations which manipulate the contained data are available.

• methods affected by Feature Envy, as they get all the time the necessary data from this
type of classes.

2.3 The Relational Model
According to [14], the relational model is often described as having three aspects, as follows:

The Structural Aspect. “A database is seen as a collection of data, typically describing
the activities of one or more related organizations. The data in the database are perceived
by the user as tables, and nothing but tables” [70]. Tables contain columns having different
types (e.g., integer, real, string, date). Every table has a schema according to which data are
stored in the rows of the table.

The Integrity Aspect. “The tables satisfy certain integrity constraints. An integrity con-
straint is a boolean expression that is associated with some database and is required to evaluate
at all times to true” [14]. These integrity constrains can be declared within the schema of the
database in order to make sure that within tables there will not be stored data which break
them.

In order to uniquely identify an entity we should assign it a key [2]. A unique key or primary
key consists of a single column or set of columns. In a table we can not have two distinct
rows with the same value stored in the columns that form the primary or the unique key.

BUPT

20 2. ENTERPRISE APPLICATIONS

The foreign key identifies a column or a set of columns in one (referencing) table that refers
to a column or set of columns in another (referenced) table. The columns in the referenced
table must form a primary key or unique key. Along with the foreign key concept, the rela-
tional model includes the referential integrity rule [14]: the database must not contain any
unmatched foreign key values.

The Manipulative Aspect. “The operators available to the user for manipulating those
tables are operators that derive tables from tables”. The most important operators according
to [14] are:

• restrict – extracts specified rows from a table.

• project – extracts specified columns from a table.

• join – combines two tables into one on the basis of common values in a common column.

A database management system, or DBMS, “is software designed to assist in maintaining and
utilizing large collections of data” [70]. A relational database management system (RDBMS) is
a database management system (DBMS) that is based on the relational model. Currently there
are many RDBMS providers on the market. As presented by Dates in [14], SQL (Structured
Query Language) is the standard language for relational systems and most of the database
vendors provides SQL both for data definition and manipulation operations. SQL has been
standardized by both ANSI and ISO. Currently there are extensions to standard SQL (e.g.,
control-flow constructs) and different data base vendors own a proprietary version of SQL
(e.g., MySQL, PL/SQL from Oracle, SQL PL from IBM).

2.3.1 Design Flaws in the Relational Model
Within a database, like in the case of source code, different design flaws may occur. [3]
presents some common database flaws:

Multipurpose column [3] If a column stores different kind of data (e.g., column salary
stores the salary related to an employee or the price payed from a customer), an additional
overhead at the source code level will occur in order to ensure a proper mechanism for a
correct retrieving of the data stored. In this case the Split Column Refactoring pattern [3]
would be useful.

Multipurpose table [3] This design flaw is similar to the one presented above. If a table
(EmployeesCustomers) stores different types of entities (e.g., information about employees
and customers) this will lead to many unused columns (columns with NULL values) for some
kind of entities.

Redundant data [3] Redundant data is a serious problem within databases because it is
an opportunity of encountering inconsistencies and its handling and support, according to [4],
are heavily costly. Usually eliminating the redundant data from a database implies the process
of normalization. The most important issue regarding the normalization process is that data

BUPT

2.4. PRINCIPLES AND PATTERNS IN ENTERPRISE APPLICATIONS 21

is stored in one place and one place only [2] and, as a consequence, this process produces
highly cohesive and loosely coupled data schemas [2]. [14] addresses the first three normal
forms as well as higher level of data normalization. Unfortunately, a database with a great
degree of normalization will affect the performances regarding storing/retrieving data in/from
the database, as emphasized by different authors in [34, 27, 2].

Tables with too many columns [3] Tables with lots of columns might reveal a sign of an
improper cohesion within. Again, it would be helpful to normalize the tables.

Tables with too many rows [3] Tables with lots of rows drastically reduce the performance
of searching entities with particular properties. In this case it is advisable to reduce the size of
the table, horizontally (e.g., storing some rows in another table or tables) or vertically (e.g.,
moving some columns in different tables).

Smart columns [3] A smart column is a column where different positions within the data
represent different elements (e.g., storing in the attribute column of the table persons the
name, age and address of a person). In this case an additional overhead of parsing will
occur.

2.4 Principles and Patterns in Enterprise Applications
Fowler in [27] states that there “are different sorts of software systems, each of them hav-
ing its own category of problems and complexities”. Enterprise applications, being software
applications which rely on two different paradigms (e.g., object-oriented and relational), has
to overcome the object-relational impedance mismatch [2]. The object-relational impedance
mismatch is a set of technical and cultural difficulties which are often encountered when
a relational database is used within an enterprise application whose source code is written
in an object-oriented programming language or style, especially when objects and/or class
definitions have to be mapped into a database schema.

In order to be well designed and to overcome the object-relational impedan-ce mismatch, an
enterprise application must fulfill some specific design rules and patterns. Different authors
[27, 3, 56, 35, 66] have proposed in recent years such rules and patterns.
Next, we are going to present some principles and patterns of good design in enterprise
applications regarding

• the data source layer because, as we have already mentioned, it is usually responsible
for assuring the proper bridging between the object-oriented and relational paradigms.

• the mapping of objects into relational tables, as every enterprise application has to make
persistent a part of its business object.

In the following chapters we well heavily refer to the patterns mentioned below.

BUPT

22 2. ENTERPRISE APPLICATIONS

getters and setters

for the fields

street : String

number : int

city : String

Address

getters and setters

for the fields

name : String

address : Address

Student

getters and setters

for the fields

name : String

address : Address

Teacher

1

1

Figure 2.2: Persistent classes in the domain layer.

2.4.1 Patterns for Mapping Objects to Tables
When objects have to be mapped into tables, we have to map object-oriented characteristics
like aggregation (part of), inheritance (is a), polymorphism and association to relational tables
structures. Different ways in which this task can be properly accomplished have been proposed
in the literature in terms of patterns [34, 27]. Next we are going to present some of them
with exemplifications.

Patterns for Mapping Aggregation In [34] two patterns for mapping aggregation are
presented. In the following paragraphs we are going to present them with respect to the
example presented below.

Let us assume that we have to map within a relational database objects instances of the
classes Student and Teacher from Figure 2.2. Keller identified in [34] two ways according to
which this operation can be done.

Single Table Aggregation [34] – maps aggregation by integrating all the attributes from the
involved classes into a single table. Consequently, for the previous example we have the two
tables from Figure 2.3 (e.g., Students and Teachers), each of them containing the fields street,
number and city corresponding to the attributes from the Address class.
This pattern reveals an optimal performance – it is possible to retrieve information for a
particular object in one database access without any join operation. But, unfortunately, its
use hampers the maintainability of the database due to the fact that it might contain a lot
of redundant data.

Foreign Key Aggregation [34] – maps aggregation into relational tables using foreign keys.

BUPT

2.4. PRINCIPLES AND PATTERNS IN ENTERPRISE APPLICATIONS 23

name : varchar

street : varchar

number : int

city : varchar

Students

name : varchar

street : varchar

number : int

city : varchar

Teachers

Figure 2.3: Single Table Aggregation.

Thus, for the example above we have three tables, like Figure 2.3 presents, one for each class
whose instances have to be mapped in the relational database.

The use of this pattern reduces the performance associated to the retrieving of objects from
the persistence part of the application, but the maintenance is affected in a positive manner.

In order to make the data from the relational tables be consistent, we have to specify within
the database schema the existing foreign keys, otherwise being possible to store inconsistent
data.

name : varchar

addressID : int[FK]

Students

name : varchar

addressID : int[FK]

Teachers

ID : int[PK]

street : varchar

number : int

city : varchar

Address

Figure 2.4: Foreign Key Aggregation.

Patterns for Mapping Inheritance Next we present some patterns for mapping inheritance
into the relational model, according to [27].

Single Table Inheritance [27] – “represents an inheritance hierarchy of classes as a single table
that has columns for all the fields of the various classes” 2.
Let us consider the example from Figure 2.5. In the right part of the figure is presented a
table called Students that has four columns Name, Type, Salary, Scholarship. For each row
in the table, column Type is responsible for storing the type of the student – Ph.D. Student
or CS (Computer Science) Student. If the type of the student is Ph.D. then it has a salary,
otherwise it has a scholarship. The object-oriented mapping, if Single Table Inheritance is

2also known as One Inheritance Tree One Table [34]

BUPT

24 2. ENTERPRISE APPLICATIONS

used, is presented in the left part of the aforementioned picture. One of the major problems
with this pattern is that table Students may end up being too large.

scholarship

CSStudent

salary

PhDStudent

name

Student

name

type

salary

scholarship

Students

Figure 2.5: Single Table Inheritance.

Class Table Inheritance [27] – “represents an inheritance hierarchy of classes with one table
for each class” 3. We consider the same hierarchy as in the previous example that have to
be mapped into one or more tables. If we use Class Table Inheritance, we will create three
tables, as illustrated in Figure 2.6, one for each class that we have. The main problem with this
pattern regards the loading of objects into memory, an operation which requires multiple table
accesses. In this case, like presented in the pattern Foreign Key Aggregation, the relationships
between the involved tables are realized in the relational model using foreign keys.

scholarship

CSStudent

salary

PhDStudent

name

Student

name

Students

scolarship

CSStudents

salary

PhDStudents

Figure 2.6: Class Table Inheritance.

Concrete Table Inheritance [27] – “represents an inheritance hierarchy of classes with one
table per concrete class in the hierarchy” 4. For the well-known hierarchy of classes from the
previous examples, the tables that will be created if we use the Concrete Table Inheritance
pattern, are presented in the right part of Figure 2.7. One problem regarding this pattern is
that if the superclass is changed, the change is going to affect all the tables presented in the
figure.

Remark. From the presentation of existing patterns used for mapping objects to tables the
following conclusions are drawn:

3also known as One Class One Table [34]
4also known as One Inheritance Path One Table [34]

BUPT

2.4. PRINCIPLES AND PATTERNS IN ENTERPRISE APPLICATIONS 25

scholarship

CSStudent

salary

PhDStudent

name

Student

name

salary

PhDStudents

name

scolarship

CSStudents

Figure 2.7: Concrete Table Inheritance.

• most of the time, increasing the performance of getting/saving an object from/in the
database implies hampering the maintenance of the database. This happens mainly
because increasing the time performance is done by putting the data into a minimum
number of tables while the normalizing of the tables, which affects positively the main-
tenance, requires a more significant number of tables.

• when mapping aggregation and inheritance into relational tables it may be possible to
use the same solution at the database level, using foreign keys. This causes problems
when maintaining the involved tables because without taking into consideration the
usage of tables in the source code it is impossible to say precisely if among the involved
data is an is a or a part of relation.

2.4.2 Patterns within the Data Source Layer
Due to the fact that within an enterprise application it is wise to separate SQL accesses from
the domain layer, a large number of design patterns regarding the communication between
the relational paradigm (a SQL database) and the object-oriented paradigm appeared. In this
section we present some of them.

Table Data Gateway (TDG) [27] – holds all the accesses that are made upon one or
more database tables 5. The tables accessed from a class is the set of distinct tables accessed
from its methods. In this case in the application we usually encounter one instance for each
of this type of class the application contains which handles all the rows in the accessed
tables. Because the role of a TDG is to interact directly with the accessed tables and to
receive/transmit the data via parameters/return statement, this type of classes are most of
the time stateless. The most important achievement we gain when using such class is to
decouple the operations that are performed upon the data from the database tables and from
the accesses to those tables.

This pattern is used when the domain of the application is organized as a set of operations,
each operation satisfying only one demand from the user (Transaction Script [27], Session
Façade [56]).

5also known as Data Access Object [1], Domain Object Assembler [66]

BUPT

26 2. ENTERPRISE APPLICATIONS

Row Data Gateway (RDG) [27] – encapsulates accesses to a single record in a data
source table. For each row from the table which is processed within the application there is
one instance of this type of class. Among the accessed table and the attributes of the class
there is a perfect match. Like a TDG, RDG enables to decouple the business domain from the
underlying data model and data access details. When using this pattern we gain the possibility
of changing the structure of the database with fewer changes in the application than in the
case of using TDG.

Active Record (AR) [27] – this pattern looks very much like RDG, the single difference
being that it adds also domain logic into the services provided by the class. It is suitable for
a domain logic which does not reveal a high degree of complexity. The major drawback of
this pattern is that it couples the business domain with the database accesses for the involved
table.

Data Transfer Object (DTO) [27, 56] – is an instance of a class which contains only
attributes and the corresponding getters and setters for each of these attributes. This type
of objects transmit data between a client (the domain layer) and a server (the data source
layer which encapsulates the access to a database) in order to reduce the number of accesses
upon the database tables which are affected by a poor performance regarding the necessary
amount of execution time.

This pattern apparently is affected by a design flaw – it is nothing else than a Data Class [26].
Consequently, sometimes the design of an enterprise is governed by a set of rules conflicting
with the ones from a “regular” object-oriented application. This conflicting rules have to
be taken into consideration in order to perform a proper assessment of the design of such
applications.

Besides the mentioned design pattern, all the classes that belongs to the data source layer
have to be written according to the following golden rule: Do Not Duplicate SQL [3].

BUPT

3

Techniques for Assessing the
Design

We dedicate a major part of this chapter to a briefing of several representative solutions that
fall in (or are closely related with) the assessment of the design of object-oriented systems, as
basically all enterprise applications use an object-oriented back-bone. The rest of this chapter
presents the current techniques regarding the assessment of enterprise applications.

3.1 Understanding the Design in Regular Systems
The first part of this section emphasizes the goal of techniques for understanding the design in
object-oriented systems. The section continues with the presentation of different techniques
found in the literature regarding the understanding of programs and reveals that the existing
techniques are not sufficient for a proper understanding of the design of enterprise applications.
We conclude with some proposals that can improve the level of understanding in enterprise
applications.

As it is stated in [67], from all the phases in a software life-cycle, the maintenance process is
the most time-consuming and consequently, the most expensive. Due to this reality, this thesis
is strongly related with the process of maintenance. According to the ANSI/IEEE Standard
729/1983
Definition 3.1.1 Software maintenance is “the modification of a software product after de-
livery to correct faults, to improve performance or other attributes, or to adapt the product
to a changed environment”.
Definition 3.1.2 Reverse Engineering is “the process of analyzing a subject system to identify
the system’s components and their interrelationships and create representations of the system
in another form or a higher level of abstraction” [10].
Reverse Engineering is the part of the maintenance process that helps understanding the
system in order to be able to make the appropriate changes [10]. Within the reverse engineering

BUPT

28 3. TECHNIQUES FOR ASSESSING THE DESIGN

process different sources of information can be used [17], two of them being the existing
documentation and the source code. Unfortunately, most of the times the only source of
information available to software maintainers is the source code. “Even in systems that are
documented, updates to the documentation rarely keep pace with the evolution of software.
In such systems, and in systems with little or no documentation, understanding the function
and structure of the program is an essential prerequisite to maintaining it” [67].

As we have mentioned before, the source code is a trustworthy source of information, and
in this thesis we consider the source code of an application the main source of information
during a reverse engineering process.

If the source code is as small as a few tens of lines, we can perform reverse engineering
on a given software system manually; but as the source code becomes larger we need tools
for dealing with very complex systems [28] in order to have a powerful and competitive
software industry. As it is emphasized in [36], intermediate representations are a key issue
for reverse engineering tools. An intermediate representation for reverse engineering “must
support different levels of abstraction – from the code-structure level up to architectural level
– to be suitable for all phases of reverse engineering” [33]. [36] proposes the requirements of
intermediate representations (IR) for reverse engineering tools. Next, we are going to present
some of the proposed requirements 1:

• (R2) “The semantics of the IR must be well-defined and it must exactly describe the
constructs of the modeled programming languages; this is necessary for an exact analysis
”[36].

• (R9) “IR should support different levels of granularity from fine-grained to coarse-grained
”[36].

• (R12) “In a reverse engineering environment IR must also capture higher level abstrac-
tions ”[36].

• (R13) “Not only does the IR have to have the ability to specify higher concepts, it
also must provide means to express any relationships between these concepts. A part-
of relationship to describe hierarchical relationships is one example, a communication
relationship between two subsystems in an architectural description is another ”[36].

Probably the best-known intermediate representation of software systems is based on a meta-
model. The meta-model of a given software system specifies the existing relevant entities
in the system (e.g., for a regular object-oriented system – classes, methods, attributes) and
their relevant properties and relations (e.g., inheritance, method calls). The model of a given
software system contains the specific information extracted from the source code based on
the meta-model.

In the last years different meta-models of the source code for object-oriented applications were
1We omit to present the requirements which do not affect the reverse engineering of an enterprise applica-

tion, compared to a “regular” object-oriented application.

BUPT

3.1. UNDERSTANDING THE DESIGN IN REGULAR SYSTEMS 29

Figure 3.1: The core of the FAMIX meta-model [76].

proposed. Next, we are going to take a look at two meta-models for modeling object-oriented
applications: FAMIX [76] and MEMORIA [71].

Figure 3.1 shows the core entities and relations presented in the FAMIX meta-model. All
basic elements of an object-oriented languages are present (e.g., class, method, attribute).
Furthermore, FAMIX models dependency information, such as method invocations (which
method invokes which method) and attribute accesses (which method accesses which at-
tribute). Functions and global variable are modeled because they exist in several object-
oriented languages (i.e., C++, Smalltalk). This effectively makes FAMIX support hybrid
object-oriented and procedural languages. FAMIX is implemented in Smalltalk.

A similar approach is found in [71]. MEMORIA is a unified meta-model for Java,C++ and,
recently, for C# [65]. MEMORIA is implemented in Java and is the foundation of iPlasma
– an integrated platform for quality assessment of object-oriented design [53].

In this context, the following question arises:

Is it sufficient to perform reverse engineering upon an enterprise application based on a meta-
model for a “regular” object-oriented system?

In order to answer the question, let us consider the example presented below: we have within
an enterprise application a table called books with the structure presented in Figure 3.2 and
class Book which is responsible for updating the aforementioned table – its implementation is
shown in Figure 3.3.
If we extract the model of the source code from Figure 3.3 based on FAMIX or MEMORIA
meta-models (i.e., based on a meta-model for representing “regular” object-oriented systems),
we will extract the entities: class Book, method updateAuthor and related entities strongly
connected to method updateAuthor – library classes String, Connection, PreparedStatement,
int and library methods prepare, setString, setInt, execute. Next, we are going to see if the

BUPT

30 3. TECHNIQUES FOR ASSESSING THE DESIGN

create table books (
ID int primary key, title varchar,
author varchar, publisher varchar, year int)

Figure 3.2: Table books.

requirements R2, R9, R12 and R13 for an intermediate representation for reverse engineering
are fulfilled by FAMIX or MEMORIA meta-models.

class Book {

public String updateAuthor(int id, String title,
String publisher) throws Exception {

...
Connection con = ... ; //initializations
PreparedStatement updateStatement;

String update;
update = "UPDATE books SET title = ?, " +

"publisher = ? WHERE ID = ?";

updateStatement = con.prepare(update);
updateStatement.setString(1, title);
updateStatement.setString(2, publisher);
updateStatement.setInt(3, id);

updateStatement.execute();
}

}

Figure 3.3: Class Book.

• R2 – for an exact analysis, the semantics of the IR must exactly describe the constructs
of the modeled programming languages. As we can notice, class Book contains, beside
constructs that are present in a “regular” object-oriented system, also constructs con-
nected to the relational part of an enterprise application: a SQL statement embedded
in a string that is executed by the method execute(). These constructs are not captured
by a meta-model specific to a “regular” object-oriented system.

• R9 – Regarding the different levels of granularity from fine-grained to coarse-grained
IR should support, a meta-model specific to a “regular” object-oriented system like
FAMIX or MEMORIA is not able to support fine-grained levels of granularity. For
example, it can not store information about accessed tables from the body of a method,

BUPT

3.1. UNDERSTANDING THE DESIGN IN REGULAR SYSTEMS 31

Figure 3.4: Design information must be extracted both from the code and the database
schema.

due to the lack of R2.

• R12 – the condition regarding higher level abstractions is also broken. For example, in a
“regular” object-oriented application there is no data source layer and, consequently, it
is not possible to map automatically entities from the source code into the data source
layer. Due to the fact that meta-models support annotations, it is possible to annotate
manually entities as belonging to the data source layer. It is obvious that for large-scale
enterprise applications this is not a proper solution for reverse engineering. Moreover,
manually annotating entities is an error-prone operation.

• R13 – an enterprise application, as we presented in Section 2.1, embeds two paradigms
(i.e., object-oriented, relational). Thus, in such applications we have, on one hand,
object-oriented concepts like classes, methods, attributes and, on the other hand, rela-
tional concepts like tables, columns, primary and foreign keys. Consequently, a proper
meta-model for reverse engineering for enterprise applications should contain, beside
concepts from object-oriented paradigms, concepts related to the relational paradigm.
Figure 3.4 sketches the concepts that should be introduced in a suitable meta-model
for enterprise applications. Moreover, as R13 states, a proper meta-model for enter-
prise applications must provide means to express existing relationships between these
concepts (e.g., accessed tables from a class, classes that access a table).

Feature 2 location in the source code is the process that identifies where a software system
implements a specific feature [45]. Features can be divided in two categories: functional and
nonfunctional. In this thesis, we are going to consider only nonfunctional features as relevant.

In [45] are presented some case studies which conduct to the following result: Feature location
2also known as concept [45], concern [73].

BUPT

32 3. TECHNIQUES FOR ASSESSING THE DESIGN

Figure 3.5: Quality assessment process for an object-oriented system.

is also needed for the maintenance of object-oriented code and object-oriented structuring does
not facilitate feature location in the source code [45]. Consequently, there is a need for feature
location methodologies suitable for object-oriented systems. [73] proposes a methodology for
finding and describing concerns using structural program dependencies. FEAT, the tool that
implements the presented methodology, uses a structural program model which consists of
three type of entities: classes, fields and methods. This structural model allows locating, for
example, fragments in the source code that handle Java anonymous classes. But locating
fragments in the source code that, for example, insert a row in a specific table is not possible
due to the lack of information from the meta-model.

The given discussion reveals that:

In order to perform reverse engineering on enterprise applications we need a specific meta-model
which contains, on one hand, entities from a “regular” object-oriented system and, on the other
hand, entities regarding the relational part of the enterprise application and the interactions
between the two paradigms.

3.2 Object-Oriented Design Quality Assessment
In order to define more precisely the problem that we intend to address in the current Ph.D.
thesis, we put it in relation with the closest related approach (i.e., design quality assurance
for object-oriented systems). In Figure 3.5 we depict the usual process of quality assessment
for object-oriented systems.

The process starts from a set of quality assurance (QA) design rules and heuristics [60, 72, 29].

BUPT

3.2. OBJECT-ORIENTED DESIGN QUALITY ASSESSMENT 33

These are usually informal, and therefore they are first transformed into a set of quantifiable
rules, which can be then applied on the analyzed project, more precisely on the part of the
project which is designed in an object-oriented manner. The result is a set of design fragments
that are affected by design problems and that need to be restructured in order to improve the
quality of the system.

Software metrics are frequently used in problem detection. They quantify simple properties of
design structures and can be used to identify abnormal properties of these structures. Software
metrics that address the most important characteristics of good object-oriented design like
cohesion, coupling and inheritance are defined in [41, 6, 39]. An important work on object-
oriented software metrics is [44] where empirical threshold values which signify abnormal
characteristics of design entities are also presented. They were established based on the
author’s experiences with some C++ and Smalltalk projects. In order to support automatic
analysis based on software metrics, tool support for metrics calculation is required. Such tools
are presented in [20, 53].

In [39] the authors introduce a detection strategy as a “composed logical condition, based
on metrics, that identifies those design fragments that are fulfilling the condition”. They also
presents several detection strategies used for finding design entities (e.g., classes, methods)
which break the:

• Identity Harmony - “How does a design entity (class, method) define itself?” [39] (e.g.,
detection of Feature Envy, Data Class, Brain Method)

• Collaboration Harmony - “How does a design entity interact with other design entities?”
[39] (e.g., detection of Intensive Coupling, Shotgun Surgery)

• Classification Harmony - “How does a design entity define itself with respect to its
ancestors and descendants?” [39] (e.g., detection of Refused Parent Bequest, Tradition
Breaker)

Because in Chapter 7 we introduce an approach which makes use of the current detection
of Data Class and Feature Envy design flaws we show next the algorithms presented in [39]
which enable to find those design entities which reveal the mentioned flaws.

Thus, in order to find the envy methods, the algorithm takes into account if the methods:

• access directly more than a few attributes from other classes.

• make use of much more attributes from other classes than the attributes used from the
class where they belong.

• the used attributes from outside belong to few classes.

Knowing the Data Classes from the system requires finding the classes witch offer to their users
more data than functional services, do not reveal a high degree of complexity (the complexity
is counted based on the McCabe’s Cyclomatic Complexity [61]) and contains public data.

