
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 53(67), Fascicola 2, 2008

Efficient Architecture for SPIHT Algorithm for Compression
of Images

Anil V. Nandi1, R.M.Banakar2

Abstract – Our work involves synthesis and FPGA
implementation of high speed and high throughput
Superscalar ‘Set Partitioning in Hierarchical Trees’
(SPIHT) algorithm for compression of natural images.
Because of its inherent redundancy removal property
among wavelet coefficients SPIHT is well suited for
compression of both gray and color images. But the
basic SPIHT algorithm uses dynamic data structures
which hinders hardware realization. In our
implementation we have used modified SPIHT.
Modifications are in two ways, one by using static (fixed)
mappings which represent significant information and
the other by inter-changing the sorting and refinement
passes. The implementation involves pipelining and
parallelism operations in SPIHT blocks and peripheral
circuitry. The address generation unit is designed in
such a way that the coefficients of different sub bands
are accessed from memory efficiently and helps in
achieving higher speed and throughput. A hardware
realization is done in a Altera Cyclone II FPGA
development board. Significant clock speed and
throughput are obtained for a test image of size 128 x128
pixels.

Keywords: Compression, SPIHT, Pipeline, Parallel

I. INTRODUCTION

DWT of an image leads to its representation
indifferent scales in the form of Spatial Orientation
Trees (SOT). The coefficients in SOT of an image
DWT are encoded using embedded zero-tree coding
which is proved to be the best image compression
technique [1][2]. After the transform, the lowest
frequency coefficients concentrate most of the energy
of the transformed image. The high frequency
coefficients of different scales and orientations
indicate the strong self similarity among themselves.
These properties are exploited in SPIHT [1]. After
EBCOT in JPEG2000, SPIHT a sophisticated coding
technique belongs to next generation of encoders for
wavelet transformed images. The basic SPIHT uses
dynamic data structures for exploiting self similarities
mentioned above. These dynamic data structures

1Assistant Professor,2 Professor and Member-IEEE, Electronics and
Communication Engineering Department, B.V.Bhoomaradi College
of Engg. & Tech., Vidyanagar, Hubli-580 031, Karnataka, INDIA.
e-mail anilnandy@bvb.edu

impose practical limitation on hardware
implementation of SPIHT, unlike software
implementation where dynamic data structures can be
implemented conveniently using linked lists [3].
Hence we have modified the basic SPIHT algorithm
to overcome dynamic allocation problem. The FPGA
implementation of modified version has resulted in
significant optimization in memory requirements and
speed.

The paper is organized as follows. In Section II and
III, descriptions of the basic SPIHT algorithm and the
modified SPIHT algorithm are described respectively.
Section IV presents hardware architecture and
implementation of modified SPIHT. Results and
conclusions are discussed in section V and VI
respectively.

II. SPIHT ALGORITHM

The SPIHT algorithm uses a partitioning of the spatial
orientation trees in a manner that tends to keep
insignificant coefficients together in larger subsets.
The partitioning decisions are binary decisions that
are transmitted to the decoder, providing a
significance map encoding. The thresholds used for
checking significance are powers of two, so in
essence the SPIHT algorithm sends the binary
representation of the integer value of the wavelet
coefficients. The significance map encoding or set
partitioning and ordering step is followed by a
refinement step in which the representations of the
significant coefficients are refined. The SPIHT
algorithm can be applied to both gray-scale and
colored images. SPIHT displays exceptional
characteristics over several properties like good image
quality, fast coding and decoding, a fully progressive
bit stream, application in lossless compression, error
protection and ability to code for exact bit rate. The
SPIHT process represents a very effective form of
coding. A straightforward consequence of the
compression simplicity is the greater coding/decoding

150

BUPT

speed. The SPIHT algorithm is nearly symmetric, i.e.
the time to encode is nearly equal to the time to
decode. SPIHT codes the individual bits of the image
wavelet transform coefficients following a bit plane
sequence. Thus, it is capable of recovering the image
perfectly by coding all bits of the transform. In
practice it is frequently possible to recover the image
perfectly using rounding after recovery, but this is not
the most efficient approach. SPIHT due to its
embedded coding property is much easier to design
efficient error-resilient schemes. This happens
because with embedded coding the information is
sorted according to its importance, and the
requirement for powerful error correction codes
decreases from the beginning to the end of the
compressed file. If an error is detected, but not
corrected, the decoder can discard the data after point
and still display the image obtained with the bits
received before the error. Another reason is that
SPIHT generates two types of data. The first is sorting
information, which needs error protection. The second
consists of uncompressed sign and refinement bits,
which do not need special protection because they
affect only one pixel.

