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Abstract 

 
This dissertation addresses an important and hard computational problem, the 

efficient synthesis of reversible quantum circuits from high-level description 

language. The novelty of dissertation is the Genetic Algorithm [GA] being proposed 

for the quantum logic circuit synthesis problem, together with the meta-heuristic 

algorithm used for the parameters control. A new methodology, with layered 

synthesis architecture, is proposed by starting with a description of quantum 

circuits, and then progressing through optimization and synthesis phases. 

  

The goal is to understand the application of evolutionary computing 

approach to Quantum Circuit Synthesis [QCS] and to provide a software tool that 

will allow automatic synthesis. The tool allows for defined configuration and helps in 

deciding about the methods and components that are better suited for the proposed 

synthesis aim.  The problem is motivated by the following observations: 

 

 The necessity to provide more computational power for the actual computers will 

move the digital circuit research work at the atomic scale, where the quantum 

laws are governing. The demand to shrinkage is also known as Moore’s Law. 

 

 Synthesis tools are necessary, because the technological development is 

extremely fast and the researcher’s needs to develop new circuit functions are 

high. 

 

 Quantum Computation, as well as its implementation (namely, the quantum 

circuits) has received a boost in its importance, due to the new discovered 

algorithms that prove the superiority of this field in solving some specific classes 

of computational problems. 

 

 There are only few physical quantum circuits available that can manipulate small 

quantum particles, but in the near future it is possible to have a stunning variety 

of available circuits. Thus, simulation plays an important role now, and synthesis 

will eventually play the same role in the near future. 

 

This dissertation introduces a computer aided software tool for automatic 

quantum circuit synthesis that is designed to be configurable, flexible, fast and easy 

to use by a wide range of researchers. The design is written using Unified Modeling 

Language and the software implementation is made in C++ language. The open 

source code allows for further development and proves our availability for 

discussions concerning quantum circuit synthesis by evolutionary computing 

methods. The aim was to develop an open platform that creates all the prerequisites 

for the quantum synthesis task. 
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Experiments are performed on several benchmark circuits, thus proving the 

synthesis algorithm efficiency. The evolutionary approach allows for testing different 

configurations and, together with the meta-heuristic algorithm, provides a powerful 

tool even for novice users. The experiments are repeated several times to avoid 

lucky guesses, the graphics and figures are explained and – at the same time – 

relevant conclusions are extracted. 
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Chapter 1 

1. Introduction 

“...it seems that the laws of physics present no barrier to reducing the size of 

computers until bits are the size of atoms, and quantum behavior holds sway” 

Richard P. Feynman [1] 

 

In the 1970’s and 1980’s several physicists and computer scientists such as Charles 

H. Bennett1, Paul A. Benioff2, David Deutsch3 and Richard P. Feynman4 started to 

analyze the possibility of using quantum mechanics proprieties in computational 

devices. Considering Moore’s Law [2], they understood that in a limited time slot the 

shrinking technology would reach the atom scale, where the behavior and properties 

of the circuit are governed by the quantum mechanics laws.  

1.1  Motivation 

In 1982 Feynman proposed a universal quantum simulator, by presenting how a 

quantum computer may be used to perform computation, and then pointed out, at 

the same time, the difficulties in simulating quantum mechanical systems on 

conventional computation devices (exponential memory and time overheads) [3]. 

He considered that the proposed simulator would allow a physicist to make quantum 

experiments within of a quantum computer. Few years later, in 1985, Deutsch 

derived a new version of Church-Turing thesis by considering that any physical 

process may be perfectly modeled by a quantum computer [4]. After Deutsch’s first 

step, many researchers started to search applications for the quantum computer 

(i.e. Peter Shor’s demonstration for finding the prime factors of a large integer, Lov 

Grover’s database search algorithm, etc) [5] [6]. 

According to the Moore Law, the quantum level would be reached in 2010-

2020 (see Figure 1.1). This is because our technology will continue to shrink up to 

the atom level in order to advance the computing technology (we discuss about the 

integration scale and the number of doping impurities within the bases of bipolar 

transistors that are required for logic). In our days, small integration scale is hard to 

be obtained, due to the amount of the heat that has to be dissipated. The quantum 

devices allow reversibility on computation, and therefore it is not dissipating heat. 

This is possible because the input and the output, for any quantum device, can be 

obtained by starting from the opposite side (it is called “logical reversibility”). If the 

circuit may also be run backwardly, then it is called “physically reversible”, hence 

                                               
1 IBM Research Center, http://www.research.ibm.com/people/b/bennetc/ 
2 Argonne National Laboratory, http://www.phy.anl.gov/theory/staff/pab.html 
3 University of Oxford, http://www.qubit.org/people/david/ 
4 California Institute of Technology, http://www.zyvex.com/nanotech/feynmanWeb.html 
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16 | 1-Introduction 

the second law of thermodynamics assures that it dissipates no heat. In a quantum 

computer, we always may reverse the computation for the final state, because 

computation is the unitary evolution of an input, over the given system state. 

 

Figure 1.1: Moore’s Law Representation 

Another advantage of quantum computers is its increased computation 

power. The published quantum algorithms can solve exponential problems from 

classical computation more efficiently, by reducing their complexity and having a 

better response during the time spent. 

For our research, as specified above, some domains we believe are strongly 

connected. The merger between quantum computing and genetic algorithms was 

already made; the field of Evolvable Quantum Information (EQI) has significantly 

grown over the last years [7]. At first glance, the merging of quantum computation 

and evolvable computation seems natural and benefic. Indeed, relevant progress 

has been signaled in the EQI subfield of Quantum-Inspired Genetic Algorithms 

(QIGA) including the so-called evolvable quantum hardware or the automatic 

synthesis of quantum circuits by evolvable means. Ongoing developments 

concerning the other EQI subfield of Quantum Genetic Algorithms (QGA) have been 

presented previously (as published [7] [8] [9] [10] [11] [12]). 

Another motivation is to continue the previous research work from the ACSA 

[13] group, and to create a solid base for quantum technologies within our 
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university. Comparing with quantum simulation5, where there are many software 

tools available, the quantum synthesis is still in an incipient phase. One of the 

reasons for this low development is the unavailability of quantum physical devices 

and missing information about their characteristics. By taking into consideration the 

available literature, we consider that quantum synthesis will play an important role 

in the near future, as well as the fact that the development of quantum applications 

(with links in other domains) will be of great relevance for the success of quantum 

computation domain. In this newly created context, the existing software 

architecture will be adjusted to the quantum technology or created from scratch, 

because the classical solutions cannot be successfully applied. 

1.2  Aims of the Thesis 

The title for our research "Developing Automatic Synthesis Methodologies for 

Quantum Circuits using Genetic Algorithms" describes all three domains that we are 

trying to connect in an apprehensive and coherent manner. Our target is to find an 

adequate methodology that can perform quantum logic circuit synthesis. 

There are many quantum simulators available at this moment, but in the 

quantum logic circuit synthesis field, there are only few theoretical papers available. 

That is why we are trying to bring our contribution in this very specific aspect of 

quantum circuit design. The synthesis relevance has two views. According to the 

first one, if the progress in technology is extremely fast, and it is outstripping the 

designer’s abilities to make use of the created opportunities; the second view is 

generated by the situation where the technology is not available on a large scale, 

and the designers can use only a small set of gates for the design. These are the 

reasons why the development and the application of new and more suitable design 

methodologies are of the highest importance for the modern computer system 

industry. 

Quantum synthesis has a bigger relevance when it is related to the 

simulation results. Any of the result simulation may have a physical implementation 

with the help of the synthesis algorithm (we can use a quantum circuit database in 

order to support the available circuit types). Therefore, starting from a program 

written in a high description language we obtain the physical device with the help of 

the automated synthesis process. 

The main objective is to create a tool chain for the quantum circuit 

synthesis. We are motivated by the desire of bringing together genetic algorithms 

and quantum computing. This association is created with the aim of performing 

closer-to-optimum synthesis. On the other hand, the goal of this dissertation is also 

related to the Advanced Computing Systems and Architectures (ACSA) Laboratory 

[13], which aims at fostering the new computing technologies. 

Another objective is to continue the work of my colleague Mihai Udrescu, 

who was also an advisor for this particular project within ACSA, and to create a solid 

base for quantum technologies in our university. We intend to push forward the 

                                               
5 http://www.quantiki.org/wiki/index.php/List_of_QC_simulators 
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research concerning the quantum circuit synthesis, by also involving scientists from 

the genetic algorithms field, approach that could be of great importance for 

computer science in general. 

The motivation presented in this section may seem theoretical and detached 

from the actual industry problems. However, the fact is that the industry is seriously 

taking into consideration the aspects related to the emerging technologies and 

quantum circuits in particular. The industry representatives have quickly reacted to 

these emerging problems, and founded a global organization called ITRS 

(International Technology Roadmap for Semiconductors), which is jointly sponsored 

by European Semiconductor Industry Association, Japan Electronics and 

Informational Technology Industries Association, Korea Semiconductor Industry 

Association, Taiwan Semiconductor Industry Association, and Semiconductor 

Industry Association from USA. As this organization defines its documents, they are 

about a continuous evaluation of the semiconductor technology requirements, aimed 

at increasing the performance of the integrated circuits. This effort is supported by 

industry, suppliers, academia, research groups, and governments [14][15][16]. The 

results of the ITRS assessments are published as ITRS reports, which are annually 

updated [17][16] (see Figure 1.2). 

 

Figure 1.2: Taxonomy for Emerging Research Information [16] 

Computer Aided Design (CAD) has become over the years an important 

domain for the development of conventional circuits. To a large scale of developers, 

the new synthesis techniques have allowed to create new high performance circuits, 

for a wide range of applications. Two topics are of paramount in the CAD field: 
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synthesis and optimization. The synthesis is started from logical or architectural 

models, and the optimization is performed on the intermediate results, that are 

obtained after applying CAD techniques on the input model. Thus, a designer should 

elaborate only the circuit specification, and then the CAD application will create the 

possible design, suitable for implementation on the actual hardware technologies. 

1.3  Thesis Outline 

In Chapter 2, the background is split into three parts. The first one, that intends to 

describe the background of quantum computation, the second one in which the 

genetic algorithm background is introduced, and the third one section, where actual 

research results are presented. Chapter 3 presents the software analysis issues like 

requirements and architecture views (use case diagrams and activity diagrams are 

employed as a common language). 

Chapter 4 defines a new genetic algorithm framework that is used to 

implement different genetic algorithms. Its UML architecture is explained and, at the 

same time, the source code made available. The framework provides the statistical 

information that will later be used to compare the algorithm results, and to adapt 

the implementation in order to obtain a better-evolved solution. The framework 

utilities, as well as the random number generator and time measurement are useful 

for the algorithm assessment. Chapter 5 is dedicated to quantum logic circuit 

synthesis. A new genetic algorithm is presented, the genetic operators are detailed 

and a new methodology is used for circuit synthesis. The synthesis algorithm was 

built by using the support provided by our framework. We identify the principles 

necessary for quantum circuit synthesis and optimization. 

Chapter 6 elaborates the evaluation methods used for the quantum logic 

circuit synthesis assessment and our most general experimental results. The test 

methods that are used together with the test setup are focused on several test 

cases, proving that the software requirements are fulfilled by the software 

implementation. Chapter 7 is dedicated to the dissertation conclusions. The 

dissertation contributions and some directions for future work are then presented in 

this chapter. 

 

BUPT



 

Chapter 2 

2. Background 

“...many interesting problems are impossible to solve on a classical computer, 

not because they are in principal insoluble, but because of the astronomical 

resources required to solve realistic cases of the problem. The spectacular 

promise of quantum computers is to enable new algorithms which render 

feasible problems requiring exorbitant resources…” Nielsen, Michael A. and 

Chuang, Isaac L. [18] 

 

“…how can computers learn to solve problems without being explicitly 

programmed? In other words, how can computers be made to do what is 

needed to be done, without being told exactly how to do it?” Koza, John R. [19] 

 

Without necessarily assuming prior knowledge about quantum computing and 

genetic algorithms, this section will mainly outline the fundamental concepts. Two 

relevant references can be pointed out as major milestones in presenting this 

background: the first one is about quantum computation [18] and the second one is 

presents the genetic algorithms field [20]. These two textbooks correspond to the 

two major domains that are under our attention herein. In the last subchapter, the 

related work is presented, by pointing out the research advances made in the 

quantum logic circuit synthesis field. 

2.1  Quantum Computation 

In a broad sense, computation is the processing of the mathematically represented 

information. In our case, and from a physical standpoint, quantum computation is 

the computation made with coherent atomic scale dynamics [21]. A quantum 

computer is a physical device able to perform computation using quantum 

mechanical phenomenon, like entanglement and data superposition. For a quantum 

computer, only the quantum mechanics laws are relevant [22][23][24][25][26]. 

Four quantum mathematical fundamental postulate, which lay the ground rules were 

verified through different experiments and described in several quantum 

computation textbooks [18][27][28]. 

 

Postulate 1 – state vectors and state space 

A closed quantum system is described by a unit vector in a complex inner product 

space known as a state space [18]. 

 

The quantum states, encoded by qubits (i.e. quantum bits that can 

physically be implemented by employing photons, electron spin, nuclear spin, etc), 
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are represented as vectors. A simple quantum system may be represented by using 

the spin 1/2 particle. For example, a spin-down |  and a spin-up |  may be used to 

represent the binary information 0|  and 1|  (see Figure 2.1 a). In Bra-Ket 

notation, a qubit is a normalized vector in a two dimensional Hilbert space

)Cβ,α(1βα,
β

α
1|β0|αψ|

22









 , where 0|  and 1|  are the basis 

states. The quantum system is represented by a superposition of basis states, while 

a classical binary system can only settle in one of the basis states “0” or “1”. 

Another advantage of quantum computers is the computational power (see Figure 

2.1 b). 

         

   a)                                          b) 

Figure 2.1: Quantum Computation Details[18] 

 

Inner product6 

The inner product of two complex vectors  n21 x,x,xx   and  n21 y,y,yY   

is defined as: 





















 





n

1n

0i

n21ii

y

y

xxxyxYX   
(2.1) 

 

 

                                               
6 known as dot product or scalar product 
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Postulate 2 – unitary evolution 

The evolution of a closed quantum system is described by a unitary transformation 

  || ' U  [18]. 

 

Transpose 

Given a matrix A , the corresponding transpose matrix written TA  is the matrix 

obtained by exchanging sA'  rows and columns, thus satisfying the identity

T11T )A()A(   . 
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(2.2) 

 

Unitary 

A square matrix U  is a unitary matrix if 
1H UU  , where 

HU  denotes the 

conjugate transpose and 
1U
 is the matrix inverse.  

 

Postulate 3 - measurement 

The measurement of a quantum state |  involves a special set of operators. The 

result will be one of the eigenvalue ω|  of the operator , with a certain probability 

when the operator is applied to | . Measurement is destructive and will change the 

measurement state |  to ω|  [18]. 

Measurement will always find the system in one discrete basis state 

determined by its outcome; at the same time this is the only way to extract the 

information from a quantum system. Unfortunately, the measurement destroys the 

quantum superposition state.  The measurement result is one of the operator's 

eigenvalue (one of the supposed basis states), with a probability given by the 

squared amplitude of the measured basis state. For example, for the quantum state 

given as  11|4.010|3.001|2.000|1.0 , the probability to read the second 

qubit as 0|  is 22 3.01.0  . After measurement, the quantum computation is not 

reversible any longer. 

Having the state  1|β0|α| , the orthonormal basis 
2
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  when )Pr(  is the so-called “projecter operator”. 
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For example, if we are to measure the state 
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ψ| in the basis 1| , the 

projective operator is   
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  . This example shows 

that measuring in the computational basis, the probability for getting a 0 or a 1 is 

the squared magnitude of the associated amplitude. 

 

Postulate 4 – tensor product 

The state space of a composite physical system is the tensor product of the state 

spaces of the component systems [18]. 

For example, two-qubit state space is 422 CCC   and the computational 

basis states are  11|1|1|,10|0|1|,01|1|0|,00|0|0| . 

 

Tensor product7 

Given a [m x n]-size matrix A  and a [p x q]-size matrix B , their direct product 

BAC   is a [(mp)x(nq)] matrix with elements defined by klijαβ bac  , where 

k)1i(pα   and l)1j(qβ  . In order to illustrate this, we compute the 

tensor product of the following complex-valued matrices, 




















hg

fe
B;

dc

ba
A  

(2.3) 

 

the tensor product operation   will give 























dhdgchcg

dfdecfce

bhbgahag

bfbeafae
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(2.4) 

 

 

Reversibility 

We say that a logic gate is reversible if the number of input wires is equal to the 

number of output wires and the gate simply permutes the set of input values. We 

say that a logic circuit is reversible if it contains only reversible gates, and it has no 

fan-out. 

 

 

 

                                               
7 known also as Kronecker product 
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Quantum Gates 

In Table 1 and Table 2, several quantum gates are presented together with the 

associated symbol and the matrix representation (more details in references such as 

[29] [30] [31] [23]). 

Table 1: Single Qubit Gates 

Symbol Name SW-Notation Matrix 

 
Hadamard hadamard 
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0i

i0
 

 
Pauli Z opZ 









 10

01
 

 
Phase opS 
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Table 2: Multiple Qubit Gates 

Symbol Name SW-Notation Matrix 

 

Controlled-Not cnot 
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Quantum Circuits 

Any quantum phenomenon having a finite number of states can be modeled as a 

quantum circuit. The quantum gate is a physical device implementing a unitary 

operator that represents the quantum state transformation. Due to the unitary 

property, all quantum circuits are reversible; furthermore, these circuits are 

considered the most feasible implementation solution for quantum algorithms. A 

good description is also provided within reference [32]. 

A quantum circuit is composed of one or more quantum gates placed in a 

defined order. The order is important for quantum computation, which is made by 

using two quantum registers, an important output for the quantum logic circuit 

representation. The horizontal lines define the number of qubits, while the vertical 

lines denote a coupling between various qubits. In other words, a quantum circuit is 

defined as one or more quantum operations that are applied on a quantum register. 

As quantum circuit example, the quantum two-qubits adder is presented in 

the Figure 2.2. Going to a more abstract level, the quantum circuit may be seen as 

a sequence of quantum gates placed on the qubit lines as shown in Figure 2.3. 

 

Figure 2.2: Quantum Logic Circuit Adder 
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Figure 2.3: Abstract Quantum Logic Circuit 

 The quantum logic circuit exhibits many similarities with their classical 

counterparts. The quantum gates are connected through quantum wires that carry 

qubits encoded quantum information. The most difficult obstacles in the quantum 

circuit implementation are related to the decoherence of quantum superposition due 

to the quantum state interaction with the environment, and with the quantum state 

transformation precision due to subsequent computation steps. 

2.2  Genetic Algorithms 

The Genetic Algorithms are adaptive heuristic search algorithms based on 

evolutionary ideas of natural selection used to find solutions for optimization and 

search problems. Genetic Algorithms have been subject to intensive research in the 

last decade, as many reported results are providing successful solutions to their 

respective problems. The GA development covers a wide variety of designs and 

engineering applications. The solutions are, on several cases, more efficient, more 

elegant, and more complex than the solutions discovered by the human mind [19] 

[33] [34] [35] [36] [37].  

 

Biological Terminology 

In Nature, the living organisms are composed of cells, whereas a cell contains one 

or more chromosomes (the organisms with paired chromosomes are called diploid 

and the organisms with unpaired chromosomes are called haploid) [20]. A collection 

of chromosomes is called genome. Further, the chromosome is divided into genes 

(i.e. a gene may encode the eyes color and another gene may encode the hair 

color). The different values for a gene are called alleles (i.e. blue eyes, green eyes, 

etc). The position of a gene within the chromosome is called locus.  

Another used term is the genotype that refers to a particular set of genes 

from a set of chromosomes. The phenotype - defined contrary to the genotype - 

defines characteristics such as morphology, development and behavior. If the 

genotype is inherited, the phenotype is developed during the life of the biological 

organism. In Nature, during sexual reproduction, the crossover exchange genes 

between every chromosome involved; the mutation is the result from copying errors 
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occurring during the reproduction process. The fitness is associated with the 

probability of that organism living for reproduction (viability). 

In genetic algorithms, the chromosome is a possible candidate solution to a 

specific problem. Many times, the chromosome is replaced by the term genome, 

mainly because the candidate solution is composed only of a single chromosome 

(remember that a collection of chromosomes creates a genome). The genes are 

considered as being subparts of a chromosome and are used to encode a specific 

feature or a specific parameter. Different values for the genes define the alleles, 

which may be for example, in bit string chromosome values of 0 or 1. The crossover 

operator, in most of the cases, exchange genetic information between two 

chromosomes, and the mutation operator flips a bit from a random locus. 

 

Mathematical Foundations 

The “Holland’s Schema”, defined by equation (2.5), is considered to be the 

foundation basis for explanations regarding the genetic algorithms power [38] [39]. 

A schema is a template that identifies a subset of strings with similarities at certain 

string positions. For example, the considered schema 1**0*1 describes all the set of 

strings of length 6 where at position 1 and 6 there is a 1, and where at position 4 

there is a 0. The symbol “*” represents a “don’t care”, thus we may have at 

positions 2, 3 and 5 either a 0 or 1. The Holland’s Schema Theorem or Fundamental 

Theorem of Genetic Algorithms considers that “short, low-order, schemata with 

above-average fitness increase exponentially in successive generations” [38] : 

]p1[*
a

)H(f*)t,H(m
)1t,H(m

t
  (2.5) 

 

where: 

 m(H,t) is the number of strings belonging to schema H at generation t 

 f(H) is the observed fitness of schema H 

 at is the observed average fitness at generation t 

 p is the probability of disruption (because crossover and mutation may destroy 

the schema) as presented in equation (2.6) [38]

 

 

mdiffc ο(H)*p(H,t)*p*p
1l

δ(H)
p 


  

(2.6) 

 

where: 

 )H(ο , called “schema order”, is the number of fixed positions from the string 

(for example, in the schema 1**0*1, 3)H(ο  )  

 l is the string length 

 pm is the mutation probability 

 pc is the crossover probability 
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 )H(δ , called “length of schema” is the length between first and the last specific 

positions 

(for example, in the schema 1**0*1, 5)16()H(δ  )  

 )t,H(pdiff is the probability that the second parent does not match the schema 

H 

Using other terms, Goldberg considers in reference [39], that a schema with 

“fitness values above the population average will receive an increasing number of 

samples in the next generation, while schemata with fitness values below the 

population average will receive a decreasing number of samples”. 

 The following example aims at revealing the differences between different 

schemas. Thus, we consider the following string S and the two schemata H1 and H2: 

 S = 0 1 0 1 0 0 0 0 

 H1= * * 1 * * * 0 * 

 H2= * * * 0 * 1 * * 

If a point crossover is applied between positions 3 and 4, it is easy to observe that 

schemata H1 will be destroyed because the “1” from position 3 and the “0” from 

position 7 will be placed in different offsprings. The schemata H2 will survive 

because the “0” from position 4 and the “1” from position 6 will be placed into the 

same offspring, after the crossover operation. The 437)H(δ 1   and 

246)H(δ 2  , thus H1 will be destroyed with 7/4)1l/()H(δ)H(p 11d   

and H2 will be destroyed with 7/2)1l/()H(δ)H(p 22d  . 

Applying mutation for a particular schema, the schema survives when all the 

)H(ο  positions survive. Thus, computing the )()1( Hopm  we obtain the probability 

of surviving mutation. Considering that 1mp  the result for the survival 

probability is [38]: 

mcs p*)H(οp*
1l

)H(δ
1p 


  

(2.7) 

 

The underlying explanation behind this theorem is that instead of trying to 

construct a complex string in order to represent the solution, better and better 

strings are constructed using valuable information from the previous samples. 

 

Design 

In his first book [19], Koza creates associations between nature and genetic 

algorithms: “in nature, the evolutionary process occurs when the following four 

conditions are satisfied: 

 

 An entity has the ability to reproduce itself. 