BUPT

34 3. TECHNIQUES FOR ASSESSING THE DESIGN

A first mandatory condition that enables finding automatically the mentioned classes and
methods is to have a model of the source code extracted according to a meta-model.

The problem detection phase of the reengineering process can also be addressed with visual-
ization techniques. One well-known technique for software visualization is called polymetric
view [38]. “A polymetric view is a metrics-enriched visualization of software entities and their
relationships” [38]. Polymetric views help to understand the structure and detect problems of
a software system in the initial phases of a reverse engineering process.

In the mentioned visualization technique software entities are represented using rectangles
while the relations among them are displayed with edges. Every rectangle is enriched with up
to five software metrics: the size (width and height), the color(e.g., different types of gray,
white and black, black being usually used for representing the highest value associated to that
metric) and the position.

Figure 3.6: System Complexity - an example.

System Complexity View is an instance of Polymetric View visualization. In Figure 3.6 is
illustrated an example of how this visualization looks like. The rectangles represent the
classes from the system while the edges represent the inheritance relations among the classes.
The width of the rectangles are enriched with the values of the NOA (Number of Attributes)
metric, the heigh represents the NOM (Number of Methods) and the color is related to the
LOC (Lines of Code) the class contain.
In [37, 19] is presented a new visualization which helps in the understanding of classes. This
visualization is also metrics-based and it is called Class blueprint. This technique may also be
applied in the context of finding anomalies among the design while it allows the identification
of some of suspicious class blueprints.

Another approach for problem detection can be found in [11]. The author presents a tech-
nique for analyzing legacy code, specifying frequent design problems as PROLOG queries and
locating the occurrences of these problems in a graph-based model derived from the source
code.

A special problem that may appear in large applications is the duplicated code. It is one of
the factors that severely complicate the maintenance and evolution of any software system.
In [21] a language independent and lightweight approach to code duplication detection is

BUPT

3.2. OBJECT-ORIENTED DESIGN QUALITY ASSESSMENT 35

Figure 3.7: Quality assessment process for an enterprise application.

introduced.

Yet, regarding them from the perspective of enterprise applications, almost all of these approaches
are limited in two aspects:

• they rely exclusively on principles, heuristics and best practices of object-oriented design.
• they are based exclusively on a structural view of the source code, without integrating any

additional information (e.g., the database schema).

But, as we presented in Section 2.1, enterprise applications are characterized by a huge amount
of heterogeneity. They encapsulate different technologies, different paradigms and must fulfill
specific design rules and heuristics depending on the concrete type of the application. All these
aspects must be considered when the quality of the design and implementation are evaluated.
Unfortunately, almost none of the analysis techniques presented before take into consideration
this type of heterogeneity. In other words they unilaterally treat the analyzed system. Because
of this reason the current quality assessment techniques strongly need improvement.

Yet, due to enterprise applications intrinsic heterogeneity the current quality assurance techniques
(e.g. techniques for detecting design flaws in object-oriented systems) are necessary but not
sufficient. A novel layer of dedicated quality assurance techniques is needed in order to address
properly the multiple aspects of heterogeneity in design and implementation.

BUPT

36 3. TECHNIQUES FOR ASSESSING THE DESIGN

One of the main goals of this Ph.D. thesis is to define quality assurance techniques and an
adequate tool support for detecting design problems in enterprise applications.

In Figure 3.7 we depict our vision of a generic design quality assessment approach for an
enterprise software system. The approach takes into consideration the heterogeneity of such
systems and the consequent need to reflect this characteristic in the techniques used for
quality assessment. The first important distinction is that each of three layers of an enterprise
application (i.e., the presentation, the domain and the data source layer) must be addressed
by a distinct set of specialized quality assurance rules. These design rules exist for both the
design of user interfaces [59] and for the design of databases [27, 66, 35, 34]. Based on these
rules, problematic design fragments can be identified for the presentation and the data source
layer, in a similar fashion with the approach presented in Figure 3.5. Yet, none of the three
layers exists in isolation; consequently there is a significant amount of the system’s complexity
involved in the relation between these layers. This brings us to the two issues that the current
Ph.D. thesis aims to address (marked in Figure 3.7 with the bullets numbered 1 and 2):

• Problem 1 – How can the rules and patterns within the data source layer of an
enterprise application be made quantifiable? What is the proper tool support needed to
detect design problems within the data source layer automatically?

• Problem 2 – What are the proper QA design rules that specify the relation between
the domain and the data source layer, especially if the data source layer is based on
a relational database model? How can we overcome the paradigm shift? What is the
proper tool support needed to detect design problems automatically?

3.3 Assessment Methods in Enterprise Applications
We dedicate this section to the recent techniques for assessment in enterprise applications.
The scope of this presentation is to reveal the differences between existing techniques for
assessment of enterprise application and our vision of a generic design quality assessment
approach for an enterprise software systems presented in Figure 3.7.

We have mentioned previously that within this thesis we refer only to those enterprise ap-
plications implemented using the object-oriented paradigm, where the persistency is provided
by SQL relational databases. A significant part of applications developed in this way embed
within the source code SQL statements as strings that are sent in order to be executed upon a
SQL relational databas to well-known methods as executeQuery(String sql) from Java. These
constructions make impossible their correctness verification from the syntactical point of view
at compile time. As a result, runtime errors might appear. For example, let us consider
the example from Figure 3.8 where the variable update is a string that encapsulates a SQL
statement which contains two errors (e.g., two commas and WHERE clause misspelled). Due
to the fact that update is a variable whose type is String, the two errors will be discovered
only at runtime.
In [62] the authors summarize the main types of problems that may appear when performing
accesses to relational databases as embedded strings, as follows:

BUPT

3.3. ASSESSMENT METHODS IN ENTERPRISE APPLICATIONS 37

class Book {

public String updateAuthor(int id, String title,
String publisher) throws Exception {

...
Connection con = ... ; //initializations
PreparedStatement updateStatement;

String update;
//syntax errors
update = "UPDATE books SET title = ? " +

",, publisher = ? " +
"WHEERE ID = ?";

updateStatement = con.prepare(update);
updateStatement.setString(1, title);
updateStatement.setString(2, publisher);
updateStatement.setInt(3, id);

updateStatement.execute();
}

}

Figure 3.8: Class Book which embeds SQL syntactical errors.

• strings that contain mispelled names – e.g., "UPDATE boks".

• strings with syntax errors – e.g., a WHEERE clause, like the one from Figure 3.8.

• SQLs which contain data type mismatch – e.g., passing an int instead of a smallint.

• having the possibility of executing undesirable instructions upon the databases – e.g.,
embedding into a value of a parameter a SQL command like DROP TABLE.

In [30] is presented a method that addresses some problems of syntactical verification of SQL
incorporated statements. The authors introduced a static program technique based on an
interprocedural data-flow analysis that verifies the correctness of dynamically generated query
strings.

In [62] is proposed an automatic generator for classes to be used for the relational database
manipulation. The generated classes based on the database schema involved in the application
(i.e., the object model) are used in order to construct every possible valid SQL statement.
For each existing table four classes are created for dealing with each type of statement for
manipulating data in the tables (select, insert, update and delete). Using the generated
classes by the approach removes the shown drawbacks of using embedded SQL statements
into strings.

BUPT

38 3. TECHNIQUES FOR ASSESSING THE DESIGN

The same issue is addressed in [13] where are introduced Safe Query Objects, a technique for
representing queries as statically typed objects while still supporting remote execution by a
database server.

The advantage of the presented solutions is that in the application there will be no direct
interaction with the database, but at the same time the migration to another type of database
will be impossible because of the strong coupling between the domain layer and the generated
classes (data source layer).

[18] shows a tool set for testing transactions in relational database applications. This includes
a technique for checking complex properties of the database, namely checking if transactions
are consistent with their requirements.

All the presented techniques help us to ensure the correctness of the communications per-
formed within the entities of the data source layers.

The aim of our approach is to increase the level of understanding of the enterprise applica-
tions’design, the accuracy of object-oriented problem detection techniques and to create specific
analyses applied to enterprise software systems.

When extracting design information, specific to the relational part of the application, there is
one bad habit [78], namely to rely on getting from the database schema the complete semantics
of attributes, primary keys and foreign keys. This is a bad habit because this completeness
is almost impossible to reach. An example of such an approach, based exclusively on the
database schema, is the Referential Integrity Utility for IBM DB2 Cube Views [22], a tool
which detects missing primary keys, missing foreign keys, nullable foreign keys and generates
data definition language to add the necessary DB2 informational constraints.

Detecting missed constraints among database tables is part of what is called data reverse
engineering (DRE), “a collection of methods and tools that help an organization determine
the structure, function, and meaning of its data”[9]. One specific concern which needs to be
addressed in the context of DRE is “to retrieve constraints which are not explicitly declared
in the database schema, but are verified in the code” [31]. “Data reverse engineering is a
complex and expensive task and needs to be supported by program understanding and tools
[12]”.

Recently, Yeh and Li proposed in [78] an approach where various procedures like field compar-
ison, data analysis, code analysis are applied in order to determine the semantics of attributes,
followed by the identifications of primary keys, foreign keys and cardinality constraints.

In [7] are presented some idiosyncracies of relational database design. Some of the presented
idiosyncracies can not be detected using only the database schema and, consequently, a
meta-model which embeds design entities from both existing paradigms(object-oriented and
relational) is helpful for a correct identification of some design problems related to the database

BUPT

3.4. RESEARCH DIRECTIONS 39

schema.

In [32] the authors propose the DB-Main approach which mainly answers the question: how a
change in the database schema is propagated within the inspected application? As the authors
claim, in order to use the DB-Main approach, the database has to be fully documented and
some documentation must be built using reverse engineering techniques. In this case a part of
the needed documentation can be extracted by looking at the usages of tables in the source
code.

In [15] a tool is proposed that is specifically designed for database reengineering. The tool
builds an instance of Database, a class containing a meta-model for representing relational
databases with no dependence of the vendor. The problem with the meta-model defined by
[15] is that it models solely the entities from the relational part of the application (i.e., the
elements that compose the database schema). In contrast, this thesis states that in order to
perform reverse engineering on enterprise applications we need an enhanced meta-model that
contains all the existing design entities from enterprise applications, both from its relational
(e.g., representation of columns and tables) and its object-oriented (e.g., representation of
methods and classes) part. Furthermore, it is of even greater importance that these two
parts need to be properly connected, by modeling the way relational entities are used from
the object-oriented code. Consequently, the meta-model proposed in [15] is incomplete to
support the types of analyses that are needed in enterprise applications.

Staiger [74] proposes an approach for analyzing, programs with a graphical user interface. It
detects the parts of the source code which belong to the Graphical User Interface, the widgets
and hierarchies and provides us with the event handlers connected to the events generated
from the widgets. In the context of this thesis the approach has proven to be insightful
in providing hints on how to detect the separation of layers in an enterprise application.
Although our thesis is focused on the relation between the data source layer and the domain
layer, abstracting from the approach of Staiger proved to be an interesting starting point.

In enterprise applications we can find the persistency level implemented using the EJB frame-
work. In [43] were introduced several quality attributes design primitives associated with and
Enterprise Java Beans distributed system. They are architectural building blocks that target
the achievement of quality attribute requirements like performance, modifiability, reliability
and usability. The issue of analyzing the performance and scalability of EJB applications is
also addressed in [8]. None of the previous approaches modify quality assurance techniques
specific to “regular” object-oriented systems in order to make them suitable for enterprise
applications.

3.4 Research Directions
This section is a summary of the research directions that arisen from the studies performed
and presented during the previous chapters. The research directions are illustrated in Figure
3.9 and summarized below.

BUPT

40 3. TECHNIQUES FOR ASSESSING THE DESIGN

As we have presented in Section 3.1, a meta-model that embeds entities regarding, on one
hand, the object-oriented programming paradigm and, on the other hand, regarding the rela-
tional paradigm, is needed in order to be able to perform reverse engineering upon an enterprise
application. Consequently, the first issue that is tackled in this thesis is related to the con-
struction of a proper meta-model for enterprise applications which facilitates the processes of
reverse engineering and data reverse engineering upon this type of applications.

The main reason we build a specific meta-model for enterprise applications is to define a suite of
specific analyses that address the understanding and evaluation of design and implementation
quality of enterprise applications.

We propose a set of high-level design analyses regarding the overall architecture of an enterprise
application, with a special focus on the data source layer and the communication between the
domain and data source layers. As a concrete example, it is well known that in an enterprise
application the data source and the presentation layers must not depend directly [27]. In this
context it is very interesting to detect design entities that have a double identity in the sense
that they ensure the communication with the database and also with the user interface.

Continuing the same direction (i.e., understanding and quality assurance for enterprise appli-
cations) we propose two visualizations which permit to identify different anomalies regarding
the usages of tables in the source code.

Furthermore, we define a technique that detects missing foreign keys that should have been
defined on various database tables. Moreover, the technique allows us to distinguish between
two types of relations between tables: part-of and is-a relations. These relation types are
distinguished based on the detected foreign keys and on how these tables are used in the
object-oriented source code.

We also identify classes and methods that fulfill design roles which are specific for enterprise
systems, and which are described in literature in form of various patterns (e.g., a class that
acts as a Data Transfer Object [27]). In this context, the thesis defines a suite of automatic
detection techniques for several design roles. The ability to identify such roles is a necessary
step towards a specific understanding of an enterprise application’s design.

As we presented in Section 2.1, sometimes it might be the case that the rules and pat-
terns of “good” design for enterprise applications are conflicting with the rules and patterns
of “good” design for “regular” object-oriented applications. Due to this, the quality assur-
ance techniques for “regular” object-oriented applications applied upon enterprise applications
may bring inaccurate results. In this context, another research direction closely related with
the aforementioned two regards the modification of quality assurance techniques for object-
oriented systems in order to improve their accuracy when applied to enterprise applications.
This modification is implemented by taking into account the identified design roles.

In practice for large-scale industrial enterprise applications performing the proposed analyses

BUPT

3.4. RESEARCH DIRECTIONS 41

modifydefine

Meta-Model
for enterprise applications

New techniques
to support

QA and understanding in

enterprise applications

Known techniques
to support

QA and understanding in

object-oriented systems

Figure 3.9: Research directions.

manually is practically impossible. Thus, we need a proper tool support which would allow us
to perform all the aforementioned analyses on enterprise systems. In this context, we develop
an analysis infrastructure (called DATES 3) that permits to implement specific analyses
for enterprise applications. DATES contains the meta-model that includes the mentioned
specific aspects of enterprise applications. For example, we make possible for each object-
oriented design entity (e.g., class, method) to be mapped to one or more of the application’s
layers (e.g., data source, domain or presentation layer) where it belongs.

3Design Analysis Tool for Enterprise Systems.

BUPT

4

Analysis Infrastructure for
Enterprise Applications

4.1 Modeling Enterprise Applications
As we mentioned before, in order to perform reverse engineering upon an enterprise application
we need a specific meta-model for this type of application. We dedicate this section to
the specific meta-model for enterprise applications we have developed in order to facilitate
the process of reverse engineering upon such applications. The introduced meta-model for
enterprise applications contains, as Figure 3.4 presents, entities specific to regular object-
oriented systems, entities representing the relational database and the interactions among
them. Next, for each type of design information from the proposed meta-model we dedicate
a separate section.

4.1.1 Modeling Object-Oriented Entities
Entities from object-oriented systems may be modeled using an object-oriented language. In
this case, the meta-model is represented as an interconnected set of data classes, usually one
for each type of design entity. The fields are either elementary properties of that design entity
or links to other related data structures. For example, a structure that models the Class
design entity is expected to have a field of type Method that establishes its connection to the
methods the class contains. The model of the system, extracted based on the meta-model,
contains also information regarding the calls (i.e., which methods are called by a particular
method) and accesses (i.e., which variables are accessed by a particular method) from existing
methods.
In Figure 4.1 we show a simplified depiction of the meta-model for representing entities
from object-oriented systems. The use of an object-oriented language for implementation
allows us to hide the fields that describe the entity and define operations by which an entity
communicates with other entities e.g., every entity has a getName() method, the Class entity
has a getMethods() operation that returns a collection with all the Method entities defined

BUPT

4.1. MODELING ENTERPRISE APPLICATIONS 43

AbstractEntityClass

Method Attribute

Package

Figure 4.1: A simplified meta-model for object-oriented systems.

in the given class.

4.1.2 Modeling Relational Database Entities
In order to extract information from a database that is a part of an enterprise application, we
need to establish exactly which type of information we need to extract. This brings us into
the issue of which are the design entities and the existing relations between these entities in
a relational database?

According to the presentation of relational databases from [70], a relational database consists
of one or more tables where each table has its own schema. A schema of a table consists
of the name of the table, the name of each field (or attribute, or column) and the type of
each field from the table. Additionally, integrity constraints can be defined on the database
schema. Thus, a meta-model for a relational database must contain, like in Figure 4.2, the
entities TableSchema and ColumnSchema found in a relational database.

4.1.3 Modeling Object-Relational Interactions
As we mentioned before, the entities (e.g., classes, methods) that ensure the communication
with the relational database belong to a layer called data source. Consequently, between the
object-oriented part of an enterprise application and the relational part there are interactions
only within the data source layer. Thus, finding the interactions between the object-oriented
and relational entities requires the identification of the entities (e.g., classes and methods)
that belong to the data source layer. But the introduced meta-model has to satisfy also
the (R12) requirement from [36] and that it why we have to classify also entities from the
presentation layer.

In order to do this, we take a simple approach to this issue, by taking into account the various

BUPT

44 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

Database Schema

Table Schema

name, columns

Column Schema

name, type, dimension,

integrity constraints

name, tables

Figure 4.2: A Meta-Model for Relational Databases.

usages of third-party libraries and/or frameworks that are specific either for the presentation
or for the data source layer.

Mapping of Methods to Layers. The following rules determine the mapping of methods
to one of the three layers of an enterprise application:

1. A method is considered to belong to the data source layer if it invokes one or more meth-
ods from a specific library that provides an API for accessing and processing data stored in a
data source, usually a relational database (e.g., the method invokes the executeQuery()
method from the java.sql package).

2. A method is mapped to the presentation layer if it calls one or more methods from a
specific third-party library and/or framework that provides components for building the
user interface (e.g., calls methods from classes found in the java.swing package).

3. If none of the previous two rules applies for a method then the method is mapped to the
domain layer.

Mapping of Classes to Layers. In order to map classes to layers we use the following set
of rules:

1. A class containing one or more methods belonging to the data source layer will be
mapped to the data source layer.

2. A class that contains one or more methods belonging to the presentation layer will be
mapped to the presentation layer.

BUPT

4.1. MODELING ENTERPRISE APPLICATIONS 45

Method

AnnotationDATES

sqls : SQLStatement[]

tables : TableSchema[]

MethodDATES

SQLStatement

Delete

Update

Insert

Select

Figure 4.3: Entity Method Annotated.

3. A class that is derived directly or indirectly from a specific third-party library and/or
framework that provides components for building the user interface is mapped to the
presentation layer (e.g., a class that extends JButton).

4. A class that contains one or more methods belonging to the domain layer will be mapped
to the domain layer.

5. A class that contains methods that belong to different layers will map to each of the layers
to which its methods are mapped to. For example, if a class has methods belonging to
the data source layer and to the domain layer, the class will be mapped both to the data
source and to the domain layer.

Remark. In conformity to these rules, methods will always belong to a single layer, while the
last rule for class mapping makes it possible for a class to be assigned to several layers (usually
two adjacent layers). This mapping decision might look confusing, as we would expect for
each design entity to belong to a single layer. But note that we extract (reverse engineer)
these mappings from the source code, where the clear initial design intentions might have
become “blurred" during implementation. Thus, we expect at least some of these classes that
are mapped to multiple layers to reveal signs of design flaws (e.g., a class that is mapped both
to the data source and to the presentation layer).

The communication between the object-oriented part of an enterprise application and the re-
lational database is performed within the methods belonging to the data source layer, usually,
by executing SQL commands as embedded strings from well-known methods as execute-
Query(String sql), executeUpdate(String sql). Thus, the methods of classes are the primary
entities that ensure the communication with the databases - in this context, the Method en-
tity from the object-oriented meta-model has to be enriched with information regarding the
operations performed upon a relational database.

The proposed solution regarding this issue is presented in Figure 4.3. Class MethodDATES

BUPT

46 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

contains information regarding the operations upon the database the method performs: e.g.,
delete, insert, select, update, each of these operations involving one or more tables. Class
SQLStatement contains an attribute that stores the tables accessed by the operation. The
information regarding the tables accessed by an entity is propagated from low-level entities
(operations performed within the bodies of methods) to high-level entities according to the
following rules:

• a method stores the set of the tables accessed by its body.

• a class stores the set of the tables accessed by its methods.

• a package stores the set of the tables accessed by its classes.

At this moment, finding the classes that access a particular table called myTable requires an
iteration through the classes from the data source layer and for each class from the data source
layer must be performed another iteration over its accessed tables in order to find out if the
current class accesses the table myTable. This operation for large-scale enterprise applications
might be time-consuming and for this reason we decided to store in the entity TableSchema
also information regarding the entities that access the table (e.g., functions, classes).

4.2 Automated Model Extraction
Due to the fact that the meta-model for enterprise applications contains entities specific to
regular object-oriented systems, we decide not to build our tool support related to modeling
enterprise applications from the scratch – we built it on the top of the MEMORIA[71]
meta-model which is part of the iPlasma [53] environment. Thus, before showing the
enhancements we bring to MEMORIA we present the main characteristics of the used
meta-model as well as the iPlasma environment.

4.2.1 The iPlasma environment
iPlasma1 is an integrated environment for quality analysis of object-oriented software systems
that includes support for all the necessary phases of analysis: from model extraction (including
scalable parsing for C++, Java and lately C#) up to high-level metrics-based analysis, or
detection of code duplication. iPlasma has three major advantages:

• extensibility of supported analyses.

• integration with further analysis tools.

• scalability – it was used in the past to analyze large-scale projects in the size of millions
of code lines (e.g., Eclipse and Mozilla).

Figure 4.4 presents the layered structure of iPlasma quality assessment platform. The tool
platform has the source code as input and help us during the necessary steps of performing

1Integrated Platform for software modelling and analysis

BUPT

4.2. AUTOMATED MODEL EXTRACTION 47

static analyses, from parsing the code and creating the model of the source code up to an
easy implementation of the introduced analyses. All of the provided support is integrated by
an uniform front-end, namely INSIDER. Next, we are going to briefly introduce the main
components of the iPlasma quality assessment platform.

Figure 4.4: The iPlasma analysis platform.

The MEMORIA meta-model. A first step within the process of software analysis is the
construction of the proper model of the system. The purpose for constructing the model is
to extract from the source code the information which is relevant from the point of view of a
particular goal. Thus, for analyses focused on object-oriented design it is important to know
the types of the analyzed system, the functions and variables and information about their
usages, the inheritance relations between classes, etc.

MEMORIA [71] is a meta-model that can represent Java, C++ and C# systems in a uniform
manner, by capturing different types of design information (e.g., packages, classes, variables,
methods).

For Java systems the iPlasma environment uses the open-source parsing library called Re-
coder [75] in order to extract all the necessary information in form of the MEMORIA
object-oriented meta-model, which is implemented in Java.

McC (Model Capture for C++) [63] is a tool which extracts the necessary design information
from C++ source code, based on Telelogic’s FAST [25] parsing library. It receives as input a
directory containing the source code and it produces a set of related ASCII tables containing

BUPT

48 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

Infos and Systems S1(Java) S2(Java) S3(C++) S4(C#)
Size ∼45Mb ∼77.5Mb ∼80Mb ∼17.5Mb

Types 10.500 10.023 24.091 3.601
Time ∼3h ∼5h ∼28h ∼2h

Table 4.1: Time Performances of Model Extractors.

the extracted design information. In iPlasma this information is loaded in terms of the
MEMORIA object-oriented model.

McC# (Model Capture for C#) [65] is a tool which extracts the necessary design information
from C# software systems. As McC, McC# receives as input a folder containing the source
code of the analyzed system and produces as output a set of ASCII tables containing the
model of the system. Due to the fact that most existing design entities are common for
C++ and C# (e.g., classes, methods, attributes), it is possible to have an unified structure
for the tables produced by McC# and McC. Nevertheless, some differences between the two
languages exist – for example, they have different access modifiers (C# has also internal and
protected internal access modifiers). At this time, McC# considers that access modifiers have,
like in C++, only three types (public, protected and private). Entities declared as internal or
protected internal are considered to have the default C# access (e.g., private). Such minor
details like this one are not extremely relevant from design analyses point of view. McC# has
been implemented in Visual Studio 2003 and it is based on the Metaspec’s 2 parsing library.

All the aforementioned extractors have been heavily used for analyzing different object-oriented
software systems. In Table 4.1 we present the time performances (i.e., the time needed to parse
the source-code and build the complete model each system) related to some models extracted
from different software systems, written in all the languages supported by the MEMORIA
meta-model. For Java and C++ systems (S1..3) the experiments were made previously on a
computer having an Intel P4 2.8GHz processor, 1024 RAM and running Windows XP. For the
C# system (S4) the configuration slightly changed, the processor being an Intel Core 2 Duo.

