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Abstract - In this paper a new linear VLSI array 
architecture for the VLSI implementation of the 2-D 
IDST based on a new systolic array algorithm is 
proposed. This new design approach uses a new efficient 
VLSI algorithm. It employs a new formulation of the 
inverse DST that is mapped on a linear systolic array. 
Using the proposed systolic array high computing speed 
is obtained with a low I/O cost. The proposed 
architecture is characterized by a small number of I/O 
channels located at the two extreme ends of the array 
together with a low I/O bandwidth that is independent of 
the transform length N. The topology of the proposed 
VLSI architecture is highly modular and regular and 
uses only local connections. Thus, it is well suited for a 
VLSI implementation 
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I. INTRODUCTION 
 

The 2-D forward and inverse discrete sine 
transforms are important transform functions that are 
widely used in many signal and image processing 
applications. They are especially employed in image 
compression due to the fact that they behave very 
much like the statistically optimal Karhunen-Loeve 
transform (KLT). Thus, the forward and inverse 2-D 
DST and DCT represent the critical part in the 
implementation of JPEG compression [2]. 
     The forward and inverse DST are computational 
intensive. So, in order to use them in real-time 
applications the development of application specific 
hardware is demanded. 

In the literature there are presented several 2-D 
VLSI architectures [4-10]. Most of them use the row-
column decomposition method. Some of them are 
using a direct method to compute forward or inverse 
2-D DST or DCT [7-9]. 

Systolic arrays [11] are a good architectural 
paradigm to be used in real-time applications. They 
are also well suited for the VLSI implementation. The 
VLSI algorithms for forward and inverse DST have to 
be derived specifically. The way of data moving is 
very important in determination of the efficiency of a 
VLSI algorithm and of its implementation. Thus, the 
use of regular and modular computational structures 

with local data communications can lead to efficient 
VLSI implementation [12, 13] using the systolic array 
architectural paradigm. Thus, an efficient way to 
convert the inverse DCT into such structures can lead 
to optimal VLSI implementations    
 
II.   TWO DIMENSIONAL IDST ARCHITECTURE 

 
The 2-D inverse DST (IDST) for a NxN pixel block 
can be defined as follows: 

( ) ( )
1 1

0 0
( , ) ( , ) sin 2 1 sin 2 1

N N

i j
x k l X i j i j lα α

− −

= =

= ⋅ + ⋅ + ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑∑  (1) 

where: 

N2
πα =            (2) 

),( lkx  )1,...,1,0,( −= Nlk  is the pixel data, 
),( jiX )1,...,1,0,( −= Nji  is the transform 

coefficient . 
In the literature there are presented several 2-D VLSI 
architectures for IDST. Most of them use the row-
column decomposition method. Some of them are 
using a direct method to compute forward or inverse 
2-D DCT or DST. 
The row-column approach can de expressed in a 
matrix form as: 

[ ] [ ][ ][ ]TNNNN SXSx =        (3) 

where [ ]NS  is the 1-D N-point IDCT, with: 
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Equation (4) can be computed by N N-point IDST 
along the rows of the input [ ]NX , 

obtaining [ ] [ ][ ]TNNN YXY = , and followed by N 
N-point IDSTs along the columns of the matrix 
obtained from the row 

transformed [ ] [ ] [ ]NNN YSx = . It can be observed 
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that using the row-column decomposition method we 
have to compute two 1-D IDSTs one after the other. 

  
This simple decomposition method reduces the 
computation complexity with a factor of 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.1. The linear systolic array for 2-D IDST 
computation 
 

III. 1-D N-POINT INVERSE DST 
ARCHITECTURE  

 
A. Systolic Algorithm for 1-D Inverse DST 

 
The 1-D N-point inverse discrete sine transform IDST 
is defined as follows: 
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In order to reformulate relation (5) as a circular 
correlation form we introduce some auxiliary 
sequences and use the proprieties of the Galois Field 
of indexes to appropriate permute the input and output 
sequences. 

