Please use this identifier to cite or link to this item: https://dspace.upt.ro/xmlui/handle/123456789/1531
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCososchi, Ştefan-
dc.contributor.authorStrungaru, Rodica-
dc.contributor.authorUngureanu, Mihaela G.-
dc.date.accessioned2020-04-09T10:41:16Z-
dc.date.accessioned2021-03-01T08:37:12Z-
dc.date.available2020-04-09T10:41:16Z-
dc.date.available2021-03-01T08:37:12Z-
dc.date.issued2006-
dc.identifier.citationCososchi, Ștefan. Comparison of LDA and RBF-NN in EEG features classification for motor imagery. Timişoara: Editura Politehnica, 2006en_US
dc.identifier.urihttp://primo.upt.ro:1701/primo-explore/search?query=any,contains,Comparison%20of%20LDA%20and%20RBF-NN%20in%20EEG%20features%20classification%20for%20motor%20imagery&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo-
dc.description.abstractThis paper presents an approach that uses self-organizing fuzzy neural network based time series prediction to extract the EEG features in time domain. EEG signals from two electrodes placed on the scalp over the motor cortex are predicted by a single fuzzy neural network. Features derived from the mean squared error of the predictions and from the mean squared of the predicted signals are extracted from EEG data within a sliding window using two auto-organizing fuzzy neural networks with multi inputs and a single output. The features are classified by linear discriminant analysis and radial-basis function neural network.en_US
dc.language.isoenen_US
dc.publisherTimişoara: Editura Politehnicaen_US
dc.relation.ispartofseriesSeria electronică şi telecomunicaţii, Tom 51(65), fasc. 1 (2006)-
dc.subjectEEGen_US
dc.subjectNeuro-fuzzy networken_US
dc.subjectPredictionen_US
dc.subjectAuto adaptationen_US
dc.subjectLDAen_US
dc.subjectRBF-NNen_US
dc.titleComparison of LDA and RBF-NN in EEG features classification for motor imagery [articol]en_US
dc.typeArticleen_US
Appears in Collections:Articole științifice/Scientific articles

Files in This Item:
File Description SizeFormat 
BUPT_ART_Cososchi_f.pdf1.63 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.