Please use this identifier to cite or link to this item: https://dspace.upt.ro/xmlui/handle/123456789/1123
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGîrbaciu, Irina Alina-
dc.contributor.authorGîrbaciu, Cristian-
dc.contributor.authorBakos, Mihaela Violeta-
dc.date.accessioned2020-03-27T07:26:45Z-
dc.date.accessioned2021-03-01T08:39:10Z-
dc.date.available2020-03-27T07:26:45Z-
dc.date.available2021-03-01T08:39:10Z-
dc.date.issued2011-
dc.identifier.citationGîrbaciu, Irina Alina. Criteria for stability in numerical methods. Timişoara: Editura Politehnica, 2011en_US
dc.identifier.urihttp://primo.upt.ro:1701/primo-explore/search?query=any,contains,Criteria%20for%20stability%20in%20numerical%20methods&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo-
dc.description.abstractNumerical solutions of convection-dispersion equation are numerous, but Finite Difference method has disadvantages two undesirable characteristics: stability criterion and numerical dispersion. Like most explicit schemes, this method is only under certain conditions. If the stability criterion is not met, the numerical model is prone to oscillations in space or time. The paper makes a comparative analysis between explicit forms central and upwind and analytical method of a homogeneous and isotropic system, 1D. Results will emphasize the upwind form is more stable than the central form, regardless of variation of Pecleten_US
dc.language.isoenen_US
dc.publisherEditura Politehnicaen_US
dc.relation.ispartofseriesSeria hidrotehnică;Tom 56(70), fasc. 2 (2011)-
dc.subjectHidrotehnicăen_US
dc.subjectCriterii de stabilitateen_US
dc.subjectEcuația de convectie-dispersieen_US
dc.subjectMetode numericeen_US
dc.subjectArticolen_US
dc.subjectConvection-dispersion equationen_US
dc.subjectNumerical solutionsen_US
dc.subjectFinite Difference methoden_US
dc.subjectOscillationsen_US
dc.subjectStability criterionen_US
dc.subjectPeclet numberen_US
dc.titleCriteria for stability in numerical methods [articol]en_US
dc.typeArticleen_US
Appears in Collections:Articole științifice/Scientific articles

Files in This Item:
File Description SizeFormat 
BUPT_ART_Gîrbaciu_f.pdf483.27 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.