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Abstract – We proposed an end-to-end relative 
differentiation scheme to assure Quality of Services of IP 
network in a predictable manner, called network-wide 
proportional service. Quality of Service is applied to 
flow aggregates and the performance parameter of the 
classes is the goodput of these flows. We also present an 
algorithm, which computes the bandwidth of the flows 
required to sustain the model and the considered 
architecture. We verify then the proposed algorithm by 
simulations for both UDP and TCP traffic. 
Keywords: Quality of Service, Differentiated Services, 
Proportional Services, UDP, TCP  
 

I. INTRODUCTION 
 

The new innovative services offered in modern time 
IP networks require a certain Quality of Service (QoS) 
support from the network side. The Integrated 
Services (IntServ) architecture [1] was an early 
answer for such needs, but the inherent scalability 
problems of this model hindered its widespread 
application. Opposed to the per-flow handling policy 
of IntServ, a newer approach, called Differentiated 
Services (DiffServ) ) [2] defines service classes for 
flow aggregates. The major advantage of the DiffServ 
architecture is that it provides good scalability, which 
is very important in large networks. When any 
subscriber to a certain class sends some traffic into the 
network, it is tested against the conditions that define 
that class and only then is it  allowed to enter the 
network. This process is called admission control. 
Later on, during the lifetime of the flow, it is 
continously monitored and shaped to fit the profile of 
the class and in case it ecxeeds it, the flow is policed. 
Nevertheless, this service model has its drawbacks of 
its own.  
One of the greatest drawbacks comes from the static 
allocation of the internal queuing parameters. Since 
the weights are pre-allocated, a change in the offered 
load among classes cannot be handled in a predictable 
manner. In the worst case, when subscibers of a 
premium class are overloaded (but still within the 
bounds set for that class), and the customers using 
lower classes are scarce, it may happen that the 
communication flow in the premium class experiences 
worse services than the ones directed to lower classes. 

To eliminate this problem, the relative service 
differentiation [3] has been introduced. In this 
approach, similarly to DiffServ, the traffic flows are 
grouped in a number of well-ordered service classes. 
In this context though there is no admission control 
and resource reservation, it is up to the users and 
applications to select the class that best meets their 
requirements, cost and policy constraints.  
The proportional differentiation model ‘spaces’ 
certain class performance metrics proportionally to 
the differentiation parameters that the network 
administrator determines [4]. For example, if we 
consider a differentiation between m different classes, 
and q i is such a performance measure for class i, the 
Proportional Service (PropServ) model imposes 
constrains of the following from all pairs of classes: 
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where c1 < c2 < … < cm  are the generic  quality 
differentiation parameters (QDP). Thus the quality 
ratio between classes remains fixed, and controllable 
by the network operator, independent of the class 
loads. This control comes with the price of relaxing 
the guarantees offered within a certain class. That 
means that the actual quality level of each class varies 
with the class loads, the model only guarantees that a 
„better” class will always offer better services to any 
of its flow than a „worst” class. Additionally, the 
relative ordering between classes is consistent and 
predictable from the perspective of the user.  
The relative differentiated services work on a Per Hop 
Basis [4], therefore it can be categorized as a DiffServ 
variant, thus the achieved end-to-end service 
differentiation is hard to control. To maintain 
scalability, algorithmic complexity should be pushed 
to the edges of the network whenever possible. To 
correct this inefficiency, a network-wide service 
differentiation was proposed, called network-wide 
proportional service [5]. This paper presents detailed 
simulation results that validate this model for both 
UDP and TCP traffic.  
The paper is organized as follows: section II 
introduces the network-wide proportional service 
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model. Then an algorithm is given with different 
variants to UDP and TCP traffic, followed by a 
section detailing the results of simulated behavior of 
this algorithm. Finally we conclude our paper. 
 