 

 There is a population of such self-reproducing entities. 
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 There is some variety among the self-reproducing entities. 

 

 Some differences in the ability to survive in the environment is associated with 

the variety”. 

 

The corresponding steps to be fulfilled by a genetic algorithm (see Figure 

2.4), according to Koza [19], will have to map the previous four conditions. Thus, a 

simple genetic algorithm works as follows: 

1. Start the algorithm with a randomly generated population (only the 

chromosome length is fixed). 

2. Repeat the following steps until the termination criterion is satisfied: 

a. Calculate and evaluate the fitness for each individual from 

the population. 

b. Create a new population using the evolution operators with a 

certain probability. The used operators are: 

i. Just copy the individuals into the new population. 

ii. Create two or one offsprings from recombining two 

individuals (crossover from substrings). 

iii. Create a new individual by randomly mutate a 

position from its genome. 

The best individual from each step is considered as solution for that iteration. 
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Figure 2.4: Genetic Programming Paradigm [19] 

 The flowchart proposed by Koza is the simplest method to evolve a genetic 

algorithm, and it is the basis for a wide number of applications. The flowchart does 

not provide detailed information; many details have to be filled in by the developer, 

at the implementation moment (i.e. population size, encoding, probabilities, etc). In 

the available literature there are also other versions for this flowchart, but the 
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structure is mainly the same (depending on the algorithm complexity, other 

processes are inserted in the flowchart). 

2.3  Related Work 

Frameworks 

There are several published genetic algorithm frameworks (see Table 3), each of 

them allowing ways of implementing new genetic schemes, with the proposed 

purpose of finding solutions for a given problem. The programming languages 

diversity is rediscovered in the available implementation for these frameworks: 

there are frameworks developed in C++, Java, Lisp, etc. 

Table 3: Available C/C++/Java Frameworks 

Name Details Language 

Galib [40] Galib contains a set of C++ genetic algorithm 

objects. The library includes tools for using 

genetic algorithms in order to perform 

optimization in any C++ program by 

employing any representation and genetic 

operators. 

C++ 

Open Beagle [41] A C++ Evolutionary Computation (EC) 

framework; it provides a high-level software 

environment in order to implement any kind of 

EC, with support for tree-based genetic 

programming. 

C++ 

GPC [42] The GP kernel is a C++ class library that can 

be used to apply genetic programming 

techniques to all kinds of problems. 

C++ 

PGAPack [43] It is a general-purpose, data-structure-neutral, 

parallel genetic algorithm library. 
C 

Splicer [44] A genetic algorithm tool used to solve searches 

and optimization problems. 
C 

GAGS [45] A C++ class library, which contains classes 

used to program all the Genetic Algorithm 

elements. 

C++, Java 

 

Comparing our framework with other approaches, several details are to be 

noticed: 

 

 In Galib, Matthew Bartschi Wall has defined a C++ library of genetic algorithm 

components. The library implementation evolved over three years since 1993, 

and even had an update in 2007. We consider that due to its complexity, the 

library is not so easy to use, even if the author proposes a solution where the 

BUPT



32 | 2-Background 

user has to start a new implementation following an existing example. The work 

is documented, the source code is available, but the architecture views are 

missing. 

 

 The OpenBeagle was developed starting from 2002 and provides a high-level 

software environment for evolutionary computation algorithms, while providing 

support for different data structures (i.e. tree-based, bit string, integer or real 

vector, etc). Authors consider that the framework follows strong principles of 

object oriented programming, by using different levels of abstractions and 

allowing easy code reuse. The software architecture is explained partially in the 

provided manual, mainly with focus on the mentioned abstract layers; however, 

important details about the relations between the (abstract) objects seem to be 

flawed (more elaborated terms, relations within the data structure are not 

enough detailed). 

 

 The GPC is one of the first known C++ frameworks for tree-based genetic 

programming. It was developed mainly between 1993 and 1997, even before a 

C++ standard was available. Inside the framework there are parts that do not 

promote a clear object oriented programming, there are no design patterns 

implemented, and there are many relations and usages between the classes. 

The library provides support for automated defined functions, tournament and 

proportional selection, steady state genetic programming, multiple populations, 

improved random generators, etc. 

 

Another view concerning the mentioned frameworks - this time considering only the 

C++ approaches - is presented in Table 4 . 

Table 4: Analysis of GA Frameworks 

Name  Com-

plexity 

Data 

structure 

Architecture 

views 

Abstract 

layers 

Comments 

Galib  high complex - - The library is not so easy to 

use, even the author 

proposes a start-up solution 

Open 

Beagle   

medium complex - + The software architecture is 

partially explained in the 

provided manual, with focus 

mainly on the mentioned 

abstract layers 
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GPC  low low - - Within the framework there 

are parts that do not 

promote a clear object 

oriented programming 

GAGS  Medium low + - Only binary haploid 

representation is possible 

 

All the frameworks shall allow extensibility (possibility of adding a new 

genetic algorithm type), the user having to add only small parts of code that are 

closely connected with the problem definition that will be implemented. In this way, 

the developer will not lose time with the base part of the genetic algorithm because 

it is already implemented in the framework, and will focus his attention only on the 

problem particularities. 

 

Quantum Circuit Synthesis 

In reference [11], Lukac and Perkowski have identified the following question: how 

to encode the number of wires and the gate position within the circuit, by employing 

the least complex data structure? They have proposed a transformation of the 

quantum circuit in an encoded chromosome, in order to be used in a standard 

genetic algorithm. In the encoded chromosome, the following rules are imposed: 

equal probability of presence of each gate type, fast individual encoding and 

decoding, and no other parameters beside basic definitions (no control bits). The 

potential weak point is that, beside the gate order, there is no information indicating 

what gate is connected to what wires. Thus, in order to obtain the chromosome, it is 

required that the quantum circuit be altered by employing swap gates. 

Rubinstein, in reference [46], considers-for the genetic algorithm-a scheme 

in which a gate has a type, a number of sets for the qubit operands, and some sets 

of parameters for different categories (the generalized 2-qubit gate takes four real 

parameters for different types of rotations; the CNOT gate takes a number of 

control qubits, etc). The quantum circuit is considered as a list of gate structures, 

where the size of the circuit (number of gates) is variable. 

Shende et al. [47] proposed a top-down structure and effective 

computation, by employing the Cosine-Sine Decomposition (see Figure 2.5 (a)). 

Decomposition for quantum logic, that is analogous to the well-known Shannon 

decomposition (see Figure 2.6) of Boolean function 0i1i xixi fxfxf


 , is 

introduced. It expresses an arbitrary n-qubit quantum operator in terms of a (n-1) 

qubit operator (cofactors), by means of quantum multiplexors (see Figure 2.5 (b)).  
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(a) Cosine-Sine Decomposition     (b) multiplexed Cosine-Sine  

       Decomposition 

Figure 2.5: Cosine-Sine Decompositions [47] 

With the help of an optimized quantum multiplexor, and applying this 

decomposition recursively to quantum operators, a synthesis algorithm is obtained 

in terms of quantum multiplexors. 

 

Figure 2.6: The Quantum Shannon Decomposition [47] 

In reference [48], it is considered that the heuristic methods employed for 

synthesis will have non-optimal circuits as a result. The usage of a local optimization 

technique is proposed under the form of the so-called templates, in order to simplify 

the circuit output and to compact the circuit levels. Implementation is provided in 

terms of NOT, CNOT and controlled-sqrt-of-NOT gates. The method output is 

represented by reductions of the number of quantum and levels. Templates are the 

generalization of the idea that two circuits, implementing the same function, may be 

replaced by another circuit (having a small cost in terms of gate number). This is 

called linear cost metric. Sometimes, the local optimization for a sub-circuit will lead 

to a global cost optimization of the circuit, called non-linear cost metric. For the 

level compaction, the usage of a greedy algorithm is proposed in order to apply the 

reduction rules. It is assumed that every two circuits have the same execution 

delay, and that the non-intersection gates from the neighborhood can be executed 

in parallel, with the delay being equal to a single gate delay. 

In references [47] , several quantum logic circuit pattern optimizations are 

proposed (see Figure 2.7). The task of circuit synthesis for reversible circuits is 

approached by employing a minimal number of gates [49]. Sub-circuits suitable for 

reduction are identified and transformed in simple circuits using the pattern 
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optimization rules. The resulting circuit is considered optimal if no other equivalent 

circuit, having a smaller cost in terms of gates number, exists. 

 

Figure 2.7: Circuit Equivalence as Proposed by Shende et al. [47] 

A report from June 2006 [10] considers the logic synthesis for quantum and 

classical circuits as equally important. It is considered that - in the current 

implementation technologies - gates that act on three or more qubits are 

prohibitively difficult to implement in a direct manner. Also, it is considered that a 

sequence of two-qubit gates is crucial for quantum computation. Quantum circuit 

blocks are identified and quantum conditions are analyzed, before defining quantum 

multiplexors that generalize CNOT, Toffoli and Fredkin gates. The quantum 

multiplexor implements the if-then-else conditionals, when the controlling predicates 

are evaluated to a non-classical state. In the end of the analysis, an analog 
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quantum Shannon decomposition is applied. The most representative published 

results show the following figures: 

 

 An arbitrary n-qubit quantum state can be prepared by a circuit containing no 

more than n1n 22   CNOT gates 

 

 An arbitrary n-qubit operator can be implemented with a circuit containing more 

than 3/42)2/3(4)48/23( nn   CNOT gates. 

 

Quantum Circuit Synthesis 

Quantum circuit synthesis is considered as the automatic combination and 

optimization of quantum circuits in order to implement a specific function. The 

quantum circuit synthesis is an extensively investigated topic. Several research 

groups have published results, and positive reductions have been obtained in the 

gate reduction number, qubit reduction, or even faster runtime.  

The team from University of Michigan where - Quantum Circuit Group8 - that 

has proposed and resolved several synthesis problems. In one of their latest papers 

[10], they have “developed efficient quantum logic circuits which performed two 

tasks: (i) implementing generic quantum computations and (ii) initializing quantum 

registers”. The constructed generic circuit is considered the most efficient known at 

that time, in terms of CNOT gates. 

In the quantum synthesis field, we have to notice also the work of Dmitri 

Maslov9 at the Institute for Quantum Computing from University of Waterloo. They 

have proposed different approaches for quantum logic circuit synthesis and 

optimization; for example, in reference [50] the template approach is used to 

optimize a quantum circuit. In addition, Maslov created the “Reversible Logic 

Synthesis Benchmarks Page”, where important research results concerning the 

synthesis are available for further benchmarking [51]. Many papers have been 

published by this group on the quantum synthesis domain [52], [53], [54], [55]. 

Important research work on quantum circuit synthesis, using genetic 

algorithms, has been developed at the Portland State University by Marek 

Perkowski10 using their experience from the conventional systems design 

methodologies and tools; they have proposed new methods for quantum circuit 

synthesis (i.e. as presented in reference [11]). 

One of the first books about the genetic approaches to the quantum-

computing domain was published by Lee Spector [7]. A software implementation 

written in Common Lisp was used to solve several quantum computation problems. 

The author considers that many quantum problems may be considered as search 

problems and consequently may be solved with the help of genetic programming.

                                               
8 http://vlsicad.eecs.umich.edu/Quantum 
9 http://www.iqc.ca/~dmaslov/ 
10 http://web.cecs.pdx.edu/~mperkows/ 
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Chapter 3 

3. Analysis of the QCS 

This chapter is dedicated to the analysis of the quantum circuit synthesis problem. 

The requirements are presented in a structured way, starting with a higher 

granularity level and then going into the smallest details; the architecture is detailed 

using UML (Unified Modeling Language) terms [56] [57] - which is the modeling 

language of the object-oriented approach, - thus allowing understanding and a 

global view on the most important packages involved in the problem definition. 

 One of the goals of this dissertation is to provide design guidance for the 

quantum logic circuit synthesis task. The design evaluation involves the examination 

of design rationale behind the constraints and the comparison of the system 

proprieties derived from those constraints, with relevance for the system 

implementation. 

Quantum circuit synthesis has an important role in the development of 

quantum computing technology. This new technology brings advantages in 

comparison with the classical one (analog or digital). In the last decades, the 

automatic classical circuit synthesis has improved the use of new circuits (in terms 

of development time, delay time, integration scale, cost and time to market, etc), 

allowing developers to be more creative than ever. New complex applications are 

possible and the classic physical technology limit is pushed to the edges. Physical 

implementation of quantum circuits is in its incipient phase, and there are only few 

quantum gates available (this by using an expensive and complicated technology: 

photons, ion traps, etc) [58]. It is considered that the future of quantum computing 

technology depends on the existence of reliable physical quantum devices [59], 

therefore, software synthesis tools are desirable. 

Software architecture is an important sub-discipline of software engineering, 

within the realm of large system development. The architecture gives the possibility 

to focus on the essential components and their interactions rather than presenting 

details. A layered architecture allows to individually building each part and, in the 

end, these parts will work together towards problem implementation. The 

architecture will present the important proprieties of the system as performance, 

reliability and extensibility. Software architecture is a complex entity and, in order 

to describe a specific propriety, a view must be used. When using a specific view, 

only the interested aspects of the system are presented, while other aspects are 

intentionally suppressed. This is the reason why within the architecture, different 

views are necessary to highlight system elements and their relationships. In the 

following sections, we introduce our system as an abstract object, several views 

being presented to help in obtaining a better documentation [60]. 
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3.1  QCS Problem Statement 

Automated quantum circuit synthesis is still only at the beginning of its exploration, 

at the same time our dissertation tries to create the premises for developing 

software tools dedicated to this task. 

 

QCS: Description 

When trying shortly to present the problem definition, we may consider the 

following phrase as requirement: perform circuit synthesis having a quantum 

function as target and a set of operators as arguments. After decades of study, 

solving the problem becomes somehow less demanding when dealing with the 

digital or analog circuit synthesis. When the problem is moved into the quantum 

computation context, the situation is different. From the available state-of-the-art, 

there is no common accepted path to follow for finding a solution; the theoretical 

basis is not complete yet and the physical devices are not available on a large scale 

at this moment. There are many questions to be answered, and further research is 

vital in order to clarify these details.  

In an extended manner, the required system must perform quantum circuit 

synthesis by having a formal description for a circuit and a set of quantum gates, 

using genetic algorithms: 

 

 A classical computer shall be used for developing a software tool chain used for 

the quantum circuit synthesis. 

 

 The tool chain shall contain a parser used to interpret the quantum circuit 

details, as specified in a high-level description language. 

 

 The tool chain shall contain a repository where elementary gates are stored. 

 For each quantum gate, the quantum cost shall be specified.  

 

 The repository shall allow definitions for quantum circuits (a quantum circuit is 

composed of one or more elementary quantum gates). 

 For each quantum circuit, the feasibility value shall be specified. 

 

 The tool chain shall contain a genetic algorithm that is responsible in evolving an 

optimal synthesis quantum circuit. 

 

 The genetic algorithm is also responsible with the optimization of the evolved 

circuit. 

 Minimize the quantum circuit cost. 

 Maximize the quantum logic circuit feasibility value. 

 

 The tool chain shall contain a drawing application allowing quantum circuits 

visualization. 
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Approaching QCS: Context and Major Challenge 

The relevance synthesis process has two views. According to the first one, if the 

progress in technology is extremely fast, then it is outstripping the designer’s 

abilities to make use of the created opportunities. The second view is generated by 

the situation where the technology is not available on large scale and the designers 

can only use a small set of gates for the design process. The development and the 

application of new and more suitable design methodologies are important for the 

modern computer system industry. Quantum circuit synthesis has a bigger 

relevance when it is related to the simulation results. Any result taken from the 

simulations may have a physical implementation, with the help of the synthesis 

algorithm. Therefore, starting from a program written in a high programming 

language we obtain the physical device by employing the synthesis tools. 

The automatic quantum circuit synthesis is a difficult problem, due to the 

following issues: 

 

 The total number of possible gate permutations is huge and we cannot be sure if 

the genetic algorithm has evolved the best solution (is considered that the 

optimum solution can be evolved). In order to overcome this problem, a genetic 

algorithm will be used due to its capability to evolve solutions into a large search 

space. 

 

 Optimization of the evolved circuit is hard to tackle. In general, the optimization 

is an iterative process; hence, an optimized solution is used again as input by 

the genetic algorithm. The genetic algorithms are suitable for optimization. 

 

 Even a small change in the quantum topology can have a huge impact on the 

circuit functionality. 

 

 There is no complete quantum circuit benchmark to be used for the quantum 

logic circuit synthesis solution assessment. 

 

 The quantum gate cost and feasibility are not clearly defined yet (depending on 

the gate inputs, or depending on the gate implementation complexity, etc).  

3.2  Characteristics of the Tool Support 

Today’s research activity tries to move all the software development into a single 

application, that can support all the development phases together, while performing 

all this in a user-friendly manner. Tool support in object-oriented design aims at 

providing means for capturing requirement, architecture and implementation 

activities. The tool activities that are necessary for defining and developing a 

software system are listed below: 

 

 Modeling: well-defined visual notation (i.e. UML) is used by programmers in 

order to understand the principle upon the system design process. 
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 Components: the possibility of splitting the development in several components 

that, eventually, will be integrated together for defining the complete software 

system is allowed. 

 

 Specification: allow writing the specification within the same tool as for the 

design, and preserving traceability through them. 

 

 Coding: direct relation between architecture details and code implementation 

will improve quality and productivity. 

 

 Testing: possibility of defining test cases for each requirement 

 

Since Rhapsody is a Model Driven Development (MDD), being widely used 

by a growing user community, and because it provides support for all the necessary 

software activities, we decided to use it for our software project. “Telelogic 

Rhapsody® is an industry-leading UML® 2.1 […] environment for technical, real-

time or embedded systems and software engineering. Rhapsody enables reuse of 

existing software assets, whether source code or model based, provides a flexible 

development environment for both function-oriented and object-oriented graphical 

design techniques to co-exist in one environment and improves productivity and 

quality through validation of the design early in the development lifecycle when 

defects are less costly to fix” [61]. 

 The license for Rhapsody Development Edition was offered free of charge by 

the Telelogic Company through Rhapsody University Program, for a fixed two years 

period. 

3.3  Levels of Design 

Design is needed at different levels; the first level is the system, and it is a common 

mistake to jump off the class level when the architecture is started. Then, the next 

level is the division into packages, where the architect shall identify the major 

subsystems and their interactions. The intercommunication rules are also defined on 

this subsystem abstraction level. System dependencies to important packages shall 

be identified and maybe isolated, thus allowing future extensibility by less couplings. 
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Figure 3.1: The Design Levels in a Program [62] 

A package may contain one or more classes, depending on its purpose. 

Within the package, the class relations shall be well-defined using interfaces, the 

system being decomposed in fine class functionalities that implements behaviors. 

We need to make the difference between class and object; an object represents an 

entity that exists at system run-time while a class is a static code that contains 

attributes and methods. In the last level, which is responsible with designing classes 

into data and routines, it is obvious that several behaviors may be implemented 

with simple routines, while others need data handling and state machines. In this 

last level, it is important to have only private data and access them via interface 

methods (“A good class interface is like the tip of an iceberg, leaving most of the 

class unexposed” [62]). 

3.4  QCS Architecture Overview 

The architecture describes given software systems by using multiple abstracting 

levels. This dissertation examines all the involved levels, from the system 

abstractions to the implementation details. 

At first glance, different parts may be easily identified: a high-level 

description language parser used to map the quantum circuit description to a low-

level representation, an algorithm responsible for the optimization of the abstract 

circuit, and a genetic algorithm responsible for the synthesis task. The synthesis 

BUPT



42 | 3-Analysis of the QCS 

task is performed following the described phases in a cascade manner. Therefore, 

starting from a program written in a high-level description language we obtain a 

physical device by employing synthesis tools. 

The architecture derives straightforwardly from the described methodology. 

The proposed breakdown structure indicates a layered software architecture (see 

Figure 3.2), each layer being responsible for a dedicated task. The ripple 

computation allows for intermediate results that can be used or maximized at the 

next layer. In this way, starting from a circuit description in a high-level language 

after applying all the phases, eventually leads to the corresponding circuit. As 

intermediate result we have the abstract description of the circuit (which is not 

hardware dependent), the internal data representation used for the optimization, 

etc. Explaining in brief terms the deployment diagram, the initialization for QHDL 

parser will start the synthesis process. The QHDL parser uses a generic file parser to 

create the internal data structure that is then used by the genetic algorithm. The 

adjustment for the genetic algorithm parameters control is made by the meta-

heuristic component. In the end, the evolved solution is optimized and maybe a new 

evolution cycle is triggered. The synthesis solution is provided as result to the user 

under then form of a circuit layout. 
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Figure 3.2: Software Behavior Deployment 

The architecture is important in the realm of system development. The 

system architecture presents the involved parts, along with the specific relations 

among them. A first view on architecture shall indicate the divide-and-conquer 

concept about the main functionality, followed by printing how the parts are working 

together. This view allows building the parts individually and merges them later to 

solve the problem. The architecture establishes constraints and sets the 

downstream activities in order to produce artifacts. 
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Figure 3.3: QSynTool Architecture Layout 

The QSynTool11 [63] architecture (see Figure 3.3) is split into five main 

parts, each part corresponding to one major operation required by the quantum 

circuit synthesis. Starting from the problem definition, three main components are 

presented as relevant: parsing (understanding the high-level language), 

optimization (for the abstract representation) and quantum circuit synthesis 

(creating the circuit layout). The Utility contains several additional tools.  

3.4.1  Rationale 

Several rationale decisions were made during system architecture development. For 

example, the existence of a genetic algorithm framework was necessary to allow a 

facile implementation for a genetic algorithm, and to have access to the statistic 

results during evolution. The significance of statistical results is used for the self-

adaption of the genetic algorithm parameters. In addition, statistical values are used 

to prove the algorithm convergence and for later analysis (i.e. for a better tuning 

process). Another rationale decision was to use complex numbers for the quantum 

gates representation. Working with many quantum gates or quantum circuits is not 

straightforward by any means; keeping the entire gate attributes up-to-date and 

having control on which object may be used for synthesis as imposed by the 

existence of a repository.  

3.4.2  Constraints 

Several constraints are applied to the abovely described system. For example, the 

usage of the high-level description language was specified to be QHDL12. Another 

constraint was to use a meta-heuristic algorithm for evolving genetic algorithm 

parameters dynamically during evolution. Working with a repository of gates is our 

main constraint, only available gates being used by the synthesis process. 

                                               
11 QSynTool (Quantum Synthesis Tool) @ Cristian Ruican, 2008 
12 Quantum Hardware Description Language 
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3.4.3  Logical View 

This view supports behavioral requirements, thus the services that the system shall 

provide to the end users, also known as primary system functions or system usages 

(see Figure 3.4). The problem definition is decomposed into a set of key 

abstractions, as objects and class objects that incorporates the principles of 

abstractions, encapsulations and inheritance. At the same time, during system 

decomposition, we identify the common parts across the system (i.e. utility 

module). 

 

Figure 3.4: System Provided Services 
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3.4.4  Process View 

This view is responsible with the system performance, integrity and fault tolerance. 

There, the focus is on the parts interconnectivity. The sequence diagrams are useful 

for illustrating the sequential interactions among architectural components, 

describing scenarios and not complete behavioral specification. Sometimes, during 

the requirement phase, analysts may use sequence diagrams in order to provide a 

more formal level of requirements. The sequence diagrams express the requirement 

transition from use cases into components interaction. 

 

Figure 3.5: QSynTool Process View 
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Two main tasks are described in Figure 3.5. The system initialization is 

responsible only with the parser initialization, where the input file is provided. The 

main call triggers the parser operation that creates the internal data structure, 

triggers the database creation (where the quantum circuits used for synthesis are 

described), triggers the creation of genetic algorithm and its initial solution and 

starts the evolution. In the end, the synthesis result is provided to the main task. 

