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Abstract – This paper presents an approach that uses 
self-organizing fuzzy neural network based time series 
prediction to extract the EEG features in time domain. 
EEG signals from two electrodes placed on the scalp 
over the motor cortex are predicted by a single fuzzy 
neural network. Features derived from the mean 
squared error of the predictions and from the mean 
squared of the predicted signals are extracted from EEG 
data within a sliding window using two auto-organizing 
fuzzy neural networks with multi inputs and a single 
output. The features are classified by linear discriminant 
analysis and radial-basis function neural network. 
Keywords: EEG, neurofuzzy network, prediction, auto 
adaptation, LDA, RBF-NN 
 

I. INTRODUCTION 
 
Motor imagery is the mental simulation of a motor act 
that includes preparation for movement, passive 
observations of action and mental operations of motor 
representations implicitly or explicitly. Motor imagery 
as preparation for immediate movement likely 
involves the motor executive brain regions. Implicit 
mental operations of motor representations are 
considered to underlie cognitive functions. Another 
problem concerning neuro - imaging studies on motor 
imagery is that the performance of imagination is very 
difficult to control. The ability of an individual to 
control its EEG may enable him to communicate 
without being able to control their voluntary muscles. 
Communication based on EEG signals does not 
require neuromuscular control and the individuals 
who have neuromuscular disorders and who may have 
no more control over any of their conventional 
communication abilities may still be able to 
communicate through a direct brain-computer 
interface. A brain-computer interface replaces the use 
of nerves and muscles and the movements they 
produce with electrophysiological signals and is 
coupled with the hardware and software that translate 
those signals into physical actions. One of the most 
important components of a brain-computer interface is 
the EEG feature extraction procedure. 
The Motor imagery is by far the commonest 
methodology employed by majority of BCI research 
groups. This can be attributed primarily to the ‘purely 

cognitive’ nature of these methods (as opposed to the 
requirement for a stimulus in BCIs based on P300 and 
steady state (SS) visually evoked EEG-potentials 
(VEP)). Motor imagery (like motor action) has been 
reported to produce an Event Related 
Desynchronization (ERD) [1]. This is characterized 
by a transient reduction in the power of the alpha and 
beta bands of the EEG. By cleverly employing 
different strategies for motor imagery, one can 
generate ERDs in different spatial locations overlying 
the bilateral motor homunculus. With proper training 
and motivation, majority of subjects can learn to 
control the intensities (and spatial location) of specific 
frequency bands in their EEG, which can then be used 
as a communication and control signal. A Canadian 
research group has studied the effect of mental 
imagery at the corticospinal level when hand 
movements are performed [2]. In their study, the 
influence of imitation of hand actions on the cortical 
level was analyzed. The hand movements were 
studied by an American research group which 
established that the specific cortical pattern associated 
with the variation of the motor control parameters 
during execution and imagery are the same [3]. 
Recently, the researchers have studied the interference 
between action observation and action execution [4], 
in order to contribute to the analysis of the 
observation, trying to explain the process by which 
the representation of an observed movement is 
converted into the representation of a goal-directed 
action. To analyze the EEG signals different methods 
have been proposed in the literature: autoregressive 
model [5], [6], neural networks [7], mixture of 
densities approach [8], independent component 
analysis [9], time-frequency analysis [10] and 
statistical methods [11]. The processing of the EEG 
within the motor imagery shows still opened 
directions. This year, the researchers have tried to 
elucidate the difference in processing the biological 
and non-biological movements in man [4], to detect 
the cognitive abilities of the unresponsive patients 
[12] and to improve the EEG analysis in the 
framework of motor imagery application [13]. Most 
studies have relied on subjective evaluation and not 
objective confirmation, of task performance. Motor 

