Please use this identifier to cite or link to this item:
https://dspace.upt.ro/xmlui/handle/123456789/4863
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hedrea, Ioan-Ciprian, | - |
dc.date.accessioned | 2022-09-16T10:08:50Z | - |
dc.date.available | 2022-09-16T10:08:50Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Hedrea, Ioan-Ciprian, 1978-. New contributions in a problem of geometric quantization. Timişoara: Editura Politehnica, 2016 | en_US |
dc.identifier.uri | http://primo.upt.ro:1701/primo-explore/search?query=any,contains,New%20contributions%20in%20a%20problem%20of%20geometric%20quantization&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo | - |
dc.description.abstract | Based on the study of the Manev’s system, for which it is known that its geometric pre-quantization and Marsden- Weinstein switch, we propose to obtain the symplectic reduction switch with the horizontal polarization via the 1/2 correction forms. The proof follows a similar way as the Kostant’s geometric quantization. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Timişoara: Editura Politehnica | en_US |
dc.relation.ispartofseries | Buletinul ştiinţific al Universităţii „Politehnica” din Timişoara, România. Seria matematică - fizică, Vol. 61(75), issue 1 (2016), p. 7-20; | - |
dc.subject | Geometrie simplectică | en_US |
dc.subject | Spaţii Hilber | en_US |
dc.subject | 1/2 correction forms | en_US |
dc.subject | Symplectic reduction | en_US |
dc.subject | Geometric quantization | en_US |
dc.subject | Horizontal polarization | en_US |
dc.subject | Hilbert space | en_US |
dc.title | New contributions in a problem of geometric quantization | en_US |
dc.type | Article | en_US |
Appears in Collections: | Articole științifice/Scientific articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
BUPT_ART_Hedrea Ioan Ciprian.pdf | 1.07 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.