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Abstract – The normalized least-mean-square (NLMS) 
algorithm and the affine projection algorithm (APA) are 
the most common choices for echo cancellation. In this 
type of application, an adaptive algorithm with a 
constant step-size has to compromise between several 
performance criteria (e.g., high convergence rate versus 
low misadjustment). In this paper we present a class of 
variable step-size NLMS and APAs, which are designed 
to recover the near-end signal in the error of the 
adaptive filter. The simulation results indicate a robust 
behaviour of these algorithms against different types of 
near-end signal variations, including double-talk.   
Keywords: adaptive filtering, affine projection 
algorithm (APA), echo cancellation, normalize least-
mean-square (NLMS), variable step-size. 
 

I. INTRODUCTION 
 

Echo cancellation is one of the most popular 
applications of adaptive filtering [1]. In both network 
and acoustic echo cancellation contexts, the basic 
solution is to build a model of the impulse response of 
the echo path using an adaptive filter, which provides 
at its output a replica of the echo. Even if the 
formulation is straightforward, several specific 
problems have to be addressed. First, the echo path 
can be extremely long and it may rapidly change 
during the connection. Secondly, the background 
noise that appears at the near-end side can be strong 
and non-stationary in nature. Third, the involved 
signals (i.e., mainly speech) are non-stationary and 
highly correlated. Finally, the behaviour during 
double-talk (i.e., the talkers on both sides speak 
simultaneously) has to be considered. 
Even through various kinds of adaptive algorithms [2] 
are theoretically applicable for echo cancellation, in 
most cases a simple and robust algorithm outperforms 
more sophisticated solutions. Therefore, in many 
applications with limited precision and processing 
power, the normalized least-mean-square (NLMS) 
algorithm or the affine projection algorithm (APA) [3] 
are preferred. The performance of these algorithms is 
governed by the step-size parameter. This parameter 
has to be chosen based on a compromise between fast 
convergence rate and good tracking capabilities on the 
one hand, and low misadjustment on the other hand. 

In order to meet this conflicting requirement, a 
number of variable step-size NLMS (VSS-NLMS) 
algorithms and variable step-size APAs (VSS-APAs) 
were developed [4], [5] (and references therein). 
Nevertheless, most of these algorithms require the 
tuning of some parameters which are not a priori 
available or have to be estimated (e.g., background 
noise power). For real-world echo cancellation 
scenarios, it is highly desirable to use non-parametric 
algorithms, in the sense that no information about the 
environment is required. 
A major aspect that has to be considered in echo 
cancellation concerns the behaviour during double-
talk. In this case, the near-end speech signal acts like a 
large level of uncorrelated disturbance to the adaptive 
filter, and it may cause its divergence. For this reason, 
the standard procedure is to use a double-talk detector 
(DTD) in order to slow down or completely halt the 
adaptation process during double-talk periods. 
Nevertheless, there is some inherent delay in the 
decision of a DTD; during this small period a few 
undetected large amplitude samples can perturb the 
echo path estimate considerably. Consequently, it is 
highly desirable to improve the robustness of the 
adaptive algorithm in order to handle a certain amount 
of double-talk without diverging. This is the 
motivation behind the development of the so-called 
robust algorithms [6] (and references therein). 
In this paper, we present a class of VSS-NLMS 
algorithms and VSS-APAs derived in the context of 
echo cancellation. The proposed approach takes into 
account the fact that the near-end signal contains the 
background noise or/and a speech sequence, and these 
signals should be recovered in the error signal of the 
adaptive filter. Consequently, these algorithms are 
robust to near-end signal variations like background 
noise increase or double-talk. The simulation results 
support the theoretical findings. 
The paper is organized as follows. Section II 
introduces the basic idea of the proposed VSS-NLMS 
algorithms. The generalization of the approach for the 
case of VSS-APAs is developed in Section III. The 
simulation results are presented in Section IV. Finally, 
Section V concludes this work. 
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II. A CLASS OF VSS-NLMS ALGORITHMS 
 

