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Abstract – A particular class of frames is represented by 
Riesz bases. We present a new method for the generation 
of Riesz bases with the aid of low-pass filters. The Riesz 
bases obtained are used for the implementation of 
sampling systems for non-bandlimited signals. 
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I. INTRODUCTION 
 

One of the fundamental results which stay at the 
basis of the information theory magisterially elaborated 
by Claude Shannon is the WKS sampling theorem. 
Mathematically speaking, this theorem shows how can 
be developed a bandlimited signal into an orthogonal 
basis of functions, generated by translations with 
integers of a cardinal sinus. One of the drawbacks of 
the WKS sampling theorem is the fact that its 
hypotheses are too restrictive. For example, all the 
practical signals are of finite duration, so they are non-
bandlimited. The aim of this paper is to formulate new 
sampling theorems, whit less restrictive hypotheses. 
The bandlimited constraint can be eliminated by the 
replacement of orthogonal basis used in the WKS 
sampling theorem with a Riesz basis. The Riesz bases 
represent particular cases of a more general 
mathematical structure, the frames.  

The key issue related to the generation of a frame 
appears when we have a sequence of vectors {ek}, with 
each Vk ∈e and we want to express an arbitrary 
element v as a linear combination of the vectors {ek}: 
v=∑

k
kc ek, and to determine the coefficients ck. If the 

set does not span V, then these coefficients cannot be 
determined for all such v. If {ek}, spans V and also is 
linearly independent, this set forms a basis of V, and the 
coefficients ck are uniquely determined by v: they are 
the coordinates of v relative to this basis. If, however, 
{ek} spans V but is not linearly independent, the 
question of how to determine the coefficients becomes 
less apparent, in particular if V is of infinite dimension. 

Given that {ek} spans V and is linearly dependent, it 
may appear obvious that we should remove vectors 
from the set until it becomes linearly independent and 
forms a basis. There are some problems with this 
strategy: 

1. By removing vectors randomly from the set, 
it may lose its possibility to span V before it 
becomes linearly independent.  

2. Even if it is possible to devise a specific way 
to remove vectors from the set until it 
becomes a basis, this approach may become 
infeasible in practice if the set is large or 
infinite.  

3. In some applications, it may be an advantage 
to use more vectors than necessary to 
represent v. This means that we want to find 
the coefficients ck without removing 
elements in {ek}.  

In 1952, Duffin and Schaeffer [1] gave a solution to 
this problem, by describing a condition on the set {ek} 
that makes it possible to compute the coefficients ck in 
a simple way. More precisely, a frame is a set of 
elements of V which satisfy the so-called frame 
condition: 

There exist two real numbers, A and B such 
that  
 

∞<≤< BA0  
(1) 

and 

A v
2 ∑≤

k
v,ek ≤

2
 B v

2
 

for all v∈V. 

 

 
(2) 

The numbers A and B are called lower and upper 
frame bounds.  
The sequence of vectors {ek} is named Riesz sequence 
of the Hilbert space H if there are two real numbers A 
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and B such that condition (1) and the following 
condition: 

∑ ∑∑ ≤≤
k k

k
k

kkk aBaaA 2
2

2 e  

 
 

(2’) 

are satisfied for all sequences of scalars { }ka  in the 

space 2l . A Riesz sequence is called Riesz basis if: 

{ } Hk =
_________
span e . 

 
 

Hence a Riesz basis is a frame of vectors that are 
linearly independent [2]. This concept is very 
important for the construction of multiresolution 
analyses [2]. 
In the following, Riesz bases of the form: 

ek(t)= ( )kt −ϕ  with Zk ∈ and 

( ) ( )RLt 2∈ϕ , 

 
(3) 

will be build, for Hilbert spaces included in the space 
of finite energy signals. An equivalent form for (2') in 
the spectral domain is [2]: 

121 '|)2(ˆ|' −
∞

−∞=

− =≤π+ωϕ≤= ∑ ABkBA
k

. 
 
(4) 

The series in the middle represents the spectrum of 
the digital signal obtained by ideal sampling with 
unitary step the autocorrelation of the signal ( )tϕ , 

( )tRϕϕ . This spectrum will be denoted by ( )ωϕϕRs
ˆ  

and is a periodic function with period 2π as a Fourier 
transform in discrete time of the signal [ ]nRϕϕ . So, 

the frame bounds can be identified with the following 
equations: 
 

( ){ }
( ){ }ω=

ω=

ϕϕω

ϕϕω

RB

RA

s

s

ˆmax'

 and ˆmin'
. 

