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Abstract – A new notion of joint is defined. The article is 
concerned with the relationship between the Euler-
Bernoulli equation and equation of equilibrium at the 
point of elastic line tip. The Euler-Bernoulli equations 
should be expanded according to the requirements of the 
motion complexity of elastic robotic systems. This yields 
the difference in the structure of Euler-Bernoulli 
equations for each mode. Mathematical model of the 
actuators also comprises coupling between elasticity 
forces. General form of the elastic line is a direct 
outcome of the system motion dynamics, and must be 
described by six equations for position and orientation 
of every point on that elastic line.  
 
Keywords: robot, modeling, elastic deformation, gear, 
link, coupling, dynamics, kinematics, trajectory 
planning. 
 

I. INTRODUCTION 
 

The Modeling and control of elastic robotic systems 
has been a challenge to researchers in the last three 
decades. In [1], the control of robots with elastic 
joints in contact with dynamic environment is 
considered. In [2], the feedback control was formed 
for the robot with flexible links (two-beam, two-joint 
systems) with distributed flexibility, robots with 
flexible links. In paper [6] a nonlinear control strategy 
for tip position trajectory tracking of a class of 
structurally flexible multi-link manipulators is 
developed. Authors of paper [8] derived dynamic 
equations of the joint angle, the vibration of the 
flexible arm, and the contact force. The paper [9] 
presents an approach to end point control of elastic 
manipulators based on the nonlinear predictive control 
theory. [11] presents method for the generation of 
efficient kinematics and dynamic models of flexible 
robots. In [13] author discusses the force control 
problem for flexible joint manipulators.  
In paper [14] the authors extend the integral manifold 
approach for the control of flexible joint robot 
manipulators from the known parameter case to the 
adaptive case. The author of paper [15] designed a 
control law for local regulation of contact force and 
position vectors to desired constant vectors. In paper 
[16] different from conventional approaches, authors 
focus on the design of rigid part motion control and 
the selection of bandwidth of rigid subsystem. In [17] 

the equations are derived using Hamilton’s principle, 
and are nonlinear integro-differential equations. 
Mathematical model of a mechanism with one degree 
of freedom (DOF), with one elastic gear was defined 
by Spong [12] still in 1987. Based on the same 
principle, elasticity of gears is introduced into the 
mathematical model in this paper, as in papers [27], 
[28], [29] also. However, when the introduction of 
link flexibility into the mathematical model is 
concerned, it is necessary to point out to some 
essential problems in this domain.  
The pertinent literature is not only lacking the 
relationship between the equation of equilibrium at 
the point of elastic line tip, the “Lumped-mass 
approach” (LMA) and the Euler-Bernoulli equation, 
the “Euler-Bernoulli approach” (EBA), but it is 
accustomed to treat these two approaches in totally 
different ways. Namely, the EBA (used in [18]…) 
gives the possibility to analyze flexible line form of 
each mode in the course of task realization. The LMA 
(used in [4]…) gives the possibility to analyze the 
motion of the any point of each mode.  
We consider that EBA and LMA, are two comparable 
methods addressing the same problem but from 
different aspects [27], [28]. Mathematical model 
obtained by any of the methods should satisfy 
elementary structure of the models of elastic 
mechanisms known in the literature [26].  
In the previous literature [18]-[22], [25], the general 
solution of the motion of an elastic robotic system has 
been obtained by considering flexible deformations as 
transversal oscillations that can be determined by the 
method of particular integrals of D. Bernoulli. 
We consider that any elastic deformation can be 
presented by superimposing D. Bernoulli particular 
solutions of the oscillatory character and stationary 
solution of the forced character. See papers [27], [28].
 First detailed presentation of the procedure for 
creating reference trajectory was given in [5]. In 
our work we synthesized reference trajectory for robot 
model including elastic gears and links and the 
presence of environment force. The reference 
trajectory is calculated from the overall dynamic 
model, when the robot tip is tracking a desired 
trajectory in reference regime in the absence of 
disturbances.  
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Elastic deformation (of flexible links and elastic 
gears) is a quantity which is at least partly 
encompassed by the reference trajectory. It is assumed 
that all elasticity characteristics in the system (both of 
stiffness and damping) are "known", at least partly 
and at that level can be included into the process of 
defining the reference motion. The reference 
trajectory thus defined allows the possibility of 
applying very simple control laws via PD local 
feedback loops, which ensures reliable tracking of the 
robotic tip considered in the space of Cartesian 
coordinates to the level of known elasticity 
parameters, too.  As far as the working regime of the 
robot is concerned we think that all forces should 
participate in generating elastic deformations and that 
it is a crude approximation to assume that elastic 
effects are generated only by gravitational force, or 
only by the environment force as in [7], or that 
Coriolis and centrifugal forces can be neglected 
altogether that elastic deviations are so small, so that 
inertia matrix is not dependent on them, as assumed in 
[10].  
In our paper we do not use “assumed modes 
technique” proposed by Meirovitch in [25]. In our 
paper we form Euler Bernoulli equation but we do not 
use “assumed modes technique” in contrast to our 
contemporaries. Elastic deformation is a consequence 
of the overall dynamics motion of the robotic system, 
in our opinion. Let us emphasize once again that in 
this paper we propose a mathematical model solution 
that includes in its root the possibility for analyzing 
simultaneously both present phenomena – the 
elasticity of gears and the flexibility of links, and the 
idea originated from [3], but not on the same 
principles. We show how the continuously present 
environment dynamics force affects the behavior of 
an elastic robot system.  
Our future work should be directed on 
implementation elasticity of gears and the flexibility 
of links on any model of rigid robot and also on the 
model of reconfigurable rigid robot as given in [30], 
[31] or any other type of mechanism 
Section II defines the kinematics model (types of 
joints). Section III defines the dynamics model of 
elastic robotic systems. In Subsections A we define a 
general form of the equation of flexible line of a 
complex robotic system of arbitrary configuration, 
using Euler-Bernoulli equations. Subsection B 
demonstrates the relationship between the equation of 
elastic line motion (Euler-Bernoulli equation) and 
equation of motion at any point of the elastic line. 
Section IV analyzes the movement dynamics of a 
multiple DOF elastic robotic pair with elastic gear and 
flexible link in the presence of the second mode and 
environment force. Section V gives some concluding 
remarks.  
 

