Please use this identifier to cite or link to this item: https://dspace.upt.ro/xmlui/handle/123456789/1013
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKeresztes, Barna-
dc.contributor.authorBelean, Bogdan-
dc.contributor.authorBorda, Monica Elena-
dc.contributor.authorLavialle, Olivier-
dc.date.accessioned2020-03-17T12:25:45Z-
dc.date.accessioned2021-03-01T08:38:53Z-
dc.date.available2020-03-17T12:25:45Z-
dc.date.available2021-03-01T08:38:53Z-
dc.date.issued2009-
dc.identifier.citationKeresztes, Barna. Microarray image segmentation using marked point processes. Timişoara: Editura Politehnica, 2009en_US
dc.identifier.urihttp://primo.upt.ro:1701/primo-explore/search?query=any,contains,Microarray%20image%20segmentation%20using%20marked%20point%20processes&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo-
dc.description.abstractThis paper presents a new method dedicated to unsupervised segmentation of spots in cDNA type microarray images. The framework relies on a marked point process algorithm. We shall create random circular objects to fit the spot distribution in the image. The interaction rules between the objects complete the model. Using a Markov Chain Monte Carlo (MCMC) method, the algorithm converges to a configuration which is close to the spot distribution in the images. At each step, the configuration is evaluated considering its proximity to the target distribution. In order to achieve this task, we propose a data model using a Gaussian gray level distribution and gradient detection to evaluate the likelihood of the current configuration. Finally, the results on the microarray images illustrate the efficiency of the segmentation and suggest that the marked point processes can be a promising tool for spot detection.en_US
dc.language.isoenen_US
dc.publisherTimişoara: Editura Politehnicaen_US
dc.relation.ispartofseriesSeria electronică şi telecomunicaţii, Tom 54(68), fasc. 2 (2009);-
dc.titleMicroarray image segmentation using marked point processes [articol]en_US
dc.typeArticleen_US
Appears in Collections:Articole științifice/Scientific articles

Files in This Item:
File Description SizeFormat 
BUPT_ART_Keresztes_f.pdf393.14 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.