59

BUPT



imagery is a dynamic state in which a subject 
mentally simulates a given action. Our work presents 
a procedure for extracting features from the 
electroencephalogram (EEG) recorded from subjects 
involving motor imagery. Two auto-organizing fuzzy 
neural networks are used to perform prediction tasks 
for the EEG data, as proposed by Coyle and his 
coworkers [6]. Features are taken from the mean 
squared error in prediction and from the mean squared 
of the predicted signals. Linear analysis is used for 
classification of signals. This extraction procedure is 
tested offline on two subjects leading to classification 
accuracy rates near 83% with information transfer 
rates near 8 bits/min. This approach shows good 
potential for online feature extraction and autonomous 
system adaptation. The architecture of the two auto-
organizing fuzzy neural networks is a network with 
multi inputs and single output. The use of auto-
organizing fuzzy neural networks is convenient for 
applications because the auto-organizing fuzzy neural 
network can adapt itself to each individual’s EEG 
signals so that very little subject specific knowledge 
or parameter selection is required. It can perform 
online learning thus has potential for continous 
learning and continuous adaptation to the dynamics of 
each individual’s EEG signals. Chapter II of the paper 
presents the data configuration. Chapter III gives the 
results and some conclusions. 
  

II. DATA CONFIGURATION 
 
A. Acquisition of EEG data 
 
The data is recorded from two subjects in a timed 
experimental recording procedure where the subject is 
instructed to imagine moving the left and right hand 
in accordance to a directional cue displayed on a 
monitor. In each recording session a number of EEG 
patterns correlated to the imagined right or left arm 
movement are produced by a subject over a number of 
trials. Recorded EEG signals are filtered between 0.5 
and 30Hz and then are sampled at 120Hz [14]. 
 
B. Configuration of EEG data 
 
The EEG data recorded from each electrode is 
configured so that the measurements from time 
instants t - 5 to t - 1 are used to make a prediction of 
the measurement at time t. Each training data input 
exemplar contains five measurements from the data 
recorded from either the C3 or C4 electrode. The 
training data output contains every subsequent 
measurement t from each of the input data vectors. 
The extracted input-output data vector for the time 
series at the electrodes C3 and C4 are in (1) and (2). 
 
[ ])();1();2();3();4();5( 333333 tctctctctctc −−−−−      (1) 
 
[ ])();1();2();3();4();5( 444444 tctctctctctc −−−−−      (2) 
 

Every trial has 5 seconds of task related data. The data 
is recorded from two subjects, S1 and S2. There were 
300 trials recorded for subject S1 and 300 trials 
recorded for subject S2, an equal number of trials for 
each type of movement imagery. Each trial consists of 
600 samples (5 s x 120 Hz = 600). There are 595 
training data pairs for each trial, samples 595 to 599 
are used to predict the sample 600. 
 
C. Neurofuzzy architecture 
 
Two auto-organizing fuzzy neural networks are used 
to perform prediction. One auto-organizing fuzzy 
neural network is trained for the left EEG data and the 
other one auto-organizing fuzzy neural network for 
right EEG data. By using separate auto-organizing 
fuzzy neural networks for each type of data, it is 
desired that each trained auto-organizing fuzzy neural 
networks develop certain uniqueness, in that it is more 
apposite to each type of time series data [14]. 
The advantage of using a self-organizing structure, 
like that of the auto-organizing fuzzy neural networks, 
is that the problem of specifying the network’s 
architecture does not have to be considered [15]. 
For the neural networks, finding the optimum 
architecture for a particular task can be very 
problematic and does have a significant effect on the 
performances. Auto-organizing fuzzy neural networks 
are hybrid systems that combine the theories of fuzzy 
logic and neural networks. In hybrid systems like the 
self-organizing fuzzy neural networks, the fuzzy 
techniques are used to create or improve certain 
aspects of the neural network’s performance. An 
important advantage of the auto-organizing fuzzy 
neural network is the generation of a model from 
observations of complex systems where little 
insufficient expert knowledge is available to describe 
the behavior, as is the case for EEG data [16]. 
The auto-organizing fuzzy neural networks can deal 
with characteristics of EEG such as large dimensions 
and noise to provide a model that can be used for 
interpretation of the EEG. This is another advantage 
of using an auto-organizing fuzzy neural network for 
EEG analysis. The auto-organizing fuzzy neural 
network is designed to approximate a fuzzy process of 
fuzzy inference through the structure of neural 
network and thus create an interpretable hybrid model 
of neural network using the superior learning ability 
of neural networks and easy interpretability of fuzzy 
systems. 
The dynamic adaptation of the structure of the hybrid 
network captures the underlying behavior of a 
nonlinear time-varying complex system more easily 
and accurately. The online learning algorithm, based 
on a hybrid recursive least squares estimator, and an 
autonomous neuron adding and pruning structure 
based on the optimal brain surgeon technique, provide 
a truly online learning algorithm for 
modeling/predicting the highly non-stationary EEG 
signal [14]. 
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D. EEG features extraction procedure 
 