II. NETWORK-WIDE PROPORTIONAL SERVICE 
MODEL 

 
The Proportional Service architecture presented in the 
previous section has some drawbacks which result 
from the PHB-based definition of the model. To 
correct this inefficiency, a network-wide service 
differentiation was proposed, called network-wide 
proportional service [5]. In this approach we aimed to 
obtain network level proportional differentiated 
service, based on the goodputs of the flows.  
The goodput, G, gives the fraction of the offered load 
(the data sent) that is actually transmitted through the 
network (achieved throughput). In order to facilitate 
the deployment of this approach in practical 
networking environments we defined it over an 
administrative domain.  

Figure 1. Network domain scenario 

Let us consider a network, which forms an 
administrative domain with m different QoS classes. 
The flows with the same ingress and egress points are 
aggregated; according to the paths they are crossing 
the domain. Let us denote with (k) a path, where (k) 
connects an ingress a with an egress b. We note with 
N the total number of (k) paths in the network. Over 
any (k) path there are m flows (any flow is now a 
micro-flow aggregate), denoted Fi

(k), where the lower 
index, i = 1,2,…,m, identifies the QoS class the flow 
belongs to (see Fig. 1). For each flow, F, we have the 
offered load (input bandwidth, Fin) at the ingress and 
the achieved throughput (output bandwidth, Fout) at 
the egress. With these notations we have the 
following equation defining the goodput of a flow: 
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Thus, based on equation (1) for each (k) path, the 
relation between the performances of different classes 
is:  
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In our model we define unique network-wide QoS 
classes, which yield same ci parameters for a given 
class over any (k) path. Using unique ci parameters for 
all of the paths makes the model simpler and easier to 
control. Costumer satisfaction may be reached by 
carefully choosing the pacing between the classes. 
Without loosing the generality of the model, in the 
following we consider only two classes, for the ease 
of presentation, the higher and a certain lower QoS 
class, indexed by m (the higher classes index) and i 
(certain classes index).  
Based on the notations introduced above we can 
define the basic formula of the proportional service 
model: 
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αi >1,  i,j = 1,2,…,m, k = 1,2, …, N, where, cm and ci 
are network wide differentiation parameters for the 
first (highest) and the second (a certain) QoS classes, 
and they ratio is represented by αi. 
This equation shows us that the goodput of the best 
quality class (which has the highest index, m) is αi 
time bigger then the goodput of certain i class.  
 
A. Fairness considerations 
 
If we rewrite equation (4), we get the following 
relation: 
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Equations (5) defines the relation of the class-level 
flows sharing the same path in the network, but it 
does not adress the relation between the flows of 
different paths, sharing a link in the network.  
According to the service differentiation approach, the 
competitive flows should share the common resources 
equally, proportional with their offered load. This 
desire is formulated in the next equation, which is 
called the fairness condition, and specifies the relation 
among concurrent flows, sharing the same link along 
their path, as they cross the network, 
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whenever these two paths, (k) and (l), share the same 
bottleneck link. It has to be emphasized that this last 
equation, holds only for those flow pairs that 
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experience the same loss rate at the same bottleneck 
link in the network.  
 
B. UDP and Proportional Services 
 
The proportional differentiated service model initially 
was designed to satisfy the needs of real time traffic, 
which usually is transported over UDP [5]. Since 
UDP does not restrict the offered load of the source, 
the traffic sensed at the edges (borders) of the network 
is exactly the traffic transmitted by the application 
(supposing that the access capacity is large enough). 
In these conditions the proposed network-wide 
proportional service model naturally can be adapted to 
UDP flows. At any ingress point the measured 
aggregate throughput for a given class gives the       
Fi, in

(k) used in equations (1) – (5).  
 
