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Abstract – This paper presents an in-depth investigation 
of DWT- based OFDM, by analyzing the influence of the 
wavelets mother choice on the BER performance for the 
transmission in a flat fading channel. Simulations made 
show the importance of this parameter, especially if the 
channel is rapidly changing in time. The best results 
under the considered scenario are provided by the Haar 
wavelet, while for other families (Daubechies, Symmlet, 
Coiflet), the number of vanishing moments of the 
wavelets mother may be relevant to a certain extent.   
Keywords: WOFDM, flat fading, wavelets mother 
 

I. INTRODUCTION 
 

Wavelets represent a successful story of the last 
decade in signal processing applications. Thus, these 
signals, with some highly desirable properties, are 
currently widely used in applications as compression, 
denoising, segmentation, in-painting or classification. 
By   the other hand, in data communications, the same 
successful story can be assigned to multi-carrier 
modulation techniques. The principle of the 
Orthogonal Frequency Division Multiplexing 
(OFDM) is employed in a large number of 
transmission standards, over wired and wireless 
channels: WiFi, WiMAX, DAVB or ADSL.  

The wavelet based OFDM (WOFDM), 
sometimes referred to as wavelet modulation is the 
point where the above concepts meet with each-other. 
Although they are widely used in signal processing, 
few wavelets applications are known in data 
transmission. The idea that gathers the two concepts is 
to use wavelet signals as carriers in a multi-carrier 
data transmission.  
 Multi-carrier transmissions transmit N data 
symbols simultaneously, using a large number of 
subcarriers. This way, a longer symbol (or "block") is 
composed, which carries the information contained by 
all the N symbols. By demodulating a single multi-
carrier block, a decision is made on all the N symbols. 
Thus, the average data rate is kept constant, while the 
fact that the multi-carrier symbol duration is long 
provides an increased resilience against the inter-
symbol interference (ISI) [1].  

The key point that allows the demodulation of the 
subcarriers is their orthogonality. In the classical 

OFDM, the subcarriers are complex exponentials 
(sine and cosine waves), having the form: 
 
 

tf2jk 0e)k(subc π=                      (1) 
 

In practice, the family )k(subc is generated using 
digital signal processing algorithms, namely the 
Inverse Fast Fourier Transform (IFFT) [2]. Despite its 
excellent behavior in unfriendly channel 
environments, OFDM raises some practical problems 
which are difficult to overcome. Thus, the bandwidth 
is increased by the use of a cyclic prefix and the 
transmission is highly sensitive to the Doppler spread 
introduced by the time variant channels. Next, the 
OFDM systems are very sensitive to the narrow band 
interferences. Furthermore, the synchronization in 
time and frequency is critical for the system 
performance and the peak-to-average ratio of the 
signal is very large due to the non-constant nature of 
the envelope. Finally, the out-of-band rejection of 
such a signal is not satisfactory, since the OFDM 
spectrum is made of sinc functions, whom sidelobes 
contain an important amount of energy. 
 Recent research has shown that some of these 
drawbacks may be counteracted if wavelet signal 
were used instead of the complex exponential carriers 
[3-5]. Furthermore, focusing on the BER 
performance, the author of this paper highlighted 
significant BER reduction in WOFDM compared to 
OFDM, under some specific scenarios. This proves 
that is worthwhile to conduct an extensive research on 
this technique and to perform a detailed analysis of 
some of its parameters. Thus, the practical 
implementation of wavelet modulation relies on the 
Discrete Wavelet Transform (DWT). This transform 
is implemented using digital filter banks, according to 
Mallat's well known algorithm [6] and it has two 
important parameters: the wavelet mother employed 
and the number of iterations (decomposition levels) 
used in computation. The first of these parameters is 
extensively analyzed in this paper. Simulations are 
made in flat fading scenarios for a large set of 
wavelets, commonly used in DWT implementation: 
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Haar, Daubechies, Symmlet and Coiflet. These 
investigations revealed that the best performance is 
achieved by the Haar- based transform and that, in 
general, shorter-time wavelets provide better results, 
especially in fast fading conditions.  
 An overview of WOFDM is made on Section II. 
Next, the simulation model is extensively presented. 
In section IV, simulation results are shown and 
commented. Some conclusions and new research 
directions are drawn in the last section.    
 

