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Abstract – A new method of feature based 2D image 
robust registration is proposed. The image distortion is 
modeled as a similarity transform with four parameters, 
estimated sequentially by 1D transforms, resulting in an 
increased sample density as compared to 4D space 
processing. By adopting a mean shift estimator, 
advantages of RANSAC and M-estimators can be 
combined within a single and sound theoretical 
framework.  Experimental results confirm the validity of 
the proposed approach. 
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I. INTRODUCTION 
 

Image registration is one of the basic image 
processing operations in many computer vision 
applications, like remote sensing, biomedical imaging, 
surveillance, robotics, multimedia etc [1]. The goal is 
to overlay two or more images of the same scene 
taken at different times, from different viewpoints, 
and/or by different sensors. To register two images, a 
transformation must be found so that each point in 
one image (reference image) can be mapped to a point 
in the second (sensed image). In other words, the 
transform geometrically “optimally” aligns two 
images. Due to the diversity of images to be registered 
and to various type of degradations it is impossible to 
design a universal method applicable to all 
registration tasks. Every method should take into 
account not only the assumed type of geometric 
deformation between images but also radiometric 
deformations and noise corruption, required 
registration accuracy and application-dependent data 
characteristics.  
Registration methods consist of the following four 
steps: 

• Feature detection 
• Feature matching 
• Transform model estimation 
• Image resampling and transformation 

Features can be specific image points are image areas. 
The present study concentrates on the first approach. 

Suppose the feature detection and matching 
problems have been solved by an appropriate 
automatic method. It is well known that the 
correspondence problem is difficult in the general 
case and prone to errors. Even a single gross 
correspondence error can drive the solution far away 
from the real one. Therefore robust estimation 
methods are needed to cope with point 
correspondence errors. One of the first robust 
estimators proposed for image registration was the 
RANSAC estimator [2]. Recently M estimators and 
related kernel based estimators received much 
attention in the community of researchers looking for 
robust solutions in computer vision [3]. The two 
methods have complementary merits. The M-
estimators find good solutions but require a good 
initial estimate to converge correctly. RANSAC does 
not need to start from an initial estimate [4], but the 
solution does not take into account all the available 
data, thus its precision is not maximized. In the 
present work, a mean shift [5] based solution is 
proposed for robust parameter estimation in image 
registration. Like RANSAC, the mean shift estimator 
does not require an initial estimate. At the same time, 
as the (related) M-estimators, the mean shift estimator 
makes a better use of the available inlier samples.  
 
 

II. BRIEF REVIEW OF THE MEAN SHIFT  
 

Given a sample of N d-dimensional data points, xi, 
drawn from a distribution with multivariate 
probability density function p(x), an estimate of this 
density at x can be written as [4]: 
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is the kernel function depending on the symmetric 
positive definite d×d matrix H, called bandwidth 
matrix. Frequently H has a diagonal form or even the 
form H= h2I, assuming the same scale h for all 
dimensions, i.e. a single scale parameter and an 
isotropic estimator, Kh. A radially symmetric 
estimator can be generated starting from a 1D kernel 
function K1 as: 
 

( ) ||)(||1 xx KK R α= ,    (3) 
 
with α is a strictly pozitive constant chosen such that 
the kernel function integrates strictly to 1. The profile 
of the radially symmetric kernel is defined as: 
 

( ) )||(|| 2
, xx kcK dk

R = ,    (4)  
 
with ck,d a normalization constant.  

Starting from any location y, a gradient ascent 
mean shift algorithm can be used to find the location 
of the maxima of the estimated PDF closest to the 
starting location. This can be simply done by iterating 
the equation 
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where 
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until convergence. The proof of the convergence can 
be found in [4]. More, in practice the convergence is 
very fast, typically only two or three iterations being 
needed.  
 