II. KINEMATICS 
 

Kinematics and dynamics of a robotic system are 
analyzed. Since elasticity elements are introduced, it 

is necessary to explain in detail, first of all, the 
kinematics of these systems in order to have dynamic 
modeling as efficient as possible. 

 
Elementary type of joint is characterized by an active 
motor and an arbitrary elastic element (or more of 
them in a series) behind the motor, where elastic 
deformation takes place in the direction of motor 
motion.  
 

The overall coordinate iq contains the following 

components: iθ - motor rotation angle and eiℵ - 
elastic deformation of the elastic element behind of 
the motor (or eiℵ∑ , the sum of elastic 
deformations of the elastic elements in the series 
coming after the motor).  
All these angles vary in the course of robotic task 
realization.  
                           eiiiq ℵ∑+= θ .                         (1) 
This will be explained in more detail on the examples.  
-Rotation joints (see Fig. 1): 
The overall coordinate iq  contains the following 

components: iθ  , eiξ - the joint deflection angle and 

eiϑ - the link bending angle:  
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Fig.1.  Spatial sketch of a rotation joint and its geometry for 
an elastic gear and flexible link.
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Fig. 2.  Spatial sketch of a translation joint for an elastic 
element. 
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                           eieiiiq ϑξθ ++= .               (2) 
-Translation joints (see Fig. 2):  
The angle iq  contains the following components: iθ  

and iD - the port deflection and also magnitude ic  
that is represented length of elastic port in unstrained 
state. 
                  ieiii cq ++= Dθ ,   constci = .            (3) 
 
It is clear that these are only special cases, when 
elastic deformation takes place in the direction of 
motor shaft deflection. Because of that it is important 
to define also a "kinematics" connection for the case 
when elastic deformation of the gear or link is not 
taking place in the direction of motor shaft deflection 
or, if there is no a drive in front of the elastic 
deformation (that is in front of the elastic element). 
By defining the type of every joint in the branched 
chain of the robotic system we define the 
configuration of that system, the transformation 
matrix and Jacobi matrix which is a prerequisite for 
defining its mathematical model and analyzing its 
dynamic behavior. 
  