 
(5) 

In the following it will be proved that the function 
( )tϕ can be the impulse response of a low-pass filter 

with arbitrary order. 
 
II. FIRST EXAMPLE 
 
A first order low-pass filter has the impulse response: 

)()/()( /
01 teAt t στ=ϕ τ− . 

(6) 

Its autocorrelation is: 

( ) τ−τ=
ϕϕ

/||2
0 2/)(

11
teAtR . 

(7) 

By ideal sampling it with unitary step, the discrete 
time signal with the spectrum: 

)cos21(
)1)(2/()(ˆ
/2/1

/22
0

11 τ−τ−

τ−

ϕϕ
+ω−

−τ
=ω

ee
eARs . 

 
(8) 

will be obtained. Hence the values of the frame 
bounds are in this example: 

τ−

τ−

ϕϕ

τ−

τ−

ϕϕ

−
+

⋅
τ
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+
⋅

τ
=π=
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/12
0

1

1
1

2
)0(ˆ' and

 
1
1
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e
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(9) 

 
 

III. SECOND EXAMPLE 
 

The transfer function of a second order low-pass filter 
is: 

( ) 222
2

1ˆ
nnss

s
ω+ξω+

=ϕ . 
 
(10) 

Let us consider that this system has real distinct poles 
( 1>ξ ): 

.12
2,1 ⎟

⎠
⎞

⎜
⎝
⎛ −ξξω−= ∓ns  

 
(11) 

The expression of the impulse response of the filter is: 

( ) ( ) ( )teet tsts

n

σ−
−ξω

=ϕ 21

12

1
22 . 

 
(12) 

Its autocorrelation is given by equation (13). The 
spectrum of the signal obtained by ideal sampling this 
autocorrelation with unitary step is expressed in 
equation (14). The values of the frame bounds in this 
second example are computed in equation (15). 

Similar considerations can be made for second order 
low-pass filters with real double poles or with 
complex conjugate poles. 

( ) ( )
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(15) 

 
 
IV. GENERALIZATION 
 
The two examples already presented can be unified in 
the framework of the following: 

Remark. Each continuous in time low-pass filter 
impulse response generates a Riesz basis which 
corresponds to a Hilbert subspace of the space of 
finite energy signals. 

Proof. 

The single limitation of the algorithm for the 
construction of Riesz bases proposed comes from 
equation (1), 0>A . The sum of the 

series 2|)2(ˆ| π+ωϕ∑
∞

−∞=
k

k
is positive, because its 

terms are positive, but it must be strictly positive. This 
condition is satisfied by each continuous in time low-
pass filter impulse response because the 
corresponding frequency responses does not have 
transmission zeros. Indeed the transfer function of an 
Nth order low-pass filter is of the form: 

( )
N

NNNN
asasasa

s
...

1ˆ
2

2
1

10 +++
=ϕ

−−
. 

 
(16) 

These Riesz bases can be transformed into orthogonal 
bases with the aid of the well known procedure 
described in equations (17) and (18), [2].  Denoting 
by: 

( ) ( ) ( )∑
∞

−∞=
ϕϕ ω=π+ωϕ=ω

l
skk kk
Rlm ˆ2ˆˆ 22

, 

 
(17) 

we can compute the Fourier transform: 

( ) ( )
( )ω
ωϕ

=ω
m

g
k

k
k ˆ

ˆ
ˆ

. 

 
(18) 

of the function ( )tgk  which generates by translation 
with integers the corresponding orthonormal basis. 
For our first example: 

)1)](1/([)(ˆ /1
1

ω−τ−−ωτ+α=ω jeejg . 
(19) 

with: 

( )[ ]τ−−τ=α /21/2 e . 
(20) 

So: 
))]1()(([)( /

1 −σ−σα= τ− ttetg t
. 

(21) 

 

V. NON-BANDLIMITED SIGNALS SAMPLING 
 
The reduction of the aliasing is a difficult problem 
encountered in the design of sampling systems. The 
WKS sampling theorem supposes the limitation of the 
bandwidth of the signal which must be sampled. 
Unfortunately, there are situations when the 
bandwidth of the input signal it is not a priory known 
and the aliasing could appear. For input signals band 
limited at π, the system which implements the WKS 
theorem is presented in Fig. 1, [3]. The proof of this 
theorem is based on the fact that the set {sinc(π(t-
k))}k∈Z represents an orthonormal basis of the Hilbert 
space of signals with finite energy and band limited at 
π, denoted by 2

πB . In figure 2 is presented a sampling 
system for non-bandlimited signals. 
 

