

DEVELOPING AUTOMATIC

SYNTHESIS METHODOLOGIES

FOR QUANTUM CIRCUITS USING

GENETIC ALGORITHMS

Teză destinată obţinerii

titlului ştiinţific de doctor inginer

la

Universitatea “Politehnica” din Timişoara

în domeniul Știința Calculatoarelor

de către

Ing. Cristian Ruican

Conducător ştiinţific: Profesor Mircea Vlăduțiu

Referenţi ştiinţifici: Profesor Mircea Petrescu,

 Profesor Dumitru Dumitrescu,

 Profesor Ioan Jurca

Ziua susţinerii tezei: 11.06.2009

BUPT

Seriile Teze de doctorat ale UPT sunt:

1. Automatică 7. Inginerie Electronică şi Telecomunicaţii

2. Chimie 8. Inginerie Industrială

3. Energetică 9. Inginerie Mecanică

4. Ingineria Chimică 10. Ştiinţa Calculatoarelor

5. Inginerie Civilă 11. Ştiinţa şi Ingineria Materialelor

6. Inginerie Electrică

Universitatea „Politehnica” din Timişoara a iniţiat seriile de mai sus în scopul

diseminării expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul

şcolii doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr.14 / 14.07.2006,

tezele de doctorat susţinute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica – Timişoara, 2009

Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea

acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea

ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă

formă este permisă numai cu respectarea prevederilor Legii române a dreptului de

autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea

Universităţii „Politehnica” din Timişoara. Toate încălcările acestor drepturi vor fi

penalizate potrivit Legii române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,

tel. 0256 403823, fax. 0256 403221

e-mail: editura@edipol.upt.ro

BUPT

Cuvânt înainte

Teza de doctorat a fost elaborată pe parcursul activităţii mele în cadrul

Departamentului de Calculatoare al Universităţii „Politehnica” din Timişoara.

Cercetarea a fost efectuată având sprijinul şi suportul necondiţionat al colegilor din

grupul ACSA (Advanced Computing Systems & Architectures).

 Mulţumiri deosebite, recunoştiinţă, stimă şi respect se cuvin conducătorului

de doctorat Prof.Univ.Dr.Ing. Mircea Vlăduţiu care de-a lungul anilor de studiu mi-a

dedicat timp preţios şi mi-a deschis calea spre cercetare. Discuţiile de înaltă

competenţă despre arhitectura calculatoarelor şi despre sinteza circuitelor au

constituit un real sprijin în conceperea acestei teze.

Timişoara, Noiembrie 2008 Cristian Ruican

BUPT

To my daughter, Alexandra Cristiana – for the joy you are.

Ruican, Cristian

Developing Automatic Synthesis Methodologies for Quantum Circuits

using Genetic Algorithms

Teze de doctorat ale UPT, Seria 10, Nr. 14, Editura Politehnica, 2009,

198 pagini, 64 figuri, 14 tabele.

ISSN:1842-7707

ISBN:978-973-625-819-0

Cuvinte cheie: sinteză, algoritm genetic, circuit cuantic

Rezumat: titlul tezei descrie trei domenii care vor fi conectate într-o manieră

ingenioasă şi coerentă în acelaşi timp. Scopul este identificarea metodologiei

adecvate care să realizeze sinteza circuitelor cuantice logice reversibile.

BUPT

Published papers and Impact

This thesis is supported by the following published papers:

 C. Ruican, M. Udrescu, L. Prodan, M. Vladutiu, “Automatic Synthesis for

Quantum Circuits using Genetic Algorithms”, Proceedings ICANNGA’07

“International Conference on Adaptive and Natural Computing Algorithms”,

LNCS 4431 (Springer-Verlag Berlin Heidelberg), Warsaw, Poland, April 2007,

pp. 174–183, ISBN 978-3-540-71589-4 (ISI rank).

 C. Ruican, M. Udrescu, L. Prodan, M. Vladutiu, “A Genetic Algorithm

Framework Applied to Quantum Circuit Synthesis”, Proceedings NICSO’07

“Nature Inspired Cooperative Strategies for Optimization”, Series: Studies in

Computational Intelligence, Vol. 129, (Springer-Verlag Berlin Heidelberg),

Acireale, Italy, November 2007, pp. 419-429, ISBN 978-3-540-78986-4 (ISI

rank).

 C. Ruican, M. Udrescu, L. Prodan, M. Vladutiu, “Software Architecture for

Quantum Circuit Synthesis”, Proceedings ICAISC’08 “International

Conference on Artificial Intelligence and Soft Computing”, Computational

Intelligence: Methods and Applications, (IEEE Computational Intelligence

Society-Poland Chapter), Zakopane, Poland, June 2008, pp. 562-573, ISBN

978-83-60434-50-5.

 C. Ruican, M. Udrescu, L. Prodan, M. Vladutiu, “Quantum Circuit Synthesis

with Adaptive Parameters Control”, Proceedings EuroGP’09 “European

Conference on Genetic Programming”, LNCS 5481 (Springer-Verlag Berlin

Heidelberg), Tubingen, Germany, April 2009, pp. 339-350, ISBN 978-3-642-

01180-1 (ISI rank).

 C. Ruican, M. Udrescu, L. Prodan, M. Vladutiu, “Genetic Algorithm Based

Quantum Circuit Synthesis with Adaptive Parameters”, CEC’09 “IEEE

Congress on Evolutionary Computation”, Trondheim, Norway, May 2009, pp.

896-903, ISBN 978-1-4244-2959-2 (IEEE rank).

 C. Ruican, “Prerequisites of Synthesis Methodology for Quantum Circuits”,

Ph.D. Report 1, Politehnica University of Timisoara, July 2007, pp. 1-87.

 C. Ruican, “Genetic Algorithm Framework for Application Tuning”, Ph.D.

Report 1, Politehnica University of Timisoara, March 2008, pp. 1-66.

BUPT

Contents

1. Introduction ..15

1.1 Motivation ...15

1.2 Aims of the Thesis ..17

1.3 Thesis Outline ..19

2. Background...20

2.1 Quantum Computation ..20

2.2 Genetic Algorithms ...26

2.3 Related Work ...31

3. Analysis of the QCS ..37

3.1 QCS Problem Statement ..38

3.2 Characteristics of the Tool Support ..39

3.3 Levels of Design ...40

3.4 QCS Architecture Overview ..41

3.4.1 Rationale ...44

3.4.2 Constraints...44

3.4.3 Logical View ...45

3.4.4 Process View ..46

3.4.5 Development View ..47

3.5 Architecture Properties ..48

3.6 Classical vs. Quantum Digital Circuit Synthesis50

4. Genetic Algorithm Framework ..53

4.1 Framework Preliminaries ...54

4.2 Framework Packages Architecture ...54

4.2.1 Genetic Algorithm Types ..55

4.2.2 Genome Implementation ..57

4.2.3 Population Implementation ...58

4.2.4 GA Operators ..59

4.2.1 Framework Utilities ..61

4.2.2 Framework Statistics ...63

4.3 Framework Validation ..65

BUPT

5. Genetic Quantum Circuits Synthesis ...69

5.1 Parser Module ..70

5.2 Quantum Circuits Database ..82

5.3 Preparation Steps for Genetic Algorithm ...86

5.4 Integration within ProGA Framework ...90

5.4.1 Initial Circuit Configuration ...91

5.4.2 Synthesis Genetic Algorithm ...93

5.4.3 Circuit Genome ...95

5.4.4 Circuit Output Function ..96

5.4.5 Genome Initialization ...97

5.4.6 Detecting of the Next Gate ...98

5.4.7 Performing Mutation ..99

5.4.8 Performing Crossover .. 102

5.4.9 Fitness Formula Computation .. 105

5.5 Metaheuristic Algorithm ... 106

5.5.1 Parameter Control ... 106

5.5.2 Integration within ProGA Framework .. 107

5.5.3 Adaptive Behavior using Operator Performance 108

5.5.4 How the Change is Made .. 112

5.5.5 Performance Meaning .. 112

6. Experiments Result Evaluation ... 114

6.1 The Experiment Setup ... 114

6.2 Evaluation Approach ... 116

6.3 QCS Tool Verification .. 117

6.3.1 Complete Set of Gates ... 117

6.3.2 Reduced Set of Gates .. 117

6.3.3 Minimal Set of Gates .. 118

6.4 Case Studies .. 119

6.4.1 Three-Qubit Circuit .. 120

6.4.2 Four-Qubit Circuit .. 125

6.4.1 Five-Qubit Circuit .. 130

6.4.3 Six-Qubit Circuit ... 135

BUPT

6.4.5 Seven-Qubit Circuit ... 141

6.5 Additional Experiments .. 148

6.6 Result Evaluation .. 166

6.7 Going Beyond 7-qubit Circuits .. 166

7. Conclusions and Perspectives ... 170

7.1 Thesis Impact and Contributions ... 170

7.2 Future Directions .. 172

7.2.1 Refinement and Future Work .. 172

7.2.2 QCS Integration .. 173

8. Appendix .. 174

8.1 Object Oriented Metrics ... 174

8.1.1 Framework Program Unit Complexity ... 174

8.1.2 Framework Class OO Metrics ... 175

8.2 QCS Initial Genome Solution .. 176

8.3 Statistic Details .. 177

8.4 QCS Genome Implementation Details .. 179

8.5 Quantum Gates Cost ... 183

8.5.1 Cost Details using General Approach .. 183

8.5.2 Cost Details using Function Output .. 183

8.6 GNUplot Script ... 184

9. Bibliography .. 186

BUPT

List of Figures

Figure 1.1: Moore’s Law Representation ..16
Figure 1.2: Taxonomy for Emerging Research Information [16]18
Figure 2.1: Quantum Computation Details[18] ...21
Figure 2.2: Quantum Logic Circuit Adder ...25
Figure 2.3: Abstract Quantum Logic Circuit ..26
Figure 2.4: Genetic Programming Paradigm [19] ..30
Figure 2.5: Cosine-Sine Decompositions [47] ...34
Figure 2.6: The Quantum Shannon Decomposition [47]34
Figure 2.7: Circuit Equivalence as Proposed by Shende et al. [47]35
Figure 3.1: The Design Levels in a Program [62] ..41
Figure 3.2: Software Behavior Deployment ..43
Figure 3.3: QSynTool Architecture Layout ..44
Figure 3.4: System Provided Services ...45
Figure 3.5: QSynTool Process View ...46
Figure 3.6: QSynTool Development View ...47
Figure 4.1: ProGA Framework Architecture ..54
Figure 4.2: Genetic Algorithm Class Diagram ...56
Figure 4.3: Genome Class Diagram...57
Figure 4.4: Population Class Diagram ..58
Figure 4.5: Selector Class Diagram ...60
Figure 4.6: Random Number Generator Architecture ...62
Figure 4.7: Architecture for Execution Time Measurement63
Figure 4.8: Statistic Class Diagram ...64
Figure 4.9: Knapsack Class Diagram ...66
Figure 4.10: Methinks Class Diagram ..68
Figure 5.1: QHDL Parser Details ...72
Figure 5.2: Description of the QCS Parser ..72
Figure 5.3: QHDL Parser Object Model Overview ...74
Figure 5.4: Generic Parser Sequence Diagram ..75
Figure 5.5: Quantum Circuit View as List-in-a-List Structure76
Figure 5.6: Internal Data Structure Object Model Overview77
Figure 5.7: QHDL Parser Object Model Overview ...78
Figure 5.8: Nod Object Model Overview ...79
Figure 5.9: Topological Optimization ...81
Figure 5.10: Iterator Pattern Object Model Overview ...82
Figure 5.11: Database for Quantum Circuits ..83
Figure 5.12: Database Component Diagram ...83
Figure 5.13: Quantum Gate Class Diagram ..84
Figure 5.14: Collection Class for Quantum Gates ..85
Figure 5.15: Creating Collection Sequence Diagram ..86
Figure 5.16: Chromosome Encoding ...89
Figure 5.17: Integration within ProGA Framework ...91

BUPT

Figure 5.18: Genome Configuration ..92
Figure 5.19: Synthesis Genetic Algorithm ..94
Figure 5.20: Synthesis Genome ...96
Figure 5.21: Genome Initialization ..97
Figure 5.22: Mutation Representation ... 100
Figure 5.23: Crossover on Complete Gene(s) ... 102
Figure 5.24: Crossover on Incomplete Gene(s) ... 103
Figure 5.25: History List for Solutions ... 106
Figure 5.26: Adaptive Control Integration .. 107
Figure 5.27: Statistic Data .. 109
Figure 5.28: Operator Performance .. 109
Figure 5.29: Adaptive Design ... 110
Figure 5.30: PerformanceData Class Overview ... 111
Figure 6.1 Synthesis of EPR Circuits [46] ... 167
Figure 6.2 Synthesis of Composite Circuits [11] .. 168
Figure 8.1: Creation of the Initial Genome ... 177
Figure 8.2: Statistic Methods ... 178
Figure 8.3: Output Function Computation .. 179
Figure 8.4: TypeA/TypeB Mutation ... 180
Figure 8.5: Locus Initialization ... 181
Figure 8.6: Type A Crossover ... 182
Figure 8.7: GNUplot Script .. 185

BUPT

List of Tables

Table 1: Single Qubit Gates ...24
Table 2: Multiple Qubit Gates ...24
Table 3: Available C/C++/Java Frameworks ...31
Table 4: Analysis of GA Frameworks ...32
Table 5. Classic vs. Quantum Circuit Design ...51
Table 6. Variable Type Classification ... 114
Table 7: Initial and Evolved Circuit – Complete Gates Set 117
Table 8: Initial and Evolved Circuits – Reduced Gates Set 118
Table 9: Initial and Evolved Circuit – Minimal Gates Set 118
Table 10. Test the Convergence ... 168
Table 11. Program Unit Complexity Metric ... 174
Table 12. Class OO Metrics .. 175
Table 13. Gate Costs and Feasibility ... 183
Table 14. Toffoli Gate Costs [51] .. 184

BUPT

Abstract

This dissertation addresses an important and hard computational problem, the

efficient synthesis of reversible quantum circuits from high-level description

language. The novelty of dissertation is the Genetic Algorithm [GA] being proposed

for the quantum logic circuit synthesis problem, together with the meta-heuristic

algorithm used for the parameters control. A new methodology, with layered

synthesis architecture, is proposed by starting with a description of quantum

circuits, and then progressing through optimization and synthesis phases.

The goal is to understand the application of evolutionary computing

approach to Quantum Circuit Synthesis [QCS] and to provide a software tool that

will allow automatic synthesis. The tool allows for defined configuration and helps in

deciding about the methods and components that are better suited for the proposed

synthesis aim. The problem is motivated by the following observations:

 The necessity to provide more computational power for the actual computers will

move the digital circuit research work at the atomic scale, where the quantum

laws are governing. The demand to shrinkage is also known as Moore’s Law.

 Synthesis tools are necessary, because the technological development is

extremely fast and the researcher’s needs to develop new circuit functions are

high.

 Quantum Computation, as well as its implementation (namely, the quantum

circuits) has received a boost in its importance, due to the new discovered

algorithms that prove the superiority of this field in solving some specific classes

of computational problems.

 There are only few physical quantum circuits available that can manipulate small

quantum particles, but in the near future it is possible to have a stunning variety

of available circuits. Thus, simulation plays an important role now, and synthesis

will eventually play the same role in the near future.

This dissertation introduces a computer aided software tool for automatic

quantum circuit synthesis that is designed to be configurable, flexible, fast and easy

to use by a wide range of researchers. The design is written using Unified Modeling

Language and the software implementation is made in C++ language. The open

source code allows for further development and proves our availability for

discussions concerning quantum circuit synthesis by evolutionary computing

methods. The aim was to develop an open platform that creates all the prerequisites

for the quantum synthesis task.

BUPT

Experiments are performed on several benchmark circuits, thus proving the

synthesis algorithm efficiency. The evolutionary approach allows for testing different

configurations and, together with the meta-heuristic algorithm, provides a powerful

tool even for novice users. The experiments are repeated several times to avoid

lucky guesses, the graphics and figures are explained and – at the same time –

relevant conclusions are extracted.

BUPT

Acknowledgements

The work presented in this dissertation would not have been possible without

guidance and support offered by many people. I would like to express my gratitude

to Professor Mircea Vlăduţiu for supervising me through both MSc and PhD theses.

His insight into circuit design and ability to keep me focused on the big picture,

together with his steadiness and patient support were essential for me.

I owe thanks to Mihai Udrescu-Milosav who introduced me into the quantum

domain when I started the MSc and up to the present moment has shared with me

the ups and downs. His extensive knowledge, essential guidance and permanent

encouragement shared during our meetings allowed to follow my vision. His genuine

friendship is important for me.

I appreciate Lucian Prodan’s helping effort for encouraging me every time I

was struggling, and his involvement in formatting our articles and presentations.

I would like to thank my colleagues for making this dissertation a reality.

During many days, I discussed with them my software abstract ideas, and in the

end, I was able to implement new visions. My colleagues Florin Popa, Florin Ilioiu,

Dan Onica, Mihai Schitcu and Victor Tomescu have provided essential pieces of

advice during refreshing discussions (especially during breaks). I would like to thank

you all for taking the time to read this dissertation, and I hope that you have

enjoyed some of your selected topics.

Finally, I am most thankful for the support of my family, who encouraged

me to continue the academic research over the years. I would like to thank my wife

Violeta-Genoveva and my daughter Alexandra-Cristiana for their patience during the

writing of this dissertation.

Many thanks to all,

BUPT

Chapter 1

1. Introduction

“...it seems that the laws of physics present no barrier to reducing the size of

computers until bits are the size of atoms, and quantum behavior holds sway”

Richard P. Feynman [1]

In the 1970’s and 1980’s several physicists and computer scientists such as Charles

H. Bennett1, Paul A. Benioff2, David Deutsch3 and Richard P. Feynman4 started to

analyze the possibility of using quantum mechanics proprieties in computational

devices. Considering Moore’s Law [2], they understood that in a limited time slot the

shrinking technology would reach the atom scale, where the behavior and properties

of the circuit are governed by the quantum mechanics laws.

1.1 Motivation

In 1982 Feynman proposed a universal quantum simulator, by presenting how a

quantum computer may be used to perform computation, and then pointed out, at

the same time, the difficulties in simulating quantum mechanical systems on

conventional computation devices (exponential memory and time overheads) [3].

He considered that the proposed simulator would allow a physicist to make quantum

experiments within of a quantum computer. Few years later, in 1985, Deutsch

derived a new version of Church-Turing thesis by considering that any physical

process may be perfectly modeled by a quantum computer [4]. After Deutsch’s first

step, many researchers started to search applications for the quantum computer

(i.e. Peter Shor’s demonstration for finding the prime factors of a large integer, Lov

Grover’s database search algorithm, etc) [5] [6].

According to the Moore Law, the quantum level would be reached in 2010-

2020 (see Figure 1.1). This is because our technology will continue to shrink up to

the atom level in order to advance the computing technology (we discuss about the

integration scale and the number of doping impurities within the bases of bipolar

transistors that are required for logic). In our days, small integration scale is hard to

be obtained, due to the amount of the heat that has to be dissipated. The quantum

devices allow reversibility on computation, and therefore it is not dissipating heat.

This is possible because the input and the output, for any quantum device, can be

obtained by starting from the opposite side (it is called “logical reversibility”). If the

circuit may also be run backwardly, then it is called “physically reversible”, hence

1 IBM Research Center, http://www.research.ibm.com/people/b/bennetc/
2 Argonne National Laboratory, http://www.phy.anl.gov/theory/staff/pab.html
3 University of Oxford, http://www.qubit.org/people/david/
4 California Institute of Technology, http://www.zyvex.com/nanotech/feynmanWeb.html

BUPT

16 | 1-Introduction

the second law of thermodynamics assures that it dissipates no heat. In a quantum

computer, we always may reverse the computation for the final state, because

computation is the unitary evolution of an input, over the given system state.

Figure 1.1: Moore’s Law Representation

Another advantage of quantum computers is its increased computation

power. The published quantum algorithms can solve exponential problems from

classical computation more efficiently, by reducing their complexity and having a

better response during the time spent.

For our research, as specified above, some domains we believe are strongly

connected. The merger between quantum computing and genetic algorithms was

already made; the field of Evolvable Quantum Information (EQI) has significantly

grown over the last years [7]. At first glance, the merging of quantum computation

and evolvable computation seems natural and benefic. Indeed, relevant progress

has been signaled in the EQI subfield of Quantum-Inspired Genetic Algorithms

(QIGA) including the so-called evolvable quantum hardware or the automatic

synthesis of quantum circuits by evolvable means. Ongoing developments

concerning the other EQI subfield of Quantum Genetic Algorithms (QGA) have been

presented previously (as published [7] [8] [9] [10] [11] [12]).

Another motivation is to continue the previous research work from the ACSA

[13] group, and to create a solid base for quantum technologies within our

BUPT

1.2 -Aims of the Thesis|17

university. Comparing with quantum simulation5, where there are many software

tools available, the quantum synthesis is still in an incipient phase. One of the

reasons for this low development is the unavailability of quantum physical devices

and missing information about their characteristics. By taking into consideration the

available literature, we consider that quantum synthesis will play an important role

in the near future, as well as the fact that the development of quantum applications

(with links in other domains) will be of great relevance for the success of quantum

computation domain. In this newly created context, the existing software

architecture will be adjusted to the quantum technology or created from scratch,

because the classical solutions cannot be successfully applied.

1.2 Aims of the Thesis

The title for our research "Developing Automatic Synthesis Methodologies for

Quantum Circuits using Genetic Algorithms" describes all three domains that we are

trying to connect in an apprehensive and coherent manner. Our target is to find an

adequate methodology that can perform quantum logic circuit synthesis.

There are many quantum simulators available at this moment, but in the

quantum logic circuit synthesis field, there are only few theoretical papers available.

That is why we are trying to bring our contribution in this very specific aspect of

quantum circuit design. The synthesis relevance has two views. According to the

first one, if the progress in technology is extremely fast, and it is outstripping the

designer’s abilities to make use of the created opportunities; the second view is

generated by the situation where the technology is not available on a large scale,

and the designers can use only a small set of gates for the design. These are the

reasons why the development and the application of new and more suitable design

methodologies are of the highest importance for the modern computer system

industry.

Quantum synthesis has a bigger relevance when it is related to the

simulation results. Any of the result simulation may have a physical implementation

with the help of the synthesis algorithm (we can use a quantum circuit database in

order to support the available circuit types). Therefore, starting from a program

written in a high description language we obtain the physical device with the help of

the automated synthesis process.

The main objective is to create a tool chain for the quantum circuit

synthesis. We are motivated by the desire of bringing together genetic algorithms

and quantum computing. This association is created with the aim of performing

closer-to-optimum synthesis. On the other hand, the goal of this dissertation is also

related to the Advanced Computing Systems and Architectures (ACSA) Laboratory

[13], which aims at fostering the new computing technologies.

Another objective is to continue the work of my colleague Mihai Udrescu,

who was also an advisor for this particular project within ACSA, and to create a solid

base for quantum technologies in our university. We intend to push forward the

5 http://www.quantiki.org/wiki/index.php/List_of_QC_simulators

BUPT

18 | 1-Introduction

research concerning the quantum circuit synthesis, by also involving scientists from

the genetic algorithms field, approach that could be of great importance for

computer science in general.

The motivation presented in this section may seem theoretical and detached

from the actual industry problems. However, the fact is that the industry is seriously

taking into consideration the aspects related to the emerging technologies and

quantum circuits in particular. The industry representatives have quickly reacted to

these emerging problems, and founded a global organization called ITRS

(International Technology Roadmap for Semiconductors), which is jointly sponsored

by European Semiconductor Industry Association, Japan Electronics and

Informational Technology Industries Association, Korea Semiconductor Industry

Association, Taiwan Semiconductor Industry Association, and Semiconductor

Industry Association from USA. As this organization defines its documents, they are

about a continuous evaluation of the semiconductor technology requirements, aimed

at increasing the performance of the integrated circuits. This effort is supported by

industry, suppliers, academia, research groups, and governments [14][15][16]. The

results of the ITRS assessments are published as ITRS reports, which are annually

updated [17][16] (see Figure 1.2).

Figure 1.2: Taxonomy for Emerging Research Information [16]

Computer Aided Design (CAD) has become over the years an important

domain for the development of conventional circuits. To a large scale of developers,

the new synthesis techniques have allowed to create new high performance circuits,

for a wide range of applications. Two topics are of paramount in the CAD field:

BUPT

1.3 -Thesis Outline|19

synthesis and optimization. The synthesis is started from logical or architectural

models, and the optimization is performed on the intermediate results, that are

obtained after applying CAD techniques on the input model. Thus, a designer should

elaborate only the circuit specification, and then the CAD application will create the

possible design, suitable for implementation on the actual hardware technologies.

1.3 Thesis Outline

In Chapter 2, the background is split into three parts. The first one, that intends to

describe the background of quantum computation, the second one in which the

genetic algorithm background is introduced, and the third one section, where actual

research results are presented. Chapter 3 presents the software analysis issues like

requirements and architecture views (use case diagrams and activity diagrams are

employed as a common language).

Chapter 4 defines a new genetic algorithm framework that is used to

implement different genetic algorithms. Its UML architecture is explained and, at the

same time, the source code made available. The framework provides the statistical

information that will later be used to compare the algorithm results, and to adapt

the implementation in order to obtain a better-evolved solution. The framework

utilities, as well as the random number generator and time measurement are useful

for the algorithm assessment. Chapter 5 is dedicated to quantum logic circuit

synthesis. A new genetic algorithm is presented, the genetic operators are detailed

and a new methodology is used for circuit synthesis. The synthesis algorithm was

built by using the support provided by our framework. We identify the principles

necessary for quantum circuit synthesis and optimization.

Chapter 6 elaborates the evaluation methods used for the quantum logic

circuit synthesis assessment and our most general experimental results. The test

methods that are used together with the test setup are focused on several test

cases, proving that the software requirements are fulfilled by the software

implementation. Chapter 7 is dedicated to the dissertation conclusions. The

dissertation contributions and some directions for future work are then presented in

this chapter.

BUPT

Chapter 2

2. Background

“...many interesting problems are impossible to solve on a classical computer,

not because they are in principal insoluble, but because of the astronomical

resources required to solve realistic cases of the problem. The spectacular

promise of quantum computers is to enable new algorithms which render

feasible problems requiring exorbitant resources…” Nielsen, Michael A. and

Chuang, Isaac L. [18]

“…how can computers learn to solve problems without being explicitly

programmed? In other words, how can computers be made to do what is

needed to be done, without being told exactly how to do it?” Koza, John R. [19]

Without necessarily assuming prior knowledge about quantum computing and

genetic algorithms, this section will mainly outline the fundamental concepts. Two

relevant references can be pointed out as major milestones in presenting this

background: the first one is about quantum computation [18] and the second one is

presents the genetic algorithms field [20]. These two textbooks correspond to the

two major domains that are under our attention herein. In the last subchapter, the

related work is presented, by pointing out the research advances made in the

quantum logic circuit synthesis field.

2.1 Quantum Computation

In a broad sense, computation is the processing of the mathematically represented

information. In our case, and from a physical standpoint, quantum computation is

the computation made with coherent atomic scale dynamics [21]. A quantum

computer is a physical device able to perform computation using quantum

mechanical phenomenon, like entanglement and data superposition. For a quantum

computer, only the quantum mechanics laws are relevant [22][23][24][25][26].

Four quantum mathematical fundamental postulate, which lay the ground rules were

verified through different experiments and described in several quantum

computation textbooks [18][27][28].

Postulate 1 – state vectors and state space

A closed quantum system is described by a unit vector in a complex inner product

space known as a state space [18].

The quantum states, encoded by qubits (i.e. quantum bits that can

physically be implemented by employing photons, electron spin, nuclear spin, etc),

BUPT

2.1 -Quantum Computation|21

are represented as vectors. A simple quantum system may be represented by using

the spin 1/2 particle. For example, a spin-down | and a spin-up | may be used to

represent the binary information 0| and 1| (see Figure 2.1 a). In Bra-Ket

notation, a qubit is a normalized vector in a two dimensional Hilbert space

)Cβ,α(1βα,
β

α
1|β0|αψ|

22

 , where 0| and 1| are the basis

states. The quantum system is represented by a superposition of basis states, while

a classical binary system can only settle in one of the basis states “0” or “1”.

Another advantage of quantum computers is the computational power (see Figure

2.1 b).

 a) b)

Figure 2.1: Quantum Computation Details[18]

Inner product6

The inner product of two complex vectors n21 x,x,xx and n21 y,y,yY

is defined as:

n

1n

0i

n21ii

y

y

xxxyxYX
(2.1)

6 known as dot product or scalar product

BUPT

22 | 2-Background

Postulate 2 – unitary evolution

The evolution of a closed quantum system is described by a unitary transformation

 || ' U [18].

Transpose

Given a matrix A , the corresponding transpose matrix written TA is the matrix

obtained by exchanging sA' rows and columns, thus satisfying the identity

T11T)A()A(.

ifc

heb

gda

ihg

fed

cba
T

(2.2)

Unitary

A square matrix U is a unitary matrix if
1H UU , where

HU denotes the

conjugate transpose and
1U
 is the matrix inverse.

Postulate 3 - measurement

The measurement of a quantum state | involves a special set of operators. The

result will be one of the eigenvalue ω| of the operator , with a certain probability

when the operator is applied to | . Measurement is destructive and will change the

measurement state | to ω| [18].

Measurement will always find the system in one discrete basis state

determined by its outcome; at the same time this is the only way to extract the

information from a quantum system. Unfortunately, the measurement destroys the

quantum superposition state. The measurement result is one of the operator's

eigenvalue (one of the supposed basis states), with a probability given by the

squared amplitude of the measured basis state. For example, for the quantum state

given as 11|4.010|3.001|2.000|1.0 , the probability to read the second

qubit as 0| is 22 3.01.0 . After measurement, the quantum computation is not

reversible any longer.

Having the state 1|β0|α| , the orthonormal basis
2

1|0|
|

and
2

1|0|
|

 the

221

1

2

1
)Pr(

222

 and the

2

βα
)Pr(

2

 when)Pr(is the so-called “projecter operator”.

BUPT

2.1 -Quantum Computation|23

For example, if we are to measure the state

β

α
ψ| in the basis 1| , the

projective operator is

10

00
10

1

0
|11| , therefore, it can be written that the

2
β

β

α
β0

β

α

10

00
βα|11|)1Pr(

 . This example shows

that measuring in the computational basis, the probability for getting a 0 or a 1 is

the squared magnitude of the associated amplitude.

Postulate 4 – tensor product

The state space of a composite physical system is the tensor product of the state

spaces of the component systems [18].

For example, two-qubit state space is 422 CCC and the computational

basis states are 11|1|1|,10|0|1|,01|1|0|,00|0|0| .

Tensor product7

Given a [m x n]-size matrix A and a [p x q]-size matrix B , their direct product

BAC is a [(mp)x(nq)] matrix with elements defined by klijαβ bac , where

k)1i(pα and l)1j(qβ . In order to illustrate this, we compute the

tensor product of the following complex-valued matrices,

hg

fe
B;

dc

ba
A

(2.3)

the tensor product operation will give

dhdgchcg

dfdecfce

bhbgahag

bfbeafae

BA
(2.4)

Reversibility

We say that a logic gate is reversible if the number of input wires is equal to the

number of output wires and the gate simply permutes the set of input values. We

say that a logic circuit is reversible if it contains only reversible gates, and it has no

fan-out.

7 known also as Kronecker product

BUPT

24 | 2-Background

Quantum Gates

In Table 1 and Table 2, several quantum gates are presented together with the

associated symbol and the matrix representation (more details in references such as

[29] [30] [31] [23]).