III. MODIFIED SPIHT ALGORITHM

The SPIHT algorithm [1] computes the SOT wavelet
coefficients progressively in dynamic order. The work
by Singh et. al. [4] uses content addressable memories
to keep track of the order in which the coefficients are
scanned. Algorithm is implemented directly without
modification not taking into account hardware
optimization. If the bit streams end within the middle
of the bit-plane, then the quality of the image will be
better for such a scheme. Since every image has a
unique order of coefficients determined by their
values, the generation of bit-stream depends on 2x2
block of coefficients, their children and maximum
value within that sub-tree. So, every block of
coefficients can be operated independent of others and
also in parallel to one another. However the order in
which they are to be operated is not known in
advance, due to uniqueness of every image. The basic
SPIHT algorithm determines the ordering of
coefficients in sequential manner. The computation
traverses the coefficients of an image many times in
each bit plane and inserts or deletes the coefficients in
the lists. Such a scheme is not suitable for hardware
implementation using parallelism and limits the
throughput. Our scheme uses fixed order SPIHT [5],
in which the order in which the block of coefficients
are transmitted is fixed in advance. The blocks of
coefficients are inserted in the predetermined order.
The order is based upon Morton Scan ordering [6].
This eliminates the overhead of computing the order
of coefficients in each bit-plane. The parallel units of

SPIHT can be built with this technique so that
throughput can be increased. Another modification is
in the refinement pass. In basic SPIHT, the
information regarding status for the elements of LSP,
whether they have been added in the current iteration
of sorting pass, need to be maintained. In the worst
case if all the coefficients become significant in the
same iteration, we need large memory requirement to
store this information. If we exchange the sorting pass
and refinement pass we need not store this
information. The data stream is still decodable and
does not increase in size. We need to consider the
reordering of the transmitted bits during the iteration
in the decoding process.

A. The modified SPIHT algorithm is as follows:

Initialization
n = log2 (max |coeff|)
LIP = All elements in H
LSP = Empty
LIS = D’s of Roots
Refinement Pass
Process LSP
for each element (i, j) in LSP – except those just
added
above.
Output the nth most significant bit of coefficient
End loop over LSP
Significance Map Encoding (“Sorting Pass”)
Process LIP
for each coeff (i, j) in LIP
Output Sn (i, j)
If Sn (i, j)=1
Output sign of coeff (i, j): 0/1 = -/+
Move (i, j) to the LSP
End if
End loop over LIP
Process LIS
for each set (i, j) in LIS
if type D
Send Sn(D (i, j))
If Sn (D (i, j))=1
for each (k, l),O (i, j)
output Sn (k, l)
if Sn (k, l)=1, then
add (k,l) to the LSP and output sign of coeff:0/1+/-
if Sn (k,l)=0, then add (k,l) to the end of the LIP
end for
end if
else (type L)
Send Sn (L(i,j))
If Sn (L(i,j))=1
add each (k,l),O (i,j) to the end of LIS as an entry of
type D
remove (i,j) from the LIS
end if on type

151

BUPT

End loop over LIS
Update
Decrement n by 1
Go to Significance Map Encoding Step

B. Address generation unit:

DWT decomposed coefficients arrangement used in
the SPIHT algorithm is shown in Fig. 1. The arrows
indicate the descendants of a particular wavelet
coefficient. Searching for descendants of a specific
coefficient takes lots of operations. To access the
descendents efficiently, it is necessary to store 2-D
data in a 1-D array using a dedicated hardware. There
are various suggestions for SPIHT modifications
based on parallelism and memory issues [5, 7].

We can use 8 bit symbols to represent 2-D addresses.
We have used our novel method to calculate the
addresses of the direct offspring’s of a coefficient.
The search for the descendants of a specific
coefficient becomes very easy in this scheme. In this
scheme, the direct offspring’s are stored in
consecutive memory addresses, which make the
memory-read operation more efficient and reduce the
switching frequency of the address bus. The address
generation circuit is simply a shifter and an
increment-by-one operation. Furthermore, the above
relation does not change when the image dimension is
changed. This modification is done to simplify the
hardware design without much loss in coding
efficiency. All the definitions in the original SPIHT
algorithm are identical except the 2-D addresses being
replaced by 1-D addresses.

Fig 1 DWT decomposed coefficients

The hardware implementation of modified SPIHT is
necessary due to requirements in higher speed,
throughput, optimized area and low power. These are
very difficult to achieve in software-based approach
implemented on a general processor. The direct
implementation of SPIHT software algorithm is
briefly explained in [4]. It provides brief overview of
the architecture and does not discuss the qualitative
results.

