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Abstract,  

The direct use of the hand as an input device is an attractive 
method for providing natural human–computer interaction. Computer 

Vision community tried to solve the hand gesture recognition problem 
by following the paradigm: hand localization, hand segmentation, 
feature extraction and next step hand classification, without any 
abstract representation in between the last two steps. In this work is 
proposed to use compositional techniques in order to recognize the 

hand gestures. Compositional representations split complex objects 
into simpler parts, which are easier to recognize and using the 

relationships between them, the complex object is recognized. The 
main advantage of the compositional techniques is their generality; 
these techniques are more independent of application. Using these 
techniques we address also to the semantic gap that exists between 
the low level features and high level representations.  

 This work is an attempt to extend the types of problems 
solved based on the new, compositional approach. The hand posture 

representation is based on compositions of parts: descriptors are 
grouped according to the perceptual laws of grouping obtain a set of 
possible candidate compositions. These groups are a sparse 
representation of the hand posture based on overlapping subregions. 

The power of compositional techniques for hand gesture 
recognition is proved by the results that have been obtained. 
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1 MOTIVATION 

People perform various gestures in their daily lives. It is in our nature to use 
gestures in order to improve the communication between us and the people that 
surround us. Try to imagine speaking with a person who makes no gesture, 
someone who is not moving his or her hands or has no has facial expression. It is 

very difficult to understand if your message is clear for him or her, if he or she 
agrees with your saying, in other words it is very hard to guess what type of 

reaction your message produces. Between all kind of gestures that we perform, 
hand gestures play an important role. Hand gestures can help us say more in less 
time, if we use them correctly. By using just a hand gesture it is possible to say: 
good luck, I am watching you, I love you, patience, hello, good bye, quiet, ask for 
money, time out and so one. In these days, computers have become an important 

part in our lives, so why not use hand gesture in order to communicate with them.  

1.1  The problem 

The direct use of the hand as an input device is an attractive method for 
providing natural human–computer interaction (HCI). Since now, the only 
technology that satisfies the advanced requirements of hand-based input for HCI is 
glove-based sensing. Several drawbacks make this technology not so popular: first 
of all interaction with the computer-controlled environment loses naturalness and 

easiness and it also requires calibration and setup procedures. Computer vision has 

the potential to provide more natural and non-contact solutions, but has no lake of 
challenges including accuracy, processing speed, and general have to be overcome 
for the widespread use of this technology. Vision based models can be classified in 
two groups: 3D model based and appearance based models. The 3D hand models 
are articulated deformable objects with many degrees of freedom; a very large 
image database is required to cover all the characteristic shapes under different 

views. Another common problem with model based approaches is the problem of 
feature extraction and lack of capability to deal with singularities that arise from 
ambiguous views. By using appearance based methods, computer vision community 
tried to solve the hand gesture recognition problem by following the paradigm: hand 
localization, hand segmentation, feature extraction and next step hand 
classification, without any abstract representation in between the last two steps. 

View-based methods have been shown to be effective at discriminating between a 
certain number of hand poses, which is satisfactory for a number of applications in 
gesture recognition. One of the main problems in view-based methods remains the 
segmentation stage. 

1.2 The Solution 

Compared to traditional appearance based approaches, this work proposes 
to use compositional techniques in order to recognize the hand gestures. 

Why compositional techniques may one wonder? Because these techniques 
are able to emulate better the way people think. Even if my field of interest was 
wider [1], [2], [3], [4], [5], I narrowed it down to compositional techniques [6], 
[7], [8], [9].   Compositionality refers to the prominent ability of human cognition to 
represent entities as hierarchies of meaningful and generic parts. 
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1.2   The Solution   11 

Compositional representations decompose complex objects into simpler 
parts, which are easier to recognize and using the relationships between them, the 

complex object is recognized. These techniques have been studied in many diverse 
fields such as linguistics, logic, and neuroscience, but compositionality is especially 
evident in the syntax and semantics of language where a limited number of letters 
can form a huge variety of words and sentences. In computer vision these 
techniques are used in the context of a general problem: categorization. In the 
literature the terms class and category are often used interchangeably. Image 
categorization does refer to the task of deciding what category a whole image 

belongs to. Therefore, the image is labeled according to its most prominent object. 

There are also other categorization settings conceivable such as action recognition 
where an image or video sequence has to be labeled as featuring one of several 
possible actions. 

The main advantage of the compositional techniques is their generality; 
these techniques are more independent of application. Using these techniques we 
address also to the semantic gap that exists between the low level features and high 

level representations. During the years researchers have tried to fill this gap, by 
using the compositional techniques there is actually a bridge build over the semantic 
gap. Recognition does not imply a huge step from feature to classification any more, 
now we can step between by building compositions. In order to build compositions 
the Gestalt laws of visual perception are taken into account. These laws are a set of 
visual rules that guide the construction process of groupings and yield compositions, 

establishing causal relationships between grouping constituents, and tend to 
emulate better the way our brain-view processor works. 

The key idea of this thesis is to use these techniques for the more specific 

problem: the hand posture recognition. By hand posture we refer to a static hand 
pose without involvement of movements. This work is an attempt to extend the 
types of problems solved based on the new, compositional approach. While using 
the general framework of some reference compositional techniques [10], [11] this 

work designed the processing modules by considering the specifics of the hand 
gesture recognition problem, where needed. A hand posture representation is based 
on compositions of parts: descriptors are grouped according to the perceptual laws 
of grouping [12]obtain a set of possible candidate compositions. These groups are a 
sparse representation of the hand posture based on overlapping subregions. 

 The detected part descriptors are represented as probability distributions 
over a codebook which is obtained in the learning phase. A composition is a mixture 

of the part distributions. From all candidate compositions, relevant compositions 
must be selected. There are two types of relevant compositions: those compositions 
that occur frequently in all categories and also those which are specific for a 
category. The category posterior of compositions is learned in the training phase, 
and it is a measure of relevance. The entropy of the category posterior helps us to 

discriminate between categories. A cost function is obtained by combining the priors 

of the prototypes and the entropy. The process of recognition is based on bag of 
composition method, where a discriminative function is defined. 
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12   Motivation   1 

 

1.3 Contributions  

The main contributions of this thesis are: 

 
 the compositional approach used to hand posture recognition 
 
 the careful selection of the basic features (contours, interest points, 

patches, colour histograms, orientation histograms), these basic 
features generate compositions. 

 

 
 the optimizations of several parameters from the framework 
 
 the discriminate function 

1.4 Thesis Outline 

This thesis is organized as follows: 
 

 Chapter 2 gives an overview of various crucial components of visual 
object recognition systems. In this chapter is also presented a short 
overview of vision based hand gesture recognition. This chapter 
reviews the basic concepts needed for the presentation of the 
composition system in later parts of the thesis. 

 

 Chapter 3 presents the theoretical fundamentals needed to develop 

the hand gesture recognition system: Canny edge detector, Harris 
corner detector, Principle of Compositionality, Gestalt laws, Learning 
Paradigms and Robust Estimation.  

 
 Chapter 4 presents the proposed compositional approach to hand 

gesture recognition. Here are presented in detail all the 

implementation steps of the systems starting with feature detection, 
object representation, training, and finally recognition. In this 
chapter the differences between traditional pattern recognition and 
compositional approaches with regard to each of these stages are 
pointed out. The motivations behind the modelling decision are 
presented.  

 

 Chapter 5 presents the tests results using the proposed method 

and prove the power of compositional techniques used in hand 
gesture recognition. 

 
 Chapter 6 presents the contributions and conclusions of this work. 
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2 RELATED WORK 

2.1  Model-Based Vision and View-Based Approaches: An 

Overview 

In the object recognition community, object representations have spanned a 

continuum ranging from generic models to appearance-based models. The evolution 
of object recognition according to [13]  can be seen in figure 1. The rationale of 

model-based vision is to center the representation on the physical objects so that it 
becomes invariant with respect to view changes. On the other side of model-based 
methods, view-based approaches are founded on models which are directly centered 
on the observed view of an object in an image. 

At the beginning of vision research image acquisition was heavy and costly, 
so in the 1970’s, a main stream of research focused on the geometry of objects 
thereby leaving aside appearance information, so it can be talked about geometry 

without appearance. The 3-D geometry of an object used to be described by 
decomposing it into simple primitives. In this years vision researchers aimed for 
prototypical vision systems, using generalized cylinders [14], [15], [16], [17]  and 
later super-quadrics [18], [19], [20], [21] and geons [22], [23], [24], [25]. 

Some examples of classical vision systems are Brooks’ ACRONYM system 
[26] and Binford’s SUCCESSOR [27].The 1980’s are characterized by 3-D models 

that captured the exact shape of the object, this models, often in the form of CAD 

models, were effectively 3-D templates [28] ,[29],[30]. 
The model-based approaches differ from each other by the intrinsic 

representation they use for 3-D objects. Lowe’s approach [31] is build on a direct 3-
D representation while in  [32] Ullman and Basiri proposed an approach to 
recognition in which a 3-D object is represented by the linear combination of 2-D 
images of the object,  more precisely this approach incorporate a mixture of 2-D 

models that are matched to the image using lines and points. 
Research of human vision has seen a related debate. Some argue that the 

brain uses a 3-D representation. In [33] Biederman proposes  geons, a set of 3-D 
primitives like cones, cylinders, or cuboids, the  idea is that any object is 
decomposed into these generic constituents; in contrast to this idea, a view-based 
representation has been proposed in [34]. 
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14 

 
 

Figure 1 Evolution of object recognition 
 

In the 1990’s, appearance models have replaced CAD models, and for the 
first time, recognition systems were constructed that could recognize arbitrarily 
complex objects, [35], [36], [37].  
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2.1   Model-Based Vision and View-Based Approaches: An Overview    15 

2.1.1 Appearance without Geometry 

The view-based approaches are founded on models which are directly 

centered on the observed view of an object in an image. In [38] a template based 
approach is pursued, images are sub sampled before summarizing the pixels in a 
vector and classification is then performed using a linear support vector machine. In 
[39] to obtain invariance of the object translation, is used a view-based approach 
with multiple detectors that are each specialized to a specific orientation of the 
object. In [40] to obtain invariance with respect to object translation sliding 
windows are used. The image is divided into regions and each of these segments is 

matched against the template. Based on the matching score is then decided which 
region contains the object of interest. Similarly, invariance to scaling, or rotation 
can be incorporated by additionally searching over scale and orientation. Moreover, 
the unsupervised dimensionality reduction methods are also popular. In order to 
obtain compact image description that is invariant to local image alteration (for 
example environmental factors like shadows or clutters), the comparison is typically 
conducted in the feature space, which results from projecting the image space using 

linear or non-linear methods. Principle component analysis is a widely used 
technique  [41] to reduce the dimensionality of the data set consisting of a large 
number of  interrelated variables while retaining the variation presented in the data 
set. The PCA conducted to eigenspace space representations and their particular 
case eigenfaces.  In [35] the face images are decompose into a small set of 
characteristics feature images called eigenfaces. The image is recognizing by 

projecting it into the subspace span by the eiganfaces. In this approach each class 
has its own eigenspace, represented by those best eigenfaces that have the larger 

eigenvalues and account for the most variance within the set of face images. In [36] 
Murase and his team obtain a single  parametric eigenspace (which encode both 
identity and viewing conditions)  for the image set by computing the most 
prominent eigenvectors of the image set, then all the training sample are projected 
onto the eigenspace , and recognition is no more than nearest-neighbor search [42] 

in the eigenspace for the training closest sample. Before applying a PCA approach 
global image transformations such as translation, scaling, or illumination changes 
have to be removed in a preprocessing stage.  This eigenspace approaches are 
holistic, the view-based models based on holistic representation are sensitive to the 
variation in the spatial structure of the object. The deformable template matching 
[43], [44] compensates for variations in the spatial structure by applying a global 
transformation when matching templates. The deformable models proposed in 

literature can be classified according to [44] in free-form and parametric. The free-
form deformable models have no global structure of the template, the template 
constrains refers to local continuity and smoothness. The parametric form is used 

when it is some prior knowledge of the geometrical shape. This information is 
encoded in small numbers of parameters. The parameter deformable template is 
represented as a collection of parameterized curves or by the image of a prototype 

template under a parametric mapping. The model used in [44] is parametric one, 
the prototype template is represented as a bitmap which describe de characteristics 
of an object  shape. The total deviation of the deformed template from the probe 
image should be minimized. This distance consists of the local distances between 
key points on the deformed template and feature points in the image. As an 
additional constraint, the total deformation is kept bounded so that simple 
transformations are preferred while minimizing local deviations between template 

and probe. To follow this in [45] was developed a new non-rigid point matching 
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algorithm which is well suited for non-rigid registration. The algorithm utilizes the 
softassign, deterministic annealing, the thin-plate spline for the spatial mapping and 

outlier rejection to solve for both the correspondence and mapping parameters. This 
algorithm later has served as the basis for recognition systems based on shape 
matching [46], [47]. 

A smooth move towards part based models is done in researches like [48] 
where special templates extract the salient image parts: eyes ,noses and mouth.  

The unsupervised dimensionality reduction was not the only problem trying 
to be solved; discriminative techniques have also been applied in the literature. The 

most famous example of dimensionality reduction is PCA which on the other hand 

does not take into account any difference in class. PCA is an unsupervised technique 
and as such does not include label information of the data. The question that arises 
is how to utilize the label information in finding informative projections? To that 
purpose Fisher- linear discriminant analysis (LDA) [49], [42] considers maximizing 
the following objective: 

 
T

w S w
BJ(w)=

T
w S w

W

                                                                               ( 2.1) 

where S
B

is the between classes scatter matrix and S
W

 is the within 

classes scatter matrix. LDA explicitly attempts to model the difference between the 
classes of data. An example of LDA used in face recognition is [50]. 

 

2.1.1.1 Global Image Histograms in Content Based Image 

Retrieval 

In content based image retrieval histograms over complete images have 
been popular.These methods integrate features such as color or texture over whole 
images. Consequently these representations are invariant with respect to local 
changes in an image and also to global transformations such as translation at the 

cost of limited specificity, sensitivity to background clutter, and limited invariance to 
occlusion. To enhance specificity, a smooth transition towards incorporating feature 
localization information (and thus global object geometry) has taken place. In this 
category are approaches of Swain and Ballard [51]and that of Schiele and Crowley 
[52]. The latter method establishes joint histograms over local appearances, which 
are measured by local shape descriptors. The histograms do also incorporate spatial 
information of the local descriptors. Vogel and Schiele [53]  presented an image 

representation that renders it possible to access natural scenes by local semantic 
description. Some spatial information is incorporated by using a rigid grid of local 
regions. In order to recognize and detect individual objects it is necessary a 
representation that exhibits better localization. 

2.1.1.2 Bag of features method 

In the last years bag-of-words models from text retrieval have become very 
popular. Bag-of-words representation has proven its usefulness in text classification. 

Using this model, a text (such as a sentence or a document) is represented as an 
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order-less collection of words, disregarding grammar and even word order. 
Computer vision researchers have used a similar idea for image (a particular object) 

representation: an image can be treated as a document, and features extracted 
from the image are considered as the "words”; in this context they are commonly 
referred to as bag of features-approaches. Because the “word” in images is not the 
shelf thing like the word in text document, to achieve it usually are necessary the 
following three steps: feature detection, feature description and codebook 
generation. Given an image, feature detection is used to extract several local 
patches/regions, which are considered as candidates for basic elements, "words". 

One of the most simple yet effective method for feature detection is the regular grid 

[11], [54], the image is evenly segmented by some horizontal and vertical lines and 
some local patches are obtained. Using this method very promising results for 
natural scene categorization were obtained [11]. The interest point detectors are 
used to find the salient regions from an image. The salient patches such as: edges, 
corners and blobs are detected; these patches are considered to be more important 
than other patches and are more useful for object classification. The most well 

known detectors are: Harris corner detector [55], Lowe’s Difference of Gaussians 
(DoG)   [56] and Kadir Brady detector  [57]. 

After feature detection, each image is abstracted by several local patches. 
For the detected regions remains the question how to represent the patches as 
numerical vectors?  In order to describe the regions local descriptors are used. A 
good descriptor should have the ability to handle intensity, rotation, scale and affine 

variations. The simplest descriptor is a vector of image pixels, in praxis some extra 
processing is needed to reduce the dimensionality and insure invariance to at least 
limited image transformations. One of the most famous descriptors is Scale-

invariant feature transform (SIFT) [56]. SIFT converts each patch to 128-
dimensional vector. After this step, each image is a collection of vectors of the same 
dimension (128 for SIFT). The SIFT features are robust to changes in illumination, 
noise, and minor changes in viewpoint; they are highly distinctive, relatively easy to 

extract, allow for correct object identification with low probability of mismatch and 
are easy to match against a (large) database of local features. Other popular 
descriptors are: shape context descriptors [58], geometric blur descriptor [59], 
gradient location-orientation histogram (GLOH), Gabor Filters [60], steerable filters 
[61], complex filters [62]. The use of interest points detectors conduct to good 
results, this can be confirmed by the works of: [63], [64]. Moreover other methods 
like: random sampling  [65] and segmentation [66] are used to extract the features. 

