
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 53(67), Fascicola 2, 2008

Network-wide Proportional Services

Csaba Simon1, Miranda Naforniţă2

1 Department of Telecommunication and Media Informatics, Budapest University of Technology and Economics,
E-Mail: simon@tmit.bme.hu
2 Electronics and Telecommunications Faculty, ”Politehnica” University Timişoara,
E-Mail: monica.nafornita@etc.upt.ro

Abstract – We proposed an end-to-end relative
differentiation scheme to assure Quality of Services of IP
network in a predictable manner, called network-wide
proportional service. Quality of Service is applied to
flow aggregates and the performance parameter of the
classes is the goodput of these flows. We also present an
algorithm, which computes the bandwidth of the flows
required to sustain the model and the considered
architecture. We verify then the proposed algorithm by
simulations for both UDP and TCP traffic.
Keywords: Quality of Service, Differentiated Services,
Proportional Services, UDP, TCP

I. INTRODUCTION

The new innovative services offered in modern time
IP networks require a certain Quality of Service (QoS)
support from the network side. The Integrated
Services (IntServ) architecture [1] was an early
answer for such needs, but the inherent scalability
problems of this model hindered its widespread
application. Opposed to the per-flow handling policy
of IntServ, a newer approach, called Differentiated
Services (DiffServ)) [2] defines service classes for
flow aggregates. The major advantage of the DiffServ
architecture is that it provides good scalability, which
is very important in large networks. When any
subscriber to a certain class sends some traffic into the
network, it is tested against the conditions that define
that class and only then is it allowed to enter the
network. This process is called admission control.
Later on, during the lifetime of the flow, it is
continously monitored and shaped to fit the profile of
the class and in case it ecxeeds it, the flow is policed.
Nevertheless, this service model has its drawbacks of
its own.
One of the greatest drawbacks comes from the static
allocation of the internal queuing parameters. Since
the weights are pre-allocated, a change in the offered
load among classes cannot be handled in a predictable
manner. In the worst case, when subscibers of a
premium class are overloaded (but still within the
bounds set for that class), and the customers using
lower classes are scarce, it may happen that the
communication flow in the premium class experiences
worse services than the ones directed to lower classes.

To eliminate this problem, the relative service
differentiation [3] has been introduced. In this
approach, similarly to DiffServ, the traffic flows are
grouped in a number of well-ordered service classes.
In this context though there is no admission control
and resource reservation, it is up to the users and
applications to select the class that best meets their
requirements, cost and policy constraints.
The proportional differentiation model ‘spaces’
certain class performance metrics proportionally to
the differentiation parameters that the network
administrator determines [4]. For example, if we
consider a differentiation between m different classes,
and q i is such a performance measure for class i, the
Proportional Service (PropServ) model imposes
constrains of the following from all pairs of classes:

j

i

j

i

c
c

q
q

= , i,j = 1,2,…,m (1)

where c1 < c2 < … < cm are the generic quality
differentiation parameters (QDP). Thus the quality
ratio between classes remains fixed, and controllable
by the network operator, independent of the class
loads. This control comes with the price of relaxing
the guarantees offered within a certain class. That
means that the actual quality level of each class varies
with the class loads, the model only guarantees that a
„better” class will always offer better services to any
of its flow than a „worst” class. Additionally, the
relative ordering between classes is consistent and
predictable from the perspective of the user.
The relative differentiated services work on a Per Hop
Basis [4], therefore it can be categorized as a DiffServ
variant, thus the achieved end-to-end service
differentiation is hard to control. To maintain
scalability, algorithmic complexity should be pushed
to the edges of the network whenever possible. To
correct this inefficiency, a network-wide service
differentiation was proposed, called network-wide
proportional service [5]. This paper presents detailed
simulation results that validate this model for both
UDP and TCP traffic.
The paper is organized as follows: section II
introduces the network-wide proportional service

161

BUPT

model. Then an algorithm is given with different
variants to UDP and TCP traffic, followed by a
section detailing the results of simulated behavior of
this algorithm. Finally we conclude our paper.

II. NETWORK-WIDE PROPORTIONAL SERVICE
MODEL

The Proportional Service architecture presented in the
previous section has some drawbacks which result
from the PHB-based definition of the model. To
correct this inefficiency, a network-wide service
differentiation was proposed, called network-wide
proportional service [5]. In this approach we aimed to
obtain network level proportional differentiated
service, based on the goodputs of the flows.
The goodput, G, gives the fraction of the offered load
(the data sent) that is actually transmitted through the
network (achieved throughput). In order to facilitate
the deployment of this approach in practical
networking environments we defined it over an
administrative domain.

