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Abstract – In this paper, the speed control of an 
induction motor using backstepping design with fuzzy 
rotor resistance estimation is proposed. First, the direct 
field oriented control IM is derived. Then, a 
backstepping for direct field oriented control is 
proposed to compensate the uncertainties which occur in 
the control. The effectiveness of the proposed control 
scheme is verified by numerical simulation. The 
numerical validation results of the proposed scheme 
have presented good performances compared to the 
conventional direct-field oriented control.  
 

I. INTRODUCTION 
 
Nowadays, like a consequence of the important 
progress in the power electronics and of micro-
computing, the control of the AC electric machines 
known a considerable development and a possibility 
of the real time implantation applications. The 
Induction machine (IM) known by its robustness, 
cost, reliability and effectiveness is the subject of 
several researches [1].  However, it is traditionally for 
a long time, used in industrial applications that do not 
require high performances, this because of its high 
non-linearity and its high coupled structure.  On the 
other hand, the direct current (D.C) machine was 
largely used in the field of the variable speed 
applications, where torque and flux are naturally 
decoupled and can be controlled independently by the 
torque producing current and the flux producing 
current.  Since Blashke and Hasse have developed the 
new technique known as vector control [1, 2, 3], the 
use of the induction machine becomes more and more 
frequent. This control strategy can provide the same 
performance as achieved from a separately excited 
DC machine, and is proven to be well adapted to all 
type of electrical drives associated with induction 
machines[4]. The vector control technique combines 
the slip calculation with a rotor-position or speed 
measurement [5]. The calculation of the slip speed in 
the direct vector control involves the rotor time 
constant, which may vary considerably over the 

operational range of the motor mainly due to changes 
in rotor resistance with temperature. An error in the 
slip speed calculation gives an error in the rotor flux 
position, resulting in coupling between the flux and 
torque-producing currents due to axis misalignment. 
This results in a torque response with possible 
overshoot or undershoot and a steady-state error. 
Therefore variations in motor parameters, particularly 
rotor resistance, should be tracked as they occur. For 
this reasons, many research have been done on 
automated tuning of induction motor parameters by 
various authors [5, 6, 7, 8]. 
The most widely used controller in the industrial 
applications is the PID-type controllers because of 
their simple structures and good performances in a 
wide range of operating conditions [9]. The PID 
controller’s parameters are selected in an optimal way 
by known methods such as the Zeigler and Nichols, 
poles assignment... etc.  However, the PID controllers 
are simple but cannot always effectively control 
systems with changing parameters or have a strong 
nonlinearity; and may need frequent on-line retuning 
[10]. 
Due to new developments in nonlinear control theory, 
several nonlinear control techniques have been 
introduced in the last two decades. One of the 
nonlinear control methods that has been applied to 
induction motor control is the backstepping design 
[11, 12]. The backstepping is a systematic and 
recursive design methodology for nonlinear feedback 
control. This approach is based upon a systematic 
procedure for the design of feedback control strategies 
suitable for the design of a large class of feedback 
linearisable nonlinear systems exhibiting constant 
uncertainty, and guarantees global regulation and 
tracking for the class of nonlinear systems 
transformable into the parametric-strict feedback 
form. The backstepping design alleviates some of 
these limitations [11,13]. It offers a choice of design 
tools to accommodate uncertainties and nonlinearities 
and can avoid wasteful cancellations. The idea of 
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backstepping design is to select recursively some 
appropriate functions of state variables as pseudo-
control inputs for lower dimension subsystems of the 
overall system. Each backstepping stage results in a 
new pseudo-control design, expressed in terms of the 
pseudo-control designs from the preceding design 
stages. When the procedure terminates, a feedback 
design for the true control input results which 
achieves the original design objective by virtue of a 
final Lyapunov function, which is formed by 
summing up the Lyapunov functions associated with 
each individual design stage [14]. 
In this paper we apply the backstepping technique to 
design a speed controller for the induction motor with 
fuzzy rotor resistance adaptation. The output of the 
backstepping controller is the current (iqs) required to 
maintain the motor speed close to the reference speed. 
The current (iqs) is forced to follow the control current 
by using current regulators. The direct field-oriented 
of induction machine is presented in section 2, the 
backstepping technique for IM control is summarized 
in section 3. The proposed fuzzy estimation of the 
rotor resistance is derived in section 4. Section 5 
concludes the paper. 
  