Existing design-related analyses. Based on the extracted information from the source
code in iPlasma are implemented several types of design analyses. Next, we are going to
briefly present them.

Metrics. The iPlasma [53] platform contains a library of more than 80 design metrics. The
metrics can be divided into the following categories:

• size metrics – measure the size of the analyzed entity (e.g., Lines of Code(LOC), Number
of Methods(NOM), Number of Classes(NOC), Number of Packages(NOP)).

• complexity metrics – measure the complexity of the analyzed entity (e.g., Cyclomatic
Complexity(CYCLO)[61]).

2A free trial version can be found at http://www.csharpparser.com/C#

BUPT

4.2. AUTOMATED MODEL EXTRACTION 49

• coupling metrics – measure the data coupling between entities (e.g., Coupling Between
Objects[57], Number of Called Operations (CALLS) within the body of a method, Num-
ber of Called Classes (FANOUT)[44]).

• inheritance metrics – characterize the class hierarchies (Height of Inheritance Tree
(HIT)[57], Number of Direct Descendants(NDD)).

• cohesion metrics – measure the cohesion of classes (e.g., Tight Class Cohesion(TCC)[6]).

All the mentioned categories of metrics are applicable at different levels of abstraction – for
example, LOC is computed for the whole system, and also for a particular class or method
while TCC is computed only for classes.

Some of the mentioned metrics are computed in order to obtain the Overview Pyramid [39] –
“a metrics-based means to both describe and characterize the structure of an object-oriented
system by quantifying its complexity, coupling and usage of inheritance".

In Figure 4.5 we present how the WOC metric (Weight of a Class) – the number of functional
public methods divided by the total number of public members [57] – is implemented in Java
within the described platform. We present this example in order to introduce some facilities
provided by iPlasma when implementing different analyses.

As it is noticeable, different types of constructs (e.g., FilteringRule, Group-Entity) appear
within the implementation of the metric. In iPlasma every design entity is inherited from
AbstractEntity and this makes possible, among others, for each design entity the following:

• finding if a particular property is true or false – this is done by applying a filter (an
instance of FilteringRule) upon the entity.

• getting a group (an instance of GroupEntity) of design entities connected to the in-
spected entity.

In Line 1 is declared and instantiated an entity whose type is FilteringRule and it is used in
order to remove from the group of public methods of the class the constructors. In Line 4 is
declared a variable whose type is GroupEntity – this type is used for representing a collection
of design entities and provides support for getting elements with different specified properties.
Thus, in Line 5 the group of the methods the class contains is obtained and from these only
the public methods are retained (except constructors). In Line 7 from the attributes of the
class only those which are allowed to be used by any client of the class is retained and in Line
9 is constructed a group which keeps only the accessor methods of the class. In Lines 10..13
the value of the metric based on the previously obtained entities is computed.

We present in Figure 4.6 the implementation of the “is public" filter. In the constructor of the
IsPublic class the name of the filter is defined. This is done by specifying it as a string (Line
5 from Figure 4.5) together with the type of the entity on which the filter can be applied (in
this case, a method). When it is executed, it receives a parameter whose type is used in the

BUPT

50 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

public class WOC extends PropertyComputer {
public WOC() {
super("WOC", "Weight of a Class", "class", "numerical");

}
public ResultEntity compute(AbstractEntity anEntity)
{
1 FilteringRule constructor = new IsConstructor();
2 FilteringRule notConstructor;
3 notConstructor = new NotComposedFilteringRule(constructor);

4 GroupEntity publicMethods;
5 publicMethods = anEntity.contains("method group").

applyFilter("is public").applyFilter(notConstructor);
6 GroupEntity publicAttr;
7 publicAttr = anEntity.contains("attribute group").

applyFilter("not encapsulated");
8 GroupEntity accessorMethods;
9 accessorMethods = publicMethods.applyFilter("is accessor");
10 double accessorM = accessorMethods.size() +

publicAttr.size();
11 double publicM = publicMethods.size() +

publicAttr.size();
12 if (publicM == 0) return new ResultEntity(0);
13 return new ResultEntity(1.00 - (accessorM / publicM));
}
}

Figure 4.5: WOC Metric Implemented in Java. Numbers on the left are used for referencing
the important lines of code in the text that explains it.

MEMORIA meta-model for representing methods (e.g., Method) and the result is based on
the value stored in the model.

According to [55], when metrics are implemented, the following particular set of key mecha-
nisms are involved at the model level:

• navigation – allows browsing through the entire model.

• selection – enables the definition of a view of interest, by choosing only a subset of an
entity’s fields.

• set arithmetic – creating a group of design entities by performing different set arithmetic
operations (e.g., union, intersection) between two or more groups.

• filtering – helps for finding the entities with a particular property (e.g., all the public
attributes from a given class).

BUPT

4.2. AUTOMATED MODEL EXTRACTION 51

1 public class IsPublicMethod extends FilteringRule
2 {
3 public IsPublicMethod()
4 {
5 super(new Descriptor("is public", "method"));
6 }
7
8 public boolean applyFilter(AbstractEntity anEntity)
9 {
10 if (!(anEntity instanceof lrg.memoria.core.Method))
11 return false;
12
13 return ((lrg.memoria.core.Method) anEntity).isPublic();
14 }
15 }

Figure 4.6: The implementation of the filter is Public. Numbers on the left are used for
referencing the important lines of code in the text that explains it.

• property aggregation – is used for computing and associating a single value for multiple
entities (e.g., getting the number of classes from the analyzed system).

When these mechanisms are implemented in a structure-based approach (in this case the
meta-model is represented as an interconnected set of data structures, like the MEMORIA
meta-model) we encounter an overhead regarding the expressions of filtering, navigation and
selection. When using a repository-based approach, the meta-model being represented as a
knowledge source that can be queried (oftentimes appearing physically as a relational database
system in which usually one table is defined for each design entity) only the expressions of
navigation and set arithmetics are obfuscated due to the constructions of the language. The
mentioned obfuscations led to a new language namely SAIL [55] dedicated to the implemen-
tation of metrics and design related analyses appeared, this language part of the iPlasma
platform.

In Figure 4.7 we present the implementation of the same metric (WOC) in SAIL.

Detection Strategies. iPlasma contains all the implementations of the detection strategies
presented in [39].

Code Duplication. DuDe (Duplication Detector) [77] is a tool within iPlasma that uses
textual comparison at the level of line of codes in order to detect fragments of duplicated
code.
Software Visualizations. Based on the design information extracted and imported in MEMO-
RIA we can generate in iPlasma using the JMondrian [64] software tool different software
views such as System Complexity or Class Blueprint [39].

BUPT

52 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

float woc(Type type)
{
float woc;
Operation[] operationsWAccessors;
Operation[] publicOperations;
Variable[] publicVariables;
int publics;

woc = 0;
operationsWAccessors = select (*) from type.operations where

((isAccessor==false) && (scope.scopeType==type) &&
(isConstructor==false));

publicOperations = select (*) from type.operations where
((isPublic==true) && (scope.scopeType==type) &&
(isConstructor==false));

publicVariables = select (*) from type.variables where
((isPublic==true) && (scope.scopeType==type));

publics = publicOperations.# + publicVariables.#;
if(publics > 0) {
woc = 100 * operationsWAccessors.# / publics ;

}
return woc;

}

Figure 4.7: WOC metric implemented in SAIL.

The INSIDER front-end. In order to achieve a complete view of a software system we
need to obtain the results of different design analyses (e.g., metrics, detection strategies,
visualizations) computed by different tools. INSIDER is the front-end of iPlasma which
integrates in an uniform manner all the mentioned tools. It integrates all the existing tools as
plugins, this way providing extensibility for further inspections.

In Figure 4.8 we present how the user interface of INSIDER looks like. It mainly consists
of three parts: the group browser (top right), the group inspector (top left) and the entity
browser (bottom).

The group browser allows us to navigate through the different existing types of groups of
design entities (classes, methods, attributes), as well as to see different subgroups from the
initial ones. For example, from all the classes of a particular system we can retain only the
ones which were explicitly defined in the project (i.e., excluding the library ones).

The group inspector is the part of the user interface which allows to see only those properties
(i.e., values of metrics) which are important in the context of different points of view. For
example, if we are interested in finding how many duplications a class contains, we will select

BUPT

4.2. AUTOMATED MODEL EXTRACTION 53

Figure 4.8: INSIDER - a snapshot.

in the group inspector only the properties related to the duplications – in this case the values
of the EDUPCLS, IDUPCLS and IDUPLINES metrics [39].

The entity browser allows to see together a set of different properties for the selected design
entity in the group inspector. In this context we want to emphasize that the entity browser is a
plugin and, thus, configurable to show different properties of the analyzed entity. For example,
the default entity browser presents for a class its ascendants, methods and attributes as well
as the values of the properties of being a Data Class, a God Class or a Tradition Breaker [39].

4.2.2 The DATES module
In this section we present the tool called DATES [48] 3 which we have developed in order to
model (i.e., obtain an intermediate representation) enterprise applications.

First, we introduce the different necessary types for modeling relational databases, as we
assume that each analyzed enterprise application contains a relational database. Consequently
we create the classes DatabaseSchema, TableSchema and ColumnSchema. In Figure 4.9 we
present the existing fields for modeling a database.

We developed also a model loader for extracting the necessary information according to the
3Design Analysis Tool for Enterprise Systems

BUPT

54 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

public class DatabaseSchema extends AbstractEntity {
private String databaseName;
private HashMap<String, TableSchema> tables;
...

}

Figure 4.9: Modeling the structure of a database.

developed meta-model of the database. The information is obtained for the first time directly
from the database. After the first extraction the model is saved in a repository (in this case,
a simple text file). The repository is created in order to be able to load the database model
without being necessarily to connect again to the database server.

At the moment we assume that the persistency is provided by SQL relational databases,
in particular MySQL and Microsoft Access. Because querying the database in oder to find
out its structure slightly differs in the mentioned SQL dialects, we use the Abstract Factory
[29] design pattern in order to be loosely coupled with the different existing SQL dialects.
Currently, when DATES is started it is configurable with a parameter whose type can be
mysql, access or file, depending on the source from which the structure of the database is
loaded. The last presented value is used when loading the model of the database from a file.
This way, we ensure that DATES is able to support with minor changes the extraction of the
models for different relational databases vendors (e.g., DB2 from IBM).

In Figure 4.9 we present the key elements of a design entity (in this case, a class) used for
modeling a database. The first key element is that this class extends the AbstractEntity
class. This inheritance relation is needed as DATES is integrated within the iPlasma
environment. More precisely, DATES extends the framework defined by iPlasma. The
aforementioned inheritance relation allows to manipulate in an uniform manner the newly
introduced design entity (in this case a relational database) and the existing object-oriented
design entities (e.g., classes, methods). Integrating DATES with iPlasma [53] provides a
further benefit: it allows one not only to browse the design entities of an enterprise application,
but also to assess the quality of its design. This quality assessment is performed by combining
regular object-oriented assessment techniques (e.g., software metrics, detection strategies)
with specific techniques like the ones we defined in [46]. These techniques are described in
detail in Chapters 5, 6 and 7.

The communication with the relational database for the studied enterprise applications is
mainly performed by executing SQL commands as embedded strings from well-known meth-
ods as executeQuery(String sql), executeUpdate(String sql). Thus, in order to find out the
accesses from the object-oriented part to the relational part we have to identify first the
methods which call operations from the java.sql package – i.e., identifying the methods which
belong to the data source layer. In this context we want to emphasize that our approach,

BUPT

4.2. AUTOMATED MODEL EXTRACTION 55

by making use of a parameter, allows us to identify the methods from the data source layer
where the communication is done by calling operations from one or more packages similar to
the java.sql package (e.g., javax.sql).

The AbstractEntity class from which every existing design entity is derived in the MEMORIA
meta-model has an attribute whose type is Hashtable whose role is to permit for each design
entity to be annotated with different properties. Within the DATES module, we annotate
the methods, classes and packages with the properties shown in Figure 4.10. In the case of
the methods, we add the supplementary field ArrayList <SQLStatement> statements in order
to store the SQL statements performed within their bodies.

public abstract class AnnotationDATES{
private boolean isDatasource = false;
private boolean isPresentation = false;
private boolean isDomain = true;

private HashMap<String, TableSchema> accessedTables;
...

}

Figure 4.10: AnnotationDATES – the introduced properties.

After setting the layer or layers where an object-oriented design entity belongs, according to
the algorithm presented in 4.1.3 we find the operations performed upon the involved database
within the bodies of methods that belong to the data source layer. Finding these operations
is done according to an algorithm based on string comparison.

The final step performed in order to have a complete model of an enterprise application is to
set, for each existing table, the classes that access it. This operation is redundant but it is
useful in order to not be obliged to iterate all the time through all the classes from the data
source layer in order to find out the classes that access a particular table.
Summarizing, the extraction of design information from enterprise applications requires the
following steps:

• Construct the model of the system according to the MEMORIA [71] meta-model. At
this phase, the model of the system is not enriched with specific information regarding
the interaction between the object-oriented and relational paradigms found in enterprise
systems.

• Load the DATES tool in the INSIDER [53] front-end. At this moment the model
of the system is enriched with specific information of enterprise application’s design,
both for the relational paradigm (tables, columns, primary and foreign keys – obtained
from the schema of the database by an extractor we have developed) as well as for

BUPT

56 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

the object-oriented one (e.g., accesses to database tables from the bodies of methods
within the data source layer, obtained also by the extractor).

4.2.3 Groups. Properties. Filters
In this section we present a part of the initial enhancement introduced by DATES when it is
loaded into the iPlasma environment. This enhancement provides us with different groups,
properties – for getting a particular value associated to a given design entity – and filters in
the INSIDER front-end and they may be used in order to implement further higher-level
analyses, as we present in the next three sections.

Name Is Applied-To The Group Of
table group system the tables of the system

accessed tables method the tables accessed
statements group method SQL statements

column group table the columns of the table
column group table the columns of the table

accessed from classes table classes accessing table
accessed from methods table methods accessing table

Table 4.2: Some introduced groups.

public class AccessedTables extends GroupBuilder{
public AccessedTables()
{

1 super("accessed tables", "", "method");
}

public ArrayList buildGroup(AbstractEntityInterface anEntity)
{

2 if((anEntity instanceof Method) == false)
3 return new ArrayList();

4 MethodDATES an;
5 an = (MethodDATES)anEntity.getAnnotation(Dates.DATES);
6 return new ArrayList(an.getAccessedTables());
}

}

Figure 4.11: The group of accessed tables - implementation.

In Table 4.2 we present some of the new groups introduced by the DATES module. As
the figure presents, the new groups are applicable for different types of design entities (e.g.,
methods, tables). In iPlasma if an entity is contained by a different type of entity (e.g., a

BUPT

4.2. AUTOMATED MODEL EXTRACTION 57

method is contained by a class) then the group associated to the aggregated entity may be
computed also for the container entity (e.g., accessed tables from a class).

Name Is Applied-To Meaning
NAT class, method Number of accessed tables
NDbI method Number of SQL instructions performed
NAC table Number of classes which access the tables
NC table Number of columns the table contains
NSt table Number of statements performed upon
NISt table Number of insert statements
NSSt table Number of select statements
NUSt table Number of update statements
NDSt table Number of delete statements
Type column The type of the column
Dim column The dimension of the column
Def column The default value of the column

Table 4.3: Some introduced properties.

Name Is Applied-To Is True if Entity
is datasource class, method belongs to the datasource layer

is domain class, method belongs to the domain layer
is presentation class, method belongs to the presentation layer

isInsert statement is insert statement
isSelect statement is select statement

isUpdate statement is update statement
isDelete statement is delete statement

isUsedTable table is used in the source code
isUnusedTable table is not used in the source code
isPrimaryKey column is primary key
isForeignKey column is foreign key

isNull column is null

Table 4.4: Some introduced filters.

In Figure 4.11 we show how we implement the group of accessed tables. In Line 1 we specify
the name of the group as well as the type of entity which it is computed for (in this case, a
method). In Line 2 we make sure that the received parameter is indeed an instance of the
Method class. In Line 5 we get the introduced annotation called Dates.DATES and we return
the accessed tables from the body of method (Line 6).

In Table 4.3 we present the main available properties within DATES.

BUPT

58 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

In Table 4.4 we point out some existing filters. The presented filters are either elementary –
derived directly from the schema of the database e.g., isPrimaryKey, isNull – or computed by
taking into account different facts e.g., is datasource, isUsedTable. In Figure 4.12 we show
the implementation of the isUsedTable filter. As we can notice, the implementation relies on
the introduced group accessed from classes.

public class isUsedTable extends FilteringRule
{
public isUsedTable()
{
super(new Descriptor("isUsedTable", "", "table"));

}

public boolean applyFilter(AbstractEntityInterface anEntity)
{
return anEntity.getGroup("accessed from classes").size()>0;

}
}

Figure 4.12: isUsedTable Filter - implementation.

4.3 Characteristics of the Case Studies
In order to evaluate the approaches we introduce in this Ph.D. thesis we conducte different
experiments on a suite of enterprise applications. The size characteristics of the systems for
which we present the results obtained by applying the Tool Support described in Section 4.2
are summarized in Table 4.5.

System Size(bytes) Classes Methods Tables
KITTA 212,553 37 254 10

TRS 537,058 54 500 10
Payroll 780,871 115 580 12

CentraView 11,162,565 1527 13369 217

Table 4.5: Characteristics of the case studies.

KITTA and TRS are two enterprise applications were developed by two separate teams
of students within the software engineering project classes. Within KITTA and TRS the
persistency is provided by relational databases created in Microsoft Access.
In Figure 4.13 we present the Overview Pyramid [39] associated to KITTA. This analyses
reveals within this application:

• a lack of inheritance relations, too many small packages and a low value related to the
cyclomatic complexity (from the rectangles colored in blue).

BUPT

4.3. CHARACTERISTICS OF THE CASE STUDIES 59

NDD

HIT

0,10

0,05

NOP 10

37

254

439

3.335

3,70

NOC6,86

NOM

LOC

CYCLO

13,12

0,13

NOM 3,70

940

617

CALL 0,65

FANOUT

Figure 4.13: The Overview Pyramid associated to KITTA.

• the methods are quite long and they call a lot of methods from their body (from the
rectangles colored in red).

• a normal value regarding the number of methods in a class and the coupling dispersion
(from the rectangles colored in green).

ResultsFrame - has 1 FeatureEnvy
ParentApplicationRequest - has 1 BrainMethod
Request - is DataClass
ParentApplicationForm - has 1 BrainMethod
Kindergarten - has 1 BrainMethod
Search - has 1 IntensiveCoupling method
Child - is DataClass
User - is DataClass
DataBaseTricks - is DataClass

Figure 4.14: Classes with design flaws in KITTA.

In Figure 4.14 we present the classes that are the subject of different design flaws according
to the report generated by iPlasma before loading the DATES plugin. Similar reports may
be generated for all the applications.

Payroll is an industrial enterprise application whose scope is to manage information about the
employees from a company, the persistency being provided by a MySQL relational database.

CentraView is an open-source enterprise application obtained from
http://www.sourceforge.net/projects/centraview which provides growing businesses with a
centralized view of all customer and business information. The persistency of this application
is provided by a MySQL relational database.
From the Overview Pyramid (Figure 4.15) we find that this last application reveals a lack of
inheritance relations and, on average, too many methods in a class and long methods.

BUPT

60 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

NDD

HIT

0,15

0,03

NOP 167

1.523

13.369

26.306

175.424

9,11

NOC8,77

NOM

LOC

CYCLO

13,12

0,14

NOM 3,88

51.915

25.834

CALL 0,49

FANOUT

Figure 4.15: The Overview Pyramid associated to CentraView.

4.4 Evaluation of the Approach
In this section we present some experiments performed upon the enterprise applications whose
main characteristics were specified in Section 4.3.

As we have already mentioned, a mandatory first step for extracting the model of an enterprise
application consists of extracting the model for the object-oriented part according to the
MEMORIA meta-model. In Table 4.6 we present the necessary amount of time for extracting
the design entities directly from the source code according to the MEMORIA meta-model
(second column), as well as the necessary amount of time for enhancing the extracted model
with information specific to enterprise applications – e.g., tables, accesses from methods to
tables – (last column).

System MEMORIA(seconds) DATES(seconds)
KITTA 6 1.5

TRS 9 2
Payroll 9 2

CentraView 33 20

Table 4.6: Time Performances for models extraction.

MEMORIA has the capability of storing the information extracted from the source code
within a cache file. In Table 4.7 we present for each application the size of the stored cache-
file as well as the needed amount of time for loading the information from the saved file.

System File Size(MB) MEMORIA(seconds)
KITTA 1.1 1

TRS 4.4 3
Payroll 2.4 3

CentraView 60.5 30

Table 4.7: Time Performances for models extraction from files.

The goal of the experiments was to answer questions regarding the reliability of the extracted

BUPT

4.4. EVALUATION OF THE APPROACH 61

model based on the introduced meta-model:

• Does the model of the relational database store all the entities from the relational
database (e.g., tables, columns)?

• Are the entities of the data source layer correctly classified?

• Are the accesses from the object-oriented design entities to relational tables well-
captured?

• Are the accessed-by relations regarding the tables from the relational database well-
captured?

4.4.1 Storing entities from the relational database
For the small size enterprise applications, we performed a manual investigation in order to
find out if the model captures all the entities from the involved relational databases within.
The manual investigation consists of

• checking if the number of tables from the model (last column from Table 4.5) is equal
to the number of tables from the involved database.

• checking, for each table, if the captured name and columns in the model correspond to
the existing name and columns in the table from the database. We consider a column
from the model corresponding to a column from a relational table if they have the same
name and the same characteristics (e.g., type, dimension, integrity constraints).

The performed investigation reveals that the model captures all the existing entities from the
relational database within the enterprise application.

Regarding the CentraView application, we performed only a partial verification and the results
confirm that all the checked entities from the relational database were well-captured in the
obtained model.

4.4.2 Classifying entities of the data source layer
Classifying correctly the entities of the data source layer plays an important role due to the fact
that only entities classified as belonging to the data source layer interact with the relational
database (i.e., the accesses between an object-oriented entity and a relational entity are
established only if the object-oriented entity belongs to the data source layer). In this context,
a first step in validating the correctness of our approach regarding the existing relations
between the two involved paradigms is to check if the object-oriented entities that interact
with relational entities were classified correctly as belonging to the data source layer.

Classifying correctly the entities from the data source layer in an enterprise applications means
that:

BUPT

62 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

• among the entities that were classified as belonging to the data source layer there are
no false positives (e.g., entities erroneous identified by the approach as belonging to the
data source layer).

• among the entities that were not classified as belonging to the data source layer there are
no false negatives (e.g., entities which were not identified by the approach as belonging
to the data source layer).

For each analyzed enterprise application the number of object-oriented entities that were
classified by our approach as belonging to the data source layer is presented in Table 4.8.

KITTA TRS Payroll CentraView
Data Source Classes 9 10 16 837

Data Source Methods 25 24 74 3349

Table 4.8: Size of the data source layer.

In order to find out whether design entities were correctly classified we performed, like in the
previous case, a manual investigation for the small size enterprise applications. During the
manual investigation, we browsed thought the source code of each enterprise application in
order to classify every class as belonging/not belonging to the data source layer. For each
class identified as belonging to the data source layer we counted the number of its methods
that ensures the communication with the data source layer.

The classification obtained by performing the manual investigation of KITTA and TRS enter-
prise applications coincides with the one performed by our approach (i.e., there are no false
positives and no false negatives). But within the Payroll application the manual investigation
classifies 18 classes as belonging to the data source layer, instead of 16 which were automat-
ically classified. Among the 16 classes which were classified automatically as belonging to
the data source layer there are no false positives and no false negatives. As well, within the
classified methods of the 16 classes there are no false positives and no false negatives.

In order to find out why within the model of the Payroll application there are two false neg-
atives (i.e., the two classes which were manually identified as belonging to the data source
layer) we checked again manually the two classes and we discovered that they contain code
Java 1.5 (e.g., templates) and, unfortunately, at the moment when the experiment was per-
formed, the MEMORIA meta-model could store only design information for systems written
in Java 1.4 (or earlier). This is the reason why the two classes are missing from the model
and, consequently, from the data source layer too. In the meantime both the tools and the
MEMORIA meta-model have been updated, yet, the parsing infrastructure still has some
liabilities that do not allow yet for these entities to be correctly extracted. Yet, this encoun-
tered problem is purely a technical issue. The thorough analysis that we performed has shown
that the approach is conceptually sound.

Browsing manually the entire source code of the CentraView enterprise application is nearly

BUPT

4.4. EVALUATION OF THE APPROACH 63

impossible due to the size of the source code. Thus, we performed only a partial verification
which does not reveal new causes for an improper mapping of classes into the data source
layer.