C. TCP and Proportional Services  
 
TCP flows use a specific end-to-end (host-to host) 
mechanism to control the traffic, and to avoid 
congestion collapse [6, 7]. TCP flows guarantee that 
every sent packet will arrive to the destination and the 
TCP source elastically adapts to the state of the 
network. This renders useless the definition of 
“offered load” of the flows in the case of TCP traffic. 
To overcome this problem we will use a different 
definition for the offered load Fi, in

(k) in case of TCP 
flows. Fi, in

(k) will be proportional with the number of 
micro-flows in class i over the path (k). In this 
approach the entering load of a certain class will be as 
follows: 
    F i, in (k) = n i • D,        i = 1,2, … ,m          (7)
where n i is the number of micro-flows in the certain 
flow-class, 
          D  is a network wide constant,  
          F i, in is the offered load for a certain, i class 
Using large D values will certainly lead to overload 
during the initial phases of the algorithm. Since TCP 
would anyway rise the sender’s throughput to fill even 
the largest link, it was important to avoid the situation 
where the theoretical offered load is less than the 
largest capacity along the path. Once the ratios among 
flows are correctly established, the absolut value of 
the troughput is not important, since the algorithm 
will give us the correct, loss-less value anyway. 
 

III. THE PROPOSED ALGORITHM 
 
Given a network with known offered loads at the 
ingresses and known paths within the network we can 
determine the bandwidth allocation among the flows 
in such a way that a.) there will be no losses in the 
network and b.) the throughput of each flow will 
conform to equations (4) and (6), describing the 
proportional service and fairness criteria, respectively. 
This section presents an iterative algorithm that 
computes these bandwidth values and discusses the 
differences that must be taken into considerations 
when the algorithm is applied to UDP or TCP traffic. 

Assume, that in the network domain scenario 
presented in Fig. 1 we have m different links with 
different capacities (C i , where i = 1,…,m), and there 
are N different paths for the flow aggregates. The 
tightest bottleneck along the path of a flow defines the 
overload factor, γ, for that given flow. The task of any 
iterative step is to find the tightest bottleneck within 
the network and calculate the bandwidths of all flows 
crossing the bottleneck according to the enumerated 
criteriae. The bottleneck can be found by searching 
for the link with the highest utilization. The link 
utilization is computed by summing up the offered 
load for all flows that cross the link divided by the 
capacity of the link, as follows: 
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where ρ i        – represents the utilization of link i;  
          F (k) 

j  – represents the offered traffic (load) of 
flows from path (k), belonging to flow-class j; note 
that we sum up only those paths which contain link i 

C i         – is the capacity of link i, and 
α i         – represents the proportional 

coefficient between the best flow-class, and flow-
class i.  
Note that a link is overloaded only if is ρ i value is 
greater the one. The most heavily loaded link is 
chosen next, whose index is given by:         

b = arg max ρ i                               (9)  
The γ j parameter for the link with the highest 
utilization is the following: 

γ i = 1 / ρ i                                                           (10) 
If γ i is at least one, all higher-class traffic demands 
will de satisfied since the links are under utilized (thus 
all micro-flows from flow-class m will get their 
resource requirements and they would not experience 
losses). The remaining task is to distribute the free 
remaining free bandwidth to satisfy as much lower 
flow-class requirements as possible.  
In the other case, when γ i is less than one, link b is a 
tight bottleneck. All flows that cross this link will 
suffer since the network cannot serve their initial 
offered load. In this case the achievable throughputs 
(the bandwidths) of flows sharing the same path, (x) 
(path which contains also the b link), are defined by 
the next equation:  
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The excess traffic (F (x) 
i, in – F (x) 

i, out) would be lost at 
the bottleneck link anyway so it is desired to block 
this traffic at the ingress. By placing traffic 
shapers/policers at the edge (border) routers, the 
congestion collapse from undelivered packets can be 
avoided. A flow, which has already been shaped to 
the bottleneck link, is called fixed. Thus all the flows 
that are passing through this bottleneck link will be 
used in the next iterations of the algorithm with their 
“fixed” bandwidth values. 
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As the algorithm iterates, it will ’fix’ the flows one 
after the other. We repeat this procedure, every time 
when we find a bottleneck link. The algorithm ends, 
when every flow will be fixed, or when we would not 
have any more bottleneck links.  
 
