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Abstract - Measures for logical network failure are 
considered in paper. They are Dynamic Reliability 
Indices (DRIs) and Reliability Function (RF). The DRIs 
allow investigating the influence of one gate breakdown 
to failure of logical network. Methods of Logical 
Differential Calculus and structure function of a logical 
network are used for calculation of these indices. The 
RF is a probability of logical network failure and it is 
calculated by special form of structure function. 
Algorithms for DRIs and RF computation are proposed 
in paper. 
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I. INTRODUCTION 

 
Reliability has been considered as an important 
design measure in many technical systems [1 – 4]. A 
logical network is one of them [1, 2, 4]. One of 
principal problems in reliability analysis of logical 
network is investigation of breakdown of each 
individual gate influence upon the logical network 
failure [1, 2]. Generally, the system reliability model 
and its indices are required for solving the problem. 

Discrete probability models are typically employed 
in design of a technical system for reliability analysis 
[1, 3, 4]. Markov processes and structure function are 
tools for reliability analysis in system design. Markov 
processes analyze the system state transition process 
[3, 5, 6], and the structure function investigates the 
system topology [3, 7, 8]. 

In this paper we propose new method on the basis 
of structure function to estimate the system reliability 
evolving results proposed in [8, 9]. Two type indices 
are used in this method for measure of logical network 
reliability. Firstly, it is Reliability Function (RF) that is 
characterized probability of system failure. RF is well-
know measure in reliability analysis [1 – 4, 9, 10]. 
Secondly, we have been proposed Dynamic Reliability 
Indices (DRIs) for evaluation of dynamic properties of 
system (logical network) reliability. 

These indices are computed based on structure 
function and Logical Differential Calculus [11, 12]. 
DRIs characterize the change of a system reliability 
that is caused by the change of a component state and 

include two groups [13 – 15]: Component Dynamic 
Reliability Indices (CDRIs) and Dynamic Integrated 
Reliability Indices (DIRIs). CDRIs allow measuring 
an influence of each individual gate to the logical 
network reliability. DIRIs characterize a probability 
of impact of one gate to the system reliability. 

In this paper DRIs are considered for special class 
of system, it is logical network. Basic conceptions for 
reliability analysis of a logical network by DRIs are 
defined in this paper (structure function of logical 
network, gate probability, failure of logical network 
etc.). Presented results are evolution of investigations 
that have been obtained in papers [13 – 15]. 
 

II. BASIC CONCEPTION 
 
A. Structure Function of Logical Network 
 

A logical network of n logical gates realize a 
logical function F(y1, …, yk) = F(y) (yi is the i-th 
variable of logical function and i-th input of logical 
network; i = 1, …, k). With relation to reliability 
analysis a logical network and its every gate have two 
states of efficiency s: “zero” designates network or 
gate failure (is not working) and state “one” declares 
of working of network or its gate. 

A structure function declares a logical network 
reliability according to its gate states xi (i = 1, …, n): 

φ(x1, …, xn) = φ(x): {0, 1}n → {0, 1}. (1) 

The structure function (1) is Boolean function but it 
is different form logical function F(y) that is realized 
by logical network. The structure function describes 
the topology of a logical network and can be equal to 
logical function F(y) in some time. Note that different 
logical networks with different logical function may 
have equal structure functions.  

For example, there are two different logical 
networks in Fig.1. These logical networks are system 
of three components (n = 3) and have similar 
connections of gates. The graphical presentation by 
Block Diagram [1 – 3] is illustrates it. Therefore 
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considered logical networks have equal structure 
function (1):  

φ(x) = (x1∨ x2) x3. (2) 

x1 

x2 

y1 

y2 

y4 

F(y) 
x3 

y3 

x1 x3 

y1 

y2 

y3 

F(y) 

x2 

F(y) = F(y) = y1y2 (y3∨y4)

