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Abstract – This paper presents a new family of turbo 
codes whose the constituent codes have R≥1 non-binary 
inputs and R+1 outputs. We refer this family as the 
multi input non-binary turbo codes (MNBTC), which is 
very general. More specifically, we show that this family 
includes the multi-binary turbo-codes (MBTCs) that 
themselves include the classical binary turbo-codes 
(BTCs). Moreover, it also includes the turbo-codes with 
Reed Solomon codes as constituent codes. In this paper, 
we fully describe the encoding process and the extension 
of the Maximum A Posteriori (MAP) decoding 
algorithm, especially the trellis closing issues for these 
codes. Additionally, we show by simulations the benefit 
of using this family of Turbo-codes. 
Keywords: turbo-code, MAP algorithm, multi non-
binary convolutional code 
 
 

I. INTRODUCTION 
 

The discovery of the turbo codes (TCs) [1] represents 
a major breakthrough in the coding theory since the 
asymptotic performance of the TCs close the gap to 
the Shannon limit within tenths of decibels. A 
sensitive component of the TCs is the interleaver. 
Several interleavers have been recently proposed: the 
S-interleaver [2], Takeshita-Costello interleaver [3] 
and ENST interleaver [4] just to name a few. 
Moreover, different designs and decoding algorithms 
for TCs have been investigated: the technique of the 
circular codes [5], the serial concatenation [6], the 
decoding algorithms: SOVA [7], MaxLogMAP and 
LogMAP [8]. 
The recent introduction of MBTCs in [9] is a further 
step to close the gap to the Shannon limit. Indeed, the 
MBTCs offer more advantages than BTC such as 
lower error floor for moderate codeword size and 
faster convergence [10]. These advantages are crucial 
in the current and future wireless systems as IEEE 
802.11n and IEEE 802.16. 
In this paper, we extend the MBTC concept to the 
non-binary case: Whereas the constituent codes of the 

MBTC have R binary inputs, we consider TC with 
constituent codes with R non-binary inputs. We refer 
this new family as multiple input non-binary turbo-
codes (MNBTC). Formally, the code has the same 
structure as the multi binary code but the arithmetic 
operations are now performed in GF(2Q), Galois field 
of order Q. In this paper, we propose to analyze the 
MNBTC and to compare them to the MBTC from the 
viewpoints of decoding algorithms and performance. 
The rest of the paper has the following structure. In 
the next section the construction of the constitutant 
codes of the MNBTC is presented. Section III is 
dedicated to the trellis closing problems of the MNB 
code. In section IV we present several variations of 
extended versions of MAP decoding algorithms for 
the MNB codes. In Section V, we show that under 
some restriction on the polynomials, a Reed-Solomon 
(RS) code is a particular case of MNB, so the 
MNBTC family includes an interesting new class of 
TC, the RS-TC. Finally, some experimental results 
and concluding remarks are presented in Section V 
and VI, respectively. 
 

II. MULTI NON BINARY CONVOLUTIONAL 
ENCODER AND TRANSMISSION CHANNEL 

 
In this section, we describe the encoding scheme of 
the constituent codes of the MNBTC. Each 
constituent encoder has R non-binary inputs and is 
referred as multi non-binary code (MNB). In Fig.1 we 
present the general scheme of a MNB convolutional 
encoder, with rate Rc=R/(R+1). Throughout the paper, 
we focus on recursive and systematic codes due to 
their superior performance. Each register in Fig.1 
stores a vector of Q bits at the time. All the links are 
supposed to have a width equal to Q in order to carry 
a vector of Q bits. Each block gr,m, with r=1,…,R, 
m=0,…,M-1, represents a multiplier in GF(2Q) 
whereas the adders perform the sum in GF(2Q). At 
time n, the encoder has R inputs, nu1 , nu2 ,..., n

Ru  and 
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R+1 outputs nx1 , nx2 ,..., n

Rx  corresponding to the R 
inputs and one redundant bit nx0  also referred as nc . 
The current encoder state is given by the outputs of 
the M shift registers nS0 , nS1 ,..., n

MS 1− .We adopt the 
following compact notations: 

[ ]T nn
M

n
M

n SSSs 021 K−−= , 

[ ]T nn
R

n
R

n uuuu 11 K−= , 0 ≤ n ≤ N, for the encoder 
state vector and the ``input word’’, respectively. 
The input/current state and output/current state 
relations of the encoder at the time n can be 
respectively expressed in the compact form: 
 