A. Applying the algorithm to UDP flows 
 
We considered two variants of the algorithm. The first 
variant achieves global optima in terms of network 
utilization, because at every change in the offered 
load of a flow it recomputes the output for all the 
flows in the network. That is we consider the effects 
of the change of the load in one flow on all the flows 
in the network. In the second variant we use a 
prediction mechanism, where we estimate the offered 
load at the ingresses based on the traffic measured 
over previous periods. This makes the implementation 
of the algorithm much simpler. 
 
B. Applying the algorithm to TCP flows 
 
Theoretically, all the values should be recomputed, if 
a TCP flow enters or exits the network. Note that in 
normal networking condition, the number of flows 
presets in the network has a huge value. Thus the 
algorithm will not be resumed at every single TCP 
flow entering or exiting, because the modifications 
introduced by a determined number of flows can be 
tolerated for the good functionality of the model. In 
this condition, we will fix a limit for the number of 
micro-flows. In the moment when, after the last 
resume of the algorithm, the number of micro-flows 
entering or exiting the network reaches the 
determined limit, the algorithm is restarted. 
We implemented in the ingress nodes the BLUE 
active queue management [8], to avoid network 
congestion, and to assure the calculated bandwidths 
(throughputs) for the different micro-flows. 

 
IV. PROPORTIONAL SERVICE SIMULATION 

 
A. Simulated environment 
 
In this section we present the results of investigation 
by means of simulations using the ns2 tool [9], using 
the network topology as presented in Fig.2.  
The scenario shown on Fig.2 is complex enough to 
validate our proposal. We have four traffic generators, 
all of them generated both high and low class traffic 
flows and use UDP or TCP at the transport level.  
In case of UDP traffic we used two types of 
simulations, in the first case with constant bit rate 
(CBR) traffic only (static traffic conditions), then with 
a variable traffic (dynamic traffic conditions) where a 
more complex and thus more realistic traffic pattern is 
used to reassure the efficiency and viability of the 
proposed algorithm. Variable traffic can be modeled 
by the aggregation of a number of CBR sources. In 
our simulation micro-flows join and leave the 
aggregate flow according to a Poisson process with 

the same arrival and departure rate (i.e., α arr = α dep   = 
1/4 sec-1). 

 
Figure 2. Simulated topology 

The average bandwidth of each aggregate is set to 1 
Mbps, and the bandwidth of each micro-flow is 
exponentially distributed with mean of 32 kbps. We 
used a class based queuing (CBQ) scheme to shape 
the flows at the ingress. In all simulations we set the 
target V ratio to a value close to one (i.e., α = 1.1). 
For TCP traffic we simulated a static and dynamic 
scenario as well. The network topology and the flow 
paths were the same. For the static scenario we 
generated 50 TCP streams for the high-class flow A 
and 60 streams for the low-class flow A (50/60 micro 
flows in flow A). For the rest of the flows these values 
were 40/30 micro flows for flow B, 30/50 micro flows 
for flow C, and 60/40 micro flows for flow D. 
In order to generate variable traffic load in the TCP 
scenarios, we modified the number of the above 
enlisted TCP streams. We changed the number of 
streams at one second intervals. The numbers of 
micro flows within a certain class were changed by 
stopping an existing or starting an additional TCP 
stream. In order to decide whether to stop, start or 
leave unmodified the TCP streams, we relied on the 
random generator of the Linux OS. 
 
B. Simulation with static traffic conditions 
 
The correctly working Proportional Services 
architecture drops the packets that would overload the 
core links at the ingress. That is, there should be no 
packet loss inside the network.  

 
Figure 3. Static UDP traffic scenario 
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This is the first criteria that should be verified. The 
way we implemented the simulator, the losses appear 
on the first, incoming links. The rest of the links 
should be loss free. We run the simulation for the 
static traffic scenarios with different α values: one 
very close to 1 (as a worst case scenario) and one 
larger one (to test the behavior of the protocol in a 
different parameter range). We selected α = 1.1 for 
UDP and α = 2 for TCP transport protocols and 
analyzed these links inside the network, and they had 
no losses. Therefore the model passed the first test. 
Then we took the simulated UDP scenario and 
verified the resulting proportionality coefficients (α). 
The results are shown in Fig.3. As one can see, the 
simulation results were in good agreement with the 
theoretical results. 

