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Abstract – 24- and 77-GHz automotive radar sensors 
have been introduced into series production by car 
manufacturers. An application aiming to increase traffic 
safety consists in detecting and tracking Vulnerable 
Road Users (VRU) and vehicles in front of the car. This 
is achieved by using a single 24-GHz radar sensor, 
capable of measuring range, radial velocity and azimuth 
angle even in multiple target scenarios. In this paper a 
signal processing algorithm for target tracking is 
presented. Target position and speed in Cartesian 
coordinates are estimated with the aid of a Kalman 
filter. The work is developed under the FP7 EC funded 
project ARTRAC. 
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I. INTRODUCTION 
 

Advanced Driver Assistance Systems are based on 
automotive radars in the 24- and 77-GHz band 
because of their capability to operate in all weather 
and lighting scenarios and because they are cheaper 
than infrared or video based systems. 
This paper focuses on the use of 24-GHz radars for 
target tracking with the aid of Kalman filters. 
Different types of waveforms which can be used in 
24-GHz automotive radars are reviewed in section II. 
Section III gives a possible signal processing structure 
for tracking based on raw detections provided by the 
sensor. An important part of the algorithm is the 
Kalman filter used to estimate the current target 
parameters and to predict the new set of parameters 
for the next iteration. The filter needs to be flexible 
enough to deal with several types of target trajectories 
with variable speed, so care must be taken in choosing 
the appropriate parameters in the filter design stage. 
We have generated a number of different target 
movement paths in order to test the Kalman filter 
concerning its capabilities to estimate target position 
and velocity. Section IV presents the scenarios 
considered for testing and the tracking results, while 
section V summarizes the conclusions. 
 
 

II. AUTOMOTIVE RADAR WAVEFORMS 
 

In order to measure target range and velocity a 
suitable waveform needs to be designed. The classical 
pulse waveform (Fig. 1) uses the time delay between 
the transmitted and received pulses to calculate the 
target range, and the Doppler frequency to measure 
the velocity, but it generates high computational 
complexity, so it is not suitable for automotive radar 
applications [1]. 

 
To achieve low measurement time and to overcome 
the drawback of pulse waveforms, the continuous 
wave (CW) radar was introduced. There are two main 
types of CW waveforms: the linear frequency 
modulated (LFM) and the frequency shift keying 
(FSK), both presented in Fig. 2. 
When using the LFM waveform, there is a frequency 
shift produced by two causes: the time delay of the 
received echo signal and the Doppler-Effect. Thus, 
the range and velocity cannot be determined 
unambiguously from a single chirp signal. Multiple 
target scenarios produce ghost targets in the range-
velocity plane. This is partly resolved by considering 
the FSK waveform, where we can measure the 
Doppler frequency from the two different frequency 
signals by applying an FFT. 
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Fig. 1. Pulse radar waveform 
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The phase shift between the echoes of the two 
alternating signals introduced by the time delay of the 
received signal allows range measurement. The 
drawback of the FSK waveform is that it cannot 
resolve stationary targets. Also, it offers no range 
resolution, meaning it is not able to detect multiple 
targets. 
For multiple target situations, a variant of the LFM 
technique described in [2] and [3] is applied, by 
transmitting a number of chirps with different 
frequency modulations, translating in different sweep 
rates (Fig. 3). The drawback of this type of waveform 
is the extended measurement time. 

 
The combination between FSK and LFM waveform 
principles, presented in [2] and [4] enables 
unambiguous range and velocity measurements in 
multiple target scenarios with the advantage of a 
shorter measurement time. The concept is shown in 
Fig. 4 and it is called MFSK. It consists of two 
stepwise linearly modulated signals with a frequency 
shift between them. They are transmitted in an 
intertwined way. The frequency difference (beat 
frequency) obtained from the received signal contains 
information about range and velocity. The phase shift 
between the two signals A and B measured at the beat 
frequency also depends on range and velocity. Thus, a 
linear system of two equations can be solved for 
finding the two parameters of interest unambiguously 
even in multiple target environments. 
Current research projects, like the one described in 
[5], use a sequence of consecutive chirps as a transmit 
signal (Fig. 5). In order to avoid making the difficult 
phase difference measurement, this method makes use 
of two FFT operations. The first one is done on each 
received chirp to find the beat frequency and it gives 
information about targets placed at different ranges. 
The second FFT is performed for each range gate 
(which has samples from every chirp) to determine 
the Doppler frequency and thus detect targets with 

different radial velocities in the same range gate. The 
resulting range-velocity diagram has no ambiguities. 
 
 

III. SIGNAL PROCESSING STRUCTURE 
 

We have proposed the signal processing algorithm 
given in Fig. 6 for estimating target range and velocity 
and performing the tracking operation for detected 
objects. 