4.4.3 Capturing the accesses between the object-oriented and the re-
lational paradigms

The goal of this section is to answer the last two questions formulated at the beginning of
this chapter regarding the reliability of the introduced approach.

At this phase, for the first three enterprise applications, we performed a manual investigation
in order to find out all the accesses from the classes belonging to the data source layer to the
tables from the relational database and we compared the results with the ones provided by
the introduced model of the applications. The goal of the comparison is, like in the previous
case, to discover if there are false positives (i.e., accesses from a class to tables erroneous
identified by the approach) and false negatives (i.e., accesses from a class to tables which
were not identified by the approach) among the accesses from classes to tables.

Within the TRS application we did not find any false positive and negative regarding the
accesses from classes to tables. This applies also to the accessed-by relations captured by the
model and stored into the TableSchema class.

Within the KITTA application we found several false negatives and a false positive. Analyzing
again manually the accesses from the classes which are on the list of false negatives we discov-
ered that those classes access as embedded strings tables which do not exist in the relational
database of the application. The introduced extractor of design information from enterprise
applications retains only the accesses to existing tables and, consequently, in the model we
will not find accesses to tables which are not part of the involved database. Regarding the
false positive (an access to a table from a class which does not appear in the source code)
we discovered that it is in the model due to the fact that the access is present in a comment
from a method of the class. But this is not a serious problem because removing comments
from the source code is a trivial task (for example, the approach presented in [77] removes
comments before searching for duplications in the source code).

Within the Payroll and CentraView enterprise applications (an incomplete manual investigation
performed for the last one) we found also several false negatives which are due to the same
cause as within the KITTA enterprise application.

Concluding Remarks. In order to validate the reliability of our model for representing enter-
prise applications we performed several experiments on the mentioned four case-studies. The
performed experiments:

• bring to the front one of the major problems of enterprise applications: the source code
of such applications might contain SQL statements embedded as strings which access
entities from the relational database which do not exist, most of the time these errors

BUPT

64 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

being discovered at runtime. With a minor enhancement, our approach would allow to
discover the aforementioned type of accesses.

• reveal that in order to minimize the false positives in the model it is mandatory to
remove the comments from the source code before constructing the model.

• show that it is possible to obtain the model of an enterprise application written in Java
1.5, but those entities that use Java 1.5 facilities (e.g., templates) will not be captured
by the model. This is a limitation of the MEMORIA meta-model for representing
object-oriented systems, a limitation which is a temporary one.

4.5 Direct Applications of the Meta-Model
If the main goal of the experiments from the last section (Section 4.4) was to present informa-
tion regarding the reliability of the extracted models of enterprise applications according to the
DATES meta-model, the goal of this section is to present several types of specific information
extracted from enterprise applications. These are intended to give a brief overview regarding
the design quality of the analyzed applications. For each of the presented information we
dedicate a paragraph.

4.5.1 Finding entities that belong to more than one layer
As stated in [27] by Fowler, one steady rule an enterprise system should follow is that its
domain and data source layers should never depend on the presentation layer. DATES allows
us to detect entities which have a double identity (belong to more than one layer), according
to a lightweight approach of layers’identification presented in Section 4.1.3. This information
provided by DATES allows the identification of problematic entities which should be refactored
in order to increase the level of understandability and maintainability of the application.

Classes KITTA TRS Payroll CentraView
Data Source 9 10 16 837
Presentation 25 47 77 748

Data Source,Domain 9 0 0 0
Data Source,Presentation 4 10 2 659

Table 4.9: Distribution of Classes into Layers.

Findings in KITTA As Table 4.9 reveals, KITTA contains 9 classes classified by our algo-
rithm presented in Section 4.1.3 as belonging into the data source layer, 25 into the presen-
tation layer and a massive mixture among the data source layer and the other layers.

BUPT

4.5. DIRECT APPLICATIONS OF THE META-MODEL 65

private javax.swing.JButton getButton_show() {
if (ivjButton_show == null) {
try {
ivjButton_show = new javax.swing.JButton();
ivjButton_show.setName("Button_show");
ivjButton_show.setOpaque(false);
ivjButton_show.setText("Show");
Font f = new java.awt.Font("Arial", 1, 12);
ivjButton_show.setFont(f);
ivjButton_show.setBounds(224, 396, 85, 23);
// user code begin {1}
// user code end

} catch (java.lang.Throwable ivjExc) {
// user code begin {2}
// user code end
handleException(ivjExc);

}
}
return ivjButton_show;

}

Figure 4.16: Method getButton_show of class ShowReservation.

Findings in TRS As we present in Table 4.9, the TRS enterprise application contains 10
classes belonging to the data source layer and 47 classes belonging to the presentation layer.
But according to the mentioned table, it seems that all the classes from the data source layer
break the fundamental rule of enterprise application’s design: Data source layer should not
depend on the presentation layer [27].

For example, within the data source layer we find the ShowReservation class, which is derived
from the JDialogClass belonging to the javax.swing presentation package. This class contains
several attributes whose type denote a presentation (e.g., JButton ivjButton_show, JLabel,
JTable, JScrollPane) and several attributes whose names embed several SQL commands (e.g.,
sq1, sq11, sq12). In Figure 4.16 we show the source code of the method getButton_show of
class ShowReservation, a method which belongs to the presentation layer. As we can notice,
the goal of this method is to return a button with some specific characteristics. But the class
ShowReservation contains several methods belonging to the data source layer, one of them
being the method search_person_car from Figure 4.17, whose goal is to retrieve data from
the relational database. Due to the fact that the two presented methods have a total different
purpose (among them there is no cohesion), the maintenance of this class is hampered. We
took a deeper look at this class and we found out that it was detected as being also a God
Class. In this case our design analysis for finding the design entities that belong into more
than one layer is helpful in order to specify concretely the causes of the fact that a class is a
God Class (i.e., it is a God Class because it serves both for building the user interface and for

BUPT

66 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

retrieving data).

public Vector search_person_car
(String prenume,String nume,String card_nr)

{
Vector rc, p = new Vector();
try {
...
String myDB ="jdbc:odbc:Driver...";
Connection db = DriverManager.getConnection...;

sql2="SELECT * FROM Car_reservation WHERE " +
"(First_Name=? and Last_Name=? and Card_nr=?)";

PreparedStatement pst2 = db.prepareStatement(sql2);
pst2.setString(1,prenume);
pst2.setString(2,nume);
pst2.setString(3,card_nr);
...
}
...

} catch(SQLException ex) ...
return Results_vector;

}

Figure 4.17: Method search_person_car of class ShowReservation.

Findings in Payroll In the Payroll application we found only two classes which belong to
more than one layer (i.e., data source and presentation). We took a closer look at those
classes and found that one class is responsible for retrieving information for all the employees
from the company and also for exporting the extracted information into an XML file. The
goal of the other class is to test if some particular data is stored correctly in the database and
the results of the test are displayed into the presentation.

Findings in CentraView In this application we found almost all the classes from the data
source layer as belonging also to the presentation layer (659 from 837, according to Table
4.9). But, surprisingly, regarding the observation we made during the presentation of the
findings from TRS (i.e., a class which belongs into more than one layer has good chances to
be identified as affected by the God Class design flaw), the CentraView contains only 25 God
Classes. Thus, in order to find out if the mentioned observation might be false, we performed
a manual investigation and discovered that almost all the classes that belong into the data
source layer are highly coupled, and thus cohesive, and in most of the cases the classification
of the classes from the data source layer into the presentation layer is due to the fact that they
contain many System.out.println statements for reporting that some exceptions regarding the
communication with the persistence part occur.

BUPT

4.5. DIRECT APPLICATIONS OF THE META-MODEL 67

4.5.2 Finding the Interactions with Databases
Finding the database interactions in methods and classes plays an important role in the
maintenance and evolution of an enterprise application. This is important for the following
reasons:

• from the relational point of view, it is important to know precisely if a particular table
is used/not used in the source code and, if used, where exactly the operations which
access it take place. We need this information in order to be able to perform several
structural refactorings (e.g., [2, 3]) upon different tables, refactorings which imply the
modification of the source code that interacts with the tables.

• from the object-oriented point of view, knowing which classes and methods interact
with the database is important, on one hand, because in that fragment of the source
code database administrators can be involved in order to maximize the performance
of the communication and, on the other hand, it can bring us information regarding
the persistent data within the application, this information providing us with significant
information about the modeled business domain.

The proposed meta-model according to the information extracted from the relational, respec-
tively, object-oriented part of an enterprise application allows us to find different pieces of
information regarding the interactions between the two existing parts. Next, we present some
of them.

Information regarding the usage of tables in the source code For every existing table we
can find out if it is used/not used in the source code and, if used, all the classes and methods
that store/retrieve data in/from it. We can also find the type of the operations which are
performed upon it (e.g., select, update, insert, delete). We illustrate with respect to the
mentioned four case-studies different information from the model extracted by DATES.

KITTA TRS Payroll CentraView
Tables 10 10 12 217

UnusedTables 3 2 1 102

Table 4.10: The Number of Unused Tables.

Information extracted from KITTA In terms of columns, the largest table has 7 columns
and the smallest 3 (i.e., the values of the NC metric vary between 3 and 7). As Table 4.10
presents, the source code of this application does not access all existing tables in the database,
i.e., it accesses only 7 tables from 10.
Regarding the accessed by entities from the source code associated to tables, we find one table
(Users) accessed by a single class (User), and one other table (Child) accessed by 3 classes
(Group, Child, ParentApplicationRequest). All other tables are accessed by 2 classes (table
Kindergarten accessed by classes Comandament and Kindergarten; table Intervals accessed

BUPT

68 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

by classes Comandament and TimeInterval). This can be interpreted as follows: the table
named Child is the hardest to change, as more classes depend on it.

Information extracted from TRS In this application we find 5 tables having more than 20
columns (table Flight_reservation_comp having NC equal to 30; table Car_reservation having
NC equal to 23) and being aware that tables with a large number of columns reveal a design
problem [3], we perform an in-depth analysis at the level of the columns. This analysis reveals
that this application has a reduced degree of normalization – we find within the database, for
example, 6 columns named Address, 7 columns named City, 6 columns named First_Name,
most of these columns belonging to the same 6 tables.

Regarding the usage of tables in the source code we find, as Table 4.10 presents, 8 tables
from 10 accessed in the object-oriented part of the application, 5 of them being accessed by
only one class and the rest of them by 3 classes.

Information extracted from Payroll In this system we found that out of the 12 tables,
all except one are accessed from the source code. Two of these tables are used by 2 classes,
while the rest are accessed by a single class each.

The size of the involved tables in terms of columns (NC metric) in this application varies from
23 (table employee) to 3 (table inflation), most of the tables having less than 10 columns (9
tables).

Information extracted from CentraView This last case-study has a database consisting
of 217 tables, among which only 113 are used in the source code. In terms of columns, the
biggest table has 31 columns and there are 39 tables which have more than 10 columns. These
results provide us with the following interpretation: first, it is surprising to find that almost
half of the tables are apparently not used at all in the source code. These unused tables are a
common phenomenon in systems that evolve over a long time, but they represent a significant
confusion factor for someone who does not know the system and wants to understand it by
looking first at the database. A second interpretation of the results concerns the tables with
many columns: there is a significant number of “wide tables”. In many cases this is a sign
that a normalization of these tables is recommendable. At the same time, in many cases these
tables are storing information related to essential concepts of the system.

Regarding the accessed by relations, we find table individual accessed by 15 classes from the
source code and DATES, by providing us with the classes which manipulate data in/from
in, helps within the process of maintaining this table. Beside this table accessed by a lot
of classes, we find other 6 tables (e.g., entity, activity, module, opportunity, addressrelate,
customfieldmultiple) accessed by more than 5 classes. The interpretation of these findings is
the following: modifications of the structure for the seven aforementioned tables should be
kept to a minimum (especially table individual), as modifications of these tables would impact
a large number of classes.

BUPT

4.5. DIRECT APPLICATIONS OF THE META-MODEL 69

4.5.3 Visualizing how Tables are Accessed in Code
In order to provide an overview regarding the accesses of tables in the source code we define
next two visualizations, namely: Tables Accesses and Distribution of Operations.

1. Tables Accesses The main goal of this visualization is to provide an overview regarding
the usage of tables in the source code in correspondence with their size. Thus, the polymetric
view which represents a table is enriched with three metrics, as we show in Figure 4.18.

The width of the rectangle represents the number of statements performed within the source
code upon the represented table. The height is associated to the number of classes whose
methods perform operations upon the table. The fill (color) of the rectangle is a gray gradient
(i.e., it goes between white and black), and it is related to the number of columns in a table
(i.e., the more columns the darker the rectangle).

Statements

Classes

accessing table
Columns

Figure 4.18: Tables Accesses. Representation.

Having in front of us the defined visualization for a given system may bring valuable information
in the reengineering process. Next, we explain different situations that may appear (i.e., the
nature of a polymetric view representing a table) and their impact:

• a small rectangle whose size is just a pixel – the table is not used in the source code.

• a square – every class that accesses the table performs only an operation on the table.

• a rectangle with an excessively large height – the operations upon the table are spread
in many classes and, consequently, the impact of changing the table would affect many
entities in the source code. If in this situation the color of the polymetric view is near
black (i.e., a large value associated to the number of columns the table has), there is a
high probability that the table is affected by the Multipurpose Table design flaw [3].

2. Distribution of Operations In order to have a detailed view about the types of op-
erations that are performed upon the existing tables we create another type of visualization
(see Figure 4.19). This visualization represents each used table as a rectangle containing 4
squares, each square having its color mapped to one of the following SQL statements: insert,
select, update and delete. The side of each square is equal to the number of SQL statements
whose type is represented by its color. Consequently, if the polymetric view of a table:

BUPT

70 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

insert select
update delete

Figure 4.19: Distribution of Operations. Representation.

• contains only a blue square (i.e., upon the table only select statements are performed)
it means that the table contains only constant data which is usually maintained by the
database administrator.

• contains only a green square (i.e., upon the table only insert statements are performed)
it means that the information is only recored in the table but not manipulated directly
from the source code. In this situation it would be interesting to find out who are
the real consumers of the stored data within the table. The same is applicable if the
polymetric view contains also a red square (delete statements).

• contains 2 squares whose colors are green and blue then it means that the informa-
tion, after it is introduced in the table, is never modified from the source code of the
application.

We implemented these visualizations within the DATES module using the existing tool
JMondrian within the iPlasma platform for visualizing data. We present in Appendix
A their complete implementations.

Visualizations in KITTA In Figures 4.20 and 4.21 we present how the existing tables are
used in the source code, according to the defined visualizations.

Figure 4.20: Tables Accesses in KITTA.

From the first visualization (Figure 4.204) we notice that the application:

• contains three unused tables, namely Groupp, MoveReq and EducatorReq.

• there are 3 tables which are accessed once from different classes: Users from only one
class, Intervals from 2 classes, and Child accessed from 3 classes. In case of Child, each

4Length, width and color correspond to the metrics specified in Figure 4.18.

BUPT

4.5. DIRECT APPLICATIONS OF THE META-MODEL 71

of the classes performs only a single operation on the table. Another interesting remark
here is that the Users table has the largest number of columns (i.e., the largest value
for the NC metric).

• most of the tables are accessed from 2 classes.

Regarding the types of operations performed upon the tables the second visualization (Figure
4.21) shows the following:

Figure 4.21: Distribution of Operations in KITTA.

• there are 2 tables whose information is only read (i.e., Intervals and Users). In this
situation it may be possible that only the database administrator inserts the information
into tables and, consequently, manages the users that are allowed to work with the
application.

• upon the table Kindergarten only select and update operations are performed.

• upon the tables ParentAppReq and Request only select and delete statements are per-
formed.

Visualizations in TRS From the first overview obtained (Figure 4.22) we find out that:

Figure 4.22: Tables Accesses in TRS.

• 2 tables are unused in the source code (e.g., Flight_reservation_comp and PasteErrors).

• there are 3 tables which are accessed in 3 classes, while the rest of the tables are accessed
from only one class.

BUPT

72 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

• we have a table which is accessed from a single class frequently (the rectangle with the
highest width). We took a closer look at the class and found out that a lot of duplications
occur, some of them being related to the where clauses of the SQL statements. We
illustrate an example related to this .

String sql;
if(f=="")
sql="SELECT * FROM Table1 Where ((City=?) and
(#"+Check_in+"# BETWEEN Data_in AND Data_out) and
(#"+Check_out+"# BETWEEN Data_in AND Data_out) and
(Address Like ?) and (Level_of_service =?) and
(Price <= ?))";

else
sql="SELECT * FROM Table1 Where ((City=?) and
(#"+Check_in+"# BETWEEN Data_in AND Data_out) and
(#"+Check_out+"# BETWEEN Data_in AND Data_out) and
(Address Like ?) and (Level_of_service =?)
and (Price <= ?)"+f+")";

From the second visualization (Figure 4.23) related to the existing types of SQL statements
for manipulating data in tables we notice that:

Figure 4.23: Distribution of Operations in TRS.

• there are 4 tables storing data which is only read within the source code (i.e., only select
operations are performed).

BUPT

4.5. DIRECT APPLICATIONS OF THE META-MODEL 73

• there are 3 tables whose stored information after the insertion is only selected and
deleted and never modified.

• there is a table Credit_Card whose number of rows is never modified from the source
code – only select and update operations performed upon.

Visualizations in Payroll From the Tables Accesses Visualization (Figure 4.24) we find out
that:

• there is a table which is not accessed in the source code.

• most of the tables are accessed by only one class.

Figure 4.24: Tables Accesses in Payroll.

Regarding the Distribution of Operations in Payroll we notice from the Figure 4.26 the fol-
lowing:

• upon more than a half from the tables accessed in the source code (6 from 11) all the
four types of SQL operations are performed.

• from table employee information is only read.

• the information from the table salaryhistory is never read, only inserted, updated and
deleted.

Figure 4.25: Distribution of Operations in Payroll.

BUPT

74 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

Visualizations in CentraView From Figure 4.26 which contains information regarding the
usages of tables in the source code we discover that:

• there is a large number of unused tables.

• the most used table in the source code is table individual upon which 33 SQL statements
are performed from 15 classes.

• there is a group of tables which are heavily used in the source code – e.g., emailmessage(8
SQL operations), mocrelate(19 SQL operations), activity(26 SQL operations).

In Figure 4.27 we present the defined visualization obtained by analyzing the CentraView
enterprise application. According to it we find out that the application contains:

• a large number of tables whose stored information is only read in the source code – e.g.,
activity.

• many tables whose information is only read and modified (we find only blue and orange
squares) – e.g., expense, opportunity.

• tables whose rows are never updated.

BUPT

4.5. DIRECT APPLICATIONS OF THE META-MODEL 75

Figure 4.26: Tables Accesses in CentraView.

BUPT

76 4. ANALYSIS INFRASTRUCTURE FOR ENTERPRISE APPLICATIONS

Figure 4.27: Distribution of Operations in CentraView.

BUPT

5

Relational Discrepancies
Detection

One specific concern of data reverse engineering is to retrieve constraints which are not
explicitly declared in the database schema but verified in the source code. In this chapter we
propose a novel approach for detecting the relational discrepancies between database schemas
and source code in enterprise applications, as part of the data reverse engineering process.
Detecting and removing these discrepancies allows us to ensure the accuracy of the stored
data as well as to increase the level of understanding of the data involved in an enterprise
application.

5.1 Relational Discrepancies
A database schema models mainly tables, columns and the various relations and constraints
that exist between the data stored in the database’s tables. Most, if not all, of the relations are
the reflection of the business logic (behavior) which is modeled in the source code. Therefore,
in a normal case there should be a correlation between the constraints defined on tables in the
database schema and the co-usage of those tables in the source code. But there is nothing
to guarantee that the source code and the database schema stay synchronized. When this is
not the case we say that a relational discrepancy appears between the source code and the
database schema. We identified two possible cases of such relational discrepancies:
1. Missed Constraint. Two or more tables are constantly accessed together (jointly) in code

but there is no constraint defined in the database schema to suggest that. For example,
in Figure 5.1 we see that both classes B and C access always together tables T1 and T2,
as if these tables would be related by a foreign key. But looking in the database schema
we don’t find such a constraint between the two tables. The missed constraint hampers
the accuracy as well as the understanding of the stored data.

2. Incomplete Data Usage. The second case of relational discrepancy appears when there is
an explicit constraint defined in the database schema, but it is disregarded systematically
in the source code, i.e., the classes don’t access the tables jointly. Looking again in Figure

BUPT

78 5. RELATIONAL DISCREPANCIES DETECTION

Figure 5.1: Two types of relational discrepancies.

5.1 we notice that while there is a constraint defined among T1 and T3 no class is accessing
both T1 and T3 together (directly or indirectly); instead, class A which accesses table T3
does it without using the correlated data found in T1. This means that the database might
contain unused data which increases the necessary effort for understanding the stored data.

While both cases of discrepancy are very interesting, we focus in this thesis on the first
discrepancy case, i.e., Missed Constraint.

5.1.1 Missed Constraint: An Example
In order to explain more clearly this case of relational discrepancy, let us consider a simple
example. Considering an application that manages a library, let’s assume that all the informa-
tion regarding the library are stored in a relational database called Library which contains,
among others, the following three tables, as depicted in Figure 5.2:

bookID : int[PK]

title : varchar

year : int

publisherID : int

authorsID : int

Books id : int[PK]

name : varchar

nationality : varchar

Authors

publisherID : int[PK]

name : varchar

Publishers

Figure 5.2: Library database schema, with no explicit constraints among tables. ([PK] marks
the primary keys).

• Books – stores information about the existing books within the library.

• Authors – contains data about the authors of the existing books.

BUPT

5.1. RELATIONAL DISCREPANCIES 79

• Publishers – the rows of this table contain information about all the existing publishing
houses.

Every table has a primary key and no foreign key.

By looking carefully at Figure 5.2 we see that, although apparently there are no correlations
among the three tables, two apparent links can be noticed in table Books, links that lead to
the other tables – i.e., columns publisherID and authorsID, meaning that every book has
an author and a publisher.

Unfortunately, when the database was created, the two integrity constraints (foreign keys)
that would ensure the integrity of the data stored within the table Books were not specified.
Because these foreign keys are missing, we can’t know for sure if fields publisherID and
authorsID from table Books are correlated with fields in table Publishers respectively
Authors. While this issue appears rather obvious in this example, this is mainly because:

• the example is simple and the domain of the modeled data is well-known.

• the naming of correlated fields helps us.

But in general, finding these missing correlations between tables, by looking exclusively at the
database schema is hardly possible. Yet, knowing these integrity constraints is in practice an
essential clue towards understanding and maintaining a large-scale system. That’s why, in this
thesis we aim to detect these missing constraints, by looking at the way tables are accessed
in the source code.

getters and setters

for the fields

bookID : int

title : String

year : int

publisher : Publisher

author : Author

Book

getters and setters

for the fields

authorID : int

name : String

nationality : String

Author

getters and setters

for the fields

publisherID : int

name : String

Publisher

1

1

0..*

0..*

Figure 5.3: Domain Classes for Library example.

Going on with the example let’s take a look at the source code, where these tables are
used. In an enterprise application we find domain objects [27] which contain data from the

BUPT

80 5. RELATIONAL DISCREPANCIES DETECTION

database, objects which are stored/retrieved in/from the database by means of dedicated
classes belonging to the data source layer – e.g., BookDS and PublisherDS (Figures 5.4 and
5.5). By applying Keller’s Foreign Key Aggregation pattern [34] for our Library example we
define the domain classes depicted in Figure 5.3.

We notice that a separate class was created for each table from the database, and that the
Book class has references to the Author and Publisher classes.

Now (re)creating a Book object from the database implies retrieving data from the three
aforementioned tables (Figure 5.2). In general, if more than two tables are involved there are
two main approaches for doing this [34]:

• perform a single join between all the tables.

• access separately each table and in the end set the references between the created
objects.

Each of the two approaches has its own pros and cons, but in practice both are widely used,
and oftentimes we can encounter a combination of the two idioms.

For the sake of showing all the facets of the problem, in our example we use such a combined
solution for creating a Book object, as seen in Figure 5.4. By looking at method getBook we
first notice the SELECT statement and the join between the Books and Authors tables. This
shows us that the authorsID column in table Books is de facto a foreign key on table Authors.
But this is unfortunately an implicit constraint, i.e., an information that we can’t find explicitly
in the database schema (Figure 5.2)! Second, we notice that a Book domain object also needs
a reference to a Publisher domain object, and it obtains it by calling the getPublisher
method from PublisherDS classs (see Figure 5.5); more precisely, the Publisher object
is created separately, by accessing table Publishers from class PublisherDS, and then its
reference is attached to the Book object. This reveals an even more hidden dependency, i.e.,
the one between the Books and the Publishers tables. Again, the database schema didn’t
make this correlation explicit.

