
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 53(67), Fascicola 2, 2008

Alternative Subsystems for the Simulink Implementation
of the IEEE 802.15.4 Transmitter

Ana-Maria Popescu1, Ion Gabriel Tudorache2, Mircea Mihaiu3, Carlos Valderrama4, Papy
Ndungidi5

1Student at the Faculty of Automation, Computers and Electronics in Craiova, Romania
 e-mail: amidamia2003@yahoo.com
2Student at the Faculty of Automation, Computers and Electronics in Craiova, Romania
 e-mail: tudgabriel@yahoo.com
3Professor at the Faculty of Automation, Computers and Electronics in Craiova, Romania
 e-mail: mihaium@electronics.ucv.ro
4Professor at the Polytechniq Faculty in Mons, Belgium
 e-mail: carlos.valderrama@fpms.ac.be
5Phd Student and Assistant at the Polytechnic Faculty in Mons, Belgium
 e-mail: papy.ndungidi@fpms.ac.be

Abstract – This paper presents a part of a Simulink
toolset, which is currently being developed. More
precisely, it describes different subsystems for several
functions present in the digital base band part of an
IEEE 802.15.4 transmitter. The subsytems’ speed as well
as their complexity is taken into consideration for
comparison. The entire model of the transmitter is
developed under MATLAB/Simulink using the
7.3.0.367(R2006b) version.

Keywords: Simulink, IEEE 802.15.4, transmitter, toolset

I. INTRODUCTION

Wireless communication technology is in its infancy
and is undergoing rapid development. Innovative
standards attempt to respond effectively to the high
demand for low cost and low power consumption
wireless networking protocols. As the demand for
such wireless system increases, so does the need to
accurately model these designs.
Behavioral modeling is a very popular approach to
simulate and verify complex, mixed-signal systems
which consist of RF, analogical and digital parts. The
making of Virtual Prototypes allows users to view and
analyze the virtual reality which represents the
simulated objects with as much accuracy as possible.
This facilitates the improvement of the
communication systems during the designing stage,
without unnecessary costs [1].
The development of a Simulink toolset to serve such
purposes consists of multiple stages. The first one
implies the simplest step, meaning the making of the
ideal elements and chains. The following stages grow
in complexity due to the fact that the models are
improved with realistic blocks and added
imperfections.

This paper proposes to describe a part of a Simulink
toolset which is currently being developed and which
can be used to simulate the ideal transmitter, receiver
and channel of an IEEE 802.15.4 “ZigBee” physical
layer. The implementation of such a chain (Fig.1) can
be done in multiple ways because of the options
Simulink offers for behavioral modeling.
The IEEE 802.15.4 standard [2] was designed to
support three frequency bands with three different
data rates (250 kbps for the 2.4 GHz ISM World Wide
band, 40 kbps for the 915 MHz ISM USA band and
20kbps for the 868 MHz ISM European band). This
paper will focus only on the transmitter which
employs Binary Phase Shifting (BPSK) modulation
(for the 868MHz band and the 968MHz band) and
Offset-Quadrature Phase Shift Keying (O-QPSK)
modulation (for the 2.4GHz band).
The chosen architecture for the developed models is
the Homodyne architecture [3] because it down-
converts the RF signal to baseband and minimizes the
number of necessary chain components. This
architecture offers a lot of advantages like high
processing accuracy, high flexibility, low-power
consumption and low-cost components. Its DC offset
and the 1/f noise problems can be overcome through
careful design.

Fig.1. Digital chain for the Zigbee physical layer

Each function that the transmitter performs can be
implemented with Simulink blocks in more than one
way. The alternative subsystems propose the variation
of the number of blocks from the Simulink Library or
the use of S-functions which can reduce the

61

BUPT

dimension of the model. Some of the subsystems
prove to be simpler and faster, while others are
flexible and complex. It is up to the user to choose
whichever suits the application best.
The paper is divided into four sections which describe
the modeled IEEE 802.15.4 transmitter. The first
section presents 3 alternatives for the spreading. The
second section presents two alternatives for the BPSK
modulation. The third section presents two
alternatives for the OQPSK modulation and the fourth
section presents the general conclusion. The
encountered difficulties as well as their solutions are
explained in each section of the paper.

