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Abstract – This application solve numerically a steady-
state groundwater problem in which the aim is to 
calculate steady-state H distribution along a two-
dimensional hill slope. A clear improvement in 
efficiency of iterative methods is obtained if we use the 
newly computed values in the Gauss-Seidel iteration. 
Gauss-Seidel iteration method can be further be 
improved by increasing the convergence rate using the 
method of SOR (Successive Over Relaxation). 
Keywords: Successive Over Relaxation, Gauss-Seidel 
iteration

1. INTRODUCTION

The purpose is to solve numerically a steady-
state groundwater problem in which the aim is to 
calculate steady-state H distribution along a two-
dimensional hill slope.  Mathematically the hill slope
is considered to be rectangular as shown in Fig. 1.
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Fig. 1 Illustration of the steady state groundwater flow 
system.

Toth (1962) has analyzed this type of 
groundwater flow system and Wang and Anderson 
(1982) have solved the problem using FORTRAN.

Fig. 1 represents a so called deep hill slope 
profile bounded on the right by water divide (zero-
flow boundary) and on the left by stream in the valley 
bottom. The left boundary is also a zero-flow 
boundary since there is no exchange of water 
between the hill slopes located on the left and right 
side of the stream. Aquifer bottom is assumed 
impermeable and therefore, it is a zero-flow 
boundary. Left, right and bottom boundary conditions 
are of Neumann type (flux specified).  Water table of 
the aquifer is assumed to vary linearly according to 
line 1...3 in Fig. 1. The upper boundary of the model 

follows line 1...2 indicating that we need to define a 
Dirichlecht boundary condition as an upper boundary 
condition.

The aquifer is assumed to be homogenous, 
isotropic and in steady-state condition. The steady-
state assumption is valid when average value of water 
table position is used as boundary condition. It can be 
assumed that water table position at the beginning of 
the year is the same as position at the end of the year, 
i.e. There is no net accumulation or loss of water 
from the system over long time periods.  Therefore, 
the two-dimensional Laplace’s equation is the 
required governing equation.

If hydraulic conductivity is not zero, zero-flow 
boundary is possible only if hydraulic gradient is 
zero: flux is calculated using Darcy’s law,

qx = -K dH/dx = 0 if dH/dx = 0. Boundary 
condition at the top of the aquifer is assumed to vary 
linearly between point 1 and 2 in such a way that at 
point 1 H equals the thickness of the aquifer, H0, and 
increases with slope s0 and reaches its maximum at 
point 2 where x=L. The mathematical model of the 
groundwater flow system can now be summarized as:
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The first step is to substitute approximations of 
the second partial derivatives to Laplace’s equation:
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If we consider a square grid in such a way that 
Δx=Δy, then simplifies to

H H H H Hi j i j i j i j i j, , , , ,( ) /      1 1 1 1 4
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In numerical solution of Laplace’s equation, Hi,j

can be obtained as the average of the four 
neighboring nodes.

The iteration is started from the left upper corner 
and preceded as shown in Fig. 2.
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           j=3
Fig. 2 Calculation order in iterative methods.

In iterative methods we need initial values at 
iteration level m, Hi,j

m (m=0 initially) and the purpose 
is to calculate Hi,j

m+1.
Consider a grid of totally 16 nodes and hydraulic 

head for 12 of them is known as Dirichlecht 
boundary condition. There are only four unknown 
values in the middle of the area that needs to be 
calculated by numerically solving Laplace’s 
equation.

2. GAUSS-SEIDEL ITERATION METHOD

A clear improvement in efficiency of iterative 
methods is obtained if we use the newly computed 
values in the iteration formula: iteration level m+1 
values are available for nodes (i-1,j) and (i,j-1) when 
calculating H for node (i,j).  Thus the Gauss-Seidel 
formula is:
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The numerical values of the constants of the 
problem are as follows: L=160 m, H0=80 m and s0= 
6/160 = 0.0375.  The number nodes in x-direction is 
NX= 11, and the corresponding value for NY=6.   
This implies that Δx=Δy=16 m. The grid is mesh-

centered indicating that nodal points are located 
along the boundaries (in block-centered grid the 
nodal points are at the center of the grid). 

Dirichlecht boundary conditions are easy to 
apply: in those cells known H-values are directly 
given.

Consider that the left boundary where i=1 is a 
no-flow boundary. We extend the region under 
consideration one node left, i.e. we define a so called 
fictitious node where i=0. The flow across the left 
boundary is zero if H/ x=0 at x=0, which implies 
that (H2 - H0)/(2x) = 0 which is possible only if H0

= H2.
In numerical solution methods Neumann-type of 

boundary conditions can be treated in two different 
ways:

1. With direct use of the  fictitious nodes.
2. The iteration equations are modified for 

Neumann-type boundaries.
In our problem we have a no-flow boundary 

along the boundary where i=1.
H H H H Hj j j j j1 2 0 1 1 1 1 4, , , , ,( ) /    

For left boundary this would lead to equation
H H H Hj j j j1 2 1 1 1 12 4, , , ,( ) /   

However, it is much more elegant to use option 1 
and include the fictitious nodes in the nodal network.