After Bi-Orthogonal (9,7) DWT decomposition, the
coefficients are obtained. We have assumed
coefficients to be in the text file and the address
generator generates the addresses so as to pick up the
coefficients and place them in the coefficients
memory. The coefficients are stored in the sequential
manner in the main memory. The architecture of
memory address generator block is shown in Fig 2.
The coefficients are read into the lists of SPIHT
encoder and are compared with the threshold value
and the corresponding code is generated from code
generator.

Fig 2 Memory Address Generator block

IV. ARCHITECTURE

Fig 3 Fixed Order Parallel SPIHT block diagram

Fig 3 shows Fixed order Parallel architecture.

A. Maximum magnitude calculator / Address
generator block:

The hierarchical tree structure obtained after wavelet
decomposition has a particular pattern for accessing
the coefficients. The relation between the row and the
column values of a parent co-ordinate and its four
descendants are as follows. Suppose the parent be ‘a’
and its row and column address be X[0] and Y[0]
respectively. Then the row and column addresses for
its descendants a1, a2, a3, a4 are as given below.

a1: X[1]= 2X[0], Y[1]= 2Y[0]
a2: X[2]= X[1], Y[2]= Y[1]+1

 a3: X[3]= X[1]+1, Y[3]= Y[2]-1
a4: X[4]= X[3], Y[4]= Y[3]+1

152

BUPT

Using the same pattern, the tree grows on for each of
the nodes and it stops at the last element of the matrix.
The address generator has been designed to
implement the above mentioned pattern in hardware.
Thus the random access of coefficients is converted
into sequential access. Maximum magnitude
coefficient is computed by searching all the
coefficients of the image matrix using sequential
addressing for the wavelet coefficients. This process
of finding the maximum value of coefficient slows
down the system performance. By using Depth First
Search order algorithm [8] performance can be
improved. Maximum magnitude calculation phase
calculates the maximum value of coefficients and
rearranges the following information for SPIHT
block. a) Maximum magnitude of four child trees b)
Current maximum magnitude c) Threshold and sign
data of each of the 16 child coefficients 4) Reorder the
coefficients into sequential order. The address
generator also generates the addresses fixed order
addresses and picks the data (wavelet coefficients)
from text files. We have used text file storage for
wavelet coefficients. In real time operation, they are
fed from the wavelet transform block. The
coefficients are fed to the SPIHT blocks (SPIHT-1
and SPIHT-2) in the predefined order.

B. SPIHT block:

We have implemented a SPIHT coding block
consisting of three parallel units. These three units
code the data arriving from magnitude
calculator/Address generator block. Coefficient
blocks are read from higher level to lower level. The
fixed point numerical representation is used for each
wavelet level. When the three blocks receive data in
common format, parallel version of SPIHT operates to
generate code corresponding to information in each
block that contributes to each bit-plane. Each SPIHT
block generates bit stream which are added and
grouped before sending to the variable FIFOs for each
bit-plane. The data received in FIFOs vary in size
depending on the coefficients values in each bit-plane.
Maximum size of FIFO is kept at 20 bits after
verification by software program [3] for a class of
128x128 pixel images. Variable FIFOs arrange the
block of data into regular size of 16 bit words for
memory access. Scheduler is used to take care by
stalling the algorithm operation if one of the FIFOs
becomes full. The scheduler determines the filled
FIFO and writes the filled data into memory #1 and
memory #2.

C. Platform for Implementation:

Hardware is modeled using VHDL under Quartus II

tools [9] with Modelsim simulator. Cyclone II FPGA

reconfigurable system is used for implementation.

V. RESULTS AND DISCUSSION

A. Memory requirement of SPIHT:

The size of required working memory at any instant
of time depends on the number of entries in the lists.
The memory requirements at the end of each pass
(bit-plane) and maximum (worst case) memory
requirement are considered for memory requirement.
The three lists LIP, LIS and LSP are used in SPIHT.
Each entry in the lists uses co-ordinates of wavelet
coefficients. The memory requirements are calculated
as follows:
The total memory required for SPIHT be MSPIHT.
MSPIHT= c. NLIP + (c-1) NLIS + c NLSP
where NLIP, NLIS and NLSP are number of elements
in the lists LIP, LIS and LSP respectively.
Worst case is when
NLIP + NLSP = M.N. (for M x N image) and
NLIS = M.N / 4
Considering the worst case when, High frequency
sub-bands will never enter into LIS.
MSPIHT (max) = (5C-1) (M.N) / 4.
For 128 x128 image and c=9 bits, MSPIHT (max) will
be 704 bits.