II. WOFDM OVERVIEW 
 

The WOFDM principle is the same as in the classical 
OFDM: the signal is composed of a large number of 
orthogonal subcarriers. Only that, unlike in (1), the 
subcarriers are wavelet mothers and scaling functions. 
Their ortogonality, very important for the 
demodulation, is expressed in (2): 
 

⎩
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, n,mk,j       (2)  

 
 
where the family )t(k,jΨ  is described by equation 
(3): 
 

)kt()t( j
jk,j −ψ=ψ −2

2

1          (3) 

 
Equation above corresponds to a dyadic form for the 
wavelet family, where the wavelets from one level are 
scaled versions of wavelets from the previous level, 
the scaling function being a power of 2. An analysis 
of this equation shows us that higher the value of j, 
poorer the time resolution and better the frequency 
localization of the wavelets. Similar to the OFDM 
case, the practical implementation of the modulator in 
the wavelet-based technique may rely on the IDWT. 
This implementation is done using the Mallat's filter 
bank algorithm [6]. If, theoretically, j and k in (3) can 
be any integer number, the practical implementation 
limits these parameters to finite values. Thus, 
considering that we have a N samples discrete time 
input signal, then we define the maximum value of j 
as being J=log2N. In this case, 1j =  corresponds to 
the best time rezolution which can be achieved, 
whereas j=J corresponds to the poorest time and to 
the best frequency resolution.  
 In practice, the number of IDWT iterations is 
oftentimes lower than thge maximual value J. If we 
consider only L iterations, then the poorest time 
resolution will correspond to the wavelet )t( L−ψ 2 . 
At this scale, we also retrieve the scaling function 

)t( L−ϕ 2  involved in the IDWT computation. The 
task of this scaling function is to provide (together 
with the wavelet functions) a complete representation 

of the signals from 2L . Thus, the continuos-time 
signal s(t) may be represented as a sum of 
approximation and detail wavelet coefficients (4): 
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Equation 4 is close to the computation of the Inverse 
Discrete Wavelet Transform (IDWT).  

The parameter L in (4) is a measure of the number 
of IDWT iterations. Higher this value is, longer 
duration are the wavelets that compose the signal in 
relation (4), and fewer the wavelet coefficients 
transmitted at each scale.  

The implementation of equation 4 is shown in 
fig.1.  
 
 
 
 

 
  
 
 
 
 
 
 
 
The input data vector (symbols to be transmitted) may 
be imagined as:  
 

]w,...,w,w,a[data 11LLL −=            (5) 
 

where La and Lw  are vectors of length LJ2 − and 1w is 

a vector of length 1J2 − . Every transmission scale j 
has its own subcarrier set )}t({ k,jΨ . At a fixed 
scale, the used subcarriers occupy the same frequency 
band, but they are separated in time. By the other 
hand, at different scales, the spectral content of the 
subcarriers is different. In our example, LΨ and 

Lϕ have a low frequency and narrow band content, 
whereas half of the bandwidth is carried by the high- 
pass )t(1ψ carriers.  The spectra of these subcarriers 
are displayed in figure 2, for the Haar wavelet. Three 
iterations were considered in the modulator. Fig. 2 
confirms that the largest bandwidth corresponds to the 
wavelets used in the first iteration of IDWT 
algorithm, where we have the shortest carriers and 
where most of the symbols are transmitted. The 
wavelet mother and the scaling function involved in 
(4) do not have, in general, a known analytical 
expression. As already mentioned, DWT is 
implemented using quadrature mirror filter banks, 
using Mallat's famous algorithm [6]. 
 Exactly as for OFDM, the demodulator is 
implemented by the intermediate of the direct 
algorithm, DWT. If we take a closer look to what the 

ID
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{aL} 
{wL} 

{wL-1} 

{w1} 

s[n] 

Input data 

Fig. 1: WOFDM implementation using  
IDWT. 
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direct wavelet transform does, we can figure out the 
demodulator as a bank of multipliers, followed by 
integrators. Thus, one may notice that the signal 
samples are multiplied by wavelets at different scales 
j and locations k and by scale functions at the poorest 
time resolution, then the signal is integrated over a 
symbol period. For example, assuming ideal channel, 
the wavelet coefficients transmitted at scale j and 
position k can be computed as in (6): 
 

∫ ⋅ψ⋅= dt)t()t(sw k,j
*

k,j                (6)  
 

The signal at the output of the integrator (based on 
which the data symbols are estimated) is shown in a 
graphical example (fig. 3). A sequence of four data 
bits (1,0,1,0) is identified based on the demodulator 
output at the end of the symbol duration. Note that the 
description above is only a conceptual view of the 
demodulator. In practice, the wavelet and detail 
coefficients are computed by successively filtering the 
input signal using high-pass and low pass-filters [6]. 
 

III. SIMULATION MODEL 
 
A. Transmitter model 
 
The model used for simulation purposes is shown in 
fig. 4. The data to be transmitted is a sequence of 

equally probable bipolar data symbols (+1 and -1), 
corresponding to a BPSK modulation. Every block of 
N=1024 symbols is brought to the input of the IDWT  
modulator. For the IDWT computation, two 
parameters were taken into account: the wavelets  
 
 
 
 
 
 
 
 
 
 
 
mother used, and the number of iterations of this 
transform. This paper focuses on the first of these 
parameters. Thus, as wavelet carriers, several wavelet 
families were tested: Haar, Daubechies, Symmlet and 
Coiflet. These wavelets are widely used for the DWT 
computation. They have the advantage of a simple 
implementation, using a free toolbox of Matlab 
functions, called Wavelab [7]. For all these wavelets, 
there is another parameter which must be taken into 
account: the number of vanishing moments [6]. 
Related to our research, it is interesting to remark that, 
generally speaking, higher this number is, longer the 
time support and more compacted is the wavelet 
carrier in frequency. The extreme case is the Haar 
wavelet, with only one vanishing moment. This 
wavelet has the shortest time support among all other 
wavelets, detail which will become meaningful when 
the simulation results will be discussed.    
 