II. DIRECT FIELD-ORIENTED CONTROL OF 
THE IM 

 
The dynamic model of three-phase, Y-connected 
induction motor can be expressed in the d-q 
synchronously rotating frame as [1, 2, 3]: 
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Where σ  is the coefficient of dispersion and is given 
by (2): 

rs

m

LL
L2

1−=σ  (2) 

sL , rL , mL  stator, rotor and mutual inductances; 

sR , rR  stator and rotor resistances; 

eω , rω  electrical and rotor angular frequency; 

slω  slip frequency ( )re ωω − ; 

rτ  rotor time constant  ( )rr RL ; 
P  pole pairs 
The main objective of the vector control of induction 
motors is, as in DC machines, to independently 
control the torque and the flux; this is done by using a 
d-q rotating reference frame synchronously with the 
rotor flux space vector [2, 3]. In ideally field-oriented 

control, the rotor flux linkage axis is forced to align 
with the d-axes, and it follows that [3, 4, 12]: 
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d rq
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φ
φ  (3) 

tconsrrd tan== φφ  (4) 
Applying the result of (3) and (4), namely field-
oriented control, the torque equation become 
analogous to the DC machine and can be described as 
follows: 

qsr
r

m
e i

L
Lp

T ⋅⋅
⋅

= φ
2
3  (5) 

And the slip frequency can be given as follow: 
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Consequently, the dynamic equations (1) yield: 
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Using (3) and (4) the desired flux in terms of ids can 
be found from: 

r
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The decoupling control method with compensation is 
to choose inverter output voltages such that [10]: 
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According to the above analysis, the indirect field-
oriented control (IFOC) [1, 4, 10] of induction motor 
with current-regulated PWM drive system can 
reasonably presented by the block diagram shown in 
the Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Fig. 1: Block diagram of DFOC for an induction motor.  
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III. THE SPEED CONTROL OF THE IM USING 
BACKSTEPPING TECHNIQUE 

 
A. Backstepping technique 
 
Consider the system: 

( ) ( )uxgxfx +=& , ( ) 00 =f   (14) 

Where nRx∈ is the state and Ru∈ is the control 
input. Let ( )xudes α= , ( ) 00 =a  be a desired feedback 
control law, which, if applied to the system in (14), 
guarantees global boundedness and regulation of ( )tx  
to the equilibrium point 0=x as ∞→t , for all ( )0x  
and ( )xV is a control Lyapunov function, where : 

( ) ( ) ( ) ( )[ ] 0<+
∂
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x
xV α , ( ) 0>xV  (15) 

Consider the following cascade system: 
( ) ( )yxgxfx +=& , ( ) 00 =f  (16) 

( ) ( )uxxm ζβζζ ,, +=& , ( ) 00 =h  (17) 
( )xhy =  (18) 

Where for the system in (16), a desired feedback 
( )xa and a control Lyapunov function V(x) are known. 

Then, using the nonlinear block backstepping theory 
in [17], the error between the actual and the desired 
input for the system in (16) can be defined as 

α−= yz , and an overall control Lyapunov function 
( )ζ,xV  for the systems in (16) and (17) can be 

defined by augmenting a quadratic term in the error 
variable z  with ( )xV : 
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Taking the derivative of both sides gives: 
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From which solving for ( )ζ,xu , which renders 

( )ζ,xV&  negative definite, yields a feedback control 
law for the full system in (16-18). One particular 
choice is [17]: 
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B. Application to induction motor 
 
In this section we use the backstepping algorithm to 
develop a control law to regulate the speed of the 
induction motor. The speed will converge to its 
desired value from a wide set of initial conditions. 
Step 1: 
We first consider the tracking objective of the direct 
current ( drφ ). A tracking error drdrz φφ −= *

1  is 
defined and the derivative becomes: 
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To initiate backstepping, we choose dsi as our first 
virtual control. If the stabilising function is chosen as: 
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Due to the fact that dsi is not a control input an error 

variable *
2 dsds iiz −=  is defined and we have the 

derivative as follows: 
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Step 2: 
The derivative of the error variable *

2 dsds iiz −=  is: 
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Viewing drφ  and qrφ as unknown disturbances we 
apply nonlinear damping [13, 17] to design the 
control function: 
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 The insertion of the control function in the dynamics 
for the error variable 2z gives : 

m

qr

m

dr

r LL
zdzzcz

φ
φ

φ
φφ

τ
⋅+⋅+⋅⋅−−⋅−= 212

2
21222

1
&  (28) 

Step 3: 
We now search to find the error torque tracking. A 
tracking error is for 0≠drφ defined as: 
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Then, its derivative is: 
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Viewing drφ and qrφ as unknown disturbances we 
apply nonlinear damping [13, 17] to design the 
control function: 

( )