 ( ) ( ) ( ) ( ) ( ) 111
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 cn = GL ⋅ un + W⋅ sn. (2) 
 

where: GT = GF ⋅ GL + G0 and W = [0 0 … 0 1]1×M. 
G0 =[gr,m]M×R denotes the partial generator matrix, 

,1 Mm ≤≤  1 ≤ r ≤ R, which excludes the feedback 
coefficients and the generator coefficients for the 
redundant symbol. The vector GF = [g0,M g0,M-1 … 
g0,1]T contains the coefficients of the feedback loop. 
and GL = [gR,0 gR-1,0 … g1,0]. The matrix T equals: 
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Additionally, we define the full generator matrix G 
such as: G =[gr,m](M+1)×(R+1) = [gR gR-1 ... g1 g0]10, 0 ≤ m 
≤ M, 0 ≤ r ≤ R. 
The necessary and sufficient condition to have a 
decodable code is such that the matrix GT is full rank. 

Applying the „D” transform ( ( ) k

k

k DxDX ⋅∑=
+∞

−∞=
) to 

the equations (1) and (2) we obtain: 
 

 D-1⋅ S(D) = GT ⋅ U(D) + T⋅ S(D),  (3) 
 

 C(D) = GL⋅ U(D) + W⋅ S(D). (4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After some basic manipulations, it can be shown that: 
 

 ( ) ( )
( ) ( )∑ ⋅=

=

R

r

r DU
Dg
DgDC

1 0
 (5) 

 

where ( ) mM
m m,rr DgDg ⋅=∑ =0 . 

In order to understand better the encoding procedure, 
we give an example in GF(4). We recall the addition 
and multiplication operations on GF(4) in Fig.2., [11]. 
 
 
 
 
 
 
 

Fig. 2 The addition and the multiplication in GF(4). 
 
Consider the double-non-binary convolutional code 
defined by the following generator matrix: 
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By construction, from G, we have: GL=[3 1], GF=[3 
1]T, GT=[0 2;3 2] and T= =[0 3;1 1]. Consider two 
input sequences u1 and u2 starting as follows: u1 = [1 2 
3 3 1 3 2 …] and u2 = [0 2 1 1 3 0 3 ...]. The values of 
the state vector of the encoder are determined 
according to (1) with initial state s0=[0 0]T. After 
some basic calculations based on the operation tables 
given in Figure 2, it is easy to show that s1=[0 3]T and 
c1=3 where c1 is determined by (2), s2=[1 1]T and 
c2=0, s3=[1 0]T and c3=2, s4=[2 1]T and c4=3, s5=[2 1]T 
and c5=1 and s6=[3 1]T and c6=3, etc. 
After the description of the encoding process for each 
constituent code, we describe next the full encoding 
method for the MNBTC. 
Fig.3 shows the scheme for the MNBTC. The input 
sequence (un)0≤n<N = [u0 u1   … uN-1] represents a 
sequence of N+1 consecutive input words. Every 
word of size R×1 is formed by stacking R consecutive 
symbols, i.e., un = [ n

Ru 1+
n
Ru  … nu2 ]T. In turn, each 

symbol results from a mapping of Q bits such as: 

• • • 

•
•
•

•
•
•

• 
• 
• 

  SM-1 

gR-1,M-1 

uR 

S0 • • • • •

uR-1

u1 

xR

xR-1

x1

c=x0

 gR,M-1  g1,M-1

 g0,M-1 

• • • 

 gR-1,M 

  gR,M  g1,M • • •

 gR-1,1

  gR,1   g1,1 • • • 
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Fig.1 Multi-Non-Binary Convolutional Encoder – general scheme. 

114

BUPT



La1 

û1 u2÷(R+1) 
DEC1 

ilv 

C
ha

nn
el

 

L1 

dilv ilv ilv 

DEC0 

Le1 

La0 

Le0 

L0 U0 

y1 

y0 

x2÷(R+1) 

x1 

x0 

C1 

C0 

y2÷(R+1) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Principle of the encoder and decoder for the Multiple inputs Non Binary Turbo-Code. 
 

 
n
ru =[ n

Qru 1, −
n

Qru 2, −  … n
ru 0, ]T, 2 ≤ r ≤ R+1, with: 

{ } ( )21,0, GF  un
qr =∈ , 0 ≤ q < Q-1. 

