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Abstract – Our work involves synthesis and FPGA 
implementation of high speed and high throughput 
Superscalar ‘Set Partitioning in Hierarchical Trees’ 
(SPIHT) algorithm for compression of natural images. 
Because of its inherent redundancy removal property 
among wavelet coefficients SPIHT is well suited for 
compression of both gray and color images. But the 
basic SPIHT algorithm uses dynamic data structures 
which hinders hardware realization. In our 
implementation we have used modified SPIHT. 
Modifications are in two ways, one by using static (fixed) 
mappings which represent significant information and 
the other by inter-changing the sorting and refinement 
passes. The implementation involves pipelining and 
parallelism operations in SPIHT blocks and peripheral 
circuitry. The address generation unit is designed in 
such a way that the coefficients of different sub bands 
are accessed from memory efficiently and helps in 
achieving higher speed and throughput. A hardware 
realization is done in a Altera Cyclone II FPGA 
development board. Significant clock speed and 
throughput are obtained for a test image of size 128 x128 
pixels. 
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I. INTRODUCTION 
 
DWT of an image leads to its representation 
indifferent scales in the form of Spatial Orientation 
Trees (SOT). The coefficients in SOT of an image 
DWT are encoded using embedded zero-tree coding 
which is proved to be the best image compression 
technique [1][2]. After the transform, the lowest 
frequency coefficients concentrate most of the energy 
of the transformed image. The high frequency 
coefficients of different scales and orientations 
indicate the strong self similarity among themselves. 
These properties are exploited in SPIHT [1]. After 
EBCOT in JPEG2000, SPIHT a sophisticated coding 
technique belongs to next generation of encoders for 
wavelet transformed images. The basic SPIHT uses 
dynamic data structures for exploiting self similarities 
mentioned  above.    These    dynamic   data structures 
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impose practical limitation on hardware 
implementation of SPIHT, unlike software 
implementation where dynamic data structures can be 
implemented conveniently using linked lists [3]. 
Hence we have modified the basic SPIHT algorithm 
to overcome dynamic allocation problem. The FPGA 
implementation of modified version has resulted in 
significant optimization in memory requirements and 
speed. 
 
The paper is organized as follows. In Section II and 
III, descriptions of the basic SPIHT algorithm and the 
modified SPIHT algorithm are described respectively. 
Section IV presents hardware architecture and 
implementation of modified SPIHT. Results and 
conclusions are discussed in section V and VI 
respectively. 
  

II. SPIHT ALGORITHM 
 
The SPIHT algorithm uses a partitioning of the spatial 
orientation trees in a manner that tends to keep 
insignificant coefficients together in larger subsets. 
The partitioning decisions are binary decisions that 
are transmitted to the decoder, providing a 
significance map encoding. The thresholds used for 
checking significance are powers of two, so in 
essence the SPIHT algorithm sends the binary 
representation of the integer value of the wavelet 
coefficients. The significance map encoding or set 
partitioning and ordering step is followed by a 
refinement step in which the representations of the 
significant coefficients are refined. The SPIHT 
algorithm can be applied to both gray-scale and 
colored images. SPIHT displays exceptional 
characteristics over several properties like good image 
quality, fast coding and decoding, a fully progressive 
bit stream, application in lossless compression, error 
protection and ability to code for exact bit rate. The 
SPIHT process represents a very effective form of 
coding. A straightforward consequence of the 
compression simplicity is the greater coding/decoding  
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speed. The SPIHT algorithm is nearly symmetric, i.e. 
the time to encode is nearly equal to the time to 
decode. SPIHT codes the individual bits of the image 
wavelet transform coefficients following a bit plane 
sequence. Thus, it is capable of recovering the image 
perfectly by coding all bits of the transform. In 
practice it is frequently possible to recover the image 
perfectly using rounding after recovery, but this is not 
the most efficient approach. SPIHT due to its 
embedded coding property is much easier to design 
efficient error-resilient schemes. This happens 
because with embedded coding the information is 
sorted according to its importance, and the 
requirement for powerful error correction codes 
decreases from the beginning to the end of the 
compressed file. If an error is detected, but not 
corrected, the decoder can discard the data after point 
and still display the image obtained with the bits 
received before the error. Another reason is that 
SPIHT generates two types of data. The first is sorting 
information, which needs error protection. The second 
consists of uncompressed sign and refinement bits, 
which do not need special protection because they 
affect only one pixel. 
  