3.4.5  Development View 

In this view, the focus is on the organization of the software modules in small 

chunks of software, showing how the system is organized in source code, binaries 

and libraries. Nevertheless, the class diagrams, as presented in the development 

view are useful for describing architecture meta-models and are therefore used by 

developers to design and document system’s coded classes. 

 

Figure 3.6: QSynTool Development View 

Application

QSyn

Parse

QHDLParserListQHDL

FileParserFileHandler

ProGAFramework

Population
Selector

«Interface»

Genome

«Interface»

GA

«Interface»

QuantumSynthesis

GASyn
SynthesisCfg

«Singleton» Synthesis

Database

GateCollection

QuantumGateQMath

Encoder

Encoding

Locus Nod

MetaHeuristic

Adaptive

Statistic

T

FitnessData PerformanceData

BUPT



48 | 3-Analysis of the QCS 

The global architecture layout is presented in Figure 3.6. In the Parser 

package, the QHDLParser has a FileParser object that implements a generic parser 

and has a ListQHDL object that stores the internal data structure. The ProGA 

Framework package describes a genetic algorithm framework responsible with the 

genetic algorithm details (i.e. evolution, population, selector, genome, etc.). The 

QuantumSynthesis package is considered as the most important package from the 

architecture, describing the quantum circuit genome, and contains other packages 

responsible with other tasks. For example, the Database package groups the 

quantum gates and their mathematical operations in a quantum gate collection that 

is used for the synthesis task. The Encoding package provides support for common 

data used in the internal data codification, and is then used in the chromosome 

genes. The Metaheuristic package creates the possibility of dynamically adjusting 

the genetic parameter controls using statistical data from the current search state. 

The creator, Application package, allocates all the necessary objects and creates the 

links between them. This package triggers the synthesis process and receives the 

evolved result. More details about each package and about the class diagrams are 

presented in the corresponding subchapter where the behavior is explained. 

3.5  Architecture Properties 

Designing a system implies modeling high-level structures and presenting them in 

terms of views, styles and patterns. Several architectural proprieties are used to 

present different styles in this dissertation. The Rhapsody tool provides supports to 

define the following properties. 

 

Performance 
The quantum logic circuit system performance is firstly defined in the system 

requirements, followed by the implementation. Each phase is important to define 

the system performance, the decision to change or influence different structures 

may make the difference between success and failure. The system performance 

involves additional costs in each component implementation, because performance 

is the most important feature for our system. It is hard to quantify the performance 

quality, and in our system, it is mainly based on the capability to obtain a synthesis 

solution for different types of inputs and by the latency time defined as the period 

between the system initialization and the system response. The latency time is 

divided in several particular time intervals: the initialization time (measured 

between the moment when the initial stimulus is available and the internal data 

creation event), the time necessary to setup the initial genetic algorithm solution, 

the time required for saving the statistical data during the genetic evolution and the 

time required evolving a circuit synthesis solution. Different component interactions 

may introduce additional time values that may alter the system performance (i.e. 

the task commutations time in different operating systems). 
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Scalability 

Scalability is a desirable property of system architecture, to support more 

components within an active configuration. The possibility of having more 

configurations, allows keeping the components interactions within the tool and 

controlling them. For example, the measuring time component may be included or 

not in the active configuration, thus the tool will not generate the corresponding files 

if necessary. Splitting the components into small parts induce simplicity, because 

complexity is widely spread within the architecture. The tool support allows to 

perform fast changes on the generated packages and to modify the interconnectivity 

between them, everything using configuration files. 

 

Modifiability 
It is important to be able to perform a change to the architecture without big impact 

to other components. Even if the system is fully compliant with the requirements, 

the requirements will change over the development cycles or time. The synthesis 

system allows coexistence of different implementations and integration of new ones, 

being able at the same time to extend its functionality. The existence of different 

implementations for the same requirements, allows dynamical customization of the 

active features. Different components also allow configuration of parameter controls, 

adjusting the available functionality to optimal synthesis purpose. Object-oriented 

design, together with design patterns, improves the system modifiability value. 

 
Portability 
The developed architecture can run in different environments. The object-oriented 

language used is standard C++, allowing running the software in Windows or UNIX 

systems. The Windows operating system is used for the development and 

debugging, while the UNIX system is used for the system assessment. 

 
Reliability 

Different parts from development are used, in order to increase the reliability 

degree to different types of failures. We introduced monitoring for several 

components, creating incentives for identifying failures from an incipient phase, and 

avoiding general system failures (i.e. during parsing operation, during quantum gate 

creation, etc.). Reliability is important in maintaining system functionality when it is 

operated under stated conditions for, a given amount of time. 

 

Minimal Complexity 
It is important to avoid making clever designs, but make simple and easy-to-

understand designs instead. This minimal complexity also allows easy maintenance, 

because somehow the design will be self-explained. Splitting into packages, having 

deployment diagrams, sequence and class diagrams divide the system complexity 

into small parts that may be handed individually with less complexity. 
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Loose coupling  
Keeping the relations between components to a minimum value is important for a 

good architecture. Using the principles of good abstractions in public interfaces, data 

encapsulation and inheritance allows for having only few interconnections. 

3.6  Classical vs. Quantum Digital Circuit Synthesis 

In our days, the request for new systems (hardware and software) has dramatically 

increased. The integrated circuit technology (based on semiconductor materials) has 

progressed continuously: starting with Intel C4004 (from 1971), the world first 

single-chip microprocessor, and continuing with our day's microprocessors. The 

technological development was mainly focused on three major types of circuits: 

 

 Very Large Scale Integration [VLSI], that are used on common applications. 

VLSI is the process of creating integrated circuits by combining thousands of 

transistor-based circuits into a single chip. 

 

 Application Specific Integrated Circuits [ASIC] that are used on specific 

applications, being specialized for a dedicated task (i.e. a chip designed 

solely to run a cell phone is an ASIC). 

 

 Field-programmable gate array [FPGAS] that are reconfigurable circuits used 

to implement prototypes. Due to the benefits coming from the theory of 

reconfigurable computing and evolvable hardware, FPGAs are now used to 

implement standalone functioning systems, and not just for prototyping. 

 

The term Ultra Large Scale Integration [ULSI] is used to reflect the growth 

of circuit complexity, and it was proposed for chips of complexity more than 1 

million of transistors. From a technical point of view, there is no qualitative leap 

between VLSI and ULSI, so any ULSI may be considered a VLSI device. Due to this 

increasing request on the market, the CAD techniques have two major advantages: 

the reduction of development time and complexity, while reducing the time-to-

market, which creates profit for developing companies. CAD techniques allow for an 

increased quality due to automatic operations (is well known that human complex 

tasks may introduce errors). 

When discussing about the design of the microelectronic circuits, many 

design styles may be applied, but (usually) just two methodologies are mostly used: 

custom and semi-custom design styles [64]. The custom style is manly used for 

dedicated parts of the circuit (floating point unit or execution unit). The semi-

custom style is based on the concept of restricting the circuit primitives and thus 

reducing the fine-tuning for the circuit parts during the design phase. Semi-custom 

designs are split in other two subclasses as cell-based and array-based. Cell-based 

designs are based on libraries of cells that are designed once and stored (called 

standard cells), or are using the cell-generators for the macro cells (such as 

memory, gates, etc), where larger cells can be derived by combining the smaller 
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ones. Updates to libraries are necessary due to the progress in technology. This task 

is not an easy one, because each cell needs to be updated, and because many 

parameters are present (i.e. integration area, delays over ranges, temperature, 

voltage limits, etc). A major advantage of the cell design is the compatibility 

between the custom style and the semi-custom style (we can add custom parts to 

the semi-custom layouts and vice versa).  

Array-based design considers the circuit as a matrix of unrelated 

components. The role of design is to create the connections between these 

components and to perform their personalization. We may consider a second 

classification in the prediffused and prewired, also called mask programmable and 

field programmable gate arrays (MPGAs and FPGAs). A standard cell design 

approach makes it possible to globally apply advanced optimization algorithms, that 

reduce the manual effort required, and improve the quality of the synthesized logic 

during layout. The use of basic standard cell elements reduces complexity to such 

an extent, that a complete chip design can be handled as flat, by layout and test 

generation tools, hence removing the need for artificial floor plan boundaries [64]. 

The model is one of the first artifacts throughout the microelectronics design 

process. It is used to show the abstract functionality of the circuit, the architecture, 

without presenting the details (having a great focus on the problem space). 

Graphical models such as flow diagrams, schematic diagrams, and layout diagrams 

may describe the functionality from different views, therefore allowing to the 

designer to focus only on a part of the model at any given time. Any model may 

introduce different abstractions layers [64]. In Table 1, a comparison between the 

methods employed by the circuit design in the classical vs. quantum world is 

presented, highlighting the common parts that are followed by logic circuit design. 

Table 5. Classic vs. Quantum Circuit Design 
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Synthesis tasks are presented on each level (architectural or logic). 

Synthesis can be seen as a transformation between two axial views and different 

subsequent tasks are possible: 

 

 Architectural-level synthesis determines the block-level structure of the 

circuit. It is used to define the circuit function, resources, interconnection 

and timing. For the quantum circuit synthesis, a specific parser was 

designed to identify the circuit description blocks and to create the internal 

data structure that will be later used in the synthesis process. 

 

 Logic-level synthesis creates the logic specification and the interconnections 

between the architectural blocks. Often is considered to be as a library 

binding or a technology mapping. Going to the quantum situation, we 

created a quantum circuit database that stores the quantum gates 

characteristics. Each gate is randomly selected by a genetic algorithm and 

used to encode a possible solution for the circuit synthesis problem. 

 

 Geometric-level synthesis is involved in finding the geometrical position of 

components (the circuit layout). The quantum circuit layout is partially 

defined by our approach, by splitting the circuit into sections and planes 

where the gates are placed in a defined order as provided by a topological 

optimization. 

 

Synthesis without optimization will result in non-optimal circuits. The full 

circuit optimization is hard to obtain. Optimization may occur on different circuit 

parts and may have many goals. In classic circuit synthesis, for example, 

optimizations on the circuit integration area and delay latency are commonly 

encountered. Sometimes the optimization is based only on approximations. It is 

possible to optimize the architectural level by improving the dependencies between 

circuits; it is possible to perform optimizations at the logic level, where function 

minimization is a goal; and it is possible to have optimization at the physical level 

(i.e. time reaction, integration space). In the quantum synthesis process, the 

optimization is seen as improving the circuit quality through the minimization of the 

number of gates used, as presented in two recent papers [65] [55]. In our 

approach, this is implemented automatically by the genetic algorithm evolution (the 

scope is to evolve better-and-better individuals in terms such as number of used 

gates, circuit cost and circuit feasibility). 
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Chapter 4 

4. Genetic Algorithm Framework 

A Genetic Algorithm is a programming technique used as a problem-solving strategy 

that employs the principles of Darwinian natural selection. The genetic algorithms 

are using equivalences from the biological evolution in order to solve a specific 

problem. A genetic algorithm will receive as input a set of potential candidates for 

the solution (i.e. population), encoded in a useful way (i.e. genome or 

chromosome), and will then evaluate them by using a fitness function that indicates 

how good the individual is. Mainly, the set of potential solution candidates is 

randomly generated, but in some cases, they may be also chosen from any previous 

partially known solutions. The encoding allows for storing of the candidates and then 

their manipulation in a facile way. Of course, after the evaluation of the fitness, it is 

possible, that the candidates (or the individuals) would not fit to a solution. This is 

the point where the evolution becomes necessary. The process it is made as follows: 

randomly, with some probabilities, the genetic algorithm selects the best individuals 

for mate (there are also other selection schemes: roulette wheel, tournament, 

uniform, etc). The mate is performed as crossover and/or mutation, and the new 

offspring is introduced inside the new population. As the process from Nature, the 

copy or the reproduction process introduces errors, thus purely by chance it is 

possible to obtain several good individuals, which are then copied over the next 

generation. After the reproduction process, it is important to increase the average 

fitness value; this fact will guide the algorithm in the following iterations more 

closely to the solution. In other words, the solution for a given problem is evolved 

through successive iterations. 

A software framework is designed to allow easy development for any type of 

engineering problem. The framework advantage is that all the low-level details are 

already implemented in a software library, and the developer can use its time for 

working only on the specific problem details. A Genetic Algorithm Framework will 

allow easy integration of different genetic algorithm problems. Software methods 

and design patterns are applied in order to create the necessary abstract levels for 

the genetic algorithm [66] [67]. 

The framework allows for different configurations, and thus the comparison 

between the characteristics of the emerged solutions becomes straightforward. This 

design creates incentives for practical solutions, because the inheritance from the 

defined abstract classes makes possible the creation of new genetic schemes. The 

patterns allow the framework to extend actual available implementations for their 

own use. The inheritance also allows - in a small development time – the adding 

new genomes, new selection schemes and new genetic algorithms dedicated to 

specific tasks. The applied design patterns aim at describing, in a clear way, both 

the problem and the core of the solution. The obtained genetic algorithm pattern 

may be applied many times, running in the same accepted way. The framework 
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implements the simulation of Nature's genetic processes with the declared purpose 

of finding a solution for a given problem. 

4.1  Framework Preliminaries 

The framework is described with respect to its architecture, included components, 

implementation, and application. The framework development was started from the 

genetic algorithm requirements, as stated in the flowchart proposed by John Koza 

(see Figure 2.4). The flowchart provides a single, unified approach to the problem of 

finding a computer program that solves a given problem. The algorithm creates 

individuals, which are all grouped within a population, that increase their average 

fitness during genetic evolution by applying the Darwinian principle of natural 

selection, preservation of the best, and survival over generations. Sexual 

reproduction (crossover) is used to create offsprings, mutation is used to bring 

variety into the population, and selection is used to allow stochastic survival of 

individuals [68].  

4.2  Framework Packages Architecture 

The framework we propose in Figure 4.1, named ProGA [Programming Genetic 

Algorithms] [69] creates a decoupling of the genetic algorithm from its data 

structure. It is important to be able to develop new genetic algorithms without being 

forced to perform modifications on the population or on the genome parts. Details 

about each class are presented in the following subchapters, with emphasis being 

put on the abstract classes and on the decoupling objects. Abstract classes are used 

to allow generic development for new algorithms and data structures. 

 

Figure 4.1: ProGA Framework Architecture 
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The Bridge Pattern [66] is used with the declared purpose of decoupling the 

genetic algorithm implementation from its several possible implementations (which, 

in our view, are derived classes from the Genome class). The abstract classes 

declare the interface to the abstraction, and the concrete subclasses implement it in 

different ways. Separate class hierarchies are created (one for the genetic 

algorithms, one for the genomes, and one for the selector), thus allowing object 

decoupling for the generic implementation. All operations from the derived classes 

are implemented in terms of operations from the interface. The Bridge Pattern 

brings several advantages for our framework: both abstractions and 

implementations are extensible by sub-classing, changes on abstraction have no 

influence on the implementation and vice versa, permanent binding between 

abstraction and its implementation is avoided, therefore allowing switching at 

runtime (in this way, it is even possible to change the algorithm during execution). 

Moreover, the decoupling encourages the layering of the architecture, having a 

better-structured system in the end. 

Our framework also allows - if necessary - the Decorator Pattern from the 

same reference [66], for extending the actual architecture. Via decorator, it is 

possible to add responsibility for genetic algorithm class, or for the genome class, 

without affecting the other objects. It is important to have an architecture that 

allows extensibility and - more important - to have an architecture designed for this 

purpose. 

The proposed framework was mainly implemented with the scope of being 

used for quantum circuit synthesis. It provides support for adding a dedicated 

genetic algorithm that will be used for circuit synthesis. It is important to have, as a 

standalone tool, a framework that will provide additional information, which is 

necessary to adapt the genetic algorithm to the best or optimum performance. The 

genetic algorithm optimization is necessary, because we do not know how to design 

a quantum circuit to solve a given problem, and because there is almost no 

indication about the quantum circuit efficiency. For example, the statistical 

information will be used for adapting the genetic algorithm, similar to the feedback 

process, and will allow for finding the most favorable configuration for the synthesis 

genetic algorithm. We consider the framework as a real help in overcoming many 

difficulties that appear in the synthesis process.  

4.2.1  Genetic Algorithm Types 

Any kind of genetic algorithm must describe iteration loops that increase the 

convergence of the individuals towards a solution. Our framework allows the 

creation of new genetic algorithm as derivations from the GA base class (which is an 

abstract class), and implementing the only method responsible for the iteration 

loops of the algorithm (see Figure 4.2). The base class has knowledge about the 

termination criterion and about the probability used for the natural selection. The 

GA class is also responsible for creating the population that will be used during the 

evolution (the client is the one that knows the number of the individuals and the 

type of the genome used). The GA class was designed as an abstract class, thus the 
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decoupling from data structure is possible at this level. In addition, the user is 

forced to implement - in the new derived classes - the abstract method for evolving; 

framework robustness is achieved in this way. 

 

Figure 4.2: Genetic Algorithm Class Diagram 

The genetic algorithm class implements the genetic operations necessary for 

evolution (initialization, mutation, crossover, evaluation, solution verification, etc), 

by calling the corresponding methods from the aggregated population object. Thus, 

the decoupling is performed in such a way that the genetic algorithm does not know 

how to do those operations; it has only knowledge about their existence. The client 

knows what kind of genetic algorithm intends to run. The client also has the 

knowledge about the genome used for the evolution, and about the selector type. A 

random number generator required in order to provide true random numbers, 

because standard libraries only return pseudo-random numbers. Then, the last 

operation is to bind the relations between the objects and let the evolution perform 

the indicated job. 
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4.2.2  Genome Implementation 

The Genome class is an abstract class that implements the data structure of the 

algorithm. Different implementations are possible at this level, the derived genome 

classes being forced to implement methods as initialization, mutation, crossover and 

evaluation, for each individual (see Figure 4.3).  

 

Figure 4.3: Genome Class Diagram 

The main attributes are defined in the base class: fitness value, number of 

mutations, crossovers, evaluations. The crossover operator has a specific 

particularity, because the genome itself does not know about its pair, but knows 

how to perform the crossover. The knowledge about the crossover is located on the 

population object, because the individuals involved in the sexual reproduction are 
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selected there. Due to its design, any derived genome class must implement the 

genetic operations related to the data structure handling the genome. 

4.2.3  Population Implementation 

The genetic population contains all the individuals that are managed by the genetic 

algorithm. The population design is a container for the genomes, and its design has 

generic methods for accessing the genomes. During the algorithm evolution, the 

population class is responsible for stochastically the individuals that will suffer 

mutations and/or crossovers and for tracking the evolution for each individual 

(number of mutations, number of crossovers, etc). The population must have 

knowledge of the basic operations for its individuals: initialization, mutation, 

crossover, evaluation, etc). Each generation will store statistic information related to 

the best/worst/mean fitness, as well as to the total number of mutations, crossovers 

and evaluations. 

 

Figure 4.4: Population Class Diagram 

Concerning the architecture, the Population class (see Figure 4.4) is not 

abstract, all the necessary methods being implemented at this level. If a user 

considers that other alternatives are more viable, the Population class can be 

decorated with new functionality, following design patterns methods (i.e. the 

Decorator Pattern). The population object is created from the genetic algorithm 

object (it knows how many individuals are within each generation) and has 

knowledge about the selector and about the type of the genome; a genome that will 

be used later for population cloning. 
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4.2.4  GA Operators 

The role of the genetic operators in the evolution process is to bring diversity into 

population. The diversity may conduct the algorithm to a solution. A very simple 

genetic algorithm shall have at least three operators: selection, crossover, and 

mutation. The genetic operators are used to simulate the Darwinian evolution 

processes on chromosomes. 

 

Mutation 

The mutation operator introduces an error within the evolution process, and 

randomly flip-flops some of the locus from the chromosome. The mutation operator 

also creates variety into population, preventing the population of converging to a 

local minimum, by introducing new individuals. Different mutation schemes are 

therefore available: flip-bit, boundary, non-uniform, uniform, Gaussian, etc. The 

mutation operator is implemented within the derived class according to the problem 

specification. 

 

Crossover 

The crossover operator mimics biological recombination between two chromosomes. 

The crossover operator is applied on two individuals (which are randomly selected); 

a random locus is used to interchange the substrings between the individuals 

previously selected, and to create one or two offsprings. There are many crossover 

schemes, the common point being the recombination based on locus interchange 

(before and after the locus). Different recombinations are possible: one point, two 

points, uniform, etc. The crossover operator is implemented within the derived class 

according to the problem specification. 

 

Elitism 

The elitism operator is used to keep the elite of the genomes (composed by 

genomes that have a higher rank) into the next generation. In this way, from one 

generation to other, the best-evolved results are reused in order to create new 

individuals. It is considered, somehow, that good parents may have also good 

children. The genetic algorithm convergence will be higher when the elitism operator 

is used. 

 

Selector 

During the evolution, the selection operator selects chromosomes from population 

for the purpose of reproduction. There are different selection schemes (i.e. rank, 

tournament, roulette wheel, uniform, etc) which stochastically select single or 

multiple individuals based on their fitness or other features. 

It is impossible to have a genetic algorithm without having a selector 

method. During evolution, single or multiple individuals are stochastically selected 

from the current population (based on their fitness or other properties), and 

modified (recombined and – possibly - randomly mutated) to form a new 

population. From literature, the most well known selection methods are:  
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 Rank Selection that will pick the best-ranked individual. 

 

 Roulette Wheel Selection, where each individual has a chance of 

being picked from a roulette wheel, proportionally with its fitness 

value. 

 

 Tournament Selection, where two individuals are randomly chosen 

and the best is selected. 

 

 Uniform Selection, where an individual is randomly picked from the 

population. 

 

Depending on the selection type, the random number generator is used to 

ensure the hazard on the selection. In our proposed framework, a simple 

architecture is implemented, with an abstract class called Selector that knows how 

to select an individual from the population, while respecting the selecting rules from 

its derived class (see Figure 4.5). In this way, each derived class is forced to 

implement the specific select method.  

 

Figure 4.5: Selector Class Diagram 
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From the architecture, it is obvious that a population knows about the 

selector method used for the selection, and the selector knows about the genetic 

population. This population forms the pool of the individuals that are chosen for 

selection. The selector object is created by the user, because only he/she knows 

what specific algorithm is to be used for the selection, during the genetic evolution. 

The selector object is passed to the genetic algorithm in order to create the 

aggregation between the population and the selector (because the population is 

allocated dynamically by the genetic algorithm object). 

4.2.1  Framework Utilities 

When discussing about genetic algorithms, the hazard is essential. This is the main 

reason for which the standard libraries implementations for the random number 

generator should be avoided (the numbers are generated in a pseudo-random 

manner, thus a mathematical formula is used for prediction). The pseudo-random is 

acceptable for many applications, but for the hazard implementations-as roulette 

wheel or other specific probabilistic operations-, using dedicated algorithms for 

random numbers yields better results.  

In our framework, an abstract class for a random number generator is used, 

allowing users to have their own random number generator. When defining the 

derived class, they are forced to implement a method for initialization of the 

generator (it is possible to specify a given seed, or as default, a variation of the 

system time is used), and to implement methods for returning random numbers as 

integers, floats or bits. We provided two implementations (see Figure 4.6) for the 

random number generator, the first one is inspired from [70], and the second one is 

an implementation based on the C++ library stdlib. 
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Figure 4.6: Random Number Generator Architecture 

Measuring execution time plays an important role when different 

implementations - for the same problem - have to be benchmarked. The execution 

time is one of the genetic algorithm outcomes that needs to be compared in order to 

assure a global view about the genetic algorithm characteristics (execution time is 

important for the algorithm convergence towards a solution). We found out that 

measuring execution time is not a straightforward job, each implementation having 

different resolutions, and therefore different values for the same measurement. 

Moreover, the operating system introduces delays due to task priorities and the 

switching times between them.  
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Figure 4.7: Architecture for Execution Time Measurement 

We propose a framework that allows time measurement (see Figure 4.7) on 

different implementations (i.e., using QueryPerformanceTimer and ThreadPriority). 