In conclusion, starting from a class/method belonging to the data source layer it is possible
to identify the group of tables that are used jointly, – called group of related tables both when
the tables are accessed directly and when the correlation between tables is indirect (e.g., via
a method call).

The ability to recover from the source code all these correlations among the database tables,
would provide us with useful information regarding the integrity constraints the existing schema
contains, or should contain; and, which is most important, it helps us to understand the
(oftentimes implicit) dependencies between the data manipulated in the system.

Related Work. We dedicate this paragraph to a briefing of several representative solutions
that fall in (or are closely related with) the discovery of hidden relationships among relational
entities.

BUPT

5.1. RELATIONAL DISCREPANCIES 81

class BookDS {
public Book getBook(int id) {
...
query = "SELECT * from Authors AS A,Books AS B" +

" WHERE B.bookID=" + id +
" AND A.id = B.authorsID";

rs = statement.executeQuery(query);

// create book object and set fields
Book aBook = new Book();
aBook.setBookID(rs.getInt("bookID"));
aBook.setTitle(rs.getString("title"));
aBook.setYear(rs.getInt("year"));

// create author object and set fields
Author theAuth = new Author();
theAuth.setAuthorID(rs.getInt("id"));
theAuth.setName(rs.getString("name"));
theAuth.setNation(rs.getString("nationality"));
// add author reference to book object
aBook.setAuthor(theAuth);

// get publisher object and set the
// reference to it for the created book
aBook.setPublisher(

new PublishterDS().getPublisher(id));
return aBook; }

}

Figure 5.4: The BookDS data source class.

A first category of approaches related to this topic is the one whose input is provided exclusively
by the involved relational database. An example of such approach is Referential Integrity
Utility for IBM DB2 Cube Views [22], a tool which detects missing primary keys, missing
foreign keys, nullable foreign keys and generates data definition language to add the necessary
DB2 informational constraints. The main difference between this approach and our approach
resides in the fact that our approach will provide us those discrepancies depicted from the
usage of data from the source code. This way, we ensure that the data from the tables are
indeed used together. An instrument for finding hidden relationships based only on database
schema (e.g., using comparisons of names) might bring us inaccurate results.

Another category of approaches which helps in order to find out implicit data constraints
among the involved database is based on program slicing, like the one proposed in [12]. This
approach is applied upon enterprise applications which communicate with relational databases

BUPT

82 5. RELATIONAL DISCREPANCIES DETECTION

class PublisherDS {
public Publisher getPublisher(int id) {

...
query = "SELECT * from Publishers " +

"WHERE publisherID=" + id;
rs = statement.executeQuery(query);

// create publisher object and set fields
Publisher aPublisher = new Publisher();
aPublisher.setID(rs.getInt("publisherID"));
aPublisher.setName(rs.getString("name"));
return aPublisher; }

}

Figure 5.5: The PublisherDS data source class.

via embedded SQL (e.g., SQL code written between EXEC SQL and END-EXEC), approach
which is not suitable for enterprise applications which communicate with relational databases
by SQL statements embedded in a string that are executed by methods like executeQuery().

In this work we assume that persistence is provided by a relational database (e.g., MySQL) and
the communication between the entities belonging to the data source layer and the relational
database is performed by executing SQL commands as embedded strings. But nowadays there
are also enterprise applications where the persistence layer is manipulated by frameworks like
Hibernate [5]. In this context we want to emphasize that our approach can be applied upon
enterprise applications which use such frameworks, but in this case the information regarding
the connections between the object-oriented part and the relational part will be extracted also
from existing configuring XML files (and, consequently, we need to develop and use a different
model loader for extracting information from the source code).

5.2 Detection of Relational Discrepancies
Before describing the technique developed for detecting the Missed Constraints discrepancy, we
first need to summarize the main entities and their interrelationships involved in an enterprise
application, as shown in Chapter 4.

Figure 5.6 shows that on the source code side we mainly deal with methods that belong to
classes. The main source code relation that we are interested in is that a method can call (or
respectively be called by) other methods. On the database side, we find tables that have a
number of columns. Columns have a name and can also have the special property of being
primary key for a table, i.e., the values for that column are unique within the table. Concerning
the database relations, we are interested in the constraints defined by means of foreign keys
among the columns belonging to different tables. On top of everything, the relation that we

BUPT

5.2. DETECTION OF RELATIONAL DISCREPANCIES 83

Figure 5.6: The meta-model of main entities that connect the source code with the database.

are most interested in, is the one that connects the two “worlds”, i.e., the source code and
the database. This connection appears in methods – belonging to the data source layer –
that access one or more tables by building and executing queries on the database (as seen in
Figure 5.4).

Based on this model, we can now describe the detection process, which implies the following
sequence of steps:

• Step 1: Build groups of related tables, based on the accessed tables information found
in each method belonging to the data source layer.

• Step 2: Detect de facto interrelationships (constraints) among the related tables, based
on a set of heuristic rules for the matching between pairs of tables.

• Step 3: Identify missed constraints, by comparing the de facto constraints identified in
the the source code, with those explicitly defined in the database schema.

5.2.1 Build the Groups of Related Tables
The main goal of this first step is to find the tables which are related by the fact that they
are accessed within the same usage context, at the source code level. As we have seen in the
Library example, both the BookDS and the PublisherDS classes are directly or indirectly
related with all the three tables.

BUPT

84 5. RELATIONAL DISCREPANCIES DETECTION

A key element of our approach is that we consider not only the direct usages of tables, but
also the indirect ones. Consequently, for each method M belonging the the data source layer
identified according to the algorithm presented in Section 4.1.3 the group of related tables
(GRT) is built as follows:

• All tables accessed directly from M, by means of queries built and executed within the
method are added to GRT(M).

• For each data source layer method called from M1, we add to GRT(M) all the tables
directly accessed from the called method.

• For each data source layer method which calls method M, we add to GRT(M) all the
tables directly accessed from the method that calls M.

For our initial example, both GRT(BookDS) and GRT(PublisherDS) will contain all three
tables, i.e., Books, Authors and Publishers.

In Figure 5.7 we show how we implemented in the DATES tool the group of related tables
associated to the method aMethod. In Line 2 we get all the methods that the investigated
method calls and in Line 4 we get all the methods that make use of it. We create a new group
which contains all the distinct methods from the previous groups (Line 6). Applying the filter
model function to the group of operations ensures that we take into consideration only the
methods defined in the analyzed application – i.e., excluding the library methods (Line 7).
Please remark that all the groups and filters used till Line 7 were previously created in the
iPlasma environment. In Line 8 we keep from the mentioned methods only those which are
part of the data source layer. We continue the implementation (Line 9) by getting all the
distinct tables accessed from the group of methods created in Line 7. Finally (Line 10) we
add the tables directly accessed by the inspected method. The filter is datasource and the
group accessed tables are part of the DATES module.

5.2.2 Detect “de Facto” Constraints
The fact that a pair of tables are used from the same usage context does not necessarily mean
that there is a relational constraint between the two. Therefore, the next step is to discover
possible interrelationships among the tables found in the GRT’s built for each data source
method, during the previous phase.

Oftentimes there is no relational constraint between a table from a GRT group and any other
table from that group; furthermore, obviously, constraints might not be bidirectional. For
example, table Publishers is not connected to table Books, it is only the other way around,
the relation is going only from Books to Publishers.

In order to discover the relational constraints from the source code, we use a set of heuristic
rules related mainly to the naming of tables and columns. Aiming to discover interrelationships

1Of course, recursive calls are excepted.

BUPT

5.2. DETECTION OF RELATIONAL DISCREPANCIES 85

GroupEntity getRelatedTables(AbstractEntity aMethod)
{
1 GroupEntity mCalled;
2 mCalled = aMethod.getGroup("operations called");

3 GroupEntity mCallingMe;
4 mCallingMe = aMethod.getGroup("operations calling me");

5 GroupEntity related;
6 related = mCalled.union(mCallingMe).distinct();
7 related = related.applyFilter("model function");
8 related = related.applyFilter("is datasource");
9 related = related.getGroup("accessed tables").distinct();

10related.addAllDistinct(aMethod.getGroup("accessed tables"));

11return related;
}

Figure 5.7: Building the group of related tables.

between all the related tables, we take each pair of tables from each GRT that has been built
in the previous step.

Considering a pair of tables (T1, T2) we claim to have found a constraint from T1 to T2
(i.e., T1 depends on T2), if there exists at least one pair of columns (CT1 - belonging to
table T1, CT2 - from table T2) having the same type that satisfies one of the following
naming conditions:

• the name of CT1 contains or is equal, – based on a case insensitive comparison –
with the name of table T2 and CT2 is (part of) the primary key of table T2. In
our example, authorsID column in Books contains the name of the Authors table,
Books.authorsID and Authors.id are of the same type, and Authors.id is the
primary key of table Authors.

• CT2 is (part of) the primary key of table T2 and the name of CT1 contains or is equal
with the name of CT2, based on a case insensitive comparison. In our example, the
publisherID column in Books has the same type and the same name with the primary
key of table Publishers.

Remark. Clearly, our approach relies heavily on naming rules. From this point of view, the
heuristics above appear to be rather fragile. Yet, both our practical experience and our case
studies (see Section 5.3) suggest that in most projects the database schema relies heavily on
naming conventions. These naming rules might be slightly different than the ones we used,

BUPT

86 5. RELATIONAL DISCREPANCIES DETECTION

but this is one point where our technique can be easily adapted to comply to further such
heuristics.

Still, we have to admit that unfortunately we encounter sometimes hidden dependencies among
columns, that can’t be captured using these naming rules (e.g., two columns called StudentID
and the other PersonID). For such cases we could enhance the correlation heuristics, by relying
on the relations found in an ontology, – like WordNet2 – as done in several recent reverse
engineering approaches [69, 68].

5.2.3 Identify the Missed Constraints
The input of this phase is provided by the group of the pairs of tables for which in the
previous step we found an interrelationship. Some of these found relations might have already
been defined within the schema of the database. Consequently, in order to find out only
the discrepancies between database schema and source code, we are going to inspect each
possible relation from the group and if the relation has already been defined, we are going to
remove it from the group.

For this last step we rely on the model of the involved database, more precisely on the
constraint relations (see Figure 5.6) in order to find out if the inspected constraint has been
defined in the schema. If the relation is missing then we assume that we have successfully
identified a Missed Constraints relational discrepancy.

5.3 Evaluation of the Approach
In order to evaluate the approach we have conducted different experiments on the four case
studies whose main characteristics are presented in Section 4.3.

KITTA TRS Payroll CentraView
Data Source Classes 9 10 16 837
Columns 52 186 89 1281
Primary Key 10 9 12 170
Foreign Keys 0 0 0 28
Missed Constraints 3 0 7 219

Table 5.1: The Identified Relational Discrepancies.

The results presented in this section are obtained automatically with the usage of DATES
(introduced in Section 4.2) upon these case studies. In this context we want to emphasize
that all the 3 steps of the algorithm for detecting missed constraints were implemented within
DATES. Moreover, we brought an improvement to the visualization Tables Accesses pre-
sented in Section 4.5.3 – we introduced edges which represent the found missed constraints.

2http://wordnet.princeton.edu

BUPT

5.3. EVALUATION OF THE APPROACH 87

Besides the possibility of visualizing the found missed constraints, DATES allows us to save
them in a text file, from where they can be manually applied on the schema of the database
within the analyzed enterprise application.

As a secondary effect we provide for each table the group of related tables computed based
on the first step of the presented algorithm. This group allows us to find for each table the
tables which are used in the same usage context.

In Table 5.1 we present the number of the identified missed constraints between database
schema and source code. Next, for each system we are going to discuss the obtained results.

5.3.1 The KITTA Application
As we can see in Table 5.1, the KITTA application contains 10 primary keys and none foreign
key. By applying our introduced technique we find 3 missed relations between the existing
tables, as Figure 5.8 reveals.

1. T:Priorities C:PREQ_ID_PK
T:ParentAppReq C:PREQ_ID_PK

2. T:ParentAppReq C:REQ_ID_PK
T:Request C:REQ_ID_PK

3. T:Priorities C:PREQ_ID_PK
T:Request C:REQ_ID_PK

Figure 5.8: KITTA: The discovered related tables.

In order to find out whether the discrepancies were correctly identified we performed a man-
ual investigation. Identifying correctly the relations between the entities from the existing
relational database in an enterprise application means that:

• among the entities that were classified as being related by foreign keys there are no false
positives (e.g., entities erroneously identified by the approach as being related).

• among the entities that were not classified as being related by foreign keys there are no
false negatives (e.g., entities which are related and were not identified by the approach
as being related).

We performed an investigation through all the 25 methods which were identified by our
approach as belonging to the data source layer in order to accomplish the mentioned tasks.
We found out that for most of the methods (19) the group of related tables is composed by
none or just one class and, consequently, only the remaining 6 groups were further inspected.

Three groups contain two tables – e.g., (ParentAppReq, Priorities), (Priorities, Request) and

BUPT

88 5. RELATIONAL DISCREPANCIES DETECTION

the first relation is contained into two groups. From these groups of related tables we found
out that each request has a priority. Each of the remaining three groups contain the same
four tables: ParentAppReq, Priorities, Request and Child. From this group we depicted the
second missed constraint from Figure 5.8. Based on our analysis all the found constraints
appear to be real (i.e., we did not detect any false positives).

Regarding the false negatives, at first sight it is surprising that between the Child table and the
rest no relationship was found, at least among the ParentAppReq table. Consequently, we took
a look at the columns of the tables and we discovered that the Child table contains the age,
FNAME and LNAME columns while within the ParentAppReq instead of having a reference
into the Child table, we have the duplicated columns CHILD_FNAME and CHILD_LNAME.
Anyway, our approach reports that the tables are used together but is not able to detect a
missed constrained due to the mentioned redundancy of data.

5.3.2 The TRS Application
In this application our approach did not identify any missed constraints. Like in the previous
case, we performed an in-depth investigation in order to ascertain if the findings are correct.

The investigation reveals that the application contains 24 methods belonging to the data
source layer. For most of the methods (23) the group of related tables is composed by only
one table. We discovered only one method whose group of related tables contains 3 tables:
Car_reservation, Flight_reservation and Hotel_reservation. As suggested by their names, the
tables contain information about different types of reservations a person may apply for and
among them there is no missed constraint.

5.3.3 The Payroll Application
As we can see in Table 5.1, the Payroll application contains 16 classes identified as belonging
to the data source layer, the involved data is stored in 12 tables and there are 12 primary keys
(one primary key for each table) and no foreign key. By applying our introduced technique
we obtain 7 discrepancies between database schema and source code.

During the manual investigation performed, we browsed through each of the 12 existing
tables in order to find out which interrelationships exist among them. We have discovered 8
interrelationships, 7 of them being discovered by the approach. For example, the approach
reports that

• every stored history regarding salaries is attached to an employee (table salaryhistory
should have a foreign key employee that refers column Id from the table employee).

• every stored evaluation belongs to an existing employee (there is a table called evaluation
which should have a foreign key employee that refers column Id from the table employee).

• every employee has a stored history regarding his position (table positionhistory should
have a foreign key employee that refers column Id from the table employee).

BUPT

5.3. EVALUATION OF THE APPROACH 89

Regarding the missed constraint which was not discovered by our approach, we found out
that the false negative is due to the fact that one of the tables involved in the unreported
constraint was not used in the source code. Probably, it would have been good to apply in
this case the Drop Table refactoring pattern presented in [3].

5.3.4 The CentraView Application
This application, as already mentioned, is a large-scale enterprise application which has 1527
classes, 836 belonging to the data source layer and the involved data is stored among 217
tables. By applying our approach, the tool found 219 missed constraints between database
schema and source code. Like in the previous case, in order to find out whether the identified
constraints were correctly identified we performed a manual investigation.
Due to the fact that CentraView is significantly larger than Payroll, a manual investigation
of the 217 tables is not feasible. Thus, we performed a “smart” manual investigation based
on a subset of the interconnected tables, chosen using the following strategy: as displayed
in Table 5.1, CentraView contains 28 foreign keys, i.e., 28 relations involving 20 tables. We
manually removed from the database schema the 28 relations aiming to see if by applying our
approach, we will find these initially defined interrelationships among the 20 tables.

By applying our technique, we found only half (14) of the initial set of 28 relational constraints
initially defined on the database schema. Thus, 14 relations were missing from the reported
list and, therefore, we performed an in-depth analysis in order to find out the causes.

We discovered that 11 out of the 14 initial relations that our approach did not detect, are
missing from the reported list due to the fact that 8 of the tables involved in these foreign
key were simply not used in the source code! Probably the Drop Table pattern [3] is again
recommendable in this case.

Regarding the remaining 3 undetected relations, we found out that they were not found
because our matching heuristics did not apply for the involved columns. Yet it is worth
mentioning that the 3 foreign keys were all defined between the same two tables, i.e., the
search resp. the individual table. The three undetected relations are foreign keys on columns
OwnerBy, CreatedBy, ModifiedBy, all three referring to column IndividualID. By analyzing
these column names, we are confident that our approach can be enhanced by enriching the
matching heuristics with additional relations extracted from an ontology, like we suggested at
the end of Section 5.2.2.

Apart from that “smart” manual investigation we took a closer look on the 219 reported
constraints that should be applied upon the schema of the database and we present next
some of them.

In Figure 5.9 we present some found discrepancies. Due to a high degree of understanding
provided by the names of tables and columns, we can quickly find out the meaning of most
discovered missed constraints. Thus, we expect more tasks to belong to a project (1), to

BUPT

90 5. RELATIONAL DISCREPANCIES DETECTION

1. T:task C:ProjectID
T:project C:ProjectID

2. T:invoice C:billaddress
T:address C:AddresID

3. T:ticket C:individualid
T:individual C:IndividualID

4. T:attachment C:MessageID
T:emailmessage C:MessageID

5. T:attendee C:IndividualID
T:individual C:IndividualID

6. T:attendee C:ActivityID
T:activity C:ActivityID

7. T:attendee C:ActivityID
T:applicationform C:ActivityID

8. T:uidlist C:accountID
T:emailaccount C:AccountID

Figure 5.9: CentraView: Some discovered related tables.

encounter more invoices at the same address (2), an individual to have more tickets (3),
an emailmessage to have none or more attachments (4) and an individual to attend more
activities (5).

Regarding the three relations 5 - 7, we noticed that all of them should be applied upon the
table attendee (i.e., it is possible to discover more discrepancies that should be applied on the
same table - this explains why it is possible to have 219 missed constraints which should be
applied, due to the fact that at least 8 tables are unused, on less that 217 tables).

It is quite easy to see that relation 5 has been correctly identified but at a first sight rela-
tions 6 and 7 are ambiguous because they should be applied on the same column ActivityID
which should refer two different tables (activity and applicationform). In this case we took a
closer look on the two last tables and we discovered that table activity contains information
regarding an activity (e.g., type, priority, status, owner, DueDate, CompletedDate) and table
applicationform contains also related information regarding an activity (e.g., salaryactual, as-
sessmentneg) and even the primary key for table applicationform is called ActivityID – this
case is nothing but a common practice for a foreign key to refer more than one table. More-
over, searching in the report provided by the introduced approach, we discovered that when a
foreign key should refer column ActivityID from table applicationform, it always should refer
also column ActivityID from table activity – we encountered this situation 5 times.

The last relation from Figure 5.9 is an example of a missed constraint whose meaning cannot
be easily discovered but within the provided report there are only a few relations of this type
(10).

BUPT

5.3. EVALUATION OF THE APPROACH 91

5.3.5 Identified Relational Discrepancies according to
the percentage of using the tables together in
the source code

The previous experiments shows the applicability of the introduced approach. Despite the fact
that the results are satisfactory enough, they may be affected by a weakness: when we find
missed constraints among large enterprise applications it is hard to determine if between the
pair of tables (T, R) there is a missed constraint relation (detected according to the algorithm
presented in Section 5.2) if table T is heavily used in the source code and it appears only
once together with table R in the groups of related tables build from each method belonging
to the data source layer.

We consider advisable to consider that among the tables (T, R) there might be a missed
constraint if and only if from all the groups of related tables where T appears table R appears
too in a percent greater than a threshold provided to the approach by the database maintainers.

KITTA Payroll CentraView
10% 3 7 219
20% 3 7 219
30% 3 7 201
40% 3 7 185
50% 3 7 169
60% 2 7 155
70% 2 7 131
80% 2 7 107
90% 2 7 70
100% 2 7 63

Table 5.2: Relational Discrepancies according to percentages.

Consequently, we enhance our approach with a parameter whose goal is to narrow the dis-
covered missed constraints. The value of the parameter represents the percentage of having
every table T, from all the groups of related tables where table T appears, together with table
R. In Figure 5.10 we present how we compute for each pair of tables (T, R) the mentioned
percentage.

The value contained by the relatedTables parameter embeds all the groups of related tables
build in the first part of the algorithm presented in Section 5.2 (Line 1). In Line 4 we iterate
through all the groups of related tables. If the current group contains table T we increase
the value of the is variable (Line 7) and we check also if the group contains also table R. If it
does, we increase also the value of having the two tables together in the current group (Line
9). Finally, we return the percentage obtained by dividing the value of the computed variables
is and isTogether.

BUPT

92 5. RELATIONAL DISCREPANCIES DETECTION

1 double getPercent(TableSchema T, TableSchema R,
Collection relatedTables) {

2 Iterator it = relatedTables.iterator();
3 int is=0, isTogether=0;
4 while(it.hasNext()) {
5 GroupEntity g = (GroupEntity)it.next();
6 if(g.getElements().contains(T)) {
7 is++;
8 if(g.getElements().contains(R))
9 isTogether++;

}
}

10 return ((double)isTogether)/is*100;}

Figure 5.10: Computing the percentage of having (T, R) together.

We decide that among (T, R) there is a missed constraint identified by the last steps of the
introduced algorithm if and only if the percentage computed according to the implementation
from Figure 5.10 is greater or equal with the value of the parameter received by the approach.

In Table 5.2 we present the number of missed constraints found by the enhanced approach.
For each application where there were initially detected missed constraints we perform more
experiments, varying the introduced threshold every time with 10 percents.

In the KITTA application from the 3 missed constraints initially found only 2 of them remain
if we set the threshold to 100%. In the Payroll application all the missed constraints reported
previously are present regardless of the introduced threshold. In the CentraView system more
than a half of the initially found missed constraints are obtained using a threshold lower that
70%.

Conclusions. The main features of the introduced approach are:

• it allows us to identify automatically the related tables from which data are retrieved in
the source-code.

• based on the related tables, it identifies possible interrelationships between relational
tables (e.g., Missed Constraints).

BUPT

6

Objectual Meaning of Foreign
Keys

While foreign keys are an important means for indicating relations within the persistent data,
oftentimes, by looking solely at the database schema, it is impossible to determine the exact
nature of these relations. In this chapter we propose a novel approach for determining a refined
understanding of the relations among the persistent data, by correlating the information about
foreign keys extracted from the database schema with the way the data are used in the source
code. We applied our approach on several case-studies and the encouraging findings indicate
that the approach provides relevant information towards recovering an accurate data model
of an enterprise application.

6.1 Objectual Meaning of Foreign Keys
In an enterprise application the two most reliable sources of information for knowledge recovery
are the database schema and from the source code. For each of these there is a good and a
bad part:

• In a RDBMS, while the database schema usually captures well the key model elements
– as this is mainly what is kept persistent – the ability to express relationships (e.g., using
foreign keys) is rather weak [34], being almost impossible to express precisely the type
of that relation (to differentiate between a part-whole and a hierarchical specialization
relation).

• Concerning the source code the good part is that the semantics of relationships that
can be expressed is much richer than in the case of database schemas (e.g., the explicit
inheritance relation, or the containment relation expressed using instance variables [17]).
Yet, at the source code level we have another problem: the elements of the business
model are “cluttered” with implementation details, and this makes it hard to distinguish
between the source code elements (e.g., classes and methods) that correspond to the
business model and those that are strictly used to support the concrete implementation.

BUPT

94 6. OBJECTUAL MEANING OF FOREIGN KEYS

Consequently, in order to recover the relationships among business model elements, and thus
recover the understanding of the modeled domain, we need to combine information both from
the database schema and the source code. In this context, we propose a two step approach
to recover these relations:
1. Step 1: We use the information (i.e., tables, columns, foreign keys) from the database

schema to focus (i.e., reveal) the classes that store the data from the database. We calls
these classes Data Keepers.

2. Step 2: We extract from the source code the relationships among Data Keepers and use
them to refine the semantics of the foreign key constraints defined among various tables.

6.1.1 Relations between Tables and Classes
Considering a table T, there can be several ways it can be linked with the source code:

• is not accessed in the source code, probably it is useless to understand its structure
and function. We consider that between T and source code there is a N (Not Used)
Relation and usually we should apply the Drop Table Refactoring Pattern [3].

• is used in the source code. We say that between T and source code there is a U (Used)
Relation and consequently it is worth to take a closer look at T.