At the output of the encoders C1 and C0, we obtain 
the codeword (xn)0≤n<N = [x0 x1   … xN-1], where each 

word [ ]T nnnn
R

n
R

n xxxxxx 0121 K+=  is composed 
by R+2 symbols: the first R symbols correspond to the 
input symbols whereas the last two symbols 
correspond to the two redundant symbols. As for the 
input sequence case, each symbol of the codeword 
corresponds to Q bits 

[ ]T n
r

n
Qr

n
Qr

n
r xxxx 0,2,1, K−−= .The codeword of 

length N that corresponds to N×(R+2)×Q bits is then 
modulated (throughout the paper, for sake of 
simplicity we consider BPSK or QPSK signaling) and 
then transmitted through the channel to its destination. 
The destination received a noisy version (yn)0≤n≤N of 
the transmitted signal. By using the same formulation 
as we did for the transmitted sequence (xn)0≤n<N , the 
received sequence can be expressed as: 

[ ]T nnnn
R

n
R

n yyyyyy 0121 K+= . 
The vector yn has R+2 components where each 
component can be represented itself by a vector of Q 

values [ ]T n
r

n
Qr

n
Qr

n
r yyyy 0,2,1, K−−= . Each 

component n
qry ,  can be modeled for a transmission 

over additive white Gaussian channel as: 
n

qr
n

qr
n

qr wxy ,,, += , 0 ≤ q < Q, where n
qrw ,  represents the 

receiver noise. We model n
qrw , as zero-mean mutually 

independent Gaussian random sequences with 
variance σ2. 
 
III. THE MULTI NON BINARY DECODING AND 

THE TRELLIS CLOSING 
 

In this section, we describe the modifications of the 
MAP decoding algorithm that are needed in order to 
decode the MNBTC codes. 

Considering the two decoders DEC1 and DEC0 in 
Fig.3. For any variation of the iterative MAP 
decoding algorithm, e.g., MAP, LogMAP, 
MaxLogMAP or SOVA, the decoding of the 
MNBTCs can be done in different manners: per word, 
per symbol or per bit. The three methods calculate 
differently the a priori probabilities, the extrinsic 
messages, and the a posteriori probabilities (APP). 
We successively describe the calculation for the three 
cases: 
 

Word-wise decoding supposes that all probabilities, 
i.e. the a priori, extrinsic and a posteriori probabilities 
correspond to one word among the NW = (2Q)R 
possible words. Using the same notations as in Fig.3, 
we can express the APPs ( )dL in

j
,  and the extrinsic 

probabilities ( )dLe in,
1  for each decoder j, j = 0 or 1, at 

iteration i as: 
 

( )dL in,
1 = ( )dLa in,

1  + nY1 + ( )dLe in,
1 , 

( )dL in,
0 = ( )dLa in,

0  + nY0 + ( )dLe in,
0 , 

 
(7)

 

where d∈∆={0, 1 ... NW-1} denotes the index of the 
candidate word un(d) among the NW possible words of 
the code. nY1  and nY0  correspond to the bit-wise 
received sequence and are determined as follows: 
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with j = 0 or 1 and and noise dispersion σ2. 
Thus, the a priori probabilities are expressed as: 
 

( )dLa in,
1  = π -1( ( )dLe in )1(,

0
− ), 

( )dLa in,
0  = π( ( )dLe in )1(,

1
− ). 

 
(8) 

 

The operations π ( ) andπ -1( ) denote the interleaving 
and the de-interleaving operations, respectively (ilv” 
and „dilv” respectively in Fig.3). 
Note that the number of components for the extrinsic 
probabilities is equal to the number of outgoing 
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vertices at any node of the treillis since each vertice 
corresponds to one possible value of the information 
word. 
After several iterations, the estimated word û of the 
transmitted sequence can be determined for each n by 
searching the largest value of the APP given by one of 
the decoders: 
 

 ûn = ( )dL in
jd
,max

∆∈
. (10) 

 

For the Symbol-wise decoding algorithm, the APPs 
and the extrinsic probabilities are computed per each 
symbol n

ru , 1 ≤ r ≤ R, at time n. Since a symbol 
corresponds to Q bits, there are 2Q possible values for 
the estimate of n

ru . Thus, at iteration i, both decoders 
compute R⋅2Q values for the APPs and extrinsic 
probabilities. This decoding strategy is similar to the 
approach proposed in [12] for the MBTC codes. 
 