II. THE SPREADING

The transmitted digital data stream is a string of bits
that have to be conveyed into symbols and then into
chips. This is what the spreading block does. The
encoding takes place before the modulation process
and is used to replace the transmitted data symbols
with codes with the purpose of counteracting the
effects of noise [4].
Direct Sequence Spread Spectrum (DSSS) replaces
the symbols with a pseudo-noise sequence (PN
sequence). For the IEEE 802.15.4 system with BPSK
modulation, the PN encoding consists of 2 sequences
of 15 bits[2], one to encode the input bit 0 and one to
encode input bit 1.
For the IEEE 802.15.4 system which uses OQPSK
modulation, the PN coding consists of 16 sequences
of 32 bits [2], each sequence coding one of the input
symbols, from 0000 to 1111 (representing the
numbers from 0 to 15).
The spreading block for the BPSK transmitter is
presented in Fig.2. For the OQPSK, the block is
changed to have 16 cases with the corresponding
codes, but due to dimensions, it is not presented here.

1

Out1

Terminator

case: { }

Out1

Switch Case Action
Subsystem1

case: { }

Out1

Switch Case Action
Subsystem

u1

case [1]:

case [2]:

def ault:

Switch Case

Multiport
Switch

[s2]

Goto1

[s1]

Goto

[s2]From1

[s1]From

To
Sample

Frame Conversion

1 Constant1

Bit to Integer
Converter

Bit to Integer
Converter

Bernoull i
Binary

Bernoull i Binary
Generator1

Fig.2. Spreading block for BPSK – alternative no. 1

The spreading block was implemented using:

- a Bernoulli Binary Generator which outputs
frames of 1 bit for the BPSK transmitter and
frames of 4 bits for the O-QPSK

- a Bit to Integer Converter, with a selected
number of 1 bit per integer for BPSK and a
number of 4 bits per integer for OQPSK,

- a Sum block which adds a Constant of 1 to
the integer outputted by the previous block
(the purpose is to shift the integers and have
a sequence from 1 to 16 instead of 0 to 15;
the reason is that the Multiport Switch
accepts only positive integers for the control
input),

- a Frame Conversion block, which outputs a
sample based signal according to the input
demands of the following blocks,

- a Switch Case subsystem with 16 Switch
Case Action subsystems which replace each 4
bits symbol with a sequence of 32 bits; in the
BPSK case only 2 Switch Case Action
subsystems are necessary because each bit
(0,1) is replaced by a 15 sequence of bits,

- 16 Go to labels and 16 From labels in the
OQPSK case; for BPSK only 2 Go to labels
are necessary and 2 From labels (these labels
are used to simplify the model),

- and a Multiport Switch block which outputs a
sequence of 32 bits.

Another option to implement the spreading block
would be to avoid the use of “Go To” and “From”
labels. The architecture of the subsystem contains
fewer blocks, but it has a more complex design,
especially for the O-QPSK transmitter which contains
16 PN codes.
The spreading can also be performed with a Direct
Lookup Table and the dimensions of the block can be
greatly reduced (Fig.3). The Direct Lookup table has
to be configured to extract a column from a matrix.
The columns consist in the PN code. For the BPSK
transmitter, there are 2 columns, each with 15 bits.
For the OQPSK transmitter, there are 16 columns
each with 32 bits. In the first case the table is a 15x2
matrix and, in the second case, the table is a 16x32
matrix.

Bit to Integer
Converter

convertion of 1 bit to integer

To
Sample

Frame Conversion Display

 2-D T[k]

Direct Lookup
Table (n-D)

Bernoulli
Binary

Bernoulli Binary
Generator

Fig.3. Spreading block for BPSK - alternative no. 3

Simulink offers another alternative for the spreading
through the S-function block. An S-function block can
contain a user-defined function written in any of these
languages: MATLAB, C, C++, FORTRAN or ADA.
The S-functions act as general purpose functions with
adjustable parameters which can serve more than once
in an application. By using the S-function template [3]
from MATLAB and by adjusting it with the necessary
simple algorithm, the spreading can take place
without any additional blocks.