• is used in the source code and there are one or more classes whose instances store data
from T. We say that those classes are Data Keeper Classes 1 related to T and between T
and the object-oriented part there is a S (Storing Data) Relation. Knowing for T the
names of its related Data Keeper classes might provide us with additional information
about the meaning of the data within table T and the methods of the classes might
provide us with information regarding the function of the same data.

Finding the previous relations is not possible unless we take into consideration the interactions
between source code and existing tables. When we extract relations associated to entities of
the relational paradigm (e.g., tables, columns, constraints) by taking into account information
from the object-oriented source code, we consider that the retrieved relation has an objectual
meaning. Obviously, all the N, U and S Relations have an objectual meaning.

6.1.2 Refined Semantics of Foreign Keys
One important relation that connects the elements (e.g., tables) of a relational database
schema are the foreign keys constraints. But, as we mentioned before, the semantics of this
relation is very vague as it can denote anything from a simple dependency to an aggregation
relation between the concepts represented by the two tables.

Assuming that we have two tables TFrom and TTo connected by a foreign key which relates
data from TFrom to data from TTo, and two Data Keeper classes – CTo storing data from
table TTo and CFrom storing data from table TFrom – the data from the two tables connected

1we do not use the Data Transfer Object [27, 56] term because a Data Keeper might also have functionality
and might also access the database. Every DTO is a Data Keeper.

BUPT

6.1. OBJECTUAL MEANING OF FOREIGN KEYS 95

Figure 6.1: The objectual meaning of a foreign key, as revealed in the source code.

BUPT

96 6. OBJECTUAL MEANING OF FOREIGN KEYS

by the foreign key may be used in the source code in different ways, as Figure 6.1 presents.
If we know how the data from the tables is used in the source code, we would infer different
objectual meanings of the foreign key, as follows:

• if between CFrom and CTo is no interaction, we consider that this situation reflects also
the relation among the tables, being possible that table TFrom contains unused data.

• if methods from CFrom call methods from CTo, we consider that, as well as among the
Data Keeper classes, between the two tables related by the foreign key there is a D
(Dependency) Relation, the objectual meaning of the foreign key being that data
from TFrom is used together with data from TTo.

• if between CFrom and CTo there is a relation of aggregation, we consider that the A
(Aggregation) Relation among the Data Keeper classes is available also for the tables
related by the foreign key, having the objectual meaning that the data stored in TTo is
part of the data stored in TFrom.

• if CFrom is derived from CTo, we objectual interpret that the data stored within TFrom
is a specialized data of TTo and, consequently, an I (Inheritance) Relation occurs.

In this chapter we propose a mechanism which provides us with the objectual meaning of
foreign keys (the D, A and I Relations) [49], as we consider that those relations can
provide us with significant information which increases the level of fulfilment of the goals of
DRE. The approach specifies, as well, the cause/causes (e.g., classes from the object-oriented
part) which establish the provided relations. The objectual meaning of foreign keys is provided
if and only if the tables connected by the constraints have corresponding Data Keeper classes
in the source code and, consequently, we need first to find out the relations between tables
and source code (e.g., the N, U and S Relations mentioned above).

Figure 6.2: Objectual meaning of foreign keys.

Concretely, our approach provides us for each foreign key (defined explicitly in the schema of
the database or implicitly, inferred from the usage of tables in the source code, as presented
in Chapter 5) a description of its objectual meaning in 6 characters, as depicted with Figure
6.2, as well as the cause/causes that establish the description. The first character reveals the

BUPT

6.2. THE APPROACH 97

type of the characterized relation (explicit or implicit). The next two characters specify the
relation between the two tables and the object-oriented part (the N, U or S Relations).
The last three characters appears in the characterization, obviously, if and only if the relation
among the tables and the object-oriented part has the S type (for each table, we have at least
a Data Keeper in the system). A foreign key might have none or all of the three objectual
meanings.

Remark. Often we encounter situations where the database schema relies heavily on naming
conventions and in this context, if there it is a foreign key between a table called Person and
a table called Student, we expect an I objectual meaning and, thus, we can consider useless
our approach. But it may happen that this assumption is false, the data from the tables being
totaly unrelated by an I Relation, and our approach can confirm/infirm every assumption
of this type we make.

6.2 The Approach
Based on the model we introduced in Section 4, we present below how we discover objectual
meaning of foreign keys in enterprise applications.

6.2.1 Discovering the N, U and S Relations
As we previously mentioned, knowing the N, U and S Relations is a mandatory step
for fulfilling the goal of our approach. Based on the model described above, discovering
the N and U Relations between tables and source code requires counting the number of
methods belonging to the data source layer which access each inspected table. Consequently,
if the number is zero, it means that we encounter a N Relation, otherwise we have a U
Relation.

In order to find out if between a table T and the object-oriented part there is a S Relation,
as well as the causes that ensure the relation (e.g., the Data Keeper classes corresponding to
T), we perform the following three operations:

• we detect the Data Keeper classes from the inspected enterprise application.

• for each Data Keeper we find the related tables (tables from which the Data Keeper
stores/retrieves data)

• based on the previous two phases, we discover for each table the set of corresponding
Data Keepers.

Detect the Data Keeper Classes. The detection of a Data Keeper is done according
to the algorithm presented in Figure 6.3. Because Data Keepers store the data transported
from/to the database their detection is done by visiting all the methods belonging the data
source layer and considering all the classes that are used in these methods as:

BUPT

98 6. OBJECTUAL MEANING OF FOREIGN KEYS

Figure 6.3: Detect a Data Keeper Class.

• return types – for the case where data extracted from the database must be passed to
the other layers of the system.

• parameter types – for the case where data is passed to the data source layer in order to
be stored in the database.

• types of local variables – for the case where multiple data having the same type are
extracted from the database and passed to the other layers embedded in a predefined
collection.

Find the related tables for each keeper. We consider for each Data Keeper the fol-
lowing tables as being related:

• the tables accessed from each method belonging to the data source layer that calls
methods from the current Data Keeper.

• the tables accessed from each method belonging to the data source layer being called
by methods from the current Data Keeper.

• the tables directly accessed by the methods from the Data Keeper.

The first two operations ensure that we find the tables to/from which data belonging to
the current Data Keeper are stored/retrieved. The last operation might look confusing, as
we would expect for each Data Keeper Class to belong only to the domain layer and not
also to be responsible for storing/retrieving data in/from tables. But note that we reverse
engineer legacy enterprise applications where clear initial design intentions might have become
“blurred” during implementation. Thus, we expect at least some of these Data Keepers that
access also the database tables to reveal signs of design flaws.

Detect the corresponding Data Keeper classes for each table. Finding for each table
the set of related Data Keepers is nothing else than processing the results obtained from the

BUPT

6.2. THE APPROACH 99

previous two steps. Consequently, for each table T, we have to iterate through the existing
Data Keeper classes and for each current keeper (CDK) we have to see if it is related to T. If
so, we add CDK into the set of Data Keepers classes corresponding to table T. If the size
of this set is greater than zero, it means that between the table and the object-oriented part
we encounter a S Relation and its cause it provided by the computed set itself.

6.2.2 Discovering the D, A and I Relations
Discovering the D, A and I Relations among tables which are related by a foreign key
relies on two categories of input data, the first containing the foreign keys and the second
being provided, for each table, by the set of related Data Keepers created within the previous
phase.

Figure 6.4: Discover the D, A and I Relations.

In Figure 6.4 we present the defined algorithm for discovering the D, A and I Relations,
algorithm which has to be applied on each possible pair of classes (CFrom, CTo), CFrom
belonging to the group of Data Keepers related to TFrom and CTo belonging to the group of
Data Keepers related to TTo.

If CFrom has an attribute whose type is CTo it means that the data stored in table TTo is
part of the data stored by TFrom and, consequently, between the two involved tables there is
an A Relation. The algorithm continues by checking if CFrom extends CTo, regardless of
the fulfilment of the previous condition (i.e., it is possible for class CFrom to aggregate class
CTo, as well as to be descended from CTo). If the second condition is reached we encounter
an I Relation. Finally, we check if there are calls from methods belonging to CFrom to
methods belonging to CTo – this condition establishes a D Relation between the involved

BUPT

100 6. OBJECTUAL MEANING OF FOREIGN KEYS

tables (TFrom, TTo) related by a foreign key.

If none of the previous conditions are satisfied, it means that the object-oriented part of the
enterprise application contains data provided by tables TFrom and TTo related by a foreign
key, but this relation is not visible in the source code. It might be possible that only a part of
the data contained by table TFrom is used.

As we can notice, we may encounter only an A Relation between TFrom and TTo. At first
sight this is not a problem, but in a well-designed enterprise application we expect a class
to aggregate another class in order to make use of the services provided by the aggregated
class. Thus, if between tho tables there is only an A relation this probably means that among
the keepers that generate the relation we might encounter a violation of the encapsulation
principle. Yet, correlating design flaws with the types of relations between tables in the
involved database is also beyond the scope of this thesis.

6.3 Evaluation of the Approach
In order to evaluate the approach we have conducted different experiments on the same four
case studies whose main characteristics are presented in Section 4.3. Next, for each system
which contains explicitly or implicitly tables related by foreign keys we are going to present
the obtained objectual meanings of foreign keys. As it is noticeable, the TRS application
is not part of this experiment because it does not satisfy the mentioned condition regarding
the foreign keys. The objectual meaning of foreign keys have been detected automatically
by using the DATES module which contains the implementations of the algorithms for their
detection.

6.3.1 The KITTA Application
Among all the 3 pairs of tables connected by foreign keys detected in this application we find
DIA Relations. By looking at the causes that generate them we notice many Data Keeper
classes connected to each table and most of the keepers are connected to all of the three
tables involved in the relations.

The fact that most of the Data Keepers store data from all the tables bring in front of
us the possibility of having design problems into the schema of the database like duplicated
information (in particular, we discover this during the experiments performed for the validation
of the discrepancies ’detection) or multipurpose columns.

We inspected in-depth the connected Data Keeper classes for all the tables in order to find
out information about the business model. We found out that more than a half of the
existing tables have 5 or 6 associated Data Keepers. This situation is responsible for different
undesirable facts as follows:

• the same primary data is revealed by more than one object.

BUPT

6.3. EVALUATION OF THE APPROACH 101

• the operations involving the same data are spread into multiple classes.

For example, the Child tables has 5 corresponding Data Keepers: Child, DataBaseTricks,
Group, Kindergarten and ParentApplicationRequest. As Figure 6.5 presents, instead of encap-
sulating a field having the Child type into the ParentApplicationRequest class, the developers
include within the ParentApplicationRequest class most of the existing attributes from the
Child class.

class Child
{
private Connection connection;
private String firstName;
private String lastName;
private int age;
private int id;
private int parentId;

}

class ParentApplicationRequest
{
protected TimeInterval interval;
protected Vector kindergartens;
protected int childAge;
protected String childLastName;
protected String childFirstName;
private int parentRequestId;
private Statement statement;

}

Figure 6.5: Duplicated fields related to the Child table.

6.3.2 The Payroll Application
As we can see in Table 5.1, the Payroll application contains 112 methods identified as belonging
to the data source layer, the involved data is stored in 12 tables and there are 12 primary keys
(one primary key for each table) and no foreign key. By applying the technique we introduced
in [50] we obtain 7 missed constraints (i.e., 7 foreign keys) between database schema and
source code.

Our approach reports that among the 7 constraints there are only D Relations, which
mean:

• each table involved in the classified constraint is used in the source code and, moreover,
there is at least a Data Keeper class associated to each table.

BUPT

102 6. OBJECTUAL MEANING OF FOREIGN KEYS

• the data stored in each involved pair of tables is used together (e.g., when we increase
the value stored in the MonthlySalary column belonging to table salaryhistory we expect
this operation to be performed for a particular employee).

Performing an in-depth investigation regarding the tables used in the generated report, we find
out that table employee is used together with other 6 tables (e.g., salaryhistory, evaluation,
training, training_employee, presence and positionhistory) and table training_employee is used
together with table training, the last relation being indirectly related to table employee. Due
to the fact that every stored data is related to table employee, we can say that this table
tends to centralize most of data in the database belonging to the Payroll system. In general
this centralization phenomenon can be either a database design flaw, or an inherently central
table, which is very important for the understanding of the entire database.

In order to find out whether the relations were correctly identified we performed a manual in-
vestigation. Identifying correctly the relations between the entities from the existing relational
database in an enterprise application means that:

• among the entities that were classified as being related – by D Relations – there are
no false positives (e.g., entities erroneously identified by the approach as being related).

• among the entities that were not classified as being related there are no false negatives
(e.g., entities which are related – by A or I Relations – and were not identified by
the approach as being related).

Within the Payroll we did not find any false positive or negative regarding the classification
reported by our approach.

6.3.3 The CentraView Application
This application is a large-scale enterprise application which has 1527 classes, 3349 methods
belonging to the data source layer and the involved data is stored among 217 tables. Like in
the previous evaluation, before discovering the objectual meaning of foreign keys, we applied
the technique introduced in [50] in order to depict the missed constraints. This step is not
mandatory, but necessarily in order to find out more information about the analyzed enterprise
application. We found 219 missed constraints between database schema and source code.
Next, we are going to describe different found objectual meaning of foreign keys, as well as
their consequences.

Among the existing 217 tables, 115 are used in the source code, 76 of them being connected
to the source code by one or more Data Keeper classes. In Figure 6.6 we present some
associations provided by the approach between tables and their Data Keeper classes. From
the provided information, for example, we find out that:

• the data from the literaturerequestlink table is related to an activity, and we expect
that the system contains different types of activities (class ActivityVO has a method
getType()).

BUPT

6.3. EVALUATION OF THE APPROACH 103

1. Table: literaturerequestlink
Data Keeper:ActivityVO

2. Table: eventregister
Data Keeper:EventAttendeeVO

3. Table: ticket
Data Keeper:TimeSlipDBVO

Figure 6.6: Some discovered S Relations between tables and Data Keeper classes.

• eventregister contains registrations for a particular attendee – class EventAttendeeVO
contains information regarding an event as well as an attendee.

• the information contained into the ticket table is related to a particular project (class
TimeSlipDBVO has a method which provides the associated projectID, as well as infor-
mation retrieved from the ticket table).

Among the 247 foreign keys (28 extracted from the database schema and 219 implicit) whose
objectual meaning was retrieved by the introduced approach, we find 41 type A Relations.
This indicates that data stored in the vendor table is part of the data stored in the payment
table, the data stored in the project table is part of the data stored in the cvorder table as well
as the data stored in the invoice table, the data stored in the table addressrelate is part of the
data stored in the invoice table and a cvfile is part of the data stored in the literaturetable.

We encountered 4 type I Relations among tables. Thus, we expect data stored within
tables projectlink, customfieldscalar and customfieldmultiple to be different types of syncnote.
As we can notice, there are only a few relations of this type and we think this reflects the fact
that among the existing Data Keeper classes there are only a few inheritance relations.

We encounter 2 relations having the DAI type, one of these relations being among table user
related by a foreign key to table individual. In this case, a user is an individual containing a
lot of information related to other individuals.

We find 7 relations having the D type. In Figure 6.7 we present the tables whose stored data
is used together in the source code.

We notice that class ProposalListForm is a reported cause for more than one of the relations
from Figure 6.7, collaborating with various data which belongs to different unrelated tables.
Consequently, we expect this class to implement more than one functionality. The performed
investigation indicated that, indeed, the class provides a lot of functionalities, being affected
by the God Class [26] design flaw. In this case, our approach is useful, beside classifying
the relations among tables, to encounter design flaws related to an improper use of the data

BUPT

104 6. OBJECTUAL MEANING OF FOREIGN KEYS

1. cvfilefolder cvfolder

2. cvfilefolder cvfile

3. emailmessagefolder cvfolder

4. cvfilelink cvfile

5. proposallink proposal

6. emailrecipient emailmessage

7. emailrule account

Figure 6.7: The D Relations between tables.

stored in the database but, as previously mentioned, at this moment we consider this aspect
beyond the scope of our investigation.

We find 66 plain SS Relations related to the 247 foreign keys. In this case two possible
situations exist:

• the CFrom Data Keeper related to table TFrom does not make use of the data stored in
the referenced table TTo (i.e., an incomplete data usage).

• the two Data Keeper classes are used together in order to process all data from the two
existing tables.

The remaining constraints have not been reported as having one of the D, A or I objectual
meaning because the involved tables do not have associated Data Keepers in the object-
oriented part – for example, we have 39 SU Relations, 30 US and UU Relations among
the involved tables related by foreign keys.

CentraView – an overall classification. Performing an in-depth inspection of the provided
relations, we found the God Tables within the application. For example, the most coupled
table we find is table individual, being part of 17 relations, 3 of them being A Relations
and 2 being DAI Relations. We think a first step in comprehending the structure of the
involved tables is to take a look at the most coupled relations and our approach, by providing
the nature of the relations defined as foreign keys, helps us in order to accomplish this aim.

Conclusions. The work presented in this chapter is a step forward in enhancing the un-
derstanding of persistent data, as part of the maintenance of enterprise applications. The
proposed approach provides the objectual meaning of foreign keys, as revealed from the inter-
actions between the source code and database schema i.e., the Dependency, Agrregation

BUPT

6.3. EVALUATION OF THE APPROACH 105

and Inheritance relations. The aforementioned relations exist if and only if the involved
tables have corresponding Data Keeper classes in the object-oriented source code.

The introduced features require the use of the specific meta-model for enterprise applications
introduced in Chapter 4 which captures in an unitary manner the entities from the object-
oriented and the relational paradigms and, most important, the relations between the two.
The approach presented in this paper has shown that the strength of such a meta-model that
bridges the gap between the object-oriented and the relational “worlds” facilitates a simple
expression of analyses that uses information from both sides.

We have conducted an experiment in which we automatically detected the objectual semantics
of foreign keys in enterprise applications. In Table 6.1 we summarize the found objectual
meaning of foreign keys. The experiment reveals that by using the approach presented in this
paper a significant number of foreign key constraints can be semantically refined; thus, the
approach contributes to a better understanding of the database schema.

Constraints Relations
KITTA 3 3 DIA
Payroll 7 7 D
CentraView 247 7 D, 41 A, 4 I, 2 DAI

Table 6.1: Discovered Objectual Meaning of Foreign Keys.

BUPT

7

Roles-Aware Detection of Design
Flaws

According to the section dedicated to the presentation of principles and patterns in enterprise
applications (Section 2.4), sometimes the design of such applications is governed by a set
of rules conflicting with the ones from a “regular” object-oriented application. Consequently,
these conflicting rules have to be taken into consideration when we want to perform an
accurate assessment of the design of such type of software systems. In this chapter we
present an approach based on roles which improves the accuracy of the detection of the two
well-known design flaws: Data Class and Feature Envy [26].

7.1 Roles in the Data Source Layer
In an enterprise system each design entity (e.g., class, method) belongs to a layer. Further-
more, Fowler in [27] identifies and describes in the form of patterns different types of classes
and methods that have (or should have) responsibilities with respect to the structure of an
enterprise application or, more specific, with respect to the design of a particular layer. In this
context we defined in [46] the notion of design role as follows:

Definition 7.1.1 (Design Role) A design role is a specific responsibility that a design entity
(e.g., a class or a method) might have with respect to the design of a specific layer or to the
collaboration between two layers within an enterprise application. A design role is reflected
in the design entity by a suite of constraints related to its structure and/or the functionality
that it provides.

If a class or method has a particular design role then knowing it provides the engineer who
maintains or evolves the system with additional semantical information about its place within
the layer where it belongs. In Figure 7.1 we present the relations between a design entity and
its (potential) design role, respectively its layer. As we can see in the figure, not every entity
will have “enterprise-specific” role. The figure makes also clear that if we know the role of an
entity, we also know the layer it belongs to.

BUPT

7.2. EXTRACTING ROLES IN THE DATA SOURCE LAYER 107

might have

Role

Design entity
(e.g. class, method)

belongs to

Layer

Figure 7.1: Relations between a design entity, roles and layers.

7.1.1 Design Roles and Quality Assessment
The knowledge about layers and design roles is very important both for understanding and for
assessing the design of an enterprise application, at least for the following two reasons:

• Patterns of desirable and avoidable interactions in an EA are defined in terms of an
entity’s affiliation to a specific layer and/or to a specific role. For example, a class
should not contain methods that belong to the presentation layer and other methods
belonging to the data source layer. Or, a class that is a Table Data Gateway [27, 1]
(that is its role) should not contain methods that belong to the domain layer.

• They help the reverse engineer of the system by providing him with orientation points
about the interactions in the system in terms of layers and roles.

7.2 Extracting Roles in the Data Source Layer
As we presented the importance of layers and roles in the context of quality assessment of
enterprise applications, an essential question arises: When these design roles are described in
an informal manner, how can they be identified automatically in a given enterprise application?
In this section we are going to present a suite of role-mining techniques for several design roles
that characterize the data source layer.

7.2.1 Roles in the Data Source Layer
Before presenting the detection techniques we are first going to present the main specific roles
that methods and classes may have within the data source layer of an enterprise application.

BUPT

108 7. ROLES-AWARE DETECTION OF DESIGN FLAWS

Why do we focus on the data source layer? The reason resides in the fact that this layer
is usually responsible for assuring the proper bridging of two different paradigms i.e., the
relational database and the object-oriented model; and it is well known that this issue raises
many understanding and design quality concerns [35].

Design Roles of Methods. Design roles are revealed especially by particular patterns of
provided functionality and therefore methods are the lower level design entities that can have
design roles. Thus, within the data source layer, a method might have one of the following
four roles: to retrieve (R), insert (I), modify (M) or delete (D) information from tables of the
relational database that ensures the persistency within the enterprise application. Knowing
the role of methods (i.e., R, I, M, D) has multiple uses:

• it helps understanding the specific purpose of each method that interacts with the
database.

• it helps localizing within the system all design fragments that have the same specific
role (e.g., all methods that modify information from the database).

• knowing that a method tends to cumulate more than a single role (e.g., a method
that both retrieves and modifies database information) is often a sign of an ill-designed
method.

Design Roles of Classes. According to the way a class is structured, different roles associated
to a class within the data source layer have been identified. We have presented in Section
2.4.2 several design roles of classes. Next, we will focus on the following roles: Table Data
Gateway (TDG) [27], Row Data Gateway (RDG) [27] and Active Record (AR) [27].

7.2.2 Identifying Roles in the Data Source Layer
In order to browse through the classification of the methods from the data source layer
according to the R, I, M, D design roles, we have developed a similar visualization to the
one from Section 4.5.3 regarding the Distribution of Operations. In this new visualization
a polymetric view represents a method which performs one or more of the SQL well-known
instructions. Inside the rectangle representing a method one or up to four squares may appear,
one for each type of SQL operation performed. Every square has a color, according to its
meaning (green, blue, orange and red – i.e. the same meaning as in Section 4.5.3).

Starting from the definitions of the three roles of classes, we identified a set of specific features
based on which they can be automatically identified in the source code. A first mandatory
condition for our identification rules is that each table is accessed by a single class. Thus, if
a class C accesses a table that is also accessed by another class, then no role can be assigned
to C. Apart from this precondition, the rest of the roles’ identification process for a class is
captured by the flowchart depicted in Figure 7.2.

Thus, if class C accesses one or more tables, is stateless (i.e., it contains only static and/or final
attributes) and all its public methods ensure the communication with the database (belong
to the data source layer) then class C is a Table Data Gateway.

BUPT

7.2. EXTRACTING ROLES IN THE DATA SOURCE LAYER 109

Figure 7.2: Identification of roles in the data source layer.

BUPT

110 7. ROLES-AWARE DETECTION OF DESIGN FLAWS

In a similar fashion we say that a class C is a Row Data Gateway if it accesses one single table,
all its public methods belong to the data source layer, and for each column in the accessed
table class C defines an attribute.

Eventually, if class C accesses one table, for each column in the accessed table defines an at-
tribute and, beside public methods from the data source layer, it contains also public methods
belonging to the domain layer, then class C is considered to be an Active Record.

Related Work. Increasing the level of understanding in software systems by identifying
features (roles) in the source code is not a new technique. For example, in [73] is introduced a
concern graph for finding and describing concerns (subsets of a program source code activated
when exercising a functionality) using structural program dependencies in object-oriented
applications. Our approach, by extracting from the source code the dependencies between
object-oriented design entities (e.g. classes, methods) and relational entities (e.g., tables,
columns, primary and foreign keys), makes possible the identification of a complementary set
of features specific for enterprise applications.

7.2.3 Design Information for Identifying Roles
Based on the extraction algorithm presented in Figure 7.2, we conclude that for the identifi-
cation of the three aforementioned roles from the data source layer the following information
is needed:

• the attributes of a given class.

• the columns of a given database table.

• the specific functionality of a given method (i.e., communication with the database,
domain logic).

• the tables from the database accessed by a given class.

The information needed in order to extract automatically the roles of classes from the data
source layer is obtained from the source code according to the meta-model introduced in
Chapter 4.

