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Abstract – This paper deals with the problem of speech 
enhancement when a corrupted speech signal with an 
additive noise is the only information available for 
processing. Kalman filtering is known as an effective 
speech enhancement technique in which speech signal is 
usually modeled as autoregressive (AR) process and 
represented in the state-space domain. In the above 
context, all the Kalman filter-based approaches 
proposed in the past operate in two steps: they first 
estimate the noise and the driving variances and 
parameters of the signal model, then estimate the speech 
signal. This paper presents an alternative solution that 
does not require the explicit estimation of noise and 
driving process variances. This deals with a new 
formulation of the steady-state Kalman filter gain 
estimation based on the use of external description of 
systems. Unlike the conventional approaches, no 
suboptimal Kalman filter is needed here. 
Keywords: speech enhancement, Kalman filtering, noise 
reduction. 
 

I. INTRODUCTION 
 

Speech enhancement using a single microphone 
system has become an active research area for audio 
signal enhancement. The aim is to minimize the effect 
of noise and to improve the performance in voice 
communication systems when input signals are 
corrupted by background noise. 
Kalman filtering is known as an effective speech 
enhancement technique, in which speech signal is 
usually modeled as autoregressive (AR) process and 
represented in the state-space domain. 
Many approaches using Kalman filtering have been 
referenced in the literature. They usually operate in 
two steps: first, noise and driving process variances 
and speech model parameters are estimated and 
second, the speech signal is estimated by using 
Kalman filtering. In fact these approaches differ only 
by the choice of the algorithm used to estimate model 
parameters and the choice of the models adopted for 
the speech signal and the additive noise. 
Paliwal and Basu [1] have used estimates of the 
speech signal parameters from clean speech, before 
being contaminated by white noise. They then used a 
delayed version of Kalman filter in order to estimate 
the speech signal. 

In [2], Oppenheim et al. have used a time-adaptive 
algorithm to adaptively estimate the speech model 
parameters and the noise variance. 
Gannot et al. [3] have proposed the use of the EM 
algorithm to iteratively estimate the spectral 
parameters of speech and noise parameters. The 
enhanced speech signal was obtained as a byproduct 
of the parameter estimation algorithm. 
Lee and Jung [4] have developed a time-domain 
approach, with no a priory information, to enhance 
speech signals. The autoregressive-hidden filter model 
(AR-HFM) with gain contour was proposed for 
modeling the statistical characteristics of the speech 
signal. The EM algorithm was used for signal 
estimation and system identification. In the E-step, the 
signal was estimated using multiple Kalman filters 
with Markovian switching coefficient and the 
probability was computed using the Viterbi Algorithm 
(VA). In M-step, the gain contour and noise parameter 
were recursively updated by an adaptive algorithm. 
Grivel et al. [5] have suggested that the speech 
enhancement problem can be stated as a realization 
issue in the framework of identification. The state-
space model was identified using a subspace non-
iterative algorithm based on orthogonal projection. 
Gabrea and O'Shaughnessy [6] have proposed 
estimating the noise and driving process variances 
using the property of the innovation sequence, 
obtained after a preliminary Kalman filtering with an 
initial gain. 
The methods proposed in [7] and [8] avoid the 
explicit estimation of noise and driving process 
variances by estimating the optimal Kalman gain. 
After a preliminary Kalman filtering with an initial 
sub-optimal gain, an iterative procedure is derived to 
estimate the optimal Kalman gain using the property 
of the innovation sequence. 
In this paper a quite different and simple approach to 
the estimation of the steady-state optimal Kalman 
filter gain based on the use of external description of 
systems is presented. This method avoids the explicit 
estimation of noise and driving process variances by 
estimating the optimal Kalman gain. Unlike the 
conventional approaches, no suboptimal Kalman filter 
is needed here. Thus, the divergence problem of the 
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Kalman filter does not occur. The performance of this 
algorithm is compared to the one of alternative speech 
enhancement algorithms based on the Kalman 
filtering. A distinct advantage of the proposed 
algorithm is that no voice activity detector (VAD) is 
required to estimate noise variance. Another 
advantage of this algorithm compared to [7] and [8] is 
the superiority in terms of computational load. An 
iterative procedure is not required in the steady-state 
optimal Kalman gain estimation. 
This paper is organized as follows. In Section II we 
present the speech enhancement approach based on 
the Kalman filter algorithm. Section III is concerned 
with the estimation of AR parameters and optimal 
Kalman gain. Simulation results are the subject of 
Section IV. 
 