III. MODIFIED SPIHT ALGORITHM 
 
The SPIHT algorithm [1] computes the SOT wavelet 
coefficients progressively in dynamic order. The work 
by Singh et. al. [4] uses content addressable memories 
to keep track of the order in which the coefficients are 
scanned. Algorithm is implemented directly without 
modification not taking into account hardware 
optimization. If the bit streams end within the middle 
of the bit-plane, then the quality of the image will be 
better for such a scheme. Since every image has a 
unique order of coefficients determined by their 
values, the generation of bit-stream depends on 2x2 
block of coefficients, their children and maximum 
value within that sub-tree. So, every block of 
coefficients can be operated independent of others and 
also in parallel to one another. However the order in 
which they are to be operated is not known in 
advance, due to uniqueness of every image. The basic 
SPIHT algorithm determines the ordering of 
coefficients in sequential manner. The computation 
traverses the coefficients of an image many times in 
each bit plane and inserts or deletes the coefficients in 
the lists. Such a scheme is not suitable for hardware 
implementation using parallelism and limits the 
throughput. Our scheme uses fixed order SPIHT [5], 
in which the order in which the block of coefficients 
are transmitted is fixed in advance. The blocks of 
coefficients are inserted in the predetermined order. 
The order is based upon Morton Scan ordering [6]. 
This eliminates the overhead of computing the order 
of coefficients in each bit-plane. The  parallel  units of  
 
 
 

SPIHT can be built with this technique so that 
throughput can be increased. Another modification is 
in the refinement pass. In basic SPIHT, the 
information regarding status for the elements of LSP, 
whether they have been added in the current iteration 
of sorting pass, need to be maintained. In the worst 
case if all the coefficients become significant in the 
same iteration, we need large memory requirement to 
store this information. If we exchange the sorting pass 
and refinement pass we need not store this 
information. The data stream is still decodable and 
does not increase in size. We need to consider the 
reordering of the transmitted bits during the iteration 
in the decoding process. 
 
A. The modified SPIHT algorithm is as follows: 
 
Initialization 
n = log2 (max |coeff|) 
LIP = All elements in H 
LSP = Empty 
LIS = D’s of Roots 
Refinement Pass 
Process LSP 
for each element (i, j) in LSP – except those just 
added 
above. 
Output the nth most significant bit of coefficient 
End loop over LSP 
Significance Map Encoding (“Sorting Pass”) 
Process LIP 
for each coeff (i, j) in LIP 
Output Sn (i, j) 
If Sn (i, j)=1 
Output sign of coeff (i, j): 0/1 = -/+ 
Move (i, j) to the LSP 
End if 
End loop over LIP 
Process LIS 
for each set (i, j) in LIS 
if type D 
Send Sn(D (i, j)) 
If Sn (D (i, j))=1 
for each (k, l),O (i, j) 
output Sn (k, l) 
if Sn (k, l)=1, then 
add (k,l) to the LSP and output sign of coeff:0/1+/- 
if Sn (k,l)=0, then add (k,l) to the end of the LIP 
end for 
end if 
else (type L ) 
Send Sn (L(i,j)) 
If Sn (L(i,j))=1 
add each (k,l),O (i,j) to the end of LIS as an entry of 
type D 
remove (i,j) from the LIS 
end if on type 
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End loop over LIS 
Update 
Decrement n by 1 
Go to Significance Map Encoding Step 
 
B.  Address generation unit: 
 
DWT decomposed coefficients arrangement used in 
the SPIHT algorithm is shown in Fig. 1. The arrows 
indicate the descendants of a particular wavelet 
coefficient. Searching for descendants of a specific 
coefficient takes lots of operations. To access the 
descendents efficiently, it is necessary to store 2-D 
data in a 1-D array using a dedicated hardware. There 
are various suggestions for SPIHT modifications 
based on parallelism and memory issues [5, 7]. 
 
We can use 8 bit symbols to represent 2-D addresses. 
We have used our novel method to calculate the 
addresses of the direct offspring’s of a coefficient. 
The search for the descendants of a specific 
coefficient becomes very easy in this scheme. In this 
scheme, the direct offspring’s are stored in 
consecutive memory addresses, which make the 
memory-read operation more efficient and reduce the 
switching frequency of the address bus. The address 
generation circuit is simply a shifter and an 
increment-by-one operation. Furthermore, the above 
relation does not change when the image dimension is 
changed. This modification is done to simplify the 
hardware design without much loss in coding 
efficiency. All the definitions in the original SPIHT 
algorithm are identical except the 2-D addresses being 
replaced by 1-D addresses. 
 