( )
3

2

22

333

**

2

1

ˆ3
2ˆ1

3
2ˆ

1

11

zw
L

R
L
L

dzc

dt
dT

LP
L

L
i

TP
TL

L
Lw

iR
L
LiLwiR

L
V

L

r
s

r
r

m

e

drm

r

m

dr
ds

rdr

er

m

dr
sr

qsr
r

m
qsseqss

s
qs

s

⋅

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

⋅+

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅−⋅−

⋅
⋅⋅⋅

⋅
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅⋅

⋅⋅
⋅⋅

−⎟
⎟
⎠

⎞
⋅⋅−⋅+

⎜
⎜

⎝

⎛
⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⋅⋅⋅−⋅⋅

⋅
=⋅

⋅

σ
σ

σ

φ
φ

φ
φσ

σ
σσ

  
 (31) 
The insertion of the control function in the dynamics 
for the error variable 3z then gives: 
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The combined controller is shown in figure 2 where 
we have: 
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C. Speed control of IM using backsteping 
 
To control the speed of the induction motor, we look 
to search the error speed tracking. We consider that 

*
qsi  is the control law, so tracking error is defined as: 
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So, its derivate is given as : 
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The control law obtained is : 
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IV. FUZZY ROTOR RESISTANCE ESTIMATION 

 
In this section, the fuzzy rotor resistance estimation is 
proposed. The first challenge in the design of this 
fuzzy logic estimator is to determine its inputs 
variables. Since the time constant for the variation of 
the rotor resistance is much larger than the time 
constant of the IM, the rotor resistance estimation 
process can be running under steady-state conditions 
(no changes of load torque and reference speed 
command). 
In order to study the influence of the rotor resistance, 
a characteristic function F is utilized [5, 6]: 
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 (38) 
This function can also be defined from a modified 
expression of field orientation conditions as follows: 
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In steady state ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 0

dt
d rdφ

, this equation becomes: 

rdsd
r

m i
L
L

F φ⋅−=0  (40) 

Note that the function given in Equ. (40) differs from 
F by the effect of change of rR [7]. In fact, the rotor 
resistance used in flux estimator is not actual value of 

rR  unless a rotor resistance adaptation is present. The 
error (F-F0) reflects the rotor resistance variation, and 
can be used as a correction function for the adaptation 
of the rotor resistance in the fuzzy logic estimator. 
The proposed estimator based on fuzzy logic principle 
is shown in Fig. 7. Functions F0 and F are first 
calculated. The error between F and F0 ( F∆ ) and its 
first time derivative are employed as inputs of FLE. 
The operation principle of FLE is similar as of a fuzzy 
logic controller (FLC). The membership functions for 
the fuzzy sets corresponding to the error F∆  , its time 
variation and incremental rotor resistance rR∆  are 
defined in fig. 3 and fig. 4. 

Fig. 2: Nonlinear field-oriented control of IM using 
Backstepping technique 
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Fig. 4: Membership functions consequent part

Fig. 3: Membership functions for antecedent part 

Because the data manipulated in the fuzzy inference 
mechanism is based on the fuzzy set theory, the 
associated fuzzy sets involved in the fuzzy control 
rules are defined as follows: 

NB : Negative big NM : Negative medium 
NS : Negative small ZE : Zero 
PS : Positive small PM : Positive medium 
PB : Positive big  

And their universe of discourses are assigned to be 
between [-1, 1] for the inputs ( F∆ and its time 
variation), and [-1,1] for the outputs variable ( rR∆ ). 
The incremental rotor resistance rR∆  is continuously 
added to the previously estimated rotor resistance 

0rR . 
Since only seven fuzzy subsets, NB, NM, NS, ZE, PS, 
PM and PB, are defined for F∆ , its time variation 
and rR∆ , the fuzzy inference mechanism contains 49 
rules. The resulting fuzzy inference rules for the 
incremental rotor resistance are as follows: 
 
Table 1: Rule bases of the fuzzy estimator 

NB NM NS ZE PS PM PB 
NB NB NB NB NB NB NM ZE 
NM NB NB NB NM NS ZE PS 
NS NB NB NM NS ZE PS PM 
ZE NB NM NS ZE PS PM PB 
PS NM NS ZE PS PM PB PB 
PM NS ZE PS PM PB PB PB 
PB ZE PS PS PB PB PB PB 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. RESULTS OF SIMULATION 
 
