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Abstract

This paper presents a new method dedicated to un-
supervised segmentation of spots in cDNA type mi-
croarray images. The framework relies on a marked
point process algorithm. We shall create random
circular objects to fit the spot distribution in the
image. The interaction rules between the objects
complete the model.

Using a Markov Chain Monte Carlo (MCMC)
method, the algorithm converges to a configuration
which is close to the spot distribution in the im-
ages. At each step, the configuration is evaluated
considering its proximity to the target distribution.
In order to achieve this task, we propose a data
model using a Gaussian gray level distribution and
gradient detection to evaluate the likelihood of the
current configuration.

Finally, the results on the microarray images il-
lustrate the efficiency of the segmentation and sug-
gest that the marked point processes can be a
promising tool for spot detection.

1 Introduction

The most common technique used in molecular bi-
ology and medicine to measure the gene expression
levels for thousands of genes in parallel is the cDNA
(complementary DNA) microarray experiment. By
gene expression we understand the transformation
of genes information into proteins. The informa-
tional pathway in gene expression is as follows:
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DNA mRNA protein. The protein coding infor-
mation is transmitted by an intermediate molecule
called messenger ribonucleic acid. This molecule
passes from nucleus to cytoplasm carrying the in-
formation to build up proteins. This mRNA acid is
a single stranded molecule from the original DNA
and is subject to degradation, so it is transformed
into stable complementary DNA for further exam-
ination.
Specific single stranded cDNA probes are arrayed

on a cDNA microarray glass slide or microchip.
Usually, samples from two sources are labeled with
two different fluorescent markers and hybridized
on the same array (glass slide). By hybridization
we understand the tendency of two single stranded
DNA molecules to bind together. After the hy-
bridization, the array is scanned using two light
sources with different lengths (red and green) to
determine the amount of labeled sample bound to
each spot through hybridization process. The light
sources induce fluorescence in the spots, which is
captured by a scanner and a composite image is
produced. The most common use of cDNA mi-
croarrays is for the determination of patterns of
differential gene expression, comparing differences
in mRNA expression levels between identical cells
subjected to different stimuli or between different
cellular phenotypes or development stages [2].
Further on, image processing techniques are used

to quantify gene expression levels present in the
captured microarray image, in order to identify the
differential gene expression between normal and ab-
normal cells, labeled with the two different fluores-
cent markers. The flow of processing a microarray
image [13] is generally separated in the following
tasks: addressing, segmentation, intensity extrac-
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Figure 1: The structure of a microarray image

tion and preprocessing to improve image quality
and enhance weakly expressed spots. The first step
associates an address to each spot of the image. In
the second one, pixels are classified either as fore-
ground, representing the DNA spots, or as back-
ground. The last step calculates the intensities of
each spot and also estimates background intensity
values. The major tasks of microarray image pro-
cessing, which contributes in fulfilling the last men-
tioned steps, are to identify the array format in-
cluding the array layout, spot size and shape, spot
intensities and distances between spots. The main
parameters taken into consideration in image pro-
cessing are accuracy and time. There is hardware
implementation for spot detection based on vertical
and horizontal projections. This paper proposes an
original method for spot segmentation using high
level approach which aims to model the spot distri-
bution using circular objects.

It is time consuming to analyze in each pixel of
the image space each possible circular spot, so a
stochastic algorithm is proposed, specifically the
spatial marked point process algorithm, in order
to achieve a fast convergence towards an optimal
distribution of the objects. The marked point pro-
cesses were first used in image segmentation by
Baddeley and Van Lieshout in [1].

The paper is organized as follows: In the next
section we introduce the marked point process
and our object model, in section 3 we discuss the
bayesian interface of the process, and in section 4
the Monte Carlo chain used for the convergence of
the process will be presented.

2 Marked point process

2.1 Notations

Let I be the actual image, I = [0,W ]× [0, H ] (the
value of W and H is around 1500-2500 pixels). A
configuration of objects in the image I will be noted
Y . Using a marked point process X we try to ap-
proximate the observed configuration Y .

A marked point process X = P ×K is a random
configuration of points P in the image space, where
a mark K is assigned to each point. This mark is a
collection of parameters which define an object.

Figure 2: Scanned microarray image

2.2 The object model

As presented in the introduction, the genomic im-
ages contain luminous spot arrays representing gene
samples arranged in groups (figure 2).

The spots are circular patches in the image, so
we’ll use a circle defined by the center P and ra-
dius R to describe an object. The object used to
describe the spots will be a simple object with 3
parameters, the point process built to describe the
system will be defined in a limited subset of R3.

Figure 3: Object model
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3 The probability density

function of the process

Let f(X) be the density of a configuration X of
objects, in the given image I. According to Bayes
formula, the expression of this density can be ex-
pressed as:

f(X) = f(X |I) ∝ fp(X)f(I|X) (1)

The fp(X) contains all the a priori knowledge
about the configuration, and the f(I|X) the likeli-
hood between the image and the current configura-
tion; this will be further noted as L(I|X).