 
The radar measures the target range r, the radial 
velocity vr and the azimuth angle φ at measurement 

Fig. 5. The rapid chirp waveform 
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timestamp t. Besides the detections which correspond 
to real targets, there are also reflections coming from 
the surrounding environment such as trees, buildings 
or traffic signs. These detections need to be filtered 
out so they are not fed to the following processing 
blocks. All of the unwanted detections are labeled as 
clutter, and they are eliminated by evaluating their 
radial velocity. At this point, scenarios with a 
stationary ego vehicle are considered, so it is 
appropriate to declare that a very slow moving or 
stationary detection is actually clutter and needs to be 
left out. In more complicated scenarios where the ego 
vehicle is also maneuvering with a certain speed and 
yaw rate, compensation is needed in both radial 
velocity and azimuth angle for all detections in order 
to obtains their position parameters relative to the 
road coordinate system and the actual velocity. 
Research in this field has reported that the targets 
detected by an automotive radar sensor exhibit 
modified range and Doppler profiles than usual radar 
targets. Indeed, experiments have shown that in 
general, a longitudinally moving vehicle has an 
extended range profile due to its size in comparison to 
the radar range resolution (which can be smaller than 
1 m). On the other hand, a vehicle has a point-shaped 
velocity profile since the radar sees a single “block” 
travelling at one speed. In opposition to this, a 
laterally moving pedestrian (the usual street crossing 
scenario) has a point shaped range profile and an 
extended velocity profile because it has three parts 
which “move” with different frequencies: the arms, 
torso and legs [6]. This difference between target 
types enables the feature extraction which can be used 
to classify detected targets, thus making the 
automotive radar a suitable tool for pedestrian 
recognition. Another remark is that in these types of 
scenarios the target usually has multiple reflection 
points. 
Based on the above observations, a first detection-to-
object data association block has been integrated to 
make sure that multiple detections from the same 
target are grouped into the same object. This is done 
by building a gate around the object in the three-
parameter space and analyzing which detections fall 
into that gate. The result of this procedure is a list of 
objects which can then be associated with the existing 
tracks by using a nearest neighbor technique. A new 
track is initialized if the current object does not 
belong to any existing track. Inevitably the outcome 
of this block will contain a number of false tracks in 
addition to the true target track. Only the tracks 
corresponding to real targets will be fed to the 
Kalman filtering algorithm. 
The challenge in automotive radar systems is the 
ability to successfully determine the tracks for all 
detected targets in real traffic, multiple target 
scenarios. In this case, the data association procedure 
becomes more complicated since it needs to deal with 
objects which are randomly appearing, disappearing 
or occluding each other in the radar field of view. A 
more suitable data association algorithm called the 

Hungarian algorithm is presented in [7] and can be 
applied to object tracking in Cartesian coordinates. 
The Kalman filtering stage has two goals: the first is 
to offer an estimation of the target position and speed 
at the current timestamp t. The second goal is to make 
a prediction about these parameters for the next 
timestamp t+1 which will be used to minimize the 
estimation error at the next iteration when new 
measurements will be available. The solution is 
computed in a recursive manner [8], [9]. 
Based on the theoretical groundwork set in [10] we 
have implemented in this paper a linear Kalman filter 
which processes target range and velocity in Cartesian 
coordinates. Therefore, the system state at the current 
timestamp is given by: 
 
                         

'

x yx v y v⎡ ⎤⎣ ⎦x ,                   (1) 
 

where ‘ denotes the transpose. 
The target movement is described by a constant 
velocity model. This means that the state prediction 
for timestamp t based on the previous state estimation 
at t-1 is given by: 
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which is equivalent to: 
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where 1tw  is the Gaussian state noise vector of zero 
mean and  Ex  covariance matrix. A represents the 
state transition matrix and T is the measurement 
period, chosen to be equal to 38 ms, according to the 
analysis made in [11] for the MFSK waveform. 
Because we need to estimate both target position and 
speed in Cartesian coordinates, the measurement 
matrix of the Kalman filter is built accordingly, to 
specify that both sets of parameters are being 
measured: 
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The measurement equation at timestamp t is given by: 
 

                      t t tz H x n ,                      (5) 
 