62

BUPT

III. BPSK MODULATION

The BPSK modulation is the simplest form of PSK
modulation [5]. It uses two opposite signal phases to
encode 0 and 1 bits. The state of the wave is changed
according to the inputted bits. If consecutive bits are
the same, then the wave phase remains the same until
a bit change ocurrs. If the bits change so does the
phase of the wave.
The Simulink library offers a first option for the
BPSK modulation (Fig.4). It contains a BPSK
modulation block which can be used in the
transmitter. It is a recommended option because it is
fast, but it is not a flexible.

BPSK

S

Fig.4. BPSK modulation block from Simulink - alternative no. 1

The speed for this block was analyzed by using the
MATLAB Profiler function. After the models for the
BPSK transmitter were completed and after running
the profiler function for each of them, one of the
models had a total simulation time of aproximately 44
seconds, while the other had a simulation time of
aproximately 2 seconds. The difference between these
models consisted in the BPSK modulation block.
The model which used the BPSK block from the
library was the fastest, while the one which used the
other BPSK modulation subsytem (implemented
through other blocks like in Fig.5) had a longer total
simulation time. The reason for this is simple: the
Library blocks are implemented through C functions
and have Simulink masks, therefore they are faster to
compile. Implementing a subsytem with the help of
other blocks implies using more C functions which
take more time to be compiled.
While the advantage of the library blocks is speed,
their disadvantage is the lack of flexibility. The
parameters of this blocks can not be adjusted (for
example the frequency of the carrier). These blocks
also accept only a certain type of input and output.
However, the implementation of alternative blocks,
like the one in Fig.5, solves this problem and offers
flexibility in the detriment of speed.

Switch

Sine Wave

Scope

Cosine Wave

Bernoull i
Binary

Bernoulli Binary
Generator

Fig.5. BPSK modulator implemented with a switch block –

alternative no. 2

The BPSK modulation in Fig.5 is made by using a
switch and two sine waves (a sine and a cosine). The
output is clearly the modulated signal.
If used in a transmitter chain after the spreading
block, the BPSK modulation in Fig.5 needs to be
added a few blocks. The role of these additional

blocks is to adjust the output from the spreading
block.
The output of the spreading is a sequence (a vector of
15 bits). The modulator needs to receive 1 bit at a
time. The blocks which need to be added are 15
Variable Selectors connected to a Multiport Switch
which is controled by a Counter Limited block.
An alternative to these additional blocks is a
Demultiplexor with 15 outputs and a Multiport Switch
controled through a Counter Limited block. Because
the blocks are numerous, they won’t be shown here.

IV. OQPSK MODULATION

O-QPSK is the modulation used for the 2.4 GHz
transmission [6]. In O-QPSK modulation, the inputted
bit stream is divided into two parts. The first bit
stream corresponds to the even positioned bits of the
initial stream and the second bit stream corresponds to
the odd positioned bits. The even bit stream is called
the in-phase component (I) and odd bit stream is
called the quadrature-phase component (Q). The bits
in the in-phase and quadrature-phase bit streams are
transmitted with an offset of half a symbol period, not
in the same instants as in the QPSK modulation.
Therefore, the O-QPSK modulation takes place for 2
bits at a time and the two components are then
separately modulated onto two orthogonal sinusoidal
waves.
As in the BPSK case, MATLAB offers users the
possibility to implement communication systems
using O-QPSK modulation through an O-QPSK block
found in the Simulink library (Fig.6). To implement
this block in a transmitter model, its input must be
adjusted according to its limitations.

OQPSK

OQPSK
Fig.6. O-QPSK modulation block from Simulink - alternative no. 1

A subsystem, the Two bits at a time subsystem, which
receives the 32 bit output from the spreading block, is
placed before the Library’s modulation block (Fig.7).
It outputs two bits at a time as expected by the O-
QPSK modulator. The Two bits at a time subsystem
consists of 16 Variable Selector blocks and a
Multiport Switch controlled through a Limited
Counter.