3.1 The a priori term

We can make some restrictions on the object config-
uration based on the a priori knowledge about the
shape and distribution of the objects. The first re-
striction we can make is to limit the R (radius) pa-
rameter between [Rmin, Rmax] where the two limits
were determined experimentally the radius of the
spots is fairly constant. The x and y parameters are
limited by the size of the image: [0,W ] and [0, H ].
The a priori term can be described using the fol-

lowing formula:

fp(X) ∝ αh(X) (2)

The α function defines the probability density of
the process. In this application the fibers are con-
sidered to have a homogenous Poisson distribution:

α = βn(X)

where β is the density parameter of the process
and n(x) represents the number of objects in the
configuration.
The h function defines the interaction between

the different objects. Since the spots cannot inter-
sect, a repulsive Strauss pairwise interaction model
[12] will be used, which penalizes the overlapping
object configurations.
Two objects are overlapping if their silhouettes

touch. This interaction will be noted ∼o and de-
fined by:

xi ∼o xj ⇔ Si ∪ Sj 6= ∅ (3)

The spots are arranged along a rectangular grid,
in groups. The grid is rectangular, and in the same
group the spots are equidistant. As the plates are
scanned, the grid isn’t perfectly horizontal, it has
an inclination α.
If the distance between two objects are smaller

than a given threshold dc, they are considered close
objects (relation ∼c):

xi ∼c xj ⇔ di,j < dc (4)

Two objects are neighbors (∼n)if the distance
between them is equal to the grid step and the angle
between them is equal to the inclination of the grid.

xi ∼n xj ⇔
{

αi,j = αgrid

di,j = dgrid
and (5)

We consider that the objects which are close to
each other should be neighbors. The closeness re-
lationship between two objects is a repulsive rela-
tionship, and as it gets closer to the neighboring re-
lationship, its force decreases (no interaction force)
using a Gaussian function. If the neighborhood re-
lationship would be an attractive one, the proba-
bility of the inactive spots would increase, leading
to their detection.

hc(xi, xj) =
1

2πσdσα
e
−

(di,j−dgrid)2

2σ2
d

−
(αi,j−αgrid)2

2σ2
α

(6)
where xi ∼c xj .

The value of the a priori density for a given con-
figuration X is:

fp(X) = βn(X)
∏

xi∼oxj

γo
∏

xi∼cxj

hc(i, j) (7)

where γo is the repulsion force between the overlap-
ping objects; 0 < γo < 1.

The spot distance and the angle are recalculated
at each step as the mean distance and angle be-
tween neighboring objects, and the variation of
these parameters.

dgrid = mean(di,j) σd = var(di,j)
αgrid = mean(αi,j) σα = var(αi,j)

dc = 1.5 dgrid

(8)

where xi and xj are neighboring objects.

3.2 The data term

In this step we have to determine the probability of
the existence of a configuration based on the likeli-
hood function L(I|X).

As a first approach we used the classical
luminosity-based likelihood detection [10]. Two
classes will be defined, the object class and the
background class. A pixel belongs to the object
class if it is a part of the silhouette of an object;
otherwise it is considered background. The likeli-
hood of a pixel with a class is determined using a
Gaussian distribution function of the luminosities:

L(p|X) =
1√
2πσϕ

e
−

(yp−νϕ)2

2σ2
ϕ (9)
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a. b. c.

Figure 4: Gradient-object intersection: a. no inter-
section b. two points c. all points

where ϕ denotes the class (object or background),
µϕ and σϕ are the mean and variation of luminosi-
ties of the current class.
The likelihood of the image is the product of the

pixel likelihood through the image:

L(I|X) =
∏

p

L(p|X) (10)

To get a more robust detection scheme, a gradient-
based approach was considered, too [8]. This
method will help the objects to reach the real
boundaries of each spot. Using the marked point
process it is difficult to define a convergent function
toward the optimal solution.
In the gradient-based likelihood detection we

can’t determine the likelihood of the image condi-
tioned by the current configuration of objects. The
method used in this case is based on external fields
energy, the probability of the individual objects is
calculated and the final data term will be deter-
mined based on these values.
There are three cases of intersection between the

contour of the object and the contour of a spot in
the figure 4:
Based on the intersection points it is impossi-

ble to achieve a convergence towards the solution;
therefore another function will be proposed with
the following properties:

• its maxima are at the contour of the detected
object (maximum likelihood)

• it is monotonically increasing on each side to-
wards these values outside the object the val-
ues are all positives (we accept the possibility
of fiber contours outside our contour)

• close to the center of the object the values are
negative (we penalize the inside contours)

There are a lot of functions which fulfill these
conditions. We can use for example a truncated
gaussian function, a paraboloid combined with an

x

y

0 R

Figure 5: 2D section of the gradient estimation
function

exponential function, a two dimensional function
rotated around its axis, a.s.o.
For example, g(x, y) can be described for a cir-

cular object in the following way:

g(x, y) = −abs(th− e
x2+y2

2σ2 ) + th (11)

where th is a truncation threshold and σ a fixed
parameter. The function is scaled to match the
size of the object.
The likelihood of an object p will be the correla-

tion between the function g and the gradient image:

L(x) =
∫ n

−n

∫ m

−m

g(u+x, v+y)IG(u+x, v+y)dxdy

(12)
The final likelihood value used to determine the

validity of the object is determined using the likeli-
hood values obtained fusing the the grayscale values
and the gradients in the image [7]:

L(X) = L1(I|X) ⋆
∏

x∈X

L2(x) (13)

where ⋆ is a fuzzy fusion operator, such as the sym-
metrical sum.