The user may choose which implementation is more feasible for his/hers needs, 

even during the runtime of the algorithm. 

4.2.2  Framework Statistics 

It is important to be able to compare the genetic algorithm results between different 

executions (repeating the algorithm) or with different starting parameters (different 

number of individuals, different probabilities, etc). In our framework, a statistic 

class was implemented, for providing the user with different statistic information 

about a specific generation or about the entire population. Statistical information 

about the maximum, minimum, average, and standard deviation is also provided. 

 The statistic class is implemented as a template list (using a STL vector), to 

store all the necessary information related to each generation. We choose to use the 

template because the statistic methods must be available on any kind of data type 

(i.e. operation as best, mean, minimum, standard deviation). The user will create 
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template. In our architecture, the population class will have as associated a statistic 

object (composition) of type FitnessData (storing values related with the best, mean 

and minimum fitness value). After the evaluation of the genetic algorithm, the 

statistic information is added into the history list (see Figure 4.8). When the statistic 

information is requested by the user (it shall be based on request in order not to 

overload the system), the framework will compute and will provide the results.  

 

Figure 4.8: Statistic Class Diagram 
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For example, the standard deviation is used to measure the spread of the 

values through generations. The standard deviation is denoted by σ , and it is 

defined as the square root of the variance. 
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where: 

 N is the number of samples 

 x  denotes the samples average 

For speeding up the software algorithm, a formula equivalent is used, 

formula that may be obtained after applying standard algebra: 
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4.3  Framework Validation 

Two well-known genetic problems have been implemented, for proving the 

framework validation: the knapsack and methinks (more details in second PhD. 

Report [71]). 

The knapsack problem [72] is known in the literature as a combinational 

optimization problem, and (at least throughout the last two decades) many studies 

have been proposed [73] [74]. It is considered one of the easy-stated NP-hard 

problems, and may be solved using different methods (i.e. by using dynamic 

programming the problem is solved in pseudo-polynomial time, using greedy 

programming a solution is reached in N/2, where N is the number of objects, etc). 

The potential of the genetic algorithms to yield good solutions was proven, and 

many papers have been published [75] [76].  

The knapsack problem was implemented using the framework [77], by 

adding two new classes. We derived from the GA class in order to define our own 

genetic algorithm. All these were necessary because there are several particularities 

that may be configurable via the interface methods provided by the base GA class 

(i.e. genetic algorithm type, elitism, crossover, mutation, etc). After that, we 
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derived from the Genome class for creating the chromosome necessary for the 

encoding of the candidate problem solutions (see Figure 4.9).  

 

Figure 4.9: Knapsack Class Diagram 

The chromosome was encoded as a bit string with the length equal to the 

number of items from the collection. A gene equal to 1 indicates to the algorithm 

the fact that the corresponding item is added into the knapsack and, in the same 

way, a gene equal to 0 indicates that the items are not used for the candidate 

solution. An item will store information about the object benefit and volume. The 

fitness function computes the benefit and the volume for the involved genome, and 
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then it returns the division from the genome benefit and the benefit of all the items. 

If the genome volume is higher than the knapsack volume, the fitness operator will 

add a penalty value and the genome is disqualified. We implemented the penalty 

fitness, because the fitness shall represent the proportionality of the profit in 

comparison with an infeasible genome: 

)CXV(*)V/Bmax(XBfitness
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The mutation operator will randomly flip-flop a bit from the bit string, 

including or excluding an item from the knapsack. The crossover operator is 

implemented as a two-point crossover; two chromosomes are stochastically selected 

and then interchanged from the cut points. The genetic algorithm will start with an 

initial population where the chromosomes are randomly generated. This means that 

each chromosome may be considered as a potential solution, even from the 

beginning. After initialization, the population is evaluated using the fitness function, 

each chromosome receiving a value according to its efficiency. The next step is to 

analyze if the best chromosome represent the solution (this is made by a 

comparison with the solution generated by another approach). When the equality 

results, the algorithm is considered finished and the evolution is stopped. Otherwise, 

the genetic operators are applied, in order to perform the algorithm evolution, and a 

new iteration is started. We used a non-overlapping algorithm for our solution, at 

the same time allowing the elitism. 

When dealing with the evolutionary biology and with the infinite monkey 

theorem, Richard Dawkins [78] has pointed out that the task of the monkey writing 

the complete work of Shakespeare may be reduced to a phrase “Methinks it is like a 

weasel”. Moreover, the typewriter shall have a reduced keyboard only with 26 

capital letters and a space. He was wondering how much time would be necessary 

for the monkey to typewrite the phrase. The biological implication after the weasel 

program was important because Dawkins proved that if a small change in the 

genome is preserved over generations, and if there is a mechanism for selection, in 

the end meaningful offsprings will be obtained in short time. We start with the high-

level implementation, the genetic class where it is specified what kind of genetic 

algorithm type is to be used (non-overlapping or steady state). In addition, in the 

same class, other specific proprieties shall be set (elitism percent, mutation 

probability, crossover probability, maximum number of generations, etc). This class 

is derived from an abstract GA class, and it implements all the necessary abstract 

methods used for the genetic evolution (see Figure 4.10). 
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Figure 4.10: Methinks Class Diagram 

The second step is to encode a candidate solution, and for this task a string 

chromosome equal to the length of solution “METHINKS IT IS LIKE A WEASEL!” is 

used (thus, 28). The set of allowed characters is restricted to 26 characters and a 

space: "ABCDEFGHIJKLMNOPQ RSTUVWXYZ" like in the problem specification. There 

are no special implementations for the mutation or crossover operators, the 

framework allowing the use of existing implementations with a small change 

(downcast to our new class). In the end, we need to define our fitness method, in 

order to decide how far from the solution a given individual is. The fitness formula is 

defined as the sum of the equal corresponding characters from the target and from 

the genome. 
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Chapter 5  

5. Genetic Quantum Circuits Synthesis 

“Current techniques for specifying quantum computations are an ad hoc mix of 

mathematical notation and prose narrative. These methods, however adequate 

for research reports, will not support the industrial-sized quantum algorithms 

hoped for in the near future. They are often imprecise; they cannot be directly 

simulated or compiled or submitted to automated analysis tools; and they will 

not scale up.” [79] 

 

John Hayes and Igor Markov, as pointed out in reference [10], consider that 

Quantum Design Automation “is a necessary enabling factor in achieving scalable 

classical and quantum circuits”. The results from [10] represent the progress, at the 

middle of year 2006, in the quantum circuit synthesis, testing and simulation field, 

as the authors attempt to advocate the CAD (Computer Aided Design) techniques 

for quantum research. At the same time, reference [80] introduces the Genetic 

Programming as “a set of evolutionary computation techniques for getting 

computers to solve automatically problems without having to tell them explicitly 

how to do it”. This reference represents a tutorial for the genetic algorithms, 

presenting different approach styles and many applications. Taking into 

consideration the previous affirmations, we consider that the quantum logic circuit 

synthesis problem may be efficiently solved with genetic programming methods.  

The quantum circuit synthesis has been intensely investigated in the last 

years, and researchers like Dmitri Maslov, Gerhard Dueck and Michael Miller have 

allocated years of effort for finding efficient synthesis methods 

[81][82][83][84][85][86][87][88][89][90][91]. In the quantum logic circuit 

simulation domain, it is considered that the research has already reached an 

unanimous level where the quantum circuits may be more efficiently simulated on 

classical computers [92][65][93][94][95][96][97]. Other appropriate references 

about quantum synthesis and/or simulation are available: 

[98][99][100][101][102][103][104][105][106][107][108]. 

A new methodology is presented in our paper [109], together with the 

corresponding software analysis that creates incentives for reversible quantum 

circuit synthesis. The focus in the presented methodology is on the layered phases, 

necessary for synthesis and optimization. We envision the described synthesis task 

as: perform the synthesis having a circuit description in a high-level description 

language, a set of unitary operators applied over the qubits and the collection 

hardware circuits (contained within a database) that will be used for synthesis. 

 A quantum circuit is composed of one or more quantum gates on which a 

set of unitary transformations are applied, according to a quantum algorithm. 

Designing a quantum circuit to implement a given function is not a straightforward 

task, because even if we know the target unitary transformation we do not know 
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how to compose it from primary transformations. Even if the circuit is somehow 

composed, we do not have information about its efficiency. This is the main reason 

why we are proposing a genetic algorithm approach for the synthesis task. The 

genetic algorithms will evolve a possible solution that will be evaluated against other 

previous solutions obtained, and in the end, the close-to-the-optimum solution will 

be indicated. In the circuit synthesis process, optimization plays an important role. 

We are proposing different methods for circuit optimization in reference [110], like 

topological, behavioral and pattern optimization.  

Before applying a Genetic Algorithm for the Quantum Logic Circuit Synthesis 

problem, several decisions are to be made, in order to define all the necessary steps 

for quantum circuit synthesis. For example, is necessary to define the high-level 

description language that will be used to represent the quantum circuits in our 

system. The quantum circuit database is also necessary to define all the hardware 

circuits available for the synthesis. The quantum circuits have to be described 

together with their physical and logical characteristics. Finally yet importantly, the 

genetic algorithm parameters (number of generations, different probabilities, exit 

conditions, encoding, fitness evaluation, etc) and the performed self-adaption 

method are important for a successful quantum circuit synthesis. 

In this chapter, the main software modules are presented. The Parser 

module presents the internal data structure used to translate the high description 

language into a more convenient representation. The Quantum Circuits Database 

facilitates quantum circuit description and adding of new quantum circuits by 

inheritance from a base class that abstracts a quantum circuit. Details about how 

the quantum synthesis algorithm is integrated into the ProGA Framework are 

exposed and explained in this chapter. Finally, yet importantly, details about the 

meta-heuristic algorithm used for parameter control adaption are also presented in 

the conclusion of this chapter. 

5.1  Parser Module 

The parser module implements all the necessary methods in order to read stream 

characters from an input file, and then creates the internal data structure that later 

will be used by other algorithm modules.  

 

QHDL Presentation 

Quantum Hardware Description Language [QHDL] was designed in order to extend 

the actual conventional VHDL (Very High Speed Integrated Circuit Hardware 

Description Language), thus allowing quantum design and classical design on 

different abstraction layers. The ATC-NY company is actually developing QHDL and 

its tool support, like parsing and type checking. “QHDL will provide both a shared 

language of interchange for the research community in quantum computing and a 

language for programming realistic applications” [79] [111]. The QHDL is intended 

as a tool that is able to specify an elegant and concise notation for the quantum 

algorithm. The project aim was to eliminate the imprecise and particular 

descriptions used by the many paper authors. The description language allows for 
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writing specification that is machine-readable, compiled and analyzed by using 

computer computation rules. QHDL also allows for describing complex quantum 

algorithms and, what is more important, provides a common language for all the 

involved researchers, by avoiding all the communication problems that were 

previously encountered (i.e. the notation mixing between narrative description and 

mathematical equation). It is considered that “a standard machine-readable 

notation for the full range of quantum algorithms is an essential element for building 

a wide range of automated tools and for allowing them to interoperate smoothly” 

[79]. Thus, the usage of a quantum language imposes correct syntax and type 

check when quantum algorithms are described. This language is also quoted in the 

QuIDDPro user guide [95], which is considered as actual state-of-the-art in 

quantum circuit simulators. 

 

Generic Parser and QHDL Parser 

Taking under consideration all the abovely presented reasons, we decided to use the 

QHDL as our high-level quantum description language, mainly because the QHDL 

creates the common substrate for future quantum computing tools. The only 

available implementation related to QHDL was proposed by the National Institute of 

Standards and Technology [NIST] when QCSim [112] (Quantum Computation 

Simulator) was developed. The QCSim parser implements only a subset of QHDL, 

the one that is necessary to specify the quantum gates and the initial system state. 

We considered that this subset is relevant and it suffices for the quantum synthesis 

task that falls under the scope of our thesis. The proposed parser implementation 

was partially reused (thanks to the related source code and to the benefic email 

correspondence with Paul E. Black) for reading the qubit variables and the quantum 

gates used to describe the quantum algorithm from a text input file. We extended 

the number of recognized gates, but also removed some of them, in order to allow 

the description of quantum algorithms using the elementary gates presented in 

Table 1 and Table 2. 

 When discussing about the generic parser, we should think about a software 

tool that takes a large amount of data, mainly text data, and breaks it up into small 

pieces of data. In our case, the parser will read characters from the input file 

following several imposed grammar language rules. The lexical analyzer reads by 

file scanning characters and passes them to the syntax analyzer that recomposes 

the known language symbols. Last but not least, the semantic analyzer performs the 

type checking, thus trying to identify the possible errors (see Figure 5.1). 
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Figure 5.1: QHDL Parser Details 

The generic parser is responsible with symbol detection, that may be a 

name (string of characters), a number (real or complex) or punctuation (i.e. “|”, 

“#”, “;”, “,”). The symbols are passed to the QHDL parser that will create the 

internal data structure, like in a two-pass compiler (see Figure 5.2). The drawback is 

represented by the memory consumption and by the time processor necessary for 

creating the internal data structure. On the other hand, the advantages are more 

important and dominant for our proposed synthesis task: better portability by 

cutting the relation between front end and back end, easy optimization to be 

performed on internal data, and if later will be necessary easy adaption of a new 

abstract layer between existing layers. 

 

Figure 5.2: Description of the QCS Parser 
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The circuit is described in a text file, with the QHDL formalism. The QHDL 

provides a common understanding for all engineers because it is acting as a shared 

language for exchanging the research results. The semantic is easy, and - with its 

help - any kind of specific quantum algorithm can be specified. 

 

The blocks of the input file, defining the file format, are: 

 

 Variable block - specifies the variables (qubits) of the quantum algorithm.  

We expect to read, from the input file, the keyword “variable” followed by a 

space, then the identifier for the variable name followed by “:”, and then the 

“qubit” keyword plus “;”. Some validity checks are also performed in this 

phase (i.e. variable duplicate). 

 

 Gate(s) block - is the place where the quantum algorithm is written, using 

the language semantic. We expect to read the identifier for the gate name, 

followed by the operator, which in our case is “(” and then the identifiers for 

the affected qubits, followed by the operators “)” and “;”. For a quantum 

gate, it is important to know its name and the corresponding parameters. A 

validity gate check is performed (the known name and the expected number 

of parameters are equal with the read parameters). A second check for the 

parameters is performed in order to be sure that the parameters belong to 

the variable block part. 

 

 Comment block(s) can appear anywhere in the file. Any character following 

the “#” character is considered a comment, and it is not important from the 

parse point of view. A comment line is ended with the line end. 

 

When discussing architecture (see Figure 5.3), the QHDLParser is the main 

object from the parser module, its relation with the FileParser (our generic parser 

implementation) and with the ListQHDL being a strong one due to composition. 

Thus, the generic parser provides for the QHDLParser (via s_GetSymbolRead 

method) the symbols necessary to construct the internal data structure thru 

_AppendQubit and _AppendFunction methods. This class diagram map the system 

functional requirements to the objects involved in different processing steps (i.e. file 

opening by FileHandler). 
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Figure 5.3: QHDL Parser Object Model Overview 

 The sequence diagram from Figure 5.4 illustrates the sequence of events in 

the parsing use case, by showing the objects interaction. The QHDL parser client is 

attached to an input file executing the _AttachToInputFile method and will scan the 

stream characters in order to find new symbols by calling the _ReadNextSymbol 

method. The _ExpectPunctuation and _ShowError are used by the client from its 

state machine to perform type checking. The main output from the FileParser is the 

detected symbol that will be provided via s_GetSymbolRead. 
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Figure 5.4: Generic Parser Sequence Diagram 

The adopted granularity level (as high-level) presents only the public 

operations that are carried out, and which are the messages sent during the time 

required to implement a generic parser module. 

 

:FileHandler

b_IsEOF()

:FileParser

b_IsEOF()

b_ReadCh(ReadCharacter)

b_ReadCh(ReadCharacter)

_ReadNextSymbol()

_IgnoreCommentsAndSpaces()

_ScanSymbol()

b_Open(FilePath)

b_ReadCh(ReadCharacter)

b_ReadCh(ReadCharacter)

_ReadNextSymbol()

_IgnoreCommentsAndSpaces()

_ScanSymbol()

b_Open(FilePath)

FileParser Client

_ExpectPunctuation(Punctuation)

_ReadNextSymbol()

s_GetSymbolRead()

_ShowError(Message, LineNumber, ColNumber)

_AttachToInputFile(ps_FilePath)

_ExpectPunctuation(Punctuation)

_ReadNextSymbol()

s_GetSymbolRead()

_ShowError(Message, LineNumber, ColNumber)

_AttachToInputFile(ps_FilePath)
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Internal Data Structure 

The representation used for keeping the internal data structure was chosen to be a 

list-in-a-list. The reason behind this choice is our new view on the quantum circuit: 

the splitting in sections and plains [113]. This splitting allows access to sections 

elements, which is later used for optimization, and creates the prerequisites for the 

circuit encoding, which is then used by the genetic algorithm. 

 

Figure 5.5: Quantum Circuit View as List-in-a-List Structure 

The used high-level granularity from Figure 5.6, tries to emphasize only the object 

relations, our focus being here on how the Iterator pattern is used to implement this 

particular type of list. The List class is derived from the AbstractList interface, thus 

will implement the methods for working with list elements, while p_Iterator_ pointer 

is used to iterate the list. Additional data members are used to memorize the 

iterator position and to allow vertical and horizontal iterations. 
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Figure 5.6: Internal Data Structure Object Model Overview 

The sequence diagram from Figure 5.7 presents the method calls, in a time 

sequence, which is necessary for parsing a QHDL input file. First, during the system 

initialization, the QHDLParser is attached to the specified input file. The next main 

call will read the declaration part from the file, where the qubits variables are 

defined, and will create the horizontal lines from the internal data structure by the 

_AppendQubit method. The rest of the calls, until the end of the input file, are used 

to detect the involved gates and to fill the internal data structure with the 

corresponding gate nodes, by using the _AppendFunction method. 
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Figure 5.7: QHDL Parser Object Model Overview 
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The created ListQHDL object is used as a comparison object, with the 

evolved output emerged by the genetic algorithm. On one side, we have the 

described quantum circuit represented by the internal structure and, on the other 

side, there is the best evolved chromosome. In case of equality, the evolved 

solution may be considered as a solution (not necessarily the optimum one).  

Each object from the ListQHDL has the type of Nod, wherein Nod objects 

declare the pointers necessary to create the horizontal and vertical relations. Others 

data are used from the composite object Locus, such as gate name, gate identifier, 

number of gates, etc (see Figure 5.8). Public methods are also present in the class 

diagram in order to provide get access on members. 

 

Figure 5.8: Nod Object Model Overview 

We needed to distinguish between Nod and Locus because not all the class 

members from Nod are necessary in order to define the chromosome positions (also 

known as locus). The reason behind this decision is simple; we need to have a small 

object, in terms of memory consumption, in order to decrease the computation time 

of the genetic algorithm evolution. At the chromosome level, it is not important to 

store the gate name, because it suffices to know its identifier. The replacing of id’s 

with a name, for showing a readable solution, is still possible since its name may be 

obtained from the QHDLParser class (it is defined static there). 

 

Optimization 

It is important to optimize the internal data, therefore enhancing the circuit quality 

before proceeding with the synthesis task. It is considered that synthesis without 

optimization will generate uncompetitive circuits. It is also important to maximize 
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the circuit quality, a situation that will generate superior performance for the 

synthesized circuit. Optimization implies analyzing the circuit from a structural view 

and from a behavioral view. Another factor in assuring the quality of a circuit is the 

computation time (each gate introduces a specified delay). Our analysis will consider 

all the factors that may influence the quality of a quantum circuit design. 

Optimization will preserve the circuit output function, while decreasing the total 

number of used gates. Optimization is an iterative process that shall be applied 

several times; one optimization being able to create incentives for a second one. 

The full circuit optimization is hard to obtain. Optimization may occur on 

different circuit parts and may have many distinct goals. In classic synthesis, 

optimizations on the circuit integration area and delay latency are common, and 

sometimes the optimization is based only on approximations. The structural view 

allows for interpreting the circuit as a sequence of gates, which are placed on 

quantum wires (see Figure 5.5). At this stage, it is important to have a clear 

structure that will be used in computing the quantum state on each section.  

 

An enumeration of the rules that need to be followed for implementing the 

topological optimization [110] is presented below: 

 

 Rule 1, order of placement: the gates are placed in the order described within 

the input file. 

 

 Rule 2, identity gate(s) addition: if there are empty sections in front of the 

placement section, they will be filled with identity gates. In this way, we assure 

a complete internal data representation, which is later necessary for computing 

the output function. 

 

 Rule 3, qubit depth: if the gate affects more than one qubit, it shall be placed on 

the section defined by the highest depth on the composed qubits. 

 

 Rule 4, gate intersection: if there are other gates intersecting with the gate that 

needs to be placed in the section defined by the previous rule, then a new depth 

(which takes into consideration also the intersected qubits) is calculated. The 

gate will be placed on the section defined by this new depth. 
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Figure 5.9: Topological Optimization 

The structural view is created when the circuit description is read from the 

input file, each gate being placed on the corresponding qubits when the file is 

parsed. The placement algorithm is responsible with the topological optimization, by 

defining the gate placement methodology (see Figure 5.9).  

 

Iterator Pattern 

An abstract list class is defined, in order to provide a common interface to access 

and manipulate a particular list structure. In the same way, the abstract iterator 

provides a common iteration interface. The pattern was necessary because we need 

to have more list structures in our architecture, and for each of them different 

iterations is necessary. The list object is responsible for creating the corresponding 

iterator; the client will request an iterator object via the CreateIterator method 

(almost an example from the Factory Pattern [66]). 

Using this pattern, we defined several concrete lists, which can memorize 

the intermediate results of the synthesis algorithm. For example, a first list will keep 

information about the circuit as, it is described in the input file, and a next list will 

follow the optimized circuit pursuant to the optimization phase. 

The abstract class Iterator provides an interface for any kind of list iteration. 

The methods are abstract and need to be redefined in the concrete ListIterator. The 

abstract class allows for an easy implementation for any kind of iterations that have 

to be performed on the concrete list. Template usage allows different object types to 

be iterated. Without an iteration class, all the details related to list traverse need to 
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be stored in the implemented class list (a negative effect: the class will become 

bushy). 

 

Figure 5.10: Iterator Pattern Object Model Overview 

Figure 5.10 shows how the iterator pattern is implemented into the 

architecture. The interface allows for insertion and removal of elements for any kind 

of lists. Additional methods are presented for finding or for checking the depth of an 

added element. 

5.2  Quantum Circuits Database 

For the purpose of synthesis, it is important to create and update a database with 

quantum circuit specifications. The synthesis will be performed only by using circuits 

from that database (see Figure 5.11). The quantum circuits are described from 

behavioral and physical points of view. The behavior is important in order to verify if 

the circuit satisfies the logic-nature expectations, while it implements the required 

function; the physical characteristics are also important for defining the circuit 
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layout (i.e. creating a circuit layout was not under our focus throughout this thesis, 

but the database may be easily extended to allow this propriety). 

 

Figure 5.11: Database for Quantum Circuits 

The Database was designed to allow extensibility. Thus, the module 

database contains three essential classes (see Figure 5.12). The QuantumGate class 

is used to describe a quantum circuit and its proprieties, while the QMath class 

implements the necessary corresponding operations. The GateCollection class is just 

a container for these gates, which are used for the purpose of synthesis. 

 

Figure 5.12: Database Component Diagram 

Database

GateCollection

QMath QuantumGate
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The database contains elementary gate circuits and arrays of circuits 

(composed by elementary gate circuits). The elementary gates are used to 

synthesize the circuit function, in order to find an optimal circuit composed only of 

elementary gates. The complex circuits are important in the optimization phase, the 

previously obtained circuit being changed so that it will also contain complex 

circuits; this optimization is required to reduce the circuit cost, by using a small 

number of capsules. 

