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Abstract – This paper presents several fast nearest 
neighbor search algorithms for vector quantization on 
unstructured codebooks of arbitrary size and vector 
dimension that uses linear projections and variance of a 
vector. Several new inequalities based on orthonormal 
Tchebichef moments and projections on the first vectors 
of the DCT and PCA transformations of an image block 
are introduced to reject those codewords that are 
impossible to be the nearest codevector and cannot be 
rejected by inequalities based on Hadamard Transform, 
sum and variance, thereby saving a great deal of 
computational time, while introducing no extra 
distortion compared to the conventional full search 
algorithm.  
Keywords: vector quantization, fast full nearest 
neighbor search, image vector quantization, linear 
projections 
 

I. INTRODUCTION 
 

Vector Quantization (VQ) [1], [2] is an efficient 
technique for data compression which has been 
successfully used in various applications involving 
VQ-based encoding and VQ-based recognition. The 
response time of encoding and recognition is a very 
important factor to be considered for real-time 
applications. The k -dimensional, N -level vector 
quantizer is defined as a mapping from a k -
dimensional Euclidean space into a certain finite set 

{ }1 2, ,..., NC C C C= . The subset C  is called a 
codebook and its elements are called codewords. The 
codeword searching problem in VQ is to assign one 
codeword to the input test vector thus the distortion 
between this codeword and the test vector is the 
smallest among all codewords. Given one codeword 

( )1 2, ,...,j j j jkC c c c=  and the test vector 

( )1 2, ,..., kx x x=x , the squared Euclidean distortion 
measure can be expressed as follows: 

 ( )2

1
( , ) k

j ji ii
D C c x

=
= −∑x . (1) 

From the above equation, each distortion calculation 
requires multiplications and 2 1k − additions. For an 
exhaustive full search algorithm, encoding each input 

vector requires N distortion computations and 
1N − comparisons. Therefore, it is necessary to 

perform kN multiplications, ( )2 1k N− additions and 
1N − comparisons to encode each input vector. The 

need for a larger codebook size and higher dimension 
for high performance in VQ encoding system results 
in increased computation load during the codeword 
search. 
Many researchers have looked for fast encoding 
algorithms to accelerate the VQ process. These works 
can be classified into two groups. The first group rely 
on the use of data structures that facilitate fast search 
of the codebook such as TSVQ or K-d tree [3] ,[4]. 
The second group addresses an exact solution of the 
nearest-neighbor encoding problem on unstructured 
codebooks. A very simple but effective method is the 
partial distortion search (PDS) method reported by 
Bei and Gray [5], which allows early termination of 
the distortion calculation between a test vector and a 
codeword by introducing a premature exit condition 
in the searching process. The equal-average nearest 
neighbor search (ENNS) algorithm uses the mean 
value of an input vector to reject impossible 
codewords [6]. The improved algorithm, i.e., the 
equal-average equal-variance nearest neighbor search 
(EENNS) algorithm, uses the variance as well as the 
mean value of an input vector to reject more 
codewords [7]. This algorithm reduces computational 
time further with 2N additional memory cells. The 
improved algorithm termed IEENNS uses the mean 
and the variance of an input vector like EENNS but 
develops a new inequality between these features and 
the distance [8],[9]. The DHSS3 [10] method uses an 
inequality based on projections on the firsts three axis 
of ordered Walsh-Hadamard transformation to reject 
impossible codewords. In [11] is presented a new 
algorithm based on projections on Tchebichef 
Moments (also named as Discreete Tchebichef 
Transform—DTT) vector basis (DTTS), which proves 
to have a lower search complexity than IEENNS. 
In this paper, we will examine the kernel and the 
complexity search for IEENNS, DHSS3, DTTS 
algorithms and two new ones based on projections on 
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three vector basis of DCT and Karhunen Loeve (KLT) 
transformations. 
 

