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Abstract – This paper presents an important 
improvement that can be obtained by using two new 
types of linear prediction. These were previously 
introduced in order to find a time domain interpretation 
to LSF parameters. We show that the minimum error 
energy of at least one of the two predictors is much 
lower than the error of conventional linear prediction. 
Keywords: Linear predictive coding (LPC), minimum 
error energy, low-pass filter, high-pass filter. 
 

I. INTRODUCTION 
 
Linear predictive coding (LPC) [1] is a well-known 
technique used to speech coding. By using this 
technique, speech signal is decomposed in LPC 
coefficients and residual (error) signal. These two 
components are separate quantized. LPC coefficients 
are transformed in Line Spectrum Frequency (LSF) 
parameters[2], that can be better quantized. In [2] is 
presented a time-domain interpretation of LSF 
parameters. Namely, these parameters can be obtained 
using two new types of linear predictors: one is 
preceded by a low-pass filtering of the input signal 
and the other is preceded by a high-pass filtering. In 
this paper, first the expressions of the minimum error 
energy for two types of predictions are demonstrated. 
Then, it is demonstrated that both the minimum errors 
depend on spectral components of the analyzed signal. 
Furthermore, at least one of the two errors is much 
lower than the error in conventional LPC predictor. 
The paper is organized as follows. In section II the 
two new types of predictors are presented. In section 
III the expressions of the minimum error energy are 
demonstrated and in section IV experimental results 
are presented.    

 
II. LINEAR PREDICTION USING AVERAGED 

AND DIFERENTIATED VALUES 
 
The conventional linear prediction of p order 
considers that a sample of a sequence x(n) can be 
estimated by a linear combination of the previous p 
samples, 
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where ai represents LPC coefficients. The prediction 
error sequence represents the difference between the 
input sequence and the estimated sequence.    
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The LPC coefficients are obtained by minimizing the 
linear prediction error energy, 2 ( )

n
e n∑ . That means 

solving of the following equations 
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One of the most used methods to solve the equations 
(3) is the autocorrelation method. Thus, the elements 
of the input sequence x(n) are assumed to be different 
to 0 for n=0,1,…,N−1, and equal to 0 outside this 
interval. In this way, the following equations are 
obtained [1] 
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where R(i) represent elements of the autocorrelation 
sequence of x(n). Also the minimum error energy can 
be expressed by [1] 
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In [2], two new types of linear prediction are 
presented. First, two sequences are introduced 
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and then the elements of input sequence are estimated 
as follows 
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Thus, expression (8) represents a linear prediction 
depending on average value of two consecutive values 
of x(n) and expression (9) represents a linear 
prediction depending on differentiated value of two 
consecutive values of x(n). 
It follows the expressions of linear prediction error 
sequences: 
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and, respectively, 
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The coefficients hi
+ and respectively, hi

− can be 
determined similar with ai by minimizing the linear 
prediction error energy. 
In this way the following equations are obtained [2]: 
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If the Z-transform is applied in both terms of (10) and 
(11), the following equations are obtained: 
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In above equations, 0 0 2h h+ −= =  and 1ph+
+ =  

1 0ph−
+ = are further introduced in comparison with 

those obtained by (12) and (13). In [2] it is shown that 
the LSF parameters are obtained by using the phase 
angle of the roots of polynomials H+(z) and H−(z). For 
instance, if p is even, LSF1, LSF3,…,LSFp-1 are 
computed by using H+(z) and LSF2, LSF4,…,LSFp are 
computed by using H−(z). That is, computing the 
coefficients hi

