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Abstract – The paper addresses the problem of 
estimating the parameters of polynomial phase signals 
(PPS) embedded in Gaussian noise. We consider an 
estimation method based on an approximate linear state 
space representation of the polynomial phase signal. 
This approach offers the opportunity to use a standard 
Kalman filtering procedure in view to estimate the 
parameters of PPS signals. Procedure simulations were 
made on linear chirp sinusoids with time-varying 
amplitude and are consistent with the theoretical 
approach. The paper presents the most important 
results. 
Keywords: Kalman filter, polynomial phase signals, 
linear state model, parametric identification 
 

I. INTRODUCTION 
 

Chirp signals are frequently encountered in many 
signal processing applications such as in radar, sonar, 
laser velocimetry or telecommunications. The 
estimation of the parameters of chirp signals affected 
by additive Gaussian noise has received considerable 
interest in signal processing literature and several 
methods formulated as linear system identification 
problems, have been used to solve the problem [1]. 
These approaches admit the solution in the form of a 
Kalman filter [2]-[6], which is the optimal tracking 
algorithm when the signal models are assumed linear 
and both state and observation noise are additive 
Gaussian.  

The parametric estimation by Kalman filtering has 
been largely investigated in the case of polynomial 
phase signals affected by Gaussian noise. The use of 
Kalman filter is justified by its practical advantages in 
the tracking of the frequency of a signal in several 
practical applications [3]. The first works in the field 
have been devoted to the identification of chirp 
signals. A linear state model can be obtained by the 
approximation of Tretter [4] which transforms the 
additive noise into a noise on the phase. This model is 
linear and Gaussian, allowing the application of the 
Kalman filter which is optimal from the view of the 
minimum of variance, being applicable in the case of 
monocomponent signals at moderate levels of additive 
noise [5], [6]. 

In this paper we consider the estimation of 
parameters of a chirp signal (also called second order 
polynomial phase signals) corrupted by additive 
Gaussian noise. In our approach, we consider the 
approximate linear state-space model derived in [6] 
for polynomial phase signals, but we propose a 
random walk assumption for the time evolution of the 
amplitude of chirp. This assumption adjoins the 
amplitude to the linear phase parameters which can be 
estimated by the algorithm described in the paper. 

This paper is organized as follows. Section II 
introduces the state-space model of variable amplitude 
polynomial phase signal affected by additive Gaussian 
noise. In section III we describe the Kalman filter 
algorithm used in the estimation of chirp signal 
parameters. Section IV provides simulation results 
which confirm the validity of the model at moderate 
levels of noise. Finally, section V gives the 
concluding remarks and sketches the prospective 
work to be done. 
 

II. STATE-SPACE REPRESENTATION OF 
CHIRP SIGNAL 

 
The linear state-space model associated with a 

variable amplitude linear chirp signal is described by 
two equations: a state transition equation and an 
observation equation: 

 
[ ] [ ] [ ]

[ ] [ ] [ ]
1n n n

n n n

+ = +

= +

x Fx Gv

y Hx w
 (1) 

 
[ ]nx  is the state vector and [ ]ny  is the observation 

vector, [ ]nv  represent the state noise vector and 

[ ]nw  is the vector of noise in the measured signal. F  
and H  are   the state transition matrix, respectively 
the observation matrix. 
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The Observation Model 
The model of a variable amplitude second order 

polynomial phase signal [ ]y n  embedded in the 

additive noise [ ]w n  is given below: 

[ ] [ ] [ ]( ) [ ]expy n A n j n w n= Φ +  (2) 

where the positive real-valued [ ]A n  is the amplitude 

possibly time-varying and unknown and [ ]nΦ  is the 
deterministic polynomial phase, expressed, for a 
linear chirp, by: 

 [ ] 2

2
n n nα β γΦ = + +  (3) 

where the coefficients α , β  and γ  are real and 
unknown. The additive white Gaussian noise [ ]w n  

has zero-mean and variance 2
wσ . It can be written as 

 [ ] [ ] [ ]R Iw n w n jw n= +  (4) 

with [ ]Rw n  and [ ]Iw n , the real part and the 
imaginary part of the analytical noise. If both parts are 
not correlated between them, having the same 
variance, we can write: 

 [ ] [ ]{ } [ ]
2

2
w

R RE w n w n k k
σ δ+ =  (5) 

 [ ] [ ]{ } [ ]
2

2
w

I IE w n w n k k
σ δ+ =  (6) 

 [ ] [ ]{ } 0,R IE w n w n k k Z+ = ∀ ∈  (7) 

where {}E ⋅  is the expectation operator. An analytical 
signal having these properties is called “cyclic” noise 
[7]. 