 
 

Fig 1 DWT decomposed coefficients 
 
The hardware implementation of modified SPIHT is 
necessary due to requirements in higher speed, 
throughput, optimized area and low power. These are 
very difficult to achieve in software-based approach 
implemented on a general processor. The direct 
implementation of SPIHT software algorithm is 
briefly explained in [4]. It provides brief overview of 
the architecture and does not discuss the qualitative 
results. 
 
 
 
 

After Bi-Orthogonal (9,7) DWT decomposition, the 
coefficients are obtained. We have assumed 
coefficients to be in the text file and the address 
generator generates the addresses so as to pick up the 
coefficients and place them in the coefficients 
memory. The coefficients are stored in the sequential 
manner in the main memory. The architecture of 
memory address generator block is shown in Fig 2. 
The coefficients are read into the lists of SPIHT 
encoder and are compared with the threshold value 
and the corresponding code is generated from code 
generator.  
 

 
 

Fig 2 Memory Address Generator block 
 

IV. ARCHITECTURE  
 

 
 

Fig 3 Fixed Order Parallel SPIHT block diagram 
 
Fig 3 shows Fixed order Parallel architecture. 
 
A. Maximum magnitude calculator / Address 
generator block: 
 
The hierarchical tree structure obtained after wavelet 
decomposition has a particular pattern for accessing 
the coefficients. The relation between the row and the 
column values of a parent co-ordinate and its four 
descendants are as follows. Suppose the parent be ‘a’ 
and its row and column address be X[0] and Y[0] 
respectively. Then the row and column addresses for 
its descendants a1, a2, a3, a4 are as given below. 
 

a1: X[1]= 2X[0], Y[1]= 2Y[0] 
a2: X[2]= X[1], Y[2]= Y[1]+1 

     a3: X[3]= X[1]+1, Y[3]= Y[2]-1 
a4: X[4]= X[3], Y[4]= Y[3]+1 
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Using the same pattern, the tree grows on for each of 
the nodes and it stops at the last element of the matrix. 
The address generator has been designed to 
implement the above mentioned pattern in hardware. 
Thus the random access of coefficients is converted 
into sequential access. Maximum magnitude 
coefficient is computed by searching all the 
coefficients of the image matrix using sequential 
addressing for the wavelet coefficients. This process 
of finding the maximum value of coefficient slows 
down the system performance. By using Depth First 
Search order algorithm [8] performance can be 
improved. Maximum magnitude calculation phase 
calculates the maximum value of coefficients and 
rearranges the following information for SPIHT 
block. a) Maximum magnitude of four child trees b) 
Current maximum magnitude c) Threshold and sign 
data of each of the 16 child coefficients 4) Reorder the 
coefficients into sequential order. The address 
generator also generates the addresses fixed order 
addresses and picks the data (wavelet coefficients) 
from text files. We have used text file storage for 
wavelet coefficients. In real time operation, they are 
fed from the wavelet transform block. The 
coefficients are fed to the SPIHT blocks (SPIHT-1 
and SPIHT-2) in the predefined order. 
 
B. SPIHT block: 
 
We have implemented a SPIHT coding block 
consisting of three parallel units. These three units 
code the data arriving from magnitude 
calculator/Address generator block. Coefficient 
blocks are read from higher level to lower level. The 
fixed point numerical representation is used for each 
wavelet level. When the three blocks receive data in 
common format, parallel version of SPIHT operates to 
generate code corresponding to information in each 
block that contributes to each bit-plane. Each SPIHT 
block generates bit stream which are added and 
grouped before sending to the variable FIFOs for each 
bit-plane. The data received in FIFOs vary in size 
depending on the coefficients values in each bit-plane. 
Maximum size of FIFO is kept at 20 bits after 
verification by software program [3] for a class of 
128x128 pixel images. Variable FIFOs arrange the 
block of data into regular size of 16 bit words for 
memory access. Scheduler is used to take care by 
stalling  the  algorithm  operation  if  one of the FIFOs 
becomes full. The scheduler determines the filled 
FIFO and writes the filled data into memory #1 and 
memory #2.  
 
C. Platform for Implementation: 
 
Hardware is modeled using VHDL under Quartus II  
 
 
 
 

tools [9] with Modelsim simulator. Cyclone II FPGA 

reconfigurable system is used for implementation. 