For the Bit-wise decoding algorithm, either the APPs, 
or the log likelihood ratios (LLRs) can be used. In the 
first variant, we compute two values which 
correspond to the binary values 0 or 1 for every bit 

n
qru ,  of each symbol n

ru  of the every word un, and 
that from all N words of the original sequence u. 
Thus, both decoder, at iteration i, calculate 2⋅R⋅Q 
values for APP and the extrinsic probabilities. 
Alternatively, the LLRs can be computed for the R⋅Q 
bits of un as in [8]. The decoding algorithms 
correspond to the ones that are used for the BTC. 
The word-wise decoding approach has the largest 
computation complexity compare to the symbol-wise 
and bitwise approach since the computational 
complexity is exponential with respect to the Galois 
field order Q and the number of inputs R whereas the 
computational complexity of the word-wise and the 
bit-wise approaches is linear in the number of inputs 
R and exponential (resp. linear) with respect to the 
number of inputs Q for the symbol-wise (resp. bit-
wise). However, the word-wise decoding provides 
better performance as it is demonstrated in Section V. 
After describing the update of the probabilities at the 
decoder, we detail the trellis closure. The trellis 
closure of the MNBC is more complicated than from 
the NBC because the trellis itself is more complicated. 
In this paragraph, we propose a new termination 
scheme for the MNBTC. 
For a given input sequence [u0 u1   … uN-1], the final 
state of the trellis represented by sN is: 
 

 sN = ∑ ⋅⋅
−

=

−−1

0

1N

j

j
T

jN uGT + TN ⋅ s0. (11) 

 

The trellis closure can be performed in two different 
ways: i) by making the trellis circular; ii) by zero-
padding as in [5,12]. 
The trellis is circular if sN = s0. Replacing this 
equality in (11), we obtain: 
 

 (IM + TN) ⋅ s0 = ∑ ⋅⋅
−

=

−−1

0

1N

j

j
T

jN uGT = sx. (12) 

 

As soon as sx has been estimated, the corresponding 
initial state can be determined as: 
 

 s0 = (IM + TN)-1 ⋅ sx, (13) 
 

subject to the constraint that N is not a multiple of p, 
with p period of T defined as the smallest integer such 
that Tp= IM. Indeed, if Tp= IM, the right term in (13) is 
always equal to 0 for any sx, so (13) cannot be not 
satisfied for sx≠0. 
By closing the trellis with zero padding, we have sN = 
0 and (11) becomes: 
 

 ∑ ⋅⋅
−

=

−−1

0

1N

j

j
T

jN uGT = 0M×1. (14) 

 

We first have to determine the number of unknowns 
ju ∈ GF(2q) in (14) that are required to close the 

trellis. We show next that it is necessary and sufficient 
to have M unknowns in order to close the trellis. 
Decompose M as: 
 M = a ⋅ R + b,     a, b integers,     0 ≤ b< R, (15) 
Then, (14) becomes: 
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⎣

⎡
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aN
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T
a

T
a

T

uGTs

u
u

u

GTGTG K
 (16) 

 

Since the matrices Tk⋅ GT , 0 ≤ k< p, are supposed to 
be full column rank or full row rank, we select a set of 
indices {i1, i2, ... ib} ⊂ {0, 1, ... R} such that the 
corresponding truncated matrix (Ta⋅ GT)b formed by 
the columns {i1, i2, ... ib} of the matrix Ta⋅ GT is full 
rank. Taking into account that the matrix T is periodic 
of period p > a, the matrix A = [GT ... Ta-1⋅ GT   (Ta⋅ 
GT)b] is invertible. Therefore, we have to introduce 
a+1 redundant symbols uj in order to close the trellis, 
i.e.: 
 

 

( ) ⎥⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

baN

aN

N

u
u

u

1

1

...
=A-1⋅sN-a-1 + (Ta⋅ GT)R-b⋅(uN-a-1)R-b,(17) 