In1 Out1

Two bits at a time

In1 Out1

Spreading subsystem

OQPSK

OQPSK
Modulator
Baseband

Discrete-Time
Signal Trajectory

Scope

Bernoull i
Binary

Bernoulli Binary
Generator

Fig.7. Transmitter chain which uses the Simulink O-QPSK

modulation block

The O-QPSK modulator block in Fig.6 is
advantageous because of the speed and reduced
complexity and, disadvantageous due to flexibility
issues. In fact, because of the lack of flexibility, the
complexity of the transmitter’s chain is increased
through the adding of the Two bits at a time block.

63

BUPT

After applying the Profiler, the measured speed for a
model using the Library’s O-QPSK modulation block
was approximately 2 seconds. For the other model,
with the modulator from Fig.8, it was approximately
48 seconds. In conclusion, when choosing the
modulation block, the user has to make a compromise
between flexibility and speed.

qudrature Sine

In1 Out1

Spreading subsystem

Scope

Product 2

Product 1

In1
Out1

Out2

Odd and Even
Subsystem

In2 Out2

Mapping Subsystem 2

In2 Out2

Mapping Subsystem 1

 -8
Z

Integer Delay

I-phase Cosine

Bernoulli
Binary

Bernoulli Binary
Generator

Add

Fig.8. O-QPSK modulation block from Simulink - alternative no. 2

Implementing the O-QPSK modulation with other
blocks from the Library offers the user a more
complex transmitter, but a more flexible one (Fig.8).
This solution to implement the O-QPSK modulation
uses:

- an Odd and Even subsystem which splits the
32 bit sequence into two sequences of odd
and even positioned bits

- a mapping subsystem which outputs -1 for
the bit 0 and 1 for the bit 1; these values
represent the voltage values -1 and 1

- a sine and cosine wave which are modulated
by the transmitted information;

The result of this block is the modulated signal.
The arrows in Fig.8 indicate the blocks which can be
implemented in different ways.
The Odd and Even subsystem can be made with the
help of two S-functions (odevI and odevQ) like in
Fig.9. The algorithm and the code for the two
functions is the same with one exception - the output:
sys=I or sys=Q.

2
Out2

1
Out1

odevQ

S-Function1

odevI

S-Function
1

In1

Fig.9. Odd and Even subsystem - alternative no. 1

If the S-function solution is not desired, then another
alternative can be implemented successfully. This
alternative implies the use of a Deinterlacer block and
of additional blocks which adjust the format of the
input for this block (Fig.10). The output of the
spreading block is a 32 bit sequence and the input of
the Deinterlacer is limited to a certain format. By
introducing the Two bits at a time block, which is
described in the previous section of the article, the
Deinterlacer receives the correct 2 bit input.

In1 Out1

Two bits at a time

Deinterlacer
O

E

Deinterlacer
Fig.10. Odd and Even subsystem - alternative no. 2

However, this alternative was not as easily made. It
was the result of a long analysis and consecutive
implementations. The initial ideas for this subsystem,
which did not function, were the following:

- a subsystem which contains an If Case block
and which is commanded by a Pulse
Generator, like in Fig.11. The subsystem’s
input is a double input, one for the 32 bits
and one for the generator. The output is
double as well, one for each string of 16 bits.
The result of this block should be the
splitting of the initial sequence into 2
sequences of odd and even bits, but
unfortunatelly the simulation does not
function as expected. Both outputs are the
same with the input in the Odd and Even
subsytem. So, this version can not be used.

2
Out2

1
Out1

Period: 5
Duty cy cle: 50%

else { }
In Out

Output held

u1

if (u1 > 0)

else

If

if { }
In Out

Output Reset

1
In1

Fig.11. Odd and Even subsystem - alternative no. 3

- a subsytem which consists of 2 Enabled

Subsystems, a Pulse Generator and a Not
block, like in Fig.12. The input data
sequence of 32 bits is sent to both Enabled
Subsystems, but one is enabled when the
generator sends a 1, while the other is
enabled when it sends a zero. The output
should be a string of odd bits and one of even
bits, but this subsytem does not function as
expected either. One of the Enabled
Subsytems outputs the exact input of this
Odd and Even subystem and the other
Enabled Subsytem outputs a continuous
string of 0 bits.