II. THE ALGORITHM 
 
A. IEENNS and DHSS3 algorithms 
 
The IEENNS algorithm [8] uses two characteristics of 
a vector, sum and the variance simultaneously. Let 

1 2[ , ,..., ]kx x x=x  be a k -dimensional vector. The 
sum of vector components can be expressed as 

1

k
ii

S x
=

=∑x  and the variance as 

1
( / )k

ii
V x S k

=
= −∑x x . The basic inequalities for 

IEENNS method are as follows: if y  is a codeword 
and x  is an input vector, the following important 
inequalities are true: 

 
( )
( ) ( )

2

2 2

( , )

( , )

S S kD

S S k V V kD

− ≤

− + − ≤

x y

x y x y

x y

x y
 (2) 

Assuming that the current minimum distortion is 
minD , the main spirit of the IEENNS algorithm can be 

stated as follows: 
If 2

min( )
jCS S kD− ≥x  then min( , )jD C D≥x  and jC  

will not be the nearest neighbor to x ; ElseIf 
2

min( )
jCV V D− ≥x  then min( , )jD C D≥x  and jC  will 

be rejected; ElseIf 2 2
min( ) ( )

j jC CS S k V V kD− + − ≥x x  

then min( , )jD C D≥x  and jC  will be rejected; Else 
compute ( , )jD Cx  and if min( , )jD C D<x  update 

min ( , )jD D C= x . To perform the IEENNS algorithm, 
2N values should be computed off-line and stored. 
The DHSS3 algorithm [10] utilizes the compactness 
property of signal energy on transform domain and 
the geometrical relations between the input vector and 
every codevector to eliminate those codevectors that 
have no chance to be the closest codeword of the 
input vector. It achieves a full search equivalent 
performance. Let 1h , 2h  and 3h  be the first three 
orthonormal vectors of ordered Walsh-Hadamard 
transform. For example if 16k = , we have: 
 

1

2

3

[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] / 4;
[1,1,1,1,1,1,1,1, 1, 1, 1, 1, 1, 1, 1, 1] / 4;
[1,1, 1, 1,1,1, 1, 1,1,1, 1, 1,1,1, 1, 1] / 4;

=
= − − − − − − − −
= − − − − − − − −

h
h
h

 

 
Denote the axis in the direction of ( 1, 2,3)i i =h  as the 
i-th axis. Let ( )iH x  be the projection value of an 
input vector x  on the i-th axis. That is, ( )iH x  is the 
inner product of x  and ih , and can be calculated as 
follows: ( ) ,i iH =x x h . 
It can been shown that for an input vector x  and for a 
codeword jC  the following inequality is true: 

 
23

1
( , ) ( ) ( )j i i ji

D C H H C
=

≥ −∑x x  (3) 

To speed up the searching process, all codewords are 
sorted in ascending order of their projections on the 
first axis. The elimination process of the DHSS3 
algorithm consists of four steps. The firsts three steps 
are as follows: 
 If  min( ) ( ) ( 1, 2,3)i i jH H C D i− ≥ =x  then jC  
will be rejected. Last step is: If 

23
min1

( ) ( )i i ji
H H C D

=
− ≥∑ x  then jC  will be 

rejected; ElseIf min( , )jD C D<x  update 

min ( , )jD D C= x . To perform the DHSS3 algorithm, 
3N values should be computed off-line and stored. 
 
B. Tchebichef Polynomials and Orthonormal 

Moments 
 
For a given positive integer (usually the image size), 
and a value x  in the range [0, 1]M − , the scaled 
Tchebichef polynomials ( )nt x , 0.1,..., 1n M= − , are 
defined using the following recurrence: 

2

1 1 22
( 1)(2 1) ( ) ( ) ( 1) 1 ( )

( )

2,3,... 1

n n

n

nn t x t x n t x
M

t x
n

n M

− −
⎛ ⎞−− − − −⎜ ⎟
⎝ ⎠=

= −
 (4) 

where 0 ( ) 1t x =  and 1( ) (2 1 )t x x M M= + − . The 
above definition uses the following scaled factor [12] 
for the polynomial of degree n : 