These vectors which are describing the patches are used to form a 
codebook. Clustering is a common method for learning a visual vocabulary or 
codebook. In the training phase all vectors from all training images all clustered in 
order to form the codebook, the number of clusters is the codebook size. An image 
is represented as a distribution over the codebook; actually the representation is a 

histogram that lists the occurrence frequencies of each prototype in the image. A 

classifier is train to map the vectors to a class label. The main disadvantage of these 
methods is that they ignores the spatial relationships among the patches and 
capture only their co-occurrence. Their advantage is the compact representation 
which can be learned from a small number of samples. Over the last years several 
methods to incorporate the spatial information have been proposed. For 
discriminative models, spatial pyramid match [67] performs pyramid matching by 
partitioning the image into increasingly fine sub-regions and compute histograms of 

local features inside each sub-region. All the individual descriptors are concatenated 
in order to represent the image. This is close to the rigid template matching on cell 
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level, so this approach assumes that the spatial structure of the object is fixed whit 
respect to the image. For generative models, relative positions of codewords [68] 

are also taken into account. 
Bag-of-feature approaches made popular techniques from text retrieval like 

latent semantic analysis (LSA). The key idea is to map high-dimensional count 
vectors, such as the ones arising in vector space representations of text documents 
[12], to a lower dimensional representation in a so-called latent semantic space. As 
the name suggests, the goal of LSA is to find a data mapping which provides 
information well beyond the lexical level and reveals semantically relations between 

the entities of interest. LSA can use a term-document matrix which describes the 

occurrences of terms in documents; it is a sparse matrix whose rows correspond to 
terms and whose columns correspond to documents. A typical example of the 
weighting of the elements of the matrix is tf-idf (term frequency–inverse document 
frequency): the element of the matrix is proportional to the number of times the 
terms appear in each document, where rare terms are up-weighted to reflect their 
relative importance. In image recognition each image is represented by an 

occurrence histogram over a fix codebook, so the set of all training samples is 
characterized by a large co-occurrence matrix which is then decompose using 
singular value decomposition. The eigenvectors correspond to different latent topics 
and the eigenvalues give their relative weighting. Hofmann [69] , [70] used the LSA 
into a probabilistic framework, this conducted to probabilistic latent semantic 
analysis (pLSA). 

The starting point for Probabilistic Latent Semantic Analysis is a statistical 
model which has been called aspect model. The aspect model is a latent variable 
model for co-occurrence data which associates an unobserved class variable z 

 Z={z ,..,z }1 k   with each observation, for example with each occurrence of a 

word w W={w ,...,w }1 M  in a document dD={d ,...,d }1 N . The whole corpus of 

samples is described by WD co-occurrence matrix of joint probabilitiesP(w,d) . The 

pLSA introduces a new hidden layer of latent topics z Z that d-separate the 

random variables w and d, the number of latent topics is usually equal with the 
expected number of object categories in the data set. The joint distribution can be 
decomposed into two simpler conditionals and a document prior. 

 




P(w,d)= P(w,d,z)
z Z  




= P(w|z)P(z|d)P(d)
z Z

                                                                    (2.2) 

 
The expectation maximization algorithm EM [71] is used to learn in an 

unsupervised manner the conditionals probabilities. The new documents d are 
classified by running EM with P(w|z)  fixed. As a result P(z|d)  is obtained this is a 

mix of topics in that document. Even if it was refer to words and documents, the co-
occurrence of any couple of discrete variables may be modeled in exactly the same 
way. Great pLSA advantages on the modeling side are: the well defined 
probabilities, the interpretable directions in the Probabilistic Latent Semantic space 

as multinomial word distributions and very important, a better selection of the 
model and complexity control 
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In [63] several LSA methods  have been applied to visual recognition and in 
[72] Fergus have incorporated spatial information into a pLSA. 

In [73] Blei proposes the latent dirichlet allocation. Latent Dirichlet 
allocation (LDA) is a generative probabilistic model of a corpus, where a corpus is a 
collection of documents. The basic idea is that documents are represented as 
random mixtures over latent topics, where each topic is characterized by a 
distribution over words. This is similar to probabilistic latent semantic analysis 
(pLSA), except that in LDA the topic distribution is assumed to have a Dirichlet 
prior.  

According to [74]  LDA is a MAP / ML estimated LDA model under a uniform 

Dirichlet distribution. In  [11] is shown an application of LDA to scene analysis 

2.1.2 Geometry and Appearance 

Another solution are part-based models which are a popular choice for 
enriching view-based approaches with global object geometry. Illustration of 
different part-based models can be seen in figures below. These models are build on 
the original idea of Fischler and Elschlager [75] of using the relative position of a 

few template matches and evolved in complexity in the work of Perona and others. 
There are several models in literature proposed for combining local appearance in a 
common object representation. In figures below different types of part-based 
models can be seen. Part-based models have recently applied to recognition 
problems with many categories (more than a hundred) and large intra-class 
variations. The simplest part-based models, bag-of-feature, without spatial structure 

have become really popular in the last years. 

 

 

Figure 2  Bag-of-features: all parts are assumed to be independent. 
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Figure 3 Star graph: there exists one reference part (f1) on which all other parts are 
conditioned 

 
  

                                                                           

 

Figure 4  k-fan (k = 2): k reference parts on which all other parts are conditioned (f1 and f2 in 
this example). 
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Figure 5 Tree model: parts dependencies form a tree hierarchy 

 

 
                                                                                   

 

Figure 6 Constellation model: each part is depending on all other parts resulting in a fully 
connected graph. 
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Figure 7 Compositional hierarchy: intermediate compositions of parts, the ig , are established. 

In contrast to tree model, parts are only present at the leafs of the hierarchy. The intermediate 

compositions ig are not observed directly, but inferred from the parts.                                               

2.1.2.1 Parts and Structure Models 

For the first time a model that combined local parts and global spatial 
structure was proposed in [75]. This model is referred to as parts and structure 
model, the model consists of a series of small templates (the parts) arranged in 

some geometric configuration (the structure). 
Following the same idea and inspired by the dynamic link architecture for cognition 
process in [76] a recognition system based on deformable grid template is 
proposed. In [77] edge fragments are grouped than exhibit stable relative positions. 
The groupings are agglomerated into a joint object representation and during 
training there are sough that discriminate one object class from the rest. 

2.1.2.2 Biologically  Inspired Convolutionar Networks 

One of the first  influential  biological inspired model is the one described in 
[78]. A neural network model for a mechanism of visual pattern recognition is 
proposed in this paper. The network is self-organized by "learning without a 
teacher", and acquires an ability to recognize stimulus patterns based on the 
geometrical similarity (Gestalt) of their shapes without affected by their positions. 
This network is called by the author "neocognitron". The neocognitron is inspired 

from the model proposed by Hubel and Wiesel [60]. They found two types of cells in 

visual primary cortex called simple cell and complex cell, alternating layers of S and 
C types neurons constitute the feed-forward Neocognition. The S-neurons show 
characteristics similar to simple cells or lower order hypercomplex cells, and the C-
neurons similar to complex cells or higher order hypercomplex cells. The afferent 
synapses to each S-cell have plasticity and are modifiable. After repetitive 
presentation of a set of stimulus patterns, each stimulus pattern has become to 
elicit an output only from one of the C-cells of the last layer, and conversely, this C-

cell has become selectively responsive only to that stimulus pattern. That is, none of 
the C-cells of the last layer responds to more than one stimulus pattern. The 
response of the C-cells of the last layer is not affected by the pattern's position at 
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all. Neither is it affected by a small change in shape nor in size of the stimulus 
pattern. In other words S-cells build up feature complexity while C-cells introduce 

location invariance. This system has been used for handwritten character 
recognition and other pattern recognition tasks. 

In [79] is proposed a large neural networks that receive pixels from small 
images as input and return the class label as output. The layers from the 
convolutional neural network alternate between sub-sampling and convolution 
operations (S-cell and C-cell). Their five-layer convolutional network is somewhat 
similar to LeNet-5, but with multiple input planes and different numbers of units on 

the last two layers. Neurons in the output layer compute the distance of their input 

to a pattern that is stored in the weights. The network is applied to the problem of 
handwritten digit recognition. The spatial extend of the receptive fields of neurons 
increases towards the output layer, so the occluded or corrupted parts of an image 
have a significantly lower influence on neurons in higher layers than on those of the 
input layer. During training the network weights are learned using back-propagation 
on labeled training digits. Due to the large number of weights large training sets are 

required. 
HMAX [80] model is another biologically inspired model. Like other 

convolutional networks this model consists of alternating S and C layers. The input 
layer consists of a Gabor filterbank [81] and , the sub-sampling is performed by 
computing the maximum over all inputs of a C-cell rather than the weighted sum. 
HMAX is a multi-scale model since C-cells pool information not only over locations 

but also over nearby scales. Later extensions are [82], [83], [84]. 

2.1.2.3 Constellation models 

Among part-based models, a very popular one seems to be the constellation 
model, which attempts to represent an object class by a set of N parts under mutual 
geometric constraints. The constellation model was developed by Perona and his 
team [85], [86], [87] and its representing a probabilistic adaptation of Fischler and 
Elschlager [75] approach. Constellation model differs significantly "bag-of-words" 

representation models, which explicitly disregard the location of image features. 
Constellation Model is used that explicitly handles missing features and background 
clutter, in addition to representing the spatial layout of the parts in the model. A 
particular attraction is that the authors designed a system which requires minimal 
supervision to train, even on cluttered images. 

The model of Fischler and Elschlager was revisited by Burl et al.[88], [85]. 
Natural images of faces were the input to the system. A face model was manually 

trained by identifying fiducial points on a set of training faces, giving statistics for a 
set of detectors as well as joint statistics of their relative location. 

Weber et al.[89], [90], [86] improved Burl et al. approach by training the 
model using a more unsupervised learning process, which precluded the necessity 
for tedious hand-labeling of parts. Their algorithm was particularly remarkable 
because it performed well even on cluttered and occluded image data. This was 

done by automatically obtaining a set of potentially useful pixel patches by running 
an interest operator on the training set; chopping out patches around each interest 
point and then using k-means clustering on the patches. The cluster centres are 
used as detectors to provide a set of points from which the shape model is learnt. 
The detections from various combinations of cluster centres are used in turn to build 
a set of shape models. Each model was trained on a training set using EM and 
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tested on a separate validation set. The final model selected was the one which 
gave the best performance on the validation set. 

Fergus et al.[87] improved later this model. They used a probabilistic 
framework and make the learning step fully unsupervised, having both shape and 
appearance learned simultaneously, and accounting explicitly for the relative scale 
of parts. 

In [91] Fergus et al. estimate the joint Gaussian distribution of spatial 
arrangement, scale, appearance, and edge curves in all detected patches. The 
number of parameters in this model grows exponentially with the number of parts 

and, therefore, the complexity of the joint model causes only small numbers of parts 

to be feasible. Consequently, the approach is only suitable for object classes that 
can be characterized with very few, highly specific parts. An object representation 
that is founded on very few, but highly specific components suffers from the 
problem that such critical parts can only be detected with limited reliability 

Fei-Fei et al. [32], [92] give an example of the application of powerful 
machine learning methods to the Constellation Model. They introduce a hierarchical 

Bayesian version of the Constellation Model which is able to incorporate priors into 
the learning procedure in a principled manner. This enables the algorithm to train 
from very few images (< 5) rather than the hundreds typically required. 

2.1.2.4 Models with Large Numbers of Appearance 

Patches 

As it was said above the constellation models usually have a small numbers 

of parts. In papers like [93], [94], [95], [96] models which are based on a large 

number of local image patches are investigated. In the  manner of Weber et al., 
Agarwal and Roth [93], [94] extract appearance patches at interest points and 
cluster them to find common patches. Vectors are formed from combinations of 
features in the image and their spatial relations are encoded in a coarse manner. An 
image is represented by all patch prototypes that have been detected and a set of 
spatial relations between them. Their algorithm uses a window of interest which is 

moved exhaustively over all locations and scales in an image to obtain candidate 
object hypotheses. Hypotheses that cover background are then filtered out with a 
sparse network of windows (SNoW) classifier [97]. 

Borenstein and Ullman [98] present a scheme which combines object 
classification with segmentation. The object is modeled by a small set of image 
fragments; small rectangular textured patches, distinctive of the class. In 
recognition, full coverage of the object is obtained by combining the fragments, 

since each fragment is accompanied by foreground-background mask, a pixel-level 

segmentation of the test image may be obtained. 
Thereafter Leibe and Schiele [96] improved Agarwal and Roth approach with 

a star graph like shape representation. Appearance patches are clustered to obtain 
prototypical representatives of object parts but additionally the relative location of 
the object center is recorded for each part during training and also a 
foreground/background mask is stored. This approach has two main advantages: it 

allows a validation step which measures the support, on a pixel level, of the fit 
between the model and the image,  and permits a pixel level segmentation of object 
from test instances in the manner of [98].  In recognition interest points are again 
found and then a probabilistic Hough scheme used to vote for the position of the 
object within the image, based on the match of the regions to each of the clusters. 
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The maximum in voting space is then selected as the position of the object center 
and it is used to discard irrelevant parts in a subsequent back projection stage. The 

foreground/background masks which are associated with each remaining 
prototypical part are averaged to segment the object from the background. Leibe 
and Schiele approaches’ compared to constellation models require more supervision 
during training; therefore the approach is limited to small numbers of object 
categories. In [95] the approach is extended to deal with objects on multiple scales. 
This method usually is applied to discriminate one category from background, but 
lately was applied to pedestrian recognition [99], [100]. 

2.1.2.5 Tree and k-fan Models 

Felzenszwalb and Huttenlocher [101] have proposed part-based models 
where the spatial relationships between parts are tree-structured for computational 
reasons. The application for their model was to find people in images. The human 
being articulated structure was represented as a tree-structure (Figure 5), the main 
contribution of this work is the complexity reduction of the matching algorithm. 

In [102] Cradall et al. investigate part models of different complexity. In 

this paper is introduced a class of graphs that is called k-fans (see Figure 4). 
Graphical models defined by k-fans provide a natural family of spatial priors for 
part-based recognition, where k specifies the complexity of the model. A 0-fan is a 
bag-of-features model with no dependencies, star graph models are 1-fans, and a 
fully connected constellation model of N parts corresponds to an N-fan. Their 
conclusion was that relatively simple models provide similar performance to complex 

fully connected spatial models, but have a substantially lower computational cost.  

2.1.2.6 Shape Matching for Solving the Correspondence     

Problem 

Berg and Malik [47] propose a scheme based on deformable shape matching 
where the correspondence between the model and features in the image is posed as 
an integer quadratic programming problem.Their formulation is able to deal with 
outliers when estimating the correspondence, thus occlusion and background clutter 
can be handled. Once correspondence has been estimated, a thin-plate spline is 

used for give an aligning transform between the model and the test exemplar, 
giving a dense correspondence between the two. 

The nearest neighbor approach [42], [103] that matches a query against all 
training samples for all categories conducted to the correct object class. Combining 
the nearest neighbor classifier with a support vector machine (SVM) [104]  better 

classification rates were obtained [105]. 

2.1.2.7 3-D Geometric Context 

Some papers that involved the information on the 3-D nature of object are 
[106], [107], [108] and in others [109] scene context was used as source of 
information. In some situations, contextual information can provide more relevant 
information for the recognition of an object than the intrinsic object information, so 
the idea was to detect objects exclusively based on contextual cues by captureing 
those characteristics of a scene that are indicative for the presence of object 

categories.
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2.2 Hierarchical Object Models and Compositionality 

During the years the researchers from computer vision field tried to fill the 

semantic gap between the low-level features and the abstract nature of the models. 
The earlier systems rather than to address this representational gap eliminated it by 
bringing the images closer to the models, by removing object surface markings and 
structural detail, controlling lighting conditions, and reducing scene clutter. Edges in 
the image were assumed to map directly to the limbs and surface discontinuities of 
high-order volumetric parts making up the models. Thereafter, the representational 

gap was eliminated by bringing the model closer to the imaged object, requiring the 

model to capture the exact geometry of the object. When the initial measured 
representation and the final concept representation are far away from each other, a 
direct modeling requires complex models that are cumbersome and difficult to learn. 
The computational complexity was seriously affected buy the presence of texture 
and surface markings, so objects which were texture free were preferred. The 
resulting systems were unable to recognize complex objects with complex surface 
markings.  

Most of these earlier model-based approaches were based on shallow 
hierarchies. In this context, hierarchies have been employed mainly because model 
based representations are rather abstract and high level in the sense that they are 
not focused on the observed images but on the physical, 3-D objects being imaged. 
Building such abstract concepts from a concrete image requires a complex 
abstraction process. To simplify this process, it has been divided into several smaller 

steps resulting in intermediate representations. A classical example is Marr’s [110] 

primal, 2.5D sketch and 3D model.   
Once the view-based models have replaced CAD models, representational 

gap was eliminated by bringing the models all the way down to the image. 
View-based approaches perform classification as directly as possible in the 

image space so these are typically non-hierarchical. Simple view-based models that 
incorporate very limited geometry or even no spatial structure at all can be 

represented directly without intermediate stages. Examples are template matching, 
eigenfaces, global image histogram, or simple bag-of-features approaches. If the 
spatial structure is wanted to be incorporated into a representation, the complexity 
rises rapidly with the number of model parts. This can be seen in the case of 
constellation models. 

When the initial measured representation and the final concept 
representation are far away from each other, a direct modeling is not a proper 

solution because learning object models corresponds to learning a mapping from the 
initial measurements into the space of abstract object representations. When both 

layers are too far apart it is favorable to replace the complex mapping by a 
concatenation of simpler ones that correspond to individual layers of a hierarchy. It 
is important to know that the number of layers cannot be arbitrary high because 
noise and other disturbances at the feature level can be amplified by successive 

representation layers. 
There are several view-based approaches which have presented shallow 

hierarchies, for instance the bag-of-features approach, which is suited for large 
numbers of parts, has been extended by pLSA and LDA which introduce a single 
hidden layer [63]. On the other end of the modeling spectrum are the heavily 
supervised models of Felzenszwalb and Huttenlocher [101]. These are tree-
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structured representations of only few parts that are modeled by hand. Other 
examples are[111] ,[112]. 

Though the appearance-based methods and machine learning algorithms 
have made remarkable progress, they have intrinsic problems that could be 
complemented by structure based methods.  

