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Abstract – In this paper a symmetric feedback 
implementation scheme of a two microphones speech 
enhancement is presented. This approach can be 
extended for a subclass of signal separations where the 
direct link is stronger than the interference link in the 
both channels. We consider the coupling systems 
modeled as a linear time-invariant Finite Impulse 
Response (FIR) filters and propose new instrumental 
variable-based adaptive filters solution to enhance the 
noisy speech. The optimum filter weight adaptation is 
based on two instrumental variable algorithms: the 
generalized least mean square (GLMS) algorithms and 
the overdetermined recursive instrumental variable 
(ORIV) algorithms. A comparative study with other 
adaptive algorithms is presented. 
Keywords: speech enhancement, adaptive filters, 
instrumental variable, generalized least mean square, 
overdetermined recursive instrumental variable. 
 

I. INTRODUCTION 
 

Let us consider the system modeled by the diagram 
represented in the Fig. 1. The purpose is to recover the 
free noise speech signal s(n)  from the two available 
observations )(np1  and )(np2  in the presence of the 
noise signal )(nb . 
 

 
Fig. 1. Signal model for noise cancellation 

 
The primary input source )(np1  is assumed to contain 
the speech signal )(ns  plus an additive noise 
component )(' nb , and the secondary or the reference 
is assumed to contain the noise )(nb  plus a speech 

component )(' ns . )(nb  is correlated with )(' nb  but 
not with the speech signal )(ns . The basic scheme of 
adaptive noise canceller given in [1] uses an adaptive 
filter based on the Least Mean Squares (LMS) 
algorithm for estimating the additive noise )(' nb , 
which is then subtracted from the primary input. One 
problem with the adaptive noise canceling algorithm 
is the need for the reference microphone to be well 
separated from the primary microphone, so that it 
picks up as little speech as possible. If the 
microphones are too close to one another, cross talk 
occurs and a typical adaptive filter will thereby 
suppress a portion of the input speech characteristics. 
One means of addressing this problem is to place a 
second adaptive filter in the feedback loop. 
In the simplified case where the filters )(ω1H  and 

)(ω2H  are assumed to be single tap another system 
called Symmetric Adaptive Decorrelation (SAD) 
using two adaptive filters, as an extension of the 
classical LMS acoustic noise canceller, has been 
presented in [2]. This result has been later generalized 
to a convolutive mixtures modeled by two FIR filters 

)(ω1H  and )(ω2H  [3]. 
The feedback implementation of an adaptive noise 
canceller (see Fig. 2) has been proposed in [4] using 
Double Least Mean Squares (DLMS) algorithm. 
Other noise cancellers using two adaptive filters: 
feedforward and feedback symmetric adaptive noise 
canceller have been described in [5][6][7][8]. 
In this paper we present a new feedback 
implementation of a noise canceller based on the two 
instrumental variable algorithms: the generalized least 
mean square (GLMS) algorithms and the 
overdetermined recursive instrumental variable 
(ORIV) algorithms. We only suppose that the speech 
signal and the noise are statistically independents and 
we consider the coupling systems being FIR filters. 
These algorithms can also be used for a subclass of 
signal separations where the direct link must be 
stronger than the interference link in the both 
channels. A comparative performance study is 
presented in the framework of noise cancellation. 
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II. PROPOSED ALGORITHMS 

 

A. Introduction 
 
Fig. 2 shows the feedback implementation of the 
noise canceller. )(ω1W  and )(ω2W  are two adaptive 
filters. Each one has as input the output error signal of 
the other filter. )(ω1W  is an adaptive filter which has 
an input signal )(ns1 , a desired signal )(np2  and an 
error signal )(ns2 . )(ω2W  is an adaptive filter which 
has an input )(ns2  and an error signal )(ns1 . 
 

 
Fig. 2. Feedback implementation of the noise canceller 

 

The optimum values in the Wiener sense, in the case 
of wide sense stationary processes and in term of the 
power density spectrum, of the filters )(ω1W  and 

)(ω2W  are given by [9]: 
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and if we suppose that the speech signal )(ns  and the 
noise )(nb  are two uncorrelated processes we can 
rewrite (1) and (2) for 21i ,=  as follows [7]: 
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We can see that the equations (3) provide multiple 
solutions. Among all these solutions we can find the 
“desired solution” )()( ωω ii HW = , 2,1i = . In this 
case it is easy to verify that )()( nsns1 = and 

)()( nbns2 =  and it is possible to recover the signals 
that would have been measured at each microphone in 
the absence of the other source signal. 
If for each generating filter: 

1,2i1,)n(h2
i =<∑  (6) 

then the filters )(ωiW  ( 21i ,= ) converge to the 
desired solutions. 
These desired solutions can be reached using weight 
adaptive filters.  
 