Table 1: Single Qubit Gates

Symbol Name SW-Notation Matrix

Hadamard hadamard

 11

11

2

1

Pauli X opX

01

10

Pauli Y opY

0i

i0

Pauli Z opZ

 10

01

Phase opS

i0

01

8/π opT

4/πie0

01

Identity i

10

01

Table 2: Multiple Qubit Gates

Symbol Name SW-Notation Matrix

Controlled-Not cnot

0100

1000

0010

0001

Controlled-Z cZ

 1000

0100

0010

0001

BUPT

2.1 -Quantum Computation|25

Controlled-

phase
cS

i000

0100

0010

0001

Swap swap

1000

0010

0100

0001

Toffoli toffoli

01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

Quantum Circuits

Any quantum phenomenon having a finite number of states can be modeled as a

quantum circuit. The quantum gate is a physical device implementing a unitary

operator that represents the quantum state transformation. Due to the unitary

property, all quantum circuits are reversible; furthermore, these circuits are

considered the most feasible implementation solution for quantum algorithms. A

good description is also provided within reference [32].

A quantum circuit is composed of one or more quantum gates placed in a

defined order. The order is important for quantum computation, which is made by

using two quantum registers, an important output for the quantum logic circuit

representation. The horizontal lines define the number of qubits, while the vertical

lines denote a coupling between various qubits. In other words, a quantum circuit is

defined as one or more quantum operations that are applied on a quantum register.

As quantum circuit example, the quantum two-qubits adder is presented in

the Figure 2.2. Going to a more abstract level, the quantum circuit may be seen as

a sequence of quantum gates placed on the qubit lines as shown in Figure 2.3.

Figure 2.2: Quantum Logic Circuit Adder

BUPT

26 | 2-Background

Figure 2.3: Abstract Quantum Logic Circuit

 The quantum logic circuit exhibits many similarities with their classical

counterparts. The quantum gates are connected through quantum wires that carry

qubits encoded quantum information. The most difficult obstacles in the quantum

circuit implementation are related to the decoherence of quantum superposition due

to the quantum state interaction with the environment, and with the quantum state

transformation precision due to subsequent computation steps.

2.2 Genetic Algorithms

The Genetic Algorithms are adaptive heuristic search algorithms based on

evolutionary ideas of natural selection used to find solutions for optimization and

search problems. Genetic Algorithms have been subject to intensive research in the

last decade, as many reported results are providing successful solutions to their

respective problems. The GA development covers a wide variety of designs and

engineering applications. The solutions are, on several cases, more efficient, more

elegant, and more complex than the solutions discovered by the human mind [19]

[33] [34] [35] [36] [37].

Biological Terminology

In Nature, the living organisms are composed of cells, whereas a cell contains one

or more chromosomes (the organisms with paired chromosomes are called diploid

and the organisms with unpaired chromosomes are called haploid) [20]. A collection

of chromosomes is called genome. Further, the chromosome is divided into genes

(i.e. a gene may encode the eyes color and another gene may encode the hair

color). The different values for a gene are called alleles (i.e. blue eyes, green eyes,

etc). The position of a gene within the chromosome is called locus.

Another used term is the genotype that refers to a particular set of genes

from a set of chromosomes. The phenotype - defined contrary to the genotype -

defines characteristics such as morphology, development and behavior. If the

genotype is inherited, the phenotype is developed during the life of the biological

organism. In Nature, during sexual reproduction, the crossover exchange genes

between every chromosome involved; the mutation is the result from copying errors

BUPT

2.2 -Genetic Algorithms|27

occurring during the reproduction process. The fitness is associated with the

probability of that organism living for reproduction (viability).

In genetic algorithms, the chromosome is a possible candidate solution to a

specific problem. Many times, the chromosome is replaced by the term genome,

mainly because the candidate solution is composed only of a single chromosome

(remember that a collection of chromosomes creates a genome). The genes are

considered as being subparts of a chromosome and are used to encode a specific

feature or a specific parameter. Different values for the genes define the alleles,

which may be for example, in bit string chromosome values of 0 or 1. The crossover

operator, in most of the cases, exchange genetic information between two

chromosomes, and the mutation operator flips a bit from a random locus.

Mathematical Foundations

The “Holland’s Schema”, defined by equation (2.5), is considered to be the

foundation basis for explanations regarding the genetic algorithms power [38] [39].

A schema is a template that identifies a subset of strings with similarities at certain

string positions. For example, the considered schema 1**0*1 describes all the set of

strings of length 6 where at position 1 and 6 there is a 1, and where at position 4

there is a 0. The symbol “*” represents a “don’t care”, thus we may have at

positions 2, 3 and 5 either a 0 or 1. The Holland’s Schema Theorem or Fundamental

Theorem of Genetic Algorithms considers that “short, low-order, schemata with

above-average fitness increase exponentially in successive generations” [38] :

]p1[*
a

)H(f*)t,H(m
)1t,H(m

t
 (2.5)

where:

 m(H,t) is the number of strings belonging to schema H at generation t

 f(H) is the observed fitness of schema H

 at is the observed average fitness at generation t

 p is the probability of disruption (because crossover and mutation may destroy

the schema) as presented in equation (2.6) [38]

mdiffc ο(H)*p(H,t)*p*p
1l

δ(H)
p

(2.6)

where:

)H(ο , called “schema order”, is the number of fixed positions from the string

(for example, in the schema 1**0*1, 3)H(ο)

 l is the string length

 pm is the mutation probability

 pc is the crossover probability

BUPT

28 | 2-Background

)H(δ , called “length of schema” is the length between first and the last specific

positions

(for example, in the schema 1**0*1, 5)16()H(δ)

)t,H(pdiff is the probability that the second parent does not match the schema

H

Using other terms, Goldberg considers in reference [39], that a schema with

“fitness values above the population average will receive an increasing number of

samples in the next generation, while schemata with fitness values below the

population average will receive a decreasing number of samples”.

 The following example aims at revealing the differences between different

schemas. Thus, we consider the following string S and the two schemata H1 and H2:

 S = 0 1 0 1 0 0 0 0

 H1= * * 1 * * * 0 *

 H2= * * * 0 * 1 * *

If a point crossover is applied between positions 3 and 4, it is easy to observe that

schemata H1 will be destroyed because the “1” from position 3 and the “0” from

position 7 will be placed in different offsprings. The schemata H2 will survive

because the “0” from position 4 and the “1” from position 6 will be placed into the

same offspring, after the crossover operation. The 437)H(δ 1 and

246)H(δ 2 , thus H1 will be destroyed with 7/4)1l/()H(δ)H(p 11d

and H2 will be destroyed with 7/2)1l/()H(δ)H(p 22d .

Applying mutation for a particular schema, the schema survives when all the

)H(ο positions survive. Thus, computing the)()1(Hopm we obtain the probability

of surviving mutation. Considering that 1mp the result for the survival

probability is [38]:

mcs p*)H(οp*
1l

)H(δ
1p

(2.7)

The underlying explanation behind this theorem is that instead of trying to

construct a complex string in order to represent the solution, better and better

strings are constructed using valuable information from the previous samples.

Design

In his first book [19], Koza creates associations between nature and genetic

algorithms: “in nature, the evolutionary process occurs when the following four

conditions are satisfied:

 An entity has the ability to reproduce itself.

 There is a population of such self-reproducing entities.

BUPT

2.2 -Genetic Algorithms|29

 There is some variety among the self-reproducing entities.

 Some differences in the ability to survive in the environment is associated with

the variety”.

The corresponding steps to be fulfilled by a genetic algorithm (see Figure

2.4), according to Koza [19], will have to map the previous four conditions. Thus, a

simple genetic algorithm works as follows:

1. Start the algorithm with a randomly generated population (only the

chromosome length is fixed).

2. Repeat the following steps until the termination criterion is satisfied:

a. Calculate and evaluate the fitness for each individual from

the population.

b. Create a new population using the evolution operators with a

certain probability. The used operators are:

i. Just copy the individuals into the new population.

ii. Create two or one offsprings from recombining two

individuals (crossover from substrings).

iii. Create a new individual by randomly mutate a

position from its genome.

The best individual from each step is considered as solution for that iteration.

BUPT

30 | 2-Background

Figure 2.4: Genetic Programming Paradigm [19]

 The flowchart proposed by Koza is the simplest method to evolve a genetic

algorithm, and it is the basis for a wide number of applications. The flowchart does

not provide detailed information; many details have to be filled in by the developer,

at the implementation moment (i.e. population size, encoding, probabilities, etc). In

the available literature there are also other versions for this flowchart, but the

BUPT

2.3 -Related Work|31

structure is mainly the same (depending on the algorithm complexity, other

processes are inserted in the flowchart).

2.3 Related Work

Frameworks

There are several published genetic algorithm frameworks (see Table 3), each of

them allowing ways of implementing new genetic schemes, with the proposed

purpose of finding solutions for a given problem. The programming languages

diversity is rediscovered in the available implementation for these frameworks:

there are frameworks developed in C++, Java, Lisp, etc.

Table 3: Available C/C++/Java Frameworks

Name Details Language

Galib [40] Galib contains a set of C++ genetic algorithm

objects. The library includes tools for using

genetic algorithms in order to perform

optimization in any C++ program by

employing any representation and genetic

operators.

C++

Open Beagle [41] A C++ Evolutionary Computation (EC)

framework; it provides a high-level software

environment in order to implement any kind of

EC, with support for tree-based genetic

programming.

C++

GPC [42] The GP kernel is a C++ class library that can

be used to apply genetic programming

techniques to all kinds of problems.

C++

PGAPack [43] It is a general-purpose, data-structure-neutral,

parallel genetic algorithm library.
C

Splicer [44] A genetic algorithm tool used to solve searches

and optimization problems.
C

GAGS [45] A C++ class library, which contains classes

used to program all the Genetic Algorithm

elements.

C++, Java

Comparing our framework with other approaches, several details are to be

noticed:

 In Galib, Matthew Bartschi Wall has defined a C++ library of genetic algorithm

components. The library implementation evolved over three years since 1993,

and even had an update in 2007. We consider that due to its complexity, the

library is not so easy to use, even if the author proposes a solution where the

BUPT

32 | 2-Background

user has to start a new implementation following an existing example. The work

is documented, the source code is available, but the architecture views are

missing.

 The OpenBeagle was developed starting from 2002 and provides a high-level

software environment for evolutionary computation algorithms, while providing

support for different data structures (i.e. tree-based, bit string, integer or real

vector, etc). Authors consider that the framework follows strong principles of

object oriented programming, by using different levels of abstractions and

allowing easy code reuse. The software architecture is explained partially in the

provided manual, mainly with focus on the mentioned abstract layers; however,

important details about the relations between the (abstract) objects seem to be

flawed (more elaborated terms, relations within the data structure are not

enough detailed).

 The GPC is one of the first known C++ frameworks for tree-based genetic

programming. It was developed mainly between 1993 and 1997, even before a

C++ standard was available. Inside the framework there are parts that do not

promote a clear object oriented programming, there are no design patterns

implemented, and there are many relations and usages between the classes.

The library provides support for automated defined functions, tournament and

proportional selection, steady state genetic programming, multiple populations,

improved random generators, etc.

Another view concerning the mentioned frameworks - this time considering only the

C++ approaches - is presented in Table 4 .

Table 4: Analysis of GA Frameworks

Name Com-

plexity

Data

structure

Architecture

views

Abstract

layers

Comments

Galib high complex - - The library is not so easy to

use, even the author

proposes a start-up solution

Open

Beagle

medium complex - + The software architecture is

partially explained in the

provided manual, with focus

mainly on the mentioned

abstract layers

BUPT

2.3 -Related Work|33

GPC low low - - Within the framework there

are parts that do not

promote a clear object

oriented programming

GAGS Medium low + - Only binary haploid

representation is possible

All the frameworks shall allow extensibility (possibility of adding a new

genetic algorithm type), the user having to add only small parts of code that are

closely connected with the problem definition that will be implemented. In this way,

the developer will not lose time with the base part of the genetic algorithm because

it is already implemented in the framework, and will focus his attention only on the

problem particularities.

Quantum Circuit Synthesis

In reference [11], Lukac and Perkowski have identified the following question: how

to encode the number of wires and the gate position within the circuit, by employing

the least complex data structure? They have proposed a transformation of the

quantum circuit in an encoded chromosome, in order to be used in a standard

genetic algorithm. In the encoded chromosome, the following rules are imposed:

equal probability of presence of each gate type, fast individual encoding and

decoding, and no other parameters beside basic definitions (no control bits). The

potential weak point is that, beside the gate order, there is no information indicating

what gate is connected to what wires. Thus, in order to obtain the chromosome, it is

required that the quantum circuit be altered by employing swap gates.

Rubinstein, in reference [46], considers-for the genetic algorithm-a scheme

in which a gate has a type, a number of sets for the qubit operands, and some sets

of parameters for different categories (the generalized 2-qubit gate takes four real

parameters for different types of rotations; the CNOT gate takes a number of

control qubits, etc). The quantum circuit is considered as a list of gate structures,

where the size of the circuit (number of gates) is variable.

Shende et al. [47] proposed a top-down structure and effective

computation, by employing the Cosine-Sine Decomposition (see Figure 2.5 (a)).

Decomposition for quantum logic, that is analogous to the well-known Shannon

decomposition (see Figure 2.6) of Boolean function 0i1i xixi fxfxf

 , is

introduced. It expresses an arbitrary n-qubit quantum operator in terms of a (n-1)

qubit operator (cofactors), by means of quantum multiplexors (see Figure 2.5 (b)).

BUPT

34 | 2-Background

(a) Cosine-Sine Decomposition (b) multiplexed Cosine-Sine

 Decomposition

Figure 2.5: Cosine-Sine Decompositions [47]

With the help of an optimized quantum multiplexor, and applying this

decomposition recursively to quantum operators, a synthesis algorithm is obtained

in terms of quantum multiplexors.

Figure 2.6: The Quantum Shannon Decomposition [47]

In reference [48], it is considered that the heuristic methods employed for

synthesis will have non-optimal circuits as a result. The usage of a local optimization

technique is proposed under the form of the so-called templates, in order to simplify

the circuit output and to compact the circuit levels. Implementation is provided in

terms of NOT, CNOT and controlled-sqrt-of-NOT gates. The method output is

represented by reductions of the number of quantum and levels. Templates are the

generalization of the idea that two circuits, implementing the same function, may be

replaced by another circuit (having a small cost in terms of gate number). This is

called linear cost metric. Sometimes, the local optimization for a sub-circuit will lead

to a global cost optimization of the circuit, called non-linear cost metric. For the

level compaction, the usage of a greedy algorithm is proposed in order to apply the

reduction rules. It is assumed that every two circuits have the same execution

delay, and that the non-intersection gates from the neighborhood can be executed

in parallel, with the delay being equal to a single gate delay.

In references [47] , several quantum logic circuit pattern optimizations are

proposed (see Figure 2.7). The task of circuit synthesis for reversible circuits is

approached by employing a minimal number of gates [49]. Sub-circuits suitable for

reduction are identified and transformed in simple circuits using the pattern

BUPT

2.3 -Related Work|35

optimization rules. The resulting circuit is considered optimal if no other equivalent

circuit, having a smaller cost in terms of gates number, exists.

Figure 2.7: Circuit Equivalence as Proposed by Shende et al. [47]

A report from June 2006 [10] considers the logic synthesis for quantum and

classical circuits as equally important. It is considered that - in the current

implementation technologies - gates that act on three or more qubits are

prohibitively difficult to implement in a direct manner. Also, it is considered that a

sequence of two-qubit gates is crucial for quantum computation. Quantum circuit

blocks are identified and quantum conditions are analyzed, before defining quantum

multiplexors that generalize CNOT, Toffoli and Fredkin gates. The quantum

multiplexor implements the if-then-else conditionals, when the controlling predicates

are evaluated to a non-classical state. In the end of the analysis, an analog

BUPT

36 | 2-Background

quantum Shannon decomposition is applied. The most representative published

results show the following figures:

 An arbitrary n-qubit quantum state can be prepared by a circuit containing no

more than n1n 22 CNOT gates

 An arbitrary n-qubit operator can be implemented with a circuit containing more

than 3/42)2/3(4)48/23(nn CNOT gates.

Quantum Circuit Synthesis

Quantum circuit synthesis is considered as the automatic combination and

optimization of quantum circuits in order to implement a specific function. The

quantum circuit synthesis is an extensively investigated topic. Several research

groups have published results, and positive reductions have been obtained in the

gate reduction number, qubit reduction, or even faster runtime.

The team from University of Michigan where - Quantum Circuit Group8 - that

has proposed and resolved several synthesis problems. In one of their latest papers

[10], they have “developed efficient quantum logic circuits which performed two

tasks: (i) implementing generic quantum computations and (ii) initializing quantum

registers”. The constructed generic circuit is considered the most efficient known at

that time, in terms of CNOT gates.

In the quantum synthesis field, we have to notice also the work of Dmitri

Maslov9 at the Institute for Quantum Computing from University of Waterloo. They

have proposed different approaches for quantum logic circuit synthesis and

optimization; for example, in reference [50] the template approach is used to

optimize a quantum circuit. In addition, Maslov created the “Reversible Logic

Synthesis Benchmarks Page”, where important research results concerning the

synthesis are available for further benchmarking [51]. Many papers have been

published by this group on the quantum synthesis domain [52], [53], [54], [55].

Important research work on quantum circuit synthesis, using genetic

algorithms, has been developed at the Portland State University by Marek

Perkowski10 using their experience from the conventional systems design

methodologies and tools; they have proposed new methods for quantum circuit

synthesis (i.e. as presented in reference [11]).

One of the first books about the genetic approaches to the quantum-

computing domain was published by Lee Spector [7]. A software implementation

written in Common Lisp was used to solve several quantum computation problems.

The author considers that many quantum problems may be considered as search

problems and consequently may be solved with the help of genetic programming.

8 http://vlsicad.eecs.umich.edu/Quantum
9 http://www.iqc.ca/~dmaslov/
10 http://web.cecs.pdx.edu/~mperkows/

BUPT

Chapter 3

3. Analysis of the QCS

This chapter is dedicated to the analysis of the quantum circuit synthesis problem.

The requirements are presented in a structured way, starting with a higher

granularity level and then going into the smallest details; the architecture is detailed

using UML (Unified Modeling Language) terms [56] [57] - which is the modeling

language of the object-oriented approach, - thus allowing understanding and a

global view on the most important packages involved in the problem definition.

 One of the goals of this dissertation is to provide design guidance for the

quantum logic circuit synthesis task. The design evaluation involves the examination

of design rationale behind the constraints and the comparison of the system

proprieties derived from those constraints, with relevance for the system

implementation.

Quantum circuit synthesis has an important role in the development of

quantum computing technology. This new technology brings advantages in

comparison with the classical one (analog or digital). In the last decades, the

automatic classical circuit synthesis has improved the use of new circuits (in terms

of development time, delay time, integration scale, cost and time to market, etc),

allowing developers to be more creative than ever. New complex applications are

possible and the classic physical technology limit is pushed to the edges. Physical

implementation of quantum circuits is in its incipient phase, and there are only few

quantum gates available (this by using an expensive and complicated technology:

photons, ion traps, etc) [58]. It is considered that the future of quantum computing

technology depends on the existence of reliable physical quantum devices [59],

therefore, software synthesis tools are desirable.

Software architecture is an important sub-discipline of software engineering,

within the realm of large system development. The architecture gives the possibility

to focus on the essential components and their interactions rather than presenting

details. A layered architecture allows to individually building each part and, in the

end, these parts will work together towards problem implementation. The

architecture will present the important proprieties of the system as performance,

reliability and extensibility. Software architecture is a complex entity and, in order

to describe a specific propriety, a view must be used. When using a specific view,

only the interested aspects of the system are presented, while other aspects are

intentionally suppressed. This is the reason why within the architecture, different

views are necessary to highlight system elements and their relationships. In the

following sections, we introduce our system as an abstract object, several views

being presented to help in obtaining a better documentation [60].

BUPT

38 | 3-Analysis of the QCS

3.1 QCS Problem Statement

Automated quantum circuit synthesis is still only at the beginning of its exploration,

at the same time our dissertation tries to create the premises for developing

software tools dedicated to this task.

QCS: Description

When trying shortly to present the problem definition, we may consider the

following phrase as requirement: perform circuit synthesis having a quantum

function as target and a set of operators as arguments. After decades of study,

solving the problem becomes somehow less demanding when dealing with the

digital or analog circuit synthesis. When the problem is moved into the quantum

computation context, the situation is different. From the available state-of-the-art,

there is no common accepted path to follow for finding a solution; the theoretical

basis is not complete yet and the physical devices are not available on a large scale

at this moment. There are many questions to be answered, and further research is

vital in order to clarify these details.

In an extended manner, the required system must perform quantum circuit

synthesis by having a formal description for a circuit and a set of quantum gates,

using genetic algorithms:

 A classical computer shall be used for developing a software tool chain used for

the quantum circuit synthesis.

 The tool chain shall contain a parser used to interpret the quantum circuit

details, as specified in a high-level description language.

 The tool chain shall contain a repository where elementary gates are stored.

 For each quantum gate, the quantum cost shall be specified.

 The repository shall allow definitions for quantum circuits (a quantum circuit is

composed of one or more elementary quantum gates).

 For each quantum circuit, the feasibility value shall be specified.

 The tool chain shall contain a genetic algorithm that is responsible in evolving an

optimal synthesis quantum circuit.

 The genetic algorithm is also responsible with the optimization of the evolved

circuit.

 Minimize the quantum circuit cost.

 Maximize the quantum logic circuit feasibility value.

 The tool chain shall contain a drawing application allowing quantum circuits

visualization.

BUPT

3.2 -Characteristics of the Tool Support|39

Approaching QCS: Context and Major Challenge

The relevance synthesis process has two views. According to the first one, if the

progress in technology is extremely fast, then it is outstripping the designer’s

abilities to make use of the created opportunities. The second view is generated by

the situation where the technology is not available on large scale and the designers

can only use a small set of gates for the design process. The development and the

application of new and more suitable design methodologies are important for the

modern computer system industry. Quantum circuit synthesis has a bigger

relevance when it is related to the simulation results. Any result taken from the

simulations may have a physical implementation, with the help of the synthesis

algorithm. Therefore, starting from a program written in a high programming

language we obtain the physical device by employing the synthesis tools.

The automatic quantum circuit synthesis is a difficult problem, due to the

following issues:

 The total number of possible gate permutations is huge and we cannot be sure if

the genetic algorithm has evolved the best solution (is considered that the

optimum solution can be evolved). In order to overcome this problem, a genetic

algorithm will be used due to its capability to evolve solutions into a large search

space.

 Optimization of the evolved circuit is hard to tackle. In general, the optimization

is an iterative process; hence, an optimized solution is used again as input by

the genetic algorithm. The genetic algorithms are suitable for optimization.

 Even a small change in the quantum topology can have a huge impact on the

circuit functionality.

 There is no complete quantum circuit benchmark to be used for the quantum

logic circuit synthesis solution assessment.

 The quantum gate cost and feasibility are not clearly defined yet (depending on

the gate inputs, or depending on the gate implementation complexity, etc).

3.2 Characteristics of the Tool Support

Today’s research activity tries to move all the software development into a single

application, that can support all the development phases together, while performing

all this in a user-friendly manner. Tool support in object-oriented design aims at

providing means for capturing requirement, architecture and implementation

activities. The tool activities that are necessary for defining and developing a

software system are listed below:

 Modeling: well-defined visual notation (i.e. UML) is used by programmers in

order to understand the principle upon the system design process.

BUPT

40 | 3-Analysis of the QCS

 Components: the possibility of splitting the development in several components

that, eventually, will be integrated together for defining the complete software

system is allowed.

 Specification: allow writing the specification within the same tool as for the

design, and preserving traceability through them.

 Coding: direct relation between architecture details and code implementation

will improve quality and productivity.

 Testing: possibility of defining test cases for each requirement

Since Rhapsody is a Model Driven Development (MDD), being widely used

by a growing user community, and because it provides support for all the necessary

software activities, we decided to use it for our software project. “Telelogic

Rhapsody® is an industry-leading UML® 2.1 […] environment for technical, real-

time or embedded systems and software engineering. Rhapsody enables reuse of

existing software assets, whether source code or model based, provides a flexible

development environment for both function-oriented and object-oriented graphical

design techniques to co-exist in one environment and improves productivity and

quality through validation of the design early in the development lifecycle when

defects are less costly to fix” [61].

 The license for Rhapsody Development Edition was offered free of charge by

the Telelogic Company through Rhapsody University Program, for a fixed two years

period.

3.3 Levels of Design

Design is needed at different levels; the first level is the system, and it is a common

mistake to jump off the class level when the architecture is started. Then, the next

level is the division into packages, where the architect shall identify the major

subsystems and their interactions. The intercommunication rules are also defined on

this subsystem abstraction level. System dependencies to important packages shall

be identified and maybe isolated, thus allowing future extensibility by less couplings.

BUPT

3.4 -QCS Architecture Overview|41

Figure 3.1: The Design Levels in a Program [62]

A package may contain one or more classes, depending on its purpose.

Within the package, the class relations shall be well-defined using interfaces, the

system being decomposed in fine class functionalities that implements behaviors.

We need to make the difference between class and object; an object represents an

entity that exists at system run-time while a class is a static code that contains

attributes and methods. In the last level, which is responsible with designing classes

into data and routines, it is obvious that several behaviors may be implemented

with simple routines, while others need data handling and state machines. In this

last level, it is important to have only private data and access them via interface

methods (“A good class interface is like the tip of an iceberg, leaving most of the

class unexposed” [62]).

3.4 QCS Architecture Overview

The architecture describes given software systems by using multiple abstracting

levels. This dissertation examines all the involved levels, from the system

abstractions to the implementation details.

At first glance, different parts may be easily identified: a high-level

description language parser used to map the quantum circuit description to a low-

level representation, an algorithm responsible for the optimization of the abstract

circuit, and a genetic algorithm responsible for the synthesis task. The synthesis

BUPT

42 | 3-Analysis of the QCS

task is performed following the described phases in a cascade manner. Therefore,

starting from a program written in a high-level description language we obtain a

physical device by employing synthesis tools.

The architecture derives straightforwardly from the described methodology.

The proposed breakdown structure indicates a layered software architecture (see

Figure 3.2), each layer being responsible for a dedicated task. The ripple

computation allows for intermediate results that can be used or maximized at the

next layer. In this way, starting from a circuit description in a high-level language

after applying all the phases, eventually leads to the corresponding circuit. As

intermediate result we have the abstract description of the circuit (which is not

hardware dependent), the internal data representation used for the optimization,

etc. Explaining in brief terms the deployment diagram, the initialization for QHDL

parser will start the synthesis process. The QHDL parser uses a generic file parser to

create the internal data structure that is then used by the genetic algorithm. The

adjustment for the genetic algorithm parameters control is made by the meta-

heuristic component. In the end, the evolved solution is optimized and maybe a new

evolution cycle is triggered. The synthesis solution is provided as result to the user

under then form of a circuit layout.

BUPT

3.4 -QCS Architecture Overview|43

Figure 3.2: Software Behavior Deployment

The architecture is important in the realm of system development. The

system architecture presents the involved parts, along with the specific relations

among them. A first view on architecture shall indicate the divide-and-conquer

concept about the main functionality, followed by printing how the parts are working

together. This view allows building the parts individually and merges them later to

solve the problem. The architecture establishes constraints and sets the

downstream activities in order to produce artifacts.

Application

QuantumCircuitSynthesis

Parser

QHDLParser

«flow»

FileParser

«flow»

ProGAFramework

GeneticAlgorithm

«flow» «flow»

MetaHeuristic

«flow» «flow»

Optimization

CircuitOptimization

«flow»
«flow»

«flow»
«flow»

Start Synthesis

BUPT

44 | 3-Analysis of the QCS

Figure 3.3: QSynTool Architecture Layout

The QSynTool11 [63] architecture (see Figure 3.3) is split into five main

parts, each part corresponding to one major operation required by the quantum

circuit synthesis. Starting from the problem definition, three main components are

presented as relevant: parsing (understanding the high-level language),

optimization (for the abstract representation) and quantum circuit synthesis

(creating the circuit layout). The Utility contains several additional tools.

3.4.1 Rationale

Several rationale decisions were made during system architecture development. For

example, the existence of a genetic algorithm framework was necessary to allow a

facile implementation for a genetic algorithm, and to have access to the statistic

results during evolution. The significance of statistical results is used for the self-

adaption of the genetic algorithm parameters. In addition, statistical values are used

to prove the algorithm convergence and for later analysis (i.e. for a better tuning

process). Another rationale decision was to use complex numbers for the quantum

gates representation. Working with many quantum gates or quantum circuits is not

straightforward by any means; keeping the entire gate attributes up-to-date and

having control on which object may be used for synthesis as imposed by the

existence of a repository.

3.4.2 Constraints

Several constraints are applied to the abovely described system. For example, the

usage of the high-level description language was specified to be QHDL12. Another

constraint was to use a meta-heuristic algorithm for evolving genetic algorithm

parameters dynamically during evolution. Working with a repository of gates is our

main constraint, only available gates being used by the synthesis process.

11 QSynTool (Quantum Synthesis Tool) @ Cristian Ruican, 2008
12 Quantum Hardware Description Language

Application

OptimizationParse ProGAFramework

QuantumSynthes isUti li ty

BUPT

3.4 -QCS Architecture Overview|45

3.4.3 Logical View

This view supports behavioral requirements, thus the services that the system shall

provide to the end users, also known as primary system functions or system usages

(see Figure 3.4). The problem definition is decomposed into a set of key

abstractions, as objects and class objects that incorporates the principles of

abstractions, encapsulations and inheritance. At the same time, during system

decomposition, we identify the common parts across the system (i.e. utility

module).

Figure 3.4: System Provided Services

UserUser

Quantum Circuit Synthesis Software

ProGA

Framework

Quantum

Circuit

Synthesis

«include»

Draw Circuit

Solution

Layout

Gates and

Circuits

Repository

«include»

«include»

«include»

Provide Input File: the user provides the quantum circuit in a high-level

description language. In this use case the input file is verified for its validity.

Start Quantum Circuit Synthesis: this use case extends the ProGA Framework

and implements a genetic algorithm used for quantum circuit synthesis. The user

also provides the start-up parameters used in evolution

Draw Circuit Solution Layout: simply draw the solution of synthesis algorithm

Gates and Circuits Repository: storage for the allowed gate/circuits to be used

in the quantum circuit synthesis

BUPT

46 | 3-Analysis of the QCS

3.4.4 Process View

This view is responsible with the system performance, integrity and fault tolerance.

There, the focus is on the parts interconnectivity. The sequence diagrams are useful

for illustrating the sequential interactions among architectural components,

describing scenarios and not complete behavioral specification. Sometimes, during

the requirement phase, analysts may use sequence diagrams in order to provide a

more formal level of requirements. The sequence diagrams express the requirement

transition from use cases into components interaction.

Figure 3.5: QSynTool Process View

_CreateGA()

:QSyn

_CreateGA()

_CreateInitialSolutionGenome()

_StartGA()

_CreateDatabase()

_CreateInitialSolutionGenome()

_StartGA()

_CreateDatabase()

ENV

_Ini()

_Call()

_Ini()

_Call()

_Ini()

:QHDLParser

_Call()

_Ini()

_Call()

_CreateDatabase()

:GateCollec
tion

_CreateDatabase()

Selector(myRandom)

:Selector

Selector(myRandom)

:GASyn

GASyn(genome, selector, PopulationSize)

_GAEvolve()

GASyn(genome, selector, PopulationSize)

_GAEvolve()

:Synthesis

Synthesis(myRandom)Synthesis(myRandom)

BUPT

3.4 -QCS Architecture Overview|47

Two main tasks are described in Figure 3.5. The system initialization is

responsible only with the parser initialization, where the input file is provided. The

main call triggers the parser operation that creates the internal data structure,

triggers the database creation (where the quantum circuits used for synthesis are

described), triggers the creation of genetic algorithm and its initial solution and

starts the evolution. In the end, the synthesis result is provided to the main task.

3.4.5 Development View

In this view, the focus is on the organization of the software modules in small

chunks of software, showing how the system is organized in source code, binaries

and libraries. Nevertheless, the class diagrams, as presented in the development

view are useful for describing architecture meta-models and are therefore used by

developers to design and document system’s coded classes.