Each self-organizing fuzzy neural network is a multi-
input-single-output (MISO) network so only EEG 
data recorded from a single electrode can be 
predicted. The system is configured in three stages 
[14]. The first stage involves training of the two auto-
organizing fuzzy neural networks separately to 
perform one-step-ahead prediction, using five 
previous measurements of each time series. The two 
auto-organizing fuzzy neural networks are named L 
for the left data-electrode C3 and R for right data 
electrode C4 corresponding to the type of EEG data 
on which they are trained, either left or right motor 
imagery. The second stage implies input of each type 
of training data, the same data used to train the auto-
organizing fuzzy neural networks into each of the 
auto-organizing fuzzy neural networks. All the L 
training data is input to both the L and R networks, 
then all the R training data is input to both L and R 
network in a similar manner. Each auto-organizing 
fuzzy neural network provides a one-step-ahead 
prediction for the data in for each trial. When a trial is 
input to all of the two auto-organizing fuzzy neural 
networks, features are extracted by calculating the 
mean square error (MSE) of the prediction for a 
portion of the trial and the mean squared of the actual 
prediction (MSA). As these calculations gives 
predictions over a segment to a scalar value, EEG 
features based on the error and on predicted signal can 
be obtained as in (3). 
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Equation (3) is used for obtaining each feature, where 
y(t) is the actual signal and kŷ (t) is the predicted 
signal. The k index is used to show whether the signal 
is from left l or right r auto-organizing fuzzy neural 
network. M is the number of prediction samples used. 
The extracted features are in vector form, the feature 
vector fv, is shown in Fig. 1. 
 
For each trial a two elements feature vector is 

obtained and classes of features for right and left data 
can be obtained by entering all trials of training data 
into the auto-organizing fuzzy neural networks in Fig. 
1. Normalizing the features (i.e. dividing each feature 
vector by the sum of the components within the 
vector) can reduce the intra class variance – a 
fundamental goal of any feature extraction procedure. 
Features can be extracted for every time point in a 
trial using a sliding window approach. To extract a 
new set of features for every time point in a trial using 
the sliding window approach, t ranges from t = s to M 
where s and M are incremented before the next set of 
features is extracted (initially s = 1 and M = window 
size). This means that data at the beginning of a trial 
is forgotten as the window slides away from the start 
of the trial. The advantage of using the sliding 
window for feature extraction is that the feature 
extraction procedure does not require knowledge 
about the point at which communication is initiated by 
the user and so online feature extraction can be 
realized [14]. 
 

III. DATA CLASSIFICATION 
 
The last step is the data classification performed using 
linear discriminant analysis (LDA), a classifier that 
works on the assumption that different classes of 
features can be separated linearly and alternatively 
using radial basis function network (RBF-NN) that 
uses a nonlinear function to map the input data into 
high-dimension space so that they are more likely to 
be linearly separable than in the low-dimension space. 
 
A. Linear discriminant analysis 
 
The principle of LDA is to seek a vector w so that two 
projected clusters of R and L feature vectors can be 
well separated from each other while keeping small 
variance of each cluster. This can be done by 
maximizing the Fisher’s criterion. After w is obtained 
by means of the training data, we project the test 
samples on it, and then classify the projected points 
by the k-nearest-neighbor decision rule [17]. Linear 
classifiers are more reliable than the nonlinear ones 
because they have limited flexibility. 
The idea of LDA is to seek a vector wr  so that two 
projected clusters of R and L feature vectors on wr  
can be well separated from each other while keeping 
small variance of each cluster. This can be done by 
maximizing the Fisher’s criterion  
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where Sb is the scatter matrix between classes: 
 
                  ( )( )TLRLRb mmmmS −−=               (5) 
 
and Sw is the scatter matrix within the class: 

Fig. 1. EEG feature extraction  procedure 
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in which two summations run over all the training 
samples of classes R and L , respectively, and mR and 
mL represent the group mean of classes R and L, 
respectively. The optimal wr  is the eigenvector 
corresponding to the largest eigenvalue of bw SS 1− . 