 ( , ) nn M Mβ =  (5) 

The set { }nt  has a squared-norm given by: 

 

1 2
0

2 2 2 2 2

( , ) { ( )}

(1 1/ )(1 2 / )...(1 / )
2 1

M
nx

n M t x

M M M n M
n

ρ −

=
= =

− − −=
+

∑
 (6) 

These polynomials are orthogonal, and by modifying 
the scale factor ( , )n Mβ  in (5) as in [13]: 

 
2 2 2 2 2( 1)( 2 )...( )( , )

2 1
M M M M nn M

n
β − − −=

+
(7) 

we obtain a set of orthonormal polynomials that can 
be used to define a set of orthonormal moments in (8). 

 
1 1

, 0 0
ˆ ˆ( ) ( ) ( ) ( , )

, 0,1,... 1

M M
m n m nx y

T f t x t x f x y

m n M

− −

= =
=

= −
∑ ∑  (8) 

( , )f x y  denotes the intensity value of the pixel 
position ( , )x y  in the image. It can be easily seen that 
the recurrence relations given in (4) now change to 
the following: 

 1 1 2 1 3 2
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

2,3,... 1; 0,1,2,... 1
n n n nt x xt x t x t x

n M x M
α α α− − −= + +

= − = −
 (9) 
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where:  
2

1 2 2

2 4 1n
n M n

α −=
−

, 
2

2 2 2

(1 ) 4 1M n
n M n

α − −=
−

, 

 
2 2

3 2 2

( 1) 2 1 ( 1)
2 3

n n M n
n n M n

α − + − −=
− −

. (10) 

The starting values for the above recursion can be 
obtained from the following equations: 

 
0

1 2

1ˆ ( )

3ˆ ( ) (2 1 ) .
( 1)

t x
M

t x x M
M M

=

= + −
−

 (11) 

The squared norm is now 

{ }21

0
ˆ( , ) ( ) 1.M
ni

n M t iρ −

=
= =∑  

Since the new moment set is orthonormal we can 
introduce the following theorem which is an 
inequality between Euclidian distance of two images 
and sum of squared differences of orthonormal 
Tchebichef moments of those images.  
Theorem: Let f  and g  be two images with 
M M× resolution. Then: 

 
21 1

0 0
( ) ( ) ( , )p M q M

mn mnm n
T f T g D f g≤ − ≤ −

= =
− ≤∑ ∑ (12) 

where ( , )D f g  is the squared Euclidian distance 
between images f  and g , and can be defined similar 
as in (1). 
Proof: Since , 0,1,2... 1m n M= − , the set { }mnT  is 
composed by 2M  orthonormal moments. So, ( )mnT f  
can be assimilated with a linear orthonormal 
transformation of an image f  which has 2M  vector 
basis. A linear orthonormal transformation is a 
bijective map between two metric spaces which 
preserves the distances. This property is called 
isometry, and in this case we can write: 

 [ ]
21 1

0 0
( ) ( ) ( , )M M

mn mnm n
T f T g D f g− −

= =
− =∑ ∑ . (13) 

The left side of (13) is the squared Euclidian distance 
computed in the output space of the transformation 
given by Tchebichef moments. Having this equality is 
obviously that the inequality in (12) always holds. 
For example in Fig. 1 are presented the firsts four 
vector basis of this linear transform for 4M = . 

00 01 10 11( ), ( ), ( ), ( )T f T f T f T f  can be computed using 
the dot product between those vector basis and input 
image f . 
 