F(y) = y1y2 ∨ y2y3 

Logical  network 1 

Structure function 
of  logical  networks: 

φ(x) = (x1∨ x2) x3 

 
Graphical  interpretation of  the structure function 

by Block Diagram  

x1 

x3 

x2 

Logical  network 2 

 
Fig. 1. Logical networks and they structure function 

Every gate of a logical network is characterized by 
the probability of its working state: 

pi = Pr{xi = 1}   and   ri = (1 – pi) = Pr{xi = 0}. (3) 

There are assumptions for structure function (1) 
that are peculiar to Reliability Analysis: 

(a) the structure function φ(x) is monotone and φ(s) = s 
(s ∈ {0, 1} and s is the vector whose all components are 
equal to s) [1 – 3]; 

(b) all components are s-independent and are 
relevant to the system [1 – 3]. 
 
B. Structure Function of Logical Network 
 
We propose to use Direct Partial Logic Derivatives (it 
is a part of Logical Differential Calculus) for 
investigation of logical network reliability by 
structure function [11 – 12]. The possibility to use 
Logical Differential Calculus of Boolean Function 
(the Logical Derivatives or Logical Differences) in 
Reliability Analysis is mentioned in [10] too. But the 
author of that paper considered the tool of the Logical 
Derivatives (the Logical Differences is another name 

of this tool) that is very simple and does not realize 
correct analysis of system reliability change that is 
caused by changes of system component states [16, 
17]. There is another tool of Logical Differential 
Calculus that improves dynamic analysis of Boolean 
Function and is named Direct Partial Logic 
Derivatives [17]. These derivatives reflect the change 
in the value of the underlying function when the 
values of variables change. 

Direct Partial Logic Derivative ∂φ(j→h)/∂x i (a→b) 
of a function φ(x) of n variables with respect to 
variable xi reflects the fact of changing the function 
from j to ⎯j when the value of variable xi changes 
from a to ⎯a: 

∂φ(j→⎯j)/∂x i(a→⎯a)= {φ(ai, x) ~ j} ∧ {φ(⎯a, x) ~⎯j},    
(4) 

where φ(ai, x) = φ(x1,…, xi-1, a, xi+1,…, xn) a, j ∈ {0, 1} 
and ~ is the symbol of equivalence operation. 

The logical network failure measures play 
significant role in reliability analysis and are defined 
depending on a change of one system component 
states with relation to Direct Partial Logic Derivatives 
of a structure function φ(x) of n variables with respect 
to variable xi (4). 

In Direct Partial Logic Derivative terminology the 
system failure is represented as the changing of 
logical network running order φ(x) from 1 into 0 (φ(x): 
1 → 0) and breakdown of a gate (Fig.3): 

∂φ(x)/∂x i  = ∂φ(1→0)/∂x i (1→0) 

and is declared as 

∂φ(x)/∂x i  = ),0(),1( xx ii φφ ∧ .           (5) 

xi 

φ(x) 
∂φ(x)/∂xi  

1 

0 
 

1 

0 

State
 of i-th gate

State
logical 

network

R(0) 

 
Fig. 2. Logic Derivatives and changes of logical network running 

order 

Direct Partial Logic Derivative (5) permits to 
determine boundary logical states. Nonzero elements 
of the derivative indicate logical network states (x1 
x2 …xn) for witch breakdown of i-th gate caused 
logical network failure. 

For example, boundary logical states of the system 
with structure function (3) are calculated by Direct 
Partial Logic Derivatives ∂φ(x)/∂x1, ∂φ(x)/∂x 2  and 
∂φ(x)/∂x 3  (Table 1). Nonzero elements of these 
derivatives correspond to boundary system states. 
Therefore breakdown of i-th component causes 
system failure. So, boundary state x1x2x3 = (010) for 
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third component reveals that this component 
breakdown causes system failure if the first 
component isn’t functioning (x1=0) and the second 
component is working (x2=1). 