Figure 3.6: QSynTool Development View

Application

QSyn

Parse

QHDLParserListQHDL

FileParserFileHandler

ProGAFramework

Population
Selector

«Interface»

Genome

«Interface»

GA

«Interface»

QuantumSynthesis

GASyn
SynthesisCfg

«Singleton» Synthesis

Database

GateCollection

QuantumGateQMath

Encoder

Encoding

Locus Nod

MetaHeuristic

Adaptive

Statistic

T

FitnessData PerformanceData

BUPT

48 | 3-Analysis of the QCS

The global architecture layout is presented in Figure 3.6. In the Parser

package, the QHDLParser has a FileParser object that implements a generic parser

and has a ListQHDL object that stores the internal data structure. The ProGA

Framework package describes a genetic algorithm framework responsible with the

genetic algorithm details (i.e. evolution, population, selector, genome, etc.). The

QuantumSynthesis package is considered as the most important package from the

architecture, describing the quantum circuit genome, and contains other packages

responsible with other tasks. For example, the Database package groups the

quantum gates and their mathematical operations in a quantum gate collection that

is used for the synthesis task. The Encoding package provides support for common

data used in the internal data codification, and is then used in the chromosome

genes. The Metaheuristic package creates the possibility of dynamically adjusting

the genetic parameter controls using statistical data from the current search state.

The creator, Application package, allocates all the necessary objects and creates the

links between them. This package triggers the synthesis process and receives the

evolved result. More details about each package and about the class diagrams are

presented in the corresponding subchapter where the behavior is explained.

3.5 Architecture Properties

Designing a system implies modeling high-level structures and presenting them in

terms of views, styles and patterns. Several architectural proprieties are used to

present different styles in this dissertation. The Rhapsody tool provides supports to

define the following properties.

Performance
The quantum logic circuit system performance is firstly defined in the system

requirements, followed by the implementation. Each phase is important to define

the system performance, the decision to change or influence different structures

may make the difference between success and failure. The system performance

involves additional costs in each component implementation, because performance

is the most important feature for our system. It is hard to quantify the performance

quality, and in our system, it is mainly based on the capability to obtain a synthesis

solution for different types of inputs and by the latency time defined as the period

between the system initialization and the system response. The latency time is

divided in several particular time intervals: the initialization time (measured

between the moment when the initial stimulus is available and the internal data

creation event), the time necessary to setup the initial genetic algorithm solution,

the time required for saving the statistical data during the genetic evolution and the

time required evolving a circuit synthesis solution. Different component interactions

may introduce additional time values that may alter the system performance (i.e.

the task commutations time in different operating systems).

BUPT

3.5 -Architecture Properties|49

Scalability

Scalability is a desirable property of system architecture, to support more

components within an active configuration. The possibility of having more

configurations, allows keeping the components interactions within the tool and

controlling them. For example, the measuring time component may be included or

not in the active configuration, thus the tool will not generate the corresponding files

if necessary. Splitting the components into small parts induce simplicity, because

complexity is widely spread within the architecture. The tool support allows to

perform fast changes on the generated packages and to modify the interconnectivity

between them, everything using configuration files.

Modifiability
It is important to be able to perform a change to the architecture without big impact

to other components. Even if the system is fully compliant with the requirements,

the requirements will change over the development cycles or time. The synthesis

system allows coexistence of different implementations and integration of new ones,

being able at the same time to extend its functionality. The existence of different

implementations for the same requirements, allows dynamical customization of the

active features. Different components also allow configuration of parameter controls,

adjusting the available functionality to optimal synthesis purpose. Object-oriented

design, together with design patterns, improves the system modifiability value.

Portability
The developed architecture can run in different environments. The object-oriented

language used is standard C++, allowing running the software in Windows or UNIX

systems. The Windows operating system is used for the development and

debugging, while the UNIX system is used for the system assessment.

Reliability

Different parts from development are used, in order to increase the reliability

degree to different types of failures. We introduced monitoring for several

components, creating incentives for identifying failures from an incipient phase, and

avoiding general system failures (i.e. during parsing operation, during quantum gate

creation, etc.). Reliability is important in maintaining system functionality when it is

operated under stated conditions for, a given amount of time.

Minimal Complexity
It is important to avoid making clever designs, but make simple and easy-to-

understand designs instead. This minimal complexity also allows easy maintenance,

because somehow the design will be self-explained. Splitting into packages, having

deployment diagrams, sequence and class diagrams divide the system complexity

into small parts that may be handed individually with less complexity.

BUPT

50 | 3-Analysis of the QCS

Loose coupling
Keeping the relations between components to a minimum value is important for a

good architecture. Using the principles of good abstractions in public interfaces, data

encapsulation and inheritance allows for having only few interconnections.

3.6 Classical vs. Quantum Digital Circuit Synthesis

In our days, the request for new systems (hardware and software) has dramatically

increased. The integrated circuit technology (based on semiconductor materials) has

progressed continuously: starting with Intel C4004 (from 1971), the world first

single-chip microprocessor, and continuing with our day's microprocessors. The

technological development was mainly focused on three major types of circuits:

 Very Large Scale Integration [VLSI], that are used on common applications.

VLSI is the process of creating integrated circuits by combining thousands of

transistor-based circuits into a single chip.

 Application Specific Integrated Circuits [ASIC] that are used on specific

applications, being specialized for a dedicated task (i.e. a chip designed

solely to run a cell phone is an ASIC).

 Field-programmable gate array [FPGAS] that are reconfigurable circuits used

to implement prototypes. Due to the benefits coming from the theory of

reconfigurable computing and evolvable hardware, FPGAs are now used to

implement standalone functioning systems, and not just for prototyping.

The term Ultra Large Scale Integration [ULSI] is used to reflect the growth

of circuit complexity, and it was proposed for chips of complexity more than 1

million of transistors. From a technical point of view, there is no qualitative leap

between VLSI and ULSI, so any ULSI may be considered a VLSI device. Due to this

increasing request on the market, the CAD techniques have two major advantages:

the reduction of development time and complexity, while reducing the time-to-

market, which creates profit for developing companies. CAD techniques allow for an

increased quality due to automatic operations (is well known that human complex

tasks may introduce errors).

When discussing about the design of the microelectronic circuits, many

design styles may be applied, but (usually) just two methodologies are mostly used:

custom and semi-custom design styles [64]. The custom style is manly used for

dedicated parts of the circuit (floating point unit or execution unit). The semi-

custom style is based on the concept of restricting the circuit primitives and thus

reducing the fine-tuning for the circuit parts during the design phase. Semi-custom

designs are split in other two subclasses as cell-based and array-based. Cell-based

designs are based on libraries of cells that are designed once and stored (called

standard cells), or are using the cell-generators for the macro cells (such as

memory, gates, etc), where larger cells can be derived by combining the smaller

BUPT

3.6 -Classical vs. Quantum Digital Circuit Synthesis|51

ones. Updates to libraries are necessary due to the progress in technology. This task

is not an easy one, because each cell needs to be updated, and because many

parameters are present (i.e. integration area, delays over ranges, temperature,

voltage limits, etc). A major advantage of the cell design is the compatibility

between the custom style and the semi-custom style (we can add custom parts to

the semi-custom layouts and vice versa).

Array-based design considers the circuit as a matrix of unrelated

components. The role of design is to create the connections between these

components and to perform their personalization. We may consider a second

classification in the prediffused and prewired, also called mask programmable and

field programmable gate arrays (MPGAs and FPGAs). A standard cell design

approach makes it possible to globally apply advanced optimization algorithms, that

reduce the manual effort required, and improve the quality of the synthesized logic

during layout. The use of basic standard cell elements reduces complexity to such

an extent, that a complete chip design can be handled as flat, by layout and test

generation tools, hence removing the need for artificial floor plan boundaries [64].

The model is one of the first artifacts throughout the microelectronics design

process. It is used to show the abstract functionality of the circuit, the architecture,

without presenting the details (having a great focus on the problem space).

Graphical models such as flow diagrams, schematic diagrams, and layout diagrams

may describe the functionality from different views, therefore allowing to the

designer to focus only on a part of the model at any given time. Any model may

introduce different abstractions layers [64]. In Table 1, a comparison between the

methods employed by the circuit design in the classical vs. quantum world is

presented, highlighting the common parts that are followed by logic circuit design.

Table 5. Classic vs. Quantum Circuit Design

BUPT

52 | 3-Analysis of the QCS

Synthesis tasks are presented on each level (architectural or logic).

Synthesis can be seen as a transformation between two axial views and different

subsequent tasks are possible:

 Architectural-level synthesis determines the block-level structure of the

circuit. It is used to define the circuit function, resources, interconnection

and timing. For the quantum circuit synthesis, a specific parser was

designed to identify the circuit description blocks and to create the internal

data structure that will be later used in the synthesis process.

 Logic-level synthesis creates the logic specification and the interconnections

between the architectural blocks. Often is considered to be as a library

binding or a technology mapping. Going to the quantum situation, we

created a quantum circuit database that stores the quantum gates

characteristics. Each gate is randomly selected by a genetic algorithm and

used to encode a possible solution for the circuit synthesis problem.

 Geometric-level synthesis is involved in finding the geometrical position of

components (the circuit layout). The quantum circuit layout is partially

defined by our approach, by splitting the circuit into sections and planes

where the gates are placed in a defined order as provided by a topological

optimization.

Synthesis without optimization will result in non-optimal circuits. The full

circuit optimization is hard to obtain. Optimization may occur on different circuit

parts and may have many goals. In classic circuit synthesis, for example,

optimizations on the circuit integration area and delay latency are commonly

encountered. Sometimes the optimization is based only on approximations. It is

possible to optimize the architectural level by improving the dependencies between

circuits; it is possible to perform optimizations at the logic level, where function

minimization is a goal; and it is possible to have optimization at the physical level

(i.e. time reaction, integration space). In the quantum synthesis process, the

optimization is seen as improving the circuit quality through the minimization of the

number of gates used, as presented in two recent papers [65] [55]. In our

approach, this is implemented automatically by the genetic algorithm evolution (the

scope is to evolve better-and-better individuals in terms such as number of used

gates, circuit cost and circuit feasibility).

BUPT

Chapter 4

4. Genetic Algorithm Framework

A Genetic Algorithm is a programming technique used as a problem-solving strategy

that employs the principles of Darwinian natural selection. The genetic algorithms

are using equivalences from the biological evolution in order to solve a specific

problem. A genetic algorithm will receive as input a set of potential candidates for

the solution (i.e. population), encoded in a useful way (i.e. genome or

chromosome), and will then evaluate them by using a fitness function that indicates

how good the individual is. Mainly, the set of potential solution candidates is

randomly generated, but in some cases, they may be also chosen from any previous

partially known solutions. The encoding allows for storing of the candidates and then

their manipulation in a facile way. Of course, after the evaluation of the fitness, it is

possible, that the candidates (or the individuals) would not fit to a solution. This is

the point where the evolution becomes necessary. The process it is made as follows:

randomly, with some probabilities, the genetic algorithm selects the best individuals

for mate (there are also other selection schemes: roulette wheel, tournament,

uniform, etc). The mate is performed as crossover and/or mutation, and the new

offspring is introduced inside the new population. As the process from Nature, the

copy or the reproduction process introduces errors, thus purely by chance it is

possible to obtain several good individuals, which are then copied over the next

generation. After the reproduction process, it is important to increase the average

fitness value; this fact will guide the algorithm in the following iterations more

closely to the solution. In other words, the solution for a given problem is evolved

through successive iterations.

A software framework is designed to allow easy development for any type of

engineering problem. The framework advantage is that all the low-level details are

already implemented in a software library, and the developer can use its time for

working only on the specific problem details. A Genetic Algorithm Framework will

allow easy integration of different genetic algorithm problems. Software methods

and design patterns are applied in order to create the necessary abstract levels for

the genetic algorithm [66] [67].

The framework allows for different configurations, and thus the comparison

between the characteristics of the emerged solutions becomes straightforward. This

design creates incentives for practical solutions, because the inheritance from the

defined abstract classes makes possible the creation of new genetic schemes. The

patterns allow the framework to extend actual available implementations for their

own use. The inheritance also allows - in a small development time – the adding

new genomes, new selection schemes and new genetic algorithms dedicated to

specific tasks. The applied design patterns aim at describing, in a clear way, both

the problem and the core of the solution. The obtained genetic algorithm pattern

may be applied many times, running in the same accepted way. The framework

BUPT

54 | 4-Genetic Algorithm Framework

implements the simulation of Nature's genetic processes with the declared purpose

of finding a solution for a given problem.

4.1 Framework Preliminaries

The framework is described with respect to its architecture, included components,

implementation, and application. The framework development was started from the

genetic algorithm requirements, as stated in the flowchart proposed by John Koza

(see Figure 2.4). The flowchart provides a single, unified approach to the problem of

finding a computer program that solves a given problem. The algorithm creates

individuals, which are all grouped within a population, that increase their average

fitness during genetic evolution by applying the Darwinian principle of natural

selection, preservation of the best, and survival over generations. Sexual

reproduction (crossover) is used to create offsprings, mutation is used to bring

variety into the population, and selection is used to allow stochastic survival of

individuals [68].

4.2 Framework Packages Architecture

The framework we propose in Figure 4.1, named ProGA [Programming Genetic

Algorithms] [69] creates a decoupling of the genetic algorithm from its data

structure. It is important to be able to develop new genetic algorithms without being

forced to perform modifications on the population or on the genome parts. Details

about each class are presented in the following subchapters, with emphasis being

put on the abstract classes and on the decoupling objects. Abstract classes are used

to allow generic development for new algorithms and data structures.

Figure 4.1: ProGA Framework Architecture

GA

«Interface»

GA(genome:Genome,selector:Selector,Popul...

_SetGAType(b_NonOverlappingOrSteadySta...

_SetMaxGenerations(value:int):void

_GAEvolve():void

Population

Population(genome:Genome,selector:Selector,si...

_InitiatePopulation():void

_EvaluatePopulation(b_Evaluate:bool=false):void

b_CheckSolution(Solution:Genome):bool

_Operators():void

1

itsPopulation

1

itsPopulation

Selector

«Interface»

Selector(myRandom:Random)

p_Select():Genome*

n_SelectRandomAnIndividual():...

n_GetRandomInt(low:int,high:i...

1

itsSelector 1

itsPopulation1

itsSelector 1

itsPopulation1

itsGenome

Genome

«Interface»

Genome(myRandom:Random)

p_Clone():Genome*

_Copy(obj:Genome):void

_Initiate():void

_Evaluate(b_Evaluate:bool=false):void

1

itsGenome

1itsGenome 1itsGenome

BUPT

4.2 -Framework Packages Architecture|55

The Bridge Pattern [66] is used with the declared purpose of decoupling the

genetic algorithm implementation from its several possible implementations (which,

in our view, are derived classes from the Genome class). The abstract classes

declare the interface to the abstraction, and the concrete subclasses implement it in

different ways. Separate class hierarchies are created (one for the genetic

algorithms, one for the genomes, and one for the selector), thus allowing object

decoupling for the generic implementation. All operations from the derived classes

are implemented in terms of operations from the interface. The Bridge Pattern

brings several advantages for our framework: both abstractions and

implementations are extensible by sub-classing, changes on abstraction have no

influence on the implementation and vice versa, permanent binding between

abstraction and its implementation is avoided, therefore allowing switching at

runtime (in this way, it is even possible to change the algorithm during execution).

Moreover, the decoupling encourages the layering of the architecture, having a

better-structured system in the end.

Our framework also allows - if necessary - the Decorator Pattern from the

same reference [66], for extending the actual architecture. Via decorator, it is

possible to add responsibility for genetic algorithm class, or for the genome class,

without affecting the other objects. It is important to have an architecture that

allows extensibility and - more important - to have an architecture designed for this

purpose.

The proposed framework was mainly implemented with the scope of being

used for quantum circuit synthesis. It provides support for adding a dedicated

genetic algorithm that will be used for circuit synthesis. It is important to have, as a

standalone tool, a framework that will provide additional information, which is

necessary to adapt the genetic algorithm to the best or optimum performance. The

genetic algorithm optimization is necessary, because we do not know how to design

a quantum circuit to solve a given problem, and because there is almost no

indication about the quantum circuit efficiency. For example, the statistical

information will be used for adapting the genetic algorithm, similar to the feedback

process, and will allow for finding the most favorable configuration for the synthesis

genetic algorithm. We consider the framework as a real help in overcoming many

difficulties that appear in the synthesis process.

4.2.1 Genetic Algorithm Types

Any kind of genetic algorithm must describe iteration loops that increase the

convergence of the individuals towards a solution. Our framework allows the

creation of new genetic algorithm as derivations from the GA base class (which is an

abstract class), and implementing the only method responsible for the iteration

loops of the algorithm (see Figure 4.2). The base class has knowledge about the

termination criterion and about the probability used for the natural selection. The

GA class is also responsible for creating the population that will be used during the

evolution (the client is the one that knows the number of the individuals and the

type of the genome used). The GA class was designed as an abstract class, thus the

BUPT

56 | 4-Genetic Algorithm Framework

decoupling from data structure is possible at this level. In addition, the user is

forced to implement - in the new derived classes - the abstract method for evolving;

framework robustness is achieved in this way.

Figure 4.2: Genetic Algorithm Class Diagram

The genetic algorithm class implements the genetic operations necessary for

evolution (initialization, mutation, crossover, evaluation, solution verification, etc),

by calling the corresponding methods from the aggregated population object. Thus,

the decoupling is performed in such a way that the genetic algorithm does not know

how to do those operations; it has only knowledge about their existence. The client

knows what kind of genetic algorithm intends to run. The client also has the

knowledge about the genome used for the evolution, and about the selector type. A

random number generator required in order to provide true random numbers,

because standard libraries only return pseudo-random numbers. Then, the last

operation is to bind the relations between the objects and let the evolution perform

the indicated job.

GA

«Interface»

pMutations_:double=0.01

pCrossovers_:double=0.4

MaxGenerations_:int=10000

CurrentGeneration_:int=0

pElitism_:double=0.1

GA(genome:Genome,selector:Selector,PopulationSize:int)

_SetGAType(b_NonOverlappingOrSteadyState:bool):void

_SetMaxGenerations(value:int):void

_GAEvolve():void

_SetMutationProbability(prob:double):void

_SetCrossoverProbability(prob:double):void

_SetElitismPercent(percent:double):void

GANonOverlapping

GANonOverlapping(genome:Genome,selec...

_GAEvolve():void

GAOverlapping

GAOverlapping(genome:Genome,sele...

_GAEvolve():void

BUPT

4.2 -Framework Packages Architecture|57

4.2.2 Genome Implementation

The Genome class is an abstract class that implements the data structure of the

algorithm. Different implementations are possible at this level, the derived genome

classes being forced to implement methods as initialization, mutation, crossover and

evaluation, for each individual (see Figure 4.3).

Figure 4.3: Genome Class Diagram

The main attributes are defined in the base class: fitness value, number of

mutations, crossovers, evaluations. The crossover operator has a specific

particularity, because the genome itself does not know about its pair, but knows

how to perform the crossover. The knowledge about the crossover is located on the

population object, because the individuals involved in the sexual reproduction are

Genome

«Interface»

Genome(myRandom:Random)

p_Clone():Genome*

_Copy(obj:Genome):void

_Initiate():void

_Evaluate(b_Evaluate:bool=false):void

d_GetFitnessValue():double

_MutationAType():void

_MutationBType():void

p_CrossoverAType(spouse:Genome):Genome*

p_CrossoverBType(spouse:Genome):Genome*

Methinks

Methinks()

Methinks(myRandom:Random)

Methinks(obj:Methinks)

operator=(obj:Methinks):Methinks&

~Methinks()

p_Clone():Genome*

_Copy(obj:Genome):void

_Initiate():void

_Evaluate(b_Evaluate:bool=false):void

_Mutation():void

p_Crossover(spouse:Genome):Geno...

Knapsack

Knapsack(myRandom:Random&,myCfg:K...

operator=(obj:Knapsack):Knapsack&

~Knapsack()

p_Clone():Genome*

_Copy(obj:Genome):void

_Initiate():void

_Evaluate(b_Evaluate:bool=false):void

_ShowGenome():void

_Mutation():void

p_Crossover(spouse:Genome):Genome*

BUPT

58 | 4-Genetic Algorithm Framework

selected there. Due to its design, any derived genome class must implement the

genetic operations related to the data structure handling the genome.

4.2.3 Population Implementation

The genetic population contains all the individuals that are managed by the genetic

algorithm. The population design is a container for the genomes, and its design has

generic methods for accessing the genomes. During the algorithm evolution, the

population class is responsible for stochastically the individuals that will suffer

mutations and/or crossovers and for tracking the evolution for each individual

(number of mutations, number of crossovers, etc). The population must have

knowledge of the basic operations for its individuals: initialization, mutation,

crossover, evaluation, etc). Each generation will store statistic information related to

the best/worst/mean fitness, as well as to the total number of mutations, crossovers

and evaluations.

Figure 4.4: Population Class Diagram

Concerning the architecture, the Population class (see Figure 4.4) is not

abstract, all the necessary methods being implemented at this level. If a user

considers that other alternatives are more viable, the Population class can be

decorated with new functionality, following design patterns methods (i.e. the

Decorator Pattern). The population object is created from the genetic algorithm

object (it knows how many individuals are within each generation) and has

knowledge about the selector and about the type of the genome; a genome that will

be used later for population cloning.

Population

Population(genome:Genome,selector:Selector,size:int)

_SetGAType(b_NonOverlappingOrSteadyState:bool):void

_InitiatePopulation():void

_DoStatistic():void

_EvaluatePopulation(b_Evaluate:bool=false):void

b_CheckSolution(Solution:Genome):bool

p_GetGenome(index:int):Genome*

_Operators():void

_Mutation(p_Genome:Genome*):void

p_Crossover(p_Genome:Genome*,rc_Genome:Genome&):Genome*

BUPT

4.2 -Framework Packages Architecture|59

4.2.4 GA Operators

The role of the genetic operators in the evolution process is to bring diversity into

population. The diversity may conduct the algorithm to a solution. A very simple

genetic algorithm shall have at least three operators: selection, crossover, and

mutation. The genetic operators are used to simulate the Darwinian evolution

processes on chromosomes.

Mutation

The mutation operator introduces an error within the evolution process, and

randomly flip-flops some of the locus from the chromosome. The mutation operator

also creates variety into population, preventing the population of converging to a

local minimum, by introducing new individuals. Different mutation schemes are

therefore available: flip-bit, boundary, non-uniform, uniform, Gaussian, etc. The

mutation operator is implemented within the derived class according to the problem

specification.

Crossover

The crossover operator mimics biological recombination between two chromosomes.

The crossover operator is applied on two individuals (which are randomly selected);

a random locus is used to interchange the substrings between the individuals

previously selected, and to create one or two offsprings. There are many crossover

schemes, the common point being the recombination based on locus interchange

(before and after the locus). Different recombinations are possible: one point, two

points, uniform, etc. The crossover operator is implemented within the derived class

according to the problem specification.

Elitism

The elitism operator is used to keep the elite of the genomes (composed by

genomes that have a higher rank) into the next generation. In this way, from one

generation to other, the best-evolved results are reused in order to create new

individuals. It is considered, somehow, that good parents may have also good

children. The genetic algorithm convergence will be higher when the elitism operator

is used.

Selector

During the evolution, the selection operator selects chromosomes from population

for the purpose of reproduction. There are different selection schemes (i.e. rank,

tournament, roulette wheel, uniform, etc) which stochastically select single or

multiple individuals based on their fitness or other features.

It is impossible to have a genetic algorithm without having a selector

method. During evolution, single or multiple individuals are stochastically selected

from the current population (based on their fitness or other properties), and

modified (recombined and – possibly - randomly mutated) to form a new

population. From literature, the most well known selection methods are:

BUPT

60 | 4-Genetic Algorithm Framework

 Rank Selection that will pick the best-ranked individual.

 Roulette Wheel Selection, where each individual has a chance of

being picked from a roulette wheel, proportionally with its fitness

value.

 Tournament Selection, where two individuals are randomly chosen

and the best is selected.

 Uniform Selection, where an individual is randomly picked from the

population.

Depending on the selection type, the random number generator is used to

ensure the hazard on the selection. In our proposed framework, a simple

architecture is implemented, with an abstract class called Selector that knows how

to select an individual from the population, while respecting the selecting rules from

its derived class (see Figure 4.5). In this way, each derived class is forced to

implement the specific select method.

Figure 4.5: Selector Class Diagram

Selector

«Interface»

Selector(myRandom:Random)

p_Select():Genome*

_AssignPopulation(myPopulat...

n_SelectRandomAnIndividual...

n_GetRandomInt(low:int,high...

n_GetPopulationSize():int

f_GetRandomFloat(low:float,h...

SelectorRank

SelectorRank(myRandom:Random)

p_Select():Genome*

SelectorRouletteWheel

SelectorRouletteWheel(myRandom:Random)

p_Select():Genome*

SelectorTournament

SelectorTournament(myRandom:Random)

p_Select():Genome*

SelectorUniform

SelectorUniform(myRandom:Random)

p_Select():Genome*

BUPT

4.2 -Framework Packages Architecture|61

From the architecture, it is obvious that a population knows about the

selector method used for the selection, and the selector knows about the genetic

population. This population forms the pool of the individuals that are chosen for

selection. The selector object is created by the user, because only he/she knows

what specific algorithm is to be used for the selection, during the genetic evolution.

The selector object is passed to the genetic algorithm in order to create the

aggregation between the population and the selector (because the population is

allocated dynamically by the genetic algorithm object).

4.2.1 Framework Utilities

When discussing about genetic algorithms, the hazard is essential. This is the main

reason for which the standard libraries implementations for the random number

generator should be avoided (the numbers are generated in a pseudo-random

manner, thus a mathematical formula is used for prediction). The pseudo-random is

acceptable for many applications, but for the hazard implementations-as roulette

wheel or other specific probabilistic operations-, using dedicated algorithms for

random numbers yields better results.

In our framework, an abstract class for a random number generator is used,

allowing users to have their own random number generator. When defining the

derived class, they are forced to implement a method for initialization of the

generator (it is possible to specify a given seed, or as default, a variation of the

system time is used), and to implement methods for returning random numbers as

integers, floats or bits. We provided two implementations (see Figure 4.6) for the

random number generator, the first one is inspired from [70], and the second one is

an implementation based on the C++ library stdlib.

BUPT

62 | 4-Genetic Algorithm Framework

Figure 4.6: Random Number Generator Architecture

Measuring execution time plays an important role when different

implementations - for the same problem - have to be benchmarked. The execution

time is one of the genetic algorithm outcomes that needs to be compared in order to

assure a global view about the genetic algorithm characteristics (execution time is

important for the algorithm convergence towards a solution). We found out that

measuring execution time is not a straightforward job, each implementation having

different resolutions, and therefore different values for the same measurement.

Moreover, the operating system introduces delays due to task priorities and the

switching times between them.

Random

Srand(seed:unsigned int=0):void

RandInt(low:int=0,high:int=0):int

RandBit():int

RandFloat(low:float=0.0,high:float=0.0):float

Ran2

RandInt(low :int=0,high:int=0):int

Srand(seed:unsigned int=0):void

RandBit():int

RandFloat(low :float=0.0,high:float...

Ran2()

RanClassic

RandInt(low :int=0,high:int=0):int

Srand(seed:unsigned int=0):void

RandBit():int

RandFloat(low :float=0.0,high:floa...

RanClassic()

Abstract class for the

Random Number

Generator.

Different methods to

generate random

numbers are possible.

BUPT

4.2 -Framework Packages Architecture|63

Figure 4.7: Architecture for Execution Time Measurement

We propose a framework that allows time measurement (see Figure 4.7) on

different implementations (i.e., using QueryPerformanceTimer and ThreadPriority).

The user may choose which implementation is more feasible for his/hers needs,

even during the runtime of the algorithm.

4.2.2 Framework Statistics

It is important to be able to compare the genetic algorithm results between different

executions (repeating the algorithm) or with different starting parameters (different

number of individuals, different probabilities, etc). In our framework, a statistic

class was implemented, for providing the user with different statistic information

about a specific generation or about the entire population. Statistical information

about the maximum, minimum, average, and standard deviation is also provided.

 The statistic class is implemented as a template list (using a STL vector), to

store all the necessary information related to each generation. We choose to use the

template because the statistic methods must be available on any kind of data type

(i.e. operation as best, mean, minimum, standard deviation). The user will create

the data type for which a statistical analysis is necessary and will instantiate the

MeasureTimeImp

_Start():void

_Stop():double

UsingClock

_Start():void

_Stop():double

UsingQueryPerformance

_Start():void

_Stop():double

d_GetActualTime():double

1

itsMeasureTimeImp

MeasureTime

MeasureTime(object:Me...

~MeasureTime()

_Start():void

1

itsMeasureTimeImp

How to measure elpased time:

1. Create an object of MeasureTimeImp

2. Create an object MeasureTime and link with the MeasureTimeImp object; this is

equivalent with start timer

3. When object is destroyed the elapsed time in seconds is displayed; this is equivalent

with stop timer

BUPT

64 | 4-Genetic Algorithm Framework

template. In our architecture, the population class will have as associated a statistic

object (composition) of type FitnessData (storing values related with the best, mean

and minimum fitness value). After the evaluation of the genetic algorithm, the

statistic information is added into the history list (see Figure 4.8). When the statistic

information is requested by the user (it shall be based on request in order not to

overload the system), the framework will compute and will provide the results.

Figure 4.8: Statistic Class Diagram

Statistic

T

HistoryList_:vector<T>

_AddToHistory(ObjectToAdd:const T&):void

c_GetMax():T

c_GetActual():T

c_GetMin():T

c_GetMean():T

c_GetSTDEV():T

n_GetSize():int

operator[](position:int):T&

FitnessData

_SetValues(Best:double,Mean:double,Worst:double):void

ComputeMaxim(a:FitnessData,b:FitnessData):friend FitnessData

_Init():void

_ShowValues():void

ComputeMinim(a:FitnessData,b:FitnessData):friend FitnessData

operator+(obj:FitnessData):FitnessData&

ComputeMean(a:FitnessData,NoOfElements:int):friend FitnessData

operator/(value:int):FitnessData

operator*(obj:FitnessData):FitnessData

FitnessData()

ComputeSquareRoot(obj:FitnessData):friend FitnessData

operator*(value:int,obj:FitnessData):friend FitnessData

operator-(obj:FitnessData):FitnessData&

operator>(value:int):bool

BUPT

4.3 -Framework Validation|65

For example, the standard deviation is used to measure the spread of the

values through generations. The standard deviation is denoted by σ , and it is

defined as the square root of the variance.

2
N

1i

i)xx(
N

1
σ

(4.1)

where:

 N is the number of samples

 x denotes the samples average

For speeding up the software algorithm, a formula equivalent is used,

formula that may be obtained after applying standard algebra:

2
N

1i

2
i

2
N

1i

2
i

N

1i

2
i

N

1i

2
i

N

1i

2
i

2
i

2
N

1i

i

xNxxN)xN(x2)x(

xN)xx2()x()xxx2x()xx(

(4.2)

thus,

)xNx(
N

1
σ 2

N

1i

2
i

(4.3)

4.3 Framework Validation

Two well-known genetic problems have been implemented, for proving the

framework validation: the knapsack and methinks (more details in second PhD.

Report [71]).

The knapsack problem [72] is known in the literature as a combinational

optimization problem, and (at least throughout the last two decades) many studies

have been proposed [73] [74]. It is considered one of the easy-stated NP-hard

problems, and may be solved using different methods (i.e. by using dynamic

programming the problem is solved in pseudo-polynomial time, using greedy

programming a solution is reached in N/2, where N is the number of objects, etc).

The potential of the genetic algorithms to yield good solutions was proven, and

many papers have been published [75] [76].

The knapsack problem was implemented using the framework [77], by

adding two new classes. We derived from the GA class in order to define our own

genetic algorithm. All these were necessary because there are several particularities

that may be configurable via the interface methods provided by the base GA class

(i.e. genetic algorithm type, elitism, crossover, mutation, etc). After that, we

BUPT

66 | 4-Genetic Algorithm Framework

derived from the Genome class for creating the chromosome necessary for the

encoding of the candidate problem solutions (see Figure 4.9).