Figure 1. Network domain scenario

Let us consider a network, which forms an
administrative domain with m different QoS classes.
The flows with the same ingress and egress points are
aggregated; according to the paths they are crossing
the domain. Let us denote with (k) a path, where (k)
connects an ingress a with an egress b. We note with
N the total number of (k) paths in the network. Over
any (k) path there are m flows (any flow is now a
micro-flow aggregate), denoted Fi

(k), where the lower
index, i = 1,2,…,m, identifies the QoS class the flow
belongs to (see Fig. 1). For each flow, F, we have the
offered load (input bandwidth, Fin) at the ingress and
the achieved throughput (output bandwidth, Fout) at
the egress. With these notations we have the
following equation defining the goodput of a flow:

)(
,

)(
,)(

k
ini

k
outik

i F
F

G = (2)

Thus, based on equation (1) for each (k) path, the
relation between the performances of different classes
is:

j

i

k
inj

k
outj

k
ini

k
outi

k
j

k
i

c
c

F
F
F
F

G
G

==

)(
,

)(
,

)(
,

)(
,

)(

)(

, i,j = 1,2,…,m (3)

In our model we define unique network-wide QoS
classes, which yield same ci parameters for a given
class over any (k) path. Using unique ci parameters for
all of the paths makes the model simpler and easier to
control. Costumer satisfaction may be reached by
carefully choosing the pacing between the classes.
Without loosing the generality of the model, in the
following we consider only two classes, for the ease
of presentation, the higher and a certain lower QoS
class, indexed by m (the higher classes index) and i
(certain classes index).
Based on the notations introduced above we can
define the basic formula of the proportional service
model:

i
i

m

k
ini

k
outi

k
inm

k
outm

k
i

k
m

c
c

F
F
F
F

G
G α===

)(
,

)(
,

)(
,

)(
,

)(

)(

, (4)

αi >1, i,j = 1,2,…,m, k = 1,2, …, N, where, cm and ci
are network wide differentiation parameters for the
first (highest) and the second (a certain) QoS classes,
and they ratio is represented by αi.
This equation shows us that the goodput of the best
quality class (which has the highest index, m) is αi
time bigger then the goodput of certain i class.

A. Fairness considerations

If we rewrite equation (4), we get the following
relation:

)(
,

)(
,

)(
,

)(
,

k
ini

k
outi

ik
inm

k
outm

F
F

F
F

α= , αi >1, k=1,2,…,N (5)

Equations (5) defines the relation of the class-level
flows sharing the same path in the network, but it
does not adress the relation between the flows of
different paths, sharing a link in the network.
According to the service differentiation approach, the
competitive flows should share the common resources
equally, proportional with their offered load. This
desire is formulated in the next equation, which is
called the fairness condition, and specifies the relation
among concurrent flows, sharing the same link along
their path, as they cross the network,

)(

)(

)(

)(

l
in

l
out

k
in

k
out

F
F

F
F

= , k,l=1,2,…,N (6)

whenever these two paths, (k) and (l), share the same
bottleneck link. It has to be emphasized that this last
equation, holds only for those flow pairs that

Intern
Router Intern

Router

Intern
Router

Border
Router
ingress

Border
Router
egress

(1)
F
in1,...i,...m

(k)
F
in1,...i,...m

(M)
F
in1,...i,...m

(k)
F
out1,...i,...m

162

BUPT

experience the same loss rate at the same bottleneck
link in the network.

B. UDP and Proportional Services

The proportional differentiated service model initially
was designed to satisfy the needs of real time traffic,
which usually is transported over UDP [5]. Since
UDP does not restrict the offered load of the source,
the traffic sensed at the edges (borders) of the network
is exactly the traffic transmitted by the application
(supposing that the access capacity is large enough).
In these conditions the proposed network-wide
proportional service model naturally can be adapted to
UDP flows. At any ingress point the measured
aggregate throughput for a given class gives the
Fi, in

(k) used in equations (1) – (5).