A general system model for echo cancellation is 
depicted in Fig. 1. The goal of this scheme is to 
identify an unknown system (i.e., echo path) using an 
adaptive filter. We assume that both systems have 
finite impulse responses of length L, defined by the 
real-valued vectors h = [h0 h1 … hL – 1]T and ĥ(n) = 
[ĥ0(n) ĥ1(n) … ĥL – 1(n)]T, where superscript T denotes 
transposition and n is the time index. The signal x(n) 
is the far-end speech which goes through the impulse 
response of the echo path, h, resulting the echo signal, 
y(n). This signal is added with the near-end signal 
v(n), resulting the desired signal d(n). The near-end 
signal can contain both the background noise, w(n), 
and the near-end speech, u(n). The output of the 
adaptive filter, ŷ(n), provides a replica of the echo, 
which will be subtracted from the desired signal of the 
adaptive filter. The DTD block controls the algorithm 
behaviour during double-talk; nevertheless, the 
proposed algorithms will be derived without involving 
the DTD decision. 
Using the previous notations we may define the a 
priori and a posteriori error signals as, respectively 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ1 1T Te n y n n n n n v n⎡ ⎤= − − = − − +⎣ ⎦h x x h h

(1) 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆT Tn y n n n n n v nε ⎡ ⎤= − = − +⎣ ⎦h x x h h

(2) 
 

where x(n) = [x(n) x(n – 1) … x(n – L + 1)]T. The 
update equation for the NLMS type algorithms is 
 

( ) ( ) ( ) ( ) ( )ˆ ˆ 1n n n n e nµ= − +h h x ,        (3) 
 

where µ(n) is a positive factor known as the step-size, 
which governs the stability, the convergence rate and 
the misadjustment of the algorithm. Replacing (3) in 
(2) and taking (1) into account, it will result that 
 

( ) ( ) ( ) ( ) ( )1 Tn e n n n nε µ⎡ ⎤= −⎣ ⎦x x .    (4)  
 

At a first glance, the contribution of the near-end 
signal does not appear explicitly in the above relation. 
So that, in order to derive an expression for the step-
size parameter, we may impose to cancel the a 
posteriori error signal, i.e., ε(n) = 0, assuming that 
e(n) ≠ 0. As a result, µ(n) = [xT(n)x(n)]–1, which is the 
step size of the classical NLMS algorithm. In practice, 
a positive constant (usually smaller than 1) multiplies 
this step size to achieve a proper compromise between 
the convergence rate and the misadjustment [2]. We 
should note that this straightforward approach holds 
in the noise-free single-talk scenario [i.e., w(n) = 0, 
u(n) = 0]. If we impose to cancel the a posteriori error 
in the presence of the near-end signal, it results from 
(2) that 
 

          xT(n)[h – ĥ(n)] = – v(n) ≠ 0 .               (5) 
 

Hence, the adaptive filter estimate is biased. The 
proper condition is xT(n)[h – ĥ(n)] = 0, which leads to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       ε(n) = e(n)[1 – µ(n)xT(n)x(n)] = v(n).    (6) 
 
Consequently, it can be imposed that E{ε2(n)} = 
E{v2(n)} [5], where E{•} denotes the mathematical 
expectation. Squaring (6), then taking the 
expectations, and assuming that xT(n)x(n) = LE{x2(n)} 
for L >> 1 (which is valid in the context of echo 
cancellation where the length of the adaptive filter is 
of the order of hundreds), it results that 
 

   E{e2(n)}[1 – µ(n)LE{x2(n)}]2 = E{v2(n)}.      (7) 
 
Regarding (7) as a quadratic equation, the solution for 
the step size parameter is 
 

2

2
1 { ( )}( ) 1

( ) ( ) { ( )}T
E v nn

n n E e n
µ

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦x x

.    (8) 

 

From a practical point of view, (8) has to be evaluated 
in terms of power estimates as 
 

  ( ) ( )
( )

ˆ1 1
ˆ( ) ( )
v

T
e

n
n

nn n
σ

µ
σ

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦x x
.           (9) 

 

In a general manner, the parameter ( )2ˆ nασ  denotes 
the power estimate of the sequence α(n), and can be 
computed as 
 