In order to estimate the parameters of chirp signals 
corrupted by noise, we use an adequate model of the 
signal with emphasis on its instantaneous phase. In 
this sense we express the measured signal [ ]y n  in 
terms of its polar components: 

 [ ] [ ] [ ]{ } T
n y n Arg y n⎡ ⎤= ⎣ ⎦y  (8) 

It is the observation vector of chirp linear model. 
As is shown in [4], if the signal-to-noise ratio (SNR) 
in the measured signal [ ]y n  exceeds13dB , the noise 

real part affects only the amplitude [ ]A n , whereas the 

phase [ ]nΦ  is affected by the imaginary part of the 
“cyclic” noise. Eq. (2) can be written now in terms of 
amplitude and phase as: 

 
[ ]
[ ]{ }

[ ]
[ ]

[ ]
[ ] [ ]

R

I

y n A n w n
n w n A nArg y n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥Φ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (9) 

Consequently, the noise observation vector in (1), 
[ ]nw , is expressed as 

 [ ] [ ] [ ] T
R In w n w n⎡ ⎤= ⎣ ⎦w  (10) 

The correlation matrix of noise vector [ ]w nQ  is 
established under the assumptions (5)-(7) and the 
decomposition in (9), as 

 [ ] [ ]
2

2

1 0
0 12

w
w n

A n
σ ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Q  (11) 

As the amplitude [ ]A n  is variable, [ ]w nQ  is 
recalculated for each step of the filtering algorithm. 

The State-Space Model and Transition Equations 
The values of an M -order polynomial ( )P x , can 

be expressed by the Taylor series expansion [7]: 

( ) ( ) ( ) ( )0 0 0
0

; ,
!

kM
k

k

x
P x x P x x x R

k=

∆
+ ∆ = ∀ ∀∆ ∈∑  (12) 

viewing that all derivatives having the order higher 
than M  are zero. For the l -order derivative of the 
polynomial ( ) ( )lP x  can be used the following series 
expansion: 

 

( ) ( ) ( )
( )

( ) ( )0 0 0; , , 1,
!

kM
l k

k l

x
P x x P x x x R l M

k l=

∆
+ ∆ = ∀ ∀∆ ∈ =

−∑ (13) 

Replacing ( )P x  by the phase polynomial [ ]nΦ  in(3)
, 0x  with n  and x∆  by 1, we have for: 
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n n
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The state vector [ ]nx  in the case of variable 
amplitude linear chirp signals is given by the 
amplitude of the sinusoid, the phase and the first 

2M =  derivatives of the phase: 

 [ ] [ ] [ ] ( ) [ ] ( ) [ ]' '' T
n A n n n n⎡ ⎤= Φ Φ Φ⎣ ⎦x  (16) 

where: 
 ( ) [ ] [ ] [ ]' 1n n nΦ = Φ −Φ −  (17) 

and: 
 ( ) [ ] ( ) [ ] ( ) [ ]'' ' ' 1n n nΦ = Φ −Φ −  (18) 

Note that in discrete time, other definitions for (17) 
and (18) are possible as well [1]. 

For two consecutive moments, the relation 
between the two states is derived from (14) and (15): 
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⎢ ⎥ ⎢ ⎥⎢ ⎥Φ + Φ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (19) 

 
It is a transition equation between two 

consecutives states, without taking into account the 
state noise. Comparing (19) with the first equation in 
(1), we find that the 4 4× -size transition matrix is: 
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1 0 0 0
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⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F  (20) 

One of the most frequently used models of a time 
evolution of signal parameters (here the amplitude) is 
a random walk. In particular, it is assumed that the 
instantaneous amplitude of chirp has random 
increments having a Gaussian distribution. For this 
reason we consider for variable amplitude the 
following random walk model 

 [ ] [ ] [ ]1A n A n v n+ = +  (21) 

where [ ]v n  is a sequence of i.i.d. random scalars with 

the distribution ( )20, vN σ . Thus, the rate of evolution 

of the chirp amplitude is described by 2
vσ . 

The last equation must be added to (19) in order to 
obtain the complete description of the state evolution 
for a variable amplitude chirp signal: 

 [ ] [ ] [ ] [ ]1 1 0 0 0 Tn n v n+ = +x Fx  (22) 
It results 

 [ ]1 0 0 0 T=G  (23) 
Finally we can rewrite (9) as 

 

[ ] [ ] [ ]
[ ] [ ]

1 0 0 0
0 1 0 0

R

I

w n
n n

w n A n
⎡ ⎤⎡ ⎤
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⎣ ⎦ ⎣ ⎦

y x  (24) 

which means that the observation matrix H is 

 
1 0 0 0
0 1 0 0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

H  (25) 

 

III. KALMAN FILTERING ALGORITHM 
 

The system identification problem for the state 
model in (1) can be solved by a standard Kalman 
filter. 