C. TCP and Proportional Services

TCP flows use a specific end-to-end (host-to host)
mechanism to control the traffic, and to avoid
congestion collapse [6, 7]. TCP flows guarantee that
every sent packet will arrive to the destination and the
TCP source elastically adapts to the state of the
network. This renders useless the definition of
“offered load” of the flows in the case of TCP traffic.
To overcome this problem we will use a different
definition for the offered load Fi, in

(k) in case of TCP
flows. Fi, in

(k) will be proportional with the number of
micro-flows in class i over the path (k). In this
approach the entering load of a certain class will be as
follows:
 F i, in (k) = n i • D, i = 1,2, … ,m (7)
where n i is the number of micro-flows in the certain
flow-class,
 D is a network wide constant,
 F i, in is the offered load for a certain, i class
Using large D values will certainly lead to overload
during the initial phases of the algorithm. Since TCP
would anyway rise the sender’s throughput to fill even
the largest link, it was important to avoid the situation
where the theoretical offered load is less than the
largest capacity along the path. Once the ratios among
flows are correctly established, the absolut value of
the troughput is not important, since the algorithm
will give us the correct, loss-less value anyway.

III. THE PROPOSED ALGORITHM

Given a network with known offered loads at the
ingresses and known paths within the network we can
determine the bandwidth allocation among the flows
in such a way that a.) there will be no losses in the
network and b.) the throughput of each flow will
conform to equations (4) and (6), describing the
proportional service and fairness criteria, respectively.
This section presents an iterative algorithm that
computes these bandwidth values and discusses the
differences that must be taken into considerations
when the algorithm is applied to UDP or TCP traffic.

Assume, that in the network domain scenario
presented in Fig. 1 we have m different links with
different capacities (C i , where i = 1,…,m), and there
are N different paths for the flow aggregates. The
tightest bottleneck along the path of a flow defines the
overload factor, γ, for that given flow. The task of any
iterative step is to find the tightest bottleneck within
the network and calculate the bandwidths of all flows
crossing the bottleneck according to the enumerated
criteriae. The bottleneck can be found by searching
for the link with the highest utilization. The link
utilization is computed by summing up the offered
load for all flows that cross the link divided by the
capacity of the link, as follows:

i

kik

m

j j

k
j

i C

F
∑ ∑

Ο≠∩ ==)(:)(1

)(

α
ρ , for all links i in the network (8)

where ρ i – represents the utilization of link i;
 F (k)

j – represents the offered traffic (load) of
flows from path (k), belonging to flow-class j; note
that we sum up only those paths which contain link i

C i – is the capacity of link i, and
α i – represents the proportional

coefficient between the best flow-class, and flow-
class i.
Note that a link is overloaded only if is ρ i value is
greater the one. The most heavily loaded link is
chosen next, whose index is given by:

b = arg max ρ i (9)
The γ j parameter for the link with the highest
utilization is the following:

γ i = 1 / ρ i (10)
If γ i is at least one, all higher-class traffic demands
will de satisfied since the links are under utilized (thus
all micro-flows from flow-class m will get their
resource requirements and they would not experience
losses). The remaining task is to distribute the free
remaining free bandwidth to satisfy as much lower
flow-class requirements as possible.
In the other case, when γ i is less than one, link b is a
tight bottleneck. All flows that cross this link will
suffer since the network cannot serve their initial
offered load. In this case the achievable throughputs
(the bandwidths) of flows sharing the same path, (x)
(path which contains also the b link), are defined by
the next equation:

)(
,

)(
,

x
ini

i

ix
outi FF

α
γ= (11)

The excess traffic (F (x)
i, in – F (x)

i, out) would be lost at
the bottleneck link anyway so it is desired to block
this traffic at the ingress. By placing traffic
shapers/policers at the edge (border) routers, the
congestion collapse from undelivered packets can be
avoided. A flow, which has already been shaped to
the bottleneck link, is called fixed. Thus all the flows
that are passing through this bottleneck link will be
used in the next iterations of the algorithm with their
“fixed” bandwidth values.

163

BUPT

As the algorithm iterates, it will ’fix’ the flows one
after the other. We repeat this procedure, every time
when we find a bottleneck link. The algorithm ends,
when every flow will be fixed, or when we would not
have any more bottleneck links.

A. Applying the algorithm to UDP flows

We considered two variants of the algorithm. The first
variant achieves global optima in terms of network
utilization, because at every change in the offered
load of a flow it recomputes the output for all the
flows in the network. That is we consider the effects
of the change of the load in one flow on all the flows
in the network. In the second variant we use a
prediction mechanism, where we estimate the offered
load at the ingresses based on the traffic measured
over previous periods. This makes the implementation
of the algorithm much simpler.