where n is the measurement noise vector, which has 
zero expectation and Ez covariance matrix. 
The values for the measurement and state noise 
covariance matrices are chosen in the following way: 
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as in a practical scenario, the measurements are highly 
affected by noise, so we assign large values to Ez. We 
also keep in mind that the speed measurements are 
more inaccurate that the range measurements. This 
means that the variance of the speed measurements 
should be larger than the variance for the range 
measurements. As a general rule, large values of the 
measurement noise covariance matrix mean that the 
state estimation is based more on the state prediction 
model than on the measured parameters. The output 
of this assumption is that the track will be smoother, 
so the noise is properly removed, but the filter will not 
be able to follow fast variations of position and speed 
with great accuracy. The simulated tracks are 
generated in such a way that they fit into the 
assumptions above. On the other hand, if the 
measurements are noisy, we need an accurate model 
for the target movement. This means that the state 
noise covariance matrix will have small values, so the 
filter is able to correct the deviations in the 
measurements based on the state transition model. In 
both cases we have assumed that the variables 
affected by noise are uncorrelated, so both covariance 
matrices have diagonal form. 
The Kalman equations describe the prediction of the 
current state and the state estimation update: 
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where K denotes the Kalman gain, P  is the predicted 
covariance matrix of the error and P is the covariance 
matrix of the state estimation error. 
 

IV. SIMULATION RESULTS 
 
The MATLAB environment was used to test the 
proposed tracking solution. Different situations were 
generated by simulating various target movement 
trajectories. The algorithm estimates the target 
position and speed in Cartesian coordinates. The 
measurement cycle was chosen to be 38 ms, 
according to existing 24 GHz automotive radar 
specifications. We have generated 500 samples of 
received data, yielding a total of 19 s of recorded 
radar measurements. The ego vehicle is assumed to be 
stationary and a single valid target is considered. 
Depending on the speed, we can consider that the 
target can be associated with either a vehicle or a 
pedestrian in real traffic scenarios. 
The first scenario simulates a longitudinally moving 
target that is moving away from the ego vehicle with a 
speed of vy = 10 km/h and vx = 0. The tracking results 
are presented in Fig. 7. The ‘x’ markers represent the 

single measurements provided by the radar, the real 
target behavior is shown in black, while the Kalman 
filter output is represented in red. 
It can be seen in Fig. 7a that the noise is removed 
successfully up to a point where the maximum error 
between the estimation and the real target position is 
much smaller than 1 m, which is the radar range 
resolution according to the specification in [5]. The 
speed estimation also gives good results, as can be 
seen in Fig. 7b and Fig. 7c. The lateral speed is zero 
because the vehicle is moving in a straight line away 
from the ego vehicle at zero azimuth angle. 
 

 

 

 
 
Next, a laterally moving target scenario was tested. 
The target is passing in front of the ego vehicle in a 
straight line at vx = 5 km/h. This time vy = 0. The 
results are presented in Fig. 8. 

Fig. 7c. Speed estimation – vy 

Fig. 7b. Speed estimation - vx 

Fig. 7a. Position estimation 
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The next scenario depicts a target moving diagonally 
with respect to the ego vehicle, at vx = -2 km/h and   
vy = 10 km/h. The results are shown in Fig. 9. 
 

 

 

 
 
The next case shows a target performing a turn while 
passing in front of the ego vehicle: vx varies linearly 
from -5 to 5 km/h while vy = 10 km/h (Fig. 10). 
 

 

 
Fig. 10b. Speed estimation - vx 

Fig. 10a. Position estimation 

Fig. 9c. Speed estimation – vy 

Fig. 9b. Speed estimation - vx 

Fig. 9a. Position estimation 

Fig. 8c. Speed estimation – vy 

Fig. 8b. Speed estimation - vx 

Fig. 8a. Position estimation 
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The final scenario depicts a target which performs a 
direction change and then resumes back to its lane: vy 
has a sinusoidal variation of amplitude 1.5 km/h and 
vx = 5 km/h. The results are presented in Fig. 11. 
 

 

 

 
 

It can be seen that the speed estimation error becomes 
larger when the variation law is more complicated 
(Fig. 10b and Fig. 11c). This means that the tracker is 
not entirely able to follow the fast speed variations 
with the Kalman parameters chosen in this simulation. 
However, the position estimation is very good in all 
cases, with the maximum error being smaller than the 
radar range resolution. 
 

V. CONCLUSIONS 
 
Driver Assistance Systems use 24- and 77-GHz radar 
sensors. There has been a significant evolution in the 
waveforms used for such sensors, from the classical 
pulse to the modern rapid chirp waveform, which 
enables unambiguous range and velocity 
measurements in multiple target scenarios and has a 
short measurement cycle. 
A tracking algorithm using a linear Kalman filter was 
implemented in this paper and tested with simulated 
target trajectories, aiming to estimate position and 
speed. The results of position estimation are good 
considering the simplicity of the target motion model, 
with the maximum error complying with existing 
specifications concerning the radar range resolution. 
The speed estimation results also look promising. In 
more complicated scenarios where the target is 
maneuvering faster and the speed variation is rapid, 
the speed estimation error is larger, but results could 
be improved by careful selection of the Kalman 
algorithm parameters. 
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