B. The overdetermined recursive instrumental 
variable (ORIV) algorithm 

 
The ORIV algorithm originally proposed in [10] tries 
to solve the following matrix equation: 

rRw =  (7) 

where )}()(~{ nnE TxxR = , )}()(~{ ndnE xr = , and w is 
the unknown solution of the adaptive filter. The 
vectors T1qnx1nxnxn )](,),(),([)( +−−= Lx  and 

T1lnx1nxnxn )](~,),(~),(~[)(~ +−−= Lx  with ql > , 
while the random processes )}(~{)},({ nxnx , and )(nd  
are input data, instrumental variable and desired 
response of the adaptive filter. The algorithm is 
defined as follows [10]: 
 

• Initial conditions: 
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• Recursive process: 
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where the forgetting factor 10 ≤< λ  has been 
introduced for nonstationary statistics. 
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C. The generalized least mean square (GLMS) 
algorithm 

 
The GLMS algorithm is an instrumental variable-
based LMS algorithm and is robust versus additif 
noise. The algorithm is defined as follows [11]: 
 
• Initial conditions: 

0w =)(0  (18) 

• Recursive process:  

)()()()( n1nndne T xw −−=  (19) 

)()(~)()( nen1nn xww µ+−=  (20) 

 
where µ  is the step size. 
 

D. The double GLMS (DGLMS) and the double 
ORIV (DORIV) algorithms 

 
The DGLMS algorithm is defined as follows: 
 
• Initialization: 

1+N1 1
=(0) 0w  (21) 

1+N2 2
=(0) 0w  (22) 

• Estimation: 
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• Filters update: 

)()(~)()( nsn1nn 21111 sww µ+−=  (27) 

)()(~)()( nsn1nn 12222 sww µ+−=  (28) 

 
The DORIV algorithm is defined as follows: 
 
• Initialization: 
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• Estimation: 
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III. SIMULATION RESULTS 
 
The noise has been separately recorded in a car 
moving in five different conditions, the microphone is 
placed in front of the driver and the noises have been 
artificially added to the noise-free speech so that one 
would master the SNR input. The coupling systems 
are 10 taps two FIR filters [8]. 
An example of one signal captured by the first 
microphone )(np1  and another by the second 
microphone )(np2  is respectively shown in Fig. 3 
and Fig. 4. In this case the SNR of )(np1  and )(np2  
are respectively 3.09 dB and 3.79 dB. 
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Fig. 3. The signal )n(p1  captured by the first microphone and 

its spectrogram (SNR = 3.09 dB) 
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Fig. 4: The signal )(np2  captured by the second microphone 

and its spectrogram (SNR = 3.79 dB) 
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Fig. 5. Enhanced speech )(ns1  obtained with the noise 

canceller system based DGLMS algorithm and its 
spectrogram (SNR = 16.29 dB) 

 

The output signal of the noise canceller system using 
the DGLMS algorithm is shown in Fig. 5. 
A comparative SNR output gain between the 
Extended LMS [5], the Double LMS [4], the DGLMS 
and the DORIV algorithms is provided in table 1. This 
table shows the superiority of the noise canceller 
instrumental variable DGLMS and DORIV based 
algorithms. This global performance behaviour is 
confirmed also by the frame by frame SNR output. 
The ELMS algorithms take more time before handling 
the noise field after which its segmental SNR 
behaviour is close to the segmental behaviour of the 
DGLMS algorithm. 
Informal quality and intelligibility tests indicate also 
significant superiority of such algorithms to enhance 
speech signal. 
 
Table 1: The SNR gain of )n(s1  for different algorithms 

Gain SNR (dB) )(ns1  

Case 

Input 
SNR(dB) 

)(np1  
 

ELMS 
[5] 

DLMS 
[4]  

DGLMS DORIV 

1 10.48 9.10 9.77 10.28 12.17 
2 2.45 13.48 13.22 14.57 22.38 
3 11.40 8.36 7.93 9.76 16.19 
4 9.97 11.15 12.35 13.81 21.14 
5 3.09 12.06 14.74 16.29 23.64 
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