 

Quantum Gates 

A quantum gate is described by using the matrix representation. In order to do that, 

we used the STL13 vector template. We defined the quantum gate as a double 

dimension vector of complex elements. This kind of structure allows facile access to 

the gate elements and a low consumption of execution time. The class members 

define the quantum gate proprieties such as number of input qubits, the gate cost 

and feasibility (see appendix 8.5 Quantum Gates Cost), the gate name, and if the 

gate is elementary or complex. The constructor allows the creation and, at the same 

time, the initialization of gate elements with the corresponding values. In fact, the 

constructor will create the object and the private methods, which are called within 

the constructor (i.e. _MakeHadamard will fill the matrix values according to the 

Hadamard logic function) will initialize its elements. 

 

Figure 5.13: Quantum Gate Class Diagram 

                                               
13 Standard Template Library 

QuantumGate

sz_GateName_:char

n_QubitsStates_:int=0

n_GATE_NAME_LENGTH:int=15

d_GateCost_:double=1

d_GateFeasibility_:double=100

b_IsElementary_:bool=true

myGate:vector < vector< complex<double> > > %s

QuantumGate()

QuantumGate(States:int,GateName:char*)

QuantumGate(States:int,GateName:char*,e_PhysicalType:E_PHYSICAL_GATE)

_DisplayGate():void

n_GetNoOfStates():int

c_GetMatrixValue(row:int,column:int):complex<double>

_SetMatrixValue(row:int,column:int,NewValue:complex<double>):void

_Clear():void
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Discussing extensibility, just by adding a derived class from the 

QuantumGate and, inside it, a new private method it is enough to define a new 

quantum gate into the system. 

 

Gate’s Math 

This class is responsible with quantum gate math’s implementation. Methods 

necessary for multiplying, compute the tensor product or just for the equality 

degree of two quantum gates are implemented in this class.  

 

Gate Collection 

The gate collection class was designed as a container of quantum gates. The gates 

are declared as derived QuantumGate objects and defined within the collection, as 

composite objects into a STL vector object. The class was implemented by using the 

Meyers Singleton pattern, thus only one of its instances is allowed in the system. 

The access to the gates is allowed through get methods. The main characteristic of 

this class is that the gate particularities are not important at this level, as opposed 

to their presence. In Figure 5.14 the specification and structured views presents the 

GateCollection class. 

 

Figure 5.14: Collection Class for Quantum Gates 

It is easy to extend the collection with a new gate object, by creating a new 

gate in the GateCollection class as a composite object (i.e. myGate5) and adding 

the object in the GateCollection constructor into the vector. 

GateCollection

myGate1:QuantumGate1 myGate2:QuantumGate1 myGate3:QuantumGate1 myGate4:QuantumGate1

GateCollection

myDatabase:vector <QuantumGate> %s

GateCollection()

GateCollection(obj:GateCollection)

rc_GetInstance():GateCollection&

_CreateDatabase():void
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Figure 5.15: Creating Collection Sequence Diagram 

The abovely presented Figure 5.15 presents the necessary operations during the 

time line for the gate collection creation. For the first time, the static GateCollection 

object is created and then - via corresponding creators calls (constructors) - the 

quantum gates are created and added into the STL vector object. 

5.3  Preparation Steps for Genetic Algorithm 

A dedicated genetic algorithm is used to emerge a circuit synthesis solution. The 

obtained solution is not guaranteed as being the best, thus giving reasons for tuning 

of the algorithm. The most important parameters required by the genetic algorithm 

shall be interactively set by the user when the algorithm is initialized (for example: 

the number of individuals, the number of generations, the mutation/crossover 

percentage, the accepted number of circuits in the evolved result, etc), and 

dynamically adjusted by the meta-heuristic algorithm. 

 

 Within our proposal, it is required that several decisions be taken before 

going into genetic algorithm details (also called preparation steps): 

 

 “What is the terminal set? 
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 What is the function set? 

 

 What is the fitness measure? 

 

 What parameters will be used for controlling the run? 

 

 What will be the termination criterion, and what will be designated the result of 

the run?” [114] 

 

Objective 

The objective here is to find the efficient reversible quantum circuit synthesis from a 

high-level description. Considering the discrete space search   and the objective 

function :f , our scope is to find the )f(maxx  , where x is a vector of 

decision variables )x,...x,x(f)x(f n21 . It is a maximization problem, because 

we try to find the optimum quantum circuit that implements a given input function. 

 

Terminal Set 

The terminal set used in the quantum logic circuit synthesis process is composed 

from the following components:  

 

 Quantum gates (any gate from the database may be randomly used for the 

chromosome encoding). 

 

 Implemented methods to generate random numbers (used in the selector 

probabilities and in the gate selector when genetic operators are applied) 

 

 Constant gate characteristic values (i.e. quantum circuit cost and its 

efficiency). 

 

Function Set 

The function set for a genetic algorithm is derived from the nature of problem. For 

the quantum synthesis problem, the function set is composed of the mathematical 

functions necessary to evaluate the circuit output function (tensor product, 

multiplication, equality, etc.). A function set needs to fulfill two proprieties: 

 

 Closure: it is assured because any function from the function set can accept as 

arguments any value returned by any other function from the function set. In 

our case, the return result from any function is a circuit gate, which is a terminal 

in the terminal set. In other words, any function from the function set is well 

defined and closed for any argument combination that it may receive. 

 

 Sufficiency: it is assured by theory, because it is possible to express a solution 

by hand computation, combining the elements of the primitive set. 
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Fitness Measure 

The fitness measure specifies what the user expects from the synthesis algorithm. 

Therefore, the fitness assignments to a chromosome indicate how close the 

individual output is to the algorithm target. A good method not to repeat the fitness 

calculation for a chromosome is to maintain a flag showing if any change has been 

performed since the last evaluation. Any genetic operator applied over an individual 

will affect the evaluation flag, hence allowing a new fitness re-evaluation in that 

case. 

Selection 

Different types of selector methods are used for quantum circuit synthesis (i.e. 

rank, roulette wheel, tournament and uniform). The possibility to change the 

selection is important in order to compare different evolved solutions. The ProGA 

framework provides support for selection methods, the user having the possibility of 

choosing one of them, or even of dynamically changing the selector during run-time. 

 

Encoding 

The circuit representation is important for the chromosome encoding. A 

chromosome shall represent a possible candidate solution for the given problem. 

Our approach was to split the circuit representation in sections and plains [113] 

[109], a representation that will be used in the chromosome definition. 

 Following Nature, where a chromosome is composed of genes, in our 

chromosome the genes are the circuit sections. In this way, we are able to encode 

the circuit within the chromosome, and to represent a possible candidate solution 

(as presented in Figure 5.16). A gene will store the specific characteristic of a 

particular section and the genetic operators will be applied at the gene level or 

inside the gene. 
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Figure 5.16: Chromosome Encoding 

The possibility of applying the genetic operators at the gene level is 

promoted here for the pattern optimization. For example, replacing a gene with 

another one has its correspondent in the circuit section replacement (a circuit 

section may be replaced by another, having the same functionality but with a better 

efficiency/cost). The patterns will be externally stored and used in the pattern 

replacement. Moreover, it is possible to exchange more related sections with an 

equivalent section (which is, for example, more attractive from the efficiency point 

of view). 

The parser will provide information for the genetic algorithm, about the 

number of qubits (n) and about the number of sections (m). These values are taken 

from the internal data representation, after applying the topological optimization. At 

the beginning, the chromosome will be composed of m genes and each gene by n 

gates, because our scope is to optimize the evolved circuit and not to have an 

increase number of gates in comparison with the given (HDL described) circuit. 

Later, due to the evolution process, and due to pattern optimization, it may be 

possible to reduce the number of used genes by compaction of the adjoining genes, 

or by removing a gene if the added characteristic does not produce a transformation 

for the previous one. This is made possible by using genes composed only of 

identity gates, the removed gene being placed at the end of the chromosome (it is 

important not to change the chromosome length). 

Each chromosome represents a possible solution, which is computed by 

applying the tensor product for all gate genes and then multiplying all the results. 
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Initial Population 

The initial population is created using random quantum gates inside the 

chromosome genes. The number of individuals may be set by the user, when the 

genetic algorithm is started. 

 

Controlling Parameters 

It is impossible to make general recommendations for specifying optimal run-time 

parameter values. For this reason, a meta-heuristic algorithm is used in order to 

determine the controlling parameters as operator probabilities. Other parameter 

controls, as population size and fitness function, have static values, and the 

dynamical adjustability was not necessary during the algorithm evolution. 

 

Evaluation 

The genetic algorithm will start with random candidates, having the chromosome 

length and the number of genes defined by the parser and by the topological 

optimization. The chromosome values are randomly generated at the beginning, 

having random gates inside. The created population is evaluated in order to check if 

there is an acceptable solution. This check is made by comparing the chromosome 

output function with the given circuit function and by applying the penalty value, if 

such it is the case. The genetic operators are applied afterwards, allowing population 

evolution by generating a new population, (the type of genetic algorithm is non-

overlapping). We have also proposed to use elitism for our algorithm (a specified 

number from the best chromosomes are kept during the genetic evolution, allowing 

an increased convergence for the algorithm). The scope is to maximize the fitness 

values, thus any value higher than 1 is considered to be an acceptable solution; this 

acceptable solution will have the same output function as the given circuit and, in 

addition to this, the number of composing gates will be lower). 

 

Termination Criteria 

The genetic algorithm is finished when the number of allowed generations is 

reached. Other methods for stopping the algorithm are not used, because our scope 

is to maximize the fitness function using all the possible number of generations (i.e. 

the possibility of stopping the algorithm when there is no improved solution evolved 

during several generations, or when the fitness is sufficient for deciding that the 

algorithm has already evolved a better solution, etc.). The maximum number of 

allowed generations is a parameter control for the synthesis algorithm and may be 

set by the users when the genetic algorithm is started. 

5.4  Integration within ProGA Framework 

Four main blocks are identified within Figure 5.17. The ProGA framework is 

responsible with genetic algorithm implementation details, and the Adaptive 

component is responsible with the dynamically adjustment of the algorithm 

parameter controls. The Synthesis component is responsible with the quantum 
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synthesis process, implementing the particularities necessary for the genetic 

evolution.  The fourth module, the Database, represents a collection of gates that 

are used in the synthesis process, random gates being introduced into genetic 

population as locus into chromosomes. 

 

Figure 5.17: Integration within ProGA Framework 

The ProGA framework allows for testing different configurations and 

comparing their results. It is possible to have different values for the parameters 

control, different type of selectors, different random number generators, different 

time measures implementations, etc. 

5.4.1  Initial Circuit Configuration 

The first information that is necessary in the synthesis configuration is related to the 

number of genes from a chromosome, and the length for a gene. These values have 

their correspondent in the number of sections and planes (like in Figure 5.5) that 

are computed during the parsing operation. Then, in a second step, the initial 

chromosome is constructed from the internal data structure, using the Locus 

information instead of Nod (see Figure 5.8). Thus, we have encoded the input high-

level circuit description into a synthesis chromosome, that will be used as a 

comparison base for all the evolved results (remember, that our scope is to evolve a 
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better chromosome). In order to allow a facile comparison, the output function 

result is saved into a quantum circuit object (called myInitialFctOutput, as it is 

described in Figure 5.19). This quantum circuit will not be included into the 

Quantum Gate Collection, because it will not be used as input for the synthesis 

algorithm. 

 

Figure 5.18: Genome Configuration 

The algorithm implemented in the Application class, responsible with the 

creation of the initial solution is: 

 

Algorithm used for transformation of the internal data structure (created by parser) 

into the initial chromosome 

 

1. Create an initial chromosome. 

2. Get the number of qubits (known by parser module). 

3. While element exists into Internal Data Structure 

a. Copy all sub-elements into the current gene. 

b. Go to next element from the Internal Data Structure. 

4. Compute the output function and memorize the result into a quantum gate 

circuit. 

 

 

The configuration class is required in order to transform the parsing 

information into chromosome and to give facile access to the initial solution. Details 

about code implementation are given in 8.2 (QCS Initial Genome Solution) section. 

SynthesisCfg

«Singleton»

_SetGeneLength(n_Length:int):void

_SetNoOfGenes(n_Genes:int):void

rc_GetInstance():SynthesisCfg&

SynthesisCfg()

SynthesisCfg(obj:SynthesisCfg)

n_GetChromosomeLength():int

n_GetGeneLength():int

n_GetNoOfGenes():int

_SetInitialGenome(p_Genome:Synthesis*):void

_ComputeOutputFct():void

p_InitialCircuitOutputFct():QuantumGate*

BUPT



5.4 -Integration within ProGA Framework|93 

 

5.4.2  Synthesis Genetic Algorithm 

The Synthesis Genetic Algorithm is considered as an extension for the ProGA 

framework, the classes belonging to this component being derived from the 

interface declared in ProGA. Thus, as presented in Figure 5.19, GASyn is derived 

from the interface class GA and Synthesis is derived from the interface class 

Genome. By this inheritance, the ProGA framework functionality is extended with 

the synthesis behavior. 

 

Algorithm used for the genetic synthesis 

 

1. Set the genetic algorithm type: overlapping or non-overlapping. 

2. Set the mutation and the crossover probabilities. 

3. Set the elitism percentage. 

4. Set the maximum number of allowed generations and individuals. 

5. Get the number of qubits (known by the parser module). 

6. While generations are still allowed or a solution has not been evolved: 

a. Initiate the population. 

b. Evaluate the individuals. 

c. Store the statistic information. 

d. Check for a solution. 

e. Apply the genetic operators (mutation and crossover). 

7. Display the best chromosome. 
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Figure 5.19: Synthesis Genetic Algorithm 

For the user, the inheritance from the ProGA framework gives access to all the 

genetic algorithm parameters control. For example, the genetic algorithm type, the 

operator probabilities, the number of individuals can be adjusted within this GASyn 

class. More than this, in this class, the order of genetic operators or the termination 

criteria may also be changed. This class defines all the algorithm parameters 

control, all the operation executed, and – at the same time - their order. This class 

GA

«Interface» ProGAFramework::Population

1

itsPopulation

1

itsPopulation

1
itsGenome

Genome

«Interface»

1
itsGenome

1

itsGenome

1

itsGenome

GASyn

_GAEvolve():void

GASyn(genome:Genome,selector:Selec...

Synthesis

ac_Genome:Locus*

p_CrossoverTypeA():void

sz_Genome():char *

_ShowGenome():void

p_Clone():Genome*

_Evaluate(b_Evaluate:bool=false):void

_MutationTypeA():void

_Copy(obj:Genome):void

_Initiate():void

Synthesis()

Synthesis(obj:Synthesis)

Synthesis(myRandom:Random)

_Initiate(position:int,NodValue:Nod*):v...

operator=(obj:Synthesis):Synthesis&

_ComputeOutputFct(GateResult:Quant...

~Synthesis()

_MutationTypeB():void

p_CrossoverTypeB():void

«Usage»

SynthesisCfg

«Singleton»

_SetGeneLength(n_Length:int):void

_SetNoOfGenes(n_Genes:int):void

rc_GetInstance():SynthesisCfg&

n_GetGeneLength():int

n_GetNoOfGenes():int

_SetInitialGenome(p_Genome:Synthesis...

p_InitialCircuitOutputFct():QuantumGate*

«Usage»

1

itsInitialGenome

1

itsInitialGenome

1
myInitialFctOutput

Database::QuantumGate

1
myInitialFctOutput
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was design to have only base information about the genome, selector and 

population type, which are used for the genetic algorithm declaration. 

5.4.3  Circuit Genome 

The Synthesis class implements the genome, which encodes the circuit 

representation. As already stated, a genome could represent a possible solution for 

the synthesis task. The genome representation is an array of random quantum 

gates that are chosen randomly from the database, with the only constraint that a 

quantum gate cannot be split on two genes. Thus, the genome (or the chromosome) 

is composed of one or more genes, their number being known by the parser module 

and provided to the Synthesis class via SynthesisCfg class.  

This class implements the main functionality of the synthesis task, the operators 

and their behavior being defined at this level. Another important method is 

responsible with the random gate initialization for the chromosomes. We defined 

two types of operators, called A and B. The A type is responsible with changes inside 

of the gene, while the B type is responsible with changes at the chromosome level 

(thus, affecting one or more genes). The initial probability, defined by user, is split 

in two parts and assigned to the A and B operators. Later, during the run-time, their 

values will be automatically adjusted by the meta-heuristic algorithm (if it is 

configured to perform in this manner). The object model overview for the Synthesis 

class is presented in Figure 5.20. The genetic operators are applied at the gene level 

and inside the gene. When applied at the gene level, an entire gene is replaced with 

the content derived from the genetic operator. When applied inside of the gene, the 

gene content is only modified. 
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Figure 5.20: Synthesis Genome 

5.4.4  Circuit Output Function 

The genome output function is computed by the _ComputeOutputFct method that 

will return the result as a quantum gate result, which is later used for comparison 

with the initial genome function. Information is exchanged from left to right, with 

the upper wires representing the most significant qubits (as presented in Figure 

5.16). Each individual represents a possible solution, which is computed by applying 

the tensor product individually over all horizontal rows, and then multiplying all the 

row results. 

  

Synthesis

ac_Genome:Locus*

n_GeneIndex:int=0

b_NewSection:bool=false

sz_Genome():char *

_ShowGenome():void

p_Clone():Genome*

_Evaluate(b_Evaluate:bool=false):void

_Copy(obj:Genome):void

_Initiate():void

Synthesis()

Synthesis(obj:Synthesis)

Synthesis(myRandom:Random)

_Initiate(position:int,NodValue:Nod*):void

operator=(obj:Synthesis):Synthesis&

d_fitness():double

rc_DetectNextGate():QuantumGate&

b_CheckNewSection():bool

b_CheckValidIndex():bool

_ComputeOutputFct(GateResult:QuantumGate):void

~Synthesis()

_InitiateBetween(n_StartPosition:int,n_EndPosition:i...

_MutationAType():void

_MutationBType():void

p_CrossoverAType(spouse:Genome):Genome*

p_CrossoverBType(spouse:Genome):Genome*
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Algorithm used for the genome output function 

 

1. While gene index is less than chromosome length 

a. Read the current quantum gate. 

b. If the read operation has changed the section and the first gene was 

read 

i. Only the first section was read. 

ii. Reinitialize the Locus position. 

c. If the read operation has changed the section 

i. Reinitialize the locus position. 

ii. Perform multiplication. 

iii. Save the multiplication result. 

d. If it is the first locus 

i. Save gate value under the form of tensor result. 

e. If it is not the first locus 

i. Perform the tensor multiplication. 

2. Perform the last multiplication. 

3. Return the output function result. 

 

 

Details about algorithm code implementation are presented in the 8.4 (QCS 

Genome Implementation Details) section. 

5.4.5  Genome Initialization 

On the initialization phase, the genome will receive random gates, as values from 

the quantum circuit database. The genome attributes are reset to the initial values 

and the evaluation flag is cleared in order to force the evaluation on the next 

execution cycle. The initialization is performed only once during the algorithm 

lifetime, and is responsible with the genome creation (as presented in Figure 5.21). 

 

Figure 5.21: Genome Initialization 
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One of the design constraints needs to be respected, as being related to the 

impossibility of splitting one quantum gate between two genes (or sections). For 

example, if the gene has a length equal to 3, is possible - at the initialization phase 

- to receive a gate with 3 inputs, or a gate with 2 inputs plus one gate with one 

input, or a gate with one input plus the following with two inputs, or just 3 gates 

with 1 input. The initialization algorithm is repeated until the genome receives the 

initial quantum gates with the constraint being that the maximum allowed number 

of inputs is given by the gene length. 

5.4.6  Detecting of the Next Gate 

The most sophisticated part of synthesis class is the gate detection from the 

genome. It is important to be able to read the quantum gates one by one from the 

encoded information, and to provide the quantum gate type read. This method is 

essential when the output function is computed, and it is essential in the genetic 

operators because the quantum gates are affected by changes there. The 

complexity is given by the locus-encoding mode, being possible to split one physical 

gate on several locus positions. One encoding improvement is coming from the 

parsing design, because it is possible to have a quantum gate, located only within 

one gene without being spread over several genes. If the next read gate is a 

singular qubit gate, then its reference is returned in a fast manner by the 

rc_DetectNextGate method, and the index from the chromosome is incremented 

with one (allowing reading the next possible gate from that new position). When the 

next gate read affects more qubits, it is necessary to check all the other possible 

types of gates that will have as first input the gate described by the current locus 

(i.e. considering the first locus a CNOT gate, then it is known, for sure, that the gate 

will affect at least two qubits). Another constraint is due to the topological 

optimization; it is not allowed to intersect different types of gates within the same 

circuit section. The method returns a reference to one known quantum gate from 

the quantum gate collection and the gate values will be used by the output function 

methods, in order to compute the circuit function. 

  

Algorithm used for detecting the next quantum gate 

 

1. Read a quantum gate id and increment the position into the chromosome. 

2. Translate the id into a gate type. 

3. If the gate type was identified, return the reference to it. 

4. Repeat 

a. Read the next quantum gate id and increment the position. 

b. Check the gate termination point. 

c. Translate the id into a gate type. 

d. If the gate type was identified, return the reference to it. 

5. Meanwhile, a new section is not started. 
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5.4.7  Performing Mutation 

The mutation operator has the role of producing a change within the chromosome, 

hence allowing the search algorithm to explore new spaces; it is important not to 

converge to a local optimum (see Figure 5.22). In this way, when the mutation 

operator is applied inside the gene, the principle to be followed is: 

 Randomly select a chromosome using a mutation probability. 

 Randomly select a gene. 

 Randomly select a locus from the gene. 

 Replace the entire gate from the selected locus (more positions may be 

affected, if it is a gate on more qubits) with one or more random quantum 

gates; in the end the same number of inputs need to be replaced. 

When the mutation operator is applied at the gene level, then the necessary steps 

are to: 

 Randomly select a chromosome using a mutation probability. 

 Randomly select a gene for mutation operation. 

 Replace the complete gene contents with new random gene content. 
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Figure 5.22: Mutation Representation 
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In the synthesis algorithm, it is possible to configure singular or multiple 

mutation operators (user configurable). Using a locally generated probability, it is 

possible to affect the genome only once through mutation, or to allow multiple 

mutations over the previous values.  

From an encoding point of view, each gate from the genome has an id 

number. When the mutation is applied, there are high chances of having a different 

number of gates into the chromosome, thus it is mandatory to compute again each 

gate id, starting from the point where the mutation was finished. A part from the 

mutation algorithm is presented below, while the entire source code is available in 

section 8.4 (QCS Genome Implementation Details). 

  

Algorithm used for mutation at the gene level 

 

1. Get the number of present genes. 

2. Get the gene length. 

3. Randomly select a gene. 

4. Store the last gate id before the mutation point. 

5. Perform the gene mutation by replacing the complete contents with new 

randomly generated gates having the id number starting with the last 

memorized gate id increased by one. 

6. Affect the rest of the gates’ id in order to be consecutive numbers 

a. It is possible to have more gates, thus the gates id need to be 

increased with a shift value. 

b. Alternatively, it is possible to have fewer gates, thus the gates id 

need to be decreased with a shift value. 

 

 

Algorithm used for mutation inside of gene level 

 

1. Get the number of present genes. 

2. Get the gene length. 

3. Randomly select a gene. 

4. Randomly select a locus. 

5. Detect the gate corresponding to the selected locus 

a. If the gate is an identity used between the qubits of a quantum 

gate, then move the selected locus to the right until a different gate 

id is detected (used to detect the complete quantum gate). 

6. Search to left for the neighboring gate and memorize its locus. 

7. Search to right for the neighboring gate and memorize its locus. 

8. Generate a new random quantum gate or more quantum gates between the 

left and right locus positions. 