Figure 4.9: Knapsack Class Diagram

The chromosome was encoded as a bit string with the length equal to the

number of items from the collection. A gene equal to 1 indicates to the algorithm

the fact that the corresponding item is added into the knapsack and, in the same

way, a gene equal to 0 indicates that the items are not used for the candidate

solution. An item will store information about the object benefit and volume. The

fitness function computes the benefit and the volume for the involved genome, and

GA

«Interface»

1

Population

1

1

1

Genome

«Interface»

1

1

Knapsack

ab_Genome:bool*

n_ItemsNumber:int

_Initiate():void

_Copy(obj:Genome):void

p_Clone():Genome*

_Evaluate(b_Evaluate:b...

_Mutation():void

p_Crossover(spouse:Ge...

f_fitness():double

operator=(obj:Knapsack...

_ShowGenome():void

1

itsKnapsackCfg

1

itsKnapsackCfg

KnapsackCfg

as_ItemsCollection:S_ITEM*

n_Items:int

d_KnapsackVolume:double=0

_Set(position:int,s_value:S_ITE...

_SetKnapsackVolume(volume:d...

b_Get(position:int,s_value:S_ITE...

_GetNoOfItems():int

d_GetKnapsackVolume():double

pb_GreedySolution(Volume:int):...

GAKnapsack

_GAEvolve():void

BUPT

4.3 -Framework Validation|67

then it returns the division from the genome benefit and the benefit of all the items.

If the genome volume is higher than the knapsack volume, the fitness operator will

add a penalty value and the genome is disqualified. We implemented the penalty

fitness, because the fitness shall represent the proportionality of the profit in

comparison with an infeasible genome:

)CXV(*)V/Bmax(XBfitness

N

1i

iiii

N

1i

ii

(4.4)

The mutation operator will randomly flip-flop a bit from the bit string,

including or excluding an item from the knapsack. The crossover operator is

implemented as a two-point crossover; two chromosomes are stochastically selected

and then interchanged from the cut points. The genetic algorithm will start with an

initial population where the chromosomes are randomly generated. This means that

each chromosome may be considered as a potential solution, even from the

beginning. After initialization, the population is evaluated using the fitness function,

each chromosome receiving a value according to its efficiency. The next step is to

analyze if the best chromosome represent the solution (this is made by a

comparison with the solution generated by another approach). When the equality

results, the algorithm is considered finished and the evolution is stopped. Otherwise,

the genetic operators are applied, in order to perform the algorithm evolution, and a

new iteration is started. We used a non-overlapping algorithm for our solution, at

the same time allowing the elitism.

When dealing with the evolutionary biology and with the infinite monkey

theorem, Richard Dawkins [78] has pointed out that the task of the monkey writing

the complete work of Shakespeare may be reduced to a phrase “Methinks it is like a

weasel”. Moreover, the typewriter shall have a reduced keyboard only with 26

capital letters and a space. He was wondering how much time would be necessary

for the monkey to typewrite the phrase. The biological implication after the weasel

program was important because Dawkins proved that if a small change in the

genome is preserved over generations, and if there is a mechanism for selection, in

the end meaningful offsprings will be obtained in short time. We start with the high-

level implementation, the genetic class where it is specified what kind of genetic

algorithm type is to be used (non-overlapping or steady state). In addition, in the

same class, other specific proprieties shall be set (elitism percent, mutation

probability, crossover probability, maximum number of generations, etc). This class

is derived from an abstract GA class, and it implements all the necessary abstract

methods used for the genetic evolution (see Figure 4.10).

BUPT

68 | 4-Genetic Algorithm Framework

Figure 4.10: Methinks Class Diagram

The second step is to encode a candidate solution, and for this task a string

chromosome equal to the length of solution “METHINKS IT IS LIKE A WEASEL!” is

used (thus, 28). The set of allowed characters is restricted to 26 characters and a

space: "ABCDEFGHIJKLMNOPQ RSTUVWXYZ" like in the problem specification. There

are no special implementations for the mutation or crossover operators, the

framework allowing the use of existing implementations with a small change

(downcast to our new class). In the end, we need to define our fitness method, in

order to decide how far from the solution a given individual is. The fitness formula is

defined as the sum of the equal corresponding characters from the target and from

the genome.

GA

«Interface»

GAMethinks

_GAEvolve():void

Population

11

Genome

«Interface»

1

1

1

1

Methinks

_Initiate():void

p_Clone():Genome*

_Copy(obj:Genome):void

_Mutation():void

_Evaluate(b_Evaluate:bool...

p_Crossover(spouse:Geno...

_ShowGenome():void

BUPT

Chapter 5

5. Genetic Quantum Circuits Synthesis

“Current techniques for specifying quantum computations are an ad hoc mix of

mathematical notation and prose narrative. These methods, however adequate

for research reports, will not support the industrial-sized quantum algorithms

hoped for in the near future. They are often imprecise; they cannot be directly

simulated or compiled or submitted to automated analysis tools; and they will

not scale up.” [79]

John Hayes and Igor Markov, as pointed out in reference [10], consider that

Quantum Design Automation “is a necessary enabling factor in achieving scalable

classical and quantum circuits”. The results from [10] represent the progress, at the

middle of year 2006, in the quantum circuit synthesis, testing and simulation field,

as the authors attempt to advocate the CAD (Computer Aided Design) techniques

for quantum research. At the same time, reference [80] introduces the Genetic

Programming as “a set of evolutionary computation techniques for getting

computers to solve automatically problems without having to tell them explicitly

how to do it”. This reference represents a tutorial for the genetic algorithms,

presenting different approach styles and many applications. Taking into

consideration the previous affirmations, we consider that the quantum logic circuit

synthesis problem may be efficiently solved with genetic programming methods.

The quantum circuit synthesis has been intensely investigated in the last

years, and researchers like Dmitri Maslov, Gerhard Dueck and Michael Miller have

allocated years of effort for finding efficient synthesis methods

[81][82][83][84][85][86][87][88][89][90][91]. In the quantum logic circuit

simulation domain, it is considered that the research has already reached an

unanimous level where the quantum circuits may be more efficiently simulated on

classical computers [92][65][93][94][95][96][97]. Other appropriate references

about quantum synthesis and/or simulation are available:

[98][99][100][101][102][103][104][105][106][107][108].

A new methodology is presented in our paper [109], together with the

corresponding software analysis that creates incentives for reversible quantum

circuit synthesis. The focus in the presented methodology is on the layered phases,

necessary for synthesis and optimization. We envision the described synthesis task

as: perform the synthesis having a circuit description in a high-level description

language, a set of unitary operators applied over the qubits and the collection

hardware circuits (contained within a database) that will be used for synthesis.

 A quantum circuit is composed of one or more quantum gates on which a

set of unitary transformations are applied, according to a quantum algorithm.

Designing a quantum circuit to implement a given function is not a straightforward

task, because even if we know the target unitary transformation we do not know

BUPT

70 | 5-Genetic Quantum Circuits Synthesis

how to compose it from primary transformations. Even if the circuit is somehow

composed, we do not have information about its efficiency. This is the main reason

why we are proposing a genetic algorithm approach for the synthesis task. The

genetic algorithms will evolve a possible solution that will be evaluated against other

previous solutions obtained, and in the end, the close-to-the-optimum solution will

be indicated. In the circuit synthesis process, optimization plays an important role.

We are proposing different methods for circuit optimization in reference [110], like

topological, behavioral and pattern optimization.

Before applying a Genetic Algorithm for the Quantum Logic Circuit Synthesis

problem, several decisions are to be made, in order to define all the necessary steps

for quantum circuit synthesis. For example, is necessary to define the high-level

description language that will be used to represent the quantum circuits in our

system. The quantum circuit database is also necessary to define all the hardware

circuits available for the synthesis. The quantum circuits have to be described

together with their physical and logical characteristics. Finally yet importantly, the

genetic algorithm parameters (number of generations, different probabilities, exit

conditions, encoding, fitness evaluation, etc) and the performed self-adaption

method are important for a successful quantum circuit synthesis.

In this chapter, the main software modules are presented. The Parser

module presents the internal data structure used to translate the high description

language into a more convenient representation. The Quantum Circuits Database

facilitates quantum circuit description and adding of new quantum circuits by

inheritance from a base class that abstracts a quantum circuit. Details about how

the quantum synthesis algorithm is integrated into the ProGA Framework are

exposed and explained in this chapter. Finally, yet importantly, details about the

meta-heuristic algorithm used for parameter control adaption are also presented in

the conclusion of this chapter.

5.1 Parser Module

The parser module implements all the necessary methods in order to read stream

characters from an input file, and then creates the internal data structure that later

will be used by other algorithm modules.

QHDL Presentation

Quantum Hardware Description Language [QHDL] was designed in order to extend

the actual conventional VHDL (Very High Speed Integrated Circuit Hardware

Description Language), thus allowing quantum design and classical design on

different abstraction layers. The ATC-NY company is actually developing QHDL and

its tool support, like parsing and type checking. “QHDL will provide both a shared

language of interchange for the research community in quantum computing and a

language for programming realistic applications” [79] [111]. The QHDL is intended

as a tool that is able to specify an elegant and concise notation for the quantum

algorithm. The project aim was to eliminate the imprecise and particular

descriptions used by the many paper authors. The description language allows for

BUPT

5.1 -Parser Module|71

writing specification that is machine-readable, compiled and analyzed by using

computer computation rules. QHDL also allows for describing complex quantum

algorithms and, what is more important, provides a common language for all the

involved researchers, by avoiding all the communication problems that were

previously encountered (i.e. the notation mixing between narrative description and

mathematical equation). It is considered that “a standard machine-readable

notation for the full range of quantum algorithms is an essential element for building

a wide range of automated tools and for allowing them to interoperate smoothly”

[79]. Thus, the usage of a quantum language imposes correct syntax and type

check when quantum algorithms are described. This language is also quoted in the

QuIDDPro user guide [95], which is considered as actual state-of-the-art in

quantum circuit simulators.

Generic Parser and QHDL Parser

Taking under consideration all the abovely presented reasons, we decided to use the

QHDL as our high-level quantum description language, mainly because the QHDL

creates the common substrate for future quantum computing tools. The only

available implementation related to QHDL was proposed by the National Institute of

Standards and Technology [NIST] when QCSim [112] (Quantum Computation

Simulator) was developed. The QCSim parser implements only a subset of QHDL,

the one that is necessary to specify the quantum gates and the initial system state.

We considered that this subset is relevant and it suffices for the quantum synthesis

task that falls under the scope of our thesis. The proposed parser implementation

was partially reused (thanks to the related source code and to the benefic email

correspondence with Paul E. Black) for reading the qubit variables and the quantum

gates used to describe the quantum algorithm from a text input file. We extended

the number of recognized gates, but also removed some of them, in order to allow

the description of quantum algorithms using the elementary gates presented in

Table 1 and Table 2.

 When discussing about the generic parser, we should think about a software

tool that takes a large amount of data, mainly text data, and breaks it up into small

pieces of data. In our case, the parser will read characters from the input file

following several imposed grammar language rules. The lexical analyzer reads by

file scanning characters and passes them to the syntax analyzer that recomposes

the known language symbols. Last but not least, the semantic analyzer performs the

type checking, thus trying to identify the possible errors (see Figure 5.1).

BUPT

72 | 5-Genetic Quantum Circuits Synthesis

Figure 5.1: QHDL Parser Details

The generic parser is responsible with symbol detection, that may be a

name (string of characters), a number (real or complex) or punctuation (i.e. “|”,

“#”, “;”, “,”). The symbols are passed to the QHDL parser that will create the

internal data structure, like in a two-pass compiler (see Figure 5.2). The drawback is

represented by the memory consumption and by the time processor necessary for

creating the internal data structure. On the other hand, the advantages are more

important and dominant for our proposed synthesis task: better portability by

cutting the relation between front end and back end, easy optimization to be

performed on internal data, and if later will be necessary easy adaption of a new

abstract layer between existing layers.

Figure 5.2: Description of the QCS Parser

BUPT

5.1 -Parser Module|73

The circuit is described in a text file, with the QHDL formalism. The QHDL

provides a common understanding for all engineers because it is acting as a shared

language for exchanging the research results. The semantic is easy, and - with its

help - any kind of specific quantum algorithm can be specified.

The blocks of the input file, defining the file format, are:

 Variable block - specifies the variables (qubits) of the quantum algorithm.

We expect to read, from the input file, the keyword “variable” followed by a

space, then the identifier for the variable name followed by “:”, and then the

“qubit” keyword plus “;”. Some validity checks are also performed in this

phase (i.e. variable duplicate).

 Gate(s) block - is the place where the quantum algorithm is written, using

the language semantic. We expect to read the identifier for the gate name,

followed by the operator, which in our case is “(” and then the identifiers for

the affected qubits, followed by the operators “)” and “;”. For a quantum

gate, it is important to know its name and the corresponding parameters. A

validity gate check is performed (the known name and the expected number

of parameters are equal with the read parameters). A second check for the

parameters is performed in order to be sure that the parameters belong to

the variable block part.

 Comment block(s) can appear anywhere in the file. Any character following

the “#” character is considered a comment, and it is not important from the

parse point of view. A comment line is ended with the line end.

When discussing architecture (see Figure 5.3), the QHDLParser is the main

object from the parser module, its relation with the FileParser (our generic parser

implementation) and with the ListQHDL being a strong one due to composition.

Thus, the generic parser provides for the QHDLParser (via s_GetSymbolRead

method) the symbols necessary to construct the internal data structure thru

_AppendQubit and _AppendFunction methods. This class diagram map the system

functional requirements to the objects involved in different processing steps (i.e. file

opening by FileHandler).

BUPT

74 | 5-Genetic Quantum Circuits Synthesis

Figure 5.3: QHDL Parser Object Model Overview

 The sequence diagram from Figure 5.4 illustrates the sequence of events in

the parsing use case, by showing the objects interaction. The QHDL parser client is

attached to an input file executing the _AttachToInputFile method and will scan the

stream characters in order to find new symbols by calling the _ReadNextSymbol

method. The _ExpectPunctuation and _ShowError are used by the client from its

state machine to perform type checking. The main output from the FileParser is the

detected symbol that will be provided via s_GetSymbolRead.

FileParser

_ReadNextSymbol():void

s_GetSymbolRead():S_REA D_SY MBOL

_ShowError(Mess age:const char* ,LineN...

_ExpectPunctuation(Punctuation:char):v...

_A ttachToI nputFi le(ps_FilePath:c onst c ...

FileHandler

b_ReadC h(ReadCharacter:c har):...

b_IsEOF():bool

b_Open(FilePath:c onst c har*):b...

~FileHandler()

_WriteCh(WriteCharacter:char):...

1

myFileHandler

1

myFileHandler

ListQHDL

ListQ HDL()

_A ppendQubit(name:char* ,value:int):...

_ShowList():void

_A ppendFunction(QubitNo:int,name:c...

_Depth(QubitNo:int):int

_DepthWithoutLas tI(QubitNo:int):int

b_GetQubitFromP oss ition(P os ition:in...

_L istCheckAndVerify():void

operator++():L istQ HDL&

operator++(x:int):Lis tQ HDL*

_Firs t():void

p_CurrentE lement():Nod*

p_CurrentSubE lement():Nod*

n_GetNoOfSec tions():int

_GetCurrentElement():Nod*

_GetCurrentSubE lement():Nod*

1

myFileParser

QHDLParser

_C all ():void

Q HDLParser()

_I ni():void

n_GetNoOfQ ubits():int

n_GetNoOfSec tions():int

_GetL istElement():Nod*

_GetL istSubElement():Nod*

_I ncrementElementIterator():void

_I ncrementSubElementIterator():void

1

myListQHDL

1

myFileParser

1

myListQHDL

BUPT

5.1 -Parser Module|75

Figure 5.4: Generic Parser Sequence Diagram

The adopted granularity level (as high-level) presents only the public

operations that are carried out, and which are the messages sent during the time

required to implement a generic parser module.

:FileHandler

b_IsEOF()

:FileParser

b_IsEOF()

b_ReadCh(ReadCharacter)

b_ReadCh(ReadCharacter)

_ReadNextSymbol()

_IgnoreCommentsAndSpaces()

_ScanSymbol()

b_Open(FilePath)

b_ReadCh(ReadCharacter)

b_ReadCh(ReadCharacter)

_ReadNextSymbol()

_IgnoreCommentsAndSpaces()

_ScanSymbol()

b_Open(FilePath)

FileParser Client

_ExpectPunctuation(Punctuation)

_ReadNextSymbol()

s_GetSymbolRead()

_ShowError(Message, LineNumber, ColNumber)

_AttachToInputFile(ps_FilePath)

_ExpectPunctuation(Punctuation)

_ReadNextSymbol()

s_GetSymbolRead()

_ShowError(Message, LineNumber, ColNumber)

_AttachToInputFile(ps_FilePath)

BUPT

76 | 5-Genetic Quantum Circuits Synthesis

Internal Data Structure

The representation used for keeping the internal data structure was chosen to be a

list-in-a-list. The reason behind this choice is our new view on the quantum circuit:

the splitting in sections and plains [113]. This splitting allows access to sections

elements, which is later used for optimization, and creates the prerequisites for the

circuit encoding, which is then used by the genetic algorithm.

Figure 5.5: Quantum Circuit View as List-in-a-List Structure

The used high-level granularity from Figure 5.6, tries to emphasize only the object

relations, our focus being here on how the Iterator pattern is used to implement this

particular type of list. The List class is derived from the AbstractList interface, thus

will implement the methods for working with list elements, while p_Iterator_ pointer

is used to iterate the list. Additional data members are used to memorize the

iterator position and to allow vertical and horizontal iterations.

BUPT

5.1 -Parser Module|77

Figure 5.6: Internal Data Structure Object Model Overview

The sequence diagram from Figure 5.7 presents the method calls, in a time

sequence, which is necessary for parsing a QHDL input file. First, during the system

initialization, the QHDLParser is attached to the specified input file. The next main

call will read the declaration part from the file, where the qubits variables are

defined, and will create the horizontal lines from the internal data structure by the

_AppendQubit method. The rest of the calls, until the end of the input file, are used

to detect the involved gates and to fill the internal data structure with the

corresponding gate nodes, by using the _AppendFunction method.

ListQHDL
Iterator

«Interface»

Item

1

p_Iterator_

1

p_Iterator_

List

Item

1

myConcreateList_

1

myConcreateList_

«Usage»

AbstractList

«Interface»

Item

1

p_AbstractList_

«Usage»

1

p_AbstractList_

BUPT

78 | 5-Genetic Quantum Circuits Synthesis

Figure 5.7: QHDL Parser Object Model Overview

:QHDLParser

_ReadDeclarationPart()

_ReadGates()

_ReadDeclaration()

_ReadGatePart(FunctionIndex, u_ParameterArray)

_ReadDeclarationPart()

_ReadGates()

_ReadDeclaration()

_ReadGatePart(FunctionIndex, u_ParameterArray)

_AttachToInputFile(ps_FilePath)

:FileParser

_ReadNextSymbol()

_AttachToInputFile(ps_FilePath)

_ReadNextSymbol()

:ListQHDL

_ListCheckAndVerify()

_First()

_DepthWithoutLastI(QubitNo)

_Depth(QubitNo)

_AppendFunction(QubitNo, name, value, gateId, startPoint)

_AppendQubit(name, value)

_ListCheckAndVerify()

_First()

_DepthWithoutLastI(QubitNo)

_Depth(QubitNo)

_AppendFunction(QubitNo, name, value, gateId, startPoint)

_AppendQubit(name, value)

:QSyn

_Call()

_Ini()

_Call()

_Ini()

BUPT

5.1 -Parser Module|79

The created ListQHDL object is used as a comparison object, with the

evolved output emerged by the genetic algorithm. On one side, we have the

described quantum circuit represented by the internal structure and, on the other

side, there is the best evolved chromosome. In case of equality, the evolved

solution may be considered as a solution (not necessarily the optimum one).

Each object from the ListQHDL has the type of Nod, wherein Nod objects

declare the pointers necessary to create the horizontal and vertical relations. Others

data are used from the composite object Locus, such as gate name, gate identifier,

number of gates, etc (see Figure 5.8). Public methods are also present in the class

diagram in order to provide get access on members.

Figure 5.8: Nod Object Model Overview

We needed to distinguish between Nod and Locus because not all the class

members from Nod are necessary in order to define the chromosome positions (also

known as locus). The reason behind this decision is simple; we need to have a small

object, in terms of memory consumption, in order to decrease the computation time

of the genetic algorithm evolution. At the chromosome level, it is not important to

store the gate name, because it suffices to know its identifier. The replacing of id’s

with a name, for showing a readable solution, is still possible since its name may be

obtained from the QHDLParser class (it is defined static there).

Optimization

It is important to optimize the internal data, therefore enhancing the circuit quality

before proceeding with the synthesis task. It is considered that synthesis without

optimization will generate uncompetitive circuits. It is also important to maximize

Locus

data_:int=0

gateId_:int=0

endPoint_:bool=false

Locus(value:int,gateId:int,endPoint:bo...

_ReturnData():int

_ReturnGateId():int

_ReturnEndPoint():bool

_SetGateId(n_NewId:int):void

_SetGateData(n_Value:int):void

_SetGateEndPoint(b_EndPoint:bool):void

operator=(nod:Nod):Locus&

Nod

next_:Nod*=0

below_:Nod*=0

name_:char*

Nod(name:char*,value:int,gateId:i...

_SetRelationNext(pointer:Nod*):void

_ReturnNext():Nod*

_SetRelationBelow(pointer:Nod*):v...

_ReturnBelow():Nod*

_ReturnName():char*

~Nod()

operator=(rhs:Nod):Nod&

Nod(obj:Nod)

_ReturnData():int

_ReturnEndPoint():bool

_ReturnGateId():int

1

myLocus

1

myLocus

BUPT

80 | 5-Genetic Quantum Circuits Synthesis

the circuit quality, a situation that will generate superior performance for the

synthesized circuit. Optimization implies analyzing the circuit from a structural view

and from a behavioral view. Another factor in assuring the quality of a circuit is the

computation time (each gate introduces a specified delay). Our analysis will consider

all the factors that may influence the quality of a quantum circuit design.

Optimization will preserve the circuit output function, while decreasing the total

number of used gates. Optimization is an iterative process that shall be applied

several times; one optimization being able to create incentives for a second one.

The full circuit optimization is hard to obtain. Optimization may occur on

different circuit parts and may have many distinct goals. In classic synthesis,

optimizations on the circuit integration area and delay latency are common, and

sometimes the optimization is based only on approximations. The structural view

allows for interpreting the circuit as a sequence of gates, which are placed on

quantum wires (see Figure 5.5). At this stage, it is important to have a clear

structure that will be used in computing the quantum state on each section.

An enumeration of the rules that need to be followed for implementing the

topological optimization [110] is presented below:

 Rule 1, order of placement: the gates are placed in the order described within

the input file.

 Rule 2, identity gate(s) addition: if there are empty sections in front of the

placement section, they will be filled with identity gates. In this way, we assure

a complete internal data representation, which is later necessary for computing

the output function.

 Rule 3, qubit depth: if the gate affects more than one qubit, it shall be placed on

the section defined by the highest depth on the composed qubits.

 Rule 4, gate intersection: if there are other gates intersecting with the gate that

needs to be placed in the section defined by the previous rule, then a new depth

(which takes into consideration also the intersected qubits) is calculated. The

gate will be placed on the section defined by this new depth.

BUPT

5.1 -Parser Module|81

Figure 5.9: Topological Optimization

The structural view is created when the circuit description is read from the

input file, each gate being placed on the corresponding qubits when the file is

parsed. The placement algorithm is responsible with the topological optimization, by

defining the gate placement methodology (see Figure 5.9).

Iterator Pattern

An abstract list class is defined, in order to provide a common interface to access

and manipulate a particular list structure. In the same way, the abstract iterator

provides a common iteration interface. The pattern was necessary because we need

to have more list structures in our architecture, and for each of them different

iterations is necessary. The list object is responsible for creating the corresponding

iterator; the client will request an iterator object via the CreateIterator method

(almost an example from the Factory Pattern [66]).

Using this pattern, we defined several concrete lists, which can memorize

the intermediate results of the synthesis algorithm. For example, a first list will keep

information about the circuit as, it is described in the input file, and a next list will

follow the optimized circuit pursuant to the optimization phase.

The abstract class Iterator provides an interface for any kind of list iteration.

The methods are abstract and need to be redefined in the concrete ListIterator. The

abstract class allows for an easy implementation for any kind of iterations that have

to be performed on the concrete list. Template usage allows different object types to

be iterated. Without an iteration class, all the details related to list traverse need to

BUPT

82 | 5-Genetic Quantum Circuits Synthesis

be stored in the implemented class list (a negative effect: the class will become

bushy).

Figure 5.10: Iterator Pattern Object Model Overview

Figure 5.10 shows how the iterator pattern is implemented into the

architecture. The interface allows for insertion and removal of elements for any kind

of lists. Additional methods are presented for finding or for checking the depth of an

added element.

5.2 Quantum Circuits Database

For the purpose of synthesis, it is important to create and update a database with

quantum circuit specifications. The synthesis will be performed only by using circuits

from that database (see Figure 5.11). The quantum circuits are described from

behavioral and physical points of view. The behavior is important in order to verify if

the circuit satisfies the logic-nature expectations, while it implements the required

function; the physical characteristics are also important for defining the circuit

List

Item

p_GetElement(index:long):Item*

p_CreateIterator():Iterator< Item>*

_Append(element:Item&):void

List()

_Append(element:Item*,subelement:Item&)...

p_FindQubit(lookup: int): Item*

n_DepthWithoutLastI(qubit:Item*):int

n_Depth(element:Item*): int

n_CountElements(): int

p_GetSubElement(element: Item*,index:long...

_CreateSectionLinks() :void

n_GetMaxDepthOfList() :int

_CompleteTheList() :void

ListIterator

Item

b_IsDone():bool

p_CurrentElement():Item*

_First():void

ListIterator(aList:const List<Item>...

operator+ +() :Iterator<Item> &

operator+ +(x:int):Iterator<Item>*

_DisplayList():void

_DisplaySections(position:int) :void

p_CurrentSubElement():Item*

«Usage»

«Usage»

«Usage»

«Usage»

AbstractList

«Interface»

Item

p_CreateIterator():Iterator<Item>*

_Append(element:Item&):void

p_GetElement(index: long):Item*

_Append(element:Item*,subelement:Item&):...

p_GetSubElement(element:Item*,index:long)...

n_Depth(element:Item*):int

Iterator

«Interface»

Item

p_CurrentElement():Item*

_First():void

b_IsDone():bool

operator+ +() :Iterator<Item> &

operator+ +(x:int):Iterator<Item...

_DisplayList():void

p_CurrentSubElement():Item*

«Usage»«Usage»

BUPT

5.2 -Quantum Circuits Database|83

layout (i.e. creating a circuit layout was not under our focus throughout this thesis,

but the database may be easily extended to allow this propriety).

Figure 5.11: Database for Quantum Circuits

The Database was designed to allow extensibility. Thus, the module

database contains three essential classes (see Figure 5.12). The QuantumGate class

is used to describe a quantum circuit and its proprieties, while the QMath class

implements the necessary corresponding operations. The GateCollection class is just

a container for these gates, which are used for the purpose of synthesis.

Figure 5.12: Database Component Diagram

Database

GateCollection

QMath QuantumGate

BUPT

84 | 5-Genetic Quantum Circuits Synthesis

The database contains elementary gate circuits and arrays of circuits

(composed by elementary gate circuits). The elementary gates are used to

synthesize the circuit function, in order to find an optimal circuit composed only of

elementary gates. The complex circuits are important in the optimization phase, the

previously obtained circuit being changed so that it will also contain complex

circuits; this optimization is required to reduce the circuit cost, by using a small

number of capsules.

Quantum Gates

A quantum gate is described by using the matrix representation. In order to do that,

we used the STL13 vector template. We defined the quantum gate as a double

dimension vector of complex elements. This kind of structure allows facile access to

the gate elements and a low consumption of execution time. The class members

define the quantum gate proprieties such as number of input qubits, the gate cost

and feasibility (see appendix 8.5 Quantum Gates Cost), the gate name, and if the

gate is elementary or complex. The constructor allows the creation and, at the same

time, the initialization of gate elements with the corresponding values. In fact, the

constructor will create the object and the private methods, which are called within

the constructor (i.e. _MakeHadamard will fill the matrix values according to the

Hadamard logic function) will initialize its elements.

Figure 5.13: Quantum Gate Class Diagram

13 Standard Template Library

QuantumGate

sz_GateName_:char

n_QubitsStates_:int=0

n_GATE_NAME_LENGTH:int=15

d_GateCost_:double=1

d_GateFeasibility_:double=100

b_IsElementary_:bool=true

myGate:vector < vector< complex<double> > > %s

QuantumGate()

QuantumGate(States:int,GateName:char*)

QuantumGate(States:int,GateName:char*,e_PhysicalType:E_PHYSICAL_GATE)

_DisplayGate():void

n_GetNoOfStates():int

c_GetMatrixValue(row:int,column:int):complex<double>

_SetMatrixValue(row:int,column:int,NewValue:complex<double>):void

_Clear():void

BUPT

5.2 -Quantum Circuits Database|85

Discussing extensibility, just by adding a derived class from the

QuantumGate and, inside it, a new private method it is enough to define a new

quantum gate into the system.

Gate’s Math

This class is responsible with quantum gate math’s implementation. Methods

necessary for multiplying, compute the tensor product or just for the equality

degree of two quantum gates are implemented in this class.

Gate Collection

The gate collection class was designed as a container of quantum gates. The gates

are declared as derived QuantumGate objects and defined within the collection, as

composite objects into a STL vector object. The class was implemented by using the

Meyers Singleton pattern, thus only one of its instances is allowed in the system.

The access to the gates is allowed through get methods. The main characteristic of

this class is that the gate particularities are not important at this level, as opposed

to their presence. In Figure 5.14 the specification and structured views presents the

GateCollection class.

Figure 5.14: Collection Class for Quantum Gates

It is easy to extend the collection with a new gate object, by creating a new

gate in the GateCollection class as a composite object (i.e. myGate5) and adding

the object in the GateCollection constructor into the vector.

GateCollection

myGate1:QuantumGate1 myGate2:QuantumGate1 myGate3:QuantumGate1 myGate4:QuantumGate1

GateCollection

myDatabase:vector <QuantumGate> %s

GateCollection()

GateCollection(obj:GateCollection)

rc_GetInstance():GateCollection&

_CreateDatabase():void

BUPT

86 | 5-Genetic Quantum Circuits Synthesis

Figure 5.15: Creating Collection Sequence Diagram

The abovely presented Figure 5.15 presents the necessary operations during the

time line for the gate collection creation. For the first time, the static GateCollection

object is created and then - via corresponding creators calls (constructors) - the

quantum gates are created and added into the STL vector object.

5.3 Preparation Steps for Genetic Algorithm

A dedicated genetic algorithm is used to emerge a circuit synthesis solution. The

obtained solution is not guaranteed as being the best, thus giving reasons for tuning

of the algorithm. The most important parameters required by the genetic algorithm

shall be interactively set by the user when the algorithm is initialized (for example:

the number of individuals, the number of generations, the mutation/crossover

percentage, the accepted number of circuits in the evolved result, etc), and

dynamically adjusted by the meta-heuristic algorithm.

 Within our proposal, it is required that several decisions be taken before

going into genetic algorithm details (also called preparation steps):

 “What is the terminal set?

:QSyn

_CreateDatabase()

:GateCollection

_CreateDatabase()

rc_GetInstance()rc_GetInstance()

QuantumGate(States, GateName, IBetween, IBetweenSecond)

:QuantumGate

QuantumGate(States, GateName, IBetween, IBetweenSecond)

QuantumGate(States, GateName, IBetween, IBetweenSecond)

QuantumGate(States, GateName, IBetween, IBetweenSecond)

QuantumGate(States, GateName, IBetween, IBetweenSecond)

QuantumGate(States, GateName, IBetween, IBetweenSecond)

BUPT

5.3 -Preparation Steps for Genetic Algorithm|87

 What is the function set?

 What is the fitness measure?