The solution will be obtained using EXCEL.
In EXCEL-solution this implies that for left 

boundary there is one extra column where a simple 
equation is given as shown below. Boundary nodes 
(1,j) are calculated in column D and the nodal value 
of the fictitious node C5 is replaced by value in E5 
because H0,j = H2,j.

Row/Column      C              D       
E

      
F

4 ...  ... ... ...
5  =E5    =(D4+D6+C5+E5)/4 ...   ...
6 ... ... ... ...
7 ... ... ... ...

The final results are shown in Table 1.

Table 1 Solution of the steady-state groundwater example using Gauss-Seidel iteration with EXCEL.
        i=1      i=2      ...     i=6     i=11

80.96 81.18 81.56 82.01 82.50 83.00 83.50 83.99 84.44 84.82 85.04 j=2
81.48 81.59 81.85 82.19 82.59 83.00 83.41 83.81 84.15 84.41 84.52 j=3
81.79 81.86 82.05 82.32 82.65 83.00 83.35 83.68 83.95 84.14 84.21 j=4
81.95 82.01 82.16 82.40 82.69 83.00 83.31 83.60 83.84 83.99 84.05 j=5
82.00 82.06 82.20 82.43 82.70 83.00 83.30 83.57 83.80 83.94 84.00 j=6

81.95 82.01 82.16 82.40 82.69 83.00 83.31 83.60 83.84 83.99 84.05
Fictit. 
row

3. SUCCESSIVE OVER RELAXATION
METHOD

Gauss-Seidel iteration method can be further be 
improved by increasing the convergence rate using 
the method of SOR (Successive Over Relaxation).  
The change between two successive Gauss-Seidel 
iterations is called the residual c, which is defined as

c H Hi j
m

i j
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In the method of SOR, the Gauss-Seidel residual 
is multiplied by a relaxation factor , and new 
iteration value is obtained from
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It can be easily seen that if  =1, SOR reduces to 
Gauss-Seidel iteration method.

By substituting of the Gauss-Seidel iteration 
method, we obtain the equation used in the SOR 
method
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Usually the numerical value of relaxation 
parameter  can be obtained by trial and error and 
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optimum value is around 1.5...1.8. Remson et al. 
(1971) present some methods for optimum estimation 
of .  In the case that 0< <1, the method is said to be 
under relaxed. According to the selection of 
parameter , we either extrapolate (>1) or 
interpolate (0<<1) between the old iteration value at 
level m and Gauss-Seidel value at level m+1. If we 
extrapolate too much, i.e.  is too high; the iteration 
starts to oscillate and probably collapses. Therefore, 
in the solution of groundwater problems,  is usually 
smaller than 1.8.

The changes to the program are very small, i.e. 
the formulas for the inner cells are replaced by the 
iterative equation of the SOR-method:

Row/Column      C              D       
E

      
F

4 ...  ... ... ...
5  =E5    =(1-Omega)*D5+

Omega*(D4+D6+C5+E5)/4
...   ...

6 ... ... ... ...
7 ... ... ... ...

The solution will be obtained using EXCEL.
The final results are shown in Table 2.

Table 2 Solution of the steady-state groundwater example using Successive over relaxation iteration with EXCEL
        i=1      i=2      ...     i=6     i=11

80.96 81.18 81.56 82.01 82.50 83.00 83.50 83.99 84.44 84.82 85.04
81.48 81.59 81.85 82.19 82.58 83.00 83.41 83.81 84.15 84.41 84.52
81.79 81.86 82.05 82.32 82.65 83.00 83.35 83.68 83.95 84.14 84.21
81.95 82.01 82.16 82.40 82.69 83.00 83.31 83.60 83.83 83.99 84.05
82.00 82.05 82.20 82.42 82.70 83.00 83.30 83.57 83.80 83.94 84.00

81.95 82.01 82.16 82.40 82.69 83.00 83.31 83.60 83.83 83.99 84.05

4. ANALYTICAL SOLUTION

Toth (1962) has published an analytical solution 
for this problem:
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The solution will be obtained using EXCEL.

Results of the comparison between the analytical 
solution and numerical solution using the Gauss-
Seidel method is shown in Table 3.

Results of the comparison between the analytical 
solution and numerical solution using the SOR-
method is shown in Table 4.