The recent vision literature has observed a pleasing trend for returning to 
the compositional and grammatical methods, for example, the work in the groups of 
Ahuja [113], Geman [114], [115], Dickinson [116], Pollak [117], Buhmann [10] and 
Zhu [118], [119]. The return to these methods is in response to the limitations of 

the appearance based and machine learning methods when they are scaled up and 

is powered by progresses in several aspects like:  
 consistent mathematical and statistical framework to integrate 

various image models, such as Markov (graphical) models, sparse 
coding [120], and stochastic context free grammar [121];  

 more realistic appearance models for the image primitives to 
connect the symbols to pixels  

 more powerful algorithms including discriminative classification and 
generative methods, such as the Data-Driven Markov China Monte 
Carlo [122] and a huge number of realistic training and testing 
images. 

 
 

2.2.1 The Origin of Research on Compositionality 

 
Compositionality has been studied in many diverse fields such as linguistics, 

logic, and neuroscience [123], but it is especially evident in the syntax and 
semantics of language. A limited number of letters (atomic constituents) can form a 
huge variety of words and sentence. The sentences are used to describe an 
unimaginable number of different scenarios. Although Gottlob Frege has highlighted 

the separability of sentences and thoughts into sub-structures in  [124], probably 
the first contribution that has actually introduced the word “compositionality” is the 
paper of Katz and Fodor [125]. 

Werning et al. [123] propose a concise formulation that serves as a good 
approximation to this principle: 

“An interpreted representational system R is compositional if and only if for 
every complex representation r of R, the meaning of r is determined by the 

structure of r and the meaning of the constituents of r.” 
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Figure 8 Illustration of compositionality according to [126]. a) Some generic geometric 
primitives. b) An intermediate, compositional grouping that highlights already some spatial 
relations. c) The simple generic parts together with spatial relations between them can be used 
to represent various objects (here a no U-turn traffic sign) although the parts themselves 

provide only very little information about the object. 

 
In linguistics structure is defined by orthographic, syntactic, and 

grammatical rules, the primitive and atomic constituents are letters in written 

language, and phonemes in spoken language; this serve as fix points for recursive 
decomposition. 

Biederman [33] gives an analysis of compositionality in vision: a restricted 
number of atomic shape primitives, called geons, constitute the components of 

more complex objects and a hierarchical construction process of entities can serve 
as a basis for recognition. The detection of an object is based on the spatial 
relationships (the structure) of its components. 

2.3 Vision based hand gesture recognition 

Hand gestures are a powerful, and probably one of the most natural and 
intuitive, human to human communication modality. Gesture recognition is 
nowadays an active topic of vision research which has applications in diverse fields 

such as: interactive games, performance analysis, surveillance monitoring, and 
remote control of home appliances, virtual reality, disability support, medical 

systems, sign language translation and many others. 
In the last years there has been a great emphasis in HCI research to create 

interfaces that directly employ the natural communication and manipulation skills of 
humans. Gesture languages made up of hand postures (i.e., static gestures) or 
motion patterns (i.e., dynamic gestures[127], [128] ) have been employed to 

implement command and control interfaces [129], [130], [131]. 
The main difficulties that show up when a hand pose estimation system is 

designed are:  
High-dimensional problem: The hand is an articulated object with more than 

20 DOF. 
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Even if  not all 20 DOF are used to model the hand, studies have shown that 
it is not possible to use less than six dimensions; beside this also the location and 

orientation of the hand itself must be estimated so , there still exist a large number 
of parameters. 

Self-occlusions: Since the hand is an articulated object, its projection results 
in a large variety of shapes with many self-occlusions, making it difficult to segment 
different parts of the hand and extract high level features. 

Processing speed: Even for a single image sequence, a real-time CV system 
needs to process a huge amount of data. With the current hardware technology, 

some existing algorithms require expensive, dedicated hardware, and possibly 

parallel processing capabilities to operate in real-time. 
 Uncontrolled environments:  Almost all HCI system are expected to operate 

without background restrictions and a wide range of lighting conditions, on the other 
hand, even locating a rigid object in an arbitrary background is almost always a 
challenging issue in computer vision. 

 Rapid hand motion: The hand has very fast motion capabilities with a speed 

reaching up to 5 m/s for translation and 300degree/s for wrist rotation.  
The approaches to Vision based hand posture and gesture recognition can 

be divided into two categories – 3 D hand model based approaches and appearance 
based approaches. 

2.3.1       3 D hand model based approaches 

Model based approaches attempt to infer the pose of the palm and the joint 

angles, such an approach would be ideal for realistic interactions in virtual 

environments. Generally, the approach consists of searching for the kinematic 
parameters that brings the 2D projection of a 3D model of hand into correspondence 
with an edge-based image of a hand.  

A 27 DOF model was introduced in [132]  and has been used in many 
studies an it is shown in Figure 10 b. The CMC joints are assumed to be fixed, which 
quite unrealistically models the palm as a rigid body. The fingers are modeled as 

planar serial kinematic chains attached to the palm at anchor points located at MCP 
joints. The planarity assumption does not hold in general. Standard robotics 
techniques provide efficient representations and fast algorithms for various 
calculations related to the kinematics or dynamics of the model. Adding an extra 
twist motion to MCP joints [133], [134] introducing one flexion/extension DOF to 
CMC joints [135] or using a spherical joint for TM [136] are some examples of the 
variations of the kinematic model. 
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Figure 9 Components of a model-based tracking system. A model-based tracking system 
employs a geometric 3D model, which is projected into the image. An error function between 

image features and model projection is minimized, and the model parameters are adapted. 

 
One of the earliest model based approaches to the problem of bare hand 

tracking was proposed by Rehg and Kanade [137]. This article describes a model-
based hand tracking system, called DigitEyes, which can recover the state of a 27 
DOF hand model from ordinary gray scale images at speeds of up to 10 Hz. The 
hand tracking problem is posed as an inverse problem: given an image frame (edge 

map) find the underlying parameters of the model. The inverse mapping is non-
linear due to the trigonometric functions modeling the joint movements and the 
perspective image projection. A key observation is that the resulting image changes 
smoothly as the parameters are changed. Therefore, this problem is a promising 
candidate for assuming local linearity. Several iterative methods that assume local 
linearity exist for solving non-linear equations (e.g. Newton’s method). Upon finding 
the solution for a frame the parameters are used as the initial parameters for the 

next frame and the fitting procedure is repeated. The approach can be thought of as 
a series of hypotheses and tests, where a hypothesis of model parameters at each 

step is generated in the direction of the parameter space (from the previous 
hypothesis) achieving the greatest decrease in miscorrespondence. These model 
parameters are then tested against the image. This approach has several 
disadvantages that has kept it from real-world use. First, at each frame the initial 

parameters have to be close to the solution, otherwise the approach is liable to find 
a suboptimal solution (i.e. local minima). Secondly, the fitting process is also 
sensitive to noise (e.g. lens aberrations, sensor noise) in the imaging process. 
Finally, the approach cannot handle the inevitable self-occlusion of the hand.      
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             a)                                                                   b) 

Figure 10 Skeletal hand model: (a) Hand anatomy, (b) the kinematic model according to [138] 

 

Heap et al.[139] proposed a deformable 3D hand model and modeled the 
entire surface of the hand by a surface mash constructed via PCA from training 
examples. Real-time tracking is achieved by finding the closest possibly deformed 

model matching the image. Such a representation requires further processing to 
extract useful higher-level information, such as pointing direction; however, it was 
shown to be very effective to reliably locate and track the hand in images. The 
method however, is not able to handle the occlusion problem and is not scale and 
rotation invariant. 

 

 

Figure 11 Hand tracking using 3D Point Distribution Model from [139] 

 

In [140] is proposed a model called cardboard model which is able to 
capture articulated hand motions. The constrains on the joint configurations are 
learned from natural hand motions using a data glove as input device, then a 

BUPT



   Related Work   2 

 

32 

sequential Monte Carlo tracking algorithm, based on importance sampling, produces 
good results, but is view-dependent, and does not handle global hand motion. 

 

 

Figure 12 Cardboard model taken from [140] 

 

Stenger et al. [141] used quadrics as shape primitives, as shown in FIG. 
This allows for the generation of 2D profiles of the model using elegant tools from 
projective geometry, and for an efficient method to handle self-occlusion. The pose 
of the hand model is estimated with an Unscented Kalman filter (UKF) [142], which 
minimizes the geometric error between the profiles and edges extracted from the 

images. The use of the UKF permits higher frame rates than more sophisticated 
estimation methods such as particle filtering, whilst providing higher accuracy than 

the extended Kalman filter. More recent efforts have reformulated the problem 
within a Bayesian (probabilistic) framework [143]. Bayesian approaches allow for 
the pooling of multiple sources of information (e.g. system dynamics, prior 
observations) to arrive at both an optimal estimate of the parameters and a 
probability distribution of the parameter space to guide future search for 
parameters. On contrary to Kalman filter approach, Bayesian approaches allow non-
linear system formulations and non- Gaussian (multi-modal) uncertainty (e.g. 

caused by occlusions) at the expense of a closed-form solution of the uncertainty. A 
potential problem with the approach is that certain independent assumptions of the 
underlying probabilistic distribution are made, for computational tractability reasons 
that may not hold in practice. Also, it is a computationally expensive approach. 
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Figure 13 Quadrics-based hand model taken from [141] 

 
Three dimensional hand model based approaches offer a rich description 

that potentially allows a wide class of hand gestures. However, as the 3D hand 

models are articulated deformable objects with many DOF’s, a very large image 
database is required to cover all the characteristic shapes under different views. 
Another common problem with model based approaches is the problem of feature 
extraction and lack of capability to deal with singularities that arise from ambiguous 

views. 

2.3.2 Appearance-Based Models 

Appearance-based models are derived directly from the information 
contained in the images and have traditionally been used for gesture recognition. 
This is often posed as a pattern recognition problem, which may be partitioned into 
components such as shown in Figure 14  
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Figure 14 Components of a view-based recognition system. View-based recognition is often 
treated as a pattern recognition problem and a typical system consists of components as 
shown above. At the segmentation stage the hand is separated from the background. Features 
are then extracted, and based on these measurements the input is classified as one of many 
possible hand poses. The classifier is designed using a set of training patterns. 

 
These methods are often described as bottom-up methods, because low-

level features are used to infer higher level information. The main problems, which 
need to be solved in these systems, are how to segment a hand from a general 
background scene and which features to extract from the segmented region. The 

classification itself is mostly done using a nearest neighbor classifier or other 
standard classification methods [42]. Generally, the classifier is learnt from a set of 
training examples and assigns the input image to one of the possible categories 

2.3.2.1 Hand localization 

A straightforward and simple approach that is often utilized is to look for 
skin colored regions in the image. This is a very popular method [144], [145], 
[146], [147] but has some drawbacks. First, skin color detection is very sensitive to 

lighting conditions. While practicable and efficient methods exist for skin color 
detection under controlled (and known) illumination, the problem of learning a 
flexible skin model and adapting it over time is challenging. 

Static background subtraction [148], [149], and the use of adaptive 
background models [150],[151]  are also common methods. 

Shadows can be a problem in background subtraction algorithms [151]. A 
few studies utilize IR cameras that are tuned to human temperature [152], [153] to 

provide fast solutions by simple threshold  operations. Various assumptions are 
used, such as the hand being the only skin-colored object, uniform ambient lighting, 

or stationary background. 
According to [154] motion cue is also commonly applied for gesturer 

localization and is used in conjunction with certain assumptions about the gesturer. 
The main component of motion in the visual image is usually the motion of the hand 

of the gesturer and can thus be used to localize it. This localization approach is used 
in [155], [156]. The disadvantage of the motion cue approach is in its assumptions. 
While the assumptions hold over a wide spectrum of cases, there are occasions 
when more than one gesturer is active at a time or the background is not 
stationary. 

Another approach to locate the hand involves classification-based object 
detection methods. In these systems, a large list of hypotheses in the form of 

BUPT



                                             2.3   Vision based hand gesture recognition    35 

subregions in the image is processed by a classifier to decide the presence of the 
object. In  [157] is introduced a class separability estimation method based on 

frequency spectrum analysis to reduce the load of training these classifiers. Ong et 
al.[158] employed clustering methods to cluster the training data into similar 
shapes and build a tree of classifiers for detection. As one goes down to the 
branches of the tree, the classifiers are trained to detect more and more specific 
clusters consisting of similar shapes, this classifier  can be used to recognize 
gestures as well. Wu et al.[159] provided a training algorithm that only needs a 
small portion of the database to be labeled and built a viewin dependent gesture 

recognition system by using samples of postures captured from a large number of 

views. A color segmentation algorithm [99] was employed to reduce the number of 
hypotheses. 

2.3.2.2 Feature extraction 

Hand silhouette is among the simplest, yet most frequently used features. 
Silhouettes are easily extracted from local hand and arm images in the restrictive 
background setups. By silhouette, it is meaning the outline of the hand provided by 

segmentation algorithms, or equivalently the partitioning of the input image into 
object and background pixels. In the case of complex backgrounds, techniques that 
employ color histogram analyses can be used.  In order to estimate the hand pose 
the position and orientation of the hand, fingertip locations, and finger orientation 
from the images is extracted. The center of gravity (or centroid) of the silhouette 
[160], [161] is one choice, but it may not be very stable relative to the silhouette 

shape due to its dependence on the finger positions. The point having the maximum 

distance to the closest boundary edge [144], [152], [162], [163] as been argued to 
be more stable under changes in silhouette shape. 

A frequently used feature in gesture analysis is the fingertip. Fingertip 
detection can be handled by correlation techniques using a circular mask [152], 
[153], [151], which provides rotation invariance, or fingertip templates extracted 
from real images [164], [165]. Another common method to detect the fingertips 

and the palm-finger intersections  [148], [149], [147] is to use the curvature local 
maxima on the boundary of the silhouette. For the curvature-based methods, in 
case of noisy silhouette contours, the sensitivity to noise can be an issue. In [144], 
[161], a more reliable algorithm based on the distance of the contour points to the 
hand position is utilized. The local maximum of the distance between the hand 
position and farthest boundary point at each direction gives the fingertip locations. 
The direction of the principal axis of the silhouettes [166], [163], [148] can be used 

to estimate the finger or 2D hand orientation. All these features can be tracked 
across frames to increase computation speed and robustness using Kalman filters 

[144], [167] or heuristics that determine search windows in the image [147], [168]  
based on previous feature locations or rough planar hand models. The low 
computational complexity of these methods enables real-time implementations 
using conventional hardware but their accuracy and robustness are arguable. These 

methods rely on high quality segmentation lowering their chance of being applied on 
highly cluttered backgrounds. Failures can be expected in some cases such as two 
fingers touching each other or out of plane hand rotations. 

Jennings et al.[169] have used a more elaborate method by tracking the 
features directly in 3D using 3D models; their method has employed range images, 
color, and edge features extracted from multiple cameras to track the index finger 
in a pointing gesture. Very robust tracking results over cluttered and moving 
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backgrounds were obtained. Cylindrical fingertip models to track multiple finger 
positions in 3D without occlusions, over uniform backgrounds were used by Davis et 

al. [170]. Markers could also be a solution, although they are considered intrusive 
they have considerable technical advantages in terms of processing speed. In  [168] 
elliptical markers to estimate the hand frame in 3D re used; and in [171]  white 
fingertip markers under black-light to detect fingertip locations were used, yielding a 
much richer set of gestures. 

View-based methods have been shown to be effective at discriminating 
between a certain number of hand poses, which is satisfactory for a number of 

applications in gesture recognition. One of the main problems in view-based 

methods is the segmentation stage. This is often done by skin colour segmentation, 
which requires the user to wear long sleeves or a wristband. Another option is to 
test several possible segmentations, which increase the recognition time. 
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3 THEORETICAL BACKGROUNDS 

3.1 Introduction  

In this chapter some theoretical fundaments from rather different fields are 
presented. These theoretical fundaments are used in chapter four to implement the 
hand poster recognition system. 

3.2 Canny edge detector 

An important subproblem in computer vision is how to detect edges from 
grey-level images. Edges represent commonly used features. The importance of 
edge information for early machine vision is usually motivated from the observation 
that under rather general assumptions about the image formation process, a 
discontinuity in image brightness can be assumed to correspond to a discontinuity in 
depth, surface orientation, reflectance or illumination. In this respect, edges in the 
image domain constitute a strong link to physical properties of the world. 

In this work contours have an important role as it can be seen in the next 
chapter.  It is easy to understand that a large number of approaches have been 
developed for detecting edges. The earliest schemes focused on the detection of 
points at which the gradient magnitude is high. Derivative approximations were 
computed either from the pixels directly, using operators such as Robert's cross 

operator [172], the Sobel operator [173] and the Prewitt operator [174], or from 

local least-squares fitting [175]. All the gradient-based algorithms have kernel 
operators that calculate the strength of the slope in directions which are orthogonal 
to each other, commonly vertical and horizontal. Later, the contributions of the 
different components of the slopes are combined to give the total value of the edge 
strength. Gradient-based algorithms such as the Prewitt filter have a major 
drawback of being very sensitive to noise. The size of the kernel filter and 
coefficients are fixed and cannot be adapted to a given image. An adaptive edge-

detection algorithm is necessary to provide a robust solution that is adaptable to the 
varying noise levels of the images. Canny considered the problem of determining an 
“optimal smoothing filter" of finite support for detecting step edges. 

In order to detect the hand contours in this work John Canny’s approach to 
optimal edge detection was fallowed. In this section this approach is reviewed.  

In his work [176], [177], Canny specifies three performance criteria that an 
edge detector should fulfill. The criteria Canny uses to detect step edges can be 

summarized as follows: 

Good detection: Edge detection should be robust to noise; it means that 
should be a high probability to mark real edge points and a low probability to falsely 
mark non edge points. This criterion can be formalized [177], [178] by requiring the 
edge detector to maximize the output signal-to-noise ratio (SNR) for a given input 
signal-to-noise ratio. 