9. Affect the rest of the gates id to be consecutive numbers 

a. It is possible to have more gates, thus the gates id need to be 

increased with a shift value. 
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b. Alternatively, it is possible to have fewer gates, thus the gates id 

need to be decreased with a shift value. 

 

 

5.4.8  Performing Crossover 

The crossover operator is much complex than mutation. In this case, the gates 

selected from parents are used to create offsprings, by copying their contents and 

proprieties. Thus, by using a crossover probability, two genes are selected for 

reproduction and by applying, one or two, cut points (user configurable) the content 

between these points is exchanged (see Figure 5.23 and Figure 5.24). 
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Figure 5.23: Crossover on Complete Gene(s) 
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Figure 5.24: Crossover on Incomplete Gene(s) 

There are two different situations: the first one where the cut points will 

affect a complete gene within the crossover operation and, the second situation 

when the cut points affect only partially the locus from a selected gene. In that last 

case, the algorithm becomes complicated needed to detect if the cut points affect a 

single input quantum gate (situation that is easy to copy into the new offspring), or 

a multiple input quantum gate (situation where the cut point is shifted to the left or 
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to the right in order to copy the entire quantum gate). Both algorithms are 

presented below: 

  

Algorithm used for crossover at the gene level 

 

1. Create a new offspring. 

2. Copy parent1 details into the offspring. 

3. Randomly select a cut1 point between 0 and number of genes minus one. 

4. If the crossover operator is with one cut point 

a. Calculate Start index as Cut1*GeneLength. 

b. Calculate Stop index as the chromosome length. 

5. Else if crossover operator is with two cut points 

a. Randomly select a cut2 point between 1 and number of genes. 

b. Repeat selection for cut2 until it is different from cut1. 

c. Order the cut1 and cut2 points. 

d. Calculate Start index as Cut1*GeneLength. 

e. Calculate Stop index as Cut2*GeneLength minus one. 

6. Exchange the elements of offspring and parent2 between the Start and 

Stop index. 

7. Shift gate id’s for the gates between Start index and Stop index. 

8. Shift gate id’s for the gates after the Stop index. 

 

  

Algorithm used for crossover inside of the gene level 

1. Create a new offspring. 

2. Copy parent1 details into the offspring. 

3. Randomly select a cut1 point between 0 and chromosome length minus one. 

4. Detect the gate corresponding to the selected locus 

a. If the gate is an identity used between the qubits of a quantum 

gate, then move the selected locus to the right until a different gate 

id is detected (used to detect the complete quantum gate). 

b. Search to the left the neighboring gate and memorize its index. 

c. Search to the right the neighboring gate and memorize its index. 

5. If the crossover operator is with one point 

a. Calculate Start index as Cut1 point. 

b. Calculate Stop index as the chromosome length. 

6. Else if the crossover operator is with two cut points  

a. Randomly select a cut2 point between right index and chromosome 

length minus one. 

b. Calculate Start index as left index. 

c. Calculate Stop index as Cut2 point. 

7. Exchange the elements of offspring and parent2 between the Start and Stop 

index. 

8. Shift gate id’s for the gates between Start index and Stop index. 
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9. Shift gate id’s for the gates after the Stop index. 

 

5.4.9  Fitness Formula Computation 

The most important genetic operator involved in the algorithm is the fitness 

function. The fitness operator is implemented as a comparison between the output 

function of the chromosome and the output function of the given circuit. The 

comparison shall reveal the approximation between them. A penalty function is used 

in order to indicate a more efficient chromosome than the given circuit (penalty has 

a good meaning in this case). The penalty function is implemented as the difference 

between the number of gates from the evolved circuit, and from the given circuit, 

divided by the number of given gates; it is applied only when the evolved circuit has 

the same functionality as the given circuit. The penalty is considered as a constraint 

for the algorithm, and it is used to assure (as result) a better circuit than the given, 

starting one. 

)
)given(gates

)given(gates)evolved(gates
1(

)given(function

)evolved(function
f


  

(5.1) 

 

It is important to discuss about other quantum gate proprieties that may be 

introduced within the fitness value computation, as a composite formula. For 

example, the quantum gate cost for each solution is computed and may be used to 

differentiate them. In the same way, the quantum circuit feasibility is computed and 

may be introduced into the fitness formula. In order to not introduce weak or 

partially unknown proprieties into the fitness computation, for the moment the 

quantum synthesis algorithm only provides those values for manual analysis and will 

not use them into the genetic evolution. Details about the quantum gate costs are 

presented in the Quantum Gates Cost subchapter. Concerning the quantum gate 

feasibility, the research is still ongoing and more results are expected in the near 

future. 

Any fitness higher or equal to one is considered as solution for the synthesis 

problem. Because the genetic algorithm may generate solutions that are more likely 

and because each of them is important when the algorithm assessment is 

performed, a history list for all solutions was integrated within the population 

architecture (see Figure 5.25). In this way, when the genetic algorithm is finished 

(according to the termination criterion) all the solutions may be investigated in 

order to decide which one is optimal or close-to-optimal. Due to genetic evolution, 

the order in the history is given from non-optimal solutions to the optimal solutions 

(the backing reason is simple: an evolved solution is maintained into the population 

while a better one is considered as evolved only if it has an increased fitness value).  
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Figure 5.25: History List for Solutions 

For each solution, statistical data is saved for later analysis: the generation 

number when the solution is evolved, the resulted fitness value, the chromosome 

values that generated the solution, and the time required by evolution until that 

moment for the current generation. Identical solutions are not saved into the history 

list because is not important, from an algorithmic point of view, to analyze identical 

data values. In this way, the history list will contain better and better solutions for 

the studied synthesis problem. 

5.5  Metaheuristic Algorithm 

The behavior of the genetic algorithm is determined by the balance between 

exploitation and exploration. The meta-heuristic algorithm is applied for quantum 

circuit synthesis in order to adjust dynamically the control parameters. The adaptive 

parameter control is based on statistical data analysis for each genetic operator 

type. The objective is to offer the appropriate exploration and exploitation during 

the algorithm run, without user intervention. The performance measurement is 

intended to highlight the “good” parameters and to introduce an intuitive meaning 

for the statistical results. 

The problem of setting values for different control parameters is crucial in the 

context of the algorithm performance [115]. We introduce an adaptive genetic 

algorithm, in order to evolve quantum circuits. Our ProGA framework is used for the 

genetic algorithm implementation, its architecture being decorated with related 

statistical information. The statistical data are analyzed on the fly by the adaptive 

algorithm, and the results are used for adjusting of the genetic parameters control 

during the runtime processes. 

Meta-heuristic approaches are already used to solve different problems, this 

domain being of particular interest for the researchers in the last decade [116] 

[117] [118] [119] [120] [121] [122] [123] [124]. 

5.5.1  Parameter Control 

The parameter controls involved in a genetic algorithm are population size, mutation 

probability, crossover probability, selection type, etc. Each of them is responsible 

ProGAFramework::Population

b_CheckSolution(Solution:Genome)...

HistorySolutions

HistorySolutions_:vector <S_SOLUTION>

LastFitnessValue_:double=0

_AddSolutionData(s_SolutionData:S_SOLUTION):void

_ShowSolutions():void

1

myHistorySolutions

1

myHistorySolutions
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with controlling the evolution path towards the optimal solution. There are two 

major forms of setting the parameter values for a genetic algorithm [125]: 

 

 Parameter tuning: the parameter values are fixed before the algorithm run (i.e. 

using information from experiments) and remains fixed during the algorithm 

run. There are several disadvantages for the tuning: finding good parameters for 

the parameters before the run may be time consuming for a human expert, the 

evolution being a dynamic process, while the tuning is static, and it is possible 

not to have optimal parameters for all the phases. 

 

 Parameter control: the initial parameter values are changed during the algorithm 

run, keeping the dynamic spirit of evolution. The adaption algorithm uses the 

feedback values from the process and adjusts the parameters for better 

performance (i.e. initially, mutation probability may be higher in order to allow 

large exploration space and, later, it may be decreased to permit the solution 

fine-search). 

 

5.5.2  Integration within ProGA Framework 

The ProGA framework is responsible with the genetic algorithm implementation. The 

choice concerning the algorithm type (steady state or non-overlapping), the 

population structure, the encoding of the genome and the initial settings for the 

parameter controls is made within the framework. An important framework 

characteristic is the possibility of extending its functionality. Thus, as it is presented 

in Figure 5.26, the Adaption Control can use the framework interface, therefore 

allowing its integration into the system. 

 

Figure 5.26: Adaptive Control Integration 

The framework provides all the data necessary for statistic analysis and the 

actual values of the parameters control while the Adaptive Control component will 

return the new adjusted values for the parameters control back to the framework. 

The Adaptive Control is considered as an external tool for the genetic algorithm 

implementation, and it is responsible only with the cleverly update of the 

parameters control. 
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5.5.3  Adaptive Behavior using Operator Performance 

Almost every practical search algorithm is controlled by several parameters. In fact, 

the genetic algorithms are controlled by more parameters than other algorithms: 

population size, selector type, mutation probability, crossover probability, etc. From 

meta-heuristic point of view, it is considered that genetic algorithms contain all 

necessary information for adaptive behavior. Nevertheless, in the following 

subchapters, we present how the adaptive behavior optimizes the circuit synthesis 

algorithm (from the user’s point of view the setting of parameters is far from being 

a trivial task). Two types of statistical data are used as input for the adaptive 

algorithm (see Figure 5.27). The first type is represented by the fitness results for 

each population corresponding to the best, mean and worst chromosomes. The 

second type is represented by the operator performance. Following an idea 

proposed in reference [126], the performance records are essential in order to 

decide on operators reward. The statistical data indicate different levels of operator 

performance as described in Figure 5.28): 

 

 Absolute - when the resulted offspring has a higher fitness than the best fitness 

from the previous generation. 

 

 Relative - when the resulted offspring has a better fitness than its parents, but it 

is not absolute. 

 

 In Range - when the resulted offspring has a fitness situated between the fitness 

values of its parents. 

 

 Worse - when the resulted offspring has a fitness value that is lower than that of 

its parents. 
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Figure 5.27: Statistic Data 

 

Figure 5.28: Operator Performance 
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For the circuit synthesis algorithm, the mutation and crossover probabilities are two 

major parameters that need to be dynamically controlled. Because we defined two 

mutation and two crossover operators, four related statistical data have to be 

memorized and later analyzed in order to perform parameter control adjustment. 

Each operator offspring result is important and needs to be recorded (see Figure 

5.29).  

 

Figure 5.29: Adaptive Design 

Details about Statistic class implementation are available in 8.3 Statistic 

Details) section. As described in 4.2.2 (Framework Statistics) section, basic statistic 

functions such as maximum, minimum, average and standard deviation need to be 

available for the adaptive controlled types. Thus, the design overview allows 

interface declaration for the statistical functions in the Statistic class, and –also– 

their definition in each object class instance (i.e. the FitnessData class will define its 

own statistic function on its data attributes, while the PerformanceData will do the 

same but on different attributes). In this way, as assured by design, any class 

instance from the statistic has its own implementations for the corresponding 

functions, and at the same time keeps a common interface for accessing statistic 

results (see Figure 5.30). 

Population

Adaptive

itsFitnessData:FitnessData1

itsPerformanceData:PerformanceDataNO_OF_PERFORMANCE

1

myAdaptive

1

myAdaptive

1

myFitnessVector

Statis tic

T

NO_OF_PERFORMANCE

myPerformanceVector

1

myFitnessVector

NO_OF_PERFORMANCE

myPerformanceVector
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Figure 5.30: PerformanceData Class Overview 

The first type of mutation, called mutation A, is responsible with the gate 

mutations inside of genes, while the second type of mutation, called mutation B, is 

applied at the chromosome level. The same rules are defined for the crossover 

operator (applied at the gene level - called crossover A, and at the chromosome 

level - called crossover B). The operators are implemented within the ProGA 

framework, and only adding an extra-layer for the adaptive algorithm is sufficient 

for the meta-heuristic implementation. From the meta-heuristic point of view, it is 

not essential to know the operator implementation details; instead, one has to be 

informed about the number of operators because, for each of them, a separate 

statistical structure will be reserved. The adaptive algorithm will receive breeding 

feedback from each operator and will analyze the data, in order to compute the 

operator performance and decide on its adjustment rate. 

PerformanceData

Absolute_:double=0

InRange_:double=0

Relative_:double=0

Worse_:double=0

ComputeMaxim(a:PerformanceData,b:PerformanceData):friend PerformanceData

_IncrementAbsolute():void

_IncrementRelative():void

_IncrementInRange():void

_IncrementWorse():void

_Init():void

ComputeMinim(a:PerformanceData,b:PerformanceData):friend PerformanceData

_ShowValues():void

operator+(obj:PerformanceData):PerformanceData&

operator/(value:int):PerformanceData

ComputeMean(a:PerformanceData,NoOfElements:int):friend PerformanceData

operator*(obj:PerformanceData):PerformanceData

operator-(obj:PerformanceData):PerformanceData&

operator*(value:int,obj:PerformanceData):friend PerformanceData

operator>(value:int):bool

ComputeSquareRoot(obj:PerformanceData):friend PerformanceData

n_ComputeReward():double
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5.5.4  How the Change is Made 

The change of parameter controls is made by using the feedback data from the 

search (stored as statistical data). The adaptive algorithm distinguishes between the 

qualities of solutions evolved by different operators and adjusts the rates based on 

merits. As described, the adaptive algorithm is external to the genetic algorithm 

framework, the only interaction being on the transfer of parameter rates and 

feedback data. 

The following algorithm presents the important steps that are necessary for 

the operator’s rate adjustment: 

 

Algorithm used for dynamically adjusting the operators’ rate 

 

1. Initialize operator rates. 

2. While the algorithm does not reach the stop condition 

a. Initiate the operator rates using the Adaptive Algorithm. 

b. Evaluate the individuals. 

c. Save the statistical data (fitness and operators performance). 

d. Compute the new rates using the Adaptive Algorithm. 

e. Check for a solution. 

f. Apply the operators. 

 

 

5.5.5  Performance Meaning 

When discussing about statistical data, several statistic functions may provide 

valuable information about data distribution. Functions as Maximum, Minimum, 

Average and Standard Deviation may be applied on any kind of statistical data. For 

each generation the maximum, average and minimum fitness values are provided 

by the genetic algorithm framework and stored in the statistical data. When the 

genetic evolution is finished (i.e. when a solution has been evolved), more 

important statistical functions are computed: maximum for all the generation 

maximum fitness, average on all the maximum values, etc. Thus, we defined 

statistical functions on each generation and statistical functions over all generations. 

The second type of statistical data for the operator performance is computed 

when the operator is applied, following the rules presented in Figure 5.28). For 

example, when the Crossover B result is available, the resulted offspring fitness 

value is compared against the previous best fitness, and if it is higher, the Absolute 

value is increased with one-step. If it is lower, the comparison continues, and if the 

offspring fitness is higher than its parents’ fitnesses, then the Relative value is 

increased, etc. The algorithm identifies the possible solutions obtained during the 

genetic algorithm evolution and their distribution over the involved generations. 

After each generation, the operator performance is updated with statistical data. 

Following the 1/5 Rechenberg rule, after 5 generations it is time to make the 
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analysis of the acquired data. The operator reward is updated according to the 

following formula: 

WorseδInRangeγlativeReβAbsoluteα)operator(σ   
(5.2) 

 

Parameters δandγ,β,α are introduced to rank the operator performance. Thus, 

an absolute improvement will have a higher importance as compared with the 

relative improvement; a worse result will drastically decrease the operator rank. 
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Chapter 6  

6. Experiments Result Evaluation 

During the execution of the performed experiments, several variables were used to 

measure, control and manipulate the application results. The proposed synthesis 

tool allows two different types of statistical data; the correlation research helps 

measuring the statistical data and – at the same time - looking for possible 

relationships between some given sets of variables, while in the experimental 

research some variables are being influenced in order to observe their effect on 

other variable sets. The data analysis of the experimental results also creates 

correlations between the manipulated variables and those affected by the 

manipulation. The correlation results were interpreted in causal terms by using 

different theories, and the experimental results conclusively prove causality. 

6.1  The Experiment Setup 

In our experiments, configurable variables were used to define the genetic algorithm 

controlled parameters. A further classification is performed by splitting variables into 

independent and dependent types (as in Table 6). Only the dependent variables are 

measured (i.e. the execution clock cycles until an optimal solution is evolved), while 

the independent variables are manipulated in order to allow a faster convergence for 

the genetic algorithm. The goal of our scientific analysis was to find the best relation 

between variables that produced the best execution runtime for the optimal evolved 

solution, and to provide a meaning for the obtained results. The experiments will 

also prove, by validation testing, the correctness of the algorithm implementation 

for quantum logic circuit synthesis. 

Globally speaking, in any experiment where variables are measured there is 

a measurement error present. It is considered that variables differ in how well they 

can be measured [127]. In our experiments, we are using interval variables (i.e. 

number of generation may be 50, 100, 150 or 200), that allow data values rank 

order and comparison of the data differences over experiment runs. 

Table 6. Variable Type Classification 

Variable name Independent Dependent 

Genetic algorithm 

type 

Overlapping 
√ 

 

Non-Overlapping 

Number of 

generations 

(50, 100, 150 or 200) 
√ 

 

Population size (50, 100, 250 or 300) √  
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Elitism percent 0% means “No Elitism” √  

Crossover type 

 

One 

point 

√ 

√ 

 

√ 

Two 

points 

√ 

√ 

Mutation type 

 

 

 

Singular Chromosome 

level 

√ 

 

Inside gene 

Multiple Chromosome 

level 

Inside gene 

Selection type 

 

 

 

Uniform 

√ 

 

Rank 

Roulette wheel 

Tournament 

Mutation 

probability 

 

√ 

√ (only with 

adaptive 

behavior) 

Crossover 

probability 

 

√ 

√ (only with 

adaptive 

behavior) 

Statistical Data Available 

√  
Not Available 

Meta-heuristic 

Algorithm 

Used (only with Statistic 

Data Available) √  

Not Used 

Meta-heuristic 

Increase 

 
√  

Meta-heuristic 

Decrease 

 
√  

Random 

generator type 

Classic generator 
√  

Ran2 generator 

Statistical 

information for 

fitness data and 

for each genetic 

operator 

(crossover and 

mutation types)  

Maximum  

√  

Minimum 

Average 

Standard deviation 
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Algorithm runs 10 √  

Gate set type 

used for 

synthesis 

Complete 

√  Reduced 

Minimum 

History solution time (in processor clocks)  √ 

Number of quantum circuit gates  √ 

Quantum circuit cost  √ 

Quantum circuit feasibility  √ 

Number of generations until optimal solution  √ 

 

The experiments were conducted on a computer with the following 

configuration: Intel Pentium M processor at 1.862GHz, 1GB RAM memory and Open 

SuSe 10.3 as operating system. In order to avoid lucky guesses the experiments 

have been repeated for 10 times, the average result being used for comparison in 

the provided graphics. 

6.2  Evaluation Approach 

The C++ source code14 was compiled using the “gcc” compiler under the Eclipse 

v.15 software on Open SuSe 10.3 operating system. The executable released binary 

was fed with input files (the configuration parameters and the circuit description) 

and then used to execute the quantum logic circuit synthesis algorithm. The graphs 

are created automatically by using the GNUplot16 software for which we have written 

a script file in order to multiplot the graphs, by using the quantum logic circuit 

synthesis algorithm output results (see 8.6 GNUplot Script).  

To measure the performance of an application, it is common to measure the 

time spent until a solution is evolved. Because the results may appear within a small 

period, a fine granularity for time measurement was necessary. We used the RDTSC 

(Read Data Time Stamp Counter) to measure the processor ticks in order to provide 

excellent, high-resolution information. A stopwatch was used in order to measure 

the processor ticks between the moment when the genetic algorithm evolution was 

started and the event generated by finding a solution. For evaluation of other 

solutions that may succeed, the stopwatch is re-started to time the next solution 

event. The number of ticks is independent from the processor platform and it 

accurately measure events of short duration (with laptops or systems supporting 

Intel@Speed Technology the processor frequency will change as a result of CPU 

utilization when running on batteries). If the user wants to derive the time duration, 

the number of ticks should be divided by the processor frequency. 

                                               
14 http://www.cs.utt.ro/~crys/index_files/public/qsyn.tar.gz 
15 Eclipse, http://www.eclipse.org/ 
16 GNUplot, http://www.gnuplot.info/ 
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6.3  QCS Tool Verification 

The test is intended to prove the genetic algorithm convergence towards a circuit 

solution. All the recognized gates are used to define a test circuit and, after 

algorithm execution, other equivalent circuits are expected to emerge by using 

quantum circuits from the specified gate set. In this test, we do not evaluate 

configurations or parameters because the target is only to evolve an equivalent 

solution for the given circuit description. 

6.3.1  Complete Set of Gates 

The entire set of recognized quantum gates will be used in order to evolve a circuit 

solution. This test will prove the complete functionality of quantum logic circuit 

synthesis. 

Table 7: Initial and Evolved Circuit – Complete Gates Set 

Initial Circuit  Evolved Circuit 

   

 

 

 
 

6.3.2  Reduced Set of Gates 

In this test only Controlled-NOT, Identity and Toffoli gates were used to evolve a 

circuit solution. This reduced set of gates was introduced to allow compatibility with 

the available benchmark circuits [51][128][11][46][47] where a limited number of 

circuit types are used.  
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Table 8: Initial and Evolved Circuits – Reduced Gates Set 

Initial Evolved 

   

   
  

  
   

6.3.3  Minimal Set of Gates 

In this test, only Hadamard, Identity and Controlled-NOT gates were used to evolve 

a circuit solution. This set of gates is recommended for simple circuits where a fast 

synthesis solution may be emerged. 

Table 9: Initial and Evolved Circuit – Minimal Gates Set 

Initial Evolved 
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6.4  Case Studies 

Each case study is started with a benchmark quantum circuit that is used for the 

synthesis algorithm evaluation. On the benchmark, the name of the circuit is 

presented along with its number of qubits (including garbage qubits, if present) and 

the circuit cost. Three synthesis configurations are used to evolve a synthesis 

solution, different parameters being manipulated during the test evolution (i.e. the 

adaptive behavior will dynamically adjust the mutation and the crossover 

probabilities), while the results are presented as graphs. The result analysis section 

is used to explain the algorithm behavior and to extract a conclusion concerning the 

optimal parameter control values. All the benchmark circuits are kept up-to-date by 

Dmitri Maslov [51] on his web page17 dedicated to quantum circuit synthesis. 
  

                                               
17 http://webhome.cs.uvic.ca/~dmaslov/ 
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6.4.1  Three-Qubit Circuit 

Benchmark: ham3 [51] 

Gate count 5 Cost 7 Garbage 0 

Function ham3 is the size 3 Hamming optimal coding function. 

 
Configuration 1 2 3 

Number of Generations 150 

Population Size 100 

Elitism percent 0.05 

Crossover Type Two Points One Point Two Points 

Mutation Type Multiple Singular Multiple 

Crossover Probability 0.4 

Mutation Probability 0.05 

Selection Type RouletteWheel Uniform RouletteWheel 

Performance Statistic Available 

Meta Heuristic Available NA 

Adaptive Increase 0.15 NA 

Adaptive Decrease 0.1 NA 

Gate Set Reduced 

Genetic Algorithm Type Non Overlapping 

Random Generator Ran2 

Algorithm Runs 10 

Solution Runtime 
(average) Clocks 

6.29e+08 3.69e+08 8.98e+08 
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Statistic Results for the Evolved Solutions 
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Circuits Evolved Solutions 

C
o

n
fi

g
u

r
a
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o
n

 1
/

2
/

3
 

  

 

1 2 3 1 2 3 1 2 3 

5 11 100 5 11 100    

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility* 

* see their definition in 8.5.1 (Cost Details using General Approach) section 
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6.4.2  Four-Qubit Circuit 

Benchmark: rd32 [51] 

Gate count 4 Cost 8 Garbage 2 

Its output is binary representation of the number of 1s in its input. 