B. Applying the algorithm to TCP flows

Theoretically, all the values should be recomputed, if
a TCP flow enters or exits the network. Note that in
normal networking condition, the number of flows
presets in the network has a huge value. Thus the
algorithm will not be resumed at every single TCP
flow entering or exiting, because the modifications
introduced by a determined number of flows can be
tolerated for the good functionality of the model. In
this condition, we will fix a limit for the number of
micro-flows. In the moment when, after the last
resume of the algorithm, the number of micro-flows
entering or exiting the network reaches the
determined limit, the algorithm is restarted.
We implemented in the ingress nodes the BLUE
active queue management [8], to avoid network
congestion, and to assure the calculated bandwidths
(throughputs) for the different micro-flows.

IV. PROPORTIONAL SERVICE SIMULATION

A. Simulated environment

In this section we present the results of investigation
by means of simulations using the ns2 tool [9], using
the network topology as presented in Fig.2.
The scenario shown on Fig.2 is complex enough to
validate our proposal. We have four traffic generators,
all of them generated both high and low class traffic
flows and use UDP or TCP at the transport level.
In case of UDP traffic we used two types of
simulations, in the first case with constant bit rate
(CBR) traffic only (static traffic conditions), then with
a variable traffic (dynamic traffic conditions) where a
more complex and thus more realistic traffic pattern is
used to reassure the efficiency and viability of the
proposed algorithm. Variable traffic can be modeled
by the aggregation of a number of CBR sources. In
our simulation micro-flows join and leave the
aggregate flow according to a Poisson process with

the same arrival and departure rate (i.e., α arr = α dep =
1/4 sec-1).

Figure 2. Simulated topology

The average bandwidth of each aggregate is set to 1
Mbps, and the bandwidth of each micro-flow is
exponentially distributed with mean of 32 kbps. We
used a class based queuing (CBQ) scheme to shape
the flows at the ingress. In all simulations we set the
target V ratio to a value close to one (i.e., α = 1.1).
For TCP traffic we simulated a static and dynamic
scenario as well. The network topology and the flow
paths were the same. For the static scenario we
generated 50 TCP streams for the high-class flow A
and 60 streams for the low-class flow A (50/60 micro
flows in flow A). For the rest of the flows these values
were 40/30 micro flows for flow B, 30/50 micro flows
for flow C, and 60/40 micro flows for flow D.
In order to generate variable traffic load in the TCP
scenarios, we modified the number of the above
enlisted TCP streams. We changed the number of
streams at one second intervals. The numbers of
micro flows within a certain class were changed by
stopping an existing or starting an additional TCP
stream. In order to decide whether to stop, start or
leave unmodified the TCP streams, we relied on the
random generator of the Linux OS.

B. Simulation with static traffic conditions

The correctly working Proportional Services
architecture drops the packets that would overload the
core links at the ingress. That is, there should be no
packet loss inside the network.

Figure 3. Static UDP traffic scenario

Achieved Alpha - CBR traffic

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30 35 40 45 50

Time [sec]

A
lp

ha

alfa a
alfa b
alfa c
alfa d

164

BUPT

This is the first criteria that should be verified. The
way we implemented the simulator, the losses appear
on the first, incoming links. The rest of the links
should be loss free. We run the simulation for the
static traffic scenarios with different α values: one
very close to 1 (as a worst case scenario) and one
larger one (to test the behavior of the protocol in a
different parameter range). We selected α = 1.1 for
UDP and α = 2 for TCP transport protocols and
analyzed these links inside the network, and they had
no losses. Therefore the model passed the first test.
Then we took the simulated UDP scenario and
verified the resulting proportionality coefficients (α).
The results are shown in Fig.3. As one can see, the
simulation results were in good agreement with the
theoretical results.

Figure 4 Static TCP traffic scenario

In the case of TCP flows we did the same analysis,
with α = 2 used to loss test, as well. Fig. 4 shows the
result of this simulation. The variance of the
monitored value appears because the monitoring
interval separates some packets, starting to arrive very
close to the sampling period’s end, and a part of it will
arrive in the next second. From practical point of view
we considered that the result shows that under static
traffic conditions the architecture achieves the
targeted behavior, thus the simulation validates the
proposal.

C. Simulation with variable flows

Then we turned to test the behavior of the model in
dynamic traffic conditions, as well.