+ and hi
− represents an alternative way 

to the traditional LSF computing that uses the 
symmetric and antisymmetric polynomials P(z) and 
Q(z), that are built based on the coefficients ai [2], [3].  
On the other side, the two time transforms that define 
x+(n) and x−(n) have the following Z-transforms: 
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By examining the equations (16) and (17) it follows 
that time-transform that forms the average signal 
represents a low-pass filter and time transform that 
forms the differentiated signal represent a high-pass 
filter. In both cases, the cutoff frequency is fs/4, 
because |X+(z)/X(z)|=|X−(z)/X(z)|=0.707 for z=exp(jω),  
ω=πf/(fs/2) and f=fs/4, fs being the sampling frequency. 
That means that x(n) is estimated by its previous 
samples that was first low-pass filtered, or 
respectively, high-pass filtered. Based on these 
statements, the linear prediction expressed by (8) will 
be called low-pass linear prediction and that 
expressed by (9), high-pass linear prediction. It 
follows that the minimum error energy for both linear 
predictions depends on spectral components of the 
sequence x(n). Namely, for signals which have their 
energy concentrated on lower frequencies, the error 
for low-pass linear prediction is lower because the 
low frequency components are emphasized in 
comparison with higher frequency components. 
Similarly, for signals which have their energy 
concentrated on higher frequencies, the error for high-
pass linear prediction is lower because the high 
frequency components are emphasized in comparison 
with lower frequency components. 

 
III. COMPUTING THE MINIMUM ERROR 

ENERGY FOR LOW-PASS AND HIGH-PASS 
LINEAR PREDICTIONS 

 
In the following we want to achieve a comparison 
between the three types of linear predictions 
(conventional, low-pass and high-pass) depending of 
the value of minimum error energy. 
Therefore, the expressions of the minimum error 
energy for low-pass and high-pass linear predictions 
have to be computed. First, we compute this quantity 
for low-pass prediction. For this purpose, squared 
value of expression (10), and then, the equations (12) 
that allow obtaining the coefficients hi

+, are used. 
Thus, the value of the error energy is 
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The second term and the last one from previous 
equation are grouped together and the resulting 
term is denoted by T. In the Appendix is 
demonstrated that if the coefficients hi

+ and hj
− are 

chosen such to minimize the expression of error 
energy, a simplified expression of T is: 
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Replacing this expression of T in (18) the following 
expression of Ep+,min is obtained. 
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In a similar mode, the expression for the minimum 
value of the error energy for the low-pass 
prediction can be obtained as 
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It must be remarked that the expressions of 
minimum error energy (5), (20) and (21) are 
computed for values of n in range 
0,…,N−1,…,N+p−1, because the estimated signal 
can be computed in this range. 
 

IV. EXPERIMENTAL RESULTS 
 
In order to achieve the experiments, frames of 
speech signal from TIMIT data base [4], in 
English, as well as several frames acquired by a 
sound card of a computer, in Romanian, have been 
used. Also, frames from a synthesized signal with 5 
components have been used. The last choice has 
the advantage that the five frequencies could be 
suitable chosen in order to cover the range of the 
spectrum. In all these cases, the sampling 
frequency was 8 kHz. The length of each frame 
was 200 samples or 25 ms. A conventional linear 
prediction of order p=10 was implemented first, by 
using (4), in order to compute the coefficients ai. 
Then, the coefficients hi

+ and hi
− was computed for 

p=10, by using (12) and (13), respectively. Thus, 
LSF parameters were computed by using both the 
roots of polynomials P(z) and Q(z), and the roots of 

polynomials H+(z) and H−(z), respectively. The 
same values are obtained by each of two methods. 
For each frame of signal, the LPC spectrum [1] and 
the value of minimum error energy for the three 
types of predictors were computed. In practice, the 
length of the error sequence e(n) has to be equal to 
the length of the input sequence x(n), and therefore 
the values of the minimum error energy were 
computed for n having values in range 0,…N−1. 
First, two frames of synthesized signal were 
analyzed. The two signals contain the following 
frequencies, each of them having the same 
amplitude: 850 Hz, 1200 Hz, 2000 Hz, 3300 Hz, 
3800 Hz, and 350 Hz, 900 Hz, 2000 Hz, 2700 Hz, 
3100 Hz, respectively. Fig. 1 a)  presents  the  LPC  

 
a 

 
b 

 
c 

Fig.1. LPC spectrum for the first synthesized signal and its low-pass 
and high-pass versions 
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spectrum of the first signal, and the LSF 
parameters: those that have been computed by 
using roots of H+ are represented with ‘+’ symbol  
and those computed by using roots of H− are 
represented by ‘O’ symbol. A cluster of 2 or 3 
LSF’s characterizes a peak (a formant) in the LPC 
spectrum. The width of the format depends on the 
closeness of the corresponding LSF’s. A singular 
LSF characterizes a valley in the LPC spectrum. In 
the following figures, these LSF’s property can be 
seen too.  Fig. 1b) and 1c) represent the spectrum 
of low-pass filtered signal and high-pass filtered 
signal, respectively. Fig. 2 presents the same 
quantities for the second signal. Table 1 presents 
the value of the three errors for both the signals.  