 
Configuration 1 2 3 

Number of Generations 150 

Population Size 100 

Elitism percent 0.05 

Crossover Type Two Points One Point Two Points 

Mutation Type Multiple Singular Multiple 

Crossover Probability 0.4 

Mutation Probability 0.15 

Selection Type RouletteWheel Tournament RouletteWheel 

Performance Statistic Available 

Meta Heuristic Available NA 

Adaptive Increase 0.15 NA 

Adaptive Decrease 0.1 NA 

Gate Set Reduced 

Genetic Algorithm Type Non Overlapping 

Random Generator Ran2 

Algorithm Runs 10 

Solution Runtime 

(average) Clocks 

1.66e+09 1.02e+09 2.31e+09 
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Statistic Results for the Evolved Solutions 
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Circuits Evolved Solutions 

C
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/

2
/

3
 

 

  

1 2 3 1 2 3 1 2 3 

4 10 93.75       

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility* 
* see their definition in 8.5.1 (Cost Details using General Approach) section 
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6.4.1  Five-Qubit Circuit  

Benchmark: xor5 [51] 

Gate count 4 Cost 4 Garbage 4 

Its output is EXOR of all its variables. 

 
Configuration 1 2 3 

Number of Generations 200 

Population Size 150 

Elitism percent 0.05 0.1 0.05 

Crossover Type Two Points 

Mutation Type Multiple 

Crossover Probability 0.3 0.4 0.25 

Mutation Probability 0.1 0.05 0.05 

Selection Type RouletteWheel Rank RouletteWheel 

Performance Statistic Available 

Meta Heuristic Available NA 

Adaptive Increase 0.2 0.1 NA 

Adaptive Decrease 0.1 NA 

Gate Set Reduced 

Genetic Algorithm Type Non Overlapping 

Random Generator Ran2 

Algorithm Runs 10 

Solution Runtime 
(average) Clocks 

9.74e+09 6.12e+09 7.55e+09 
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Statistic Results for the Evolved Solutions 
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Circuits Evolved Solutions 

C
o

n
fi
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2
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3
 

   
1 2 3 1 2 3 1 2 3 

5 11 93.33 6 15 86.11 5 11 9.33 

   
1 2 3 1 2 3 1 2 3 

5 11 93.33 5 11 93.33 6 15 86.11 

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility* 

* see their definition in 8.5.1 (Cost Details using General Approach) section 
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6.4.3  Six-Qubit Circuit  

Benchmark: gray code [51] 

Gate count 5 Cost 5 Garbage 0 

If the circuit for such function is run in reverse, the output is the ordinal number of 
the corresponding Gray code pattern. 

 
Configuration 1 2 3 

Number of Generations 200 

Population Size 150 

Elitism percent 0.1 0.15 0.1 

Crossover Type One Point Two Points One Point 

Mutation Type Singular Multiple 

Crossover Probability 0.45 0.4 

Mutation Probability 0.1 0.15 0.1 

Selection Type Uniform Tournament Rank 

Performance Statistic Available 

Meta Heuristic Available NA 

Adaptive Increase 0.15 0.1 NA 

Adaptive Decrease 0.1 0.2 NA 

Gate Set Reduced 

Genetic Algorithm Type Non Overlapping 

Random Generator Ran2 

Algorithm Runs 10 

Solution Runtime 
(average) Clocks 

9.74e+10 5.06e+10 1.85e+10 
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Statistic Results for the Evolved Solutions 
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Circuits Evolved Solutions 

C
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3
 

   
1 2 3 1 2 3 1 2 3 

7 16 90.47 6 13 94.44 10 23 96.66 

   
1 2 3 1 2 3 1 2 3 

9 20 100 8 19 95.83 8 17 95.83 
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1 2 3 1 2 3 1 2 3 

6 13 94.44 8 17 95.83 7 17 88.09 

  

 

1 2 3 1 2 3 1 2 3 

9 20 92.59 8 20 85.41    

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility* 
* see their definition in 8.5.1 (Cost Details using General Approach) section 
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6.4.5  Seven-Qubit Circuit  

Benchmark: 2of5 [51] 

Gate count 12 Cost 32 Garbage 6 

Its output is 1 if number of 1s in its input equals two. 

 
Configuration 1 2 3 

Number of Generations 150 

Population Size 100 

Elitism percent 0.1 0.15 0.05 

Crossover Type One Point Two Points One Point 

Mutation Type Multiple Singular Multiple 

Crossover Probability 0.3 0.4 0.3 

Mutation Probability 0.1 0.05 0.04 

Selection Type RouletteWheel Uniform Tournament 

Performance Statistic Available 

Meta Heuristic Available NA 

Adaptive Increase 0.1 0.15 NA 

Adaptive Decrease 0.05 0.1 NA 

Gate Set Reduced 

Genetic Algorithm Type Non Overlapping 

Random Generator Ran2 

Algorithm Runs 10 

Solution Runtime 

(average) Clocks 

3.88e+11 4.11e+11 4.28e+11 
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Statistic Results for the Evolved Solutions 

C
o

n
fi

g
u

r
a
ti

o
n

 1
 

  

 

 

  

  

 

BUPT



6.4 -Case Studies|143 

 

C
o

n
fi

g
u

r
a
ti

o
n

 2
 

  

 

 

  

  

 

BUPT



144 | 6-Experiments Result Evaluation 

C
o

n
fi

g
u

r
a
ti

o
n

 3
 

  

 
 

  

BUPT



6.4 -Case Studies|145 

 

Circuits Evolved Solutions 
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1 2 3 

12 40 85 

 
1 2 3 

14 44 87.14 
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14 46 87.14 

 

 
1 2 3 

13 43 84.23 
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1 2 3 

13 43 83.58 

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility* 
* see their definition in 8.5.1 (Cost Details using General Approach) section 
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6.5  Additional Experiments 

Each case study is started with a quantum circuit that is used for the synthesis 

algorithm evaluation. Only one synthesis configuration is used to evolve a synthesis 

solution, the adaptive behavior will dynamically adjust the mutation and the 

crossover probabilities, and the rest of the parameters will remain fixed during the 

evolution, while the results are presented as graphs. 

 

Circuit from reference [129], proposed by M. Mohammadi in 2008 

 
Configuration 1 

Number of Generations 250 

Population Size 150 

Elitism percent 0.05 

Crossover Type Two Points 

Mutation Type Multiple 

Crossover Probability 0.4 

Mutation Probability 0.05 

Selection Type RouletteWheel 

Performance Statistic Available 

Meta Heuristic Available 

Adaptive Increase  0.15  

Adaptive Decrease 0.1 

Gate Set Reduced 

Genetic Algorithm Type Non Overlapping 

Random Generator Ran2 

Algorithm Runs 10 

Solution Runtime 
(average) Clocks 

5.20e+09 
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Statistic Results for the Evolved Solutions 
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Circuits Evolved Solutions 
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1 2 3 1 2 3 1 2 3 

7 20 91.66 6 18 90.27    

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility* 
* see their definition in 8.5.1 (Cost Details using General Approach) section 
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Circuit from reference [130] proposed by Van Meter et al. in 2007 

 
Configuration 1 

Number of Generations 200 

Population Size 150 

Elitism percent 0.1 

Crossover Type Two Points 

Mutation Type Singular 

Crossover Probability 0.3 

Mutation Probability 0.2 

Selection Type RouletteWheel 

Performance Statistic Available 

Meta Heuristic Available 

Adaptive Increase 0.2 

Adaptive Decrease 0.1 

Gate Set Reduced 

Genetic Algorithm Type Non Overlapping 

Random Generator Ran2 

Algorithm Runs 10 

Solution Runtime 

(average) Clocks 

6.54e+10 
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Statistic Results for the Evolved Solutions 
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Circuits Evolved Solutions 
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1 2 3 1 2 3 1 2 3 

4 14 93.75       

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility* 
* see their definition in 8.5.1 (Cost Details using General Approach) section 
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Circuit from reference [131] proposed by Shende et. al in 2006 

Initial Evolved 

  
Configuration 1 

Number of Generations 100 

Population Size 50 

Elitism percent 0.05 

Crossover Type Two Points 

Mutation Type Multiple 

Crossover Probability 0.4 

Mutation Probability 0.05 

Selection Type RouletteWheel 

Performance Statistic Available 

Meta Heuristic Available 

Adaptive Increase 0.15 

Adaptive Decrease 0.1 

Gate Set Reduced 

Genetic Algorithm Type Non Overlapping 

Random Generator Ran2 

Algorithm Runs 10 

Solution Runtime 

(average) Clocks 

6.16e+08 
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Statistic Results for the Evolved Solutions 
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Circuits Evolved Solutions 
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1 2 3 1 2 3 1 2 3 

1 4 50 5 20 80 4 11 79.16 

   
1 2 3 1 2 3 1 2 3 

5 12 90 3 12 50 3 10 83.33 

  

 

1 2 3 1 2 3 1 2 3 

3 10 66.66 7 24 85.71 3 8 83.33 

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility* 
* see their definition in 8.5.1 (Cost Details using General Approach) section 
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Circuit from reference [47] proposed by V. Shende et al. in 2003 

Initial Evolved  

  
Configuration 1 

Number of Generations 100 

Population Size 50 

Elitism percent 0.05 

Crossover Type One Point 

Mutation Type Singular 

Crossover Probability 0.3 

Mutation Probability 0.05 

Selection Type Rank 

Performance Statistic Available 

Meta Heuristic Available 

Adaptive Increase 0.1 

Adaptive Decrease 0.1 

Gate Set Reduced 

Genetic Algorithm Type Non Overlapping 

Random Generator Ran2 

Algorithm Runs 10 

Solution Runtime 
(average) Clocks 

1.62e+08 
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Statistic Results for the Evolved Solutions 
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Circuits Evolved Solutions 
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1 2 3 1 2 3 1 2 3 

2 7 75 3 10 83.33    

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility* 

* see their definition in 8.5.1 (Cost Details using General Approach) section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

BUPT



160 | 6-Experiments Result Evaluation 

 

Circuit from reference [47] proposed by V. Shende et al. in 2003 

Initial Evolved 

  
Configuration 1 

Number of Generations 100 

Population Size 50 

Elitism percent 0.1 

Crossover Type One Point 

Mutation Type Multiple 

Crossover Probability 0.3 

Mutation Probability 0.05 

Selection Type Uniform 

Performance Statistic Available 

Meta Heuristic Available 

Adaptive Increase 0.1 

Adaptive Decrease 0.15 

Gate Set Reduced 

Genetic Algorithm Type Non Overlapping 

Random Generator Ran2 

Algorithm Runs 10 

Solution Runtime 
(average) Clocks 

1.47e+08 
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Statistic Results for the Evolved Solutions 

C
o

n
fi

g
u

r
a
ti

o
n

 1
 

  

 

 

  

  

 

 

BUPT



162 | 6-Experiments Result Evaluation 

 

Circuits Evolved Solutions 
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1 2 3 1 2 3 1 2 3 

2 5 100 3 11 91.66 4 9 100 

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility* 
* see their definition in 8.5.1 (Cost Details using General Approach) section 
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Circuit from reference [47] proposed by V. Shende et al. in 2003 

Initial Evolved 

  
Configuration 1 

Number of Generations 100 

Population Size 50 

Elitism percent 0.05 

Crossover Type One Point 

Mutation Type Singular 

Crossover Probability 0.4 

Mutation Probability 0.05 

Selection Type Tournament 

Performance Statistic Available 

Meta Heuristic Available 

Adaptive Increase 0.1 

Adaptive Decrease 0.1 

Gate Set Reduced 

Genetic Algorithm Type Non Overlapping 

Random Generator Ran2 

Algorithm Runs 10 

Solution Runtime 
(average) Clocks 

2.21e+08 
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Statistic Results for the Evolved Solutions 
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Circuits Evolved Solutions 
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1 2 3 1 2 3 1 2 3 

2 5 100 2 5 100 4 9 100 

Note: 1 = Gates count, 2 = Circuit Cost*, 3 = Circuit Feasibility* 

* see their definition in 8.5.1 (Cost Details using General Approach) section 
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6.6  Result Evaluation 

Summarizing our results for these test cases (whose characteristics are considered 

to inherit the smallest number of gates necessary in order to implement the 

required function – as being benchmark circuits), we note that our quantum 

synthesis tool always converge towards a solution. In addition, the meta-heuristic 

approach, when used for configuration 1 and 2, prove its benefit in evolving a faster 

convergence by increasing the operators probability, when better offsprings are 

evolved. Others experimental results prove that the roulette wheel selection has 

generated an increased number of synthesis results in comparison with other 

selection methods. Although not obvious at first glance, at the same time with 

increasing the number of circuit qubits, more generations are necessary in order to 

evolve synthesis solutions (it is also worth mentioning, that an increased number of 

individuals is not necessary). The experimental results consider significantly more 

difficult circuits than other evolutionary programming approaches and provide a 

stable base for further quantitative comparison (i.e. feasibility, cost assessment and 

runtime values). 

 The experimental results were obtained in a relative short time period by 

using an ordinary computer. Synthesis results for bigger quantum circuits cannot be 

reported here due to computational resource limitation, mainly runtime (we design 

our synthesis system to allow a dynamic defined number of qubits and circuits). In 

order to be relevant, experimental results need to be performed on better computer 

systems (i.e. John Koza performed genetic algorithms employing 1000 parallel 

computers in Mountain View, California, and the results were patented as six 

electronic circuits18). 

6.7  Going Beyond 7-qubit Circuits 

Prashant, in reference [128], has described a genetic algorithm used to evolve 

quantum circuits (it was proposed in Nov. 2005 and revised in Jan. 2007). The 

genetic algorithm automatically searches for the appropriate circuit design that 

yields the desired output state. The fitness function evaluates the current output 

with the desired output, the search being stopped when a close match is found. The 

experimental results are presented only for 2-qubit systems and only a few 

quantum gates are used. The author is suggesting that a further optimization has to 

be applied in order to run the algorithm for multi-qubit systems (i.e. to revise the 

fitness function and to include the circuit efficiency as well). 

 In reference [132], Shengchao et al. (Oct. 2006) has proposed a hybrid 

quantum evolutionary algorithm for the implementation of quantum oracles. The 

quantum circuits are encoded using numerical values and the fitness function 

consider a “cost” value for the evaluation. In the end it is specified that the 

presented approach is not to be considered for circuit synthesis or optimization, 

mainly because the experimental part consist only for 2-qubit circuits. 

                                               
18 http://www.genetic-programming.com/johnkoza.html 
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In Tim Reid’s master thesis [133], which was defended in 2005, the 

proposed goal is to understand the application of the evolutionary approach to the 

quantum circuit design. A toolkit named “wabisabi” has been proposed in order to 

evolve basic quantum circuits such as CNOT, CPHASE, SWAP, TOFFOLI, etc. The 

toolkit experiments are limited to 3-qubit circuits and the symbolic circuit 

representation cannot be extended by using the proposed approach. 

Rubinstein, in reference [46], considers for the genetic algorithm a scheme 

in which a gate has a type, a number of sets for the qubit operands and some sets 

of parameters for different categories (the generalized 2-qubit gate takes four real 

parameters for different types of rotations; the CNOT gate takes a number of 

control qubits, etc). The quantum circuit is considered as a list of gate structures, 

where the size of the circuit (number of gates) is variable. The proposed approach 

has been used to evolve the EPR (Einstein, Podolsky and Rosen) circuits with 2, 3, 4 

and maximum 5 qubits (see Figure 6.1). The approach was dedicated only to EPR 

circuit synthesis and does not provide runtime values, and thus cannot be used for 

further comparisons. 

      

Figure 6.1 Synthesis of EPR Circuits [46] 

Other genetic algorithm based approaches present effective solution only for 

three or four-qubit circuits [11][46]. As stated in reference [11], the main 

difficulties encountered where: complexity of performing Kronecker tensor product 

for large matrixes, a high number of individuals used for the total population (the 

evolved result may be found out in less generations, but employing longer runtime 

of fitness evaluation), and the complexity of encoding a specific quantum gate. Our 

approach tackles these problems firstly by using an OOP (object-oriented 

programming) environment backed by a framework architecture that employs 

optimization techniques; this improves the effectiveness of using quantum 

operations (including the tensor product). Secondly, our chromosome representation 

and meta-heuristic approach allow for using small populations (about 300 

individuals) within the genetic evolution process. Also, another improvement comes 
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from the fact that our approach uses a more flexible encoding scheme for the 

quantum gates, allowing runtime definitions. As a result, the experiments can be 

performed within our synthesis framework for 3 to 7 qubit circuits in a reasonable 

time (less than 1 minute). 

The first two circuits from Figure 6.2 are used to produce the “EPR” 

experiment and the third is a “send” circuit used for quantum teleportation. The 

evolved results from reference [11] are presented in Table 10, together with our 

results that are highlighted in the last table column. A one-point crossover is used, 

and mutation can change the chromosome length. All results have been averaged 

over 20 runs on each gate type set used. The used configuration is: Intel Pentium M 

processor at 1.862GHz, 1GB RAM memory and SuSe 10.3 as operating system. 

 

 

 

Figure 6.2 Synthesis of Composite Circuits [11] 

Table 10. Test the Convergence 

Number of 

inputs per q-
gate 

Number 

of 
generatio
ns 

Pop

ulati
on 
size 

pM pC Real time 

[11] 
(average 
20 runs) 

Our real time 

(average 20 
runs) 

sec clocks 

3-inputs (a) <150 50 0.4 0.6 <1min <1 3.10e+8 

3-inputs (a) <300 50 <0.2 0.6 <2min <1 3.96e+8 

3-inputs (a) 100 50 0.1 0.3 Not 
reported 

<1 6.91e+7 

3-inputs (c) <150 50 0.4 0.6 <1min <1 3.68e+8 

3-inputs (c) <300 50 <0.2 0.6 <2min <1 4.51e+8 

3-inputs (c) 100 50 0.1 0.3 Not 

reported 

<1 8.20e+7 

4-inputs <350 50 0.6 0.4 <2min <2 2.89e+9 

4-inputs <900 50 <0.2 0.4 <3min <2 3.41e+9 

4-inputs 100 50 0.1 0.3 Not 
reported 

<1 4.36e+8 
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Therefore, our proposed genetic quantum synthesis methodology offers, at 

least for the considered experiments, better performance in terms of runtime (the 

values are presented in seconds and in processor clocks). Moreover, if the proposed 

number of generations is decreased (i.e. 100) we are still able to evolve solutions 

and the runtime becomes even better. Our motivation was to evolve more complex 

quantum circuits, and not the benchmark evaluation of the convergence along with 

the effectiveness of the genetic algorithm, although the presented results seem to 

outperform those obtained with the previous approaches. 

Even so, attempting to perform synthesis over a larger number of qubits will 

also have to confront the complexity problem of matrix multiplication. However, we 

intend to further investigate this matter and optimize our framework, in order to 

extend the effectiveness of our approach for even larger quantum circuits, in order 

to obtain an evolved solution in a reasonable time, by using an ordinary commercial 

computer system. 
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Chapter 7  

7. Conclusions and Perspectives 

The pursuit for performance in computers is relentless. If in classical computers the 

acquired experience is vast, developed over almost half a century, in quantum 

computers the race has started relatively recently, in the 1980’s. Even from today’s 

view, it can be foreseen that in the next decade the quantum computer will be 

available. Thus, any improvement on quantum domain is important to be followed. 

This PhD thesis has addressed an important aspect in quantum computing’s 

reversible circuit logic, the automated quantum logic circuit synthesis. This research 

is relevant for the field, as the industry and academia are preoccupied within the 

quantum circuit development where the synthesis problem has the potential of 

playing an important role in the CAD tool evolution [16] [59][10].  

In order to deal with the problems of decoherence and gate support and – 

therefore – bring the entire quantum computing field into a more clear view, the 

researchers from the physics and materials science fields still have a significant way 

to go. In addition, the engineers have many problems to solve, in order to bring a 

real quantum computer, as a super machine based on solid-states qubits with high 

performance, into our daily life. 

7.1  Thesis Impact and Contributions 

This dissertation acknowledges the research directions as defined by ITRS, and 

presents a new quantum logic circuit synthesis methodology, based on genetic 

algorithms. As it is stated in the title, this thesis brings together, in an apprehensive 

and already verified manner, three domains: automatic synthesis, genetic 

algorithms and quantum computing. Following this idea, a software tool chain was 

developed, creating the prerequisites for automatic quantum circuit synthesis. Thus, 

starting with a quantum high-level circuit description and using a specific genetic 

algorithm configuration, the software tool will possibly provide – due to evolutionary 

nature of genetic algorithms - one or more evolved circuit synthesis solutions. 

An improved file parser was developed for the quantum circuit blocks 

identification. The parser creates, in the second phase, the internal data structure 

that is used for circuit optimization. The optimization is made using topological 

placement of the recognized quantum gates. In addition, the validation of the input 

data is one of the main parser features. 

A new genetic algorithm framework was developed, mainly, for the quantum 

logic circuit synthesis assessment. The framework allows genetic algorithm 

implementations and provides the software tools (e.g. runtime measurements, 

statistic data acquisition, random number generators, different selectors, etc) 

necessary for any algorithm evaluation. It was shown that object oriented 
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programming and design patterns are able to create an extensible architecture for 

developing new genetic solutions.  

A meta-heuristic approach is presented for the automatic tuning of 

parameters control, as defined in a genetic algorithm that is used for the purpose of 

quantum logic circuits synthesis. Statistical data are saved on each generation, and 

then analyzed by an adaptive algorithm that dynamically adjusts the parameter 

control values. In addition, the methodology presented here offers a strategy that 

implements the Rechenberg rule and the operators performance analysis in a circuit 

synthesis algorithm.  

A quantum circuit repository was created for providing the quantum circuit 

characteristics to the synthesis genetic algorithm. Within the repository, the 

available quantum gates characteristics are dynamically generated by following the 

corresponding mathematical formula. In this way, the repository will contain only 

valid gates for the user-defined number of qubits (which is also computed at 

runtime). 

A UML software model was created for the quantum synthesis problem, 

allowing a facile presentation for this complex problem. The object-oriented 

approach has enhanced the software reusability, extensibility and maintenance, 

hence allowing - at the same time - better runtime execution. 

 We have evaluated the performance of our quantum synthesis methodology 

by building a software tool that implements all the proposed concepts. The 

experiments have been conducted using quantum benchmark circuits [51] as inputs, 

and the evolved solutions implement the same functionality as their counterpart 

inputs. The resulting reduction in evolved solution runtime, as compared with other 

approaches, comes mainly from two sources: object-oriented implementation and 

meta-heuristic adaption of the application parameter controls. 

 

As a remainder, the main contributions to quantum logic circuit synthesis 

and optimization methodologies presented in this PhD thesis, and also published in 

papers, are: 

 

 A genetic algorithm dedicated to quantum logic circuit synthesis. A new view 

on quantum circuits, the split in sections and planes, is used in order to 

encode the quantum circuit. New genetic operators are applied at the gene 

level, as well as inside the gene. A quantum circuit repository stores the 

quantum circuit characteristics and provides a unique interface point for new 

circuit addition. 

 

 A new framework architecture, that allows construction of different genetic 

algorithms; examples that validate the framework effectiveness are 

included: methinks and knapsack. The framework is used for the quantum 

logic circuit synthesis process, the statistical information being used to 

optimize the algorithm.  
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 A meta-heuristic method for adaptation of the genetic algorithm 

parameters, allows finding the optimum genetic algorithm control 

parameters without user intervention. 

 

 A quantum logic circuit synthesis methodology transformed into a software 

application, developed for quantum logic circuit synthesis. The experiments 

and the source code availability prove the efficiency of this approach for task 

of quantum logic circuit synthesis.  