Assume that the initial state [ ]1x , the observation 

noise [ ]nw  and the state noise [ ]v n  are jointly 

Gaussian and mutually independent. Let ˆ 1n n⎡ − ⎤⎣ ⎦x  

and 1n n⎡ − ⎤⎣ ⎦R  be the conditional mean and the 

conditional variance of [ ]ˆ nx  given the observations 

[ ] [ ]1 , , 1n −y yK  and let ˆ n n⎡ ⎤⎣ ⎦x  and n n⎡ ⎤⎣ ⎦R  be the 

conditional mean and conditional variance of [ ]ˆ nx  

given the observations [ ] [ ]1 , , ny yK . Then [8] 

Measurement Update 

[ ] [ ]( ) 1ˆ1 1T T
wn n n n n n

−
= ⎡ − ⎤ ⎡ − ⎤ +⎣ ⎦ ⎣ ⎦K R H HR H Q (26) 

 [ ] [ ]( )ˆ ˆ ˆ1 1n n n n n n n n⎡ ⎤ = ⎡ − ⎤ + − ⎡ − ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦x x K y Hx (27) 

 [ ]1 1n n n n n n n⎡ ⎤ = ⎡ − ⎤ − ⎡ − ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦R R K HR  (28) 

Time Update 

 ˆ ˆ1n n n n⎡ + ⎤ = ⎡ ⎤⎣ ⎦ ⎣ ⎦x Fx  (29) 

 21 T T
vn n n n σ⎡ + ⎤ = ⎡ ⎤ +⎣ ⎦ ⎣ ⎦R FR F GG  (30) 

where [ ]nK  is the Kalman gain matrix at moment n . 
Since an exact value of correlation matrix  (11) is not 
available, it is estimated by [ ]ˆ

w nQ , computed at each 
step of Kalman algorithm as 

 [ ]
2

2

1 0ˆ
ˆ0 1 12

w
w n

A n n
σ ⎡ ⎤

= ⎢ ⎥
⎡ − ⎤⎢ ⎥⎣ ⎦⎣ ⎦

Q  (31) 

In order to evaluate the parameters of variable 
amplitude linear chirp given by 

[ ] [ ] T
n A n γ β α⎡ ⎤= ⎣ ⎦θ  one uses the following 

relation [2] 
 [ ] ˆnn n n−= ⎡ ⎤⎣ ⎦θ CF x  (32) 

where the matrix C  is a diagonal with elements 1, 1, 
1, 0.5. 
 

IV. EXPERIMENTAL RESULTS 
 

In order to implement the state-space model 
introduced before we used Hilbert transformation 
followed by modulus and phase calculation to obtain 
the Cartesian coordinates decomposition of eq. (8). 
These data represent the measured input vector for a 
Kalman filtering algorithm based on one-step 
prediction, which is implemented in MATLAB. 

The chirp signal used for tests, shown in Fig. 1, is 
5000 samples long and the sampling frequency is 
5000Hz. The chirp parameters have the following true 
values: 41.0053 10α −= × , 0.1256β =  and 2γ π= . 
The state noise [ ]v n  is zero mean Gaussian white 

noise with 2 31.799 10vσ
−= × .  

The observation noise [ ]w n  is zero mean 
Gaussian white noise with 20dBSNR = .  

Figure 1. Chirp signal corrupted by noise used for simulation. 
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To give a better understanding of Kalman filter action 
on polynomial phase signals, Fig. 2 shows the results 
of instantaneous frequency estimations and Fig.3 
presents the amplitude estimation obtained for the test 
signal. 

Figure 2. Estimation of the instantaneous frequency of chirp signal. 

Figure 3. Amplitude estimation. 
 
In order to evaluate the performances of Kalman filter 
in frequency and amplitude estimation for linear chirp 
signals, Fig. 4 and Fig. 5 shows how the SNR affects 
the RMSE of these parameters. The results certify that 
as long SNR exceeds 13dB, the linear model assumed 
for the chirp signal works well. 
 

V. CONCLUSIONS 
 
The paper gives the state-space model of variable 
amplitude polynomial phase signals with good 
opportunities in the estimation of parameters of linear 
chirp signals embedded in Gaussian white noise. The 
Kalman filter algorithm performs well viewing the 
results. The algorithm allows the extension to 
multicomponent chirp signals and higher order 
polynomial phase signals with constant as well as 
variable amplitude which will form the object of our 
future work. 
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Figure 4. RMSE of estimated amplitude versus SNR. 

Figure 5. RMSE of estimated instantaneous frequency versus SNR. 

Figure 5. RMSE of estimated instantaneous frequency versus SNR. 
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