C. DTTS Algorithm  
 
For the proposed algorithm we use only firsts three 
moments [3], namely, pqT , where 
( , ) {(0,0), (0,1), (1,0)}p q ∈ . The inequality in (12) 
becomes now: 
 

1 1 1 1 3 1 1 3
1 1 1 1 3 1 1 31 1
1 1 1 1 3 1 1 34 80
1 1 1 1 3 1 1 3

3 3 3 3 9 3 3 9
1 1 1 1 3 1 1 31 1

1 1 1 1 3 1 1 32080
3 3 3 3 9 3 3 9

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
− − − − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

Figure 1.  From left to right and from top to bottom: firsts four 
vector basis used to compute orthonormal Tchebichef moments 

00 01 10, ,T T T  and 11T .  

 
2 2

00 00 01 01
2

10 10

( ( ) ( )) ( ( ) ( ))

( ( ) ( )) ( , )

T f T g T f T g

T f T g D f g

− + − +

+ − ≤
 (14) 

The proposed searching sequence for a given input 
image { }1 2, , , Lf f f f∈ ≡F …  can be described as 
follows: 

* 
Step 0: For every image codeword jC , 1,j N= , 

00 01 10( ), ( ), ( )j j jT C T C T C  are computed. The 

codewords are sorted in the ascending order of 

00 ( )jT C . This step is operated off-line. In 

the following steps the memory for 

00 01 10( ), ( ), ( )j j jT C T C T C  1, 2,...,j N=  are ready; 

Go to step 1; 

For every input image vector f ∈ F  find the 

nearest neighbor codevector as follows: 

Step 1: 00 01 10( ), ( ), ( )T f T f T f  are computed; go 

to step 2 
Step 2: Obtain the tentative matching 

codeword pC  whose index is calculated by 

00 00arg min ( ) ( )j jp T f T C= − . Calculate the 

squared Euclidian distortion min ( , )pD D f C=  

and set 1i = ; go to step 3; 

Step 3: If p i N+ >  or codeword p iC +  to NC  

have been rejected go to step 4; Else go to 
step 3.1; 

Step 3.1: If 00 00 min( ) ( )p iT f T C D+− ≥  reject 

the codewords p iC +  to NC  and go to step 4; 

Else go to step 3.2; 

Step 3.2: If 01 01 min( ) ( )p iT f T C D+− ≥  reject 

the codeword p iC +  and go to step 4; Else go 

to step 3.3; 

Step 3.3: If 10 01 min( ) ( )p iT f T C D+− ≥  reject 

the codeword p iC +  and go to step 4; Else go 

to step 3.4; 
Step 3.4: If  

2 2

00 00 01 01

2

10 10 min

( ) ( ) ( ) ( )

( ) ( )

p i p i

p i

T f T C T f T C

T f T C D

+ +

+

− + − +

+ − ≥
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reject the codeword p iC +  and go to step 4; 

Else use PDS to find minimum distortion, 

update min minmin( , ( , ))p iD D D f C +=  and go to 

step 4;  

Step 4: If 1p i− <  or codeword p iC −  to 1C  

have been rejected go to step 5; Else go to 
step 4.1 

Step 4.1: If 00 00 min( ) ( )p iT f T C D−− ≥  reject 

the codewords p iC −  to 1C  and go to step 5; 

Else go to step 4.2; 

Step 4.2: If 01 01 min( ) ( )p iT f T C D−− ≥  reject 

the codeword p iC −  and go to step 5; Else go 

to step 4.3; 

Step 4.3: If   10 01 min( ) ( )p iT f T C D−− ≥  

reject the codeword p iC −  and go to step 5; 

Else go to step 4.4;  
Step 4.4: If 

2 2

00 00 01 01

2

10 10 min

( ) ( ) ( ) ( )

( ) ( )

p i p i

p i

T f T C T f T C

T f T C D

− −

−

− + − +

+ − ≥
 

reject the codeword p iC −  and go to step 5; 

Else use PDS to find minimum distortion, 

update min minmin( , ( , ))p iD D D f C −=  and go to 

step 5;  

Step 5: Set 1i i= + ; If p i N+ >  and 1p i− <  

or all codewords have been deleted, terminate 
the algorithm and return the closest codeword 

for input image vector f ; Else go to step 3.  