III. DINAMICS 
 

A) Equation of the Elastic Line 
  

The same interpretations of source shape of Euler-
Bernoulli equation are adopted as in paper [28]. 
The load moment is composed of all the forces acting 
on the each mode of the link, and these are inertial 
forces (own and coupled inertia forces of the other 
modes), centrifugal, gravitational, Coriolis forces 
(own and coupled), forces due to relative motion of 
one mode with respect to the other, coupled elasticity 
forces of the other modes, as well as the force of the 
environment dynamics, which is via Jacobian matrix 
transferred to the motion of the first mode. This 
means that all these forces participate in generating of 
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is in forming elastic deformation as well as of the 
elasticity line of the each mode. All marcs are used 
from paper [28]. 
 Let us consider a robotic system with m  links, 
whereby the first link contains 1n  modes, the second 

link 2n  modes, etc, the m -th link contains mn  modes. 
On considering Fig. 3 we can see possible positions of 
the tip of link elastic line with 1n  modes. Model of the 
elastic line of this complex elastic robotic system is 
given in the matrix form by the following Euler-
Bernoulli equation: 
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kxkRH ∈ˆ - matrix characterizing the inertia, 
1ˆ kxRh∈ - vector of the centrifugal, gravitational and 

Coriolis forces, 6kxT
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kxkRz ∈  - characterizing matrix the mutual influence 
of the forces of elastic modes of all the links. 
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Equation (4) represents the equation of motion of the 
elastic line of the overall robotic system. 
Solution of the system (4) and dynamic motor motion, 
i.e. the form of its elastic line, can be obtained by 
superimposing the solutions for all the links involved 
in the presence of the dynamics (angle) of rotation of 
each motor, as well as by taking into account the 
robotic configuration, i.e. the angle α between the 
axes 1−iz  and iz . 

 
Fig. 3.  Possible positions of the tip of link elastic line with 

1n modes.    
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Thus we defined the position and orientation of each 
point of the elastic line in the space of Cartesian 
coordinates. It should be pointed out that the form of 
elastic line comes out directly from the dynamics of 
the system motion.  
 

B) Relationship between the Equation of elastic 
line motion (Euler-Bernoulli equation) and 
equation of motion at any point of the elastic 
line   

 
The equation of motion of all the forces at the point of 
each mode tip of any link can be defined from (4) by 
setting the boundary conditions. Vector equation of all 
the forces involved for each mode tip of any link is:  

         02

2

=+⋅Θ⋅+⋅++ εεzFjh
dt

yd
H uk

T

e
.     (6) 

This equation should be supplemented by the vector 
equation of the mathematical model of motor written 
in following vector form:  

    
)( mmuM

E

zSBIiC

CiRu

εεθθ

θ

+⋅⋅−⋅+⋅=⋅

⋅+⋅=
&&&

&

.  (7) 

Let us define it by setting for each motor the equation 
of motion of all the moments acting about the rotation 
axis of the given motor. It has the form of the 
mathematical model of the motor of a rigid robotic 
system, but the difference being in that the moment of 
the i -th motor is not opposed by the mechanism 
moment (as with rigid robotic systems). The motor 
moment is opposed by the bending moment of the 
first elastic mode that comes after the motor, and also 
in part, by the bending moments of the other elastic 
modes that are connected in series after the given 
motor. All the modes after the motor, due to their 
position, influence the dynamics of motor motion. In 
(7) we have m equations of motors.  

)( mmz εε +⋅ is the matrix characterizing the effect of 
elasticity moment of each mode on the motor motion 
dynamic.  
Matrix mz  has similar form as mentioned z matrix. 

[ ]T
mm 1,1,31,21,1

..... εεεεε = . The overall order of 

the system (7-8) is )( mk + . 
The robot tip motion is defined by the sum of the 
stationary and oscillatory motion of each mode tip 
plus the dynamics of motion of the motor powering 
each link, as well by the included robot configuration. 
We can calculate the position and of each mode tip, of 
each link, and finally, of the robot tip motion.  

Generally, we can derive the following conclusion: 
To define the form of elastic line of the considered 
robotic system it is necessary to expand the previously 
known solutions, namely: 
Supplement it by adding stationary solution to the 
particular solution of D. Bernoulli, which is of 
oscillatory character. This means that the given 
solution depends directly on the overall system 
dynamics. General form of the elastic line is a direct 
outcome of the dynamics of system motion and 
cannot be represented by one equation but three 
equations are needed to define position zxy ,, and 
three equations ϕξψ ,,  to define orientation of each 
point on the elastic line. The equation of elastic line of 
the robotic system should also encompass the angles 
of motor shaft rotation θ as in [20], the robot 
configuration as well, i.e. the angles between the axes 

1−iz  and iz . 
There are two aspects in defining the reference 
trajectory of the motor angle (see [27], [28] and [29]), 
viz.:  
1) Elastic deformation is considered as a quantity 
which is not encompassed by the reference trajectory.  
2) Elastic deformation is a quantity which is at least 
partly encompassed by the reference trajectory.  
 

IV. EXAMPLE OF SIMULATION 
 
Elastic deformation is a quantity which is at least 
partly encompassed by the reference trajectory as 
explained in [28] (2.1 under 2). 