             ( ) ( ) ( ) ( )2 2 2ˆ ˆ 1 1n n nα ασ λσ λ α= − + − ,       (10) 
 
where λ is a weighting factor chosen as λ = 1 – 1/(KL), 
with K  > 1. The initial value is ( )2ˆ 0 0ασ = . 
Nevertheless, expression (9) is still useless in practice 
because it depends on a parameter that is unavailable, 
i.e., the near-end signal v(n). Two main scenarios can 
be considered, as follows. 
1) In the absence of the near-end speech, the near-end 
signal consists only of the background noise, w(n). Its 
power can be estimated and it could be assumed 
constant, so that (9) becomes 
 

  ( ) ( )
ˆ1 1

ˆ( ) ( )
w

T
e

n
nn n

σµ
σ

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦x x
.         (11) 

 
This is the non-parametric VSS-NLMS (NPVSS-
NLMS) algorithm proposed in [5]. Nevertheless, the 
background noise can be time-variant, so that the 
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Fig. 1.  System model for echo cancellation. 
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power of the background noise should be periodically 
estimated. Moreover, when the background noise 
changes between two consecutive estimations or 
during the near-end speech, its new power estimate 
will not be available immediately; consequently, until 
the next estimation period of the background noise, 
the algorithm behaviour will be disturbed. 
2) In the double-talk case, the near-end signal v(n) 
consists of both the background noise, w(n), and the 
near-end speech, u(n). It is very difficult to obtain an 
accurate estimate for the power of this combined 
signal, taking into account especially the non-
stationary character of the speech signal. Therefore, 
(9) is still futile and the presence of a DTD is a must, 
in order to control the adaptation process during these 
periods. 
In order to overcome these limitations, let us consider 
the previous cases in a more unified framework. The 
desired signal of the adaptive filter can be expressed 
as d(n) = y(n) + v(n). Squaring this equation and 
taking the expectation of both sides [assuming that 
y(n) and v(n) are uncorrelated] it results that E{d2(n)} 
= E{y2(n)} + E{v2(n)}. Assuming that the adaptive 
filter has converged to a certain degree, it can be 
considered that 

 

( ){ } ( ){ }2 2ˆE y n E y n≅ .       (12) 
 

Consequently, 2 2 2ˆ{ ( )} { ( )} { ( )}E v n E d n E y n≅ − , or 
in terms of power estimates [similar to (10)] 
 

( ) ( ) ( )2 2 2
ˆˆ ˆ ˆv d yn n nσ σ σ≅ − .                (13) 

 
For the case 1), when only the background noise is 
present, i.e., v(n) = w(n), an estimate of its power is 
obtained using the right-hand term in (13). This 
expression holds even if the level of the background 
noise changes, so that there is no need for the 
estimation of this parameter during silences of the 
near-end speech. For the case 2), when the near-end 
speech is present (assuming that it is uncorrelated 
with the background noise), the near-end signal power 
estimate is expressed as ( ) ( ) ( )2 2 2ˆ ˆ ˆv w un n nσ σ σ= + ; the 
last parameter denotes the power estimate of the near-
end speech. Accordingly, the right-hand term in (13) 
provides a power estimate of the near-end signal. 
Most importantly, this term depends only on the 
signals that are available within the application, i.e., 
the desired signal, d(n), and the output of the adaptive 
filter, ( )ŷ n . Consequently, (9) can be rewritten as 
 

( )
( ) ( )

( )

2 2
ˆˆ ˆ1 1

ˆ( ) ( )
d y

T
e

n n
n

nn n

σ σ
µ

σ

⎡ ⎤−⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

x x
,  (14) 

 
which is more suitable in practice [7], [8]. We refer 
this algorithm as VSS-NLMS-1. Another practical 
approach is to estimate the power of the near-end 

signal from the error signal e(n), using a larger 
weighting factor  as compared to (10), i.e., 
 

  ( ) ( ) ( ) ( )2 2 2ˆ ˆ 1 1v vn n e nσ γσ γ= − + − ,  (15) 
 

with λ < γ [9]. Then, the step-size is evaluated 
according to (9). We refer this algorithm as VSS-
NLMS-2. Nevertheless, this algorithm is expected to 
be less robust against near-end signal variations as 
compared to the VSS-NLMS-1 algorithm. 
All these VSS-NLMS algorithms are based on (9). 
Finnaly, a few practical issues have to be considered. 
First, in order to avoid divisions by small numbers, a 
positive constant δ, known as the regularization 
factor, needs to be added to the first denominator in 
(9). Also, a small positive number ξ should be added 
to the second denominator of (9) to avoid division by 
zero. Theoretically, we have E{e2(n)} ≥ E{v2(n)}. 
Nevertheless, the estimates of these parameters could 
lead to some deviations from the previous theoretical 
condition, so that we will take the absolute value of 
the step-size parameter from (9). 
  