7.3 Roles-Aware Detection of Design Flaws
Being aware of the various design roles that classes and methods can have in an enterprise
system, does not only improve the understanding of a system’s design, but it can also help to
improve the accuracy of detecting design problems, by taking into account the specific design
rules of enterprise applications. In this section we present a roles-aware enhancement for the
detection of two well-known related design flaws i.e., Data Class and Feature Envy [26, 72].

BUPT

7.3. ROLES-AWARE DETECTION OF DESIGN FLAWS 111

7.3.1 Data Class versus Data Transfer Object
Data Classes are dumb data holders that provide almost no functionality. The lack of func-
tional methods may indicate that related data and behavior are not kept in one place; this
makes it a strong signal for an improper data abstraction. But is a Data Class always a design
flaw? As we are going to see next, in an enterprise application, the answer is not obvious and
it depends on layers and roles.

In order to explain, let us consider the following example. Considering an enterprise application
that manages a library, let’s assume that all books are stored in a table called books (see
Figure 7.3), and we need to find out the information about a specific book, identified based
on its ID.

create table books (
ID int primary key,
title varchar,
author varchar,
publisher varchar,
year int)

Figure 7.3: Table books.

In order to retrieve the information, we create the BookDataSource class. As you notice in
Figure 7.4 the class is designed to fulfill the Table Data Gateway role. For each column in
the table a method that returns its corresponding value was created (e.g., method getAuthor
returns the value stored in the column named author for the given ID). Consequently, a class
from the domain layer that needs all the information about a book would need to call 4
methods. It is clear that retrieving in this manner large amounts of data, by performing
numerous fine-grained calls to the server will be simply a performance killer [56].

So, how should methods from a Table Data Gateway class retrieve information to its clients?
A solution that is very often encountered in enterprise systems is the use of a Data Transfer
Object (DTO) 1 [27, 56]. A DTO is the instance of a class with little more than a bunch of
fields and corresponding getters and setters for each of these fields. Such an object carries data
between a client (the domain layer) and a server (the data source layer which encapsulates
access to a database) in order to reduce the number of fine-grained method calls. In Figure 7.6
we see how the use of a DTO (i.e., class Book from Figure 7.5) changes the BookDataSource
example.

In an enterprise application a Data Transfer Object will always be detected as a design flaw
i.e., as a Data Class. But reporting a class that fulfills the Data Transfer Object design role
as a design flaw, is a false positive; in other words an undesirable “detection noise”. In order

1a.k.a. Value Object [1]

BUPT

112 7. ROLES-AWARE DETECTION OF DESIGN FLAWS

class BookDataSource {
public String getAuthor(int id)

throws Exception {
...
String query;
query = "SELECT author from books " +

"WHERE ID=" + id;
ResultSet rs = statement.executeQuery(query);
return rs.getString("author");

}

public String getTitle(int id)...
public String getPublisher(int id)...
public String getYear(int id)...

}

Figure 7.4: Class BookDataSource.

to improve the detection accuracy of Data Classes [57] for enterprise applications, classes that
have a DTO design role must be removed from the list of suspects.

Based on the previous considerations, we can define the following detection rule for a Data
Transfer Object role: these are classes that fulfill the following conditions (see Figure 7.7):
1. the class is a Data Class in conformity with the detection rule described in [39].
2. the class appears as a return type in at least one public method of a class that has a

Table Data Gateway design role or,
3. the class appears as a formal parameter type or as a local variable type in at least one

public method of a Table Data Gateway class.
The first mentioned condition ensures that the analyzed class does not contain functionality
and, obviously, contains only attributes and accessor methods (i.e., setters and getters) while
the other two reflect the usage of the class from an entity whose role is Table Data Gateway.
Thus, the second condition reflects the situation when data are read from a method belonging
to a TDG class and passed, probably, to methods from the domain layer. The last condition is
fulfilled by methods which are responsible for storing data within tables and the data which has
to be made persistent is received usually from the domain layer embedded into a parameter.

7.3.2 Enhanced Detection Rule for Feature Envy
Feature Envy [26] is another frequent design flaw that refers to methods that appear to be
more interested in the data (i.e., the attributes) of another class than those of its own class.
Oftentimes, this design flaw appears in methods which collaborate with Data Classes. In other
words, Feature Envy usually is the sign of abnormality that appears on the clients side in case
of an improper data encapsulation [57].

BUPT

7.4. EVALUATION OF THE APPROACH 113

class Book {

private String author, title, publisher;
private int year;

public void setAuthor(String author) {
this.author = author;

}

public String getAuthor() {
return author;

}
//other getters and setters methods

}

Figure 7.5: Class Book - a Data Transfer Object.

In [58] Marinescu proposes a metrics-based technique for automatically detecting methods
affected by Feature Envy. The detection technique takes into account how many attributes
are accessed by methods from other classes – either directly or by using accessor methods. This
“foreign” usage is then compared with how many attributes are accessed from the definition
class. Based on the aforementioned detection rule, the getBook method listed in Figure 7.6 is
apparently affected by Feature Envy, due to the fact that it accesses all the fields of class Book
(via setter methods). But as discussed in this section, class Book is designed by intention as
a data carrier i.e., as a Data Transfer Object. Thus the apparent Feature Envy we identified
in getBook is harmless and should not be refactored.
Based on the design roles discussed so far in this chapter we can now propose a more accurate
detection rule for Feature Envy, in the context of enterprise applications. The new detection
rule for Feature Envy will count usages of attributes from another class only if the provider
class has not the design role of a Data Transfer Object. In Section 7.4 we will see that the
impact of eliminating DTO classes from the list of data providers increases the accuracy of
detecting Feature Envy.

7.4 Evaluation of the Approach
In order to evaluate the approach, we have conducted different experiments on the suite of
enterprise applications whose main characteristics are summarized in Table 4.3. Most of these
experiments are made automatically and are based on the implementations we present in the
Appendix B. These implementations were introduced into the DATES module, part of the
iPlasma environment.

In iPlasma the detection techniques for identifying design flaws are implemented as Java

BUPT

114 7. ROLES-AWARE DETECTION OF DESIGN FLAWS

class BookDataSource {

public Book getBook(int id) throws Exception
{

...
query = "SELECT * from books " +

"WHERE ID=" + id;
rs = statement.executeQuery(query);
Book b = new Book();
b.setAuthor(rs.getString("author"));
b.setTitle(rs.getString("title"));
b.setPublisher(rs.getString("publisher"));
b.setYear(rs.getInt("year"));
return b;

}
}

Figure 7.6: Class BookDataSource revised.

Figure 7.7: Detection of Data Transfer Object.

classes. In order to find the entities affected by a particular design flaw we apply the cor-
responding detection technique on the model of the analyzed system. When the DATES
plugin is loaded into the INSIDER front-end it will override the existing implementations of
detections for finding entities affected by Data Class and Feature Envy design flaws in “reg-
ular” object-oriented applications with the ones suitable for enterprise applications presented
in Section 7.3.

The result of our approach described in this chapter adds into the DATES module the filters
described by Table 7.1. The last two columns of the table are only new implementations of
the existing filters, by taking into account the design roles of classes.

BUPT

7.4. EVALUATION OF THE APPROACH 115

Name Is Applied-To Is True if Entity
isTDG class is Table Data Gateway
isRDG class is Row Data Gateway
isAR class is Active Record

isDTO class is Data Transfer Object
Data Class class is Data Class

Feature Envy method is Feature Envy

Table 7.1: The introduced filters.

Figure 7.8: Roles of methods in KITTA.

7.4.1 Identification of Roles
In Figure 7.8 we present the visualization of the roles of methods from the KITTA application.
As we can notice, there are some methods which have more than a role. For example, the
fourth method from the figure which has 2 roles (e.g., insert and delete, according to the
Distribution of Operations introduced in Section 4.5.3) accesses 4 tables from the source code
and performs an insert into table child and three delete operations from priorities, parentappreq
and request.

In contrast, in the Payroll application, as revealed by Figure 7.9 each method has a single role
and accesses a single table.

In the rest of this section we present the results of applying the algorithm presented in Figure
7.2 for the identification of roles within the analyzed applications. In order to give a view
about the size of the data source layer, we present in the first line of Table 7.2 the number of
classes that were mapped to the data source layer according to the rules defined in Section
4.1.3.

As a result, we identified a total of 45 classes that have precise design roles. 11 of these
classes come from the Payroll case-study and are identified as being a Table Data Gateway
(TDG). One further class from the TRS system is also mapped to the TDG role.

BUPT

116 7. ROLES-AWARE DETECTION OF DESIGN FLAWS

KITTA TRS Payroll CentraView
Data Source Classes 9 10 16 837
Table Data Gateway 0 1 11 33
Row Data Gateway 0 0 0 0

Active Record 0 (2) 0 0 0

Table 7.2: Identified roles.

Figure 7.9: Roles of methods in Payroll.

At first sight the surprising thing is that our approach did not identify any class as being a
Row Data Gateway or Active Record. In order to check if this is due to the rather small size
of the case-studies or if it is a conceptual problem, we performed a in-depth analysis, partially
manually and partially supported by the iPlasma [53] analysis environment. We analyzed
in particular classes from the data source layer with a special focus on those for which no
mapping to a role was made. The findings and particularities of each of the four systems are
discussed next.

The KITTA application. In this system 1 class from the 9 belonging to the data source
belongs also to the domain and presentation layer, so it breaks the steady rule about the
dependencies between the main layers. 5 classes from the data source belong both to the
data source and domain layer and access two or more tables, so definitely they do not have
one of the presented roles. The rest of the remaining classes (3) look very much like Active
Records but they were not identified because they break the condition regarding the isomorphic
schema between the attributes of the class and the columns in the accessed table. At this
point we decided to relax the condition about the isomorphic schema and consider a class as
being an Active Record if between its attributes and the columns in the accessed table there
is a match greater than 80%. Using this more loose condition, 2 out of the 3 classes from the
application were identified as Active Records.

BUPT

7.4. EVALUATION OF THE APPROACH 117

The TRS application. Here, the application of the aforementioned relaxation of the rule for
Active Record did not improve the number of classes mapped to roles. Apart from that, we
found 2 classes that belong to all the three main layers and the other remaining 7 belonging
both to the domain and presentation layer. Again, some of the classes were accessing more
than one table, while among those that access only one table the matching level between
attributes and table columns was under 80%.

The Payroll application. In this application only 4 classes from the data source layer were
not classified as having a role. Here we discovered that the precondition about the access
of a table by a single class (see Section 7.2.2) is the reason why 2 further classes were not
identified as being a Table Data Gateway.

The CentraView application. Due to the great number of classes which were classified as
belonging to the data source layer a complete manual inspection is almost impossible. Thus,
we performed a reduced inspection which is presented next.

According to the mapping of classes into layers from the Section 4.5.1 in CentraView from
the 837 classes classified as belonging into the data source layer, 659 belong also into the
presentation layer and, consequently, they can not be classified as having a Row Data Gateway
or Active Record design roles. Thus, we continue our inspection by regarding only to the
remaining 178 classes which were mapped only into the data source layer. Moreover, in order
to find RDG or AR classes we filter them according to the number of tables accessed – i.e.,
we are only interested in the mentioned cases only to those classes that access a single table.
From the remaining classes which were not identified as having a role we find out only 10
which access a single table.

We performed an investigation among the 10 classes and none of them have the role of being
a Row Data Gateway or Active Record. For example, we found class SaveDraftEJB as having
2 attributes while the accessed table emailmessage contains 23 columns. Such discrepancy is
reflected in most of the 10 classes (7), while in the case of the remaining 3 we have only a
match among the number of attributes from the class and the number of columns from the
accessed table. Anyway, one attribute has a user-defined type and, obviously, its type cannot
have the same type as the column.

7.4.2 Roles-Aware Detection of Design Flaws
In Section 7.3 we proposed an enhanced detection technique for two well known design flaws
(i.e., Data Class and Feature Envy) so that they deliver more accurate results on enterprise
applications. Next, we are going to discuss the results obtained by detecting the two design
flaws using first the initial detection rules found in [58] and then the enhanced version described
in Section 7.3. The first line of Table 7.3 presents the number of Data Classes from the
applications obtained by considering each analyzed enterprise application as being a “regular”
object-oriented one. By putting in correspondence the identified roles in each application
with the first line of Table 7.3, the results do not surprise us because when we encounter

BUPT

118 7. ROLES-AWARE DETECTION OF DESIGN FLAWS

KITTA TRS Payroll CentraView
Data Class 4 8 15 259

Data Transfer Object 0 2 11 11
Revised Data Class 4 6 4 248

Table 7.3: Detection of Data Class.

a class whose role is a Table Data Gateway we are aware that it is possible to have Data
Classes with a special role. The data from the second line of Table 7.3 are obtained by
applying the Data Transfer Object identification presented in Section 7.3. Using the proposed
enhanced detection technique for identifying classes affected by Data Class design flaw in
enterprise applications, Data Transfer Object classes will not be detected as being affected by
the design flaw.

KITTA TRS Payroll CentraView
Feature Envy 1 7 48 513

Revised Feature Envy 1 5 9 433

Table 7.4: Detection of Feature Envy.

In Table 7.4 we present the number of methods from each analyzed system that are affected by
the Feature Envy design flaw. Similar to the previous table, the first line contains the results
obtained by disregarding the fact that the system is an enterprise one. It was no surprise that
Payroll and CentraView were the system where most Feature Envy methods were detected,
when the “classical" detection technique was applied, due to the fact that they have 11 Data
Transfer Objects (which is also a consequence of the large number of Table Data Gateway
classes identified before).

When we applied the revised Feature Envy detection technique (see Section 7.3.2) the accesses
to the attributes of Data Transfer Objects classes were not counted anymore. Consequently,
a large number of the methods that were apparently affected by Feature Envy disappeared
from the reported suspects because they were either used for retrieving and storing data from
the database (methods from the data source layer) or they were manipulating the data from
the database (methods from the domain layer).

Concluding Remarks.

• The first conclusion is that, living in a less than perfect world, the identification rules
for detecting design roles must be less strict in order to also capture the cases where
the particularities of a specific role are slightly altered.

• Most of the applications showed us that in some cases the basic rule for designing
enterprise applications i.e., the separation between layers is brutally broken. Thus, the

BUPT

7.4. EVALUATION OF THE APPROACH 119

identification rules work fine only if the application is conforming (at least intentionally)
to the general design rules and practice defined for enterprise applications.

• The experiments indicate that roles have a big impact on eliminating “noise" (i.e., false
positives) from “classical" detection rules.

• In order to obtain accurate results when we apply “regular” object-oriented detection
techniques on enterprise applications we need to analyze the impact of roles upon the
detection techniques for other design flaws.

• The results encourage us to extend the number of identifiable roles, as this will be
definitely necessary for improving the accuracy of the detection for further design flaws
(e.g., ShotgunSurgery [26]).

BUPT

8

Conclusions. Future Work

The contribution of this Ph.D. thesis is in the field of understanding and quality assurance for
enterprise applications.

The first part of the thesis presents in a brief manner the main characteristics of enterprise
applications and the state of the art regarding the actual techniques of understanding and
quality assessment of object-oriented and enterprise applications. The presentation reveals
that:

• in order to perform reverse engineering on enterprise applications a meta-model specific
to this kind of applications is an absolute necessity.

• quality assurance for enterprise applications requires specific techniques and tools that
have to take into account their particularities.

• the existing techniques for quality assurance for “regular” object-oriented system might
bring inaccurate results when applied to enterprise software systems.

• when performing the process of data reverse engineering it is advisable to take into
account besides the information extracted from the schema and the database also in-
formation extracted from the usage of tables in the source code.

The second part of the thesis is a step forward in designing, understanding and quality assessing
of enterprise applications by taking into account their particularities that distinguish them from
“regular” object-oriented systems.

We introduced a specific meta-model for representing enterprise applications in order to fa-
cilitate the process of reverse engineering upon this type of applications. We create a model
extractor which loads from the source code as well as from the schema of the database
the information specified in the meta-model. We evaluated the accuracy of the introduced
meta-model by performing different experiments on a suite of enterprise applications.

As primary applications of the introduced meta-model we created a suite of design related

BUPT

121

quality analyses which enable to find out the accesses of tables in the source code, the
affiliation of design entities to the three well-known existing layers (data source, domain and
presentation) as well as the entities which belong to multiple layers. We also defined some
visualizations regarding the accesses of tables in the source code.

Regarding the data reverse engineering, as part of understanding enterprise applications the
introduced approach:

• allows us to identify automatically the related tables from which data are retrieved in
the source code.

• based on the related tables, it identifies possible interrelationships between relational
tables (e.g., Missed Constraints).

• provides us with the objectual meaning of foreign keys, as revealed from the interactions
between source code and database schema (the D, A, I Relations).

The main features regarding quality assessment of enterprise applications:

• allow us to identify automatically roles which design entities (classes and methods)
might have within the application. The identification helps understanding the specific
purpose of each entity and, at the same time, helps localizing within the system all
design fragments that have the same specific role.

• increase the accuracy of the detection of two well-known design flaws (Data Class and
Feature Envy) by making them take into account the identified design roles that entities
might have. This way, design related analyses for “regular” object-oriented became
suitable when applied to enterprise applications.

We conducted different experiments in which we automatically:

• extracted the models of further inspected enterprise applications.

• identified interrelationships between tables in enterprise applications, interrelationships
which were not explicitly defined in the schema of the involved relational table.

• extracted objectual meaning of foreign keys in enterprise applications, some of the
classified foreign keys being explicitly defined in the schema of the involved relational
database and others being automatically inferred by our technique.

• identified roles in enterprise applications, by using the extraction algorithm described
in Chapter 7. The experiment that we performed has revealed a further contribution:
based on the identified roles, the accuracy of traditional techniques for detecting design
flaws has been improved, by removing a number of false positives for the Data Class and
Feature Envy flaws. This has been possible because traditional object-oriented quality
assessment techniques do not take into account the special roles that a class or method
might have in an enterprise application.

BUPT

122 8. CONCLUSIONS. FUTURE WORK

Contributions of the thesis The problems addressed within this dissertation were presented
at [47] within the Ph.D. Symposium in 2006, as part of the Working Conference on Reverse
Engineering.

We summarize the contributions of this Ph.D. thesis as follows:

• The DATES meta-model which allows us to find out the connections between the two
programming paradigms involved in enterprise applications. The introduced meta-model
was published in [51].

• Different static analyses regarding the communication between the object-oriented and
relational parts of enterprise applications.

• The approach which allows us to detect the missed constraints within tables, as part of
the data reverse engineering process. The introduced detection is based on the usages
of tables in the source code. We present this work also in [50].

• The refined meaning of foreign keys (i.e., the objectual meaning term we introduced
in [49]) which allows us to differentiate between an is a and a part of relations among
tables related by foreign keys.

• Finding different roles among the methods and the classes (e.g., Table Data Gateway,
Row Data Gateway and Active Record) from the data source layer.

• Creating new static analyses which identify design flaws in enterprise applications by
taking into account the various roles of classes. The main subject of the paper [46] are
the last two mentioned contributions.

• The tool support called DATES that accompanies all the introduced approaches. We
presented DATES at an international conference and a part of its facilities are presented
in [48]. Regarding the infrastructure built and used we published the papers [55, 54,
53, 52].

Future Work We will focus our future work on the next fronts:

• We intend to extend the tool support in order to be able to use it upon enterprise
applications written using other technologies (.NET, different persistency providers,
different communication techniques). In this direction, we have already constructed a
tool called Mc# which extracts design facts from C# source code [65].

• We intend to continue the evaluation of the introduced approaches against other enter-
prise applications.

• We intend to experiment the extraction of Row Data Gateway and Active Record roles
using different thresholds regarding the isomorphic schema between the class and the
accessed table within the class.

BUPT

123

• Due to the fact that roles proved to have a big impact on eliminating false positives from
“classical" detection rules, we are going to extend the number of identifiable roles in
order to analyze their impact on other detections of design flaws (e.g., Shotgun Surgery
[26]).

• We intend to integrate our tool support into an IDE like Eclipse in order to facilitate its
use, as the integration would allow to analyze the system in real-time instead of using
a separate tool to construct its model.

BUPT

Bibliography

[1] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns: Best Practicies and Design
Strategies. Prentice Hall, 2001.

[2] S. Ambler. Agile Database Techniques. John Wiley & Sons, 2003.

[3] S.W. Ambler and P.J. Sadalage. Refactoring Databases: Evolutionary Database Design.
Addison-Wesley, 2006.

[4] C. Batini and M. Scannapieca. Data Quality: Concepts, Methodologies and Techniques.
Springer Verlag, 2006.

[5] C. Bauer and G. King. Java Persistance with Hibernate. Manning Publications, 2007.

[6] J.M. Bieman and B.K. Kang. Cohesion and Reuse in an Object-Oriented System. Proc.
ACM Symposium on Software Reusability, 1995.

[7] M. Blaha and W. Premerlani. Observed idiosyncracies of relational database designs. In
Proc. Working Conference on Reverse Engineering, 1995.

[8] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and scalability of ejb
applications. In Proc. OOPSLA, 2002.

[9] E. Chikofsky. The Necessity of Data Reverse Engineering - Preface to Data Reverse
Engineering: Slaying the Legacy Dragon. McGraw-Hill, 1996.

[10] E.J. Chikofsky and J.H. Cross. Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software, 7(1):13–17, January 1990.

[11] O. Ciupke. Automatic Detection of Design Problems in Object-Oriented Reengineering.
In Technology of Object-Oriented Languages and Systems, 1999.

[12] A. Cleve, J. Henrard, and J.L. Hainaut. Data reverse engineering using system depen-
dency graphs. In Proc. Working Conference on Reverse Engineering, 2006.

[13] W. Cook and S. Rai. Safe query objects: Statically typed objects as remotely executable
queries. In Proc. International Conference on Software Engineering, 2005.

[14] C.J. Date. An Introduction to Database Systems. Addison Wesley, 2004.

[15] I. de Guzman, M. Polo, and M. Piattini. An integrated environment for reengineering.
In Proc. IEEE International Conference on Software Maintenance, 2005.

124

BUPT

BIBLIOGRAPHY 125

[16] Tom DeMarco. Controlling Software Projects; Management, Measurement and Estima-
tion. Yourdan Press, New Jersey, 1982.

[17] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineering Patterns.
Morgan Kaufmann, 2003.

[18] Y. Deng and D. Chays. Testing database transactions with agenda. In Proc. International
Conference on Software Engineering, 2005.

[19] S. Ducasse and M. Lanza. The class blueprint: Visually supporting the understanding of
classes. In IEEE Transactions on Software Engineering, 2005.

[20] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an extensible language-independent
environment for reengineering object-oriented systems. In Proc. International Symposium
on Constructing Software Engineering Tools, 2000.

[21] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting
duplicated code. In Proc. IEEE International Conference on Software Maintenance, 1999.

[22] C. Baragoin et al. DB2 Cube Views: A Primer. IBM International Technical Support
Organization, 2003.

[23] G. Booch et al. Object-Oriented Analysis and Design with Applications. Addison Wesley,
2007.

[24] K. Brown et al. Enterprise Java Programming with IBM Websphere. Addison-Wesley,
2001.

[25] SEMA FAST Parser. Internal Programmer’s Manual 2001.

[26] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[27] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2003.

[28] European Union. Community Research & Development Information Service CORDIS FP.
Homepage of information society technologies. In http://www.cordis.lu/ist/, 2005.

[29] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[30] C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically generated queries in
database applications. In Proc. International Conference on Software Engineering, 2004.

[31] J.L. Hainaut, J. Henrard, J.M. Hick, D. Roland, and V. Englebert. The nature of data
reverse engineering. In Proc. Data Reverse Engineering Workshop, 2000.

[32] J.M. Hick and J.L. Hainaut. Strategy for database application evolution: The DB-MAIN
approach. In Proc. Conceptual Modeling - ER, 2003.

[33] R. Kazman, S.G. Woods, and S.J. Carriere. Requirements for integrating software ar-
chitecture and reengineering models: Corum ii. In Proc. IEEE Working Conference on
Reverse Engineering, 1998.

BUPT

126 BIBLIOGRAPHY

[34] W. Keller. Mapping objects to tables: A pattern language. In Proc. European Conference
on Pattern Languages of Programs, 1997.

[35] W. Keller. Object/relational access layers: a roadmap, missing links and more patterns.
In Proc. European Conference on Pattern Languages of Programming and Computing,
1998.

[36] R. Koschke, J.F. Girard, and M. Wurthner. An intermediate representation for reverse
engineering analyses. In Proc. IEEE Working Conference on Reverse Engineering, 1998.

[37] M. Lanza and S. Ducasse. A Categorization of Classes based on the Visualization of their
Internal Structure: the Class Blueprint. In OOPSLA 2001 proceedings, 2001.

[38] M. Lanza and S. Ducasse. Polymetric views - a lightweight visual approach to reverse
engineering. In IEEE Transactions on Software Engineering, 2003.

[39] M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice. Springer Verlag, 2006.

[40] Manny Lehman and Les Belady. Program Evolution: Processes of Software Change.
London Academic Press, London, 1985.