Good localization: The points considered to be edge should be as close as 
possible to the center of the true edge. This criterion is formalized in [178] by 
requiring that the location of the maximal detector response to an edge exhibits low 
variance.  
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Uniqueness of response: The edge detector should produce only one 
response to a single edge. This criterion can be formalized by requiring the filter 

which performs edge detection to have a small spatial width [178]. 
 
The output signal-to-noise ratio can be increased by low pass filtering the 

input signal. This increase the spatial width of the overall filter that performs edge 
detection, as described in [178]. Therefore a trade-off between the first and third 
criterion has to be found. By using additional necessary properties of a filter that 
performs edge detection Tagare and deFigueiredo come to the conclusion that the 

derivative of the Gaussian—a Gaussian smoothing of the image followed by a first 

derivative—is the optimal detector. 
An image consisting of three color channels for red, green, and blue, is 

denoted by I described by Eq.(3.1): 
 

T
I(x,y)=(I (x,y),I (x,y),I (x,y))r g b                                                     (3.1) 

 

GI denotes the grayscale version of that image, i.e. its brightnesses. First 

the brightnesses  IG  are smoothed by a (discrete) convolution—denoted by the 

 operator—with a two-dimensional GaussianGc . 

 

 
  
 

2 2
1 x +y

G (x,y)= exp -c 22πσ 2σc c

                                                      (3.2) 

 

The strength of the smoothing is determined by σc , the standard deviation 

of the Gaussian filter. The smoothing filter used in the first stage directly affects the 

results of the Canny algorithm. Smaller filters cause less blurring, and allow 
detection of small, sharp lines. A larger filter causes more blurring, smearing out the 
value of a given pixel over a larger area of the image.  

After the image has been convolved with a Gaussian, the edge direction is 
estimated from the gradient of the smoothed image intensity surface. The gradient 

of the smoothing, (G *I )c G , is computed on a discrete grid of image coordinates. 

The normal cn  to the target of the edge contour is estimated according to [177] by  

n
nc

=c
nc 2

                                                                                      (3.3) 

 

where        n = (G *I )c c G                                                                (3.4) 

Potential edge points are local maxima of the gradient magnitude in the 

direction of the gradient, cn . The implementation of the resulting technique, which 

is called non-maximum suppression, examines the neighbors in gradient direction to 
both sides of a candidate edge point. This candidate point is only marked as an edge 

point if its gradient magnitude is greater than that of the neighbors. 
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The directional non-linear suppression is equivalent to the application of the 

following non-linear differential predicate: 

2
nc





2

G *I = 0C G                                                                                 (3.5) 

The neighbors surrounding the marked edge point are removed by setting 

their gradient magnitude to zero. The eight direct neighbors of each marked edge 
point that is not removed by 

non-maximum suppression are examined in a postprocessing step using a 

lower and a higher threshold on gradient magnitude, lowt  for high edge sensitivity 

and hight for low edge sensitivity, respectively: Starting on an edge point whose 

magnitude of the gradient succeeds the higher threshold, all direct neighbors of this 
point are visited recursively. Each of these points is also marked as an edge point if 

its gradient has a magnitude that is greater than lowt . The described procedure is 

called hysteresis thresholding, and it continues recursively by examining the 
neighbors of all marked edge points. The use of two thresholds with hysteresis 
allows more flexibility than in a single-threshold approach. It is difficult to give a 
generic threshold that works well on all images. No tried and tested approach to this 

problem yet exists. The result is that small accidental gaps on edge contours are 
bridged. 

3.3 The Harris Corner Detector 

In computer vision many tasks rely on low-level features. The Harris corner 
detector is a popular interest point detector due to its strong invariance to [179]: 
rotation, scale, illumination variation and image noise. Harris corner detector is 
based on the local auto-correlation function of a signal; where the local auto-

correlation function measures the local changes of the signal with patches shifted by 
a small amount in different directions. 

Given a shift (u,v) and a point (x, y), the change of intensity for the shift is 
given in Eq. (3.6). 

 


2

c(u,v)= w(x,y)(I(x,y)- I(x+u,y+v))
x,y

                                         (3.6) 

 
 

Window function         Intensity      Shifted Intensity 
 

           
                 (a)                                                         (b) 
 

Figure 15 Window functions (a) 1 in window, 0 outside, or (b) Gaussian 
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The shifted image is approximated by a Taylor expansion truncated to the 

first order terms according to Eq.(3.7) 
 

I(x+u,y+v) I(x,y)+uI (x,y)+vI (x,y)x y                                          (3.7) 

Substituting Eq.(3.7) in Eq.(3.6) the following result is obtained: 
 


2 2 2 2

c(u,v)= (u I +2uvI I +v I )x x y v                                                   

(3.8) 
Rewritten as a matrix Eq.(3.8) yields to: 
 

    

                         

2 2
I I I I I Iu ux x y x x y

c(u,v)= u v = u v
2 2v vI I I I I Ix y y x y y

                        (3.9) 

 
For a small shift 

 
 
  

u
c(u,v) u v M

v
                                                                       (3.10) 

Where 



 
 
  

2
I I Ix x y

M= w(x,y)
2

x,y I I Ix y y

                                                             (3.11) 

 
where matrix M captures the intensity structure of the local neighborhood. 

c(u,v) is closely related to the autocorrelation function, with M describing its shape 
at the origin. 

Let λ1  and λ2  be the eigenvalues of matrix M. The eigenvalues form a 

rotationally invariant description. There are three cases to be considered: 
 

If both curvatures are small so the auto-correlation function is flat, then the 
windowed image region is approximately constant intensity (arbitrary shifts of the 
patch causes little change in c(u,v)). 
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Figure 16 “Flat” region: no change in all directions 

 
If one eigenvalue is high and the other low, so the  local auto-correlation 

function is ridge shaped, then only local shifts in one direction (along the ridge) 
cause little change in c(u,v) and significant change in the orthogonal direction; this 
indicates an edge. 

 

 

Figure 17 “Edge”: no change along the edge direction 

 
If both eigenvalues are high, so the local auto-correlation function is sharply 

peaked, then shifts in any direction will result in a significant increase; this indicates 
a corner.  
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Figure 18 “Corner”: significant change in all directions 

 
Harris and Stephens note that exact computation of the eigenvalues is 

computationally expensive, since it requires the computation of a square root, and 

instead suggest the following functionMc , where κ a tunable sensitivity parameter 

is. 
  

2 2
M =λ λ -κ(λ +λ ) =det(A)-κtrace (A)c 1 2 1 2                                    (3.12) 

 
In literature there is a wide variety of interest points, such as: Harris [55], 

SUSAN (Smallest Univalue Segment Assimilating Nucleus) [180], SIFT (Scale-
invariant feature transform) [181], DoG (Difference of Gaussian) [56], [181] etc. 

Comparative tests carried out amongst different approaches demonstrated that 
detectors which combine the smoothed image derivates via the autocorrelation 
matrix are robust and achieve very good results [179].  

3.4 The Principle of Compositionality 

According to [182] the visual stimulus is high redundant, it presents a 
significant spatial and temporal interdependency; the regularity makes portions of 
visual field to become predictable given other parts. Taking advantage of this 

dependency, compositionality is a general principle in cognition and especially in 
human vision [33]. Compositionality refers to the prominent ability of human 
cognition to represent entities as hierarchies of meaningful and generic parts. A 
representational system is compositional if and only if each complex representation 

is determined by its constituent parts and the relationships between them [123]. 
Compositional representations decompose complex objects into simpler parts, which 

are easier to recognize and using the relationships between them, finally resulting in 
a hierarchy of recursive compositions. It is based on a set of simple parts, like the 
Lego parts which can be used to build a large variety of objects. In compositionality 
a small number of generic low-level constituents is used to build an infinite number 
of hierarchically constructed entities in a different context. The Lego parts are not 
characteristic for any object that a child can build, there are quite simple and not so 
varied, but can be combining in a flexible way generating objects from houses to 

cars and robots to humans. 
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In order to create a new object to play with, the child dose not needs new 
parts (different shapes) to build it, the ones that already exits are used for the new 

scenario. The same is with compositionality:  using a common set of low-level 
entities that are not characteristic for any category but generic, new scenarios of 
widely differing nature can be tackled without having to learn a novel low-level 
representation in order to adapt to new tasks. The object created by a child using a 
Lego is much more than its parts, comparative a compositional representation 
contains more information than what is merely present in its individual parts. A 
intuitive definition of the principle of compositionality is given by [183] in this 

sentences: “the whole is different from the sum of its parts”. The flexibility of 

human vision that results from compositionality is also fundamental to computer 
vision, since it forms a basis for general applicability of a vision system. 
Consequently it can be summarized that compositions bridge the semantic gap 
between complex objects and the low level percepts (e.g. individual photoreceptive 
cells on the retina or, equivalently, pixels of a digital camera) by establishing 

intermediate hidden layer representations. Therefore, complex object models are 
decomposed into a hierarchy of simpler models so that learning those substructures 
becomes a feasible problem. 

 

3.5 Gestalt psychology 

Compositional representations decompose complex objects into simpler 

parts, which are easier to recognize and using the relationships between them, 
finally resulting in a hierarchy of recursive compositions; the Gestalt laws suggest 

how to organize the parts in order to form the compositions. 
  Gestalt psychology is a branch of psychology which has its origin in the 

work by Max Wertheimer [184]. The main idea is that the human visual system 
processes visual stimuli by grouping individual percepts to yield meaningful 
compositions. The underlying process of perceptual organization [29], [183] exhibits 

the principle law of Pragnanz, meaning that the “best, simplest, and most stable” 
groupings, [12] are preferred. Gestalt psychology has also proposed numerous 
Gestalt laws of organization [12] that are intended to entail Pragnanz. These laws 
represent composition rules that impose constraints on the types of admissible 
constructions, whereby most of the potential combinations are actually ruled out 
since they are rated meaningless.  
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Figure 19 Law of Pragnanz: (a) Original image; (b), (c), and (d) are possible groupings; (b) is 
the grouping of greatest Pragnanz [183] 

 

3.5.1 Gestalt laws 

Gestalt psychology proposes a set of visual rules that guide the construction 
process of groupings and yield compositions of high Pragnanz. The Gestalt laws 
establish causal relationships between grouping constituents. 

3.5.1.1 Proximity 

One of the most important factors determining the perceptual organization 
of a scene is proximity of the elements within it.  In Figure 20 a) and b) columns or 
rows dominate our focus; elements tend to be perceived as aggregated into groups 
if they are near each other.                           

 

  

(a)                                                                           (b) 

Figure 20 Illustration of the Gestalt laws: Proximity  
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3.5.1.2 Similarity 

 

Similar features are associated; elements tend to be integrated into groups 
if they are similar to each other this can be seen in Figure 20, we tend to see 
alternating columns of circles and squares. The set of attribute that can be used to 
establish similarities includes: 

 Orientation 
Similarity of the spatial orientation of objects. The orientation is determined 

by prominent parts of an entity. 

 Shape 
Similarity of the form of objects. Figure 21 which is perceived as vertical 

columns, demonstrates this principle. 
 
 

 

Figure 21 Illustration of Gestalt laws: Similarity  

 

 Symmetry 
Components that form a symmetrical composition tend to be grouped. Two 

contours that are similar when mirrored with respect to some axis are a common 
instance which this principle refers to. Figure 23 is perceived as three black patches 
since the resulting boundaries of each patch are symmetrical. The white area in 
between is observed as background. Figure 25 shows the same effects with 

switched colors. 
 Color 

Similarity in color of the objects or their direct surroundings. Color 
information about the local neighborhood is especially relevant when grouping 
boundary contours. Obviously, similarity in texture can be used in the same way. 

 Common fate 

Similarity of the motion pattern of objects: A camouflaged animal can be 

spotted much easier when it moves than while it remains stationary. Another 
example is the perception of a swarm of birds as a greater whole. 

 

3.5.1.3 Good Continuity 

 
In Figure 22 is more likely to identify lines a-b then a-c or a-d, and c-d then 

c-b or d-b. The lines which are based on smooth continuity are preferred over 
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abrupt changes, oriented units or groups tend to be integrated into perceptual 
wholes if they are aligned with each other 

 

 

Figure 22 Illustration of Gestalt laws: Good Continuity 

 

3.5.1.4 Closure 

The mind may experience elements it does not perceive through sensation, 
in order to complete a regular figure (that is, to increase regularity); we tend to see 
three broken rectangles and a lonely box bracket ] on the far left, rather than three 

girder profiles and a lonely box bracket ] on right. 
 

 

Figure 23 Illustration of Gestalt laws: Closure 

 

3.5.1.5 Smallness 

 
Smaller areas tend to be seen as figures against larger background. In  

Figure 24, we are likely to see a black cross rather than a white cross. 
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Figure 24 Illustration of Gestalt laws: Smallness 

 

3.5.1.6 Symmetry 

 
The principle of symmetry is that, the symmetrical areas tend to be seen as 

figures against the asymmetrical background (See Figure 25). 
 

 

Figure 25 Illustration of Gestalt laws: Symetry 

 

 

3.5.1.7 Surroundness 

According to this principle areas which can be seen as surrounded by others 

tend to be perceived as figures. In Figure 26 the word is initially confused by 
resuming the black area as a ground. Once it assumes the background as 
surrounding area then you can discover the world 'Tie' 
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Figure 26 Illustration of Gestalt laws: Surroundness 

 

3.6 Learning Paradigms 

The goal of classification in general is to map a representation
dx   of a 

real world object to an appropriate class label y  {1, . . . , k}, where the 

representation x is already the result of a complex mapping that is a concatenation 

of a number of sub-processes such as image acquisition, preprocessing, feature 
extraction, and additional feature processing. According to  [126] there are two 
ways of obtaining the optimal class label y: using generative classifiers which learn 
a model of the joint probability density function p(x,y) or equivalently of  p(x|y) and 
p(y)  and then the classification is perform based on Bayes formula; and 
discriminative classifiers which estimate the posterior p(y|x) directly, or by learning 

a direct mapping y=f(x) from inputs x to labels y. 
An example of a visual object recognition system that learns from large 

volumes of data using a discriminative method is for instance the face classifier by 

Viola and Jones [40],[185]. Generative approaches are nevertheless popular [186], 
[96]. One reason for this popularity is that generative methods provide a 
straightforward way of dealing with missing or corrupted features by marginalizing 
the likelihood p(x|y) over the affected dimensions of x. In the context of limited 

training data, prior knowledge becomes increasingly important and a generative 
approach provides an intuitive solution to incorporating such a prior. Finally, an 
important property of generative models is that they allow to reverse the processing 
pipeline so that representations that are typical for learned object classes can be 
sampled and visualized. Almost all current approaches in object recognition are of 
probabilistic nature. 

 

Bayes approach 
 
While classifying some errors may be more expensive than others, for 

example, for a fatal disease that is easily cured by a cheap medicine without said 

effects false positives in diagnosis are better than false negatives. The loss function 
states exactly how costly each action is and is used to convert a probability 

determination into a decision. 

Let {ω ,...,ω }c1  be the set of c states of natures (categories) and let 

{ω ,...,ω }a1  be the set of a possible actions. The loss function λ(ω |ω )
i j  describes 

the loss incurred for taking action ωi  when state of nature isω
j
. The problem is to 

find a decision rule that minimize the overall risk. The overall risk R is the expected 
loss associated with a given decision rule.
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
c

R(ω |x)= λ(ω |ω )P(ω |x)
i i j jj=1

                                                       (3.13) 

By substituting the posterior probability using Bayes formula the Eq.(3.13)  
yields to: 

 
 



p(x|ω )P(ω )c j j
R(ω |x)= λ(ω |ω )

i i jj=1 p(x)
                                              (3.14) 

If the costs are equal λ(ω |ω )=δ
i j ij

 

 


j=1

p(x|ω )P(ω ) p(x|ω )P(ω )c i j i iδ = =P(ω |x)
ij i

p(x) p(x)
 Bayes MAP                  (3.15) 

 
Bayesian decision theory offers a clear optimization criterion. Problems that 

arise are related to the a posteriori probability estimation and likelihood estimation. 
The likelihood is estimated based on the samples, and this estimation can be 
parametric, mixt or nonparametric. When the distribution law of data is known the 
parametric estimation works very well. The mixt method uses a mixture of densities 

(i.e. Gaussian mixture model or GMM).The problem with this method is related to 
the number of Gaussians that are needed in order to model the class. The non 
parametric method estimates the probability density based on the direct observed 

data or using kernel functions. Partzen introduced for the first time the window 
method for estimating density functions [187].  

 

3.7 Robust estimation 

The robust estimation techniques are very useful in computer vision because 
here there are even bigger uncertainly regarding the data; especially in feature data 
(occlusions, different view points).The first step in describing robust estimators is to 
understand what is meant by robustness. Several measures of robustness are used 
in the literature one is the breakdown point which represents the minimum fraction 
of outlying data that can cause an estimate to diverge arbitrarily far from the true 
estimate. For example, the breakdown point of least squares is 0 because one bad 

point can be used to move the least squarest arbitrarily far from the true. The 
theoretical maximum breakdown point is 0.5 because when more than half the data 

are outliers they can be arranged so that at through them will minimize the 
estimator objective function. 

 A second measure of robustness is the influence function[188], [189] 
which, intuitively, is the change in an estimate caused by insertion of outlying data 

as a function of the distance of the data from the (uncorrupted) estimate. 
Even if is not a measure of robustness, the efficiency of a robust estimator 

is also significant. This is the ratio of the minimum possible variance in an estimate 
to the actual variance of a (robust) estimate [190], with the minimum possible 
variance being determined by a target distribution such as the normal (Gaussian) 
distribution. Robust estimators having a high breakdown point tend to have low 
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efficiency, so that the estimates are highly variable and many data points are 
required to obtain precise estimates. 