 What parameters will be used for controlling the run?

 What will be the termination criterion, and what will be designated the result of

the run?” [114]

Objective

The objective here is to find the efficient reversible quantum circuit synthesis from a

high-level description. Considering the discrete space search and the objective

function :f , our scope is to find the)f(maxx , where x is a vector of

decision variables)x,...x,x(f)x(f n21 . It is a maximization problem, because

we try to find the optimum quantum circuit that implements a given input function.

Terminal Set

The terminal set used in the quantum logic circuit synthesis process is composed

from the following components:

 Quantum gates (any gate from the database may be randomly used for the

chromosome encoding).

 Implemented methods to generate random numbers (used in the selector

probabilities and in the gate selector when genetic operators are applied)

 Constant gate characteristic values (i.e. quantum circuit cost and its

efficiency).

Function Set

The function set for a genetic algorithm is derived from the nature of problem. For

the quantum synthesis problem, the function set is composed of the mathematical

functions necessary to evaluate the circuit output function (tensor product,

multiplication, equality, etc.). A function set needs to fulfill two proprieties:

 Closure: it is assured because any function from the function set can accept as

arguments any value returned by any other function from the function set. In

our case, the return result from any function is a circuit gate, which is a terminal

in the terminal set. In other words, any function from the function set is well

defined and closed for any argument combination that it may receive.

 Sufficiency: it is assured by theory, because it is possible to express a solution

by hand computation, combining the elements of the primitive set.

BUPT

88 | 5-Genetic Quantum Circuits Synthesis

Fitness Measure

The fitness measure specifies what the user expects from the synthesis algorithm.

Therefore, the fitness assignments to a chromosome indicate how close the

individual output is to the algorithm target. A good method not to repeat the fitness

calculation for a chromosome is to maintain a flag showing if any change has been

performed since the last evaluation. Any genetic operator applied over an individual

will affect the evaluation flag, hence allowing a new fitness re-evaluation in that

case.

Selection

Different types of selector methods are used for quantum circuit synthesis (i.e.

rank, roulette wheel, tournament and uniform). The possibility to change the

selection is important in order to compare different evolved solutions. The ProGA

framework provides support for selection methods, the user having the possibility of

choosing one of them, or even of dynamically changing the selector during run-time.

Encoding

The circuit representation is important for the chromosome encoding. A

chromosome shall represent a possible candidate solution for the given problem.

Our approach was to split the circuit representation in sections and plains [113]

[109], a representation that will be used in the chromosome definition.

 Following Nature, where a chromosome is composed of genes, in our

chromosome the genes are the circuit sections. In this way, we are able to encode

the circuit within the chromosome, and to represent a possible candidate solution

(as presented in Figure 5.16). A gene will store the specific characteristic of a

particular section and the genetic operators will be applied at the gene level or

inside the gene.

BUPT

5.3 -Preparation Steps for Genetic Algorithm|89

Figure 5.16: Chromosome Encoding

The possibility of applying the genetic operators at the gene level is

promoted here for the pattern optimization. For example, replacing a gene with

another one has its correspondent in the circuit section replacement (a circuit

section may be replaced by another, having the same functionality but with a better

efficiency/cost). The patterns will be externally stored and used in the pattern

replacement. Moreover, it is possible to exchange more related sections with an

equivalent section (which is, for example, more attractive from the efficiency point

of view).

The parser will provide information for the genetic algorithm, about the

number of qubits (n) and about the number of sections (m). These values are taken

from the internal data representation, after applying the topological optimization. At

the beginning, the chromosome will be composed of m genes and each gene by n

gates, because our scope is to optimize the evolved circuit and not to have an

increase number of gates in comparison with the given (HDL described) circuit.

Later, due to the evolution process, and due to pattern optimization, it may be

possible to reduce the number of used genes by compaction of the adjoining genes,

or by removing a gene if the added characteristic does not produce a transformation

for the previous one. This is made possible by using genes composed only of

identity gates, the removed gene being placed at the end of the chromosome (it is

important not to change the chromosome length).

Each chromosome represents a possible solution, which is computed by

applying the tensor product for all gate genes and then multiplying all the results.

BUPT

90 | 5-Genetic Quantum Circuits Synthesis

Initial Population

The initial population is created using random quantum gates inside the

chromosome genes. The number of individuals may be set by the user, when the

genetic algorithm is started.

Controlling Parameters

It is impossible to make general recommendations for specifying optimal run-time

parameter values. For this reason, a meta-heuristic algorithm is used in order to

determine the controlling parameters as operator probabilities. Other parameter

controls, as population size and fitness function, have static values, and the

dynamical adjustability was not necessary during the algorithm evolution.

Evaluation

The genetic algorithm will start with random candidates, having the chromosome

length and the number of genes defined by the parser and by the topological

optimization. The chromosome values are randomly generated at the beginning,

having random gates inside. The created population is evaluated in order to check if

there is an acceptable solution. This check is made by comparing the chromosome

output function with the given circuit function and by applying the penalty value, if

such it is the case. The genetic operators are applied afterwards, allowing population

evolution by generating a new population, (the type of genetic algorithm is non-

overlapping). We have also proposed to use elitism for our algorithm (a specified

number from the best chromosomes are kept during the genetic evolution, allowing

an increased convergence for the algorithm). The scope is to maximize the fitness

values, thus any value higher than 1 is considered to be an acceptable solution; this

acceptable solution will have the same output function as the given circuit and, in

addition to this, the number of composing gates will be lower).

Termination Criteria

The genetic algorithm is finished when the number of allowed generations is

reached. Other methods for stopping the algorithm are not used, because our scope

is to maximize the fitness function using all the possible number of generations (i.e.

the possibility of stopping the algorithm when there is no improved solution evolved

during several generations, or when the fitness is sufficient for deciding that the

algorithm has already evolved a better solution, etc.). The maximum number of

allowed generations is a parameter control for the synthesis algorithm and may be

set by the users when the genetic algorithm is started.

5.4 Integration within ProGA Framework

Four main blocks are identified within Figure 5.17. The ProGA framework is

responsible with genetic algorithm implementation details, and the Adaptive

component is responsible with the dynamically adjustment of the algorithm

parameter controls. The Synthesis component is responsible with the quantum

BUPT

5.4 -Integration within ProGA Framework|91

synthesis process, implementing the particularities necessary for the genetic

evolution. The fourth module, the Database, represents a collection of gates that

are used in the synthesis process, random gates being introduced into genetic

population as locus into chromosomes.

Figure 5.17: Integration within ProGA Framework

The ProGA framework allows for testing different configurations and

comparing their results. It is possible to have different values for the parameters

control, different type of selectors, different random number generators, different

time measures implementations, etc.

5.4.1 Initial Circuit Configuration

The first information that is necessary in the synthesis configuration is related to the

number of genes from a chromosome, and the length for a gene. These values have

their correspondent in the number of sections and planes (like in Figure 5.5) that

are computed during the parsing operation. Then, in a second step, the initial

chromosome is constructed from the internal data structure, using the Locus

information instead of Nod (see Figure 5.8). Thus, we have encoded the input high-

level circuit description into a synthesis chromosome, that will be used as a

comparison base for all the evolved results (remember, that our scope is to evolve a

BUPT

92 | 5-Genetic Quantum Circuits Synthesis

better chromosome). In order to allow a facile comparison, the output function

result is saved into a quantum circuit object (called myInitialFctOutput, as it is

described in Figure 5.19). This quantum circuit will not be included into the

Quantum Gate Collection, because it will not be used as input for the synthesis

algorithm.

Figure 5.18: Genome Configuration

The algorithm implemented in the Application class, responsible with the

creation of the initial solution is:

Algorithm used for transformation of the internal data structure (created by parser)

into the initial chromosome

1. Create an initial chromosome.

2. Get the number of qubits (known by parser module).

3. While element exists into Internal Data Structure

a. Copy all sub-elements into the current gene.

b. Go to next element from the Internal Data Structure.

4. Compute the output function and memorize the result into a quantum gate

circuit.

The configuration class is required in order to transform the parsing

information into chromosome and to give facile access to the initial solution. Details

about code implementation are given in 8.2 (QCS Initial Genome Solution) section.

SynthesisCfg

«Singleton»

_SetGeneLength(n_Length:int):void

_SetNoOfGenes(n_Genes:int):void

rc_GetInstance():SynthesisCfg&

SynthesisCfg()

SynthesisCfg(obj:SynthesisCfg)

n_GetChromosomeLength():int

n_GetGeneLength():int

n_GetNoOfGenes():int

_SetInitialGenome(p_Genome:Synthesis*):void

_ComputeOutputFct():void

p_InitialCircuitOutputFct():QuantumGate*

BUPT

5.4 -Integration within ProGA Framework|93

5.4.2 Synthesis Genetic Algorithm

The Synthesis Genetic Algorithm is considered as an extension for the ProGA

framework, the classes belonging to this component being derived from the

interface declared in ProGA. Thus, as presented in Figure 5.19, GASyn is derived

from the interface class GA and Synthesis is derived from the interface class

Genome. By this inheritance, the ProGA framework functionality is extended with

the synthesis behavior.

Algorithm used for the genetic synthesis

1. Set the genetic algorithm type: overlapping or non-overlapping.

2. Set the mutation and the crossover probabilities.

3. Set the elitism percentage.

4. Set the maximum number of allowed generations and individuals.

5. Get the number of qubits (known by the parser module).

6. While generations are still allowed or a solution has not been evolved:

a. Initiate the population.

b. Evaluate the individuals.

c. Store the statistic information.

d. Check for a solution.

e. Apply the genetic operators (mutation and crossover).

7. Display the best chromosome.

BUPT

94 | 5-Genetic Quantum Circuits Synthesis

Figure 5.19: Synthesis Genetic Algorithm

For the user, the inheritance from the ProGA framework gives access to all the

genetic algorithm parameters control. For example, the genetic algorithm type, the

operator probabilities, the number of individuals can be adjusted within this GASyn

class. More than this, in this class, the order of genetic operators or the termination

criteria may also be changed. This class defines all the algorithm parameters

control, all the operation executed, and – at the same time - their order. This class

GA

«Interface» ProGAFramework::Population

1

itsPopulation

1

itsPopulation

1
itsGenome

Genome

«Interface»

1
itsGenome

1

itsGenome

1

itsGenome

GASyn

_GAEvolve():void

GASyn(genome:Genome,selector:Selec...

Synthesis

ac_Genome:Locus*

p_CrossoverTypeA():void

sz_Genome():char *

_ShowGenome():void

p_Clone():Genome*

_Evaluate(b_Evaluate:bool=false):void

_MutationTypeA():void

_Copy(obj:Genome):void

_Initiate():void

Synthesis()

Synthesis(obj:Synthesis)

Synthesis(myRandom:Random)

_Initiate(position:int,NodValue:Nod*):v...

operator=(obj:Synthesis):Synthesis&

_ComputeOutputFct(GateResult:Quant...

~Synthesis()

_MutationTypeB():void

p_CrossoverTypeB():void

«Usage»

SynthesisCfg

«Singleton»

_SetGeneLength(n_Length:int):void

_SetNoOfGenes(n_Genes:int):void

rc_GetInstance():SynthesisCfg&

n_GetGeneLength():int

n_GetNoOfGenes():int

_SetInitialGenome(p_Genome:Synthesis...

p_InitialCircuitOutputFct():QuantumGate*

«Usage»

1

itsInitialGenome

1

itsInitialGenome

1
myInitialFctOutput

Database::QuantumGate

1
myInitialFctOutput

BUPT

5.4 -Integration within ProGA Framework|95

was design to have only base information about the genome, selector and

population type, which are used for the genetic algorithm declaration.

5.4.3 Circuit Genome

The Synthesis class implements the genome, which encodes the circuit

representation. As already stated, a genome could represent a possible solution for

the synthesis task. The genome representation is an array of random quantum

gates that are chosen randomly from the database, with the only constraint that a

quantum gate cannot be split on two genes. Thus, the genome (or the chromosome)

is composed of one or more genes, their number being known by the parser module

and provided to the Synthesis class via SynthesisCfg class.

This class implements the main functionality of the synthesis task, the operators

and their behavior being defined at this level. Another important method is

responsible with the random gate initialization for the chromosomes. We defined

two types of operators, called A and B. The A type is responsible with changes inside

of the gene, while the B type is responsible with changes at the chromosome level

(thus, affecting one or more genes). The initial probability, defined by user, is split

in two parts and assigned to the A and B operators. Later, during the run-time, their

values will be automatically adjusted by the meta-heuristic algorithm (if it is

configured to perform in this manner). The object model overview for the Synthesis

class is presented in Figure 5.20. The genetic operators are applied at the gene level

and inside the gene. When applied at the gene level, an entire gene is replaced with

the content derived from the genetic operator. When applied inside of the gene, the

gene content is only modified.

BUPT

96 | 5-Genetic Quantum Circuits Synthesis

Figure 5.20: Synthesis Genome

5.4.4 Circuit Output Function

The genome output function is computed by the _ComputeOutputFct method that

will return the result as a quantum gate result, which is later used for comparison

with the initial genome function. Information is exchanged from left to right, with

the upper wires representing the most significant qubits (as presented in Figure

5.16). Each individual represents a possible solution, which is computed by applying

the tensor product individually over all horizontal rows, and then multiplying all the

row results.

Synthesis

ac_Genome:Locus*

n_GeneIndex:int=0

b_NewSection:bool=false

sz_Genome():char *

_ShowGenome():void

p_Clone():Genome*

_Evaluate(b_Evaluate:bool=false):void

_Copy(obj:Genome):void

_Initiate():void

Synthesis()

Synthesis(obj:Synthesis)

Synthesis(myRandom:Random)

_Initiate(position:int,NodValue:Nod*):void

operator=(obj:Synthesis):Synthesis&

d_fitness():double

rc_DetectNextGate():QuantumGate&

b_CheckNewSection():bool

b_CheckValidIndex():bool

_ComputeOutputFct(GateResult:QuantumGate):void

~Synthesis()

_InitiateBetween(n_StartPosition:int,n_EndPosition:i...

_MutationAType():void

_MutationBType():void

p_CrossoverAType(spouse:Genome):Genome*

p_CrossoverBType(spouse:Genome):Genome*

BUPT

5.4 -Integration within ProGA Framework|97

Algorithm used for the genome output function

1. While gene index is less than chromosome length

a. Read the current quantum gate.

b. If the read operation has changed the section and the first gene was

read

i. Only the first section was read.

ii. Reinitialize the Locus position.

c. If the read operation has changed the section

i. Reinitialize the locus position.

ii. Perform multiplication.

iii. Save the multiplication result.

d. If it is the first locus

i. Save gate value under the form of tensor result.

e. If it is not the first locus

i. Perform the tensor multiplication.

2. Perform the last multiplication.

3. Return the output function result.

Details about algorithm code implementation are presented in the 8.4 (QCS

Genome Implementation Details) section.

5.4.5 Genome Initialization

On the initialization phase, the genome will receive random gates, as values from

the quantum circuit database. The genome attributes are reset to the initial values

and the evaluation flag is cleared in order to force the evaluation on the next

execution cycle. The initialization is performed only once during the algorithm

lifetime, and is responsible with the genome creation (as presented in Figure 5.21).

Figure 5.21: Genome Initialization

BUPT

98 | 5-Genetic Quantum Circuits Synthesis

One of the design constraints needs to be respected, as being related to the

impossibility of splitting one quantum gate between two genes (or sections). For

example, if the gene has a length equal to 3, is possible - at the initialization phase

- to receive a gate with 3 inputs, or a gate with 2 inputs plus one gate with one

input, or a gate with one input plus the following with two inputs, or just 3 gates

with 1 input. The initialization algorithm is repeated until the genome receives the

initial quantum gates with the constraint being that the maximum allowed number

of inputs is given by the gene length.

5.4.6 Detecting of the Next Gate

The most sophisticated part of synthesis class is the gate detection from the

genome. It is important to be able to read the quantum gates one by one from the

encoded information, and to provide the quantum gate type read. This method is

essential when the output function is computed, and it is essential in the genetic

operators because the quantum gates are affected by changes there. The

complexity is given by the locus-encoding mode, being possible to split one physical

gate on several locus positions. One encoding improvement is coming from the

parsing design, because it is possible to have a quantum gate, located only within

one gene without being spread over several genes. If the next read gate is a

singular qubit gate, then its reference is returned in a fast manner by the

rc_DetectNextGate method, and the index from the chromosome is incremented

with one (allowing reading the next possible gate from that new position). When the

next gate read affects more qubits, it is necessary to check all the other possible

types of gates that will have as first input the gate described by the current locus

(i.e. considering the first locus a CNOT gate, then it is known, for sure, that the gate

will affect at least two qubits). Another constraint is due to the topological

optimization; it is not allowed to intersect different types of gates within the same

circuit section. The method returns a reference to one known quantum gate from

the quantum gate collection and the gate values will be used by the output function

methods, in order to compute the circuit function.

Algorithm used for detecting the next quantum gate

1. Read a quantum gate id and increment the position into the chromosome.

2. Translate the id into a gate type.

3. If the gate type was identified, return the reference to it.

4. Repeat

a. Read the next quantum gate id and increment the position.

b. Check the gate termination point.

c. Translate the id into a gate type.

d. If the gate type was identified, return the reference to it.

5. Meanwhile, a new section is not started.

BUPT

5.4 -Integration within ProGA Framework|99

5.4.7 Performing Mutation

The mutation operator has the role of producing a change within the chromosome,

hence allowing the search algorithm to explore new spaces; it is important not to

converge to a local optimum (see Figure 5.22). In this way, when the mutation

operator is applied inside the gene, the principle to be followed is:

 Randomly select a chromosome using a mutation probability.

 Randomly select a gene.

 Randomly select a locus from the gene.

 Replace the entire gate from the selected locus (more positions may be

affected, if it is a gate on more qubits) with one or more random quantum

gates; in the end the same number of inputs need to be replaced.

When the mutation operator is applied at the gene level, then the necessary steps

are to:

 Randomly select a chromosome using a mutation probability.

 Randomly select a gene for mutation operation.

 Replace the complete gene contents with new random gene content.

BUPT

100 | 5-Genetic Quantum Circuits Synthesis

Gate

2

Gate

5

Gate

4

Gate

3

Gate

2

Gate

1

Gate

2

Gate

6

Gate

5

Gate

4

Gate

3

Gate

1

Gate

1

Gate

5

Gate

4

Gate

3

Gate

2

Gate

1

Gate

2

Gate

6

Gate

5

Gate

4

Gate

3

Gate

1

Inside of gene, two

positions affected

At the gene level

Gate

2

Gate

5

Gate

4

Gate

4

Gate

3

Gate

1

Gate

2

Gate

6

Gate

5

Gate

4

Gate

3

Gate

1 Inside of gene, one

position affected

Gate

2

Gate

4

Gate

3

Gate

2

Gate

2

Gate

1

Gate

2

Gate

6

Gate

5

Gate

4

Gate

3

Gate

1
Inside of gene, three

positions affected

Figure 5.22: Mutation Representation

BUPT

5.4 -Integration within ProGA Framework|101

In the synthesis algorithm, it is possible to configure singular or multiple

mutation operators (user configurable). Using a locally generated probability, it is

possible to affect the genome only once through mutation, or to allow multiple

mutations over the previous values.

From an encoding point of view, each gate from the genome has an id

number. When the mutation is applied, there are high chances of having a different

number of gates into the chromosome, thus it is mandatory to compute again each

gate id, starting from the point where the mutation was finished. A part from the

mutation algorithm is presented below, while the entire source code is available in

section 8.4 (QCS Genome Implementation Details).

Algorithm used for mutation at the gene level

1. Get the number of present genes.

2. Get the gene length.

3. Randomly select a gene.

4. Store the last gate id before the mutation point.

5. Perform the gene mutation by replacing the complete contents with new

randomly generated gates having the id number starting with the last

memorized gate id increased by one.

6. Affect the rest of the gates’ id in order to be consecutive numbers

a. It is possible to have more gates, thus the gates id need to be

increased with a shift value.

b. Alternatively, it is possible to have fewer gates, thus the gates id

need to be decreased with a shift value.

Algorithm used for mutation inside of gene level

1. Get the number of present genes.

2. Get the gene length.

3. Randomly select a gene.

4. Randomly select a locus.

5. Detect the gate corresponding to the selected locus

a. If the gate is an identity used between the qubits of a quantum

gate, then move the selected locus to the right until a different gate

id is detected (used to detect the complete quantum gate).

6. Search to left for the neighboring gate and memorize its locus.

7. Search to right for the neighboring gate and memorize its locus.

8. Generate a new random quantum gate or more quantum gates between the

left and right locus positions.

9. Affect the rest of the gates id to be consecutive numbers

a. It is possible to have more gates, thus the gates id need to be

increased with a shift value.

BUPT

102 | 5-Genetic Quantum Circuits Synthesis

b. Alternatively, it is possible to have fewer gates, thus the gates id

need to be decreased with a shift value.

5.4.8 Performing Crossover

The crossover operator is much complex than mutation. In this case, the gates

selected from parents are used to create offsprings, by copying their contents and

proprieties. Thus, by using a crossover probability, two genes are selected for

reproduction and by applying, one or two, cut points (user configurable) the content

between these points is exchanged (see Figure 5.23 and Figure 5.24).

Gate

1

Gate

2

Gate

4

Gate

4

Gate

3

Gate

1

Gate

5

Gate

7

Gate

9

Gate

8

Gate

7

Gate

6

Gate

1

Gate

7

Gate

4

Gate

4

Gate

7

Gate

1
Parent 1

Parent 2

Offspring 1

Gate

5

Gate

2

Gate

9

Gate

8

Gate

3

Gate

6Offspring 2

Two Point Crossover

Gate

1

Gate

2

Gate

4

Gate

4

Gate

3

Gate

1

Gate

5

Gate

7

Gate

9

Gate

8

Gate

7

Gate

6

Gate

1

Gate

7

Gate

9

Gate

8

Gate

7

Gate

1
Parent 1

Parent 2

Offspring 1

Gate

5

Gate

2

Gate

4

Gate

4

Gate

3

Gate

6Offspring 2

One Point Crossover

Complete gene(s) affected

Figure 5.23: Crossover on Complete Gene(s)

BUPT

5.4 -Integration within ProGA Framework|103

Gate

1

Gate

2

Gate

4

Gate

4

Gate

3

Gate

1

Gate

5

Gate

7

Gate

9

Gate

9

Gate

8

Gate

6

Gate

1

Gate

2

Gate

4

Gate

4

Gate

8

Gate

1
Parent 1

Parent 2

Offspring 1

Gate

5

Gate

7

Gate

9

Gate

9

Gate

3

Gate

6Offspring 2

Two Point Crossover

Gate

1

Gate

3

Gate

4

Gate

4

Gate

3

Gate

2

Gate

5

Gate

7

Gate

9

Gate

8

Gate

7

Gate

6

Gate

1

Gate

7

Gate

9

Gate

8

Gate

7

Gate

6
Parent 1

Parent 2

Offspring 1

Gate

5

Gate

3

Gate

4

Gate

4

Gate

3

Gate

2Offspring 2

One Point Crossover

Incomplete gene(s) affected

Gate

1

Gate

3

Gate

4

Gate

4

Gate

3

Gate

1

Gate

5

Gate

7

Gate

9

Gate

9

Gate

8

Gate

6

Gate

1

Gate

7

Gate

4

Gate

4

Gate

8

Gate

1
Parent 1

Parent 2

Offspring 1

Gate

5

Gate

3

Gate

9

Gate

9

Gate

3

Gate

6Offspring 2

Gate

1

Gate

3

Gate

5

Gate

4

Gate

3

Gate

2

Gate

5

Gate

7

Gate

10

Gate

9

Gate

8

Gate

6

Gate

1

Gate

7

Gate

10

Gate

9

Gate

8

Gate

2
Parent 1

Parent 2

Offspring 1

Gate

5

Gate

3

Gate

5

Gate

4

Gate

3

Gate

6Offspring 2

Figure 5.24: Crossover on Incomplete Gene(s)

There are two different situations: the first one where the cut points will

affect a complete gene within the crossover operation and, the second situation

when the cut points affect only partially the locus from a selected gene. In that last

case, the algorithm becomes complicated needed to detect if the cut points affect a

single input quantum gate (situation that is easy to copy into the new offspring), or

a multiple input quantum gate (situation where the cut point is shifted to the left or

BUPT

104 | 5-Genetic Quantum Circuits Synthesis

to the right in order to copy the entire quantum gate). Both algorithms are

presented below:

Algorithm used for crossover at the gene level

1. Create a new offspring.

2. Copy parent1 details into the offspring.

3. Randomly select a cut1 point between 0 and number of genes minus one.

4. If the crossover operator is with one cut point

a. Calculate Start index as Cut1*GeneLength.

b. Calculate Stop index as the chromosome length.

5. Else if crossover operator is with two cut points

a. Randomly select a cut2 point between 1 and number of genes.

b. Repeat selection for cut2 until it is different from cut1.

c. Order the cut1 and cut2 points.

d. Calculate Start index as Cut1*GeneLength.

e. Calculate Stop index as Cut2*GeneLength minus one.

6. Exchange the elements of offspring and parent2 between the Start and

Stop index.

7. Shift gate id’s for the gates between Start index and Stop index.

8. Shift gate id’s for the gates after the Stop index.

Algorithm used for crossover inside of the gene level

1. Create a new offspring.

2. Copy parent1 details into the offspring.

3. Randomly select a cut1 point between 0 and chromosome length minus one.

4. Detect the gate corresponding to the selected locus

a. If the gate is an identity used between the qubits of a quantum

gate, then move the selected locus to the right until a different gate

id is detected (used to detect the complete quantum gate).

b. Search to the left the neighboring gate and memorize its index.

c. Search to the right the neighboring gate and memorize its index.

5. If the crossover operator is with one point

a. Calculate Start index as Cut1 point.

b. Calculate Stop index as the chromosome length.

6. Else if the crossover operator is with two cut points

a. Randomly select a cut2 point between right index and chromosome

length minus one.

b. Calculate Start index as left index.

c. Calculate Stop index as Cut2 point.

7. Exchange the elements of offspring and parent2 between the Start and Stop

index.

8. Shift gate id’s for the gates between Start index and Stop index.

BUPT

5.4 -Integration within ProGA Framework|105

9. Shift gate id’s for the gates after the Stop index.

5.4.9 Fitness Formula Computation

The most important genetic operator involved in the algorithm is the fitness

function. The fitness operator is implemented as a comparison between the output

function of the chromosome and the output function of the given circuit. The

comparison shall reveal the approximation between them. A penalty function is used

in order to indicate a more efficient chromosome than the given circuit (penalty has

a good meaning in this case). The penalty function is implemented as the difference

between the number of gates from the evolved circuit, and from the given circuit,

divided by the number of given gates; it is applied only when the evolved circuit has

the same functionality as the given circuit. The penalty is considered as a constraint

for the algorithm, and it is used to assure (as result) a better circuit than the given,

starting one.

)
)given(gates

)given(gates)evolved(gates
1(

)given(function

)evolved(function
f

(5.1)

It is important to discuss about other quantum gate proprieties that may be

introduced within the fitness value computation, as a composite formula. For

example, the quantum gate cost for each solution is computed and may be used to

differentiate them. In the same way, the quantum circuit feasibility is computed and

may be introduced into the fitness formula. In order to not introduce weak or

partially unknown proprieties into the fitness computation, for the moment the

quantum synthesis algorithm only provides those values for manual analysis and will

not use them into the genetic evolution. Details about the quantum gate costs are

presented in the Quantum Gates Cost subchapter. Concerning the quantum gate

feasibility, the research is still ongoing and more results are expected in the near

future.

Any fitness higher or equal to one is considered as solution for the synthesis

problem. Because the genetic algorithm may generate solutions that are more likely

and because each of them is important when the algorithm assessment is

performed, a history list for all solutions was integrated within the population

architecture (see Figure 5.25). In this way, when the genetic algorithm is finished

(according to the termination criterion) all the solutions may be investigated in

order to decide which one is optimal or close-to-optimal. Due to genetic evolution,

the order in the history is given from non-optimal solutions to the optimal solutions

(the backing reason is simple: an evolved solution is maintained into the population

while a better one is considered as evolved only if it has an increased fitness value).

BUPT

106 | 5-Genetic Quantum Circuits Synthesis

Figure 5.25: History List for Solutions

For each solution, statistical data is saved for later analysis: the generation

number when the solution is evolved, the resulted fitness value, the chromosome

values that generated the solution, and the time required by evolution until that

moment for the current generation. Identical solutions are not saved into the history

list because is not important, from an algorithmic point of view, to analyze identical

data values. In this way, the history list will contain better and better solutions for

the studied synthesis problem.

5.5 Metaheuristic Algorithm

The behavior of the genetic algorithm is determined by the balance between

exploitation and exploration. The meta-heuristic algorithm is applied for quantum

circuit synthesis in order to adjust dynamically the control parameters. The adaptive

parameter control is based on statistical data analysis for each genetic operator

type. The objective is to offer the appropriate exploration and exploitation during

the algorithm run, without user intervention. The performance measurement is

intended to highlight the “good” parameters and to introduce an intuitive meaning

for the statistical results.

The problem of setting values for different control parameters is crucial in the

context of the algorithm performance [115]. We introduce an adaptive genetic

algorithm, in order to evolve quantum circuits. Our ProGA framework is used for the

genetic algorithm implementation, its architecture being decorated with related

statistical information. The statistical data are analyzed on the fly by the adaptive

algorithm, and the results are used for adjusting of the genetic parameters control

during the runtime processes.

Meta-heuristic approaches are already used to solve different problems, this

domain being of particular interest for the researchers in the last decade [116]

[117] [118] [119] [120] [121] [122] [123] [124].

5.5.1 Parameter Control

The parameter controls involved in a genetic algorithm are population size, mutation

probability, crossover probability, selection type, etc. Each of them is responsible

ProGAFramework::Population

b_CheckSolution(Solution:Genome)...

HistorySolutions

HistorySolutions_:vector <S_SOLUTION>

LastFitnessValue_:double=0

_AddSolutionData(s_SolutionData:S_SOLUTION):void

_ShowSolutions():void

1

myHistorySolutions

1

myHistorySolutions

BUPT

5.5 -Metaheuristic Algorithm|107

with controlling the evolution path towards the optimal solution. There are two

major forms of setting the parameter values for a genetic algorithm [125]:

 Parameter tuning: the parameter values are fixed before the algorithm run (i.e.

using information from experiments) and remains fixed during the algorithm

run. There are several disadvantages for the tuning: finding good parameters for

the parameters before the run may be time consuming for a human expert, the

evolution being a dynamic process, while the tuning is static, and it is possible

not to have optimal parameters for all the phases.

 Parameter control: the initial parameter values are changed during the algorithm

run, keeping the dynamic spirit of evolution. The adaption algorithm uses the

feedback values from the process and adjusts the parameters for better

performance (i.e. initially, mutation probability may be higher in order to allow

large exploration space and, later, it may be decreased to permit the solution

fine-search).

5.5.2 Integration within ProGA Framework

The ProGA framework is responsible with the genetic algorithm implementation. The

choice concerning the algorithm type (steady state or non-overlapping), the

population structure, the encoding of the genome and the initial settings for the

parameter controls is made within the framework. An important framework

characteristic is the possibility of extending its functionality. Thus, as it is presented

in Figure 5.26, the Adaption Control can use the framework interface, therefore

allowing its integration into the system.

Figure 5.26: Adaptive Control Integration

The framework provides all the data necessary for statistic analysis and the

actual values of the parameters control while the Adaptive Control component will

return the new adjusted values for the parameters control back to the framework.

The Adaptive Control is considered as an external tool for the genetic algorithm

implementation, and it is responsible only with the cleverly update of the

parameters control.