 

 
 
 
 

The input system is an antialiasing filter and the 
output system is a reconstruction filter. The signal z(t) 
must be bandlimited having the maximal pulsation in 
spectrum equal with π. The best mean square 
approximation of the input signal with bandlimited 
signals is obtained by projecting the input signal on 
the space Bπ

2. The antialiasing filter which projects 
the input singnal on this space has the impulse 
response ha(t)=hv(t)=h(-t). Neither the reconstruction 
system with the impulse response h(t), nor the 

 
 

Fig. 1. The system which implements the WKS 
theorem. 

Fig. 2. The structure of a system for the sampling of non 
bandlimited signals. 
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antialiasing filter with the impulse response hv(t) are 
not causal.  

The identity system proposed in [4] is presented 
in Fig. 3, where g could be the function defined in 
(18).  The WKS sampling theorem was generalized in 
[4] for non bandlimited input signals: 
 

P1. If {g(t-k)}k∈Z represents a Riesz basis of 
a closed Hilbert subspace of the finite energy signals 
V0, then any signal from V0 can be perfectly 
reconstructed using the system in figure 3. 
 
The proof can be found in [4]. The output signal y(t) 
represents the decomposition of the input signal x(t) in 
the Riesz basis of V0, { g(t-k)}k∈Z . The elements of 
the space V0 could be non bandlimited signals. These 
signals can be perfectly reconstructed from samples 
with the aid of the system in Fig. 3. The aliasing 
phenomenon is avoided. The filter with impulse 
response gv(t) will be named in the following 
antialiasing filter, taking into consideration the 
similarity of figures 2 and 3. If the finite energy signal 
x(t) does not belong to the space V0, then it will be 
only approximated by its projection on V0, y(t), which 
represents its best mean square approximation. The 
mean square approximation error is given by the 
difference of the energies of the input and output 
signals.  

If g(t) represents the impulse response of a causal 
system then gv(t)=g(-t) is the impulse response of an 
anti causal system. So, it is very important that g(t) to 
have compact support.  

This is the case for the function 1g(t) derived 
from our first example. If g(t) has compact support 
then the system in figure 4, very similar with the 
system in figure 3, can be used for the treatment of 
non bandlimited signals, elements of  V0. 
 
 
 

 
 

 

VI. CONCLUSION 

 
We propose a new algorithm for the generation of 

Riesz bases of some closed Hilbert sub-spaces of 
( )RL2  which contain non-bandlimited signals. The 

proposed algorithm starts from the expression of the 
impulse response of a continuous in time low-pass 
filter. It can be applied in sampling theory or for the 
generation of new multiresolution analyses of the 
space of finite energy signals.  

This paper represents a continuation of the last 
chapter of [4] where it was proved proposition P1. In 
our knowledge, the content of the second example and 
the Remark from the begining of section 4 are 
original. This remark is quite general because it refers 
to low-pass filters of any order. We have also 
presented the procedure required for the 
transformation of those Riesz bases into orthonormal 
bases. It seems, analyzing the first example, that the 
elements of those orthonormal bases have compact 
support, because the case of higher order low-pass 
filters with real distinct poles can be reduced to the 
case of few cascaded first order low-pass filters. We 
will investigate in the future this property. Another 
research direction is to establish some connections 
with the mother wavelets families already known, via 
the corresponding scaling functions.   

We have generalized the WKS sampling thorem for 
the case of some classes of non bandlimited signals. 
The identity systems proposed have the generic 
architecture presented in Fig. 4. They are composed 
by realizable sub-systems. The corresponding classes 
of non bandlimited signals can appear in practice. The 
signals belonging to the Hilbert space 1V0, which 
correspond to our first example, are produced at the 
output of a differentiator realized with a capacitor and 
a resistor when at its input is connected a train of 
rectangular impulses. It is dificult to sample such 
signals due to their discontinuities. 
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 Fig. 4. A causal identity system. 

 
Fig. 3. The structure of an identity system for the 
sampling of non bandlimited signals. 
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