3.7.1 M-Estimators 

The M-estimators are a family of robust techniques which can handle data in the 

presence of outliers. Their link with kernel density estimators is described in [191] 
In computer vision there are two main techniques for robust estimation: M-

estimators and least median of squares (LMS). M-estimators are generalizations of 
MLEs and least squares [188]. It can be defined the M-estimate of a  like 

ˆ 


a= argmin ρ(r |σ )
i,a ix Xa i

                                                                 (3.15) 

Where ρ(u)  is a robust loss function that grows subquadratically and is 

monotonically nondecreasing with increasing u . 
2

σ
i

 is the variance (scale) 

associated with the scalar value r
i,a

 

In order to minimize the Eq (3.15) it is necessary to find a such that: 




dr 1i,a
ψ(r |σ ) =0

i,a ix X da σi i

                                                               (3.16) 

Where 
'

ψ(u)=ρ (u)  is the influence function. Then a weight function w is 

introduced; w(u)×u=ψ(u)   




dr1 i,a
w(r |σ ) r =0

i,a i i,a2x X daσi i

                                                        (3.17) 

This leads to a process known as “iteratively reweighted least squares" 

(IRLS), which alternates steps of calculating weights w = w(r |σ )
i i,a i

 using the 

current estimate of a and solving Eq. (3.16) to estimate a new a with the weights 
fixed. Initial estimates of a may be obtained in a variety of manners, including 
nonrobust least squares or other robust estimators. 

The main differences between M estimators is in the shape of the function 
ρ( ) . The most known robust loss functions are those defined by Beaton- Tukey , 

Cauchy and Huber. The loss function specifies the amount of outliers that influence 
the estimate. The shape of the loss function makes a trade-off between efficiency 

and robustness of the estimator. A narrow function is more robust but less efficient 

because it might not consider or might use in small percent the inliers data. These 
functions have a scale factor. The estimation of the scale factor is a major topic of 
research in robust estimation. 
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Figure 27 Different shapes for loss functions 
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4 A COMPOSITIONAL APPROACH TO HAND 

GESTURE RECOGNITION 

4.1 Introduction 

In this chapter the compositional technique for hand gesture recognition is 

presented.  The goal of this work is to prove the power of the compositional 
techniques of hand gesture recognition; the result is presented in a hand gesture 
recognition system. Compositional techniques have been used with good results in 
various applications such as: object categorization and data mining. Fei-Fei and 
Perona [11] used this technique to recognize natural scene categories. R. Fergus 

[72] learned object categories from Google’s image search. 
Generally, object recognition approaches consist of four major stages: (1) 

feature detection, (2) object representation, (3) training, and (4) recognition. This 
section points out the differences between traditional pattern recognition and 
compositional approaches with regard to each of these stages.  

The first stage – feature detection – uses image regions, interest points, 

curve fragments, image-filter responses, or a combination of these as image 
features.  Patches, atoms, salient points, interest points, and edges are 
representative features for sparse representation. 

For the second stage – object representation – most approaches partition 

extracted features into clusters, also known as parts. Our approach is based on 
compositions of parts. 

With respect to training, in the third stage, different approaches involve 

different degrees of supervision in learning object representations. The hand posture 
is decomposed into relevant compositions which are learned for each hand posture 
class without supervision; no hand segmentations or localization during training is 
needed. 

Finally, object recognition, in stage four, is typically evaluated only through 
image classification in terms of whether the learned object class/category is present 
or absent. 

4.2 Overview of the Proposed Approach 

In this section an overview of the main steps of our proposed method are 
presented and their motivation and contribution is pointed out. 

 Our purpose is to recognize static hand gestures using a compositional 
technique. Sparse representations are compositional techniques.  

Among the most widely used local image features are the interest points, 
such as: Harris [55], SUSAN (Smallest Univalue Segment Assimilating Nucleus) 

[180], SIFT (Scale-invariant feature transform) [181], DoG (Difference of 
Gaussian)[56], [181] etc. While SIFT points are a multiscale generalization of the 
Harris interest points and proved their usefulness in many modern applications, 
including object recognition, in this work the Harris feature points were preferred, 
since the image scale is supposed to be fairly stable. Also the length of the SIFT 
feature vector (128) is prohibitive for appropriate learning from moderate or small 

size databases. The region around the Harris interest point is rich in information and 
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will be described in this work by the colour histogram, the contour orientation 
histogram, the local direction of interest point and the number of contour points.  

Object representation is based on compositions of parts: descriptors are 
grouped according to the perceptual laws of grouping [12] to obtain a set of possible 
candidate compositions. These groups are a sparse representation of the image 
based on overlapping subregions. 

 The detected part descriptors are represented as probability distributions 
over a codebook which was obtained in the learning phase. A composition is a 
mixture of the part distributions. From all candidate compositions, relevant 

compositions must be selected. There are two types of relevant compositions: those 

compositions that occur frequently in all categories and also those which are specific 
for a category. 

The category posterior of compositions is learned in the training phase, and 
it is a measure of relevance. The entropy of the category posterior helps us to 
discriminate between categories. A cost function is obtained by combining the priors 
of the prototypes and the entropy. The process of recognition is based on bag of 

compositions method, where a discriminative function is defined. 
In Figure 28 can be seen a classical model for statistical pattern recognition 

according to [192]. In statistical pattern recognition, a pattern is represented by a 
set of d features, or attributes, viewed as a d-dimensional feature vector. The 
recognition system is operated in two modes: training  and classification. The role of 
the preprocessing module is to segment the pattern of interest from the 

background, remove noise, normalize the pattern, and any other operation which 
will contribute in defining a compact representation of the pattern. The feedback 
path allows the designer to optimize the preprocessing and feature 

extraction/selection strategies. In the classification mode, the trained classifier 
assigns the input pattern to one of the pattern classes under consideration based on 
the measured features. 

 

 

 

Figure 28 Classical model for statistical pattern recognition 

 
The compositional model for statistical pattern recognition used in this work 

is shown in Figure 29. The main differences between the classical model for 

statistical pattern recognition and a compositional model, is that the last one 
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includes one ore more intermediate layers of abstraction. The features extracted for 
classical model of pattern recognition have to describe the entire object shape; 

meanwhile the features selected for compositional techniques are used to generate 
primitives which combine in order to generate the object shape. There are many 
ways to generate the object shape, the same primitives combined in different ways 
conduct to the different shape object, and different primitives combined in a 
different way can generate the same object shape. The compositional method 
actually builds a bridge over the semantic gap between low level feature 
representation and high level of object recognition. 

 

 

Figure 29 Compositional model for statistical pattern recognition
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4.3 Finding good sparse features 

4.3.1 Introduction 

Even if the proposed method is a general one, for different applications it is 

still important what features are used for the sparse hand posture representation. 
The potential benefits of feature selection include, first and foremost, better 
accuracy of the inference engine and improved scalability. Secondary benefits 

include better data visualization and understanding, reduced measurement and 
storage requirements, and reduced training and inference time.  

The ideal features are not affected by occlusion and clutter, there are 

invariant (or covariant), there are also robust, which means that noise, blur, 
discretization, compression, etc. do not have a big impact on them. From the 
distinctive point of view individual features can be matched to a large database of 
objects; from the quantitative point of view many features can be generated for 
even small objects and offer a precise localization. 

The first question according to compositional technique in our case is how 
hand can be represented in order to be decided which image locations had to be 

captured and which to dispose of. The main idea is that each hand posture can be 
described by: the V shapes between the fingers when these are apart, the curve 
shapes which correspond to the fingertips and the straight lines for the finger 
length. Each hand pose can be defined as a combination of these shapes. Based on 
the number of V shapes, curves and lines and based on the relations among them, 
the hand pose can be recognized. It is important how these shapes are oriented and 

which their relative position to each other is. The second question is how these 

relevant image regions can be represented. 
 

 
Fig.4.3 V Shape, curve and line 
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A brief overview of existing detectors is summarized in the following 
paragraphs. 

4.3.2 Interest points and corner detectors 

According to Schiele [193] salient points are literally those points on the 
image which are almost unique. These points maximize the discrimination between 
the objects. 

There is a wide variety of interest points and corners detectors in literature. 
According to [179] they can be divided into three categories: contour based, 

intensity based and parametric model based methods.  

Contour based methods have existed for a long time[194], [195] and first 
extract contours, then search for maximal curvature or inflexion points along the 
contour chains, or do some polygonal approximation and then search for 
intersection points. Intensity based methods compute  [55], [196], [180] a measure 
that indicates the presence of an interest point directly from the grey values.  
Parametric model methods fit a parametric intensity model to the signal. Usually 
these methods provide sub-pixel accuracy, but unfortunately are limited to specific 

types of interest points.  

4.3.2.1 The Harris corner detector 

Comparative tests carried out amongst different approaches demonstrated 
that detectors which combine the smoothed image derivates via the autocorrelation 
matrix are robust and achieve very good results [179]. Perhaps the most prominent 

candidate in this category is the edge and corner detector proposed by Harris and 
Stephens[55]. The Harris corner detector is based on the local auto-correlation 

function of a signal. The local auto-correlation function measures the local changes 
of the signal with patches shifted by a small amount in different directions. 

4.3.2.2 Difference of Gaussian(DOG) 

Difference of Gaussian(DOG)  is a popular detector; it was introduced by 
Lowe in [56], [181]. It defines interest points as the extrema of a convolution of the 
image with a difference of Gaussian filter. The difference-of-Gaussian representation 
is obtained by subtracting two successive smoothed images. Thus, all the DoG levels 

are constructed by combined smoothing and sub-sampling. The local 3D extrema in 
the pyramid representation determine the localization and the scale of the interest 
points. For an efficient implementation that works in real-time, the image is 
repeatedly blurred with Gaussian kernels before taking the difference between 

successive blurrings. It is scale invariant and has a simple and efficient scheme. 

4.3.2.3 Kadir and Brady detector 

The Kadir and Brady detector [197] searches for scale localized features 

with high entropy, with the constraint that the scale is isotropic. The algorithm is 
suitable for finding circular structures. The algorithm generates a space sparsely 
populated with scalar saliency values. For each pixel location and for each scale 
value between a minimum and a maxim the local descriptors value is measured 
within a window; them the PDF from this is estimated and the local entropy is 
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calculated. The scale which conducts to the peaked entropy is selected. A final 
clustering of the candidates in scale space does then yield a set of interest points. 

This method finds regions that are salient over both location and scale. 

4.3.3 Local Descriptors. 

For the detected regions remains the question: which is the most 
appropriate descriptor to characterize it? There are many descriptors which 
emphasize different image properties: pixel intensity, texture, color, edges and 
others. The simplest descriptor is a vector of image pixels. In praxis some extra 

processing is needed to reduce the dimensionality and insure invariance to at least 

limited image transformations. Due to their simplicity this descriptors have been 
widely used [94], [186], [95]. In [87] once the regions of interest are identified, 
they are cropped from the image and rescaled to the size of a small typically 11×11 
pixel patch. The dimensionality of each patch is 121, and in order to reduce it, the 
principal component analysis (PCA) is used. In [198] to use the image gradient 
patch and to apply PCA to reduce the size of the descriptor was proposed. Based on 
the technique that is used to describe the local image regions according to [199] 

there are: distribution based descriptors, spatial-frequency techniques, differential 
descriptors and other techniques. 

4.3.3.1 Distribution based descriptors  

 The scale invariant feature transform (SIFT) proposed by [181] combines a 
scale invariant region detector and a descriptor base on the gradient distribution in 

the detected regions. The gradients are then normalized for orientation by rotating 
the whole region so that its dominant orientation is fixed. A descriptor is a 3D 

histogram of gradient location and orientation, where location is quantized into a 
4x4 location grid and 8 bin orientation histograms are computed for each cell. The 
resulting descriptor is of dimension 8 x 4 x 4 = 128. Each orientation plane 
represents the gradient magnitude corresponding to a given orientation. The SIFT 
features are robust to changes in illumination, noise, and minor changes in 
viewpoint; they are highly distinctive, relatively easy to extract, allow for correct 

object identification with low probability of mismatch and are easy to match against 
a (large) database of local features. To obtain illumination invariance, the descriptor 
is normalized by the square root of the sum of squared components. The 
quantization of gradient locations and orientations make the descriptor robust to 
small geometric distortions and small errors in the region detection. It is used in 
various applications like object recognition, matching, tracking, and categorization. 
The high dimensionality and the specificity of these features with respect to 

individual instances of an object require large codebooks when these features are 
clustered. 

Similar to SIFT features are shape context [58] and geometric histogram 
descriptor, these also compute a 3D histogram of location and orientation for edge 
points where all the edge points have equal contribution in the histogram. These 
descriptors were successfully used for shape recognition of drawings for which edges 
are reliable features.  

Shape context is a 3D histogram of edge point locations and orientations. 
The object is treated as a point set and the shape of an object is captured by a finite 
subset of its points sampled from the external/internal contours of the object. The 
original proposed shape context descriptor was computed only for edge point 
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locations and not for orientations. In  [199] the location is quantized into nine bins 
of a log-polar coordinate system and orientation is quantized into four bins 

(horizontal, vertical and two diagonals), the resulting descriptor has a dimension 
equal to 36. 

The geometric blur descriptor [59]  is an extension of the shape context 
descriptor [58]. It blurs the region around an interest point with a spatially varying 
kernel. Blur should be small near the corresponding points, and larger away from 
them. Gaussian blur is the right way to simplify image intensity structure and de-
noise an image but is not designed with the criterion of making matching points 

robust under geometric distortions. For a model distortion with affine 

transformations, the amount of blur varies linearly with the distance from 
corresponding points. The result is a high dimensional feature vector which 
describes the image region surrounding an interest point. 

Gradient location-orientation histogram (GLOH) is an extension of the SIFT 
descriptor designed to increase its robustness and distinctiveness. The histogram is 
computed for 17 location and 16 orientation bins in a log-polar location grid, the 

higher dimensionality of the descriptor is reduced through principal components 
analysis to 128. 

PCA-SIFT descriptor is a vector of image gradients in x and y direction 
computed within the support region. The input vector is created by concatenating 
the horizontal and vertical gradient maps for the 41×41 patch centred at the key-
point, having the input vector with 2×39×39=3042 elements. The vector dimension 

is reduced by performing PCA, the best matching performance was obtained for n = 
36, where n represents the dimension space. 

4.3.3.2  Spatial-frequency techniques 

The Gabor Filters  have received considerable attention because they are 
inspired by the Hubel and Wiesel [60] cells found in the primary visual cortex to 
some mammals  and the Gabor functions seems to be a good model of simple cell 
receptive fields [200].  Gabor filters are commonly used as an initial representation 

layer in neuro-physiologically [83] inspired vision systems In addition, these filters 
have shown to posses optimal localization properties in both spatial and frequency 
domain and they are well suited for texture segmentation problems. A Gabor filter 
can be viewed as a sinusoidal plane of particular frequency and orientation, 
modulated by a Gaussian envelope. The filter is defined by Eq.(4.1): 

ˆ ˆ
ˆ

   
       

2 2 2
x +γ y 2π

Α (x,y)= exp - ×cos x ,λ,θ,σ,γ 2 λ2σ
                                 ( 4.1) 

x̂ =xcosθ+ysinθ  

ŷ =-xsinθ+ycosθ  

where   is the wavelength of the filter,  is its the orientation,  is the 

effective filter width controlling the size of the envelope and   specifies the aspect 

ratio ( the ellipticity of the filter ). 

4.3.3.3 Differential descriptors 

Steerable filters were developed by Freeman and Adelson [61] and describe 
a class of filters in which a filter of arbitrary orientation is synthesized as a linear 
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combination of a set of basis functions. The steerable filters steer the derivates in 
the particular direction given the components of the local derivatives. They are 

invariant to rotation because they steer the derivatives in the direction of the 
gradient. All functions that are band limited in angular frequency are steerable, but 
the most useful are those ones that require a small number of basis filters.  A stable 
estimation of the derivatives is obtained by convolution with Gaussian derivatives.  

4.3.4 Conclusions 

In this work in order to capture the salient regions Harris corner detector 

was used on hand contours. The Harris interest point detector is used on hand 

contours in order to have a low computational cost. It is proved that people can 
recognize an object from its sketch. Edges are able to capture that information 
which is enough and useful for our brain-view processor to recognize the object.  

 Corner features are used because they are local (robust to occlusion) and 
are relatively stable under certain transformations. It is also claimed that they have 
high information content. The hand contours were detected by Canny edge detector. 
One may think that the edge cannot be well detected all the time, and this fact is 

true, but this approach relays on sparse features, so even if parts of the hand 
contour are missing, recognition can be done correctly most of the time. In order to 
describe the region around a Harris interest point, contour localized feature 
histograms were used. Localized feature histograms were used as a compromise 
between two opposite goals: perfect localization and maximal invariance aiming at a 
representation whose invariance properties are transparently adjusted between 

these two classical extremes and add the specificity lost by invariance through the 

relations incorporated in compositions. 
 The orientation histogram of the contour points, number of contours points 

and the colour histogram were computed. The background should not disturb, so to 
avoid as much as possible its influence, color histogram with two bins (skin – non 
skin) are used.  

 
                              (a)                                           (b) 

Figure 30 Example of Orientation Histogram with 4 directions (a)  and Colour Histogram with 2 
bins (b) 
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4.4 Detecting sparse features 

The RGB hand posture image is converted to a gray scale image, and then 

the Canny edge detector is used in order to extract the hand contours. Salient 
image locations are detected by using Harris interest point detector on hand 
contours. Quadratic patches of size 20 × 20 pixels are extracted around each Harris 
interest point to capture discriminative local information. The patch size is choose to 
capture the fingertip. For each extracted patch its correspondent in the RGB image 
is searched and a two bin color histogram (skin-non skin) is extracted. 