 

where the partial word (uN-a-1)b corresponds to the 
components {i1, i2, ... ib} of the word uN-a-1. (uN-a-1)R-b 
is the partial word of uN-a-1 built from the (R-b) 
remaining components. (uN-a-1)R-b can be set to zero 
for simplicity or can be dedicated to some information 
data, for a slightly higher encoding rate. 
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In this section, we investigated three different 
manners to perform the decoding of a codeword. We 
also show that the trellis of the MNBTC can be 
terminated in two different ways (circular closure and 
zero padding) as for the classical TC. We determine 
for both cases, the conditions on the codeword that 
ensure the trellis closure. The circular closure (tail 
biting) is more efficient since it provides a higher 
coding rate than the closure by zero padding. 
Nevertheless, the closure with zero padding offers 
better performance, as we will show in section V. 
In the next section, we show that the MNBTCs 
include a new family of TC with Reed-Solomon (RS) 
as component codes with very interesting properties. 
 

IV. REED SOLOMON TURBO-CODE 
 
We showed in the previous section that the MNBTC 
include the NBTC which include themselves the 
classical TC. In this section, we show that this new 
family also includes a very interesting family that we 
call RS-TC since the constituent codes are RS codes. 
 
Proposition 1: A MNB code is equivalent to a RS 
code if the following constraints hold: 
1) the polynomial g0(D) corresponds to the generator 
polynomial of the targeted RS code [11]. Implicitly, it 
results M=grad(g0); 
2) The encoder has a single input: R = 1 and g1(D) = 
1. Thus, each word corresponds to a single symbol; 
3) the trellis is closed at zero. The redundancy is 
determined only by the symbols that help to close the 
trellis in (17) [11]. 
4) the length of the sequence of symbols which is 
equal to N = 2q-1 should match the RS word length. 
The turbo encoder will generate 2⋅M redundant words 
(M from each constituent encoder) from the k=N-M 
input symbols. If the four conditions above hold, the 
RS turbo codes can be viewed as a special case of the 
MNBTC codes. 
 

V. SIMULATIONS 

 
Bit error rate and frame error rate performance of the 
MNBTC of memory 3 with two inputs defined by 
generator matrix G=[2 1 2; 3 2 2; 0 0 2; 3 1 1] are 
presented with respect to the signal-to-noise ratio 
(SNR) in Fig.4. The data block is composed of N=376 
words, each word of two symbols and each symbol of 
two bits. The decoding algorithm that we used is the 
approximation MaxLogMAP of the word-wise MAP 
algorithm described in Section III. 
The intersymbol interleaving is realized with an S 
interleaver, with S=21 [13]. A second interleaver is 
used to permute the symbols between words with an 
even index. 
We consider an AWGN transmission channel with 
BPSK signaling. The trellis termination is realized 
with zero padding as discussed in Section III. A 
stopping criterion based on a threshold for the APP 

values is applied. The maximum number of decoding 
iterations is set to 15. 
The performance presented in Fig.4 is slightly worse 
than to the 4-memory MBTC proposed in [12]. It may 
come from the fact that we optimized neither the 
component codes nor the interleavers in this study. 
However, the MNBTC have several intrinsic 
advantages: deeper slop (we conjecture that MNBTC 
have a larger minimum distance than the NBTC), very 
low error-floor even for moderate codeword length 
(for a FER lower than 10-4) and faster convergence 
speed. Indeed, At equivalent SNR, the average 
number of iteration is smaller for the MNBTC than 
for the BTC proposed in [11] with also memory of 4). 
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Fig 4. Comparison between the Multi Non Binary Turbo Code with 

encoding matrix G=[2 1 2; 3 2 2; 0 0 2; 3 1 1] (tb: tail biting, zp: 
zero padding) and the Multi Binary Turbo Codes (3 and 4 memory) 
proposed in [12] over AWGN transmission channel: Bit Error Rate 
(BER) and Frame Error Rate (FER) are plotted as functions of the 

signal-to-noise ratio (SNR). 
 

VI. CONCLUSIONS 
 
We introduced in this paper a new class of Turbo-
codes referred as the Multiple Input Non Binary 
Turbo Codes where each constituent code is a non 
binary code with multiple inputs. We showed that this 
family is very general and includes all existing TCs. 
Particularly, it includes the classical TC, the recently 
proposed NBTC [12] but also a new class of turbo-
codes with Reed Solomon code as constituent code. 
Although we did not optimize the component codes, 
our codes have similar performance than the codes 
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presented in [12]. We expect significant gain by 
optimizing the interleaver and the components codes. 
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