Figure 5 Dynamic UDP scenario

First we analysed the case of variable UDP flows. The
traffic model is described in section IV.A and tries to
approximate an aggregated flow, which is
dynamically joined and left by micro-flows. Using
this scenario we tested whether the algorithm can
respond to small changes in offered load. We
considered a network, where each flow provides its
own traffic profile, thus we applied the first variant of
the algorithm described in section III.A.
Fig. 5 presents the achieved α ratio. It can be seen
from the plot that the α ratio is kept very close to the
1.1 value. (The α values were computed for every
second.) The highclass component of flow A matches
the offered load, and the components of flow D suffer
the most severe limitation, similarly to the previous
case.
Then we made the same test for variable TCP flows,
as well. In this case we used the α = 1.1, in order to
detect any disfunctionality of the model that
eventually may appear. The traffic model is different
for the UDP model due to the particularities of TCP
and is described in section IV.A. The results are
presented in Fig.7. As one can see the proportional
coefficients are close to the target value of 1.1. The
explanations for the variations are the same as for the
static TCP traffic scenario.

D. Simulation for UDP flows with measurement-

based predictions

Next we refined our architecture, and introduced a
measurement-based prediction to approximate the
offered load as input for the algorithm, as mentioned
in section III.A. We used a simple prediction scheme:
the prediction takes the average load of the last five
seconds as an approximation for the next five
seconds.

Figure 6 Measurement-based predictions

The first prediction interval starts from 2 seconds
when all components of the flows are active. (Thus
the relevant result starts after 7 seconds of simulation
time.) As it can be seen on Figure 4 the output is
mostly correct, it keeps the parameter between 1.11
and 1.07. In the last period the 0.1 deviance from the
expected value should be further studied and
eliminated by refining the prediction schemes.

Alpha = 2, Many MicroFlows

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105

Simulation Time [sec]

R
es

ul
te

d
A

lp
ha

4_14
4_13
3_15

165

BUPT

V. CONCLUSION

In this work an end-to-end relative differentiation
scheme, called network-wide proportional service has
been proposed. Apart from the already available
proposals for per-hop performances, this one is
defined over an administrative domain. The flows are
aggregated based on their ingress and egress points
and the performance parameter of the classes is the
goodput of these flows.
Then we presented an algorithm proposal, which
computes the flow-shares required to sustain the
model and the considered architecture. An important
aspect of the model is that the resource intensive flow
handling is pushed to the edges of the network
domain. We verified then the proposed algorithm by
simulations, for both UDP and TCP flows.
For UDP we tested a measurement-based prediction
scheme to increase the scalability of the model. The
model works even with this simple prediction sheme,
but is some cases a more advanced prediction might
be required. We also proposed a solution to serve TCP
traffic, using a new shaping mechanism at the ingress
nodes, the BLUE AQM, initially developed for
congestion control. The implementation results
validated the proposals for both, the algorithm and
shaping mechanism.
With the proposed solutions, the original Proportional
Service architecture can be deployed in IP networks to
support the novel multimedia services.

REFERENCES

[1] R. Braden, D. Clark, and S. Shenker, Integrated Services

in the Internet Architecture: An Overview, IETF RFC
1633, June 1994

[2] S. Blake et al., An Architecture for Differentiated
Service, IETF RFC 2475, December 1998

[3] C. Dovrolis, P. Ramanathan, A Case for Relativ
Differentiated Services and the Proportional
Differentiated Model, IEEE Network 1999, September
1999

[4] C. Dovrolis, D. Stiliadis, P. Ramanathan, Proportional
Differentiated Services: Delay Differentiation and
Packet Scheduling, ACM SIGCOMM 1999, September
1999

[5] Cs. Simon et al., End-to-End Relative Differentiated
service for IP Networks, Proceedings of IEEE ISCC
2002, June 2002

[6] W. Stevens, TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms, RFC
2001, January 1997

[7] J. Postel, Transmission Control Protocol, IETF RFC
793, September 1981

[8] W. Feng, D.Kandlur, D. Saha, K. Shin, BLUE: A New
Active Queue Management Algorithms, Project Report
CSE-TR-387-99, University of Michigan, April 1999

[9] DARPA, The Network Simulator – ns-2,
http://www.isi.edu/nsnam/ns, SAMAN Project, 1995.

Figure 7 Dynnamic TCP scenario

9/10 to 19 (flow A), alpha = 1.1

0

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

time [s]

Pr
op

. C
oe

f.

11/12 to 18 (flow B), alpha = 1.1

0

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

time [s]

Pr
op

. C
oe

f.

13/14 to 20 (flow C), alpha = 1.1

0

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

time [s]

Pr
op

. C
oe

f.

15/16 to 17 (flow D), alpha = 1.1

0

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

time [s]

Pr
op

. C
oe

f.

166

BUPT