Numerous colourspaces for skin modeling have been proposed. The most 

popular color spaces are: RGB, HIS, HSV, HSL, TLS, YCrCb [201]. RGB is a 
colourspace originated from CRT display applications, when it was convenient to 
describe color as a combination of three colored rays (red, green and blue). It is one 
of the most widely used colourspaces for processing and storing of digital image 
data. 

Hue-saturation based colourspaces were introduced when there was a need 
for the user to specify color properties numerically. They describe color with intuitive 

values, based on the artist’s idea of tint, saturation and tone. Several interesting 
properties of Hue were noted in [202]: it is invariant to highlights at white light 
sources, and also, for matte surfaces, to ambient light and surface orientation 

relative to the light source and hue is also less sensitive to different skin colour. 
RGB, HS and Hue colour spaces have shown the best results for colour skin 
segmentation.  

In this work the goal of the 2 bin color histogram is to detect different types 

of regions around the interest point assuming that the background is extracted. The 
background extraction can be done using one of the proposed methods in literature 
[203].  

The contour orientations histogram with four bins is also extracted. Using 
Canny edge detector the obtained contours are thin and each contour point 

contribute to the histogram with one, two (as it can be seen in Figure 31 (b)) or 
more local directions. 

 

                               

                                  (a)                                                                         (b) 

Figure 31 The 4 orientations considered (a)    Contour points contribution to histogram (b) 

We define: 
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



1,EDGE= True
N(i)=

0,Else
                                (4.2) 

The orientation of a contour point is defined: 





i,N(i)=1
O (i)=x,y

0,Else
                                                                          (4.3) 

The histogram is computed according to Eq.(4.4) 




h(i)= O(i)
x,y region

                                                                         (4.4) 

 
Then the relative direction of the interest point is computed similar with 

contour orientation histogram. For the same patch the number of contour points is 
also extracted. 

                

Figure 32 Examples of Harris interest points detected on hands contours 

 
The resulting eight parameters extracted from a patch are used to form a 

feature vector, ie . 

 
 
 

 

 

           Figure 33 Fingertip region 
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                   Figure 34 Color Histogram with 2 bins for the fingertip region 

 
 

 

Figure 35 Orientation Histogram with 4 directions for the fingertip region 

 

 

                   

                  Figure 36 V region 

 

Figure 37 Color Histogram with 2 bins for the V region 
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Figure 38 Orientation Histogram with 4 directions for the V region 

 
 
 

 

         Figure 39 Line region 

 

 

Figure 40 Color Histogram with 2 bins for the line region 

 

 

Figure 41 Orientation Histogram with 4 directions for the line region
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It is important to remark the small dimension of the feature vector, which is 

eight. An example of interest points detected with Harris interest point detector on 
the hand contour, extracted with Canny edge detector can be seen in Figure 32. 

 The Harris interest point detector is used on hand contours in order to have 
a low computational cost and as it was previously stated edges are abele to capture 
that information which is enough and useful for our brain-view processor to 
recognize the object.  

4.5 Hand posture representation 

Hand posture representation is based on compositions of parts. In the 
proposed approach, a part is an image patch around a Harris interest point, 

described by a feature vector
i
e . All feature vectors 

i
e  from all images from a 

training set are clustered using k-means, in order to generate a codebook with 
relevant features for all hand posture classes. The codebook is subsequently used in 
order to assess the similarity of extracted image features to learned classes of 

relevant features. Notice that feature classes obtained by clustering are not related 
in any way to hand posture classes. Instead, feature classes in a compositional 
approach are used to generate an alternative representation of image parts, as 
explained later on. 

4.5.1 Generating a codebook of relevant features 

Data clustering is a generic label for a variety of procedures designed to find 
natural groupings, or clusters, in multidimensional data, based on measured or 

perceived similarities among the patterns. The problem is difficult because data can 
reveal clusters with different shapes and sizes. Accordingly different clustering 
methods may be more appropriate to discover the best grouping corresponding to 
the purpose of data analysis. 

The results of a data clustering method mainly depend on two aspects: the 
distance measure and the grouping strategy. Arguably, the most important step in 

any clustering method is the selection of the distance measure. This measure 
quantifies the similarity or dissimilarity between data points or data points and 
cluster centers. This measure will also influence the shape of the clusters, as some 
elements may be close to one another according to one distance and farther away 
according to another. 

Cluster analysis is a very important and useful technique, owing to the 
speed, reliability, and consistency with which a clustering algorithm can organize 

large amounts of data.   The clustering algorithms are used in various applications 
like: data mining [204], information retrieval [205], image segmentation [206], 
signal compression and coding [207], and machine learning [208]. As a 
consequence, hundreds of clustering algorithms have been proposed in the 
literature like: K-means, Fuzzy K-means, Minimum Spanning tree, Mutual 
Neighborhood, Single-Ling, Complete-Link, Mixture Decompozition, and new 
clustering algorithms continue to appear. According to [192], there are two popular 

types of clustering techniques: agglomerative hierarchical clustering and iterative 
square-error partitional clustering. Algorithms for hierarchical clustering are either 
agglomerative, or divisive. Hierarchical techniques organize data in a nested 
sequence of groups which can be displayed in the form of a dendrogram or a tree. 
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The agglomerative algorithms use a bottom up approach, each observation 
starts in its own cluster, and pairs of clusters are merged as one move up the 

hierarchy. The root of the tree consists of a single cluster containing all 
observations, and the leaves correspond to individual observations. The divisive 
ones are using a top down approach: all observations start in one cluster, and splits 
are performed recursively as one moves down the hierarchy. 

It is hard to say which clustering algorithm is the best, for a given dataset. 
The best way to decide is to try several clustering algorithms. All the issues related 
to data collection, data representation, normalization, and cluster validity are as 

important as the choice of clustering strategy. 

The simple K-means partitional clustering algorithm is computationally 
efficient and gives unexpected good results, if the clusters are compact, 
hyperspherical in shape and well-separated in the feature space. The algorithm has 
3 steps the first step selects an initial partition with K clusters, the second generates 
a new partition by assigning each pattern to its closest cluster center; the third step 
computes new cluster centers as the centroids of the clusters; the step two and 

three repeats until an optimum value of the criterion function is found. 
The k-means clustering algorithm can be identified to be a particular case of 

the EM (expectation maximization) algorithm. It is similar to the expectation-
maximization algorithm for mixtures of Gaussians in that they both attempt to find 
the centers of natural clusters in the data. The expectation-maximization algorithm 
maintains probabilistic assignments to clusters, instead of deterministic 

assignments. 
The meanshift clustering technique requires no prior knowledge of the 

number of clusters, and does not constrain the shape of the clusters. The mean shift 

vector always points toward the direction of the maximum increase of the density. 
The mean shift procedure, obtained by successive computation of the meanshift 
vector and translation of the window with meanshift vector define in Eq.(4.5) is 
guaranteed to converge to a point where the gradient of density function is zero. 

2n
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i 1
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g

g

                                                   (4.5) 

In Eq.(4.5) h is the bandwidth parameter, ix  represent the data, x is the 

window center, and g is the kernel profile. 
Both K-means and meanshift clustering techniques have been tried on the 

dataset. The best results, as it can be seen in next chapter, have been achieved by 
performing K-means clustering. This result confirms the optimality of dominant 
approaches described in literature [10],[186].  

The number of clusters k, for this application, was set to five. The main 
reason why the number of clusters is five is related to the types of patches detected 

in an image. A patch from the image may be characterized by:  
 more skin region and less background region,  
 more background region and less skin region,  
 the skin and background region may have the same percentage in 

the same patch,  
 the patch may have only background respectively  
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 the patch may have only skin regions.  
To make the representation more robust and to make it less susceptible to 

local minima in the expectation-maximization (EM) iterations of k-means, each 
feature point is described by a Gibbs distribution over the codebook like in [209] 
instead of being simply labeled with the class label of its nearest prototype. In order 
to alleviate the local minima problem k-means can be run with several initializations 
and the best solution is selected.  

Gibbs distributions are characterized by their energy functions and these are 
more convenient and intuitive for modeling than working directly with probabilities. 

In addition, the Gibbs distribution is the unique measure that maximizes the entropy 

for a given expected energy [210]. The probability measures from Eq 4.4 are always 
positive and hence random fields. 

According to the Gibbs distribution law, the feature assignment random 

variable, F
i
, is given by Eq. (4.6). 

-1
P(F =ν| )=Z( ) exp(-d ( ))i i i ν,σ ie e e                                                   (4.6) 

 
 

Z( )= exp(-d ( ))i ν,σ i
ν

e e                                                                    (4.7) 

 

2
d ( )= -ν,σ i i νe e a                                                                          (4.8) 

where Fi  is a feature assignment  random variable, P(F =ν| )i ie   is the 

probability of feature vector i
e  to belong to the  class  defined by the prototype 

vector νa , d ( )ν ie  is the Euclidian distance of a measured feature 
i
e to a centroid 

νa  of class ν and σ  is a normalization factor. Eq.(4.6) is evaluated for all centroids 

νa  and the results for a feature point described by 
i
e  are grouped in a part 

distribution vector: 

  
T

d = P(F =1| ),...P(F =k| )i i i i ie e                                                      (4.9) 

4.5.2 Generating compositions of image parts 

In order to form a higher level of abstraction, image parts are grouped into 
compositions. In order to decide which parts should be grouped to form the 

candidate compositions the principles of perceptual organization are used. To this 
end, all detected local parts from an image, represented by their part distribution 
vector, are grouped with their neighbours that are not farther away than N pixels. 
This grouping principle follows the principle of perceptual organization from Gestalt 
laws, more precisely the grouping principle of proximity [12]. In this work the 

number of pixels N is 25. This number depends on the types of objects and 
compositions that one wants to form, the number of interest points detected in an 
image, the number of objects present in an image and also by the image resolution. 
In [10]  this number is between 60-100 pixels.  
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Gestalt psychology is a theory which refers to the visual perception 
developed by German psychologists in the 1920s. This theory attempts to describe 

how people tend to organize visual elements into groups or unified wholes; this 
theory proposes that the operational principle of the brain is holistic, parallel, and 
analog, with self-organizing tendencies; or, that the whole is different from the sum 
of its parts. The form-forming capability of our senses is the effect this theory refers 
to. The Gestalt psychology was applied to visual recognition of figures and whole 
forms instead of just a collection of simple lines and curves.  

Candidate compositions are represented as mixtures of the part (feature 

point) distributions as defined in Eq. (4.6). If Γ ={ ,... }j 1 mje e  denotes the grouping 

of parts represented by ,...,1 mje e , and d d,...,1 mj , (where m is the number of  

vectors which generate the candidate composition), compositions are then 

represented by the vector valued random variable jG  which is a bag of parts with 

the particular values given by: 

  
m m1 1 T

= P(F =1| ),...P(F =k | )j i i i i
m mi=1 i=1

1
g d e e                               (4.10) 

 

where the  number of constituents, m
j
= j|Γ |, is not predefined and can be 

different for each composition. It depends on how many parts the grouping 
algorithm can combine into composition in a certain region of an image. Note that 
the representation of a composition depends on the type of constituent parts and 

not on the number of parts. A composition is represented by the vector jg , which 

can be thought of as the average distribution of its parts over the codebook 

containing relevant parts for recognition. This model is also robust with respect to 
variations in the individual parts. 

4.5.2.1 Learning relevant compositions 

On the set of all compositions that can be formed, a selection of relevant 
compositions must be performed in order to have the discriminative ones and to 
discard the clutter. The relevant compositions must reflect a trade-off between 

generality and singularity. The goal is to learn a small number of compositions so 
that estimating category statistics on the training data becomes feasible. There are 
compositions which are present in many classes and there are compositions that 
help to discriminate sets of classes from another, not necessarily one class from all 
the other. 

First, compositions which are specific for a large majority of hand posture 
classes are learned. These compositions should be shared among many classes. In 

order to do this, in the learning phase, all composition candidates found in all the 

training images, represented by average distribution vector of parts, jg , are 

clustered using once more k-means clustering. Let πi  be the composition 

prototypes found by clustering. Then the prior assignment probabilities of candidate 

compositions to clusters πP( )i , are computed using the Gibbs distribution:  
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  
-1

P( = | )=Z( ) exp(-d ( ))i j j ,σ jg g g                                               (4.11) 

 

 


Z( )= exp(-d ( ))j ,σ jg g                                                                 (4.12) 

In the second stage, relevant composition prototypes for specific classes are 
selected. Those prototypes help to distinguish between classes. To this end, the 
category posteriors of compositions must be estimated. In order to estimate the 
category posteriors of compositions a Bayesian approach was used: 






P(Γ |c)P(c) P(Γ |c)P(c)j j
P(c |Γ )= =j

P(Γ ) P(Γ |c)P(c)j j
c

P(Γ | c)j
P(c |Γ )j

P(Γ | c)j
c

                                             (4.13) 

where c , is the set of all category hand postures. We assume that P(c) 

are equal, all classes are used with the same probability. The category posterior is 
used to calculate the relevance of a composition for discriminating hand postures. In 

order to find a relevance measure the category posteriors of compositions are 
learned from the training data. The relevance of a composition for discriminating 
hand postures is then estimated by the entropy of its category posterior:  

 




H(P )=- P(c|Γ )logP(c|Γ )Γ j jj c
                                                      (4.14) 

The entropy is used as a measure of discriminative relevance; since entropy 
measures how uniformly a random variable is distributed the entropy should be 
minimized. 

In order to measure the total relevance of a compositional prototype, a cost 
function is defined. The cost function combines the prior assignment probabilities of 

clusters and the entropy, so it combines the reusability criterion with the criterion 
that measures the ability of compositions to discriminate hand postures from one 
another. The resulting cost function defined guides the selection of relevant 
compositions. 

There are two cost function proposed in literature by the same authors. In 
[10] Ommer and Buhman proposed the following cost function: 

π π πS( ) -P( )+λH(P )i i i                                                                     (4.15) 
In [126] Ommer  proposed the cost function described by Eq.(4.16). 

 

π π πS( ) -logP( )+λH(P )i i i                                                                 (4.16) 
Both constituents of the cost function should be normalized to the same 

dynamic range, giving rise to an additional additive constant that can be discarded 
and to the parameter λ . 
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4.5.2.2 Robust approach to parameter selection in 

relevant prototype set generation. 

Parameter λ  defines the balance between the two conflicting demands: 

generality and specificity. Its value proved to be very important in practice. 
Parameter λ  reflects the way the generality and specificity combines in order to 

select the relevant prototypes which determinates farther the relevant composition 

used to describe an image. In [126] it is proposed a method to compute the value 
of the parameter λ . The estimation of parameter  λ  proposed by Ommer is not a 

robust one because it uses the maximum and minimum values which are sensitive 
to outliers, as one can see in Eq.( 4.17). 

 

π π

π π

max logP( )-min logP( )i i i iλ =
max H(P )-minH(P )i ii i

                                                         (4.17) 

In this approach the parameter is estimated using the inter-quartile range 
(IQR) which is equal to the difference between the third and first quartiles. A 
quartile is any of the three values which divide the sorted data set into four equal 

parts, so that each part represents one fourth of the sampled population. The inter-
quartile range gives a measure of the spread represented by half of the entire 
sample and has the advantage of excluding extreme values, so the inter-quartile 
range is a robust estimator. The proposed robust method for estimating parameter 
λ  is presented in Eq. (4.18). 

π

π

IQR(P( ))iλ =
IQR(H(P ))

i

                                                                             (4.18) 

From the set of all compositional prototypes a set of relevant composition 
prototypes is established through minimization of Eq.(4.15). For all composition 

prototypes iπ  the cost function is computed and a set of r relevant composition 

prototypes is selected. The distance between all composition and all relevant 
composition prototypes and irrelevant compositional prototypes is computed. The 
image is represented by those candidate compositions which are closer to the 
relevant prototypes than any irrelevant ones.  

The result obtained using the proposed equation for λ  computation is better 

than one obtained using Ommer equation. The results are presented in the next 

chapter. 

4.6 Training step 

The training procedure is carried out according to the diagram shown in 

Figure 43. For all training images the features vectors ie  are extracted and K-

means is performed in order to generate the feature codebook, which is the first 
product of the training step. Based on feature vectors and the feature codebook, the 
candidate compositions are extracted and modeled with their distribution vectors 
over the feature codebook. 
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Candidate compositions from all test images are clustered using one more 
time k-means, and the resulted composition prototypes are used to form the 

composition codebook. Based on the cost function defined in Eq. (4.15) relevant 
compositions prototypes are learned in the next stage. A set of r relevant 
composition prototypes is established. This set is obtained by selecting the 

prototypes iπ  with minimal cost πS( )i . Only those relevant compositions which are 

not farther away from the relevant composition prototypes than the irrelevant ones 
are retained. 

 Each image from the training set is described by those candidate 

compositions which are closer to the relevant prototypes than any irrelevant ones 

(these are the relevant compositions) and also by the relative rescaled position 
coordinates of the relevant compositions. 

The hand position may vary from one image to another, so in order to get 
invariance to translation the relative coordinates are used. The relative position of 
the compositions is estimated using the median, not the mean because the median 
is more robust. These relative positions are rescaled using parameter  . In Figure 

42 an example of relevant composition detected for class f are shown. 
 
 

 
 

Figure 42 Example of relevant compositions 
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Figure 43 Training diagram
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4.7 Hand posture Recognition 

 

Figure 44 Recognition step 

 

The recognition part is done based on the bag of compositions method. For 

the new image, a set of composition vectors ih  is computed. These vectors consist 

of jg  distributions and relative, rescaled position coordinates of the relevant 

compositions. In order to get invariance to translation the relative rescaled 

coordinates xi , yi  are used. Hand position is estimated using the median, not the 

mean because the median is less influenced by the maximum and minimum values 

from the set of coordinates and is more robust. Evaluation of the data set using 
median is good if half of the data is correct. For this application more than half of 
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the data is correct because most of the compositions are generated from interest 
points located on hand and less from interest points found on background.   