 

Table 1. Direct Partial Logic Derivatives 

x1x2x3 φ(x) ∂φ(x)/∂x1 ∂φ(x)/∂x 2  ∂φ(x)/∂x 3  
000 
001 
010 
011 
100 
101 
110 
111 

0 
0 
0 
1 
0 
1 
0 
1 

0 
1 
0 
0 
- 
- 
- 
- 

0 
1 
- 
- 
0 
0 
- 
- 

0 
- 
1 
- 
1 
- 
1 
- 

 

 
III. RELIABILITY MEASURES OF LOGICAL NETWORK 

 
C. Reliability Function (RF) 
 
The RF R(j) is one of best known MSS reliability 
measures (Fig.3). It is probability of system work or 
failure [1 – 5]: 

R(j) = Pr{φ(x) = j},  j ∈ (0, 1}. (6) 

For estimation of logical network failure the RF (6) 
is declared as: 

R(0) = Pr{φ(x) = 0}. (7) 

There are some algorithms for a RF calculation [1, 
3 – 7, 10]. Boundary states of investigated system are 
used for it computation. 

In papers [4, 13] proposed algorithms for RF 
calculation on basis of system boundary states and 
structure function (that is presented as a Disjunctive 
Normal Form (DNF)) orthogonalization [13]. An 
orthogonal DNF transform in form for determination 
of RF by replacement [1, 4]: gate states xi (or ⎯xi) to 
probability gate state pi (or (1 – pi) = ri); operations 
AND and OR to product and sum probabilities. As it 
is usually accepted, we base our calculations on the 
following two theorems from probability theory [1, 4, 
7, 13]: 

(a) the probability of product ab of two 
independent events (happening simultaneously), a 
and b, is equal to the product of their probabilities, 
p(ab) = p(a)p(b); 

(b) the probability of sum a + b of two 
incompatible events (at least one of them happening), 
a and b, is equal to the product of their probabilities, 
p(a + b) = p(a) + p(b). 

Consider the algorithm for calculation of the 
logical network RF in paper [13]. In first step the the 
logical network structure function (1) is presented by 
matrix T whose columns correspond to the basic 

events (gate states xi, i = 1, …, n) and rows define the 
boundary states of logical network.  

In the second step the logical network structure 
function declared as matrix T is orthogonalized. It is 
based on the idea of disjunctive expansion of an 
elementary conjunction into a number of other 
conjunctions, every of which being orthogonal to the 
conjunctions from a certain family or absorbed by 
one of them [4]. In the latter case, the absorbed 
conjunction is removed from the result and the 
number of the remaining conjunctions is minimized 
possibly. 

The operation of expanding ki as to kj where ki and 
kj are non-orthogonal elementary conjunctions is the 
key operation for the algorithm: 

(a) the set of all variables that are in ki and are not 
in kj is selected (assume that the number of them is t).  

(b) ki is expanded disjunctively as to the first of 
these variables; one of the resultants of this expansion 
is orthogonal to kj, and the other is expanded as to the 
second variable from the extracted set, etc.  

As a result, conjunction ki will be replaced by t 
conjunctions orthogonal to kj.  

For example, compute RF for logical network 
structure function (2), if probability state of every 
gate is equal and is 0.3 (p = 0.3). 

Boundary states of this structure function are 
determined by Direct Partial Logic Derivative (5) and 
are (x1x2x3) = {(001), (110)}. The matrix T for this 
case is: 

⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=

1
11

T . 