II. NOISY SPEECH MODEL AND KALMAN 
FILTERING 

 
The speech signal s(n) is modeled as a pth order AR 
process: 

 ∑
=
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where s(n) is the nth sample of the speech signal, y(n) 
is the nth sample of the observation, )(nai  is the ith 
AR parameter, u(n) and v(n) are uncorrelated 
Gaussian white noise sequences with zero means and 
the variances 2

uσ (n) and 2
vσ (n). 

This system can be represented by the following state-
space model: 

 )()1()()( nunnn GxFx +−=  (3) 

 )()()( nvnny += Hx  (4) 

where: 
1. [ ]Tnspnsn )()1()( +−=x  is the 1×p  

state vector 

2. )(nF  is the pp ×  transition matrix 
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3. [ ]1000== TGH  is the p×1  
observation row vector and the input vector. 

The standard Kalman filter [9][10] provides the 
updating state-vector estimator equations: 

 )1/(ˆ)()( −−= nnnyne xH  (5) 
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where: 

1. )1/(ˆ −nnx  is the minimum mean-squares 
estimate of the state vector )(nx  given the past 
observations )1(,),1( −nyy  

2. )1/(ˆ)()1/(~ −−=− nnnnn xxx  is the predicted 
state-error vector 

3. [ ])1/(~)1/(~)1/( −−=− nnnnEnn TxxP  is the 
predicted state-error correlation matrix 

4. )/(ˆ nnx  is the filtered estimate of the state 
vector )(nx  

5. )/(ˆ)()/(~ nnnnn xxx −=  is the filtered state-
error vector 

6. [ ])/(~)/(~)/( nnnnEnn TxxP =  is the filtered 
state-error correlation matrix 

7. )(ne  is the innovation sequence 

8. )(nK  is the Kalman gain 

The estimated speech signal can be retrieved as the pth 
component of the state-vector estimator )/(ˆ nnx . 
However, the transition matrix and the driving process 
statistics are unknowns and hence must be estimated. 
Here a quite different and simple approach to the 
estimation of the steady-state optimal Kalman filter 
gain based on the use of external description of 
systems is used. This method avoids the explicit 
estimation of noise and driving process variances by 
estimating the optimal Kalman gain. In this case the 
Kalman filter equations are: 

 )1/(ˆ)()( −−= nnnyne xH  (11) 
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 )()()1/(ˆ)()/1(ˆ nennnnnn optKFxFx +−=+  (12) 

The estimated speech signal can be retrieved from the  
state-vector estimator: 

 )()1/(ˆ)(ˆ nennns optHKxH +−=  (13) 

The parameter estimation (the transition matrix and 
the optimal Kalman gain) is presented in the next 
section. 
 

III. PARAMETER ESTIMATION 
 
The estimation of the transition matrix, which 
contains the AR speech model parameters, was made 
using a adaptation of the robust recursive least square 
algorithm with variable forgetting factor proposed by  
Milosavljevic et al. [11]. The estimation of the steady-
state optimal Kalman filter gain is based on the 
external description of the systems. 
 
A. Estimation of the Transition Matrix 
 
In our approach, getting F requires the AR parameter 
estimation. The equation (1) can be rewritten in the 
form: 

 )()()1()( nunnns T +−= θx  (14) 

where: 

 [ ]T
pp nananan )()()()( 11−=θ  (15) 

The robust recursive least square approach estimates 
the vector )(ˆ nθ  by minimizing the M-estimation 
criterion [11]: 
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is the Huber influence function and Δ  is a chosen 
constant. The true state vector )(nx  used in (14) is 
unknown but can be approximated by the state-vector 
estimator )/(ˆ nnx . In this case the robust recursive 
least square approach gives the estimation equations: 

 )()1/1(ˆ)/(ˆ)( iiiiii T θε −−−= xxH  (18) 
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 )([)1/1(ˆ)()1(ˆ)(ˆ iiiiii εψθθ −−+−= xQ  (21) 