BUPT

108 | 5-Genetic Quantum Circuits Synthesis

5.5.3 Adaptive Behavior using Operator Performance

Almost every practical search algorithm is controlled by several parameters. In fact,

the genetic algorithms are controlled by more parameters than other algorithms:

population size, selector type, mutation probability, crossover probability, etc. From

meta-heuristic point of view, it is considered that genetic algorithms contain all

necessary information for adaptive behavior. Nevertheless, in the following

subchapters, we present how the adaptive behavior optimizes the circuit synthesis

algorithm (from the user’s point of view the setting of parameters is far from being

a trivial task). Two types of statistical data are used as input for the adaptive

algorithm (see Figure 5.27). The first type is represented by the fitness results for

each population corresponding to the best, mean and worst chromosomes. The

second type is represented by the operator performance. Following an idea

proposed in reference [126], the performance records are essential in order to

decide on operators reward. The statistical data indicate different levels of operator

performance as described in Figure 5.28):

 Absolute - when the resulted offspring has a higher fitness than the best fitness

from the previous generation.

 Relative - when the resulted offspring has a better fitness than its parents, but it

is not absolute.

 In Range - when the resulted offspring has a fitness situated between the fitness

values of its parents.

 Worse - when the resulted offspring has a fitness value that is lower than that of

its parents.

BUPT

5.5 -Metaheuristic Algorithm|109

Figure 5.27: Statistic Data

Figure 5.28: Operator Performance

BUPT

110 | 5-Genetic Quantum Circuits Synthesis

For the circuit synthesis algorithm, the mutation and crossover probabilities are two

major parameters that need to be dynamically controlled. Because we defined two

mutation and two crossover operators, four related statistical data have to be

memorized and later analyzed in order to perform parameter control adjustment.

Each operator offspring result is important and needs to be recorded (see Figure

5.29).

Figure 5.29: Adaptive Design

Details about Statistic class implementation are available in 8.3 Statistic

Details) section. As described in 4.2.2 (Framework Statistics) section, basic statistic

functions such as maximum, minimum, average and standard deviation need to be

available for the adaptive controlled types. Thus, the design overview allows

interface declaration for the statistical functions in the Statistic class, and –also–

their definition in each object class instance (i.e. the FitnessData class will define its

own statistic function on its data attributes, while the PerformanceData will do the

same but on different attributes). In this way, as assured by design, any class

instance from the statistic has its own implementations for the corresponding

functions, and at the same time keeps a common interface for accessing statistic

results (see Figure 5.30).

Population

Adaptive

itsFitnessData:FitnessData1

itsPerformanceData:PerformanceDataNO_OF_PERFORMANCE

1

myAdaptive

1

myAdaptive

1

myFitnessVector

Statis tic

T

NO_OF_PERFORMANCE

myPerformanceVector

1

myFitnessVector

NO_OF_PERFORMANCE

myPerformanceVector

BUPT

5.5 -Metaheuristic Algorithm|111

Figure 5.30: PerformanceData Class Overview

The first type of mutation, called mutation A, is responsible with the gate

mutations inside of genes, while the second type of mutation, called mutation B, is

applied at the chromosome level. The same rules are defined for the crossover

operator (applied at the gene level - called crossover A, and at the chromosome

level - called crossover B). The operators are implemented within the ProGA

framework, and only adding an extra-layer for the adaptive algorithm is sufficient

for the meta-heuristic implementation. From the meta-heuristic point of view, it is

not essential to know the operator implementation details; instead, one has to be

informed about the number of operators because, for each of them, a separate

statistical structure will be reserved. The adaptive algorithm will receive breeding

feedback from each operator and will analyze the data, in order to compute the

operator performance and decide on its adjustment rate.

PerformanceData

Absolute_:double=0

InRange_:double=0

Relative_:double=0

Worse_:double=0

ComputeMaxim(a:PerformanceData,b:PerformanceData):friend PerformanceData

_IncrementAbsolute():void

_IncrementRelative():void

_IncrementInRange():void

_IncrementWorse():void

_Init():void

ComputeMinim(a:PerformanceData,b:PerformanceData):friend PerformanceData

_ShowValues():void

operator+(obj:PerformanceData):PerformanceData&

operator/(value:int):PerformanceData

ComputeMean(a:PerformanceData,NoOfElements:int):friend PerformanceData

operator*(obj:PerformanceData):PerformanceData

operator-(obj:PerformanceData):PerformanceData&

operator*(value:int,obj:PerformanceData):friend PerformanceData

operator>(value:int):bool

ComputeSquareRoot(obj:PerformanceData):friend PerformanceData

n_ComputeReward():double

BUPT

112 | 5-Genetic Quantum Circuits Synthesis

5.5.4 How the Change is Made

The change of parameter controls is made by using the feedback data from the

search (stored as statistical data). The adaptive algorithm distinguishes between the

qualities of solutions evolved by different operators and adjusts the rates based on

merits. As described, the adaptive algorithm is external to the genetic algorithm

framework, the only interaction being on the transfer of parameter rates and

feedback data.

The following algorithm presents the important steps that are necessary for

the operator’s rate adjustment:

Algorithm used for dynamically adjusting the operators’ rate

1. Initialize operator rates.

2. While the algorithm does not reach the stop condition

a. Initiate the operator rates using the Adaptive Algorithm.

b. Evaluate the individuals.

c. Save the statistical data (fitness and operators performance).

d. Compute the new rates using the Adaptive Algorithm.

e. Check for a solution.

f. Apply the operators.

5.5.5 Performance Meaning

When discussing about statistical data, several statistic functions may provide

valuable information about data distribution. Functions as Maximum, Minimum,

Average and Standard Deviation may be applied on any kind of statistical data. For

each generation the maximum, average and minimum fitness values are provided

by the genetic algorithm framework and stored in the statistical data. When the

genetic evolution is finished (i.e. when a solution has been evolved), more

important statistical functions are computed: maximum for all the generation

maximum fitness, average on all the maximum values, etc. Thus, we defined

statistical functions on each generation and statistical functions over all generations.

The second type of statistical data for the operator performance is computed

when the operator is applied, following the rules presented in Figure 5.28). For

example, when the Crossover B result is available, the resulted offspring fitness

value is compared against the previous best fitness, and if it is higher, the Absolute

value is increased with one-step. If it is lower, the comparison continues, and if the

offspring fitness is higher than its parents’ fitnesses, then the Relative value is

increased, etc. The algorithm identifies the possible solutions obtained during the

genetic algorithm evolution and their distribution over the involved generations.

After each generation, the operator performance is updated with statistical data.

Following the 1/5 Rechenberg rule, after 5 generations it is time to make the

BUPT

5.5 -Metaheuristic Algorithm|113

analysis of the acquired data. The operator reward is updated according to the

following formula:

WorseδInRangeγlativeReβAbsoluteα)operator(σ
(5.2)

Parameters δandγ,β,α are introduced to rank the operator performance. Thus,

an absolute improvement will have a higher importance as compared with the

relative improvement; a worse result will drastically decrease the operator rank.

BUPT

Chapter 6

6. Experiments Result Evaluation

During the execution of the performed experiments, several variables were used to

measure, control and manipulate the application results. The proposed synthesis

tool allows two different types of statistical data; the correlation research helps

measuring the statistical data and – at the same time - looking for possible

relationships between some given sets of variables, while in the experimental

research some variables are being influenced in order to observe their effect on

other variable sets. The data analysis of the experimental results also creates

correlations between the manipulated variables and those affected by the

manipulation. The correlation results were interpreted in causal terms by using

different theories, and the experimental results conclusively prove causality.

6.1 The Experiment Setup

In our experiments, configurable variables were used to define the genetic algorithm

controlled parameters. A further classification is performed by splitting variables into

independent and dependent types (as in Table 6). Only the dependent variables are

measured (i.e. the execution clock cycles until an optimal solution is evolved), while

the independent variables are manipulated in order to allow a faster convergence for

the genetic algorithm. The goal of our scientific analysis was to find the best relation

between variables that produced the best execution runtime for the optimal evolved

solution, and to provide a meaning for the obtained results. The experiments will

also prove, by validation testing, the correctness of the algorithm implementation

for quantum logic circuit synthesis.

Globally speaking, in any experiment where variables are measured there is

a measurement error present. It is considered that variables differ in how well they

can be measured [127]. In our experiments, we are using interval variables (i.e.

number of generation may be 50, 100, 150 or 200), that allow data values rank

order and comparison of the data differences over experiment runs.

Table 6. Variable Type Classification

Variable name Independent Dependent

Genetic algorithm

type

Overlapping
√

Non-Overlapping

Number of

generations

(50, 100, 150 or 200)
√

Population size (50, 100, 250 or 300) √

BUPT

6.1 -The Experiment Setup|115

Elitism percent 0% means “No Elitism” √

Crossover type

One

point

√

√

√

Two

points

√

√

Mutation type

Singular Chromosome

level

√

Inside gene

Multiple Chromosome

level

Inside gene

Selection type

Uniform

√

Rank

Roulette wheel

Tournament

Mutation

probability

√

√ (only with

adaptive

behavior)

Crossover

probability

√

√ (only with

adaptive

behavior)

Statistical Data Available

√
Not Available

Meta-heuristic

Algorithm

Used (only with Statistic

Data Available) √

Not Used

Meta-heuristic

Increase

√

Meta-heuristic

Decrease

√

Random

generator type

Classic generator
√

Ran2 generator

Statistical

information for

fitness data and

for each genetic

operator

(crossover and

mutation types)

Maximum

√

Minimum

Average

Standard deviation

BUPT

116 | 6-Experiments Result Evaluation

Algorithm runs 10 √

Gate set type

used for

synthesis

Complete

√ Reduced

Minimum

History solution time (in processor clocks) √

Number of quantum circuit gates √

Quantum circuit cost √

Quantum circuit feasibility √

Number of generations until optimal solution √

The experiments were conducted on a computer with the following

configuration: Intel Pentium M processor at 1.862GHz, 1GB RAM memory and Open

SuSe 10.3 as operating system. In order to avoid lucky guesses the experiments

have been repeated for 10 times, the average result being used for comparison in

the provided graphics.

6.2 Evaluation Approach

The C++ source code14 was compiled using the “gcc” compiler under the Eclipse

v.15 software on Open SuSe 10.3 operating system. The executable released binary

was fed with input files (the configuration parameters and the circuit description)

and then used to execute the quantum logic circuit synthesis algorithm. The graphs

are created automatically by using the GNUplot16 software for which we have written

a script file in order to multiplot the graphs, by using the quantum logic circuit

synthesis algorithm output results (see 8.6 GNUplot Script).

To measure the performance of an application, it is common to measure the

time spent until a solution is evolved. Because the results may appear within a small

period, a fine granularity for time measurement was necessary. We used the RDTSC

(Read Data Time Stamp Counter) to measure the processor ticks in order to provide

excellent, high-resolution information. A stopwatch was used in order to measure

the processor ticks between the moment when the genetic algorithm evolution was

started and the event generated by finding a solution. For evaluation of other

solutions that may succeed, the stopwatch is re-started to time the next solution

event. The number of ticks is independent from the processor platform and it

accurately measure events of short duration (with laptops or systems supporting

Intel@Speed Technology the processor frequency will change as a result of CPU

utilization when running on batteries). If the user wants to derive the time duration,

the number of ticks should be divided by the processor frequency.

14 http://www.cs.utt.ro/~crys/index_files/public/qsyn.tar.gz
15 Eclipse, http://www.eclipse.org/
16 GNUplot, http://www.gnuplot.info/

BUPT

6.3 -QCS Tool Verification|117

6.3 QCS Tool Verification

The test is intended to prove the genetic algorithm convergence towards a circuit

solution. All the recognized gates are used to define a test circuit and, after

algorithm execution, other equivalent circuits are expected to emerge by using

quantum circuits from the specified gate set. In this test, we do not evaluate

configurations or parameters because the target is only to evolve an equivalent

solution for the given circuit description.

6.3.1 Complete Set of Gates

The entire set of recognized quantum gates will be used in order to evolve a circuit

solution. This test will prove the complete functionality of quantum logic circuit

synthesis.

Table 7: Initial and Evolved Circuit – Complete Gates Set

Initial Circuit Evolved Circuit

6.3.2 Reduced Set of Gates

In this test only Controlled-NOT, Identity and Toffoli gates were used to evolve a

circuit solution. This reduced set of gates was introduced to allow compatibility with

the available benchmark circuits [51][128][11][46][47] where a limited number of

circuit types are used.

BUPT

118 | 6-Experiments Result Evaluation

Table 8: Initial and Evolved Circuits – Reduced Gates Set

Initial Evolved

6.3.3 Minimal Set of Gates

In this test, only Hadamard, Identity and Controlled-NOT gates were used to evolve

a circuit solution. This set of gates is recommended for simple circuits where a fast

synthesis solution may be emerged.

Table 9: Initial and Evolved Circuit – Minimal Gates Set

Initial Evolved

BUPT

6.4 -Case Studies|119

6.4 Case Studies

Each case study is started with a benchmark quantum circuit that is used for the

synthesis algorithm evaluation. On the benchmark, the name of the circuit is

presented along with its number of qubits (including garbage qubits, if present) and

the circuit cost. Three synthesis configurations are used to evolve a synthesis

solution, different parameters being manipulated during the test evolution (i.e. the

adaptive behavior will dynamically adjust the mutation and the crossover

probabilities), while the results are presented as graphs. The result analysis section

is used to explain the algorithm behavior and to extract a conclusion concerning the

optimal parameter control values. All the benchmark circuits are kept up-to-date by

Dmitri Maslov [51] on his web page17 dedicated to quantum circuit synthesis.

17 http://webhome.cs.uvic.ca/~dmaslov/

BUPT

120 | 6-Experiments Result Evaluation

6.4.1 Three-Qubit Circuit

Benchmark: ham3 [51]

Gate count 5 Cost 7 Garbage 0

Function ham3 is the size 3 Hamming optimal coding function.

Configuration 1 2 3

Number of Generations 150

Population Size 100

Elitism percent 0.05

Crossover Type Two Points One Point Two Points

Mutation Type Multiple Singular Multiple

Crossover Probability 0.4

Mutation Probability 0.05

Selection Type RouletteWheel Uniform RouletteWheel

Performance Statistic Available

Meta Heuristic Available NA

Adaptive Increase 0.15 NA

Adaptive Decrease 0.1 NA

Gate Set Reduced

Genetic Algorithm Type Non Overlapping

Random Generator Ran2

Algorithm Runs 10

Solution Runtime
(average) Clocks

6.29e+08 3.69e+08 8.98e+08

BUPT

6.4 -Case Studies|121

Statistic Results for the Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

BUPT

122 | 6-Experiments Result Evaluation

C
o

n
fi

g
u

r
a
ti

o
n

 2

BUPT

6.4 -Case Studies|123

C
o

n
fi

g
u

r
a
ti

o
n

 3

BUPT

124 | 6-Experiments Result Evaluation

Circuits Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1
/

2
/

3

1 2 3 1 2 3 1 2 3

5 11 100 5 11 100

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility*

* see their definition in 8.5.1 (Cost Details using General Approach) section

BUPT

6.4 -Case Studies|125

6.4.2 Four-Qubit Circuit

Benchmark: rd32 [51]

Gate count 4 Cost 8 Garbage 2

Its output is binary representation of the number of 1s in its input.

Configuration 1 2 3

Number of Generations 150

Population Size 100

Elitism percent 0.05

Crossover Type Two Points One Point Two Points

Mutation Type Multiple Singular Multiple

Crossover Probability 0.4

Mutation Probability 0.15

Selection Type RouletteWheel Tournament RouletteWheel

Performance Statistic Available

Meta Heuristic Available NA

Adaptive Increase 0.15 NA

Adaptive Decrease 0.1 NA

Gate Set Reduced

Genetic Algorithm Type Non Overlapping

Random Generator Ran2

Algorithm Runs 10

Solution Runtime

(average) Clocks

1.66e+09 1.02e+09 2.31e+09

BUPT

126 | 6-Experiments Result Evaluation

Statistic Results for the Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

BUPT

6.4 -Case Studies|127

C
o

n
fi

g
u

r
a
ti

o
n

 2

BUPT

128 | 6-Experiments Result Evaluation

C
o

n
fi

g
u

r
a
ti

o
n

 3

BUPT

6.4 -Case Studies|129

Circuits Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1
/

2
/

3

1 2 3 1 2 3 1 2 3

4 10 93.75

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility*
* see their definition in 8.5.1 (Cost Details using General Approach) section

BUPT

130 | 6-Experiments Result Evaluation

6.4.1 Five-Qubit Circuit

Benchmark: xor5 [51]

Gate count 4 Cost 4 Garbage 4

Its output is EXOR of all its variables.

Configuration 1 2 3

Number of Generations 200

Population Size 150

Elitism percent 0.05 0.1 0.05

Crossover Type Two Points

Mutation Type Multiple

Crossover Probability 0.3 0.4 0.25

Mutation Probability 0.1 0.05 0.05

Selection Type RouletteWheel Rank RouletteWheel

Performance Statistic Available

Meta Heuristic Available NA

Adaptive Increase 0.2 0.1 NA

Adaptive Decrease 0.1 NA

Gate Set Reduced

Genetic Algorithm Type Non Overlapping

Random Generator Ran2

Algorithm Runs 10

Solution Runtime
(average) Clocks

9.74e+09 6.12e+09 7.55e+09

BUPT

6.4 -Case Studies|131

Statistic Results for the Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

BUPT

132 | 6-Experiments Result Evaluation

C
o

n
fi

g
u

r
a
ti

o
n

 2

BUPT

6.4 -Case Studies|133

C
o

n
fi

g
u

r
a
ti

o
n

 3

BUPT

134 | 6-Experiments Result Evaluation

Circuits Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1
/

2
/

3

1 2 3 1 2 3 1 2 3

5 11 93.33 6 15 86.11 5 11 9.33

1 2 3 1 2 3 1 2 3

5 11 93.33 5 11 93.33 6 15 86.11

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility*

* see their definition in 8.5.1 (Cost Details using General Approach) section

BUPT

6.4 -Case Studies|135

6.4.3 Six-Qubit Circuit

Benchmark: gray code [51]

Gate count 5 Cost 5 Garbage 0

If the circuit for such function is run in reverse, the output is the ordinal number of
the corresponding Gray code pattern.

Configuration 1 2 3

Number of Generations 200

Population Size 150

Elitism percent 0.1 0.15 0.1

Crossover Type One Point Two Points One Point

Mutation Type Singular Multiple

Crossover Probability 0.45 0.4

Mutation Probability 0.1 0.15 0.1

Selection Type Uniform Tournament Rank

Performance Statistic Available

Meta Heuristic Available NA

Adaptive Increase 0.15 0.1 NA

Adaptive Decrease 0.1 0.2 NA

Gate Set Reduced

Genetic Algorithm Type Non Overlapping

Random Generator Ran2

Algorithm Runs 10

Solution Runtime
(average) Clocks

9.74e+10 5.06e+10 1.85e+10

BUPT

136 | 6-Experiments Result Evaluation

Statistic Results for the Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

BUPT

6.4 -Case Studies|137

C
o

n
fi

g
u

r
a
ti

o
n

 2

BUPT

138 | 6-Experiments Result Evaluation

C
o

n
fi

g
u

r
a
ti

o
n

 3

BUPT

6.4 -Case Studies|139

Circuits Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1
/

2
/

3

1 2 3 1 2 3 1 2 3

7 16 90.47 6 13 94.44 10 23 96.66

1 2 3 1 2 3 1 2 3

9 20 100 8 19 95.83 8 17 95.83

BUPT

140 | 6-Experiments Result Evaluation

1 2 3 1 2 3 1 2 3

6 13 94.44 8 17 95.83 7 17 88.09

1 2 3 1 2 3 1 2 3

9 20 92.59 8 20 85.41

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility*
* see their definition in 8.5.1 (Cost Details using General Approach) section

BUPT

6.4 -Case Studies|141

6.4.5 Seven-Qubit Circuit

Benchmark: 2of5 [51]

Gate count 12 Cost 32 Garbage 6

Its output is 1 if number of 1s in its input equals two.

Configuration 1 2 3

Number of Generations 150

Population Size 100

Elitism percent 0.1 0.15 0.05

Crossover Type One Point Two Points One Point

Mutation Type Multiple Singular Multiple

Crossover Probability 0.3 0.4 0.3

Mutation Probability 0.1 0.05 0.04

Selection Type RouletteWheel Uniform Tournament

Performance Statistic Available

Meta Heuristic Available NA

Adaptive Increase 0.1 0.15 NA

Adaptive Decrease 0.05 0.1 NA

Gate Set Reduced

Genetic Algorithm Type Non Overlapping

Random Generator Ran2

Algorithm Runs 10

Solution Runtime

(average) Clocks

3.88e+11 4.11e+11 4.28e+11

BUPT

142 | 6-Experiments Result Evaluation

Statistic Results for the Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

BUPT

6.4 -Case Studies|143

C
o

n
fi

g
u

r
a
ti

o
n

 2

BUPT

144 | 6-Experiments Result Evaluation

C
o

n
fi

g
u

r
a
ti

o
n

 3

BUPT

6.4 -Case Studies|145

Circuits Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1
/

2
/

3

1 2 3

12 40 85

1 2 3

14 44 87.14

BUPT

146 | 6-Experiments Result Evaluation

C
o

n
fi

g
u

r
a
ti

o
n

 1
/

2
/

3

1 2 3

14 46 87.14

1 2 3

13 43 84.23

BUPT

6.4 -Case Studies|147

C
o

n
fi

g
u

r
a
ti

o
n

 1
/

2
/

3

1 2 3

13 43 83.58

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility*
* see their definition in 8.5.1 (Cost Details using General Approach) section

BUPT

148 | 6-Experiments Result Evaluation

6.5 Additional Experiments

Each case study is started with a quantum circuit that is used for the synthesis

algorithm evaluation. Only one synthesis configuration is used to evolve a synthesis

solution, the adaptive behavior will dynamically adjust the mutation and the

crossover probabilities, and the rest of the parameters will remain fixed during the

evolution, while the results are presented as graphs.

Circuit from reference [129], proposed by M. Mohammadi in 2008

Configuration 1

Number of Generations 250

Population Size 150

Elitism percent 0.05

Crossover Type Two Points

Mutation Type Multiple

Crossover Probability 0.4

Mutation Probability 0.05

Selection Type RouletteWheel

Performance Statistic Available

Meta Heuristic Available

Adaptive Increase 0.15

Adaptive Decrease 0.1

Gate Set Reduced

Genetic Algorithm Type Non Overlapping

Random Generator Ran2

Algorithm Runs 10

Solution Runtime
(average) Clocks

5.20e+09

BUPT

6.5 -Additional Experiments|149

Statistic Results for the Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

BUPT

150 | 6-Experiments Result Evaluation

Circuits Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

1 2 3 1 2 3 1 2 3

7 20 91.66 6 18 90.27

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility*
* see their definition in 8.5.1 (Cost Details using General Approach) section

BUPT

6.5 -Additional Experiments|151

Circuit from reference [130] proposed by Van Meter et al. in 2007

Configuration 1

Number of Generations 200

Population Size 150

Elitism percent 0.1

Crossover Type Two Points

Mutation Type Singular

Crossover Probability 0.3

Mutation Probability 0.2

Selection Type RouletteWheel

Performance Statistic Available

Meta Heuristic Available

Adaptive Increase 0.2

Adaptive Decrease 0.1

Gate Set Reduced

Genetic Algorithm Type Non Overlapping

Random Generator Ran2

Algorithm Runs 10

Solution Runtime

(average) Clocks

6.54e+10

BUPT

152 | 6-Experiments Result Evaluation

Statistic Results for the Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

BUPT

6.5 -Additional Experiments|153

Circuits Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

1 2 3 1 2 3 1 2 3

4 14 93.75

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility*
* see their definition in 8.5.1 (Cost Details using General Approach) section

BUPT

154 | 6-Experiments Result Evaluation

Circuit from reference [131] proposed by Shende et. al in 2006

Initial Evolved

Configuration 1

Number of Generations 100

Population Size 50

Elitism percent 0.05

Crossover Type Two Points

Mutation Type Multiple

Crossover Probability 0.4

Mutation Probability 0.05

Selection Type RouletteWheel

Performance Statistic Available

Meta Heuristic Available

Adaptive Increase 0.15

Adaptive Decrease 0.1

Gate Set Reduced

Genetic Algorithm Type Non Overlapping

Random Generator Ran2

Algorithm Runs 10

Solution Runtime

(average) Clocks

6.16e+08

BUPT

6.5 -Additional Experiments|155

Statistic Results for the Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

BUPT

156 | 6-Experiments Result Evaluation

Circuits Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

1 2 3 1 2 3 1 2 3

1 4 50 5 20 80 4 11 79.16

1 2 3 1 2 3 1 2 3

5 12 90 3 12 50 3 10 83.33

1 2 3 1 2 3 1 2 3

3 10 66.66 7 24 85.71 3 8 83.33

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility*
* see their definition in 8.5.1 (Cost Details using General Approach) section

BUPT

6.5 -Additional Experiments|157

Circuit from reference [47] proposed by V. Shende et al. in 2003

Initial Evolved

Configuration 1

Number of Generations 100

Population Size 50

Elitism percent 0.05

Crossover Type One Point

Mutation Type Singular

Crossover Probability 0.3

Mutation Probability 0.05

Selection Type Rank

Performance Statistic Available

Meta Heuristic Available

Adaptive Increase 0.1

Adaptive Decrease 0.1

Gate Set Reduced

Genetic Algorithm Type Non Overlapping

Random Generator Ran2

Algorithm Runs 10

Solution Runtime
(average) Clocks

1.62e+08

BUPT

158 | 6-Experiments Result Evaluation

Statistic Results for the Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

BUPT

6.5 -Additional Experiments|159

Circuits Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

1 2 3 1 2 3 1 2 3

2 7 75 3 10 83.33

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility*

* see their definition in 8.5.1 (Cost Details using General Approach) section

BUPT

160 | 6-Experiments Result Evaluation

Circuit from reference [47] proposed by V. Shende et al. in 2003

Initial Evolved

Configuration 1

Number of Generations 100

Population Size 50

Elitism percent 0.1

Crossover Type One Point

Mutation Type Multiple

Crossover Probability 0.3

Mutation Probability 0.05

Selection Type Uniform

Performance Statistic Available

Meta Heuristic Available

Adaptive Increase 0.1

Adaptive Decrease 0.15

Gate Set Reduced

Genetic Algorithm Type Non Overlapping

Random Generator Ran2

Algorithm Runs 10

Solution Runtime
(average) Clocks

1.47e+08

BUPT

6.5 -Additional Experiments|161

Statistic Results for the Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

BUPT

162 | 6-Experiments Result Evaluation

Circuits Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

1 2 3 1 2 3 1 2 3

2 5 100 3 11 91.66 4 9 100

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility*
* see their definition in 8.5.1 (Cost Details using General Approach) section

BUPT

6.5 -Additional Experiments|163

Circuit from reference [47] proposed by V. Shende et al. in 2003

Initial Evolved

Configuration 1

Number of Generations 100

Population Size 50

Elitism percent 0.05

Crossover Type One Point

Mutation Type Singular

Crossover Probability 0.4

Mutation Probability 0.05

Selection Type Tournament

Performance Statistic Available

Meta Heuristic Available

Adaptive Increase 0.1

Adaptive Decrease 0.1

Gate Set Reduced

Genetic Algorithm Type Non Overlapping

Random Generator Ran2

Algorithm Runs 10

Solution Runtime
(average) Clocks

2.21e+08

BUPT

164 | 6-Experiments Result Evaluation

Statistic Results for the Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

BUPT

6.5 -Additional Experiments|165

Circuits Evolved Solutions

C
o

n
fi

g
u

r
a
ti

o
n

 1

1 2 3 1 2 3 1 2 3

2 5 100 2 5 100 4 9 100

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility*

* see their definition in 8.5.1 (Cost Details using General Approach) section

BUPT

166 | 6-Experiments Result Evaluation

6.6 Result Evaluation

Summarizing our results for these test cases (whose characteristics are considered

to inherit the smallest number of gates necessary in order to implement the

required function – as being benchmark circuits), we note that our quantum

synthesis tool always converge towards a solution. In addition, the meta-heuristic

approach, when used for configuration 1 and 2, prove its benefit in evolving a faster

convergence by increasing the operators probability, when better offsprings are

evolved. Others experimental results prove that the roulette wheel selection has

generated an increased number of synthesis results in comparison with other

selection methods. Although not obvious at first glance, at the same time with

increasing the number of circuit qubits, more generations are necessary in order to

evolve synthesis solutions (it is also worth mentioning, that an increased number of

individuals is not necessary). The experimental results consider significantly more

difficult circuits than other evolutionary programming approaches and provide a

stable base for further quantitative comparison (i.e. feasibility, cost assessment and

runtime values).

 The experimental results were obtained in a relative short time period by

using an ordinary computer. Synthesis results for bigger quantum circuits cannot be

reported here due to computational resource limitation, mainly runtime (we design

our synthesis system to allow a dynamic defined number of qubits and circuits). In

order to be relevant, experimental results need to be performed on better computer

systems (i.e. John Koza performed genetic algorithms employing 1000 parallel

computers in Mountain View, California, and the results were patented as six

electronic circuits18).

6.7 Going Beyond 7-qubit Circuits

Prashant, in reference [128], has described a genetic algorithm used to evolve

quantum circuits (it was proposed in Nov. 2005 and revised in Jan. 2007). The

genetic algorithm automatically searches for the appropriate circuit design that

yields the desired output state. The fitness function evaluates the current output

with the desired output, the search being stopped when a close match is found. The

experimental results are presented only for 2-qubit systems and only a few

quantum gates are used. The author is suggesting that a further optimization has to

be applied in order to run the algorithm for multi-qubit systems (i.e. to revise the

fitness function and to include the circuit efficiency as well).

 In reference [132], Shengchao et al. (Oct. 2006) has proposed a hybrid

quantum evolutionary algorithm for the implementation of quantum oracles. The

quantum circuits are encoded using numerical values and the fitness function

consider a “cost” value for the evaluation. In the end it is specified that the

presented approach is not to be considered for circuit synthesis or optimization,

mainly because the experimental part consist only for 2-qubit circuits.

18 http://www.genetic-programming.com/johnkoza.html

BUPT

6.7 -Going Beyond 7-qubit Circuits|167

In Tim Reid’s master thesis [133], which was defended in 2005, the

proposed goal is to understand the application of the evolutionary approach to the

quantum circuit design. A toolkit named “wabisabi” has been proposed in order to

evolve basic quantum circuits such as CNOT, CPHASE, SWAP, TOFFOLI, etc. The

toolkit experiments are limited to 3-qubit circuits and the symbolic circuit

representation cannot be extended by using the proposed approach.

Rubinstein, in reference [46], considers for the genetic algorithm a scheme

in which a gate has a type, a number of sets for the qubit operands and some sets

of parameters for different categories (the generalized 2-qubit gate takes four real

parameters for different types of rotations; the CNOT gate takes a number of

control qubits, etc). The quantum circuit is considered as a list of gate structures,

where the size of the circuit (number of gates) is variable. The proposed approach

has been used to evolve the EPR (Einstein, Podolsky and Rosen) circuits with 2, 3, 4

and maximum 5 qubits (see Figure 6.1). The approach was dedicated only to EPR

circuit synthesis and does not provide runtime values, and thus cannot be used for

further comparisons.

Figure 6.1 Synthesis of EPR Circuits [46]

Other genetic algorithm based approaches present effective solution only for

three or four-qubit circuits [11][46]. As stated in reference [11], the main

difficulties encountered where: complexity of performing Kronecker tensor product

for large matrixes, a high number of individuals used for the total population (the

evolved result may be found out in less generations, but employing longer runtime

of fitness evaluation), and the complexity of encoding a specific quantum gate. Our

approach tackles these problems firstly by using an OOP (object-oriented

programming) environment backed by a framework architecture that employs

optimization techniques; this improves the effectiveness of using quantum

operations (including the tensor product). Secondly, our chromosome representation

and meta-heuristic approach allow for using small populations (about 300

individuals) within the genetic evolution process. Also, another improvement comes

BUPT

168 | 6-Experiments Result Evaluation

from the fact that our approach uses a more flexible encoding scheme for the

quantum gates, allowing runtime definitions. As a result, the experiments can be

performed within our synthesis framework for 3 to 7 qubit circuits in a reasonable

time (less than 1 minute).