 The relative position is rescaled using the parameter  . The evaluation of 

the parameter   is a problem of feature extraction and depends on the data 

characteristics. Its value influences the space shape.  

 1





  
  
  

    

x xi r
= y = yi i r

T
j P(F =1| ),...P(F =k | )i i i

h

g
e e

                                      (4.19) 

Where x = (x-x )i median = xr  

 y = (y-y )i median = xr  

The range for xr , yr is larger than the range of probabilities. Both 

compositions and their position should have similar importance because the hand 
posture is recognized based on types of compositions and their relative position one 
to another. The value of parameter   is learned based on the experimental data. 

4.7.1 Hand posture classification 

The classification of a new image which is described by vectors ih  is not 

straight forward. The number of compositions that describe the testing image differs 
from the number of compositions which describes the images from the bag (each 

image from the bag might have different numbers of compositions). All components 
which describe an image can be seen as a vector; because the length of the vectors 
is not equal for all images it is not possible to use traditional classifications methods, 
for example neural-networks [103].  

The proposed classification method is inspired by point matching used in 
image registration, where two sets of points need to be registered and 

correspondence of points need to be formed. The two sets of points usually suppose 

different numbers of points. The minimum distance from a fixed point a Ai  found 

in set 1, to points b Bn  from set 2 (according to Figure 45) is shown in  Eq.(4.20) 


mind(a b )= d(a ,b )i, n i l

n
                                                                     (4.20) 

The minimum distance from point b Bl  to points from set 1 according to 

Figure 45  is: 

 


mind(b ,a )= d(b ,a )l n l k

n
                                                                   (4.21) 

In Figure 45 it can be seen that d d1 2 , where 

d =d(a ,b )1 i l and d =d(b ,a )2 l k . 
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Figure 45 Minimum distance between points. 
 

For each  new image only the minimum distance from the training images 

compositions to test image composition ih  is computed 
ck,qν imin h - hν ic

i

, then all 

these distances are sum and normalized according to Eq.(4.22) 
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Figure 46. Minimum distance between compositions found in training image and those found in 
the test image. 

 

ν  is the number of pictures per class, k  is the class, qν  is the number of 

compositions from a class, i is the current image and ci is the number of composition 

for the test image.  


c1 k,qν id(c,ν )= min h -hν ik cq#q ν iν

                                                    (4.22) 

d(c,k)= argmind(c,ν )
kν

k

                                                                  (4.23) 

 
The reason why the distance from the test image compositions to training 

images is not computed is related to the fact that the testing image might have 
some compositions which are not specific for that class; it might have compositions 

as a result of some interest points detected on background. This is less likely to 
happen for training images. 

These distances are computed for all images. 
The discriminant function used in the experiments from this work is defined 

as: 

k = argmind(c,k)opt
k

                                                                       (4.24) 

In order to prove the power of the compositional approach in hand posture 
recognition, two sets of hand gesture were used. The first one consists of nine 
classes of hand postures and the second one is represented by six classes as it can 
be seen in Figure 47 and Figure 48 
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a) Set 1 class 1 

 
b) Set 1 class 2 

 
c) Set 1 class 3 

 
d) Set 1 class 4 

 
e) Set 1 class 5 

 
f) Set 1 class 6 
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Figure 47 Training set 1 with 9 classes

 
g) Set 1 class 7 

 
h) Set 1 class 8 

 
 

i) Set 1 class 9 
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a) Set 2 class 1 

 
b) Set 2 class 2 

 
c) Set 2 class 3 

 
d) Set 2 class 4 

 
e) Set 2 class 5 

 
f) Set 2 class 6 

 

Figure 48 Training set 2 with 6 classes 

 
 

4.8 Conclusions 

In this chapter a compositional approach for hand posture recognition was 
described. The goal of this work was to prove the power of compositional techniques 
in hand gesture recognition. The compositional techniques have been used with 
good results in applications like: object categorization and data mining; however 
these techniques have not been used in classification. The main advantage of the 
compositional techniques is their generality; these techniques are more independent 
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of application. Compositional techniques are well suited to incorporate principles 
from the Gestalt theory of visual perception, therefore they have an important and 

mostly unexplored potential for further development. Gestalt theory tends to 
emulate better the way our brain-view processor works. Nowadays research in 
human vision makes us understand more about the process that people use to 
recognize an object and this helps the Computer Vision Community develop more 
similar techniques to the human vision. This work is an attempt to extend the types 
of problems solved based on the new, compositional approach. While using the 
general framework of some reference compositional techniques [209], this work 

designed the processing modules by considering the specifics of the hand gesture 

recognition problem, where needed.  
The main contribution of this work is the compositional approach 

used to hand posture recognition. According to compositional technique first is 
decided how hand can be represented in order to know which image locations have 
to be captured and which to dispose of. The idea is that each hand posture can be 
described by: the V shapes between the fingers when these are apart, the curve 

shapes which correspond to the fingertips and the straight lines from the finger 
length. Each hand pose can be defined as a combination of these shapes. Based on 
the number of V shapes, curves and lines and based on the relations among them 
the hand pose can be recognized.  

 One of the contributions of this work is to carefully select the basic features 
(contours, interest points, patches, colour histograms, orientation histograms). 

These basic features generate the primitive features (the V shape, the curves and 
the lines). The primitive features are like Lego components, they are not extremely 
variated but by combining them it is possible to generate a lot of object shapes. A 

contribution of this work also consists in the selection of primitive features. 
The object representation is based on compositions of parts: descriptors are 

grouped according to Gestalt law of proximity to obtain a set of possible candidate 
compositions. In order to generate the desired primitive features it was 

important to choose the right distance between the parts which are about 
to be grouped. Candidate compositions from all test images are clustered and the 
resulted composition prototypes are used to form the composition codebook. Based 
on the cost function the relevant compositions prototypes are learned in the next 
stage. The optimization of parameter λ , its robust estimation in order to 

select the relevant compositions prototypes represents a major asset of 
this work. 

Based on relevant compositions prototypes the relevant compositions are 
selected. Relevant compositions and their rescaled position is used to describe the 
image. Both relevant compositions and their position should have similar 
importance because the hand posture is recognized based on types of 
compositions and their relative position one to another. In order to have 
this, the parameter   is introduced and its value is learned based on the 

experimental data.  
The discriminant function for classification inspired by the point matching 

used in image registration, represents also a contribution of this work. 
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5 EXPERIMENTS 

In this chapter the results of the experiments which evaluate the proposed 
compositional technique for hand gesture recognition are presented. 

5.1 Experimental settings 

In order to evaluate the compositional approach to hand gesture recognition 

two sets of hand postures are used. The first one consists of nine classes of hand 

postures and the second one is represented by six classes of hand postures. The 
second set of hand postures has six classes other then those from set 1. The first 
set of hand postures represents nine hand postures from ASL (American Sign 
Language) and the second one represents six classes of hand postures that can be 
perform pretty easily in front of a webcam while a person is sited on a chair.  For 
the first set there were taken pictures with Nikon D60 and for the second one a 

Canyon web cam was used. In figures 49 to 57 different hand postures from 
different classes can be seen. 

For the first set of hand postures 30 training images per class are used and 
for the second set 60 training images per class are used. The first set of training 
images has as background a white wall. The second set of training images has as 
background a white paper. Both training set pictures are taking in natural 
conditions, no artificial light was added. For the first set of images there is a single 

subject, the same is for the second set, but the subjects are different.  

5.2 Experiments results for set 1 

The first set of hand postures represents nine hand postures from ASL 
(American Sign Language), more exactly letters: a, c, d, e, f, p, u, w, x. The 
pictures from set 1 are taken in two different days; this can be notice from 
illumination changes, which is not the same for all pictures.  

For set 1 the images resolution is 255 px x 171px. 

In order to extract the hand contours Canny edge detector from Image 
Processing Toolbox, Matlab is used. The sensitivity thresholds for the Canny method 
for set 1 is defined; the high threshold thresh is 0.5 and 0.4*thresh is used for the 
low threshold. 

The number of   clusters k, is five in all experiments, and the  number of 

composition prototypes i π  varies in experiments. 

The two bin colour histograms are extracted only for the red component of 
the RGB image. Parameter  from Eq.(4.6) is equal to 1 and parameter  from 

Eq.(4.11) equal to 0.05.  

The number of composition prototypes i π  is 20 and the number of 

relevant composition prototypes r, which conduct to the best result is equal to 19. 
The number of relevant prototypes is 19 because almost all compositions resulted 
from interest points detected on hand and just a few are the result of some points 
detected on background. 
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Figure 49 Set 1 class 1-a 

 

Figure 50  Set 1 class 2-c 
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Figure 51 Set 1 class 3-d 

 

     

     

     

     

     

 Figure 52 Set 1 class 4-e 
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Figure 53 Set 1 class 5-f 

 

     

     

     

     

     

Figure 54 Set 1 class 6-p 
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Figure 55 7Set 1 class 7-u 

 

     

     

     

     

     

Figure 56 Set 1 class 8-w 
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Figure 57 Set 1 class 9-x 

 
In order to test the performances of the proposed method, because the 

number of samples per set is not very large the “leave one out” method is 
preferred.  

 

5.2.1 Robust versus non-robust estimation of parameter λ  

Due to the fact that parameter λ  defines the balance between the two 

conflicting demands: generality and specificity its value proved to be very important 
in practice. Parameter λ  reflects the way the generality and specificity combines in 

order to select the relevant prototypes which determinate farther the relevant 
composition used to describe an image.  

Based on the proposed equation in [126] (see Eq. (5.2)), which is sensitive 

to noise and using the cost function,  

 π π πS( ) -logP( )+λH(P )i i i
                                                                 (5.1) 

π π

π π

max logP( )-min logP( )i i i iλ =
max H(P )-minH(P )i ii i

                                                           (5.2) 

the following results are obtained: the error rate is 7.037% and confusion 
matrix can be seen in Table 1. The diagonal is 93.033% 

 

 
 
 

 
 
 

Table 1 The Confusion Matrix for set 1 with 19 relevant composition , 0.02  , λ  computed 

using Ommer [126] equation 

 
Class 

                      
Predicted 

a c d e f p u w x 
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a 90.1 3.3 3.3 0 0 0 0 0 3.3 

c 3.3 93.4 0 0 0 0 0 0 3.3 

d 0 0 100 0 0 0 0 0 0 

e 3.3 0 0 93.4 3.3 0 0 0 0 

f 0 0 3.3 0 86.8 0 0 0 9.9 

p 0 0 0 0 0 100 0 0 0 

u 0 0 6.6 0 0 0 93.4 0 0 

w 0 0 0 0 0 0 0 100 0 

x 3.3 9.9 6.6 0 0 0 0 0 80.2 

 

Using the proposed robust estimation of the parameter   (see Eq. (5.4)) 

and the cost function from Eq. (5.3): 

π π πS( ) -P( )+λH(P )i i i
                                                                      (5.3) 

 

π

π

IQR(P( ))iλ =
IQR(H(P ))

i

                                                                               (5.4) 

The following results are obtained: the error rate is 3.70% and confusion 
matrix can be seen in Table 2. The diagonal is 96.29%. 

Table 2 The Confusion Matrix for set 1 with 19 relevant composition prototypes, 0.02  , λ  

computed using the proposed equation 

 
Class 

        
Predicted 

a c d e f p u w x 

a 93.4 3.3 3.3 0 0 0 0 0 0 

c 0 96.7 0 0 0 0 0 0 3.3 

d 0 0 93.4 0 0 0 6.6 0 0 

e 0 0 0 96.7 0 0 0 3.3 0 

f 0 0 0 3.3 96.7 0 0 0 0 

p 0 0 0 0 0 100 0 0 0 

u 0 0 0 0 0 0 100 0 0 

w 0 0 0 0 0 0 6.6 93.4 0 

x 0 3.3 0 0 0 0 0 0 96.7 

 

This results confirm the importance of the parameter λ . Using a robust 

estimation of this parameter the error rate decrees with 47.4%.  
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5.2.2 The importance of parameter   

As it was mention in chapter 4 parameter   rescale the relative coordinates 

of the compositions, because both relevant compositions and their position should 
have similar importance. A hand posture is recognized based on the relevant 
compositions and their relative position one to another. 

Importance of parameter   is proved in the next experiments. For the 

same experiment like in 5.2.1 the value of parameter   is changed to 0.1. The 

results are summarized in Table 3. The diagonal is 93.4%, the error rate is 6.6%, 

and only one hand posture is recognized 100%. 

Table 3 The Confusion Matrix for set 1 with 19 relevant composition prototypes, 0.1  , λ  

computed using the proposed equation 

   
Class 

                 
Predicted 

a c d e f p u w x 

a 83.5 3.3 9.9 0 0 0 3.3 0 0 

c 3.3 93.4 0 0 0 0 0 0 3.3 

d 0 0 93.4 0 0 0 6.6 0 0 

e 3.3 0 0 93.4 0 0 3.3 0 0 

f 0 0 0 0 96.7 0 0 0 3.3 

p 0 0 0 0 0 100 0 0 0 

u 0 0 0 0 0 0 90.1 0 9.9 

w 3.3 0 0 0 0 0 3.3 93.4 0 

x 3.3 0 0 0 0 0 0 0 96.7 

 

The results for 0.5  , 19 relevant composition prototypes, λ  computed 

using the proposed equation can be seen in Table 4. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 

Table 4 The Confusion Matrix for set 1 with 19 relevant composition prototypes, 0.5  , λ  

computed using the proposed equation 

BUPT



   Experiments   5 

 

88 

   

Class 
          

Predicted 

a c d e f p u w x 

a 80.2 3.3 13.2 0 0 0 0 0 3.3 

c 6.6 90.1 0 0 0 0 0 0 3.3 

d 0 0 96.7 0 0 0 3.3 0 0 

e 0 0 0 93.4 0 0 3.3 0 3.3 

f 0 0 3.3 0 90.1 0 3.3 0 3.3 

p 0 0 0 0 0 100 0 0 0 

u 3.3 0 3.3 0 0 0 86.8 0 6.6 

w 3.3 0 0 0 0 0 9.9 86.8 0 

x 6.6 0 3.3 0 0 0 0 0 90.1 

 
The diagonal is 90.4%, the error rate is 9.6%, and only one hand posture is 

recognized 100%. 

The results for 0.015  , 19 relevant composition prototypes, λ  computed 

using the proposed equation can be seen in the confusion matrix from Table 5. 

Table 5 The Confusion Matrix for set 1 with 19 relevant composition prototypes, 0.015  , 

λ  computed using the proposed equation 

 
Class 

       
Predicted 

a c d e f p u w x 

a 93.4 3.3 3.3 0 0 0 0 0 0 

c 0 93.4 0 0 0 0 0 0 6.6 

d 0 0 93.4 0 0 0 6.6 0 0 

e 0 0 0 93.4 0 0 0 6.6 0 

f 0 0 0 3.3 96.7 0 0 0 0 

p 0 0 0 0 0 100 0 0 0 

u 0 0 0 0 0 0 100 0 0 

w 0 0 0 0 0 0 6.6 93.4 0 

x 0 3.3 0 0 0 0 0 0 96.7 

 
The diagonal is 95.6% the error rate is 4.4%. 
The results for 0.01  , 19 relevant composition prototypes, λ  computed 

using the proposed equation can be seen in the confusion matrix from Table 6. 

 

 

Table 6 The Confusion Matrix for set 1 with 19 relevant composition prototypes, 0.01  , λ  

computed using the proposed equation 
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Class 
       

Predicted 

a c d e f p u w x 

a 93.4 3.3 3.3 0 0 0 0 0 0 

c 0 93.4 0 0 0 0 0 0 6.6 

d 0 0 93.4 0 0 0 6.6 0 0 

e 0 0 0 93.4 0 0 0 6.6 0 

f 0 0 0 3.3 96.7 0 0 0 0 

p 0 0 0 0 0 100 0 0 0 

u 0 0 0 0 0 0 93.4 0 6.6 

w 0 0 0 0 0 0 6.6 93.4 0 

x 0 3.3 0 0 0 0 0 0 96.7 

 
The recognition rate is 94.8% the error rate is 5.2%. 
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Figure 58 An illustration of the influence of parameter alfa. 

These experiments prove the importance of parameter , its best value is 

learned from the training data, and for our experiment it is 0.02. 
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5.2.3 Results regarding the clustering method 

In order to know which clusering algoritm is better for the current data, 2 

clustering algoritms are used. The k-means clustering algorithm is the one used to 
report the previous results. The scond cluseting algorithm is meanshift.The scale 
parameter for meanshift clustering algorithm is choose in order to have the same 

number of  clusters k, and the same number of composition prototypes i π . 

Using meanshift clustering algorithm 19 relevant composition prototype, the 

robust estimation of parameter λ  and 0.02    the error rate is much higher: 

21.8%, the confusion matrix can be seen in Table 7. 

Table 7 The Confusion Matrix for set 1 with 19 relevant composition prototypes, 0.02  , λ  

computed using the proposed equation, mean shift clustering algorithm 

   
Class 

       
Predicted 

a c d e f p u w x 

a 53.8 13.2 3.3 13.2 0 0 6.6 0 9.9 

c 0 57.1 0 6.6 0 0 19.8 9.9 6.6 

d 0 0 86.6 0 0 0 3.3 0 9.9 

e 3.3 0 0 96.7 0 0 0 0 0 

f 3.3 3.3 0 13.2 63.7 0 9.9 3.3 3.3 

p 0 0 0 0 0 100 0 0 0 

u 0 0 6.6 0 0 0 83.5 0 9.9 

w 3.3 0 0 0 0 0 3.3 93.4 0 

x 0 3.3 0 0 0 0 26.4 0 96.7 

 
The k-means clustering algorithm has very good results when it deals with 

spherical clusters. 

