Please use this identifier to cite or link to this item: https://dspace.upt.ro/xmlui/handle/123456789/3841
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNeagoe, Victor-
dc.contributor.authorRopot, Armand-Dragoș-
dc.date.accessioned2021-09-14T09:12:42Z-
dc.date.available2021-09-14T09:12:42Z-
dc.date.issued2004-
dc.identifier.citationNeagoe, Victor. Neural versus statistical approaches for pattern recognition in space imagery. Timişoara: Editura Politehnica, 2004en_US
dc.identifier.urihttp://primo.upt.ro:1701/primo-explore/search?query=any,contains,Neural%20versus%20statistical%20approaches%20for%20pattern%20recognition%20in%20space%20imagery&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo-
dc.description.abstractWe investigate multispectral space image classification using the new neural model called Concurrent Self-Organizing Maps (CSOM), representing a winner-takes-all collection of small modular self-organizing neural networks. For comparison, we evaluate the performances of Bayes classifier. The implemented neural/statistical classifiers are evaluted using a LANDSAT TM image with 7 bands composed by a set of 7-dimensional pixels, out of which a subset contains labeled pixels, corresponding to seven thematic categories . The best experimental result leads to the recognition rate of 95.29 %.en_US
dc.language.isoenen_US
dc.publisherTimişoara : Editura Politehnicaen_US
dc.relation.ispartofseriesBuletinul ştiinţific al Universităţii „Politehnica” din Timişoara, România. Seria electronică şi telecomunicaţii, Tom 49(63), fasc. 1 (2004), p. 343-347-
dc.subjectNeural pattern recognitionen_US
dc.subjectMultispectral space imageryen_US
dc.subjectConcurrent self-organizing mapsen_US
dc.titleNeural versus statistical approaches for pattern recognition in space imagery [articol]en_US
dc.typeArticleen_US
Appears in Collections:Articole științifice/Scientific articles

Files in This Item:
File Description SizeFormat 
BUPT_ART_Neagoe_f.pdf692.65 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.