The first two circuits from Figure 6.2 are used to produce the “EPR”

experiment and the third is a “send” circuit used for quantum teleportation. The

evolved results from reference [11] are presented in Table 10, together with our

results that are highlighted in the last table column. A one-point crossover is used,

and mutation can change the chromosome length. All results have been averaged

over 20 runs on each gate type set used. The used configuration is: Intel Pentium M

processor at 1.862GHz, 1GB RAM memory and SuSe 10.3 as operating system.

Figure 6.2 Synthesis of Composite Circuits [11]

Table 10. Test the Convergence

Number of

inputs per q-
gate

Number

of
generatio
ns

Pop

ulati
on
size

pM pC Real time

[11]
(average
20 runs)

Our real time

(average 20
runs)

sec clocks

3-inputs (a) <150 50 0.4 0.6 <1min <1 3.10e+8

3-inputs (a) <300 50 <0.2 0.6 <2min <1 3.96e+8

3-inputs (a) 100 50 0.1 0.3 Not
reported

<1 6.91e+7

3-inputs (c) <150 50 0.4 0.6 <1min <1 3.68e+8

3-inputs (c) <300 50 <0.2 0.6 <2min <1 4.51e+8

3-inputs (c) 100 50 0.1 0.3 Not

reported

<1 8.20e+7

4-inputs <350 50 0.6 0.4 <2min <2 2.89e+9

4-inputs <900 50 <0.2 0.4 <3min <2 3.41e+9

4-inputs 100 50 0.1 0.3 Not
reported

<1 4.36e+8

BUPT

6.7 -Going Beyond 7-qubit Circuits|169

Therefore, our proposed genetic quantum synthesis methodology offers, at

least for the considered experiments, better performance in terms of runtime (the

values are presented in seconds and in processor clocks). Moreover, if the proposed

number of generations is decreased (i.e. 100) we are still able to evolve solutions

and the runtime becomes even better. Our motivation was to evolve more complex

quantum circuits, and not the benchmark evaluation of the convergence along with

the effectiveness of the genetic algorithm, although the presented results seem to

outperform those obtained with the previous approaches.

Even so, attempting to perform synthesis over a larger number of qubits will

also have to confront the complexity problem of matrix multiplication. However, we

intend to further investigate this matter and optimize our framework, in order to

extend the effectiveness of our approach for even larger quantum circuits, in order

to obtain an evolved solution in a reasonable time, by using an ordinary commercial

computer system.

BUPT

Chapter 7

7. Conclusions and Perspectives

The pursuit for performance in computers is relentless. If in classical computers the

acquired experience is vast, developed over almost half a century, in quantum

computers the race has started relatively recently, in the 1980’s. Even from today’s

view, it can be foreseen that in the next decade the quantum computer will be

available. Thus, any improvement on quantum domain is important to be followed.

This PhD thesis has addressed an important aspect in quantum computing’s

reversible circuit logic, the automated quantum logic circuit synthesis. This research

is relevant for the field, as the industry and academia are preoccupied within the

quantum circuit development where the synthesis problem has the potential of

playing an important role in the CAD tool evolution [16] [59][10].

In order to deal with the problems of decoherence and gate support and –

therefore – bring the entire quantum computing field into a more clear view, the

researchers from the physics and materials science fields still have a significant way

to go. In addition, the engineers have many problems to solve, in order to bring a

real quantum computer, as a super machine based on solid-states qubits with high

performance, into our daily life.

7.1 Thesis Impact and Contributions

This dissertation acknowledges the research directions as defined by ITRS, and

presents a new quantum logic circuit synthesis methodology, based on genetic

algorithms. As it is stated in the title, this thesis brings together, in an apprehensive

and already verified manner, three domains: automatic synthesis, genetic

algorithms and quantum computing. Following this idea, a software tool chain was

developed, creating the prerequisites for automatic quantum circuit synthesis. Thus,

starting with a quantum high-level circuit description and using a specific genetic

algorithm configuration, the software tool will possibly provide – due to evolutionary

nature of genetic algorithms - one or more evolved circuit synthesis solutions.

An improved file parser was developed for the quantum circuit blocks

identification. The parser creates, in the second phase, the internal data structure

that is used for circuit optimization. The optimization is made using topological

placement of the recognized quantum gates. In addition, the validation of the input

data is one of the main parser features.

A new genetic algorithm framework was developed, mainly, for the quantum

logic circuit synthesis assessment. The framework allows genetic algorithm

implementations and provides the software tools (e.g. runtime measurements,

statistic data acquisition, random number generators, different selectors, etc)

necessary for any algorithm evaluation. It was shown that object oriented

BUPT

7.1 -Thesis Impact and Contributions|171

programming and design patterns are able to create an extensible architecture for

developing new genetic solutions.

A meta-heuristic approach is presented for the automatic tuning of

parameters control, as defined in a genetic algorithm that is used for the purpose of

quantum logic circuits synthesis. Statistical data are saved on each generation, and

then analyzed by an adaptive algorithm that dynamically adjusts the parameter

control values. In addition, the methodology presented here offers a strategy that

implements the Rechenberg rule and the operators performance analysis in a circuit

synthesis algorithm.

A quantum circuit repository was created for providing the quantum circuit

characteristics to the synthesis genetic algorithm. Within the repository, the

available quantum gates characteristics are dynamically generated by following the

corresponding mathematical formula. In this way, the repository will contain only

valid gates for the user-defined number of qubits (which is also computed at

runtime).

A UML software model was created for the quantum synthesis problem,

allowing a facile presentation for this complex problem. The object-oriented

approach has enhanced the software reusability, extensibility and maintenance,

hence allowing - at the same time - better runtime execution.

 We have evaluated the performance of our quantum synthesis methodology

by building a software tool that implements all the proposed concepts. The

experiments have been conducted using quantum benchmark circuits [51] as inputs,

and the evolved solutions implement the same functionality as their counterpart

inputs. The resulting reduction in evolved solution runtime, as compared with other

approaches, comes mainly from two sources: object-oriented implementation and

meta-heuristic adaption of the application parameter controls.

As a remainder, the main contributions to quantum logic circuit synthesis

and optimization methodologies presented in this PhD thesis, and also published in

papers, are:

 A genetic algorithm dedicated to quantum logic circuit synthesis. A new view

on quantum circuits, the split in sections and planes, is used in order to

encode the quantum circuit. New genetic operators are applied at the gene

level, as well as inside the gene. A quantum circuit repository stores the

quantum circuit characteristics and provides a unique interface point for new

circuit addition.

 A new framework architecture, that allows construction of different genetic

algorithms; examples that validate the framework effectiveness are

included: methinks and knapsack. The framework is used for the quantum

logic circuit synthesis process, the statistical information being used to

optimize the algorithm.

BUPT

172 | 7-Conclusions and Perspectives

 A meta-heuristic method for adaptation of the genetic algorithm

parameters, allows finding the optimum genetic algorithm control

parameters without user intervention.

 A quantum logic circuit synthesis methodology transformed into a software

application, developed for quantum logic circuit synthesis. The experiments

and the source code availability prove the efficiency of this approach for task

of quantum logic circuit synthesis.

Due to these improvements, our genetic-algorithm-based quantum circuit

synthesis methodology is able to obtain significant runtime gains over other GA-

based quantum circuits approaches [128][132][133][46][11]. Moreover, synthesis

can be performed effectively even for large circuits (6-7-qubit), as it is shown, in the

experiments section. It is worth noticing that other mentioned approaches are able

to perform synthesis only for 3-4 qubit circuits, due to the high complexity of the

matrix multiplication.

7.2 Future Directions

Although many of the questions identified during this research process have been

dealt with, some of them still worth further investigation in the near future.

7.2.1 Refinement and Future Work

 Quantum circuit representation: even if improved matrix representation and

optimized library methods are used now, some improvements may be

applied to allow fast operations on many qubits. The actual solution for the

large matrix multiplication was presented by Don Coppersmith and Shmuel

Winograd in 1990 and has the complexity of O(n2.376).

 Quantum gate cost and feasibility: new theoretical results might come into

the public view in the near future and the solution refinement will be

necessary in order to follow the state-of-the-art trend. This adjustment is

necessary because only few details are known at this moment.

 Quantum circuit database: the definition of additional, more complex

quantum logic circuits will increase the range of synthesis algorithm and will

allow for evolving new possible solutions.

 Controlled gate: the representation needs to be improved in order to allow

target qubit definition at arbitrary positions within the gate. For this

purpose, the QHDL needs a language extension in order to allow this

complex representation. This change will complete the proposed basic

BUPT

7.2 -Future Directions|173

quantum gate set and will allow for more quantum gate combinations on the

chromosome initialization.

7.2.2 QCS Integration

The genetic algorithm framework and the quantum-synthesis-based genetic

algorithm may become interesting in the near future for other research applications.

The design and source code availability allows for easy adaptation to other CAD

tools. In addition, it will be possible to integrate (within a standalone environment)

a quantum simulator and a quantum synthesis tool. Several discussions are

ongoing, at this moment [134][10][55][99][93], keeping alive the hope that a

complete tool chain for quantum logic circuits will be soon available.

BUPT

8. Appendix

8.1 Object Oriented Metrics

Having good software also means having software quality assurance. There are

several ways to reach software quality: following a defined development process

(from requirements through testing), performing reviews in order to find a second

opinion and flaws from the very beginning, by using automatic software tools that

indicate (via metric-based checks) the software quality reached during ongoing

development. In this appendix, two major metrics parts are described: program unit

complexity and class object-oriented metrics. The software used to detect flaws and

to measure the software indicators is “Understand” [135], that was developed by

the SCITools. The metric definitions are copied from the tool help pages. On the

long run of the software domain, the software metrics have always been associated

with software engineering, and there is no way to avoid using them.

8.1.1 Framework Program Unit Complexity

The program unit complexity reports the McCabe (Cyclomatic) complexity value for

the methods defined within a module. A higher number for this metric indicates that

the program unit is more likely to be tested with difficulty and maintained without

error. In the following table (Table 11), only the methods that overreach the

average values are described.

Table 11. Program Unit Complexity Metric

Method

Cyclo
matic

Modi
fied

Str
ict

Esse
ntial

Nest
ing

Path
Count

ToffoliTCC::_MakeToffoli_t_c_c 11 11 12 1 4 98

Population::_Operators 12 12 16 1 4 90

QHDLParser::_ReadGate 12 12 16 4 4 42

QSyn::_CreateGA 13 13 13 1 1 405

Synthesis::p_CrossoverBType 13 13 15 1 2 216

Synthesis::_GenerateGate 17 16 21 1 4 27

QHDLParser::_ReadGates 21 21 21 1 5 9858

Adaptive::_ShowStatisticPerform
anceValues

22 14 22 1 2 143

QSyn::b_ReadCfgFile 23 23 26 1 1 235929
6

Synthesis::p_Translate 31 17 33 15 4 63

The definitions according to the reference [135] are:

BUPT

file:///D:/Tempus/MyUnderstandProject_html/dictionary_T.html%23796
file:///D:/Tempus/MyUnderstandProject_html/dictionary_S.html%231272

8.1 -Object Oriented Metrics|175

 Cyclomatic: “The measure of the complexity of a function's decision

structure; it is also the number of basis, or independent, paths through a

module. Sometimes also called the McCabe Complexity after its originator.”

 Modified: “Cyclomatic except each case statement is not counted; the entire

switch counts as 1.”

 Strict: “Same as Cyclomatic complexity except that && and || also count as

1.”

 Essential: “Measures the amount of unstructured code in a function.”

 Nesting: “Shows the maximum nesting level of control constructs in

program unit.”

8.1.2 Framework Class OO Metrics

The Class OO Metrics provides the object-oriented code metrics for the analyzed

classes. In the following table (Table 12), only the methods that overreach the

average values are described.

Table 12. Class OO Metrics

Class LCOM DIT IFANIN CBO NOC RFC NIM NIV WMC

Adaptive 75 0 0 4 0 13 13 12 13

FileParser 65 0 0 1 0 9 9 7 9

GA 75 0 0 4 1 22 22 8 22

GateCollection 68 0 0 19 0 11 10 2 11

Genome 75 0 0 2 1 20 20 5 20

HistorySolutions 57 0 0 2 0 7 7 5 7

Population 79 0 0 9 0 27 27 18 27

QHDLParser 79 0 0 4 0 23 23 8 23

QSyn 51 0 0 16 0 8 8 7 8

QuantumGate 70 0 0 0 16 19 19 8 19

Synthesis 70 1 1 10 0 49 29 4 29

SynthesisCfg 60 0 0 2 0 12 11 4 12

The definitions according to reference [135] are:

BUPT

file:///D:/Tempus/MyUnderstandProject_html/dictionary_G.html%23415

176 | 8-Appendix

 LCOM: “Percent Lack of Cohesion is 100% minus the average cohesion for

class data members. A method is cohesive when it performs a single task.”

 DIT: “Max Inheritance Tree is the maximum depth of the class in the

inheritance tree.”

 IFANIN: “Count of Base Classes is the number of immediate base classes.”

 CBO: “Count of Coupled Classes is the number of other classes coupled to

this class.”

 NOC: “Count of Derived Classes is the number of immediate subclasses this

class has.”

 RFC: “Count of All Methods is the number of methods this class has,

including inherited methods.”

 NIM: “Count of Instance Methods is the number of instance methods this

class has.”

 NIV: “Count of Instance Variables is the number of instance variables this

class has.”

 WMC: “Count of Methods is the number of local methods this class has.”

8.2 QCS Initial Genome Solution

The initial genome is created by the synthesis algorithm, using the parsed

information from the input file. The initial genome is necessary for further

comparison with the evolved solutions (method source code is available in Figure

8.1).

BUPT

8.3 -Statistic Details|177

Figure 8.1: Creation of the Initial Genome

8.3 Statistic Details

The Statistical class is implemented as a container for different object types using a

template parameter. The class provides basic methods that are implemented in the

class instances, for the statistical functions: maximum, minimum, average and

standard deviation (method source code is presented in Figure 8.2).

void QSyn::_CreateInitialSolutionGenome() {

 // create the initial solution genome

 itsInitialGenome = new Synthesis(*itsRandom, s_Config_.e_MutationType,

 s_Config_.e_CrossoverType) ;

 // create the relation in SynthesisCfg

 // it is important to have at that level the initial genome

 SynthesisCfg::rc_GetInstance()._SetInitialGenome(itsInitialGenome) ;

 // get the number of qubits

 int qubits = myQHDL.n_GetNoOfQubits() ;

 int i = 0 ; // for subelements

 int j = 0 ; // for elements

 bool b_valid = true ;

 // get the current element

 boost::shared_ptr<Nod> Element = myQHDL._GetListElement(i,j, b_valid) ;

 while ((Element!=0) && (b_valid))

 {

 // get the current subelement

 boost::shared_ptr<Nod> SubElement = myQHDL._GetListElement(i+1,j, b_valid) ;

 while ((SubElement!=0) && (b_valid))

 {

 // initiate the genome with the subelement

 itsInitialGenome->_Initiate((j+(i*qubits)), *SubElement) ;

 // goto next subelement

 i++ ;

 SubElement = myQHDL._GetListElement(i+1, j, b_valid) ;

 }

 // reinitialize the subelement and increment the element

 i = 0, j++ ;

 // goto next element

 Element = myQHDL._GetListElement(i, j, b_valid) ;

 }

 // compute the output function and save it into the

 // QuantumGate at the SynthesisCfg level

 SynthesisCfg::rc_GetInstance()._ComputeOutputFct() ;

}

BUPT

178 | 8-Appendix

Figure 8.2: Statistic Methods

template <class T> void Statistic<T> ::_AddToHistory(const T& ObjectToAdd) {

 HistoryList_.push_back(ObjectToAdd) ;

}

template <class T> T Statistic<T> ::c_GetMean() {

 T result = HistoryList_[0] ;

 // no. of elements in vector

 int lsize = int(HistoryList_.size()) - 1 ;

 for(int i=0; i<lsize ; i++)

 {

 // first calculate the sum

 result = result + HistoryList_[i+1] ;

 }

 // then calculate the mean

 result = ComputeMean(result, (lsize+1)) ;

 return result ;

}

template <class T> T Statistic<T> ::c_GetSTDEV() {

 T result, empty ;

 T mean = c_GetMean() ; // get the mean value

 int lsize = int(HistoryList_.size()) ;

 // stdev only between two objects

 if (lsize>1)

 {

 // sum Xi*Xi

 for(int i=0; i<lsize ; i++)

 {

 result = result + HistoryList_[i]*HistoryList_[i] ;

 }

 // sum Xi*Xi - N*Xmean^2

 result = result - lsize*(mean*mean) ;

 if (result>0){

 result = ComputeSquareRoot(result / lsize) ;

 return result ;

 }

 }

 // otherwise return an empty object

 return empty ;

}

BUPT

8.4 -QCS Genome Implementation Details|179

8.4 QCS Genome Implementation Details

In this section, the genome implementation details are described, by highlighting

the most important methods from the Synthesis class.

Figure 8.3: Output Function Computation

void Synthesis::_ComputeOutputFct(QuantumGate& GateResult) {

 // temporary gates

 QuantumGate GateMultiplicationTmp, GateTensorialTmp ;

 QuantumGate GateMultiplication, GateTensorial ;

 // actual read gate

 QuantumGate ReadGate ;

 // index inside of gene

 bool FirstLocus = true , FirstGene = true ;

 // compute first the output function

 while (n_GeneIndex < SynthesisCfg::rc_GetInstance().n_GetChromosomeLength())

 {

 ReadGate = rc_DetectNextGate() ; // read actual gate

 // save the result for doing multiplication

 if (b_NewSection && FirstGene)

 {

 FirstGene = false ;

 // only the first section was read, thus save it into Tmp

 GateMultiplicationTmp = GateTensorialTmp ;

 FirstLocus = true ; // re-initialize the locus

 }

 else if (b_NewSection)

 {

 FirstLocus = true ; // re-initialize the locus

 // do the multiplication

 (void) QMath::b_Multiply(GateMultiplicationTmp, GateTensorialTmp,

 GateMultiplication) ;

 // save it for further multiplication

 GateMultiplicationTmp = GateMultiplication ;

 }

 // save result for product tensor

 if (FirstLocus)

 {

 FirstLocus = false ;

 // only the first gate was read, thus save it into Tmp

 GateTensorialTmp = ReadGate ;

 }

 else

 { // do the tensor product

 QMath::_Tensorial(GateTensorialTmp, ReadGate, GateTensorial) ;

 // save it for further tensor product

 GateTensorialTmp = GateTensorial ;

 }

 }

 // perform the last multiplication

 (void) QMath::b_Multiply(GateMultiplicationTmp, GateTensorialTmp,GateMultiplication);

 n_GeneIndex = 0 ; // reset the gene index for a further output computation

 GateResult = GateMultiplication ; // return it via argument

}

BUPT

180 | 8-Appendix

The TypeA Mutation is responsible with the mutation operator applied at the

gene level (the complete gene is replaced by others randomly generated values).

The TypeB Mutation is responsible with the mutation operator applied inside the

gene level (one quantum gate is replaced by other randomly generated gate). If the

selected locus for mutation is used by a quantum gate with more than one input,

the locus is moved to the right, and start/stop indexes are computed in order to

allow the complete quantum gate detection.

Figure 8.4: TypeA/TypeB Mutation

void Synthesis::_MutationAType()

{

 b_WasEvaluated_ = false ;

 int NoOfGenes = SynthesisCfg::rc_GetInstance().n_GetNoOfGenes() ;

 int GeneLength = SynthesisCfg::rc_GetInstance().n_GetGeneLength() ;

 // select a gene from the chromosome

 int SelectGene = itsRandom->RandInt(0, NoOfGenes-1) ;

 // perform mutation by replacing the complete gene values (only one gene is affected)

 _InitiateLocus(SelectGene*GeneLength, (SelectGene+1)*GeneLength - 1) ;

}

void Synthesis::_MutationBType()

{

 b_WasEvaluated_ = false ;

 int NoOfGenes = SynthesisCfg::rc_GetInstance().n_GetNoOfGenes() ;

 int GeneLength = SynthesisCfg::rc_GetInstance().n_GetGeneLength() ;

 // select a gene from the chromosome

 int SelectGene = itsRandom->RandInt(0, NoOfGenes-1) ;

 int SelectLocus = itsRandom->RandInt(0, GeneLength-1) ;

 int StartIndex = SelectGene*GeneLength+SelectLocus ;

 // perform mutation

 _InitiateLocus(StartIndex, StartIndex) ;
}

BUPT

8.4 -QCS Genome Implementation Details|181

Figure 8.5: Locus Initialization

void Synthesis::_InitiateLocus(int StartIndex, int EndIndex)

{

 int NoOfGenes = SynthesisCfg::rc_GetInstance().n_GetNoOfGenes() ;

 int GeneLength = SynthesisCfg::rc_GetInstance().n_GetGeneLength() ;

 // detect the possible different start and stop index

 _DetectGateStartLeft(StartIndex, StartIndex) ;

 _DetectGateStopRight(EndIndex, EndIndex) ;

 int StartGateId = 1;

 if (StartIndex > 0)

 StartGateId = ac_Genome[StartIndex - 1]._ReturnGateId() + 1 ;

 // generate random values

 for(int i=StartIndex; i<=EndIndex; i++)

 {

 int MaxGateInputs = GeneLength - (i%GeneLength) ;

 // special case when not the complete gene is affected

 if ((EndIndex - StartIndex + 1) < GeneLength)

 MaxGateInputs = EndIndex - StartIndex + 1 ;

 // generate one or more quantum gate, but with Max No. of Inputs defined

 _GenerateGate(MaxGateInputs, i, i, StartGateId) ;

 }

 // affect the rest of the gates id (to be consecutive numbers)

 _ShiftIds((EndIndex+1), NoOfGenes*GeneLength, StartGateId) ;

}

BUPT

182 | 8-Appendix

Figure 8.6: Type A Crossover

boost::shared_ptr<Genome> Synthesis::p_CrossoverAType(Genome& spouse) {

 int ChromosomeLength = SynthesisCfg::rc_GetInstance().n_GetChromosomeLength() ;

 int GeneLength = SynthesisCfg::rc_GetInstance().n_GetGeneLength() ;

 int NoOfGenes = SynthesisCfg::rc_GetInstance().n_GetNoOfGenes() ;

 // create a new offspring

 boost::shared_ptr<Synthesis> offspring(new Synthesis(*itsRandom, e_MutationType_,

 e_CrossoverType_)) ;

 // copy the value from its parent

 *offspring = *this ;

 offspring->_ClearEvaluatedFlag() ;

 // select random cut

 int CutPoint1 = itsRandom->RandInt(0, (NoOfGenes-1)) ;

 // detect the locus within chromosome

 int StartIndex = 0, StopIndex = 0 ;

 int LastIndex = ChromosomeLength - 1 ;

 if (e_CrossoverType_ == Genome::e_OnePoint) // type of crossover is OnePoint

 {

 StartIndex = CutPoint1*GeneLength ; // compute the start index

 StopIndex = LastIndex ; // stop index is at the chromosome length

 }

 else if (e_CrossoverType_ == Genome::e_TwoPoints)// type of crossover is TwoPoints

 { int CutPoint2;

 do

 {

 CutPoint2 = itsRandom->RandInt(1, NoOfGenes) ;

 } while(CutPoint2 == CutPoint1);

 if (CutPoint2 < CutPoint1) // order the cut points

 {

 int tmp = CutPoint1 ;

 CutPoint1 = CutPoint2 ;

 CutPoint2 = tmp;

 }

 StartIndex = CutPoint1*GeneLength ; // compute the start index

 StopIndex = (CutPoint2*GeneLength) - 1 ; // compute the stop index value

 }

 // perform the crossover, copy the gene or genes between start index and stop index

 for (int i=StartIndex; i<=StopIndex; i++)

 // do the exchange

 offspring->ac_Genome[i] = dynamic_cast<Synthesis&>(spouse).ac_Genome[i] ;

 int StartGateId = 1 ;

 if (StartIndex >= 1)

 StartGateId = offspring->ac_Genome[StartIndex-1]._ReturnGateId() + 1 ;

 // affect the gates id (to be consecutive numbers)

 offspring->_ShiftIds(StartIndex, StopIndex, StartGateId) ;

 if (StopIndex != LastIndex)

 { StartGateId = offspring->ac_Genome[StopIndex]._ReturnGateId() + 1 ;

 // affect the rest of gates id (to be consecutive numbers)

 offspring->_ShiftIds(StopIndex+1, LastIndex, StartGateId) ;

 }

 return offspring ; // return the child
}

BUPT

8.5 -Quantum Gates Cost|183

8.5 Quantum Gates Cost

In the available articles, the subject of quantum gate cost is not completely covered

by information about physical quantum gates. Therefore, from a theoretical point of

view, several possibilities are possible in order to define and introduce the quantum

gate cost propriety.

8.5.1 Cost Details using General Approach

Each quantum gate physical implementation complexity is evaluated by introducing

two proprieties: cost and feasibility. Because the genetic algorithm approach does

not know any details about the circuit output function, or about the circuit garbage

qubits, the number of quantum qubits involved in the quantum gate is part of a

mathematical formula with the scope of defining the quantum circuit cost value. For

example, having an increased number of qubits into a quantum gate will increase

the cost and will decrease its feasibility. In the following table (Table 13), the gates

and their associated formula for cost and feasibility are also presented. In this way,

is possible to compare and grade intermediate evolved results.

Table 13. Gate Costs and Feasibility

Gate Name I’s between Quantum Feasibility Quantum Cost

Hadamard 0 100 1

X 0 100 1

Y 0 100 1

Z 0 100 1

S 0 100 1

T 0 100 1

I 0÷n 100 1

CNOT 0÷n 100*2/(2+n) 2+n

CZ 0÷n 100*2/(2+n) 2+n

CS 0÷n 100*2/(2+n) 2+n

Swap 0÷n 100*2/(2+n) 2+n

Toffoli 0÷n 100*3/(3+n) 3*(1+n)

8.5.2 Cost Details using Function Output

Each quantum gate has (as associated) a cost reported in comparison with Toffoli

and generalized Fredkin gates. The following table (Table 14) describes the quantum

costs of the generalized Toffoli gates, according to the paper published by

Barenco.et.al. [32], by taking into consideration the a priori knowledge about the

circuit function (number of garbage qubits). This cost cannot be used in a genetic

algorithm approach, because on randomly generated gates the number of garbage

gates remains unknown.

BUPT

184 | 8-Appendix

Table 14. Toffoli Gate Costs [51]

Size (n) Garbage Name Quantum Cost

1 0 NOT, t1 1

2 0 CNOT, t2 1

3 0 Toffoli, t3 5

4 0 Toffoli, t4 13

5 0 t5 29

5 2 t5 26

6 0 t6 61

6 1 t6 52

6 3 t6 38

7 0 t7 125

7 1 t7 80

7 4 t7 50

8 0 t8 253

8 1 t8 100

8 5 t8 62

9 0 t9 509

9 1 t9 128

9 6 t9 74

10 0 t10 1021

10 1 t10 152

10 7 t10 86

n>10 0 tn 2n-3

n>10 1 tn 24n-88

n>10 n-3 tn 12n-34

The Fredkin gate may be efficiently simulated by using n Toffoli gates and

two additional CNOT gates. Therefore, the cost for the n Fredkin gate is computed

as the cost of n Toffoli gates plus two (the CNOT gate cost is equal to one).

8.6 GNUplot Script

The following script was used to generate automatically all the statistic graphs that

were presented throughout this dissertation. The script receives, as input, the

quantum synthesis results coded as text files and, after processing, it plots the

graphics. The conversion of the postscript result file into EPS, JPEG, GIF, TIFF or

PDF was performed by using the ImageMagick19 software.

19 ImageMagick, http://www.imagemagick.org/script/index.php

BUPT

8.6 -GNUplot Script|185

Figure 8.7: GNUplot Script

set size 1.0, 1.0

set origin 0.0, 0.0

set term postscript enhanced color "Arial" 12

set output 'fig.ps'

set multiplot

set size 0.45,0.35

set origin 0.0,0.65

set grid

unset key

set title "Best Individual Fitness Evolution" # Plot Best Individual

set ylabel "Fitness value"

set xlabel "Generation (number)"

plot 'fitness.txt' using 1:2 every :::0::9

set size 0.6,0.25 # Plot Algorithm Performance

set origin 0.0,0.0

set notitle

set xrange [0 : 9] noreverse nowriteback

set xlabel "Runs (number)"

set ylabel "Solutions"

set boxwidth 0.9 absolute

set style fill solid 1.00 border -1

set style histogram clustered gap 1

set style data histograms

set lmargin 11

plot 'stat_solution.txt' using 2 ti col

set size 0.6,0.4 # Plot time Performance

set origin 0.0,0.25

set title "Algorithm performance"

set xrange [1 : 10] noreverse nowriteback

unset xlabel

set noxtics

set ylabel "Average Time (ticks)"

set style data lines

plot 'stat_solution.txt' using 1:3 lw 4

set size 0.6,0.4 # Plot Statistic Fitness evolution

set origin 0.4,0.6

set autoscale xy

set title "Statistic Fitness Evolution"

set key inside

set ylabel "Fitness value"

set xlabel "MIN MEAN MAX STDEV / Generation"

set boxwidth 0.9 absolute

set style fill solid 1.00 border -1

set style histogram clustered gap 1

set style data histograms

set noxtics

set yrange [0 : 1] noreverse nowriteback

plot 'stat_fitness.txt' using 5 index 0 ti col, '' u 6 index 0 ti col, '' u 7 index 0 ti col

unset key

Plot MetaHeuristic Adaption

set origin .55,0.

set size 0.45,0.6

set key left top

set title "Mutation and Crossover Adaption"

set ylabel "Probability value"

set xlabel "Generation (number)"

set style data lines

set xtics autofreq

set autoscale xy

plot \

 'perf_oper_prob.txt' u 1:2:3 w filledcu title 'Mutation', '' u 1:2 lt -1 notitle , '' u 1:3 lt -1

notitle,\

 'perf_oper_prob.txt' u 1:4:5 w filledcu title 'Crossover', '' u 1:4 lt -1 notitle , '' u 1:5 lt -

1 notitle

BUPT

9. Bibliography

[1] Richard P. Feynman, "Quantum mechanical computers," vol. 11, pp. 11-20,

1985.

[2] Gordon E. Moore, "Cramming more components onto integrated circuits,"

Electronics, vol. 38, p. 4, April 1965.

[3] Richard P. Feynman, "Simulating Physics with Computers," International

Journal of Theoretical Physics, vol. 21, no. 6/7, pp. 467-488, 1982.

[4] David Deutsch, "Quantum theory, the Church-Turing principle and the

universal quantum computer," in Proceedings of the Royal Society of

London, 1985, pp. 97-117.

[5] Peter W. Shor, "Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer," in 35th Annual Symposium

on Foundations of Computer Science, Santa Fe, 1994, p. 28,

http://arxiv.org/PS_cache/quant-ph/pdf/9508/9508027v2.pdf.

[6] Lov K. Grover, "A fast quantum mechanical algorithm for database search,"

in 28th Annual ACM Symposium on the Theory of Computing, Philadelphia,

1996, pp. 212-219, http://arxiv.org/PS_cache/quant-

ph/pdf/9605/9605043v3.pdf.

[7] Lee Spector, Automatic Quantum Computer Programming: A Genetic

Programming Approach.: Springer Science-Business Media, 2004,

http://www.springer.com/computer/programming/book/978-0-387-36496-

4.

[8] Lynch J. Benjamin. (2006, February) Optimizing with Genetic Algorithms.

[Online].

http://static.msi.umn.edu/tutorial/scientificcomp/OptimizingWithGA.pdf

[9] Andrei Bautu and Elena Bautu, "Quantum Circuit Design by Means of

Genetic Programming," Romanian Physics, vol. 52, no. 5-7, pp. 697-704,

2007, http://www.nipne.ro/rjp/2007_52_5-7/0697_0705.pdf.

[10] John P. Hayes and Igor L. Markov, "Quantum Approaches to Logic Circuit

Synthesis and Testing," p. 10, June 2006.

[11] Martin Lukac and Marek Perkowski, "Evolving quantum circuits using genetic

algorithm," in Proceedings NASA/DoD Conference on Evolvable Hardware,

2002, pp. 177 - 185,

http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/8000/22122/01029883

.pdf?arnumber=1029883.