 
a 

 
b 

 
c 

Fig.2. LPC spectrum for the second synthesized signal and its low-
pass and high-pass versions 

 
The first signal has an important part of the 
spectrum at higher frequency. After the high-pass 
filtering this part is emphasized, and instead after 
the low-pass filtering it is reduced. Thus, the 
energy error for high-pass prediction is much lower 

than that of low-pass prediction. Instead, the 
second signal has the main part of the spectrum at 
lower frequency and thus, the energy error for low-
pass filtering is the lowest. In both cases the error 
energy for conventional prediction is much higher 
than the lowest of two other errors. 
 
Table 1 Values of the minimum energy error for 
synthesized signals 
 Signal 1 Signal 2 
Ep+,min 298 1.37 
Ep−,min 5.02 129 
Ep,min 315 201 
 
In figures 3 to 6 are presented the LPC spectrum 
together with LSF parameters for four different 
frames of speech. The first two are frames of two 
different female speakers and last two are frames of 
two different male speaker. Table 2 presents the 
three values of the minimum error energy for the 
frames presented in fig. 3 to 6. 
 
Table 2. Values of the minimum energy error for 
frames of speech signal 
 Signal 

from  
fig.3 

Signal 
from 
fig. 4 

Signal 
from 
fig. 5 

Signal 
from 
fig. 6 

Ep+,min 0.0456 0.0045 4.5⋅10−5 3.6⋅10-5 

Ep−,min 0.0183 0.0063 0,0098 0.452 
Ep,min 0.101 0.0532 0,0082 0.0253 
 

 
Fig.3 LPC spectrum for a female vowel [u:] 

 

 
Fig.4 LPC spectrum for a female vowel [e:] 
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Fig.5 LPC spectrum for a male vowel [o:] 

 

 
Fig.6 LPC spectrum for a male vowel [a:] 

 
Based on these results, the following conclusions 
can be presented. 
In the frames of female speakers, the LPC spectrum 
has components at both lower and higher 
frequencies. It follows that the errors of low-pass 
and high-pass predictions are close to each other, 
the error of conventional prediction being the 
biggest. 
In the frames of male speakers, the LPC spectrum 
has the most important components at lower 
frequencies. It follows that the error of low-pass 
prediction is the lowest and then follows the error 
of conventional prediction, the error of high-pass 
prediction being the biggest. 
 

V.  CONCLUSIONS 
 

The paper presents an important property of two 
new types of linear predictions previous introduced 
in [2]. Namely, for each of two predictors, the 
minimum energy error depends on spectral 
components of the analyzed frame. At least one of 
the two errors is much lower than the error in 
conventional prediction. These statements are valid 
for any type of signal and are based on the 
experimental results. Also in [5] is experimentally 
demonstrated that low pass linear prediction 
outperforms conventional linear prediction to 
finding the formants of the vowels speech data. 

Therefore, in the future, a demonstration of these 
statements should be achieved. In practice, this 
important property could be applied as follows. 
Both types of linear predictions can be applied to 
each frame of speech signal. Then, the prediction 
that allows obtaining the lowest value of the 
minimum error energy is chosen, and the prediction 
error sequence (together with the LSF parameters) 
is sent to receiver. Thus, fewer bits are necessary in 
order to quantize the prediction error sequence and 
a further compression could be obtained. 
    

APPENDIX 
 
In this section it is derived the expression of term 
T, that was used in section 3. Thus, 
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Each term of the sum in T2 can be written twice if 
its denominator is considered 4. In this way, the 
computation of T is presented at the top of the next 
page. It can be seen that each term within squared 
brackets in (23) represents one of the equations 
used for computing the hi

+ coefficients, (12). Then, 
(23) can be written as follows 
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