III. GENERALIZATION IN THE VSS-APA CASE 

 
The APA [3] is defined by the following relations: 
 

         ( ) ( ) ( ) ( )ˆ 1Tn n n n= − −e d X h ,      (16)              

( ) ( ) ( ) ( ) ( ) ( )1ˆ ˆ 1 Tn n n n n nµ
−

⎡ ⎤= − + ⎣ ⎦h h X X X e ,  (17) 
 
where e(n) is the a priori error vector and d(n) = [d(n), 
d(n–1), …, d(n – p +1)]T is the desired signal vector of 
length p, with p denoting the projection order. The 
matrix X(n) = [x(n),   x(n – 1), …, x(n – p + 1)] 
contains p input signal vectors and the constant µ 
denotes the step-size parameter of the algorithm. 
Equation (17) can be rewritten in a different form as 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1ˆ ˆ 1 Tn n n n n n n
−

⎡ ⎤= − + ⎣ ⎦h h X X X µ e  

 (18) 
where 
 

( ) ( ) ( ) ( ){ }0 1 1diag , , , pn n n nµ µ µ −=µ K   (19) 
 

is a p-by-p diagonal matrix. We can recover (17) 
imposing that ( ) ( ) ( )0 1 1pn n nµ µ µ µ−= = = =K . 
The a posteriori error vector can be defined using the 
adaptive filter coefficients at time n: 
 

( ) ( ) ( ) ( )ˆTn n n n= −ε d X h .              (20) 
 
Replacing (18) in (20) and taking (16) into account, it 
results that 
 

( ) ( ) ( )pn n n⎡ ⎤= −⎣ ⎦ε I µ e ,          (21) 
 
where Ip denotes a p-by-p identity matrix. The basic 
idea of the classical APA imposes to cancel p a 
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posteriori errors, i.e., ( ) 1pn ×=ε 0 , where 1p×0  
denotes a column vector with all its p elements equal 
to zeros. Assuming that ( ) 1pn ×≠e 0 , it results from 

(21) that ( ) pn =µ I . This corresponds to the classical 
APA update from (17), with the step-size µ = 1. In the 
absence of the near-end signal (i.e., v(n) = 0, which 
leads to an ideal “system identification” 
configuration) the value of the step-size µ = 1 makes 
sense, because it leads to the best performance [3]. 
Nevertheless, the echo cancellation scheme can be 
viewed as an “interference cancelling” configuration, 
aiming to recover an “useful” signal (i.e., the near-end 
signal) corrupted by an undesired perturbation (i.e., 
the echo); consequently, the “useful” signal should be 
recovered in the error signal of the adaptive filter. 
Therefore, a more reasonable condition is ε(n) = v(n), 
where v(n) = [v(n), v(n – 1), …, v(n – p +1)]T 
represents the near-end signal vector of length p. 
Taking (21) into account, it results that 
 

 ( ) ( ) ( ) ( )1 11l l ln n e n v n lε µ+ +⎡ ⎤= − = −⎣ ⎦ ,  (22) 
 

where ( )1l nε +  and ( )1le n+  denote the (l+1)-th 

elements of the vectors ( )nε  and ( )ne , with 
0,1, , 1l p= −K . The expression of the step-size 

parameters ( )l nµ  has to be found such that 
 

  ( ){ } ( ){ }2 2
1lE n E v n lε + = − .                  (23) 

 
Squaring (22) and taking the expectations it results: 

 

( ) ( ){ } ( ){ }2 2 2
11 l ln E e n E v n lµ +⎡ ⎤− = −⎣ ⎦ .  (24) 