4 The MCMC simulation

After the model has been defined, an algorithm that
assures the convergence of the process towards the
minimal energy of the system is created. Here, the
energy is related to the density of a point process, so
the optimal configuration is the one that maximizes
this density.

XMAP = argmax
X

f(X) (14)

In the case of marked point processes the most
common method for this is the Monte Carlo Markov
chain (MCMC) coupled with simulated annealing.
To simulate the MCMC, tested two algorithms:

the Metropolis-Hastings-Green (MHG) algorithm
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1. given the configuration xt, we generate y

using the translation kernel q.

2. we calculate the ratio between the proba-
bility of the current configuration and the
proposed one:

r =
f(y)q(y, xt)

f(x)q(xt, y)

3. with the probability α = min(1, r) we ac-
cept xt+1 = y

Algorithm 1: Metropolis-Hastings-Green algorithm

[6], which was adapted by Geyer and Moller to
point processes [5] and the birth and death algo-
rithm [11].
The MHG algorithm consists in proposing a new,

random state y for the current state xt. The tran-
sition kernel, noted with q(·, ·) consists in some al-
lowed movements between the two states. The al-
lowed transitions are:

• birth (adding an object to the configuration)

• death (deleting an object)

• birth and death of a neighboring object

• translation

• dilation

The algorithm can be described in the following
way:
The initial configuration x0 is considered the

empty configuration. The third step of the MHG
algorithm ensures that the chain wont be struck in
a local minimum of energy. The disadvantage of
this approach is that the process will take a longer
time to converge towards the maximum a posteriori
configuration.
To optimize the chain, a simulated annealing is

introduced; f(X) term will be replaced by f1/T (X),
where T is the temperature of the system, and it is
a parameter with a decreasing value towards 0.
Another disadvantage of the algorithm is that the

birth of a high number of objects require a high
number of steps in the MCMC chain. To opti-
mize the convergence, a continuous time algorithm
is considered: the birth and death algorithm. This
algorithm has only two transition kernels: adding
or deleting an object. As the algorithm is a con-
tinuous time algorithm, these transitions occur at a

1. Generate a random number of new ob-
jects

2. Sort all the objects based on their proba-
bility

3. Propose to delete each object calculating
the acceptance ratio of the transition and
accepting the new configuration with the
probability α = min(1, r)

Algorithm 2: Birth and death algorithm

given random moment, with a Poisson distribution
in time.

To have a fast convergence, the birth and death
algorithm is sampled using a large step size [4], at
each step an important number of objects being
added and deleted from the configuration:

In order to further optimize the process, a birth
map is precalculated based on the greyscale values
in the microarray image: applying a gaussian blur
and considering the resulting image as the proba-
bility map that an object in born in each point, the
probability of correct births will be much higher.

The simulated annealing is used in the case of
the birth and death algorithm, too. The number of
objects to be added doesn’t change, but the accep-
tance ratio is getting more selective as the temper-
ature of the system decreases.

5 Results

We tested the model several microarray im-
ages, with a resolution of between 1 megapix-
els (1000*1000) and 5 megapixels, 8 bits/pixel,
greyscale. The results are shown in figure 6.

The Markov chain used to simulate the marked
point process converges in around 500 000 steps
using the MHG algorithm and around 20 000 steps
using the birth and death method; the birth and
death algorithm was around three times faster than
the MHG algorithm.

The results show a good estimation of spot po-
sitions, without the necessity of user intervention
which is needed by existing platforms to confirm
the spot positioning. Also the gradient-based ap-
proach and the inclusion of the a priori knowledge
minimized the number of false detections.
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Figure 6: Segmented microarray image

6 Conclusions and perspec-

tives

In this paper we presented a new kind of approach
for microarray image processing and spot detection
using an object-based model based on the marked
point process method.

We created some novel methods to describe the
object interaction in the image and the likelihood
function, as the existing applications using marked
point processes use only a simple approach using
the pixel luminosity or homogeneity of the object
silhouette. We proposed a new approach based on
the image gradients, and a new decision system was
created to determine the data term of a configura-
tion.

Two different algorithms were used for the simu-
lation of the Markov chain, one discrete and a con-
tinuous time algorithm, and the performance of the
new algorithm was evaluated compared to the more
commonly used MHG algorithm in the case of the
detection of a large number of objects.

One of the main drawbacks of this method is the
computing time which is much higher the methods
using specialized hardware for spot detection [3].
To optimize the process, a point process detecting
the spot groups instead the individual spots can
be constructed. In this case the object can be a
rectangular shape [9]. As the number of objects to
detect is much lower in this case, this process will
converge much faster. The informations about the
spot groups, as the position and angle can be used
later as a priori information for the spot detection
algorithms based either on the point processes, or

other non-stochastic methods.
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