The Fig.3 illustrate the orthogonalization of this 
matrix. As a result of this procedure we obtain 
orthogonal matrix T+ and describe equation for RF 
calculation: 

 R(0) = p1p2 + (1-p1) p3 + (1-p1)p2(1-p3) = 0.357 

 I n i t ia l  d a t a  
( m a t r ix  T )  
x1  x2  x3 
1     1     - 
-    -    1   

R e s u l t  
( o r t h o g o n a l  m a t r i x  T + )
x1 x2 x3 
1  1 - 
0  - 1  
1  0 1  

O r t h o g o n a l i z a t i o n  
x1  x2  x3 

1)          0     -    1  
             1     -    1  
 
2)          1     0     1  
             1     1     1  

3213121 xxxxxxx ∨∨  
Fig. 3. The orthogonalization for calculation of RF 
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Therefore, probability of logical network (that is 
has structure function (2)) failure is 0.357. 

The algorithm for RF calculation is in Fig.4. 
 

 Logical Network 
 
 

Structure 
function 

 
Board system 

states 

 
 

Orthogonalization 

 
Probability of logical 

network failure 
(Reliability Function) 

Direct Partial 
Logic 

Derivatives 

Orthogonalization 
Algorithms  

Change of a structure 
function variables by 

probabilities 

 

 Fig. 4. Reliability Function calculation algorithm  

Note, the measure (7) does not permit the analysis 
of the logical network failure that is caused by a gate 
breakdown. At the same time, in papers [13 –15] 
indices for the estimation of the influence of 
component states changes into the MSS reliability 
have been proposed. These indices are named as 
Dynamic Reliability Indices (DRIs). 
 
D. Dynamic Reliability Indices (DRIs) 
 
There are two kinds of DRIs [13 – 15]: Component 
Dynamic Reliability Indices (CDRIs) and Dynamic 
Integrated Reliability Indices (DIRIs). CDRIs are 
declared as the probability of the system failure and 
repair if the state of the i-th system component 
changes [6, 7]. DIRIs are another kind of DRIs and 
represent the probability of the system reliability 
changes with a modification of one or fixed system 
component states [6, 7, 10]. Now we consider these 
measures for logical network reliability analysis and 
in particular of logical network failure. 

Definition 1. CDRIs of a logical network failure is 
the probability of the network failure that is caused 
by breakdown of the i-th gate: 

Pf(xi) = (ρf /ρ1)⋅ri, (8) 

where ρf is the number of system states when the 
breakdown of the i-th gate forces the system failure 

(is the number of nonzero values of Direct Partial 
Logic Derivative with respect to a corresponding 
variable (5)); ρ1 is the number of system states when 
φ(1i, x) = 1 and is computed by structure function; ri is 
the probability that is determined by (3). 

Definition 2. DIRIs of a logical network failure is 
the probability of its failure that is caused by 
breakdown of any gate: 

∑ ∏
=

≠
=

−=
n

i

n

iq
q

qfiff xPxPP
1 1

))(1()( , (9) 

where Pf(xi) is CDRIs of the logical network failure 
(8) at the i-th gate breakdown. 

The assumption (b) for structure function that all 
components are independent and relevant to the 
system is taken into account in DIRIs definitions. 

For example, continue previous example and 
determine CDRIs and DIRIs for logical network 
structure function (2), if probability state of every 
gate is equal and is 0.3: 

pi = p = 0.3. 

CDRIs for this logical network failure are 
calculated by (8) and DIRIs are determined according 
to (9). CDRIs for this system are in Table 2. The 
numbers ρf are computed as the numbers of nonzero 
elements of derivatives ∂φ(x)/∂x i  and the number ρ1 is 
computed from the structure function of this network.  

Table 2. CDRIs of Structure Function (2) 

Gate Number ρ f Number ρ1 CDRIs, Pf(xi) 
x1 1 2 0.150 
x2 1 2 0.150 
x3 3 3 0.300 
 

The logical network failure will be most possible if the 
third gate breaks down, because CDRIs Pf(x3) have the 
maximum value Pf(x8) = 0.3. 

DIRIs for failure of this logical network are Pf = 
0.395 and is calculated by (9). It is probability of 
network with structure function failure if one of its 
gates fails. 
 

