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Abstract –  The paper introduces a new dipole like 
model for a perturbation induced by a circular slab of 
incremental conductivity in a uniform current density 
field.  The analytical solution for the forward problem is 
derived. The dipole model analysis reveals that the 
uniform parallel field is not sensitive to spatial 
frequencies of the conductivity function.  A parallel  
impressed field was found to be very accurate in 
localizing areas of non homogeneity by their ‘center of 
gravity’. A couple of useful properties of the field 
projection on curves at distance from non homogeneity 
is also described. 
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I. INTRODUCTION 
 

One of the difficulties encountered in devising high 
accuracy solution for Electrical Impedance 
Tomography (EIT) practical use is the non local 
property of the conductivity when probed with current 
distributions [1]. The intense research conducted by 
research groups interested in EIT problem solutions in 
the past years benefited from an abundance of new 
theoretical results obtained by abstract mathematical 
investigations [2] [3] [4]. 
The present paper analyses a conductivity non 
homogeneity effect on an impressed parallel current 
density field emphasising local geometry perspective. 
The best and appropriate field patterns and data 
collection arrangement is a problem that still has not 
received a complete answer. Several particular 
patterns have been explored only and some have been 
studied to be associated with appropriate practical 
tactics of implementation  [5] [1]. 
The recent advances in the EIT problem formulated 
from a global functional perspective of boundary 
injected current fields, seeking a inverse solution to 
the boundary measured data constituted valuable 
inspiration [4] [2].   
The  basic  problem of imaging a generic perturbation 
of conductivity is central to the linearised EIT 
formulation. A generic circle of changed conductivity 
from background is a good starting point for the study 
of the problem . The homogeneous parallel field 

pattern was chosen for its simplicity and ease of 
practical implementation.  
A derivation of the dipole analytical  model is original 
and it was obtained based on the charge distribution at 
the boundary of the non homogeneity generated by 
the boundary constraints.  
For the case of electric current flow in domains with 
general conductivity distributions the literature is not 
very generous with examples of solutions. The case is 
overshadowed by electrostatics and circuit 
representations [2]. 
The positive answer reported in the present paper is 
that the dipole model is valid representation for a 
incremental non homogeneity as a basic perturbation 
in the linearized EIT formulation. 
The inverse imaging based on the domain boundary 
measurement is shown not to be sensitive al all to 
conductivity spatial frequencies. 
Finally a local dipole co-ordinate system was found to 
be a useful tool in area partitioning and its metrics 
analysis use for devising solutions to the inverse 
problem. 
  
II. THE DIPOLE MODEL FOR THE LINEARIZED 

EIT PROBLEM 
 
The dipole model is an appropriate model for 
incremental conductivity change from the background 
as required by the linearised formulation of the EIT 
problem. The paper does not address the high contrast 
conductivity case used in application areas like 
geophysics or particle inclusion determination [2] [6].  
In a impressed uniform and parallel current field the 
change due to the presence of a small generic non 
homogeneity in conductivity results in a dipole like 
field added to the original one.  The derivation of the 
equations of the added field is similar to the 
formulation of the problem in terms of electrostatic 
field.   [7] [8]. 
The electrostatic formulation of the problem for a 
infinite conductivity generic unit non homogeneity in 
a parallel electrostatic field is the case most often 
presented. This case of extreme change in the region 
property is useful in the study of high contrast 
conductivity EIT not addressed in this paper [6]. 
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The case of a small conductivity change with respect 
to the background as it is defined in the linearised EIT 
problem is analysed in the following.  The set of 
equations is formally equivalent to the electrostatic 
case but it relates now current density normal to the 
non homogeneity boundary and conductivity.  
The current density continuity at the boundary results 
in a electric field discontinuity hence a charge 
distribution q | r = r0  as presented in Fig 1.and 

equations (1 - 4). 

 
 

Fig 1.Boundary charge as resulting from electric field and 
conductivity constraint at the boundary. 

 
For a very small perturbation the normal component 
of the impressed current density is proportional to the 
cosine of the central angle. 
 