* 
 

The complexity reduction is caused to reduction in 
number of addition and multiplications needed to 
compute the left side of (11) instead to compute 

( , )iD f C  in (1). By choosing this searching sequence, 
experimental results shows that this proposed 
algorithm is faster than IEENNS and DHSS3 
algorithms, in terms of computational complexity. 
 
D. DCT and PCA based algorithms 
 
Similar as in C section, we can develop two new 
algorithms which uses instead of several projections 
on DTT, three projections on firsts DCT or PCA 
vector basis. We have to note that in PCA based 
approach we must previously compute the first three 
eigen vectors corresponding to the greatest 
eigenvalues of the covariance matrix of the codebook. 
Being the fact that the DCT and PCA are orthonormal 
transformations, the Theorem is also true for this two 
approaches. The new methods are the same as DTT-S 
except that we replace in (12), (13) and (14) the  
Tchebichef  moments ( )mnT f  with  the projections  
on the first three basis vectors of the DCT and PCA 
transformation Also note that in some practical 
applications additional computation of the eigen 
vectors for PCA based method, and for some 
codebooks, can be sometimes prohibitive. 

Table 1. Comparison of average Number of 
Distortion Calculations per Image  (4×4) Block 

Encoded image Codebook 
size Method Peppers Baboon 

Full Search 128 128
PDS 55.65 89.32
DHSS3 3.97 16.84
IEENNS 3.59 14.96
DTTS 2.34 11.85 
DCT based 2.32 12.01 

 
 
 
128

PCA based 2.28 11.43 
Full Search 512 512
PDS 174.34 302.23
DHSS3 13.09 64.16
IEENNS 12.30 53.97
DTTS 7.01 46.17 
DCT based 6.96 46.23 

 
 
 
512

PCA based 6.81 43.82 
Full Search 1024 1024
PDS 486.23 743.21
DHSS3 24.65 114.60
IEENNS 22.95 89.66
DTTS 12.92 82.01 
DCT based 12.85 82.08 

 
1024

PCA based 12.08 79.30 
 
 

III. EXPERIMENTAL RESULTS 
 
The images used in this experiment are 512×512 
monochrome with 256 gray levels. An image is 
partitioned in 4×4 image blocks and the codebook is 
design using the Linde-Buzo-Gray (LBG) algorithm 
with Lena image as a training set. The Peppers and 
Baboon images are used as the test images. The 
proposed algorithms are compared to the Full Search, 
PDS [5] , IEENNS [8,9] and DHSS3 [10] algorithms. 
Table I and II show the average number of distortion 
computations and the number of operations 
(multiplications, additions and comparisons) per pixel 
for various codebook sizes. For the DCT based 
algorithm the projections are choosen as the first three 
elements from the matrix of the DCT-2D coefficients, 
namely 00, 01 and 10, and for PCA based method are 
choosen the eigenvectors corresponding with the first 
three eigenvalues in decreasing order. 
From Table I, we can see that our methods have the 
best performance of rejecting unlikely codewords. 
Compared with IEENNS method, proposed 
algorithms can reduce the number of distortion 
calculations by 10% to 44% and the average reduction  
of  operations per  pixel needed  to encode  an  image 
block is 39% for Peppers and 11% for Baboon. 
Compared with DHSS3, our approaches also reduce 
the number of distortion calculations by 13% to 50% 
and the average reduction of operations is 43% for 
Peppers and 15% for Baboon. Compared with DHSS3 
and IEENNS, DTT, DCT-2D and PCA based methods  
can extract much better the information about spatial 
orientation of image blocks in k-dimensional space. 
So, they can better discriminate between images with 
different features, which will determine an increased 
number of rejected codewords. 
Also note that: (i) The complexity search for Peppers 
is approximatively 20%, 17% and 16% for 128,  512  
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Table 2. Comparison of average Number of Operations per Pixel 

Encoded image 
Peppers Baboon Codebook 

size 
Search 
Method Mult. Add. Comp. Mult. Add. Comp. 