IV. APPLICATION OF DRIS FOR RELIABILITY 
ANALYSIS OF A LOGICAL NETWORK 

 
Consider an example of a logical network (Fig.5) 
analysis by RF, CDRIs and DIRIs, that realises the 
logical function: 

F(y)  = ((y1 y2∨ y1 y3 y5) ∨ (y2 y3 y4 ∨ y4 y5)). 

The network in Fig. 5 includes nine gates (n = 9) 
and let the probabilities of their states be in Table 3. 
The structure function of this network in accord of (1) 
is: 
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     φ(x )  = ((x1 ∨ x2 x5) x7 ∨ (x4 ∨ x3 x6) x8) x9.    (10) 

y1 y2 y3 y4 y5 

x1 

x2 
x5 

x3 
x6 

x4 

x8 

x7 

x9 F(y) 

L o g i c a l  N e t w o r k  

S t r u c t u r e  s c h e me  

x1 

x2 

x4 

x3 

x6 

x5 

x7 

x8 

x9

 

Fig. 5. Example of logical network 

 

Table 3. The State Probabilities of Gates for the 
Logical Network in Fig.4 
 Components 
 x1 x2 x3 

ri 0.03 0.12 0.03 
pi 0.97 0.88 0.97 
 x4 x5 x6 
ri 0.08 0.02 0.07 
pi 0.92 0.98 0.93 
 x7 x8 x9 
ri 0.01 0.23 0.02 
pi 0.99 0.77 0.98 

 
The RF of this network characters possibility of 

system to be failed. This probability is calculated by 
the algorithms from [13] and is R(0) = 0.023. 

CDRIs for this logical network failure are 
calculated by (8) and DIRIs are determined according 
to (9). CDRIs for this system are in Table 4. The 
numbers ρf are computed by derivatives ∂φ(x)/∂x i  
and the number ρ1 is computed from the structure function 
of this network.  

The logical network failure will be most possible if the 
eighth gate breaks down, because CDRIs Pf(x8) have 
the maximum value Pf(x8) = 0.1332. Therefore, 
replacing this gate by another gate with the larger 
probability of perfect working makes for decrease of 

possibility of the network failure if the eighth gate 
fails. For example, CDRIs Pf(x8) would be equal to 
0.0289 if the probability for this gate working is p8 = 
0.95 and r8 = 0.05.  

 

Table 4. CDRIs for the Logical Network Failure 

Gate Number ρ f Number ρ1 CDRIs, Pf(xi) 
x1 33 84 0.0118 
x2 11 73 0.0181 
x3 11 73 0.0045 
x4 33 84 0.0314 
x5 11 73 0.0030 
x6 11 73 0.0105 
x7 55 95 0.0058 
x8 55 95 0.1332 
x9 135 135 0.0200 

 
DIRIs for failure of this logical network are Pf = 

0.2033. It is probability of network in Fig.4 failure if 
one of its gates fails. This probability is different of 
RF of this network that is R(0) = 0.023. Therefore we 
have three types of measures for the logical network 
failure: RF (R(0) = 0.023), CDRIs (Table 3), DIRIs 
(Pf = 0.2033). 
 

V. CONCLUSION 
 
In this paper, we suggest a new method for estimation 
of logical network failure, which is calculated from 
structure function of the network only. We consider 
two types of reliability measures: RF and DIRs. The 
measure, which is named CDRIs, involves the 
probabilities of logical network failure depending on 
breakdown of i-th gate. DIRIs are another measures 
of logical network reliability that is calculated from 
structure function. We include the RF in method for 
general estimation of logical network failure and 
elaborate the algorithms for it calculation. Presented 
measures permit to estimate reliability (failure) of 
logical network with relation to a structure of this 
network mainly.  

Note proposed methods for reliability analyses of 
logical network can be used in another application. 
For example, DRIs may be employed for reliability 
analyses of computer and transport networks, power 
system [2, 3, 15]. 
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