 

III. ROBUST IMAGE REGISTRATION 
 
A widely used 2D geometric transformation in image 
registration is the similarity transform, consisting of 
rotation, translation and scaling. The model is defined 
by the equations: 
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relating the old pixel coordinates (x,y) to the new 
ones. As this transform preserves the angles and 
curvatures, it has been named “shape-preserving 

mapping”. The four parameters of the transformation 
can be unambiguously determined from the 
correspondence of two pairs of points. However, in 
most of the cases, the number of the points available 
for estimating the transformation parameters s, φ, tx 
and ty is higher. By denoting the vector of parameters 
as 
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82 
the problem of estimating the geometric 
transformation can be formulated as the problem of 
minimizing a measure of the matching error of the 
available data points: 
 

∑ρ=
i

ir )(minarg
p

p ,        (9) 

 
where the residuals ri represent estimations of the  
matching error between a pair of corresponding 
features after registration. By choosing:  

2)( rr =ρ ,         (10)  
a least-squares matching is obtained. This problem 
has been extensively studied in early work on point 
matching. See for example the frequently cited work 
[6] with the improvements from [7]. Because of the 
squaring up in equation (10), least squares fitting is 
notoriously sensitive to the presence of the outliers, 
data samples deviating widely from “typical” 
samples. The problem can be alleviated by using a 
different shape of the function in equation (10), in 
order to reduce the influence of the outlier samples. 
M-estimators [3] are one of the most notorious 
examples from this category. In the present work, we 
use a density estimation approach, based on the mean 
shift to obtain robust estimates of the similarity 
transform. The approach is closely related to the M-
estimator, as pointed out in [5]. However, the 
interpretation of the density estimator is different. 
Links can be found between mean density estimators 
and the RANSAC as well, but this is a subject beyond 
the scope of the present paper.       

The number of corresponding points available in 
different applications varies widely. We concentrate 
on the case where this number is relatively small and 
obtaining reliable estimates in the presence of outliers 
is more difficult. A useful step in order to obtain 
higher sample densities is to reduce the dimension of 
the search space. In this paper we propose a solution 
based on search in 1D spaces, as opposed to the 
general approach of simultaneous estimation of all 
parameters in a 4D space. We start from the 
observation that angles between line segments are not 
changed by translation or rescaling. Therefore, the 
rotation parameter, φ can be estimated based on such 
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angles prior to estimating the translation or rescaling 
parameters. Rescaling parameter estimation can also 
be done prior to translation or rotation estimation, 
based on distances between pairs of points. On the 
other hand, rotation or rescaling strongly affect 
translation parameters, as illustrated in the example in 
figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the example above, it is clear that to robustly 
estimate the translation vector components it has to be 
done after rotation and rescaling have been estimated 
and compensated.  

Denote by {Vi}, i = 1,2,…, N a set of points from 
the reference image and {Qi}, i = 1,2,…, N the 
corresponding points from the registered image. In the 
spirit of the RANSAC estimator, we form minimal 
sets of points, to estimate transform parameters. For 
rotation angle estimation, minimal set means pairs of 
points (Qi, Qj) and (Vi, Vj), with the corresponding 
vectors qij and vij. The angle between the lines (Qi, Qj) 
and (Vi, Vj) is then given by the equation: 
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Denote by {φi}, i = 1,2,….,M the set of M angles 
obtained by pairs of points. The rotation angle 
estimate is defined as the highest density location 
obtained by the mean shift algorithm starting from all 
data samples, φi. This is the mean shift filtered data 
set. Notice that the denominator in equation (5) is - up 
to a factor -  a measure of the sample probability 
density estimated with the shadow kernel of K(). 
Therefore, no additional processing is needed to 
compute and compare probability densities. 
Moreover, very fast mean shift implementations can 
be obtained by marking all locations visited by the 
algorithm through iterations and associating 
corresponding intervals to the location of 
convergence.  

In a similar manner, scale factor estimates can be 
obtained from the sets of pairs of points using the 
equation: 
 

s = ||vij||/||qij||.        (12)     
 

After performing the inverse geometrical transform to 
compensate for scale and rotation angle, robust 
translation vector component estimation is performed 
by point correspondences. Given a pair of points with 
position vectors vi and qi, we form the translation data 
samples 
 

 tx  = vxi - qxi,               (13) 
 ty  = vyi  - qyi,        (14) 

 
then proceed to translation parameter estimation using 
mean shift. 
  