[41] W. Li and S. Henry. Maintenance Metrics for the Object Oriented Paradigm. IEEE Proc.
First International Software Metrics Symp., pages 52–60, may 1993.

[42] M. Lippert and S. Roock. Refactoring in Large Software Projects. John Wiley & Sons,
2006.

[43] A. Liu, L. Bass, and M. Klein. Analyzing Enterprise JavaBeans Systems Using Quality
Attribute Design Primitives. Technical Note CMU/SEI-2001-TN-025., 2001.

[44] M. Lorenz and J. Kidd. Object-Oriented Software Metrics. Prentice-Hall, 1994.

[45] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev. Static techniques for
concept location in object-oriented code. In Proc. International Workshop on Program
Comprehension, 2005.

[46] C. Marinescu. Identification of Design Roles for the Assessment of Design Qual-
ity in Enterprise Applications. In Proc. IEEE International Conference on Program
Comprehension (ICPC), Athens, Greece. IEEE Computer Society Press, 2006.

[47] C. Marinescu. Quality Assessment of Enterprise Software Systems. In Proc. Working
Conference on Reverse Engineering (WCRE Doctoral Symposium), Benevento, Italy.
IEEE Computer Society Press, 2006.

[48] C. Marinescu. DATES: Design Analysis Tool for Enterprise Systems. In Proc. IEEE
International Working Conference on Source Code Analysis and Manipulation (SCAM),
Paris, France. IEEE Computer Society Press, 2007.

[49] C. Marinescu. Discovering the Objectual Meaning of Foreign Key Constraints in
Enterprise Applications. In Proc. Working Conference on Reverse Engineering (WCRE),
Vancouver, Canada. IEEE Computer Society Press, 2007.

BUPT

BIBLIOGRAPHY 127

[50] C. Marinescu. Identification of Relational Discrepancies between Database
Schemas and Source-Code in Enterprise Applications. In Proc. International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE
Computer Society Press, 2007.

[51] C. Marinescu and I. Jurca. A Meta-Model for Enterprise Applications. In Proc.
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC). IEEE Computer Society Press, 2006.

[52] C. Marinescu, R. Marinescu, P.F. Mihancea, D. Raţiu, and R. Wettel. Analysis Infras-
tructure for Quality Assesment of Object-Oriented Design. In Proc. International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC).
Editura Mirton, Timişoara, 2005.

[53] C. Marinescu, R. Marinescu, P.F. Mihancea, D. Raţiu, and R. Wettel. iPlasma: An
integrated platform for quality assessment of object-oriented design. In Proc. IEEE
International Conference on Software Maintenance (ICSM Industrial and Tool Volume),
Budapest, Hungary. IEEE Computer Society Press, 2005.

[54] C. Marinescu, R. Marinescu, and T. Gîrba. A Dedicated Language for Object-
Oriented Design Analyses. In CAVIS Workshop. eAustria Research Institute from
Timişoara, 2004.

[55] C. Marinescu, R. Marinescu, and T. Gîrba. Towards a Simplified Implementation
of Object-Oriented Design Metrics. In Proc. IEEE International Software Metrics
Symposium, Como, Italy. IEEE Computer Society Press, 2005.

[56] F. Marinescu. EJB Design Patterns: Advanced Patterns, Processes, and Idioms. John
Wiley & Sons, 2002.

[57] R. Marinescu. Measurement and Quality in Object-Oriented Design. PhD thesis, "Po-
litehnica" University of Timişoara, 2002.

[58] R. Marinescu. Detection strategies: Metrics-based rules for detecting design flaws. In
Proc. IEEE International Conference on Software Maintenance, 2004.

[59] R. Martin, D. Riehle, and F. Buschmann. Pattern Languages of Program Design 3.
Addison-Wesley, 1998.

[60] R.C. Martin. Agile Software Development, Principles, Patterns, and Practices. Prentice
Hall, 2002.

[61] T.J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering,
2(4):308–320, dec 1976.

[62] R. McClure and I. Kruger. Sql dom: Compile time checking of dynamic sql statements.
In Proc. International Conference on Software Engineering, 2005.

[63] Petru Florin Mihancea. The extraction of detailed design information from C++ software
systems. Master’s thesis, Faculty of Automatics and Computer Science, "Politehnica"
University of Timişoara, 2004.

BUPT

128 BIBLIOGRAPHY

[64] Petru Florin Mihancea. Type Highlighting. A Reverse Engineering Visual Approach to
Characterize the Clients of Class Hierarchies. Ph.D. Report 3, "Politehnica" University
of Timişoara., 2007.

[65] P.F. Mihancea, G. Ganea, I. Verebi, C. Marinescu, and R. Marinescu. McC and Mc#:
Unified C++ and C# Design Facts Extractors Tools. In Proc. International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE
Computer Society Press, 2007.

[66] C. Nock. Data Access Patterns: Database Interactions in Object-Oriented Applications.
Addison-Wesley, 2003.

[67] S. Paul, A. Prakash, E. Buss, and J. Henshaw. Theories and techniques of program
understanding. In Proc. Conference of the Centre for Advanced Studies on Collaborative
research, 1991.

[68] D. Raţiu and F. Deissenboeck. How programs represent reality (and how they don’t). In
Proc. Working Conference on Reverse Engineering, 2006.

[69] D. Raţiu and F. Deissenboeck. Programs are knowledge bases. In Proc. IEEE International
Conference on Program Comprehension, 2006.

[70] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw Hill, second
edition, 2002.

[71] D. Ratiu. Memoria: A Unified Meta-Model for Java and C++. Master Thesis, "Po-
litehnica" University of Timişoara, 2004.

[72] A.J. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1996.

[73] M.P. Robillard and G.C. Murphy. Concern graphs: finding and describing concerns
using structural program dependencies. In Proc. International Conference on Software
Engineering, 2002.

[74] S. Staiger. Static analysis of programs with graphical user interface. In Proc. European
Conference on Software Maintenance and Reengineering, 2007.

[75] COMPOST Team. Recoder Project, http://recoder.sourceforge.net/. University of Karl-
sruhe.

[76] S. Tichelaar. Modeling Object-Oriented Software for Reverse Engineering and Refactor-
ing. PhD thesis, Institute of Informatics and Applied Mathematics, University of Bern,
2001.

[77] R. Wettel and R. Marinescu. Archeology of code duplication: Recovering duplication
chains from small duplication fragments. In Proc. International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC05), 2005.

[78] D. Yeh and Y. Li. Extracting entity relationship diagram from a table-based legacy
database. In Proc. European Conference on Software Maintenance and Reengineering,
2005.

BUPT

Appendix A

Visualizing Accesses to Tables

In this appendix we provide the implementation details regarding the introduced visualizations
from Section 4.5.3.

A.1 Tables Accesses. Implementation
In order to obtain automatically the Tables Accesses visualization we implemented it within
the iPlasma environment which contains the jMondrian module which enables performing
visualizations.

In Line 1 we include the new analysis into a package containing the plugins name in order to
be loaded when the DATES module is instantiated within the used environment. In Lines
2..11 we include different classes from more packages, most of them being part of iPlasma.

1 package lrg.dates.plugins.visualizations;

2 import lrg.common.abstractions.plugins.visualization.*;
3 import lrg.common.abstractions.entities.*;
4 import lrg.jMondrian.view.ViewRenderer;
5 import lrg.jMondrian.layouts.FlowLayout;
6 import lrg.jMondrian.figures.Figure;
7 import lrg.jMondrian.painters.RectangleNodePainter;
8 import lrg.jMondrian.util.LinearNormalizerColor;
9 import lrg.jMondrian.commands.AbstractNumericalCommand;
10 import lrg.insider.util.Visualization;
11 import java.util.ArrayList;

In Line 12 we create a class which extends AbstractVisualization, this relation being mandatory
in order to have a new plugin which displays the defined entities. In Line 14 we establish the
name of the visualization and we defined explicitly the entity for which the defined analysis is
applied (in this case, the whole system).

BUPT

130 APPENDIX A. VISUALIZING ACCESSES TO TABLES

12public class AccessedTables extends AbstractVisualization{
13 public AccessedTables(){
14 super("Tables Accesses", "", "system");
15 }

16 public void view(AbstractEntityInterface entity) {

17 ArrayList set = entity.getGroup("table group").getElements();
18 Figure f = new Figure();

19 f.nodesUsing(set, new RectangleNodePainter(true).
20 width(new AbstractNumericalCommand(){
21 public double execute(){
22 return
23 ((Double)(((AbstractEntity)receiver).
24 getProperty("NSt").
25 getValue()))doubleValue() * 10;
26 }}).
27 height(new AbstractNumericalCommand(){
28 public double execute(){
29 return
30 ((Double)(((AbstractEntity)receiver).
31 getProperty("NAC").
32 getValue()))doubleValue() * 10;
33 }}).
34 color(new LinearNormalizerColor(set,
35 Visualization.metricCommand("NC"))).
36 name(Visualization.stringCommand("Name")));

37 f.layout(new FlowLayout(5,5,300));
38 ViewRenderer r;
39 r = new ViewRenderer("Tables Accesses");
40 f.renderOn(r);
41 r.open();
42 }
43}

The parameter received by the method view(Line 16) is nothing else than the system upon
the visualization is performed. We get from the analyzed system all the tables(Line 17) end
for each existing table we create a node inside the figure instantiated in 18. In 20 we specify
the width of the rectangle representing the table (in this case, the value of the NSt – Number
of Statements metric), in 27 its height is enriched with the value of NAC – Number of Classes
which access the tables while in 34 we associate a color representing the Number of Columns
the table contains.
The last group of lines specify the parameters of the created visualization (i.e., title, dimen-
sions, layout).

BUPT

A.2. DISTRIBUTION OF OPERATIONS. IMPLEMENTATION 131

A.2 Distribution of Operations. Implementation
In this section we present how we implemented the visualization regarding the Distribution of
Operations. Like in the previous case, it is applicable to a system (Line 5).

The figure displayed is created within the body of emthod createFigure from Line 12. In Line
14 we get from the system all the existing table and in 15 we filter them in order to present
only those which are used in the source code, by applying the isUsedTable filter.

1 package lrg.dates.plugins.visualizations;
2 //import statements ...
3 public class OperationsDistribution extends

AbstractVisualization{
4 public OperationsDistribution(){
5 super("Distribution of Operations", "", "system");
6 }

7 public void view(AbstractEntityInterface theSystem) {
8 Figure f = createFigure(theSystem);
9 ViewRenderer r = new ViewRenderer("Distribution of Operations");
10 f.renderOn(r); r.open();
11 }

12 public Figure createFigure(AbstractEntityInterface theSystem) {
13 GroupEntity allTables;
14 allTables = theSystem.getGroup("table group");
15 allTables = allTables.applyFilter("isUsedTable");

We represent each used table in the source code with a rectangle which contains four rectangles
inside. From Lines 25 to 30 we get for each table the corresponding set of select, insert, update
and delete SQL statements. In 31 we create a collection of four elements, each element being
the group of one of the four existing types of SQL operations.

16 ArrayList<AbstractEntityInterface> alls;
17 alls = allTables.getElements();
18 Figure f = new Figure();

19 f.nodesUsingForEach(alls, new
20 RectangleNodePainter(true).
21 name(Visualization.stringCommand("Name")),
22 new AbstractFigureDescriptionCommand(){
23 public Figure describe(){
24 Figure fig = new Figure();

25 GroupEntity select = new
26 GroupEntity("select",((AbstractEntity)receiver).
27 getGroup("select operations").getElements());

28 GroupEntity insert = ... //insert operations

BUPT

132 APPENDIX A. VISUALIZING ACCESSES TO TABLES

29 GroupEntity update = ... //update operations
30 GroupEntity delete = ... //delete operations

31 ArrayList statements = new ArrayList();
32 statements.add(insert); statements.add(select);
33 statements.add(update); statements.add(delete);

The width and the height representing each group of instructions are proportional with the
cardinality of the group and they are set by the instructions from Lines 37 and 41. Regarding
the color, it is set according to the type of the SQL instructions – for example, for the insert
SQL statements the color is green (Line 48).

34 fig.nodesUsing(statements, new RectangleNodePainter(true)
35 .width(new AbstractNumericalCommand(){
36 public double execute(){
37 return ((GroupEntity)receiver).size() * 10;
38 }})
39 .height(new AbstractNumericalCommand(){
40 public double execute(){
41 return ((GroupEntity)receiver).size() * 10;
42 }})
43 .color(new AbstractNumericalCommand(){
44 public double execute(){
45 GroupEntity group = (GroupEntity)receiver;
46
47 if(group.getName().equals("insert"))
48 return Color.GREEN.getRGB();

49 if(group.getName().equals("select"))
50 return Color.BLUE.getRGB();

51 if(group.getName().equals("update"))
52 return Color.ORANGE.getRGB();

53 if(group.getName().equals("delete"))
54 return Color.RED.getRGB();

55 return Color.WHITE.getRGB();}}));
56 fig.layout(new FlowLayout(5,5,90));
57 return fig;}});

58 f.layout(new FlowLayout(5,5,500));
59 return f;
60 }}

BUPT

Appendix B

Roles-Aware Detection of Design
Flaws

This appendix presents the implementation of two roles (e.g., Table Data Gateway and Data
Transfer Object) that classes may have within enterprise applications according to the algo-
rithms presented in Section 7.1, respectively Section 7.3.

B.1 Table Data Gateway. Implementation
The implementation of the identification of the Table Data Gateway role within the DATES
module implies extending the class FilteringRule (Line 10), class which was imported by the
instruction from Line 8. In Line 13 we specify that this filter is applied to a class.
1 package lrg.dates.plugins.filters.classes;

2 import lrg.common.abstractions.plugins.Descriptor;
3 import lrg.common.abstractions.entities.*;
4 import lrg.dates.core.AnnotationDATES;
5 import lrg.dates.core.schema.sql.TableSchema;
6 import lrg.dates.privates.filters.IsStaticOrFinal;
7 import lrg.dates.privates.filters.

HasOnlyPublicDatasourceMethods;
8 import lrg.common.abstractions.plugins.filters.

FilteringRule;
9 import java.util.Collection;
10 public class IsTDG extends FilteringRule
11 {
12 public IsTDG() {
13 super(new Descriptor("isTDG", "", "class"));
14 }

Starting with Line 15 we override the applyFilter method from the base class in order to let
it return the proper value regarding the TDG role of a class.

BUPT

134 APPENDIX B. ROLES-AWARE DETECTION OF DESIGN FLAWS

In Line 19 we get from the current class the annotation we introduced when the DATES
module was loaded within the iPlasma plaftorm. In order to find out if the class contain
only public datasource methods we apply the HasOnlyPublicDatasourceMethods filter upon
it (Line 23).

In Line 27 we get the group of attributes the class contains and we apply the IsStaticOrFinal
filter upon them. If the number of the attributes of the class is equal with the number of
attributes which are static or final then it means that the condition regarding the stateless of
the class was fulfilled (Line 30).
15 public boolean applyFilter(AbstractEntityInterface anEntity) {
16 if (anEntity instanceof lrg.memoria.core.Class == false)
17 return false;
18 AnnotationDATES an;
19 an = (AnnotationDATES)anEntity.getAnnotation("dat");

20 //check if the class has only public datasource methods
21 HasOnlyPublicDatasourceMethods pds;
22 pds = new HasOnlyPublicDatasourceMethods();
23 if (pds.applyFilter(anEntity) == false)
24 return false;

25 //check if the class has only static final attributes
26 GroupEntity attributes;
27 attributes = anEntity.getGroup("attribute group");
28 GroupEntity attrStFi;
29 attrStFi = attributes.applyFilter(new IsStaticOrFinal());
30 if(attributes.size() != attrStFi.size())
31 return false;

The final checked condition is related to the number of tables the class accesses. We get the
collection of accessed tables by the class from the value assigned to an variable from Line 19.
If the class accesses at least one tables then it means that we find a class which has the Table
Data Gateway role.
32 //check if the class accesses one or more table
33 Collection<TableSchema> accessedTables;
34 accessedTables = an.getAccessedTables();
35 if (accessedTables.size()==0)
36 return false;

37 return true;
38 }
39}

In the following lines we provide the implementation of the applyFilter method from the class
HasOnlyPublicDatasourceMethods. In Line 2 we obtaine the group of methods the class
contains. In Line 3 we retain inside the group only those methods which are public. Next
(Line 4), we create a new group which contains only the methods which are public and belongs

BUPT

B.2. DATA TRANSFER OBJECT. IMPLEMENTATION 135

to the data source layer. Finally, we compare the size of the two groups and we return the
corresponding result.

1 public boolean applyFilter(AbstractEntityInterface anEntity) {
2 GroupEntity mt = anEntity.getGroup("method group");
3 mt = mt.applyFilter(new IsPublicMethod());

4 GroupEntity ds = mt.applyFilter(new isDatasource());
5 return (mt.size()==ds.size());
6 }

B.2 Data Transfer Object. Implementation
In order to establish if a class is a Data Transfer Object we create a new class which, like in
the previous case, extends FilteringRule. In Line 12 we instantiate the filter for identifying
Data Classes inside “regular” object-oriented systems and a mandatory condition which has
to be fulfilled in order to be a DTO is that the class has to be identified as being a regular
Data Class (Line 14).

1 package lrg.dates.plugins.filters.classes;

2 import lrg.common.abstractions.plugins.filters.FilteringRule;
3 import lrg.common.abstractions.plugins.Descriptor;
4 import lrg.common.abstractions.entities.*;
5 import lrg.dates.core.Dates;
6 import lrg.dates.plugins.filters.isDatasource;

7 public class IsDTO extends FilteringRule {
8 public IsDTO() {
9 super(new Descriptor("isDTO", "", "class"));
10 }

11 public boolean applyFilter(AbstractEntityInterface anEntity) {
12 lrg.insider.plugins.filters.memoria.classes.DataClass dc =

new lrg.insider.plugins.filters.memoria.classes.DataClass();

13 boolean isDataClass = dc.applyFilter(anEntity);

In Line 16 we get from the analyzed system all the classes and in 17 we retain only those
which are defined in the project (i.e., we exclude the library classes). From the existing classes
we get in 20 only those which were identified as having the TDG role.

In the following lines we get all the types which appear into the identified TDG as return
types, parameter types and local variables types. We create in 24 a new group which contains
the distinct entities of the aforementioned types.

In Line 27 we filter the created group in order to let it contain only the defined classes within

BUPT

136 APPENDIX B. ROLES-AWARE DETECTION OF DESIGN FLAWS

the project. If the created group contains the inspected entity (referenced by the anEntity
variable) then it means that we identified a class whose role is Data Transfer Object.

14 if(isDataClass) {
15 lrg.memoria.core.System system = Dates.getSystem();

16 GroupEntity classes = system.getGroup("class group");
17 classes = classes.applyFilter("model class");

18 IsTDG isTDG = new IsTDG();

19 GroupEntity ds = classes.applyFilter(new isDatasource());
20 ds = ds.applyFilter(isTDG);

21 GroupEntity rt = ds.getGroup("return types").distinct();
22 GroupEntity pt = ds.getGroup("parameter types");
23 GroupEntity vt = ds.getGroup("local variable types");

24 GroupEntity types = new GroupEntity("g", rt.getElements());
25 types.addAllDistinct(pt);
26 types.addAllDistinct(vt);

27 types = types.applyFilter("model class");

28 if (types.isInGroup((AbstractEntity)anEntity))
29 return true;
30 }
31 return false;
32 }
33}

BUPT

List of Publications

Scientific articles (papers) published in the proceedings

(volumes) of international scientific conferences
organized abroad, with ISI ranking

[1] Cristina Marinescu, Discovering the Objectual Meaning of

Foreign Key Constraints in Enterprise Applications, Proceedings of the

14th Working Conference on Reverse Engineering (WCRE 2007),

Vancouver, Canada, IEEE Computer Society Press. ISBN 0-7695-3034-6.

[2] Cristina Marinescu, DATES: Design Analysis Tool for Enterprise

Systems, Proceedings of the 7th IEEE International Working Conference on

Source Code Analysis and Manipulation (SCAM 2007), Paris, France, Tool

Demonstrations Section, IEEE Computer Society Press. ISBN 0-7695-2880-

5/07.

[3] Cristina Marinescu, Identification of Design Roles for the

Assessment of Design Quality in Enterprise Applications, Proceedings

of the 14th IEEE International Conference on Program Comprehension

(ICPC 2006), IEEE Computer Society Press. ISBN 0-7695-2601-2/06.

[4] Cristina Marinescu, Quality Assessment of Enterprise Software

Systems, Proceedings of the 13th Working Conference on Reverse

Engineering (WCRE 2006), Doctoral Symposium Section, Benevento, Italy,

IEEE Computer Society Press. ISBN 0-7695-2719-1/06.

[5] Cristina Marinescu, Radu Marinescu, Tudor Girba, Towards a

Simplified Implementation of Object-Oriented Design Metrics,

Proceedings of the 11th IEEE International Software Metrics Symposium

(METRICS 2005), IEEE Computer Society Press. ISBN 0-7695-2371-4.

Scientific articles (papers) published in the proceedings

(volumes) of international scientific conferences
organized in Romania, with ISI ranking

[6] Cristina Marinescu, Ioan Jurca, A Meta-Model for Enterprise

Applications, Proceedings of the 8th International Symposium on Symbolic

and Numeric Algorithms for Scientific Computing (SYNASC 2006),

Timisoara, Romania, IEEE Computer Society Press. ISBN 0-7695-2740-

X/06.

BUPT

Scientific articles (papers) published in the proceedings
(volumes) of international scientific conferences,

indexed in internationally recognized publication

databases

[7] Cristina Marinescu, Identification of Relational Discrepancies

between Database Schemas and Source-Code in Enterprise

Applications, Proceedings of the 9th International Symposium on Symbolic

and Numeric Algorithms for Scientific Computing (SYNASC 2007),

Timisoara, Romania, IEEE Computer Society Press. ISBN 0-7695-3078-

8/08. [DBLP, IEEE Explore]

[8] Petru F. Mihancea, George Ganea, Ioana Verebi, Cristina Marinescu,

Radu Marinescu, McC and Mc#: Unified C++ and C# Design Facts

Extractors Tools, Proceedings of the 9th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2007),

Timisoara, Romania, IEEE Computer Society Press. ISBN 0-7695-3078-

8/08. [DBLP, IEEE Explore]

[9] Cristina Marinescu, Radu Marinescu, Petru F. Mihancea, Daniel Ratiu,

Richard Wettel, iPlasma:An Integrated Platform for Quality

Assessment of Object-Oriented Design, Proceedings of the 21st IEEE

International Conference on Software Maintenance (ICSM 2005), Tool

Demonstration Track, 2005. [DBLP, IEEE Explore]

Scientific articles (papers) published in the proceedings

(volumes) of other scientific conferences organized in
Romania

[10] Cristina Marinescu, Radu Marinescu, Petru F. Mihancea, Daniel Ratiu,

Richard Wettel, Analysis Infrastructure for Quality Assesment of

Object-Oriented Design, Proceedings of the 6th International Symposium

on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC

2004), Timisoara, 2004

[11] Cristina Marinescu, Radu Marinescu, Tudor Girba, A Dedicated

Language for Object-Oriented Design Analyses, CAVIS Workshop,

eAustria Research Institute from Timisoara, 2004.

BUPT

List of Research Grants

International Research Grants (as Team Member)

[1] Swiss National Science Foundation IB7320-110997/2005 - Network of

reengineering expertise.

[2] BMBWK GZ45.527/1-VI/B/7a/2002-2005 - Verificarea sistemelor. Grant

of the Austrian Government.

National Research Grants (as Director)

[3] PN-II TD 94/17.09.2008 - Asigurarea Calitatii in Sistemele Software

Distribuite.

[4] CNCSIS TD GR76/23.05.2007 - Evaluarea Calitatii in Sistemele Software

distribuite

[5] CNCSIS TD 58GR/18.09.2006 - Evaluarea Calitatii in Sistemele Software

distribuite

National Research Grants (as Team Member)

[6] PN-II 357/1.10.2007 - Metode si instrumente pentru asigurarea

continua a calitatii in sisteme software complexe.

[7] CNCSIS 98GR/11.06.2008 - Tehnologii bazate pe inteligenta

artificiala pentru software-ul si infrastructura de retea specifice retelelor

radio de urmatoarea generatie.

[8] CEEX Modul II 5880/18.09.2006 - Mediu distribuit pentru controlul si

optimizarea evolutiei sistemelor software.

[9] CEEX Modul II 3147/01.10.2005 - Asigurarea calitatii proiectarii in

sisteme software industriale

[10] CNCSIS 46GR/11.05.2007 - Tehnologii bazate pe inteligenta

artificiala pentru software-ul si infrastructura de retea specifice retelelor

radio de urmatoarea generatie.

[11] CNCSIS A1/GR181/19.05.2006 - Mediu integrat evolutiv pentru

asigurarea calitatii software-ului

BUPT