     En 0 σ0  = En + σ+       (1) 

   (1) 
      Et 0  = Et +        (2) 

 
q | r = r0  =     ε0 En 0 (σ0/ σ+ - 1)                 (3) 

 
q | r = r0  =  ε0 J0 / σ0 (σ0/ σ+ - 1 ) (cos (φ))      (4) 

 
where,  En and Et are the normal and tangential 

electric field, σ0 and σ+  are  the initial  and perturbed 

conductivity, ε0 is the electric permitivity, J0 is the 

initial current density and the φ central angle of  a 
characteristic vector to the circular boundary. 
It is important to note that the charge density q due to 
the conductivity change  is a valid relation even when 
the conductivity perturbation tends to zero in the 
limit. 
For a charge distribution, the edge of the circular slab, 
in the form of a cosine function an analytical solution 
is known and the result is a dipole like field 
perturbation  [7]. 
The potential V of the induced electric field due to the 
perturbation can be summarized in the following 
formula: 
 
  

   V = A cos (φ) / rdim-1         (5) 
 
where A is a constant, r, φ are the polar co-ordinates 
and dim takes value 2 for a cylindrical case in two 
dimensions and 3 for the three dimensional case [7]. 
Even if the formula is not the same for two and three 
dimensions the filed lines and equipotential lines 
topology is the same as presented in fig 2. 
 

 
Fig 2.  Dipole model, boundary charge and induced  field resulting 

from a conductivity perturbation. 
 
Analysis of the model reveals a number of interesting 
properties of interest to the EIT problem. 
The projection of the perturbation component of the 
field on lines and circles at a distance from the centre 
of the non homogeneity has a 'mexican hat' form as 
presented in Fig 3. 
 

 
 

Fig 3. Induced field projection on a parallel line to the original 
impressed field. 

 
Our analysis of the field projection reviled the 
following interesting properties: 
 

P1. The width of the positive peak of the field 
projected on a line parallel to the original field is 
equal to twice the distance to the non 
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homogeneity centre. A similar proportional 
property can be deduced for any curve of 
projection. 
 
P2. The integral of the field projection on each 
half space determined by the non homogeneity is 
zero.  
 

A simple proof can be immediately obtained using 
Gauss theorem given the fact that the total charge 
distribution at the boundary of the non homogeneity is 
of zero sum due to symmetry. 
The found properties are of interest in devising 
sparcity promoting inverse problem methods of 
reconstruction. A multiresolution analysis remains as 
a future objective that needs more work to reach 
results valuable for practical use [9]. 
  

III. DISSCUSSION 
 
Analysing the determination of an inverse image of 
the non homogeneity from measurements at a 
conductivity object boundary it is easy to observe that 
it admits as solution a Dirac like function. The  
magnitude is equal to the conductivity variation 
scaled by the non homogeneity area. The absolute 
precision in the' centre of gravity ' position is in 
evident contrast with the possible total undetermined 
conductivity boundary localisation.  
The proof is immediate given the fact that the form of 
the perturbed field lines as determined for the dipole 
model are independent of the non homogeneity radius. 
The filed lines follow outside the non homogeneity 
area the form of a ideal dipole located at the ‘centre of 
gravity’ of the perturbation. 
The filed lines map at the non homogeneity boundary, 
therefore are independent from non homogeneity 
radius. Any circle of with the same centre is a 
possible solutions to the inverse problem. 
The result above leads to the important practical 
conclusion that the homogeneous parallel impressed  
field is not suitable for imaging high frequency 
components of the conductivity.  
A measurement strategy using uniform filed will 
permit the location of the centre of gravity of the 
simply connected regions of conductivity. 
Other inverse imaging methods can be used in follow 
up to determine the location of the boundaries of the 
regions [3]. 
The described projections of the field on curves at 
distance from the non homogeneity do provide 
valuable information for the development of a general 
EIT multi resolution approach [9]. 
The field change due to the perturbation is a result 
obtained for a particular initially impressed field. The 
results are of value for other types of initial fields that 
can be decomposed in terms of parallel fields as well. 
One interesting subject of future work is the study of 
the perturbed field geometry.  
The dipole co-ordinates and variations as used in 
other fields constitute an important starting point. 

[10]. The hyperbolic function change of co-ordinates 
that ‘flatten’ the field suggest a similar approach for 
conductivity non homogeneity problem in EIT. 
 
 
 

IV. CONCLUSIONS 
 

The paper introduces an original dipole like model for 
the perturbation induced by a circular slab of 
incremental conductivity in a uniform and parallel 
current field. The charge distribution on the boundary  
is found to be arranged according to a cosine profile. 
This finding leads to a simple derivation of the 
analytic solution for the perturbing potential. Probing 
for an inverse solution the absolute precision in 
position was found in evident contrast with the 
undetermined conductivity boundary localisation. 
This finding proves that a parallel impressed field is a 
not suitable for imaging conductivity distributions 
with high spatial frequency content. It is very accurate 
as far as the localization of areas of non homogeneity 
by its’ center of gravity’. The projections of the field 
change due to the perturbation was found to have 
useful properties for its use in developing a  multi -
resolution algorithm for EIT. The proportional scaling 
with depth is a important finding but it needs more 
work to turn it into a practically usable method. Field 
geometry and co-ordinates promises to be a 
interesting and idea reach subject for future work. 
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