5.2.4 Experiments for different numbers of relevant 

composition prototypes. 

For 14 relevant compositon prototypes, keeping all the other parameters at 

the same value 0.02  , k-means clustering,  the error rate is 70.2% and the 

recognition rate is 29.8% 
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Table 8 The Confusion Matrix for set 1 with 14 relevant composition prototypes, 0.02  , λ  

computed using the proposed equation, k-means clustering algorithm 

   
Class 

        
Predicted 

a c d e f p u w x 

a 30.7 0 49.5 3.3 0 0 0 13.2 3.3 

c 19.8 10.9 16.5 23.1 9.9 0 0 3.3 16.5 

d 6.6 0 83.5 3.3 0 0 0 0 6.6 

e 9.9 0 0 27.4 3.3 0 0 29.7 0 

f 0 0 49.5 26.4 14.2 0 0 9.9 0 

p 9.9 9.9 3.3 23.1 0 40.6 0 0 13.2 

u 6.6 0 46.2 0 0 0 7.6 0 39.6 

w 9.9 0 26.4 0 9.9 0 0 53.8 0 

x 16.5 0 75.9 3.3 0 0 0 3.3 0 

 
For 16 relevant compositon prototypes, keeping all the others parameters at 

the same value 0.02  , k-means clustering,  the error rate is 7%, the diagonal is 

93% as it can be seen in Table 9. 

Table 9 The Confusion Matrix for set 1 with 16 relevant composition prototypes, 0.02  , λ  

computed using the proposed equation, k-means clustering algorithm 

   
Class 

       

Predicted 

a c d e f p u w x 

a 86.8 3.3 9.9 0 0 0 0 0 0 

c 0 86.8 0 0 0 0 0 0 13.2 

d 0 0 100 0 0 0 0 0 0 

e 3.3 0 0 93.4 3.3 0 0 0 0 

f 0 3.3 0 6.6 90.1 0 0 0 0 

p 0 0 0 0 0 100 0 0 0 

u 0 0 9.9 0 0 0 86.8 0 3.3 

w 0 0 0 0 0 0 0 100 0 

x 0 3.3 0 0 0 0 3.3 0 93.4 

 

For 18 relevant compositon prototypes, keeping all the others parameters at 

the same value 0.02  , k-means clustering,  the error rate is 4.4%, the diagonal 

is 95.6 %. The confusion matrix for this experiment can be seen in Table 10. 
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Table 10 The Confusion Matrix for set 1 with 18 relevant composition prototypes, 0.02  , 

λ  computed using the proposed equation, k-means clustering algorithm 

   
Class 

       
Predicted 

a c d e f p u w x 

a 90.1 3.3 6.6 0 0 0 0 0 0 

c 0 96.7 0 0 0 0 0 0 3.3 

d 0 0 100 0 0 0 0 0 0 

e 3.3 0 0 93.4 3.3 0 0 0 0 

f 0 0 0 3.3 96.7 0 0 0 0 

p 0 0 0 0 0 100 0 0 0 

u 0 0 6.6 0 0 0 90.1 0 3.3 

w 0 0 0 0 0 0 0 100 0 

x 0 3.3 0 0 0 0 3.3 0 93.4 

 
In Figure 59 and Figure 60 the evolution of recognition rate per class for 

diffrent numbers of relevant composition prototypes and the evolution of error rate 
and recognition rate for r=14, 16, 18 and 19 is shown. 

 

 

Figure 59 Recognition rate per class for diffrent numbers of relevant composition prototypes 
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Figure 60 The evolution of error rate and recognition rate for r=16,18 and 19 

5.3 Experiments results for set 2 

The second set of hand postures has six classes. This six had postures are 
chosen by the considerate that they are easy to perform in front of a webcam by a 
person while is sited. The pictures from set 2 are taken in different days, with 

different day light illuminations and fluorescent light. The background is a white 
paper and a brown carpet. The training set has 60 samples per class and the testing 
sets have other 30 training samples per class. These images are acquired by a 
Canyon webcam- CN-WCAMNI. 

For set 2 the images resolution is 640px x 480px. 
In order to extract the hand contours Canny edge detector from Image 

Processing Toolbox, Matlab is used. The sensitivity thresholds for the Canny method 
for set 1 is defined; the high threshold thresh is 0.4 and 0.4*thresh is used for the 
low threshold. 

The two bin colour histogram is extract only for the red component of the 
RGB image. Parameter σ from Eq.(4.6) is equal to 1 and parameterσ from Eq.(4.11) 

equal to 0.05.  
The number of composition prototypes is 30 and the number of relevant 

composition prototypes r, which conduct to the best result is equal to 28.  
The training set has as background a white paper as it can be seen in 

figures below. No artificial light was added to the training images. 
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Figure 61 Images from training set 2- class 1 
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Figure 62 Images from training set 2- class 2 
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Figure 63 Images from training set 2- class 3 
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Figure 64 Images from training set 2- class 4 
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Figure 65 Images from training set 2- class 5 
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Figure 66 Images from training set 2- class 6 
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5.3.1 Experiments using  ” leave one out” method 

For the first experiments „leave one out” method is uesd.  
Using Ommer [126] estimation of the parameter λ  and  the cost function 

from Eq.(5.1) the following results summerized in Table 11 are obtained. 

Table 11 The Confusion Matrix for set 2 with 28 relevant composition prototypes, 0.02  , λ  

estimated using Ommer equation, k-means clustering algorithm 

   
Class 

       
Predicted 

1 2 
 

3 4 5 6 

1 100 0 0 0 0 0 

2 0 99.72 0.28 0 0 0 

3 0 0 99.45 0 0.55 0 

4 0 0 0 100 0 0 

5 0 0 0.55 0 99.45 0 

6 0 0 0.55 0 0.55 98.9 

 
The recognition rate is 99.59% and the error rate is 0.41%. 
Using the proposed equation for estimation of the parameter λ  and  the 

cost function from Eq.(5.3)  the results from Table 12 are obtained 

Table 12 The Confusion Matrix for set 2 with 28 relevant composition prototypes, 0.02  , λ  

computed using the proposed equation, k-means clustering algorithm 

   

Class 
                 

Predicted 

1 2 

 

3 4 5 6 

1 100 0 0 0 0 0 

2 0 100 0 0 0 0 

3 0 0 100 0 0 0 

4 0 0 0 100 0 0 

5 0 0 0.55 0 99.45 0 

6 0 0 0.55 0 0 99.45 

 

For this case the average recognition rate is 99.82% and the error rate is 
0.18%. 
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5.3.2 Experiments with new test images  

In the next experiments there are 30 new samples per class and the 

background is a white paper. In figures 67 to 72, these new testing images can be 
seen. 

The results obtain with the non-robust estimation of the parameter λ  are 

presented in the confusion matrix from Table 13. 

 Table 13 The Confusion Matrix for set 2 with 28 relevant composition prototypes, 0.02  , λ  

computed using Ommer equation, k-means clustering algorithm 

   
Class 

                  
Predicted 

1 2 
 

3 4 5 6 

1 100 0 0 0 0 0 

2 3.3 96.7 0 0 0 0 

3 0 0 93.4 0 3.3 3.3 

4 0 0 0 100 0 0 

5 0 0 0 0 100 0 

6 9.9 0 0 0 3.3 86.8 

 
The recognition rate is 96.15% and the error rate is 3.75%. 
 
The results for the same test images but with λ  computed with the 

proposed equation are presented in Table 14. 

Table 14 The Confusion Matrix for set 2 with 28 relevant composition prototypes, 0.02  , λ  

computed using the proposed equation, k-means clustering algorithm 

   
Class 

       
Predicted 

1 2 
 

3 4 5 6 

1 100 0 0 0 0 0 

2 3.3 96.7 0 0 0 0 

3 0 0 93.4 0 3.3 3.3 

4 0 0 0 100 0 0 

5 0 0 0 0 100 0 

6 3.3 0 0 0 3.3 93.4 

 
The recognition rate is 97.25% and the error rate is 2.75%. 
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Figure 67 Images from testing set 1-class 1 
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Figure 68 Images from testing set 1-class 2 
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Figure 69 Images from testing set 1-class 3 
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Figure 70 Images from testing set 1-class 4 
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Figure 71 Images from testing set 1-class 5 

 
 
 

 
 
 
 

 
 
 

 
 
 
 
 
 

BUPT



                                                            5.3   Experiments results for set 2    107 

   

   

   

  

 

 

Figure 72 Images from testing set 1-class 6 

 
In the next experiments there are 30 new samples per class and the 

background is a brown carpet. In figures 73 to 78, some of these new testing 

images can be seen. 
For this set of images the following results summarized in Table 15 are 

obtained when the parameter λ  was computed with Ommer equation. 
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Table 15 The Confusion Matrix for set training set 2 with 28 relevant composition prototypes, 

0.02  , λ  computed using Ommer equation, k-means clustering algorithm 

   
Class 

       
Predicted 

1 2 
 

3 4 5 6 

1 94.6 0 0 0 3.3 0 

2 6.6 96.7 0 0 0 0 

3 0 0 93.4 0 3.3 3.3 

4 0 0 0 93.4 0 6.6 

5 0 0 0 0 100 0 

6 6.6 0 0 0 3.3 90.1 

 

The error rate for this case is 94.7% and error rate is 5.3%. 
 
When parameter λ  was computed with the proposed equation,  the 

experiments conducted to the following results presented in the matrix confusion 
from Table 16.   

 

 

Table 16 The Confusion Matrix for set training set 2 with 28 relevant composition prototypes, 

0.02  , λ  computed using the proposed equation, k-means clustering algorithm 

   
Class 

       
Predicted 

1 2 
 

3 4 5 6 

1 100 0 0 0 0 0 

2 3.3 96.7 0 0 0 0 

3 0 0 93.4 0 3.3 3.3 

4 0 0 0 93.4 0 6.6 

5 0 0 0 0 100 0 

6 6.6 0 0 0 3.3 90.1 

 

Recognition rate is 95.6%  and error rate is 4.4% 
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Figure 73 Images from testing set 2-class 1 
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Figure 74 Images from testing set 2-class 2 
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Figure 75 Images from testing set 2-class 3 
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Figure 76 Images from testing set 2- class 4 
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Figure 77 Images from testing set 2- class 5 
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Figure 78 Images from testing set 2- class 6 
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5.4 Conclusions 

In this chapter the experimental results which prove the potential of the 

compositional tehniques are presented. Our best result for the first set of images 
which consists of nine classes is  96.29%; the best result for the secod set of 
images which consists of 6 clases is 99.82%.  

The experiments also prove the importance of parameter λ , which makes a 

trade-off between general and specific in the cost function defined in Eq. (4.15). The 
robust estimation of parameter λ  in order to select the relevant compositions 

prototypes represents a major asset of this work. Using the robust estimation of 
parameter λ  for set 1 of images, the recognition rate was 96.29% and using the 

non-robust estimation of the parameter λ , the error rate for the same experiment 

was 93.033%. For set 2 of images the recognition rate was 96.82% when „leave 
one out” method was used. For the same experiment using the non-robust 
estimation of parameter λ  the recogniton rate was 99.59%. The results obtained 

for a new set of hand postures (different from the training images) are: 97.25% 
when we used the value of parameter λ  estimated with the proposed Eq.(4.18) and 

96.15% when its value was estimated using Ommer equation. For the second set of 
test images the background was a brown carpet and the following results we had: 
for the robust estimation of parameter λ  the recognition rate was 95.6% and for the 

non-robust estimation of parameter λ  the recognition rate was 94.7%. 

Based on relevant compositions prototypes the relevant compositions are 
selected. Relevant compositions and their rescaled position is used to describe the 
image. Both relevant compositions and their position should have similar importance 

because the hand posture is recognized based on types of compositions and their 
relative position one to another. In order to have this, the parameter   is 

introduced and its value is learned based on the experimental data. The importance 
of parameter   is shown in experiments, the best recognition rate 96.29% was 

obtained for  =0.02. 

The number of relevant composition prototypes proves to have a grate 
influence in practice. For the first set of hand postures the best recognition rate 
96.29%, was obtained for 19 relevant composition prototypes. For 14 relevant 
composition prototypes the recognition rate has decreased dramatically to 29.8%; 
for 16 relevant composition prototypes the recognition rate was 93%, and for 18 
relevant composition prototypes it was 95.6%. 

This results compare favorably with other results reported in literature as it 

can be seen in Table 17. 
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Table 17 Results for hand posture recognition 

  

No. of hand 
postures 

No. of test 
images 

Recognition 
rate 

Source 

3 275 95.6% Wang C .C, Wang K. 
C., [211], 2008 

4 400 95.75% Chen Q., Georganas 
N.D., Petriu E.M, 
[212] 2007 

6 360 99.82% Current work 

9 270 96.29% Simion G.,Gui 
V.,OtesteanuM. [9] 
2009. 

10 718 92.79% Just, A. Rodriguez, 
Y.   Marcel, S.  [213] 
2006.  

 
It is quite difficult to compare our results with those reported in literature, 

because there are diffrent data bases, with diffrent hand potures and a diffrent 
number of hand postures. However the results obtained witht the proposed 
compositional method show that compositional methods should be rekon in object 

recognition and more specific in hand posture recognition. 
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6 CONCLUSIONS 

6.1 Discussions 

This thesis addresses to hand posture recognition. Hand posture recognition 
is an important task for Computer Vision researchers, because nowadays the use of 
hand gestures has become an important part of human computer interaction (HCI). 

To use human hands as a natural interface device, some glove-based devices have 

been employed to capture human hand motion by attaching sensors to measure the 
joint angles and spatial positions of hands directly. These devices have the 
disadvantages of being expensive and cumbersome. Vision-based techniques 
provide promising alternatives to capture human hand motion being cost efficient 
and noninvasive. These facts serve as the motivating forces for research in the 
modeling, analysis, animation, and recognition of hand gestures.  

There is a large variety of applications which involves hand gestures. Hand 
gestures can be used to achieve natural human computer interaction for virtual 
environments; there are attractive methods for communication with the deaf and 
dumb. An important application area is that of vehicle interfaces. The primary 
motivation of research into the use of hand gestures for in-vehicle secondary 
controls is broadly based on the premise that taking the eyes off the road to operate 
conventional secondary controls can be reduced by using hand gestures. The 

healthcare area also could benefit by the hand gesture recognition systems. The 
gesture based system could replace touch screens now used in many hospital 

operating rooms which must be sealed to prevent accumulation or spreading of 
contaminants and requires smooth surfaces that must be thoroughly cleaned after 
each procedure.  

 This thesis proposes a compositional approach to hand gesture recognition. 
The main advantage of the compositional techniques is their generality; these 

techniques are more independent of application. Using these techniques we address 
also to the semantic gap that exists between the low level features and high level 
representations. Using the compositional method characteristic regions from hand 
are extracted. The hand posture is no longer modeled as a whole. This characteristic 
regions are assembled to form compositions, this compositions at their turn can be 
group in compositions of compositions and so on. Using these methods partial 

occlusions of object can be handle. These methods allow us to incorporate the 
Gestalt laws of visual perception. These laws are a set of visual rules that guide the 
construction process of groupings and yield compositions, establishing causal 
relationships between grouping constituents, and tends to emulate the way our 

brain-view processor works better. 
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6.2 Contributions 

The contributions of this work are: 

 
 the compositional approach used to hand posture recognition.  

According to Principle of Compositionality, we tend to decompose object in simple 
parts, and represent the object as hierarchies of meaningful parts. Following this 
principle a hand gesture is decompose in: the V shapes between the fingers when 
these are apart, the curve shapes which correspond to the fingertips and the 

straight lines from the finger length. Each hand pose can be defined as a 

combination of these shapes. Based on the number of V shapes, curves and lines 
and based on the relations among them the hand pose can be recognized.  

 
 careful selection of the basic features 

Contours, interest points, patchs, colour histograms, orientation histograms, are 
used to generate the V shapes, curves and lines. Another contribution of this work 
consists in the selection of the V shape, curves and lines which are used to 

describe a hand posture. 
 
 the choice of the right distance between the parts which are about 

to be grouped. 
The object representation is based on compositions of parts: descriptors are 
grouped according to Gestalt law of proximity to obtain a set of possible candidate 

compositions. In order to generate the compositions of parts it was important to 

choose the right distance between the parts which are about to be grouped. 
Candidate compositions from all test images are clustered and the resulted 
composition prototypes are used to form the composition codebook. Based on the 
cost function the relevant compositions prototypes are learned in the next stage.  
 

 the optimization of parameter λ  

The robust estimation of parameter λ  in order to select the relevant compositions 

prototypes represents a major asset of this work. 
 

 the use of parameter    

Based on relevant compositions prototypes the relevant compositions are selected. 
Relevant compositions and their rescaled position are used to describe the image. 

Both relevant compositions and their position should have similar importance 
because the hand posture is recognized based on types of compositions and their 
relative position one to another. In order to have this, the parameter   is 

introduced and its value is learned based on the experimental data.  
 

 the  proposed discriminant function  
The proposed discriminant function used in classification was inspired by the 

point matching used in image registration. 
 

 the development of the software package used to recognize hand 
postures   

 

 the development of a data base for hand posters is also a contribution 
of this thesis.  
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6.3 Further work 

This work proves the potential of compositional techniques for hand gesture 

recognition. The study of compositional techniques has gained popularity in the last 
years, so for the future there are a lot of things to be explored. 

Regarding that work, different types of optimizations can be tried: from 
patch size to law of groping that is used to grouped parts in order to form 
compositions. Different feature detectors and feature descriptors could be tested. It 
is also possible to introduce new intermediate layers of abstraction between feature 
extraction and classification.  

In the future the algorithm has to be tested on different subjects.   
This method is quite general so in the future we plan to use it to recognize 

different objects, not only hand postures. 
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