Table 3 Comparison of analytical and numerical solution (Gauss-Seidel method) of the steady-state groundwater flow

x y H(x,y) G-S Error (m) Error (%)
0 80 80.008 80.000 0.008 0.009
0 64 81.026 80.960 0.066 0.081
0 48 81.522 81.483 0.038 0.047
0 32 81.816 81.788 0.027 0.034
0 16 81.975 81.952 0.023 0.028
0 0 82.026 82.004 0.022 0.027

160 0 83.974 83.996 -0.022 -0.026

Table 4 Comparison of analytical and numerical solution (SOR-method) of the steady-state groundwater flow

x y H(x,y) SOR Error (m) Error (%)
0 80 80.008 80.000 0.008 0.009
0 64 81.026 80.960 0.066 0.081
0 48 81.522 81.483 0.038 0.047
0 32 81.816 81.788 0.027 0.034
0 16 81.975 81.952 0.023 0.028
0 0 82.026 82.004 0.022 0.027

160 0 83.974 83.996 -0.022 -0.026

V. COMPARISON OF RESULTS OBTAINED 
BY USING GAUSS-SEIDEL AND SOR -
METHODS

Solution of the groundwater flow system of Fig. 
1 can be carried out using some programming 
language and in this case it is necessary to do the 
iteration in the program.  The following example uses 
Pascal for solving the problem with the SOR-method.

The example program includes some comments, 
but it necessary to point out that the no-flow 
boundary conditions need to update at the beginning 
of each iteration. Moreover, in the sweeping cycle, 
the old iteration value from level m must be 
temporarily stored to variable OldH so that it is 
possible to calculate the change between successive 
iterations.  In the program the new iteration value is 
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immediately updated and therefore it is necessary to 
store only one H-matrix in the computer program.  

The results of the computer program are shown 
in Table 5 for two values of the relaxation parameter 
: Gauss-Seidel results for  =1.0 and results for 

SOR-method when  =1.7. The total number of 
iterations needed in the SOR-method is 39 compared 
with 118 needed in the Gauss-Seidel-method.

Table 5 Output of the steady-state groundwater flow system. Comparison of results obtained by using Gauss-Seidel-and 
and SOR-methods.

Gauss-Seidel  method  ( =1.0 )

SOR method  ( =1.7)

The total number of iterations needed in the 
SOR-method is heavily dependent on the relaxation 
parameter  as indicated by the results of Table 6.  In 
this case there is an optimum value for opt .   If too 
high value for relaxation parameter is used ( =1.9 in 
our example), the convergence is not attained at all, 
which implies that extrapolating too much can lead to 
instability.

The Pascal-program is given in Fig. 3.
Const
  NX=11; NY=6; {Number of nodes in x- and y-directions}
 dx=16.0;  SlopeGW=0.0375;  H0=80.0;

  Omega=1.7;  MaxIter=1000;  IterationStoppingCriteria=0.001;
Var
  H:array[0..Nx+1,0..Ny+1] of real; {fictitious nodes: i=0; i=NX+1: j=NY+1}
  i,j,iter:integer;
  OldH,Error,MaxErr:real;
begin                      {MAIN PROGRAM BEGINS..}
  for i:= 0 to NX+1 do     {As initial condition for all nodes H[i,j]=H0}
    for j:=0 to NY+1 do
      H[i,j]:=H0;
   for i:=1 to NX do           {Boundary condition at the top of aquifer}
     H[i,1]:=H0 + SlopeGW * DX * (i-1);
iter:=0;                                               {iteration begins}
repeat
  inc(iter);
  MaxErr:=0.0;
   for j:= 1 to NY do {Left and right boundary condition at the beginning of each iteration}
    begin
       H[0,j]:=H[2,j];
       H[NX+1,j]:=H[NX-1,j];
    end;
     for i:=1 to NX do                        {Bottom boundary condition}
        H[i,NY+1]:=H[i,NY-1];
   for j:=2 to NY do                              {Sweeping node-by-node}
    begin
      for i:=1 to NX do
       begin
         OldH:=H[i,j];                  {store temporarily old iteration}
         H[i,j]:=(H[i-1,j]+H[i+1,j]+H[i,j+1]+H[i,j-1])/4;
         H[i,j]:=Omega*H[i,j] + (1.0-Omega)*OldH;
         Error:=abs(H[i,j]-OldH);
         if(Error>MaxErr)then MaxErr:=Error;
       end; {end i}
    end;{end j}
until(Iter>MaxIter) or (MaxErr<IterationStoppingCriteria);
 {Continue iteration as long as MaxErr less than IterationStoppingCriteria
  or Max. number of iterations exceeded}
writeln('Solution:');
writeln('Number of iterations = ',Iter:7,'   Omega=',Omega:6:2,'   Max.error= ',MaxErr:12);
for j:=1  to NY  do
  begin
    for i:=1 to NX do
      write(H[i,j]:7:2);
    writeln;
  end;
  write('Press ENTER to continue..'); readln;
end.

Fig. 3 Pascal-program for solving the steady-state 
groundwater flow system using the SOR-method.

Table 6 Total number of iterations needed as a 
function of relaxation parameter � in solving the steady-
state groundwater flow system

  Number of iterations
1.00 118
1.10   99
1.20   86
1.30   75
1.40   64
1.50   55
1.60   46
1.70   37
1.75   39
1.80   43
1.90 no convergence
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