 

IV. EXPERIMENTAL RESULTS 
 

In order to obtain qualitative assessment of the 
proposed registration method, artificial image pairs 
have been generated with known geometrical 
transformation parameters. Feature points have been 
selected interactively in both images. For reference, a 
least squares estimator [6][7], was also used, mostly 
to validate the performances of the proposed approach 
for small errors, where the lest squares estimator 
works at its best. Results for the case of a similarity 
transform consisting of a translation and a 45o rotation 
are shown in figure 2. The original image is shown in 
figure 2a, while the similarity transformed image is 
shown in figure 2b. In figure 2c, the results of the 
robust registration method proposed in this paper for 
image pairs from figure 2a and figure 2b are 
illustrated. The same results for the least-squares 
registration are illustrated in figure 2d. In figure 2e  
and figure 2f, the matching errors for the robust 
registration and for the lest square registration 
methods are displayed. Note that the errors were 
evaluated only within the minimum area rectangle 
enclosing the feature points used for registration and 
that the error images are displayed in negative 
contrast, for better visibility. A careful examination of 
the error images in figure 2e and figure 2f reveal the 
presence of significantly higher errors for the least 
squares estimator as compared with the robust mean 
shift based estimator, both in terms of translation and 
rotation parameters.  

In order to obtain quantitative evaluation of the 
performances of the proposed image registration 
technique, in a second series of experiments, we 
generated 1D data sets with controlled percentage of 
outliers. Both inlier and outlier samples were 
generated as uniformly distributed random sequences. 
The outlier samples were generated with a standard 
deviation 10, while the inlier samples were generated 
with standard deviation 1. Comparative results for the 
mean shift and least square estimated parameters are 
given in figures 3 and 4, for 10% and respectively 
33% outlier percentage. The mean shift estimator was 
implemented with the Epanechnikov kernel and scale 
parameter h = 2. As theoretically expected, the mean 
shift estimator errors are virtually unchanged and low, 
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Fig. 1. Translation vectors before (left) and after 
(right) rotation compensation 
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while the lest squares estimator errors are increasing 
with the outlier percentage.  
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Fig.3. Mean shift versus least squares estimation errors, with outlier 
percentage 10%  
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Fig.4. Mean shift versus least squares estimation errors, with outlier 
percentage 33%  

.  
 

V. CONCLUSION 
 

The mean shift based 2D image registration method 
proposed proved to be reliable and computationally 
efficient in our work. It can safely tolerate a high 
percentage of spurious data. Unlike for the RANSAC 
type robust estimators, the feature space is searched in 
a systematic and computationally efficient manner. 
No initial guess solution is needed as in the case of 
M-estimators. By a careful analysis, the search in a 
4D space has been replaced by four 1D searches. This 
technique results in an increased sample density in the 
lower dimensional space, making kernel density 
estimation performances potentially less dependent on 
bandwidth selection.         
 
 

REFERENCES 
 
[1] B. Zitova, J. Flusser, “Image registration methods: a survey”, 
Image Vision and Computing 21”, Elsevier, 2003,  pp. 977-1000. 
[2] M. A. Fischler and R. C. Bolles, “Random sample consensus: A 
paradigm for model fitting with applications to image analysis and 
automated cartography”. Comm. Assoc. Comp.Mach, 24(6):381–
395, 1981. 
[3] H. Chen, P. L. Meer, and D. E. Tyler, „Robust regression for 
data with multiple structures”. In IEEE Conference on Computer 
Vision and Pattern Recognition, pages 1069–1075, 2001. 
[4] V. Lepetit and P. Fua, “Monocular Model-Based 3D Tracking 
of Rigid Objects: A Survey”. In Foundations and Trends  in 
Computer Graphics and Vision Vol. 1, No 1 (2005) 1–89.  
[5] D.Comaniciu, P.Meer, “Mean Shift: A Robust Approach toward 
Feature Space Analysis”, IEEE Trans. PAMI, Vol.24, No.5, pp.603-
619, 2002.  
[6] K.S. Arun, T.S. Huang, S.D. Blostein: Least-squares fitting of 
two 3-D point sets. IEEE Transactions on Pattern Analysis and 
Machine Intelligence 9(5), 698-700, 1987. 
[7] S. Umeyama: Least-squares estimation of transformation 
parameters between two point patterns. IEEE Transactions on 
Pattern Analysis and Machine Intelligence 13(4), 376-380, 1991. 
 
 
 

a)       b) 

c)                                                               d) 

               e)                     f) 
 

Fig. 2. a) Original image; b) Similarity transformed image; 
c) Mean shift registered image; d) Lest squares registered 
image; e) Matching error for the mean shift estimator; f) 
Matching error for the lest squares estimator.   
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