Figure 4 Static TCP traffic scenario 

In the case of TCP flows we did the same analysis, 
with α = 2 used to loss test, as well. Fig. 4 shows the 
result of this simulation. The variance of the 
monitored value appears because the monitoring 
interval separates some packets, starting to arrive very 
close to the sampling period’s end, and a part of it will 
arrive in the next second. From practical point of view 
we considered that the result shows that under static 
traffic conditions the architecture achieves the 
targeted behavior, thus the simulation validates the 
proposal. 
 
C. Simulation with variable flows 
 
Then we turned to test the behavior of the model in 
dynamic traffic conditions, as well. 

 
Figure 5 Dynamic UDP scenario 

First we analysed the case of variable UDP flows. The 
traffic model is described in section IV.A and  tries to 
approximate an aggregated flow, which is 
dynamically joined and left by micro-flows. Using 
this scenario we tested whether the algorithm can 
respond to small changes in offered load. We 
considered a network, where each flow provides its 
own traffic profile, thus we applied the first variant of 
the algorithm described in section III.A. 
Fig. 5 presents the achieved α ratio. It can be seen 
from the plot that the α ratio is kept very close to the 
1.1 value. (The α values were computed for every 
second.) The highclass component of flow A matches 
the offered load, and the components of flow D suffer 
the most severe limitation, similarly to the previous 
case. 
Then we made the same test for variable TCP flows, 
as well. In this case we used the α = 1.1, in order to 
detect any disfunctionality of the model that 
eventually may appear. The traffic model is different 
for the UDP model due to the particularities of TCP 
and is described in section IV.A. The results are 
presented in Fig.7. As one can see the proportional 
coefficients are close to the target value of 1.1. The 
explanations for the variations are the same as for the 
static TCP traffic scenario. 
 
D. Simulation for UDP flows with measurement-

based predictions 
 
Next we refined our architecture, and introduced a 
measurement-based prediction to approximate the 
offered load as input for the algorithm, as mentioned 
in section III.A. We used a simple prediction scheme: 
the prediction takes the average load of the last five 
seconds as an approximation for the next five 
seconds.  

 
Figure 6 Measurement-based predictions  

The first prediction interval starts from 2 seconds 
when all components of the flows are active. (Thus 
the relevant result starts after 7 seconds of simulation 
time.) As it can be seen on Figure 4 the output is 
mostly correct, it keeps the parameter between 1.11 
and 1.07. In the last period the 0.1 deviance from the 
expected value should be further studied and 
eliminated by refining the prediction schemes.  
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V. CONCLUSION 
 
In this work an end-to-end relative differentiation 
scheme, called network-wide proportional service has 
been proposed. Apart from the already available 
proposals for per-hop performances, this one is 
defined over an administrative domain. The flows are 
aggregated based on their ingress and egress points 
and the performance parameter of the classes is the 
goodput of these flows.  
Then we presented an algorithm proposal, which 
computes the flow-shares required to sustain the 
model and the considered architecture. An important 
aspect of the model is that the resource intensive flow 
handling is pushed to the edges of the network 
domain. We verified then the proposed algorithm by 
simulations, for both UDP and TCP flows. 
For UDP we tested a measurement-based prediction 
scheme to increase the scalability of the model. The 
model works even with this simple prediction sheme, 
but is some cases a more advanced prediction might 
be required. We also proposed a solution to serve TCP 
traffic, using a new shaping mechanism at the ingress 
nodes, the BLUE AQM, initially developed for 
congestion control. The implementation results 
validated the proposals for both, the algorithm and 
shaping mechanism.  
With the proposed solutions, the original Proportional 
Service architecture can be deployed in IP networks to 
support the novel multimedia services. 
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