 

Due to these improvements, our genetic-algorithm-based quantum circuit 

synthesis methodology is able to obtain significant runtime gains over other GA-

based quantum circuits approaches [128][132][133][46][11]. Moreover, synthesis 

can be performed effectively even for large circuits (6-7-qubit), as it is shown, in the 

experiments section. It is worth noticing that other mentioned approaches are able 

to perform synthesis only for 3-4 qubit circuits, due to the high complexity of the 

matrix multiplication. 

7.2  Future Directions 

Although many of the questions identified during this research process have been 

dealt with, some of them still worth further investigation in the near future. 

7.2.1  Refinement and Future Work 

 

 Quantum circuit representation: even if improved matrix representation and 

optimized library methods are used now, some improvements may be 

applied to allow fast operations on many qubits. The actual solution for the 

large matrix multiplication was presented by Don Coppersmith and Shmuel 

Winograd in 1990 and has the complexity of O(n2.376). 

 

 Quantum gate cost and feasibility: new theoretical results might come into 

the public view in the near future and the solution refinement will be 

necessary in order to follow the state-of-the-art trend. This adjustment is 

necessary because only few details are known at this moment. 

 

 Quantum circuit database: the definition of additional, more complex 

quantum logic circuits will increase the range of synthesis algorithm and will 

allow for evolving new possible solutions. 

 

 Controlled gate: the representation needs to be improved in order to allow 

target qubit definition at arbitrary positions within the gate. For this 

purpose, the QHDL needs a language extension in order to allow this 

complex representation. This change will complete the proposed basic 
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quantum gate set and will allow for more quantum gate combinations on the 

chromosome initialization. 

7.2.2  QCS Integration 

The genetic algorithm framework and the quantum-synthesis-based genetic 

algorithm may become interesting in the near future for other research applications. 

The design and source code availability allows for easy adaptation to other CAD 

tools. In addition, it will be possible to integrate (within a standalone environment) 

a quantum simulator and a quantum synthesis tool. Several discussions are 

ongoing, at this moment [134][10][55][99][93], keeping alive the hope that a 

complete tool chain for quantum logic circuits will be soon available. 
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8. Appendix 

8.1  Object Oriented Metrics 

Having good software also means having software quality assurance. There are 

several ways to reach software quality: following a defined development process 

(from requirements through testing), performing reviews in order to find a second 

opinion and flaws from the very beginning, by using automatic software tools that 

indicate (via metric-based checks) the software quality reached during ongoing 

development. In this appendix, two major metrics parts are described: program unit 

complexity and class object-oriented metrics. The software used to detect flaws and 

to measure the software indicators is “Understand” [135], that was developed by 

the SCITools. The metric definitions are copied from the tool help pages. On the 

long run of the software domain, the software metrics have always been associated 

with software engineering, and there is no way to avoid using them. 

8.1.1  Framework Program Unit Complexity 

The program unit complexity reports the McCabe (Cyclomatic) complexity value for 

the methods defined within a module. A higher number for this metric indicates that 

the program unit is more likely to be tested with difficulty and maintained without 

error. In the following table (Table 11), only the methods that overreach the 

average values are described. 

Table 11. Program Unit Complexity Metric 

Method 
 

Cyclo
matic 

Modi
fied 

Str
ict 

Esse
ntial 

Nest
ing 

Path 
Count 

ToffoliTCC::_MakeToffoli_t_c_c  11 11 12 1 4 98 

Population::_Operators 12 12 16 1 4 90 

QHDLParser::_ReadGate 12 12 16 4 4 42 

QSyn::_CreateGA 13 13 13 1 1 405 

Synthesis::p_CrossoverBType  13 13 15 1 2 216 

Synthesis::_GenerateGate 17 16 21 1 4 27 

QHDLParser::_ReadGates 21 21 21 1 5 9858 

Adaptive::_ShowStatisticPerform
anceValues 

22 14 22 1 2 143 

QSyn::b_ReadCfgFile 23 23 26 1 1 235929
6 

Synthesis::p_Translate 31 17 33 15 4 63 

 

The definitions according to the reference [135] are: 
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 Cyclomatic: “The measure of the complexity of a function's decision 

structure; it is also the number of basis, or independent, paths through a 

module. Sometimes also called the McCabe Complexity after its originator.” 

 

 Modified: “Cyclomatic except each case statement is not counted; the entire 

switch counts as 1.” 

 

 Strict: “Same as Cyclomatic complexity except that && and || also count as 

1.” 

 

 Essential: “Measures the amount of unstructured code in a function.” 

 

 Nesting: “Shows the maximum nesting level of control constructs in 

program unit.” 

8.1.2  Framework Class OO Metrics 

The Class OO Metrics provides the object-oriented code metrics for the analyzed 

classes. In the following table (Table 12), only the methods that overreach the 

average values are described. 

Table 12. Class OO Metrics 

Class LCOM DIT IFANIN CBO NOC RFC NIM NIV WMC 

Adaptive 75 0 0 4 0 13 13 12 13 

FileParser 65 0 0 1 0 9 9 7 9 

GA 75 0 0 4 1 22 22 8 22 

GateCollection 68 0 0 19 0 11 10 2 11 

Genome 75 0 0 2 1 20 20 5 20 

HistorySolutions 57 0 0 2 0 7 7 5 7 

Population 79 0 0 9 0 27 27 18 27 

QHDLParser 79 0 0 4 0 23 23 8 23 

QSyn 51 0 0 16 0 8 8 7 8 

QuantumGate 70 0 0 0 16 19 19 8 19 

Synthesis 70 1 1 10 0 49 29 4 29 

SynthesisCfg 60 0 0 2 0 12 11 4 12 

 

The definitions according to reference [135] are: 
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 LCOM: “Percent Lack of Cohesion is 100% minus the average cohesion for 

class data members. A method is cohesive when it performs a single task.” 

 

 DIT: “Max Inheritance Tree is the maximum depth of the class in the 

inheritance tree.” 

 

 IFANIN: “Count of Base Classes is the number of immediate base classes.” 

 

 CBO: “Count of Coupled Classes is the number of other classes coupled to 

this class.” 

 

 NOC: “Count of Derived Classes is the number of immediate subclasses this 

class has.” 

 

 RFC: “Count of All Methods is the number of methods this class has, 

including inherited methods.” 

 

 NIM: “Count of Instance Methods is the number of instance methods this 

class has.” 

 

 NIV: “Count of Instance Variables is the number of instance variables this 

class has.” 

 

 WMC: “Count of Methods is the number of local methods this class has.” 

8.2  QCS Initial Genome Solution 

The initial genome is created by the synthesis algorithm, using the parsed 

information from the input file. The initial genome is necessary for further 

comparison with the evolved solutions (method source code is available in Figure 

8.1). 
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Figure 8.1: Creation of the Initial Genome 

8.3  Statistic Details 

The Statistical class is implemented as a container for different object types using a 

template parameter. The class provides basic methods that are implemented in the 

class instances, for the statistical functions: maximum, minimum, average and 

standard deviation (method source code is presented in Figure 8.2). 

 

void QSyn::_CreateInitialSolutionGenome() { 

  // create the initial solution genome 

  itsInitialGenome = new Synthesis(*itsRandom, s_Config_.e_MutationType,              

 s_Config_.e_CrossoverType) ; 

 

  // create the relation in SynthesisCfg 

  // it is important to have at that level the initial genome 

  SynthesisCfg::rc_GetInstance()._SetInitialGenome(itsInitialGenome) ; 

 

  // get the number of qubits 

  int qubits = myQHDL.n_GetNoOfQubits() ; 

  int i = 0 ; // for subelements 

  int j = 0 ; // for elements 

  bool b_valid = true ; 

 

  // get the current element 

  boost::shared_ptr<Nod> Element = myQHDL._GetListElement(i,j, b_valid) ; 

  while ( (Element!=0) && (b_valid) ) 

  { 

        // get the current subelement 

        boost::shared_ptr<Nod> SubElement = myQHDL._GetListElement(i+1,j, b_valid) ; 

        while ( (SubElement!=0) && (b_valid) )  

        { 

  // initiate the genome with the subelement 

  itsInitialGenome->_Initiate((j+(i*qubits)), *SubElement) ; 

    

  // goto next subelement 

  i++ ; 

  SubElement =  myQHDL._GetListElement(i+1, j, b_valid) ; 

          } 

   

          // reinitialize the subelement and increment the element 

          i = 0, j++ ; 

    

          // goto next element 

          Element = myQHDL._GetListElement(i, j, b_valid) ;  

   } 

 

  // compute the output function and save it into the  

  // QuantumGate at the SynthesisCfg level 

  SynthesisCfg::rc_GetInstance()._ComputeOutputFct() ; 

} 
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Figure 8.2: Statistic Methods 

template <class T> void Statistic<T> ::_AddToHistory(const T& ObjectToAdd) { 

     HistoryList_.push_back(ObjectToAdd) ; 

} 

 

template <class T> T Statistic<T> ::c_GetMean() { 

    T result = HistoryList_[0] ;     

    // no. of elements in vector 

    int lsize = int(HistoryList_.size()) - 1 ;  

     

    for(int i=0; i<lsize ; i++) 

    { 

     // first calculate the sum 

     result = result + HistoryList_[i+1] ; 

    }     

    // then calculate the mean 

    result = ComputeMean(result, (lsize+1)) ;     

    return result ; 

} 

 

template <class T> T Statistic<T> ::c_GetSTDEV() { 

    T result, empty ; 

    T mean = c_GetMean() ; // get the mean value 

     

    int lsize = int(HistoryList_.size()) ;      

    // stdev only between two objects 

    if (lsize>1) 

    { 

     // sum Xi*Xi 

     for(int i=0; i<lsize ; i++) 

     { 

         result = result + HistoryList_[i]*HistoryList_[i] ; 

     }    

     // sum Xi*Xi - N*Xmean^2 

     result = result - lsize*(mean*mean) ; 

      

     if ( result>0 ){  

      result = ComputeSquareRoot(result / lsize) ; 

      return result ; 

     } 

    }  

     

    // otherwise return an empty object 

    return empty ; 

} 
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8.4  QCS Genome Implementation Details 

In this section, the genome implementation details are described, by highlighting 

the most important methods from the Synthesis class. 

 

Figure 8.3: Output Function Computation 

void Synthesis::_ComputeOutputFct(QuantumGate& GateResult) { 

    // temporary gates 

    QuantumGate GateMultiplicationTmp, GateTensorialTmp ; 

    QuantumGate GateMultiplication, GateTensorial ;  

    // actual read gate 

    QuantumGate ReadGate ;     

    // index inside of gene 

    bool FirstLocus = true ,  FirstGene = true ; 

     

    // compute first the output function 

    while (n_GeneIndex < SynthesisCfg::rc_GetInstance().n_GetChromosomeLength()) 

    { 

     ReadGate = rc_DetectNextGate() ;  // read actual gate 

     // save the result for doing multiplication 

     if (b_NewSection && FirstGene) 

     { 

      FirstGene = false ; 

      // only the first section was read, thus save it into Tmp 

      GateMultiplicationTmp = GateTensorialTmp ;       

      FirstLocus = true ; // re-initialize the locus 

     }    

     else if (b_NewSection) 

     { 

      FirstLocus = true ;    // re-initialize the locus 

      // do the multiplication 

      (void) QMath::b_Multiply(GateMultiplicationTmp, GateTensorialTmp, 

   GateMultiplication) ;       

      // save it for further multiplication 

      GateMultiplicationTmp = GateMultiplication ; 

     }     

     // save result for product tensor 

     if (FirstLocus) 

     { 

      FirstLocus = false ; 

      // only the first gate was read, thus save it into Tmp 

      GateTensorialTmp = ReadGate ; 

     } 

     else 

     { // do the tensor product 

      QMath::_Tensorial(GateTensorialTmp, ReadGate, GateTensorial)  ;      

      // save it for further tensor product 

      GateTensorialTmp = GateTensorial ;   

     }  

    }     

    // perform the last multiplication 

    (void) QMath::b_Multiply(GateMultiplicationTmp, GateTensorialTmp,GateMultiplication);     

    n_GeneIndex = 0 ;        // reset the gene index for a further output computation 

    GateResult = GateMultiplication ;    // return it via argument 

} 
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The TypeA Mutation is responsible with the mutation operator applied at the 

gene level (the complete gene is replaced by others randomly generated values). 

The TypeB Mutation is responsible with the mutation operator applied inside the 

gene level (one quantum gate is replaced by other randomly generated gate). If the 

selected locus for mutation is used by a quantum gate with more than one input, 

the locus is moved to the right, and start/stop indexes are computed in order to 

allow the complete quantum gate detection. 

 

Figure 8.4: TypeA/TypeB Mutation 

 

void Synthesis::_MutationAType()  

{ 

    b_WasEvaluated_ = false ; 

     

    int NoOfGenes = SynthesisCfg::rc_GetInstance().n_GetNoOfGenes() ; 

    int GeneLength = SynthesisCfg::rc_GetInstance().n_GetGeneLength() ; 

     

    // select a gene from the chromosome 

    int SelectGene = itsRandom->RandInt(0, NoOfGenes-1) ; 

     

    // perform mutation by replacing the complete gene values (only one gene is affected) 

    _InitiateLocus(SelectGene*GeneLength, (SelectGene+1)*GeneLength - 1 ) ;  

} 

 

void Synthesis::_MutationBType()  

{ 

    b_WasEvaluated_ = false ; 

     

    int NoOfGenes = SynthesisCfg::rc_GetInstance().n_GetNoOfGenes() ; 

    int GeneLength = SynthesisCfg::rc_GetInstance().n_GetGeneLength() ; 

     

    // select a gene from the chromosome 

    int SelectGene  = itsRandom->RandInt(0, NoOfGenes-1) ; 

    int SelectLocus = itsRandom->RandInt(0, GeneLength-1) ;  

     

    int StartIndex = SelectGene*GeneLength+SelectLocus ; 

     

    // perform mutation 

    _InitiateLocus(StartIndex, StartIndex) ; 
} 
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Figure 8.5: Locus Initialization 

 

void Synthesis::_InitiateLocus(int StartIndex, int EndIndex)  

{ 

    int NoOfGenes = SynthesisCfg::rc_GetInstance().n_GetNoOfGenes() ; 

    int GeneLength = SynthesisCfg::rc_GetInstance().n_GetGeneLength() ;  

     

    // detect the possible different start and stop index 

    _DetectGateStartLeft(StartIndex, StartIndex) ; 

    _DetectGateStopRight(EndIndex, EndIndex) ; 

     

    int StartGateId = 1; 

    if (StartIndex > 0) 

     StartGateId = ac_Genome[StartIndex - 1]._ReturnGateId() + 1 ; 

      

    // generate random values 

    for(int i=StartIndex; i<=EndIndex; i++) 

    { 

     int MaxGateInputs = GeneLength - (i%GeneLength) ; 

     // special case when not the complete gene is affected 

     if ((EndIndex - StartIndex + 1) < GeneLength ) 

      MaxGateInputs = EndIndex - StartIndex + 1 ;  

      

     // generate one or more quantum gate, but with Max No. of Inputs defined 

         _GenerateGate(MaxGateInputs, i, i, StartGateId) ; 

    } 

     

    // affect the rest of the gates id (to be consecutive numbers) 

    _ShiftIds((EndIndex+1), NoOfGenes*GeneLength, StartGateId) ; 

} 
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Figure 8.6: Type A Crossover 

boost::shared_ptr<Genome> Synthesis::p_CrossoverAType(Genome& spouse) { 

    int ChromosomeLength = SynthesisCfg::rc_GetInstance().n_GetChromosomeLength() ; 

    int GeneLength = SynthesisCfg::rc_GetInstance().n_GetGeneLength() ; 

    int NoOfGenes = SynthesisCfg::rc_GetInstance().n_GetNoOfGenes() ;     

    // create a new offspring 

    boost::shared_ptr<Synthesis> offspring(new Synthesis(*itsRandom, e_MutationType_,

  e_CrossoverType_)) ;     

    // copy the value from its parent 

    *offspring = *this ; 

    offspring->_ClearEvaluatedFlag() ;     

    // select random cut 

    int CutPoint1 = itsRandom->RandInt(0, (NoOfGenes-1)) ;     

    // detect the locus within chromosome 

    int StartIndex = 0, StopIndex  = 0 ; 

    int LastIndex  = ChromosomeLength - 1 ; 

     

    if (e_CrossoverType_ == Genome::e_OnePoint) // type of crossover is OnePoint 

    { 

     StartIndex = CutPoint1*GeneLength ; // compute the start index 

     StopIndex = LastIndex ; // stop index is at the chromosome length 

    } 

    else if (e_CrossoverType_ == Genome::e_TwoPoints)// type of crossover is TwoPoints 

    {     int CutPoint2; 

     do  

     { 

      CutPoint2 = itsRandom->RandInt(1, NoOfGenes) ; 

     } while( CutPoint2 == CutPoint1); 

     if (CutPoint2 < CutPoint1)      // order the cut points 

     { 

      int tmp = CutPoint1 ; 

      CutPoint1 = CutPoint2 ; 

      CutPoint2 = tmp; 

     }      

     StartIndex = CutPoint1*GeneLength ;     // compute the start index 

     StopIndex  = (CutPoint2*GeneLength) - 1 ; // compute the stop index value 

    } 

    // perform the crossover, copy the gene or genes between start index and stop index 

    for (int i=StartIndex; i<=StopIndex; i++) 

     // do the exchange 

     offspring->ac_Genome[i] = dynamic_cast<Synthesis&>(spouse).ac_Genome[i] ;     

    int StartGateId = 1 ; 

    if (StartIndex >= 1) 

     StartGateId = offspring->ac_Genome[StartIndex-1]._ReturnGateId() + 1 ;  

     

    // affect the gates id (to be consecutive numbers) 

    offspring->_ShiftIds(StartIndex, StopIndex, StartGateId) ;     

    if (StopIndex != LastIndex) 

    {     StartGateId = offspring->ac_Genome[StopIndex]._ReturnGateId() + 1 ;  

     // affect the rest of gates id (to be consecutive numbers) 

     offspring->_ShiftIds(StopIndex+1, LastIndex, StartGateId) ; 

    }                         

    return offspring ;    // return the child 
} 
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8.5  Quantum Gates Cost 

In the available articles, the subject of quantum gate cost is not completely covered 

by information about physical quantum gates. Therefore, from a theoretical point of 

view, several possibilities are possible in order to define and introduce the quantum 

gate cost propriety. 

8.5.1  Cost Details using General Approach 

Each quantum gate physical implementation complexity is evaluated by introducing 

two proprieties: cost and feasibility. Because the genetic algorithm approach does 

not know any details about the circuit output function, or about the circuit garbage 

qubits, the number of quantum qubits involved in the quantum gate is part of a 

mathematical formula with the scope of defining the quantum circuit cost value. For 

example, having an increased number of qubits into a quantum gate will increase 

the cost and will decrease its feasibility. In the following table (Table 13), the gates 

and their associated formula for cost and feasibility are also presented. In this way, 

is possible to compare and grade intermediate evolved results. 

Table 13. Gate Costs and Feasibility 

Gate Name I’s between Quantum Feasibility Quantum Cost 

Hadamard 0 100 1 

X 0 100 1 

Y 0 100 1 

Z 0 100 1 

S 0 100 1 

T 0 100 1 

I 0÷n 100 1 

CNOT 0÷n 100*2/(2+n) 2+n 

CZ 0÷n 100*2/(2+n) 2+n 

CS 0÷n 100*2/(2+n) 2+n 

Swap 0÷n 100*2/(2+n) 2+n 

Toffoli 0÷n 100*3/(3+n) 3*(1+n) 

 

8.5.2  Cost Details using Function Output 

Each quantum gate has (as associated) a cost reported in comparison with Toffoli 

and generalized Fredkin gates. The following table (Table 14) describes the quantum 

costs of the generalized Toffoli gates, according to the paper published by 

Barenco.et.al. [32], by taking into consideration the a priori knowledge about the 

circuit function (number of garbage qubits). This cost cannot be used in a genetic 

algorithm approach, because on randomly generated gates the number of garbage 

gates remains unknown. 
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Table 14. Toffoli Gate Costs [51] 

Size (n) Garbage Name Quantum Cost 

1 0 NOT, t1 1 

2 0 CNOT, t2 1 

3 0 Toffoli, t3 5 

4 0 Toffoli, t4 13 

5 0 t5 29 

5 2 t5 26 

6 0 t6 61 

6 1 t6 52 

6 3 t6 38 

7 0 t7 125 

7 1 t7 80 

7 4 t7 50 

8 0 t8 253 

8 1 t8 100 

8 5 t8 62 

9 0 t9 509 

9 1 t9 128 

9 6 t9 74 

10 0 t10 1021 

10 1 t10 152 

10 7 t10 86 

n>10 0 tn 2n-3 

n>10 1 tn 24n-88 

n>10 n-3 tn 12n-34 

 

The Fredkin gate may be efficiently simulated by using n Toffoli gates and 

two additional CNOT gates. Therefore, the cost for the n Fredkin gate is computed 

as the cost of n Toffoli gates plus two (the CNOT gate cost is equal to one). 

8.6  GNUplot Script 

The following script was used to generate automatically all the statistic graphs that 

were presented throughout this dissertation. The script receives, as input, the 

quantum synthesis results coded as text files and, after processing, it plots the 

graphics. The conversion of the postscript result file into EPS, JPEG, GIF, TIFF or 

PDF was performed by using the ImageMagick19 software. 

                                               
19 ImageMagick, http://www.imagemagick.org/script/index.php 
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Figure 8.7: GNUplot Script 

set size 1.0, 1.0 

set origin 0.0, 0.0 

set term postscript enhanced color "Arial" 12 

set output 'fig.ps' 

set multiplot 

set size 0.45,0.35 

set origin 0.0,0.65 

set grid 

unset key 

 

set title "Best Individual Fitness Evolution"   #  Plot Best Individual  

set ylabel "Fitness value" 

set xlabel "Generation (number)" 

plot  'fitness.txt' using 1:2 every :::0::9 

 

set size 0.6,0.25    #  Plot Algorithm Performance 

set origin 0.0,0.0 

set notitle 

set xrange [ 0 : 9 ] noreverse nowriteback 

set xlabel "Runs (number)" 

set ylabel "Solutions" 

set boxwidth 0.9 absolute 

set style fill  solid 1.00 border -1 

set style histogram clustered gap 1 

set style data histograms 

set lmargin 11 

plot 'stat_solution.txt' using 2 ti col 

 

set size 0.6,0.4    #  Plot time Performance 

set origin 0.0,0.25 

set title "Algorithm performance" 

set xrange [ 1 : 10 ] noreverse nowriteback 

unset xlabel 

set noxtics 

set ylabel "Average Time (ticks)" 

set style data lines  

plot 'stat_solution.txt' using 1:3 lw 4 

 

set size 0.6,0.4    #  Plot Statistic Fitness evolution 

set origin 0.4,0.6 

set autoscale xy 

set title "Statistic Fitness Evolution" 

set key inside 

set ylabel "Fitness value" 

set xlabel "MIN MEAN MAX STDEV / Generation" 

set boxwidth 0.9 absolute 

set style fill  solid 1.00 border -1 

set style histogram clustered gap 1 

set style data histograms 

set noxtics 

set yrange [ 0 : 1 ] noreverse nowriteback 

plot 'stat_fitness.txt' using 5 index 0 ti col, '' u 6 index 0 ti col, '' u 7 index 0 ti col 

 

 

unset key 

 

 

#  Plot MetaHeuristic Adaption 

set origin .55,0. 

set size 0.45,0.6 

set key left top 

set title "Mutation and Crossover Adaption" 

set ylabel "Probability value" 

set xlabel "Generation (number)" 

set style data lines 

set xtics autofreq 

set autoscale xy 

plot \ 

     'perf_oper_prob.txt' u 1:2:3 w filledcu title 'Mutation', '' u 1:2 lt -1 notitle , '' u 1:3 lt -1 

notitle,\ 

     'perf_oper_prob.txt' u 1:4:5 w filledcu title 'Crossover', '' u 1:4 lt -1 notitle , '' u 1:5 lt -

1 notitle 
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