Full Search 128 248 8 128 248 8 
PDS 19.44 52.16 4.67 40.66 96.48 8.52 
DHSS3 5.01 9.99 2.1975 20.9462 40.3312 7.3831 
IEENNS 5.40 11.34 1.73 19.35 36.64 5.72 
DTTS 2.98 6.54 1.94 15.08 30.05 6.74 
DCT based 2.972 6.52 1.938 15.16 31.03 6.88 

 
 
 

128 

PCA based 2.91 6.48 1.83 14.84 29.59 6.55 
Full Search 512 992 32 512 992 32 
PDS 57.60 147.23 16.28 143.38 339.71 32.98 
DHSS3 16.64 33.42 7.69 79.80 153.47 27.94 
IEENNS 16.05 32.01 6.07 67.12 125.19 21.13 
DTTS 9.11 20.58 6.73 58.75 116.37 25.62 
DCT based 9.08 20.32 6.69 58.92 116.97 25.60 

 
 
 

512 

PCA based 8.97 19.92 6.67 57.01 110.99 24.10 
Full Search 1024 1984 64 1024 1984 64 
PDS 104.45 262.21 29.77 263.87 574.32 59.52 
DHSS3 31.49 63.06 14.55 142.69 274.31 49.99 
IEENNS 29.10 57.28 11.36 111.06 207.81 36.81 
DTTS 16.91 38.25 12.68 98.56 197.81 39.87 
DCT based 16.38 38.17 12.69 99.87 198.23 39.90 

 
 
 

1024 

PCA based 16.32 37.89 11.93 94.76 189.8 37.06 
 
and 1024 codebook size from the complexity search 
of the Baboon; (ii) PCA based approach seems to be 
slightly better than DTT and DCT based approaches 
especially for large codebooks. This is an expected 
result because PCA is the optimal transform regarding 
the compaction of the energy. But if we consider the 
fact that we have to use supplementary computation to 
obtain the eigen vectors, the performance of the 
overall PCA based method may have a drawback; (iii) 
The complexity difference between DTT and DCT 
based algorithms is reduced. An explanation is that 
the kernels of the DCT and DTT transformation are 
both derived from orthogonal Tchebichef 
polynomials. From table I and II we observe that for 
Peppers image, DCT based method outperforms the 
DTTS and for Baboon is the opposite case; (iv) The 
average time needed for encoding a specific image 
also depends on two factors: how complex is the 
image, which refers to how larger is the entropy of 
that image (it is clear that Baboon has larger entropy 
than Peppers) and the machine which implements the 
encoding algorithm. There are several machines in 
which a multiplication requires much more time than 
an addition or a comparison, and are others where the 
difference is not so significant. Also, the floating or 
integer point implementation can cause reordering of 
the performance of the presented methods; (v) At last 
but not at least, the accessing time for the 
precomputed values can be different on several types 
of implementations. 
In conclusion, the trade-off between those factors may 
produce a system which spent significant less time 
than in the exhaustive search. 
 

IV. CONCLUSIONS AND FUTURE WORK 
 
In this paper, some fast-encoding algorithms are 
presented and new ones are introduced. We have 

presented a new inequality between Euclidian 
distance of two image blocks and sum of squared 
differences of orthonormal Tchebichef Moments (also 
first three projections on the DCT and KLT 
transforms). This algorithm uses projections of an 
image block to eliminate many of the unlikely 
codewords, which cannot be rejected by other 
available algorithms. Compared with other available 
approaches, our algorithm has the best performance in 
terms of number of distortion calculations and the 
number of operations per pixel needed to encode a 
certain image.  
Future work will focus on using image blocks with 
8 8×  resolution and will include higher order 
Tchebichef Moments in (14), which will reject more 
codewords that cannot be rejected by presented 
methods. 
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