 
By solving the quadratic equation (24), we obtain 
 

    ( )
( ){ }
( ){ }

2

2
1

1l
l

E v n l
n

E e n
µ

+

−
= − .       (25) 

 
or in terms of power estimates as [using (10)] 
 

 ( ) ( )
( )1

ˆ
1

ˆ
l

v
l

e

n l
n

n
σ

µ
σ

+

−
= − .                (26) 

 
The same scenarios from the Section II can be 
considered. Consequently, in case 1) will have 
 

 ( ) ( )1

ˆ
1

ˆ
l

w
l

e
n

n
σµ

σ
+

= − .                (27) 

 
We refer this algorithm as the non-parametric VSS-
APA (NPVSS-APA). For a value of the projection 
order p = 1, the NPVSS-NLMS algorithm from [5] is 
obtained. In the case 2), following a similar analysis 
as in Section II, it results  
 

     ( )
( ) ( )

( )1

2 2
ˆˆ ˆ

1
ˆ

l

d y
l

e

n l n l
n

n

σ σ
µ

σ
+

− − −
= − .         (28) 

 

We refer this algorithm as VSS-APA-1. For p = 1, the 
VSS-NLMS-1 from Section II is obtained. Also, if we 
estimate the nominator from (26) using (15), it results 
another version of the algorithm, i.e., VSS-APA-2. 
(when p = 1, the VSS-NLMS-2 from Section II is 
obtained). 
In all the cases, the adaptive filter coefficients should 
be updated according to (18), using the step-sizes 
from (19). In practice, (18) has to be rewritten as 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1ˆ ˆ 1 T
pn n n n n n nδ

−
⎡ ⎤= − + +⎣ ⎦h h X I X X µ e

(29) 
 

where δ is the regularization factor. An insightful 
analysis about this factor, in the framework of APA, 
can be found in [10]. From practical reasons, the 
small positive number ξ should be added to the 
denominator of µl(n) to avoid division by zero. Also, 
as was discussed in the end of Section II, we will take 
the absolute value of these step-size parameters. 
 

IV. SIMULATION RESULTS 
 
The simulations were performed in the context of 
acoustic echo cancellation. The measured acoustic 
impulse response has L = 512 coefficients; the same 
length is used for the adaptive filter. The far-end 
signal x(n) is a speech sequence. An independent 
white Gaussian noise signal w(n) is added to the echo 
signal y(n), with 20 dB signal-to-noise ratio (SNR). 
The performance is evaluated in terms of the 
normalized misalignment (in dB), defined as 

10
ˆ20 log (|| ( ) || / || ||)n−h h h , where ||•|| denotes the l2 

norm. For comparison purpose, an “ideal” VSS-
NLMS (VSS-NLMS-id) algorithm and an “ideal” 
VSS-APA (VSS-APA-id) are considered in the 
simulations. They are based on the assumption that 
the near-end signal v(n) is available (of course, this is 
not true in practice); its power estimate [which is 
evaluated using (10)] is introduced in (9) and (26). 
The first set of simulations is performed in a single-
talk case [i.e., u(n) = 0]. In Fig. 1, the VSS-NLMS 
algorithms are compared with the NLMS algorithm 
using the step-size µ(n) = 0.2[δ + xT(n)x(n)]–1 (this 
value compromises between convergence rate and 
misadjustment). The regularization factor for all the 
algorithms is δ = 20σx

2, where σx
2 is the power of the 

input signal. The weighting factor from (10) is λ = 1 – 
1/6L and the parameter from (15) is γ = 1 – 1/18L. We 
assumed that the power of the background noise, σw

2, 
is known for the NPVSS-NLMS algorithm. It can be 
noticed from Fig. 1 that the VSS-NLMS-id algorithm 
outperforms the NLMS algorithm in terms of both 
convergence rate and misalignment. The performance 
of the NPVSS-NLMS algorithm is similar with the 
“ideal” algorithm. The VSS-NLMS-1 and VSS-
NLMS-2 algorithms have a slower convergence rate.  
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Fig. 1. Performance of the NLMS algorithms in the single-talk case. 
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Fig. 2. Performance of the APAs in the single-talk case. 