[12] Andrea Malossini, Enrico Blanzieri, and Tommaso Calarco, "QGA: A Quantum

Genetic Algorithm," 2004.

[13] ACSA. [Online]. http://www.acsa.utt.ro/

BUPT

http://static.msi.umn.edu/tutorial/scientificcomp/OptimizingWithGA.pdf
http://www.acsa.utt.ro/

[14] Kang L. Wang, "Microelectronics roadmap: from ultimate CMOS to quantum

information systems," , Hong Kong, 2001,

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=946904&isnu

mber=20499.

[15] Helve Jaouen, "ITRS/Upper+ suggestions," 2004.

[16] (2007) International Technology Roadmap for Semiconductors. [Online].

http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_ERD.pdf

[17] (2005) International Technology Roadmap for Semiconductors. [Online].

http://www.itrs.net/Links/2005ITRS/ERD2005.pdf

[18] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and

Quantum Information.: Cambridge University Press, 2000.

[19] John R. Koza, Genetic Programming: On the programming of computers by

Means of Natural Selection. London, England: The MIT Press, Cambridge,

Massachusetts, 1998.

[20] Mitchell Melanie, An Introduction to Genetic Algorithms.: The MIT Press,

1999.

[21] John P. Hayes, "Tutorial: basic concepts in quantum circuits," in IEEE

Proceedings Design Automation Conference, 2003,

http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/8647/27397/01219146

.pdf?arnumber=1219146.

[22] The free-content WWW resource in quantum information science. [Online].

http://www.quantiki.org/

[23] Artur Ekert, Patrick Hayden, and Hitoshi Inamori, "Basic concepts in

quantum computation," February 2008, http://arxiv.org/abs/quant-

ph/0011013.

[24] Emanuel Knill et al., "Introduction to Quantum Information Processing," LA

Science, p. 48, http://arxiv.org/abs/quant-ph/0207171.

[25] John H. Reif, "Quantum Information Processing: Compression, Coding, and

Related Computations," 1999,

http://www.cs.duke.edu/reif/paper/qsurvey.ps.

[26] Andrew Steane, "Quantum computing," Reports on Physics Progress, pp.

117-173, 1998, http://www.iop.org/EJ/abstract/0034-4885/61/2/002/.

[27] Ramamurti Shankar, Principles of Quantum Mechanics.: Plenum Pub Corp,

1994.

[28] Michael D. Fayer, Elements of Quantum Mechanics.: Oxford University

Press, 2001.

[29] David Deutsch, Adriano Barenco, and Artur Ekert, "Universality in Quantum

Computation," in Proceedings of the Royal Society of London Ser. A, vol.

449, 1995, pp. 669-677,

http://citeseer.ist.psu.edu/deutsch95universality.html.

BUPT

http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_ERD.pdf
http://www.itrs.net/Links/2005ITRS/ERD2005.pdf
http://www.quantiki.org/

[30] David P. DiVincenzo, "Quantum Gates and Circuits," in ITP Conference on

Quantum Coherence and Decoherence, 1996, p. 18,

http://arxiv.org/abs/quant-ph/9705009.

[31] David P. DiVincenzo, "Two-Bit Gates Are Universal for Quantum

Computation," Phys. Rev. A, vol. 51, no. 2, pp. 1015-1022, 1995,

http://citeseer.ist.psu.edu/divincenzo95twobit.html.

[32] Adriano Barenco et al., "Elementary Gates for Quantum Computation,"

Physical Review, p. 24, March 1995, http://citeseer.ist.psu.edu/11452.html.

[33] John R. Koza, Genetic Programming II: Automatic Discovery of Reusable

Programs.: MIT Press, 1994.

[34] John R. Koza, H Forrest Bennett, David Andre, and Martin A. Keane, Genetic

Programming III: Darwinian Invention and Problem Solving.: Morgan

Kaufmann Publishers, 1999.

[35] John R. Koza et al., Genetic Programming IV: Routine Human-Competitive

Machine Intelligence.: Kluwer Academic Publishers, 2003.

[36] John R. Koza, "Introduction to Genetic Programming Tutorial," in Genetic

and Evolutionary Computation Conference, Seattle, 2004, p. 137,

http://www.genetic-programming.com/gecco2004tutorial.pdf.

[37] John R. Koza, "A Genetic Programming Tutorial," in Genetic Programming

IV: Routine Human-Competitive Machine Intelligence, Department of

Computer Science, Ed. California: Stanford University / Kluwer Academic

Publishers, p. 40,

http://citeseer.ist.psu.edu/cache/papers/cs/27780/http:zSzzSzwww.genetic

-programming.comzSzgptutorialburke.pdf/a-genetic-programming-

tutorial.pdf.

[38] John H. Holland, Adaption in Natural and Artificial Systems, Massachusettes

Institute of Technology, Ed.: First MIT Press, edition 1992, first edition

1975, The University of Michigan Press.

[39] David E. Goldberg, Genetic Algorithms in Search, OPtimization, and Machine

Learning.: Addison Wesley Longman Inc., 1989.

[40] Matthew B. Wall. (1996-2007) Galib, A C++ Library of Genetic Algorithm

Components. [Online]. http://lancet.mit.edu/ga/

[41] Christian Gagne and Marc Parizeau. (2002-2007) Open BEAGLE, a versatile

EC framework. [Online]. http://beagle.gel.ulaval.ca/

[42] Adam Fraser and Thomas Weinbrenner. (1993-1997) GPC++ - Genetic

Programming C++ Class Library. [Online].

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/weinbenner/gp.html

[43] David Levine. (1996) PGAPack Parallel Genetic Algorithm Library. [Online].

http://www-

fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.ht

ml

BUPT

http://lancet.mit.edu/ga/
http://beagle.gel.ulaval.ca/
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/weinbenner/gp.html
http://www-fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html
http://www-fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html
http://www-fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html

[44] Open Channel Foundation. [Online].

http://www.openchannelfoundation.org/projects/SPLICER/

[45] J. J. Merelo. (1997) GAGS genetic algorithm C++ class library. [Online].

http://kal-el.ugr.es/GAGS/

[46] Benjamin I. P. Rubinstein, "Evolving Quantum Circuits using Genetic

Programming," in Genetic Algorithms and Genetic Programming at Stanford

2000.: Stanford Bookstore 002-0-00-002365-B, 2000, pp. 325-334,

http://citeseer.ist.psu.edu/543423.html.

[47] Vivek Shende, Aditya K. Prasad, Igor L. Markov, and John P. Hayes,

"Synthesis of Reversible Logic Circuits," in IEEE Transaction on CAD 22,

2003, pp. 710-722,

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1201583.

[48] Dmitri Maslov and Gerhard W. Dueck, "Level Compaction in Quantum

Circuits," in IEEE Congress on Evolutionary Computation, 2006, pp. 2405-

2409, http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1688606.

[49] Kazuo Iwama, Yahiko Kambayashi, and Shigeru Yamashita, "Transformation

Rules for Designing CNOT-based Quantum Circuits," in Design Automation

Conference, 2002, p. 6,

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/procee

dings/&toc=comp/proceedings/dac/2002/2402/00/2402toc.xml&DOI=10.11

09/DAC.2002.1012662.

[50] Dmitri Maslov, Gerhard W. Dueck, Michael D. Miller, and Camille Negreve,

"Quantum Circuit Simplification and Level Compaction," IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no.

3, pp. 436-444, March 2008, http://arxiv.org/PS_cache/quant-

ph/pdf/0604/0604001v2.pdf.

[51] Reversible Logic Synthesis Benchmarks Page. [Online].

http://www.cs.uvic.ca/%7Edmaslov/

[52] Dmitri Maslov, Gerhard W. Dueck, and Michael D. Miller, "Toffoli Network

Synthesis with Templates," in Computer-Aided Design of Integrated Circuits

and Systems, 2005, pp. 807-817,

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1432873.

[53] Dmitri Maslov, Gerhard W. Dueck, and Michael D. Miller, "Techniques for the

Synthesis of Reversible Toffoli Networks," ACM Transactions on Design

Automation of Electronic Systems, vol. 12, no. 4, p. 20, 2007,

http://portal.acm.org/citation.cfm?id=1278349.1278355&coll=GUIDE&dl=G

UIDE&CFID=64559792&CFTOKEN=69330897.

[54] Dmitri Maslov, Gerhard W. Dueck, and Michael D. Miller, "Quantum Circuit

Simplification and Level Compaction," in IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 2008, pp. 436-444,

http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/43/4454003/04378213

.pdf?temp=x.

BUPT

http://www.openchannelfoundation.org/projects/SPLICER/
http://kal-el.ugr.es/GAGS/
http://www.cs.uvic.ca/~dmaslov/

[55] Dmitri Maslov, Sean M. Falconer, and Michele Mosca, "Quantum Circuit

Placement: Optimizing Qubit-to-qubit Interactions through Mapping

Quantum Circuits into a Physical," in Annual ACM IEEE Design Automation

Conference, 2007, pp. 962-965,

http://portal.acm.org/citation.cfm?id=1278717.

[56] Unified Modeling Language. [Online]. http://www.uml.org/

[57] Paul Harmon and Mark Watson, Understanding UML: The Developer's Guide.

San Francisco, USA: Morgan Kaufmann Publishers Inc., 1997,

http://www.amazon.com/Understanding-UML-Developers-Engineering-

Programming/dp/1558604650.

[58] Goong Chen et al., Quantum Computing Devices: Principles, Designs, and

Analysis.: Chapman & Hall/CRC, 2007, http://www.amazon.com/Quantum-

Computing-Devices-Principles-Mathematics/dp/1584886811.

[59] (2004) ARDA. [Online]. http://qist.lanl.gov/pdfs/rm_intro.pdf

[60] Francis D. Desmond and Cameron W. Alan, Objects, Components,and

Frameworks with UML.: Addison-Wesley, 1999.

[61] Telelogic. (2005) Rhapsody Development Edition. [Online].

http://www.telelogic.com/products/rhapsody/index.cfm

[62] Steve McConnell, Code Complete, Second Edition. Redmond, Wa: Microsoft

Press, 2004.

[63] Cristian Ruican. (2008) Personal Web Site. [Online].

http://www.cs.utt.ro/~crys/index_files/public/qsyn.tar.gz

[64] Giovanni De Micheli, Synthesis and Optimization of Digital Circuits.:

McGraw-Hill, Inc, 1994.

[65] George F. Viamontes, Igor L. Markov, and John P. Hayes, "Checking

equivalence of quantum circuits and states," in IEEE/ACM International

Conference on Computer-Aided Design, 2007, pp. 69-74,

http://www.ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4397223&arn

umber=4397246&count=153&index=22.

[66] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design

Patterns, Elements of Reusable Object-Oriented Software.: Addison-Wesley,

1994.

[67] Shalloway Alan and Trott R. James, Design Patterns Explained - A New

Perspective on Object-Oriented Design, Addison-Wesley, Ed., 2002.

[68] Cristian Ruican, Mihai Udrescu, Lucian Prodan, and Mircea Vladutiu, "A

Genetic Algorithm Framework Applied to Quantum Circuit Synthesis," in

Nature Inspired Cooperative Strategies for Optimization, vol. 129/2008,

Acireale, 2007, pp. 419-429,

http://www.springerlink.com/content/5871541r3571h608/?p=8c93e746e39

744f59c7a1c6f0cf0cab4&pi=0.

[69] Cristian Ruican. (2007) Personal Web Site. [Online].

BUPT

http://www.uml.org/
http://qist.lanl.gov/pdfs/rm_intro.pdf
http://www.telelogic.com/products/rhapsody/index.cfm
http://www.cs.utt.ro/~crys/index_files/public/qsyn.tar.gz

http://www.cs.utt.ro/~crys/index_files/public/framework.zip

[70] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.

Vetterling, Numerical recipes in C, 2nd.: Cambridge University Press, 1992.

[71] Cristian Ruican, "Genetic Algorithm Framework for Application Tuning,"

University Politehnica Timisoara, PhD Report No.2 2008.

[72] Paul E. Black. (2007) Knapsack problem in Dictionary of Algorithms and

Data Structures. [Online].

http://www.nist.gov/dads/HTML/knapsackProblem.html

[73] Farhad Djannaty and Saber Doostdar, "A Hybrid Genetic Algorithm for the

Multidimensional Knapsack Problem," Math. Sciences, vol. 3, no. 9, pp. 443-

456, 2008, http://www.m-hikari.com/ijcms-password2008/9-12-

2008/djannatyIJCMS9-12-2008.pdf.

[74] David Pisinger, "Where are the hard knapsack problems?," Computers and

Operations Research, vol. 32, no. 9, pp. 2271-2284, 2005,

http://portal.acm.org/citation.cfm?id=1063640.

[75] Anabela Simoes and Ernesto Costa, "An Evolutionary Approach to the

Zero/One Knapsack Problem: Testing Ideas from Biology," in Neural

Networks and Genetic Algorithms, 2001, pp. 236-239,

http://www.citeseer.ist.psu.edu/437920.html.

[76] Sami Khuri, Thomas Back, and Jorg Heitkotter, "The Zero/One Multiple

Knapsack Problem and Genetic Algorithms," in ACM Symposium on Applied

Computing, 1994, pp. 188-193,

http://portal.acm.org/citation.cfm?id=326694.

[77] Cristian Ruican. (2008) Personal Web Site. [Online].

http://www.cs.utt.ro/~crys/index_files/public/QKnapsack.zip

[78] Richard Dawkins, The Blind Watchmaker. New York: W.W Norton &

Company, Inc., 1986, http://www.amazon.com/Blind-Watchmaker-

Evidence-Evolution-Universe/dp/0393315703.

[79] Matt Stillerman, David Guaspari, and Wolfgang Polak, "Final Report - A

Design Language for Quantum Computing," Odyssey Research Associates,

Inc. (ATC-NY), ORA TR-03-0001 2003.

[80] Riccardo Poli, William B. Langdon, Nicholas F. McPhee, and John R. Koza,

"Genetic Programming An Introductory Tutorial and a Survey of Techniques

and Applications," in Computational Intelligence: A Compendium.: Springer-

Verlag, 2008, vol. Studies in Computational Intelligence (SCI), ch. 22,

http://www.springer.com/engineering/book/978-3-540-78292-6.

[81] Dmitri Maslov, "Eficient Reversible and Quantum Implementations of

Symmetric Boolean Functions," in Circuits, Devices and Systems, 2006, pp.

467-472,

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4015856.

[82] Dmitri Maslov and Gerhard W. Dueck, "Garbage in Reversible Designs of

BUPT

http://www.cs.utt.ro/~crys/index_files/public/framework.zip
http://www.nist.gov/dads/HTML/knapsackProblem.html
http://www.cs.utt.ro/~crys/index_files/public/QKnapsack.zip

Multiple Output Functions," in Representations and Methodology of Future

Computing Technologies, 2003, pp. 162-170,

http://www.iqc.ca/~dmaslov/papers/rm03a.pdf.

[83] Dmitri Maslov and Gerhard W. Dueck, "Improved Quantum Cost for n-bit

Toffoli Gates," Electronics Letters, vol. 39, no. 25, pp. 1790-1791,

http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/2220/28093/01255714

.pdf?arnumber=1255714.

[84] Dmitri Maslov and Gerhard W. Dueck, "Reversible Cascades with Minimal

Garbage," in Computer-Aided Design of Integrated Circuits and Systems,

2004, pp. 1497-1509,

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1350877.

[85] Dmitri Maslov and Michael D. Miller, "Comparison of the Cost Metrics for

Reversible and Quantum Logic Synthesis," IET Computers & Digital

Techniques, vol. 1(2), pp. 98-104, 2007, http://arxiv.org/abs/quant-

ph/0511008.

[86] Dmitri Maslov, Gerhard W. Dueck, and Michael D. Miller, "Fredkin/Toffoli

Templates for Reversible Logic Synthesis," in Computer Aided Design, 2003,

pp. 256-261,

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1257667.

[87] Dmitri Maslov, Gerhard W. Dueck, and Michael D. Miller, "Synthesis of

Fredkin-Toffoli Reversible Networks," in Very Large Scale Integration (VLSI)

Systems, 2005, pp. 765-769,

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1458796.

[88] Dmitri Maslov, Christina Young, Michael D. Miller, and Gerhard W. Dueck,

"Quantum Circuit Simplification Using Templates," in Design, Automation

and Test in Europe, 2005, pp. 1208-1213,

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1395758.

[89] Michael D. Miller, Dmitri Maslov, and Gerhard W. Dueck, "Synthesis of

Quantum Multiple-Valued Circuits," Journal of Multiple-Valued Logic and Soft

Computing, no. 5-6, pp. 431-450, 2006,

http://webhome.cs.uvic.ca/~mmiller/publications/JMVL0404.pdf.

[90] Afshin Abdollahi and Massoud Pedram, "Analysis and Synthesis of Quantum

Circuits by Using Quantum Decision Diagrams," in Proceedings of Design,

Automation and Test in Europe, 2006,

http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/11014/34699/0165689

8.pdf?temp=x.

[91] Gerhard W. Dueck and Dmitri Maslov, "Reversible Function Synthesis with

Minimum Garbage Outputs," IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 23, no. 11, pp. 1497-1509, 2004,

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1350877.

[92] Paul E. Black and Andrew W. Lane, "Modeling quantum information

systems," in Proceedings SPIE, Orlando, Florida, 2004, pp. 340-347,

BUPT

http://hissa.nist.gov/~black/Papers/modelQuantSimSPIE04.html.

[93] George F. Viamontes, Igor L. Markov, and John P. Hayes, "Graph-Based

Simulation of Quantum Computation in the Density Matrix Representation,"

Quantum Information & Computation, vol. 5, no. 2, pp. 113-130, 2005,

http://citeseer.ist.psu.edu/633681.html.

[94] George F. Viamontes, Igor L. Markov, and John P. Hayes, "High-

Performance QuIDD-based Simulation of Quantum Circuits," in Conference

on Design, automation and test in Europe, 2004, p. 2,

http://citeseer.ist.psu.edu/669521.html.

[95] George F. Viamontes, Igor L. Markov, and John P. Hayes. (2008) QuIDDPro:

High-Performance Quantum Circuit Simulation. [Online].

http://vlsicad.eecs.umich.edu/Quantum/qp/qp_manual_3.1.pdf

[96] George F. Viamontes, Manoj Rajagopalan, Igor L. Markov, and John P.

Hayes, "Gate-Level Simulation of Quantum Circuits," in Proc. of ACM/IEEE

Asia and South-Pacific, Kitakyushu, Japan, 2003, p. 17,

http://citeseer.ist.psu.edu/viamontes03gatelevel.html.

[97] Michael D. Miller, Mitchell A. Thornton, and David Goodman, "A Decision

Diagram Package for Reversible and Quantum Circuit Simulation," in IEEE

Congress on Evolutionary Computation, 2006, pp. 2428-2435,

http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/11108/35623/0168861

0.pdf?tp=&isnumber=&arnumber=1688610.

[98] Vladimir P. Gerdt, Robert Kragler, and Alexander N. Prokopenya, "A

Mathematica Program for Constructing Quantum Circuits and Computing

Their Unitary Matrices," p. 18, 2007,

http://lit.jinr.ru/QPC2007/pdf/GerdtKraglerProkopenya.pdf.

[99] Andre Leier and Wolfgang Banzhaf, "Comparison of Selection Strategies for

Evolutionary Quantum Circuit Design," in Genetic and Evolutionary

Computation, Lecture Notes in Computer Science, Ed.: Springer Berlin /

Heidelberg, 2004, pp. 557-568,

http://www.springerlink.com/content/tyfaybp8cp56fkaq/.

[100] Ketan N. Patel, Igor L. Markov, and John P. Hayes, "Evaluating Circuit

Reliability Under Probabilistic Gate-Level Fault Models," International

Workshop on Logic and Synthesis, p. 6, 2003,

http://citeseer.ist.psu.edu/644440.html.

[101] Marek Perkowski et al., "A Hierarchical Approach to Computer-Aided Design

of Quantum Circuits," in 6 th Int’l Symp. on Representations and

Methodology of Future Computing Technology, 2003,

http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=C90FA37D8B49F

A9A62BBA3CCC88FF25B?cid=4578332.

[102] Bart Rylander, Terry Soule, James Foster, and Jim Alves-Foss, "Quantum

Evolutionary Programming," in Proceedings of the Genetic and Evolutionary

Computation Conference, 2001, pp. 1005-1011,

BUPT

http://vlsicad.eecs.umich.edu/Quantum/qp/qp_manual_3.1.pdf

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d11.pdf.

[103] Susan Stepney and John A. Clark, "Evolving quantum programs and

protocols," in Handbook of Theoretical and Computational Nanotechnolog.:

American Scientific Publishers, 2006, p. 60,

http://portal.acm.org/citation.cfm?id=1118010.

[104] Mihai Udrescu, "Quantum Circuits Engineering: Efficient Simulation and

Reconfigurable Quantum Hardware," University Politehnica, Timisoara, PhD

Thesis 2005.

[105] Mihai Udrescu, Lucian Prodan, and Mircea Vladutiu, "The Bubble Bit

Technique as Improvement of HDL-Based Quantum Circuits Simulation," in

38th Annual Simulation Symposium, 2005, pp. 217-224,

http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/9628/30438/01401968

.pdf?temp=x.

[106] Colin P. Williams and Alexander G. Gray, "Automated Design of Quantum

Circuits," in Quantum Computing and Quantum Communications, Lecture

Notes in Computer Science, Ed.: Springer Berlin / Heidelberg, 1999, pp.

113-125, http://www.springerlink.com/content/5lyw885hfne5rln7/.

[107] Martin Lukac, Normen Giesecke, Sazzad Hossain, Marek Perkowski, and

Dong H. Kim, "Quantum Behaviors: Synthesis and Measurement," in 37th

International Symposium on Multiple-Valued Logic, 2007, p. 8,

http://web.cecs.pdx.edu/~mperkows/transfer/LukacPerkowski-quantum-

behaviors-synthesis-measurement.pdf.

[108] P. Gupta, A. Agrawal, and N. K. Jha, "An Algorithm for Synthesis of

Reversible Logic Circuits," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 25, no. 11, pp. 2317-2330, Nov 2006.

[109] Cristian Ruican, Mihai Udrescu, Lucian Prodan, and Mircea Vladutiu,

"Software Architecture for Quantum Circuit Synthesis," in International

Conference on Artificial Intelligence and Soft Computing, vol. Computational

Intelligence: Methods and Applications, Zakopane, 2008, pp. 562-573,

http://www.exit.pl.

[110] C. Ruican, "Prerequisites of Synthesis Methodology for Quantum Circuits,"

Timisoara, 2007.

[111] Odyssey Research Associates. (2006-2008) QHDL: A Design Language for

Quantum Computing. [Online]. http://www.oracorp.com/;

http://www.dodsbir.net/selections/abs021/darpaabs021.htm;

http://www.atcorp.com/systemdevelopment/quantcomp.html

[112] Andrew Lane and Paul E. Black. (2008) Quantum Compiling and Simulation.

[Online]. http://hissa.nist.gov/~black/Quantum/qcsim.html

[113] Cristian Ruican, Mihai Udrescu, Lucian Prodan, and Mircea Vladutiu,

"Automatic Synthesis for Quantum Circuits using Genetic Algorithms," in

International Conference on Adaptive and Natural Computing Algorithms,

BUPT

http://www.oracorp.com/;%20http:/www.dodsbir.net/selections/abs021/darpaabs021.htm;%20http:/www.atcorp.com/systemdevelopment/quantcomp.html
http://www.oracorp.com/;%20http:/www.dodsbir.net/selections/abs021/darpaabs021.htm;%20http:/www.atcorp.com/systemdevelopment/quantcomp.html
http://www.oracorp.com/;%20http:/www.dodsbir.net/selections/abs021/darpaabs021.htm;%20http:/www.atcorp.com/systemdevelopment/quantcomp.html
http://hissa.nist.gov/~black/Quantum/qcsim.html

vol. LNCS 4431, Warsaw, 2007, pp. 174-183,

http://www.springerlink.com/content/e57868200314g377/.

[114] Riccardo Poli, William B. Langdon, and Nicholas F. McPhee, A Field Guide to

Genetic Programming., March 2008.

[115] Francisco Herrera and Manuel Lozano, "Fuzzy adaptive genetic algorithms:

design, taxonomy, and future directions," Evolutionary Intelligence, pp. 27-

46, 2008, http://sci2s.ugr.es/publications/ficheros/GFS-Taxonamy-

current%20research%20trends%20and%20prospects.pdf.

[116] Andreas Fink and Stefan Voss, "Reusable metaheuristic software

components and their application via software generators," in Meta

heuristics International Conference, 2001, p. 6,

http://citeseer.ist.psu.edu/fink01reusable.html.

[117] Ovidiu Gheorghies, Henri Luchian, and Adriana Gheorghies, "A Study of

Adaption and Random Search in Genetic Algorithms," in IEEE Congress on

Evolutionary Computation (CEC), 2006, pp. 2103-2110,

http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/11108/35623/0168856

6.pdf?isnumber=35623&prod=CNF&arnumber=1688566&arSt=2103&ared=

2110&arAuthor=Gheorghies%2C+O.%3B+Luchian%2C+H.%3B+Gheorghie

s%2C+A.

[118] Georges R. Harik and Fernando G. Lobo, "A Parameter-Less Genetic

Algorithm," in Genetic and Evolutionary Computation Conference, 1999, p.

8, http://citeseer.ist.psu.edu/cache/papers/cs/2445/ftp:zSzzSzftp-

illigal.ge.uiuc.eduzSzpubzSzpaperszSzIlliGALszSz99009.pdf/harik99paramet

erless.pdf.

[119] Deb Kalyanmoy and Hans-Georg Beyer, "Self-Adaptive Genetic Algorithms

with Simulated Binary Crossover," University of Dortmund, 1999.

[120] Lam N. Law and Kwok Y. Szeto, "Adaptive Genetic Algorithm with Mutation

and Crossover Matrices," in 20th International Joint Conference on Artificial

Intelligence, Hyderabad, India, 2007, pp. 2330-2333,

http://www.ijcai.org/papers07/Papers/IJCAI07-375.pdf.

[121] Fernando G. Lobo and David E. Goldberg, "The parameter-less genetic

algorithm in practice," Information Sciences, vol. 167, no. 1-4, pp. 217-232,

December 2004,

http://citeseer.ist.psu.edu/cache/papers/cs/22142/ftp:zSzzSzftp-

illigal.ge.uiuc.eduzSzpubzSzpaperszSzIlliGALszSz2001022.pdf/lobo01param

eterless.pdf.

[122] Sonja Novkovic and Davor Sverko, "Towards a Genetic Algorithm for

Function Optimization," Saint Mary’s University, Canada, Halifax,.

[123] Hartmut Pohlheim, "Visualization of Evolutionary Algorithms Set of Standard

Techniques and Multidimensional Visualization," in Genetic and Evolutionary

Computation Conference, 1999, p. 8,

http://citeseer.ist.psu.edu/cache/papers/cs/25740/http:zSzzSzwww.pohlhei

BUPT

m.comzSzPaperszSzconf_gecco1999zSzPohlheimH_VisualizationEA_GECCO1

999.pdf/pohlheim99visualization.pdf.

[124] Daisuke Yamashiro, Tomohiro Yoshikawa, and Takeshi Furuhashi,

"Visualization of Search Process and Improvement of Search Performance in

Multi-Objective Genetic Algorithm," in IEEE Congress on Evolutionary

Computation, 2006, pp. 1151-1156,

http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/11108/35623/0168843

9.pdf?tp=&isnumber=&arnumber=1688439.

[125] E. Agoston Eiben, Zbigniew Michalewicz, Marc Schoenauer, and E. James

Smith, "Parameter Control in Evolutionary Algorithms," Parameter Setting in

Evolutionary Algorithms, vol. 54, pp. 19-46, 2007,

http://www.informatik.uni-

trier.de/~ley/db/series/sci/sci54.html#EibenMSS07.

[126] O. Gheorghies, H. Luchian, and A. Gheorghies, "Walking the Royal Road

with Integrated-Adaptive Genetic Algorithms," University Alexandru Ioan

Cuza of Iasi, 2005.

[127] (2007) Electronic Statistics Textbook.

[128] Singh Prashant, "Evolving Quantum Circuits using Genetic Algorithm," 2005,

revised 2007, http://arxiv.org/abs/quant-ph/0511036v2.

[129] M. Mohammadi, M. Eshghi, and K. Navi, "Optimizing the Reversible Full

Adder Circuit," in IEEE EAST-WEST DESIGN&TEST, Yerevan, 2008,

http://ewdtest.com/conf/EWDTS%2707_Presentations/Mohammadi,Eshghi,

Navi.pdf.

[130] Rodney Van Meter, W. J. Munro, Kae Nemoto, and Kohei M. Itoh,

"Arithmetic on a Distributed-Memory Quantum Multicomputer," ACM Journal

on Emerging Technologies in Computing Systems, vol. 3, no. 4, 2007.

[131] Vivek Shende, Stephen S. Bullock, and Igor L. Markov, "Synthesis of

Quantum Logic Circuits," IEEE Transactions on Computer-Aided Design, vol.

25, no. 6, pp. 1000-1010, June 2006.

[132] Ding Shengchao, Jin Zhi, and Yang Qing, "Evolving Quantum Oracles with

Hybrid Quantum-inspired Evolutionary Algorithm," 2006,

http://arxiv.org/abs/quant-ph/0610105v1.

[133] Tim Reid, "On the Evolutionary Design of Quantum Circuits," 2005.

[134] Krista Svore, Andrew Cross, A. Aho, I. Chuang, and Igor Markov, "Toward a

Software Architecture for Quantum Computing Design Tools," 2006,

http://www.eecs.umich.edu/~imarkov/pubs/misc/qpl04-tools.pdf.

[135] SCI. Understand. [Online]. http://www.scitools.com/

BUPT

http://www.scitools.com/

	Introduction
	Motivation
	Aims of the Thesis
	Thesis Outline

	Background
	Quantum Computation
	Genetic Algorithms
	Related Work

	Analysis of the QCS
	QCS Problem Statement
	Characteristics of the Tool Support
	Levels of Design
	QCS Architecture Overview
	Rationale
	Constraints
	Logical View
	Process View
	Development View

	Architecture Properties
	Classical vs. Quantum Digital Circuit Synthesis

	Genetic Algorithm Framework
	Framework Preliminaries
	Framework Packages Architecture
	Genetic Algorithm Types
	Genome Implementation
	Population Implementation
	GA Operators
	Framework Utilities
	Framework Statistics

	Framework Validation

	Genetic Quantum Circuits Synthesis
	Parser Module
	Quantum Circuits Database
	Preparation Steps for Genetic Algorithm
	Integration within ProGA Framework
	Initial Circuit Configuration
	Synthesis Genetic Algorithm
	Circuit Genome
	Circuit Output Function
	Genome Initialization
	Detecting of the Next Gate
	Performing Mutation
	Performing Crossover
	Fitness Formula Computation

	Metaheuristic Algorithm
	Parameter Control
	Integration within ProGA Framework
	Adaptive Behavior using Operator Performance
	How the Change is Made
	Performance Meaning

	Experiments Result Evaluation
	The Experiment Setup
	Evaluation Approach
	QCS Tool Verification
	Complete Set of Gates
	Reduced Set of Gates
	Minimal Set of Gates

	Case Studies
	Three-Qubit Circuit
	Four-Qubit Circuit
	Five-Qubit Circuit
	Six-Qubit Circuit
	Seven-Qubit Circuit

	Additional Experiments
	Result Evaluation
	Going Beyond 7-qubit Circuits

	Conclusions and Perspectives
	Thesis Impact and Contributions
	Future Directions
	Refinement and Future Work
	QCS Integration

	Appendix
	Object Oriented Metrics
	Framework Program Unit Complexity
	Framework Class OO Metrics

	QCS Initial Genome Solution
	Statistic Details
	QCS Genome Implementation Details
	Quantum Gates Cost
	Cost Details using General Approach
	Cost Details using Function Output

	GNUplot Script

	Bibliography