V. RESULTS AND DISCUSSION 

A. Memory requirement of SPIHT:  
 
The size of required working memory at any instant 
of time depends on the number of entries in the lists. 
The memory requirements at the end of each pass 
(bit-plane) and maximum (worst case) memory 
requirement are considered for memory requirement. 
The three lists LIP, LIS and LSP are used in SPIHT. 
Each entry in the lists uses co-ordinates of wavelet 
coefficients. The memory requirements are calculated 
as follows:  
The total memory required for SPIHT be MSPIHT. 
MSPIHT= c. NLIP + (c-1) NLIS + c NLSP 
where NLIP, NLIS and NLSP are number of elements 
in the lists LIP, LIS and LSP respectively.   
Worst case is when 
NLIP + NLSP = M.N. (for M x N image) and  
NLIS = M.N / 4 
Considering the worst case when, High frequency 
sub-bands will never enter into LIS. 
MSPIHT (max) = (5C-1) (M.N) / 4. 
For 128 x128 image and c=9 bits, MSPIHT (max) will 
be 704 bits. 
 
B. Clock rates and Throughput - SPIHT: 
 
The encoding clock cycles for SPIHT with full 
pipeline and three parallel units for 128x128 test 
image (Lena, Gray) is 689 cycles. It does not include 
the cycles for Maximum Magnitude calculation and 
address generation block. The maximum clock rate 
available on the board is 25 MHz. The average 
number of bits generated at the output of Parallel 
SPIHT block is 2.9 bits per clock cycle as compared 
to 2.1 bits per clock cycle for two parallel units 
without pipeline. The Table 1 shows the results 
 

Phase – 
SPIHT 

Cycles/128x128 
image 

Clock 
rate 

Throughput 

Without pipeline 
Two 
parallel 
units 

1030 10 
MHz 

30 
MPixels/Second 

Three 
parallel 
units 

790 10 
MHz 

37 
MPixels/Second 

With pipeline 
Two 
parallel 
units 

810 20 
MHz 

36 
MPixels/Second 

Three 
parallel 
units 

689 20 
MHz 

43 
MPixels/Second 

Table 1. Results for SPIHT block 
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C. Clock rates and Throughput–Address generation 
unit: 
 
The test image used is of the order 128x128 pixels. 
The FPGA resources, maximum clock frequency and 
throughput corresponding to 1-D and 2-D memory 
schemes are shown in the Table 2. The clock cycles 
do not include the cycles for Maximum magnitude 
calculation.  
 

Memory 
Area (FPGA) 
 
FFs  LUTs  RAM 

Maximum 
clock 
frequency 

Throughput 

2-D 
memory 
scheme 

 
12% 

 
14% 

 
10% 

27MHz  
(1870 
clock 
cycles)  

18 MPixels 
/second 

1-D 
memory 
scheme 

 
12% 

 
14% 

 
8% 

45MHz 
(1579 
clock 
cycles) 

29 MPixels 
/second 

Table 2. Results for 2-D (Original SPIHT) and 1-D 
(modified SPIHT) memory accesses 

 
D. PSNR measurement: 
 
The output of pipelined and parallel SPIHT coding 
block consists of similar bit streams as that of basic 
SPIHT (without fixed order) but in different order. 
PSNR at the end of each bit-plane will be closely 
matching to that of regular SPIHT as shown in the Fig 
4. The slight difference is observed due to short length 
of each bit stream in fixed order scheme. At rates 
below about 0.55 bpp, the difference falls within 0.18 
db. At lower bit rates the PSNR performances are 
equal. The difference is found to be increasing at 
higher rates. The proposed modification is applicable 
for applications requiring higher compression ratios. 
Maximum loss is found to be 0.18 dB over the shown 
bit rates. 

 
Fig 4 PSNR versus Bit rate 

 

VI. CONCLUSIONS 
 
We have presented a hardware efficient image codec 
based on modified SPIHT. Efficient coefficient 
addressing method, fixed-size lists and exchange of 
passes are used in the implementation. SPIHT 
provides easy rate control and no need of look-up 
table. The throughput with full pipeline and three 

parallel SPIHT units is found to be increased by 38% 
as compared to two parallel SPIHT units without 
pipeline The speed (clock rate) and throughput are 
increased to a greater extent with 1-D addressing 
scheme as compared to that of 2-D addressing 
scheme. The speed is increased by 66.67% and 
throughput is increased by 61.11%. 
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