 
In the case of the VSS-NLMS-1 algorithm, this is due 
to the assumption (12), which is not fulfilled in the 
first part of the algorithm. The convergence rate of the 
VSS-NLMS-2 algorithm is influenced by the value of 
γ. A larger value of this parameter speeds up the 
initial convergence but it is not proper from the 
robustness point of view. 
The same experiment is repeted in Fig. 2 in the case 
of APAs. The VSS-APAs are compared with the 
classical APA using µ = 0.2, in the case of the 
projection order p = 2. The regularization factor for all 
the algorithms is δ = 50σx

2. As expected, the 
convergence rates of APAs are improved as compared 
to the case of the NLMS algorithms. The VSS-APA-1 
and VSS-APA-2 achieve a significant gain from this 
point of view. The performance of the VSS-APA-2 is 
very close to the “ideal” case. 
An abrupt change of the acoustic echo path is 
considered in Fig. 3, in the case of APAs. The 
acoustic impulse response was shifted to the right by 
12 samples after 21 seconds from the debut of the 
adaptive process. As expected, the VSS-APA-2 
algorithm has a slower tracking reaction as compared 
to the other algorithms, since the assumption (12) is 
strongly biased in this situation. Nevertheless, the 
tracking capabilities of the VSS-APA-2 are improved 
for larger values of the projection order. As the value 
of the projection order of the APA becomes larger, the 
condition number of the matrix XT(n)X(n) also grows; 
consequently, a higher value of δ is required [10]. 
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Fig. 3. Performance of the APAs in the single-talk case, when there 

is an abrupt change of the echo path. 
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Fig. 4. Performance of the APAs in the single-talk case, when there 

is an increase of the backgroud noise. 
 
An increase of the background noise is experienced in 
Fig. 4. In this scenario, the SNR decreases from 20 dB 
to 10 dB after 14 seconds from the debut of the 
adaptive process, for a period of 14 seconds. It is 
assumed that the new background noise power 
estimate is not available for the NPVSS-APA. It can 
be noticed that the VSS-APA-1 and the VSS-APA-2 
are more robust against the background noise 
variation, and they outperform the classical APA and 
the NPVSS-APA. 
A second set of simulations is performed in a double-
talk scenario. The near-end speech appears after 14 
seconds from the debut of the adaptive process, for a 
period of 9.2 seconds. The results from Figs. 5 and 6 
are obtained without using any DTD. It can be noticed 
that the VSS-NLMS-2 algorithm (Fig. 5) and VSS-
APA-2 (Fig. 6) outperform by far their counterparts. 
In practice, a DTD can be involved in order to 
enhance the performance of these algorithms during 
double-talk periods. In Figs. 7 and 8, the previous 
experiment is repeated using a simple Geigel DTD 
[11]. It can be noticed that the performances of the 
VSS-NLMS-2 algorithm (Fig. 7) and VSS-APA-2 
(Fig. 8) are improved as compared to the previous 
case. The other NLMS algorithms and APAs can not 
be “saved” by this procedure; they requires more 
complex DTDs, e.g., [12]. The presence of the DTD 
does not influence the performances of the “ideal” 
algorithms. 

122

BUPT



0 5 10 15 20 25 30 35 40
-30

-20

-10

0

10

20

30

40

Time (seconds)

M
is

al
ig

nm
en

t (
dB

)
NLMS
VSS-NLMS-id
NPVSS-NLMS
VSS-NLMS-1
VSS-NLMS-2

 
Fig. 5. Performance of the NLMS algorithms in the double-talk 

case, without DTD. 
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Fig. 6. Performance of the APAs in the double-talk case, without 

DTD. 
 

V. CONCLUSIONS 
 
A class of VSS-NLMS algorithms and VSS-APAs 
was presented in this paper. They are designed in the 
context of echo cancellation, in order to recover the 
near-end signal in the error of the adaptive filter. 
Consequently, they take into account the existence 
and the non-stationarity of the near-end signal. The 
variable step-size formula of the proposed algorithms 
resulted in a unified manner. The simulation results 
performed in an acoustic echo cancellation context 
sustain the theoretical findings. These algorithms 
were found to be more robust against near-end signal 
variations, like the increase of the background noise 
or double-talk. Concerning the last scenario, they can 
be combined with a simple Geigel DTD in order to 
enhance the overall performances. 
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