The forgetting factor )(iλ  is a data weighting factor 
that is used to weight recent data more heavily and 
thus to permit tracking slowly varying signal 
parameters. If a nonstationary signal is composed of 
stationary subsignals the estimation of the AR 
parameters can be given by using a forgetting factor 
varying between minλ and maxλ . The modified 
generalized likelihood ratio algorithm [12] is used for 
the automatic detection of abrupt changes in 
stationarity of signal. This algorithm uses three 
models of the same structure and order, whose 
parameters are estimated on fixed length windows of 
signal. These windows are ]1,-[ iNi + , ],1[ Nii ++  
and ]1,-[ NiNi ++ , and move one sample forward 
with each new sample. In the first step of this 
algorithm is calculated the discrimination function: 
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denotes the maximum of the logarithmic likelihood 
function. In the second step a strategy for choosing 
the variable forgetting factor is defined by letting 

max)( λλ =i  when minDD =  and min)( λλ =i  when 

maxDD = , as well as by taking the linear interpolation 
between these values. 
 
B. Steady-State Optimal Kalman Gain Estimation 
 
The Kalman filter always requires the knowledge of 
noise variances. When they are unknown, we must 
estimate them with some methods or we must 
estimate the steady-state optimal Kalman filter gain 

)(lim n
n

opt KK
∞→

=  directly from the output data. Let 

m
mm zzzf αα +++= −1

1)(  be the minimal 
polynomial of the matrix F with 0)( =Ff . 
From (11) and (12) in the steady-state: 
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and multiplying (24) by )1( 0 =− αα im  and summing 
for mi ,,1,0=  we obtain: 
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or: 
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where: 
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We can obtain the optimal gain optK  by solving (26) 
with the knowledge of iβ for mi ,,1= . Define: 
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It is known that in the optimal case the innovation 
process )(ne  is orthogonal to all past observations 

)1(,),1( −nyy and it consists of a sequence of 
random variables that are orthogonal to each other. In 
this case the autocorrelation of the innovation process  

)]()([)( kneneEkre −=  is zero for 0>k  [13]. From 
(28) for mk ,,1,0=  we obtain )(krξ  the 
autocorrelation of )(nξ , )]()([)( knnEkr −= ξξξ  as: 
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The equations (28) can be solved for iβ , mi ,,1=  
and )0(er  by using the estimate of the autocorrelation  

)(ˆ krξ : 
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where N is the sample size and is given by : 
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Now from (27) the estimate of the optimal gain optK̂  
is given by: 
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IV. SIMULATION RESULTS 

 
The proposed method was first tested using an AR 
signal that offers a good approximation of the spectral 
envelope of a speech signal and an additive Gaussian 
white noise. In the experiment, 256 samples of the AR 
signal were generated. In Table 1 we present the mean 
value, the standard deviation and the maximum value 
based on 1000 simulations. 
 
Table 1 

Output SNR (dB) Input 
SNR 
(dB) Mean Std Max 
-5.00 2.93 0.48 4.46 
0.00 5.72 0.29 7.33 
5.00 9.82 0.21 11.27 
10.00 12.71 0.15 13.72 
15.00 17.08 0.07 17.31 

 
The approach was also tested using a speech signal 
and additive noise. The speech signals are sentences 
from the TIMIT database. Table 2 offers a 
comparison with others approaches, by showing 
averaged SNR gain based on 10 speech signals and 10 
noise simulations for each speech signal. Figures 2, 3 
and 4 represent, respectively, the time signal followed 
by the spectrogram of the free-noise speech, the noisy 
speech and the enhanced speech. For this example, the 
SNR of the noisy speech signal is 0 dB. 
 
Table 2 

Output SNR (dB) 
Input 
SNR 
(dB) 

[14] [7] [8] Prop. 
-5.00 2.46 -2.52 2.48 2.56 
0.00 4.57 2.61 4.72 4.88 
5.00 7.96 6.83 8.29 8.37 
10.00 11.92 10.95 12.31 12.48 
15.00 16.00 15.08 16.47 16.76 
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Fig. 1: Noise-free speech signal 
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Fig. 2: Noisy speech signal 
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Fig. 3: Enhanced speech signal 

Compared to the methods similar in structure 
previously proposed by the author in [7] and in  [8] 
and to the Gibson's algorithm [14], the proposed 
method provides increases in SNR, as well as 
improved speech quality and intelligibility for input 
SNR between -5 and 15 dB. Gibson's algorithm needs 
two or three iterations to get the highest SNR gain. It 
uses a voice activity detector to determine silence 
periods. The above factors lead to computational 
requirements higher than those corresponding to the 
proposed approach. 
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