After wr  is obtained by means of the training data. 
Experimentation involved extraction and 
classification of features at every time point in a trial, 
allowing selection of the optimum time points to 
perform feature extraction and classification for more 
effective deployment of the system. This approach 
allows features to be extracted at the rate of the 
sampling interval [14]. 
 
B. Radial - basis function neural networks 
 
The radial - basis function neural network (RBF-NN) 
uses a nonlinear function to map the input data into 
high-dimension space so that they are more likely to 
be linearly separable than in the low-dimension space, 
as depicted in Fig. 2. 

The hierarchy of RBF-NN consists of one input layer, 
one hidden layer, and one output layer. Each RBF-NN 
is designed to have a nonlinear transformation from 
the input layer to the hidden layer, followed by a 
linear mapping from the hidden layer to the output 
layer. The mapping between the input and output 
space is expressed by: 
 
                  ( ) ( )∑ −= ii xxwxF rrr ϕ                     (7) 

 

where ( ) 2
ixx

i exx
rrrr −−=−ϕ and wi is the weighting 

from the i-th hidden neuron to output neuron and ixr  
represents the i-th known feature vector with 
dimension N. 
Compared with other neural networks which uses 
gradient-based optimization process to estimate the 
weightings, for example, the back-propagation 

recurrent neural network, the RBF-NN solve for a set 
of linear equations to avoid trapping in a local 
minimum and greatly reduce the training time [17]. 
 

IV. RESULTS AND CONCLUSIONS 
 
A. Results 
 
The system was tested on 150 for subject S1 and 150 
for subject S2. The obtained results are shown in 
Table 1 and Table 2. 
The first column specifies the subject. The second 
column specifies whether normalized features where 
used. Column three specifies the sliding window size. 
Column four indicates classification accuracy rate for 
LDA in Table 1 and respectively for RBF-NN in 
Table 2. Column five shows the time elapsed for 
classification and column six shows the information 
transfer (IT) rates. 
All results in bold specify the best results obtained for 
each type of performance quantifier. All IT rates were 
calculated using the time interval between 
communication start meaning the second 4 of timing 
scheme and the point that maximum classification 
accuracy was obtained. This provides good indication 
about the maximum IT rate a system can achieve 
whilst system accuracy is optimal. IT rates can be 
much higher if calculated in the first second of a trial, 
even if classification accuracy is lower. 
Irregular transients in the signals, caused by noise or 
artifacts did not have as much affect on the features 
because the auto-organizing fuzzy neural networks 
did not predict irregular transients in the signal that 
indicates that the auto-organizing fuzzy neural 
networks aided to the removal of artifacts and noise 
for subjects S1 and S2. Normalizing the features 
produces higher classification accuracy and IT rates 
that is because normalization reduces the intra-class 
variability. The number of neurons in each auto-
organizing fuzzy neural network was different from 
its counterparts due to variations in the types of 
signals on which each auto-organizing fuzzy neural 
network was trained. 
 
Table 1 

Sub Norm Wind 
Size 

Classif 
Acc [%] 
LDA 

Time 
[s] 

Rate 
[bpm] 

No 310 76.34 3.43 6.89 S1 
Yes 320 82.68 3.62 7.27 
No 300 70.63 3.24 6.43 S2 
Yes 340 79.87 4.13 7.68 

 
Table 2 

Sub Norm Wind 
Size 

Classif 
Acc [%] 
RBF-NN 

Time 
[s] 

Rate 
[bpm] 

No 310 73.54 3.46 6.56 S1 
Yes 320 84.21 3.57 7.75 
No 300 68.67 3.28 6.32 S2 
Yes 340 81.28 3.98 8.12 

Fig. 2. RBF-NN architecture 
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B. Conclusions 
 
No artifact removal or noise reduction was carried out 
on the raw EEG data from subjects. This indicates the 
robustness of the proposed approach. However, the 
number of neurons in each auto-organizing fuzzy 
neural network increases when noise is increased. 
This approach shows good potential for online EEG 
feature extraction and can be further developed by 
implementing a multiple-step-ahead prediction 
technique. The system can perform online adaptation 
because it can autonomously add neurons to 
accommodate to the variations in the EEG data. 
RBF-NN performs a better classification of the 
extracted features in comparison with LDA, due to the 
nonlinear function used for the hidden layer. 
Further studies will investigate the success of the 
proposed algorithms on different motor imagery tasks 
and will look for other methods to improve the 
classification of the extracted features. 
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