To prove the rightness and effectiveness of proposed 
control scheme, we apply the designed controller to 
the control of the induction motor.  The induction 
motor is a wound three phase, Y connected, four pole, 
1.5 kW, 1420min-1 220/380V, 50Hz. The machine 
parameters are given in appendix. The configuration 
of the overall control system is shown in Fig. 6. It 
mainly consists of an induction motor, a ramp 
comparison current-controlled pulse width modulated 
(PWM) inverter, a slip angular speed estimator, an 
inverse park, nonlinear filed oriented control based on 
backstepping technique, and an outer speed feedback 
control loop contains on a backstepping controller. 
Fig. 7 shows the disturbance rejection of backstepping 
controller when the machine is operated at 200 
[rad/sec] under no load and a nominal load 
disturbance torque (10 N.m) is suddenly applied and 
eliminated at 1.5sec, 2.5ec respectively, followed by a 
reversed reference (-200rad/sec) at 4sec. The 
backstepping controller rejects the load disturbance 
rapidly with a negligible steady state error.  
This controller rejects the load disturbance very 
rapidly with no overshoot and with a negligible steady 
state error more than the PI controller which is shown 
clearly in figs. 11-12. 
Fig. 8 and 9 show a comparison between the classical 
field oriented control using PI controller and which 
based on backstepping design technique. It shows 
clearly that the decoupling control is more maintained 
for the backstepping design than which obtained by a 
classical PI controllers (current and flux regulators).  
In the next simulation, the rotor resistance is supposed to 
be changed from 100% of its rated value to 200% 
linearly (step or ramp change). The responses of direct 
and quadratic rotor flux for the two cases (without and 
with rotor resistance adapting) and for step change are 
shown in Fig. 13. It’s observed in these figures that when 
the estimated rotor resistance deviates from its real 
value, the field orientation scheme is detuned. Fig. 13 
shows also the maintained performance of the IM drive 
using the rotor resistance adaptation to track its real 
value. In this case, the field orientation condition can be 
maintained by applying a step change of rotor resistance. 
It’s observed that the detuned problem is removed 
completely ( rrd φφ =  and 0=rqφ ). 
Fig. 15 shows the responses of the direct and quadratic 
rotor flux with and without adaptation, for ramp change 
of rotor resistance. The same remarks can be observed 
for the responses shown in fig. 13. Finally, Fig. 14 and 
16 show the rotor resistance tracking for step and ramp 
change. In both cases, the rotor resistance tracking is 
excellent and the field orientation condition is still 
maintained. We can analyze finally the principle of the 
obtained results for rotor resistance adaptation. If the 
system is under no-load condition, the torque current 
becomes zero. The calculated function F and F0 are not 
affected by the rotor resistance change. This is shown in 
Fig.13 and Fig.15 from 0sec until 1.5sec. However, if the 
load is added to the motor, the rotor resistance errors will 
affect the calculated functions. 

Fig. 5: Block diagram of rotor resistance estimation 
using fuzzy logic 
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Fig. 11: Simulated results of the comparison between the PI 
and backstepping design for IM speed control. 

Fig. 10: Zoomed responses of decoupling obtained by PI, 
backstepping control for IM. 

Phase current Ia [A] rdφ  and rqφ [Wb] 

Fig. 7: Simulated results of backstepping controller for IM 

Torque [N.m] Rotor speed [rad/sec] Fig. 9: Simulated results of the comparison between the decoupling 
obtained by PI and backstepping design for IM. 

The figures show that the proposed scheme achieves 
good performances as it achieves compensation of the 
rotor resistance changes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Block of the speed control and field oriented control of IM using backstepping 
technique with fuzzy rotor resistance estimator 
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Fig. 8: Simulated results of the comparison between the decoupling 
obtained by PI and backstepping design for IM. 
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Fig. 14: Rotor resistance tracking for step change 
 

Fig. 12: Zoomed responses of speed control obtained by PI, 
backstepping control for IM. Fig. 16: Rotor resistance tracking for ramp change 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI. CONCLUSION 
In this work, we have presented a backstepping 
technique associated with fuzzy rotor resistance 
estimation in order to offer a choice of design tools to 
accommodate uncertainties and nonlinearities. This 
study has successfully demonstrated the design of the 
backstepping technique for the speed control of an 
induction motor and the nonlinear field orientation 
control design. The Proposed scheme has presented 
satisfactory performances (no overshoot, minimal rise 
time, best disturbance rejection) for parameter 
variations, time-varying external force disturbances. 
The proposed fuzzy rotor resistance estimator 
produces a correction signal which is added to the 
rated value of the rotor resistance. The simulation 
results obtained have confirmed the excellent flux 
responses and the efficiency of the proposed scheme. 
Finally, the effectiveness of the PI controller and the 
nonlinear field orientation based on the backstepping 
strategy has been verified through simulation. 
 

APPENDIX 
 

Induction motor parameters: 
Pn [kW] 1.5 Rs [Ω] 4.85 fn [Hz] 50 
Vn [V] 220 Rr [Ω] 3.805 Jn [kg/m2] 0.031 

η 0.78 Lr [H] 0.274 fc [N.m.s/rd] 0.0014 
Cosϕn 0.8 Ls [H] 0.274 p 2 

ωn[min-1] 1428 Lm [H] 0.258   
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