The output auxiliary sequence 
{ }1,...,2,1:)( −= NkkT  can be computed as 
follows: 

)(2)( ' kTkT =           (7) 
The new auxiliary output sequence 
{ }1,...,2,1:)(' −= NkkT  can be computed as a 
circular correlation, if the transform length N is a 
prime number, as following: 
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where Nx ><  denotes the result of x modulo N and 
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with ⎣ ⎦x  the greater integer smaller the x and is 
called the floor function. 
We have used the properties of the Galois Field of 
indexes to convert the computation of the auxiliary 
output sequence { }1,...,2,1:)(' −= NkkT  as a 
circular correlation. 
The auxiliary input sequence 
{ }1,...,2,1:)( −= NiixC  is defined as following: 
 

)cos()()( αiiYiYC ⋅=        (10) 
 
Finally, the output sequence can be recursively 
computed using the auxiliary output 
sequence{ }1,...,2,1:)( −= NkkT  as: 
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with 
)sin()()( αiiYiYS ⋅=       (13) 

 
B. An Example 
 

To illustrate our approach, we will consider an 
example for 1-D IDST with the length N=11 and the 
primitive root g=2. 
We can write (8) in matrix-vector product form as: 
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where we noted by )(ks as )2sin( αk  and the sign 
of the items in relation (9) is given by the following 
matrix: 
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SIGN  

where: 
• The first bit designates the sign before 

the brackets 
• The second bit denotes the sign inside 

the brackets 
where the “1” bit indicates the minus sign (the first 
bit) and the subtraction operation (the second one) 

 
 

III. THE LINEAR SYSTOLIC ARRAY 
FOR 1-D IDST 

 
Using the dependence-graph of equation (13) and the 
dependence-graph based synthesis procedure [14] we 
have obtained a linear systolic array. The hardware-
core of this array is presented in figure 2. The 
function of the processing elements Pes is presented 
in figure 2b. In order to deal with the sign differences 
in equation (13) we have used the tag-control 
technique presented in [15].  
 Using the tag-control mechanism we can keep the 
I/O channels at the two extreme ends of the linear 
array, where the tag sequences tc controls the loading 
of the input data into the array as shown in fig.2b. 
Using this mechanism we can control the content of 
the internal registers using only channels placed at 
one of the two ends of the array. 
 The pre-processing and post-processing stages 
realize the appropriate reorder of the auxiliary input 
and output sequences.  

In the preprocessing stage we also compute the 
auxiliary input sequence { }1,...,2,1:)( −= NiiYC  

and { }1,...,2,1:)( −= NiiYS . In the post-
processing stage we also compute the auxiliary output 
sequences }1,...,2,1:)({ −= NkkT  and finally the 
output sequence using the equations (11), (12) 
respectively. 
 
 
 
 

IV. PERFORMANCES AND COMPARISON 
 
 The average computation time is (N-1)Tcycle. The 
number of multipliers is (N-1)/2+1 and the number of 
adders is (N-1)/2+2. Thus, low hardware and I/O costs 
can be obtained. We can easily obtain a high 
throughput using a two-level pipelining mechanism 
with low hardware and I/O costs. 
In [16] a time-recursive structure is proposed. As 
compared with [16] the throughput is significantly 
increased using a two-level pipelining. The structure 
proposed in [16] did not allow a two-level pipelining 
due to its recursive nature.  
In [17] and [18] the throughput can be also 
substantially increased using the two-level pipelining. 
These structures do not allow two level pipelining due 
to the data-path feedback. 
As compared with [19] the throughput is also much 
increased when using a two-level pipelining. This is 
explained due to the presence of the feedback in 
RACs. 
The proposed structured has also a low I/O cost. As 
compared with [20] the I/O cost is significantly lower. 
The I/O cost can significantly limit the speed 
performances due to so called I/O bottleneck. 
 

V. CONCLUSION 
 
In this paper a new VLSI architecture for the VLSI 
implementation of 2-D inverse discrete sine transform 
is presented. It has some appealing features as a low 
I/O cost and high speed performances. It employs a 
new VLSI algorithm that efficiently uses the 
advantages of the circular correlation computational 
structure as high degree of parallelism, small 
computational complexity and local data 
communications. The 2-D IDST VLSI architecture is 
obtained using two linear systolic arrays connected in 
a serial manner. The proposed VLSI architecture is 
highly regular and modular and has local 
interconnections. It has also a small number of I/O 
channels placed at the two extreme ends of the array 
with a reduced I/O bandwidth. Thus it is well suited 
for a VLSI implementation.   
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Fig.2. (a) The VLSI array architecture of the hardware-core of 1D-IDST 
 (b)  The function of the processing elements PEs 
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