B. Clock rates and Throughput - SPIHT:

The encoding clock cycles for SPIHT with full
pipeline and three parallel units for 128x128 test
image (Lena, Gray) is 689 cycles. It does not include
the cycles for Maximum Magnitude calculation and
address generation block. The maximum clock rate
available on the board is 25 MHz. The average
number of bits generated at the output of Parallel
SPIHT block is 2.9 bits per clock cycle as compared
to 2.1 bits per clock cycle for two parallel units
without pipeline. The Table 1 shows the results

Phase –
SPIHT

Cycles/128x128
image

Clock
rate

Throughput

Without pipeline
Two
parallel
units

1030 10
MHz

30
MPixels/Second

Three
parallel
units

790 10
MHz

37
MPixels/Second

With pipeline
Two
parallel
units

810 20
MHz

36
MPixels/Second

Three
parallel
units

689 20
MHz

43
MPixels/Second

Table 1. Results for SPIHT block

153

BUPT

C. Clock rates and Throughput–Address generation
unit:

The test image used is of the order 128x128 pixels.
The FPGA resources, maximum clock frequency and
throughput corresponding to 1-D and 2-D memory
schemes are shown in the Table 2. The clock cycles
do not include the cycles for Maximum magnitude
calculation.

Memory
Area (FPGA)

FFs LUTs RAM

Maximum
clock
frequency

Throughput

2-D
memory
scheme

12%

14%

10%

27MHz
(1870
clock
cycles)

18 MPixels
/second

1-D
memory
scheme

12%

14%

8%

45MHz
(1579
clock
cycles)

29 MPixels
/second

Table 2. Results for 2-D (Original SPIHT) and 1-D
(modified SPIHT) memory accesses

D. PSNR measurement:

The output of pipelined and parallel SPIHT coding
block consists of similar bit streams as that of basic
SPIHT (without fixed order) but in different order.
PSNR at the end of each bit-plane will be closely
matching to that of regular SPIHT as shown in the Fig
4. The slight difference is observed due to short length
of each bit stream in fixed order scheme. At rates
below about 0.55 bpp, the difference falls within 0.18
db. At lower bit rates the PSNR performances are
equal. The difference is found to be increasing at
higher rates. The proposed modification is applicable
for applications requiring higher compression ratios.
Maximum loss is found to be 0.18 dB over the shown
bit rates.

Fig 4 PSNR versus Bit rate

VI. CONCLUSIONS

We have presented a hardware efficient image codec
based on modified SPIHT. Efficient coefficient
addressing method, fixed-size lists and exchange of
passes are used in the implementation. SPIHT
provides easy rate control and no need of look-up
table. The throughput with full pipeline and three

parallel SPIHT units is found to be increased by 38%
as compared to two parallel SPIHT units without
pipeline The speed (clock rate) and throughput are
increased to a greater extent with 1-D addressing
scheme as compared to that of 2-D addressing
scheme. The speed is increased by 66.67% and
throughput is increased by 61.11%.

REFERENCES

[1] A. Said and W. A. Pearlman. A new fast and
efficient image codec based on set partitioning in
hierarchical trees in Trans. Signal Processing, volume
5, no.9, pages 1303–1310. IEEE, 1996.
[2] I. Daubechies. Ten lectures of wavelets. SIAM,
Philadelphia PA, 1992.
[3] Priyanka G,Shalini Neeli,Trupti R,Kavya P, Anil
V. Nandi, R.M.Banakar, ImaegeCodec using
Wavelet/Set Partitioning In Hierarchical Tree
approach, National Conference on Signal Processing
and Communications-2006, (NCSPC-2006), at
JNNCE, Shimoga.
[4] J Singh, A. Antoniou, D. J. Shpak, “Hardware
Implementation of a Wavelet based Image
Compression Coder,” IEEE Symposium on Advances
in Digital Filteringand Signal Processing, pp 169 –
173, 1998.
[5] Thomas W. Fry, Scott Hauck, “SPIHT image
compression on FPGAs”, IEEE Transactions on
circuits and systems for video technology, Vol 15,
No.9, September 2005 pg 1138-1147.
[6] V. R. Algazi, R. R. Estes. “Analysis based coding
of image transform and sub band coefficients,”
Applications of SPIE Proceedings, pages 11-21, 1995.
[7] Maurizio Martina, Andrea Molino, Andrea
Terreno and Fabrizio Vacca, “Implementation of
SPIHT coprocessor: Memory issues and Hardware
implications”, Dipartimento di Elettronica,
Politecnico do Torino – ITALY, 2003 IEEE, pg. II-
587 to II-590.
[8] T. Cormen, C. Leiserson, R. Rivest, Introduction
to Algorithms, MIT Press, Cambridge, Massachusetts,
1997.
[9] Quartus II user manual.

154

BUPT