2
Out2

1
Out1

Period: 2
Duty cy cle: 50%

NOT

Logical
Operator

In1 Out1

Enabled
Subsystem2

In1 Out1

Enabled
Subsystem1

1
In1

Fig.12. Odd and Even subsystem - alternative no. 4

The mapping subsystem can also be implemented in
two ways: by using a Unipolar to Bipolar block or by
using a Switch with two positions, for -1 and 1(Fig.13

64

BUPT

and Fig.14). These blocks have to be placed on each
branch (meaning the same operations have to be
applied for the in-phase and for the quadrature-phase
component).

1
Out2

unipolar_ip bipolar out

unipol_to_bipol

1
In2

Fig.13. Mapping subsystem - alternative no. 1

1
Out1

Switch
-1

Constant1

1

Constant
1

In1

Fig.14. Mapping subsystem - alternative no. 2

With these alternatives for different parts of the
transmitter, the user can implement an entire model.
As the toolset is not completed, the RF part has to be
added to obtain a real model of the transmitter [7].

V. CONCLUSION

The overall goal of this paper is to contribute to the
creation of a toolset to help dimension and improve
wireless communication applications. System
designers can adjust the already existent devices to
improve their functionality by simulating their models
in Simulink and using toolsets like the one being
developed right now.
For example, the reliability of systems which use the
IEEE 802.15.4 technology can be evaluated correctly
because of more realistic models. The blocks
implemented in this paper can be reused and their
parameters can be changed according to the data rate
and frequency of the transmitter for numerous cases
and simulations.
The alternative subsystems can be further improved to
a level which implies not only flexibility, but speed as
well. So, additional work will be done to offer these
subsystems the same speed as the blocks from the
Simulink Library.
While implementing the functions of the transmitter
did not create difficulties, adjusting the output from
certain blocks to become the proper input for other
blocks proved to be time consuming. The result
however was satisfactory, especially after creating the
entire chain (meaning the transmitter, the receiver and
the channel as well) and after calculating the Bit Error
Rate. The transmitter’s efficiency was only afterwards
analyzed with accuracy.

REFERENCES

[1]The MathWorks, Inc., “Communications Blockset. For Use with
Simulink”, Version 2,
[2] The Institute of Electrical and Electronics Engineers, Inc., “Part
15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area
Networks (WPANs)”, 2006, pg.48 and pg.28, pg.51
[3] S. Zouari, M. Loulou, A. Fakhfakh et N. Masmoudi, Etude
“Comparative des Architectures de Réception pour un Système

Radiomobile de Troisième Génération”, pg.4,
http://www.csgroup.tunet.tn/publications_equipe_c&s/zouari/setit_
2003/SETIT-R290RN.pdf
[3]The MathWorks, Inc., “Simulink. Simulation and Model-Based
Design. Writing S-Functions”, Version 6
[4]Chinmoy Gavini , “Quantifying Tradeoffs in the IEEE 802.15.4
protocol through simulation”, 2007
http://users.ece.utexas.edu/~bevans/courses/ee464/ChinmoyGavini
FinalReport2007.pdf
[5]Johanna S. Ruque, David I. Ruiz, Carlos E. Carrión “Simulation
and implementation of the BPSK modulation on a FPGA Xilinx
Spartan 3 xcs200-4ftp256, using Simulink and the System
Generator blockset for DSP/FPGA.”,
www.eece.unm.edu/xup/docs/collaboration/BPSK_Modulator.pdf
[6]John Allgeyer, Jamie Jenshak, „Quadrature Amplitude
Modulation using Simulink”, 2003
http://cegt201.bradley.edu/projects/proj2004/dispjjja/Microsoft%20
Word%20-%20Project%20Proposal2.pdf
 [7]Eloi Ramon, Jordi Carrabina “Using FPGAs for Software-
Defined Radio Systems: a PHY layer for an 802.15.4 transceiver”
http://cephis.uab.es/resources/pdf/papers/JCRA_2005_SDR.pdf

65

BUPT