The characteristics of stiffness and damping of the 
gear in the real and reference regimes are not the same 
and neither are the stiffness and damping 
characteristics of the link.  

oCC
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Fig. 4.  Tip coordinates and deviation of position from the 
reference. 
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All other characteristics of the system and 
environment are the same as in paper [28]. As can be 
seen from Fig. 4 and Fig. 5 in its motion the robot tip 
tracks well the position reference trajectory and 
environment force, respectively in the space of 
Cartesian coordinates. 
 

 
The elastic deformations that are taking place in the 
vertical plane angle of bending of the lower part of the 
link (the first mode) mϑ  and the angle of bending of 

the upper part of the link (the second mode) eϑ , as 
well as elastic deformations taking place in the 
horizontal plane: the angle of bending of the lower 
part of the link (the first mode) qϑ , the angle of 
bending of the upper part of the link (the second 
mode) δϑ  and the deflection angle of gear ξ  are 
given in Fig. 6. 
 

 
Let us show the special significance of results from 
Fig. 6a). These Fig. exhibit the wealth of different 
amplitudes and circular frequencies of the present 
modes of elastic elements. We have oscillations 
within oscillations.  

This confirms that we have modeled all elastic 
elements as well as high harmonics (in this case two 
harmonics of considered link). 
 

V. CONCLUSION 
 
A joint is defined in a new way, in dependence of the 
motor state (active or locked) and type of elastic or 
rigid element (gear and/or link) that follows behind 
the motor. With so defined types of joints that may 
appear in a robotic construction it is possible to use 
the known equations to calculate the matrices of 
transformation and Jacobi matrix.  
Based on the EBA, we defined the model of the 
elastic line of complex elastic robotic system with m  
segments, and each segment has in modes and also 
the mathematical model of motors which move each 
link.  
We demonstrated that the equation of motion of all 
the forces involved at any point follows directly from 
the equation of elastic line. If we define boundary 
conditions for the mode tip as the most interesting 
point on the elastic line, we obtain the equation of 
motion at that point, what is classical form of the 
mathematical model of the elastic robotic system 
considered, which essentially LMA is. Thus we 
demonstrated the connection of the LMA and EBA. 
LMA is just a special case of EBA. In addition to the 
comparative analysis of the EBA and LMA, the paper 
also analyzes a number of other phenomena that make 
constitutive parts of the motion dynamics of these 
systems.  
An analysis was made of the choice of reference 
trajectory, which depends on the level of knowing 
elasticity characteristics. The estimated elasticity 
characteristics may be included into the reference 
trajectory, and thus into the control law.  
a) Euler-Bernoulli equation has been expanded from 

several aspects:  
1) Euler-Bernoulli equation (based on the known 

laws of dynamics) should be supplemented 
with all the forces that are participating in the 
formation of the bending moment of the 
considered mode, what causes the difference in 
the structure of these equations for each mode.  

2) Structure of the stiffness matrix must also have 
the elements outside the diagonal, because of 
the existence of strong coupling between the 
elasticity forces involved.  

3) Damping is an omnipresent elasticity 
characteristic of real systems, so that it is 
naturally included in the Euler-Bernoulli 
equation. 

4) General form of the transversal elastic 
deformation is defined by superimposing 
particular solutions of oscillatory character 
(solution of Daniel Bernoulli) and stationary 
solution of the forced character (which is a 
consequence of the forces involved). 
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 Fig. 5.  The environment forces. 
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5) General form of the elastic line is a direct 
outcome of the dynamics of system motion and 
cannot be represented by one scalar equation 
but three equations are needed to define the 
position and three equations to define the 
orientation of each point on the elastic line. 

b) Structure of the mathematical models of actuators: 
With elastic robotic systems, the actuator torque is 
opposed by the bending moment of the first elastic 
mode, which comes after the motor, and partly by 
the bending moments of other modes, which are 
connected in series after the motor considered. All 
modes coming after the motor, because of their 
position, exert influence on the dynamics of motor 
motion. The mathematical model in our paper is 
connected to the rest of the mechanism via the 
equivalent elasticity moment.  

New structures of the matrix z  and also mz  appear as 
a consequence of the coupling between the modes of 
particular links.  
Elastic deformation is a consequence of the overall 
dynamics of the robotic system, what is essentially 
different from the method that was used until today, 
which purports usage of “assumed modes technique”.  
All this has been presented for a relatively simple 
robotic system that offered the possibility of 
analyzing the phenomena involved. Through the 
analysis and modeling of an elastic mechanism we 
made an attempt to give a contribution to the 
development of this area. 
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