B. Channel model 
 
The channel simulation gathers two different effects: 
AWGN noise and flat Rayleigh fading. The first type 
of noise affects the signal additively and the second 
one multiplicatively. The Rayleigh fading models the 
effect of the multipath propagation in a radio channel 
[8]. There are two types of analysis that can be 
applied to this phenomenon: the spectral analysis and 
the statistical analysis. The term "flat", used before to 
describe the simulation scenario, refers to the spectral 
properties of the fading. The flat fading scenario is 
based on the assumption that all the multipath replicas 
of the transmitted signal arrive at receiver during the 
transmission interval of one single symbol. The 
flatness corresponds to the channel spectra under this 
assumption.   

By the other hand, the radio channel changes its 
response during the time. The variance in time of the 
radio channel's behavior can be expressed by the 
Doppler shift parameter (fd), which depends on the 
relative motion between transmitter and receiver 
(assuming mobile communications) and on the carrier 
frequency used for transmission. Usually, a 
normalized version of this parameter it's used: 
 

Fig. 2: Haar carriers spectra. 

Fig.2: Haar carriers spectra. 

Fig.3: DWT demodulator output signal. 

[dataest] 

IDWT/ 
IFFT 

DWT/ 
FFT 

Decision 

s[n] 
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Fig.4: Baseband implementation of a WOFDM system. 
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Sdm Tff ⋅=                                   (7) 
 
where TS is the duration of a serial symbol. Two 
values were considered for this parameter: fm=0.005 
and fm=0.05. In slow fading scenarios, TS must be 
much smaller than the coherence time of the channel 
expressed as: 
 

d
C f

423.0T =                               (8) 

 
Taking into account equations 7 and 8, our worst case 
scenario (fm=0.05) leads to a coherence time TC which 
is approximately 8 times higher than TS. In the best 
case (the lowest Doppler shift), the coherence time is 
80 times longer than the symbol duration.  
 These values apparently meet the slow fading 
assumption, where the channel stays unchanged for 
the duration of a symbol. Though, when evaluating 
the channel behavior, one should take into account 
that in multi-carrier communications the transmitted 
block (WOFDM symbol) is much longer that the 
serial symbols at the modulator's input. Since the 
whole data vector is required at demodulator to 
identify the transmitted symbols, one may consider 
that the WOFDM block duration is N times longer 
than the serial symbols brought at system's input. 
Note that in these conditions, the channel response 
changes several times during the transmission of one 
block.  

In order to simulate the time variance of the radio 
channel, the fading samples must approximate as 
accurately as possible the theoretical auto-correlation 
function: 
 
 

|)n|f2(J]n[R m0 ⋅π=                    (9) 
 
, where J0 is the zero order Bessel function [9]. 

Regarding the statistical properties of the fading 
exhibited by the radio channel, a largely used model is 
the Rayleigh probability density function (pdf). If a 
constant envelope signal will be transmitted through a 
time variant radio channel (for example a pure sine 
wave), then the envelope of the received signal can be 
described using the Rayleigh pdf: 
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Under this model, the signal arrived at receiver can be 
expressed as: 
 
 

)n(p)n(ray)n(s)n(r +⋅=            (11)  
 

 

, where p(n) represents the AWGN noise, s(n) is the 
multi-carrier signal computed in equation (4) and 
ray(n)  is the Rayleigh distributed sequence from (10), 
with 2/12 =σ . This choice allows a straightforward 
computation of the signal to noise ratio (SNR). By 
definition, SNR measure is used in purely AWGN 
channels, but the previous choice allows extending 
this term for the more complex case of the Rayleigh 
fading channels. Thus, the signal affected by fading 
s(n)ray(n)  has the same energy as the useful signal. 
 

 
C. The receiver 
 
As explained in the previous section, the receiver 
demodulates the signal using the DWT algorithm. The 
detector is based on a simple threshold comparison, 
taking into account the bipolar nature of the useful 
signal.  
 
D.  The end-to-end scenario 
 
The data is transmitted in blocks of N=1024 symbols. 
Every simulation is carried out for 10000 blocks. 
After detection, the BER is computed at different 
SNR values. The SNR is estimated using the formula: 
 

∑

∑
=

n

2
n

2

|]n[p|

|]n[s|
SNR                  (12) 

 
The BER curves are represented as a function of  
Eb/N0, where Eb is the bit energy, whereas N0 
represents the uni-dimensional power spectral density 
of the white noise. Expressed in dB, the two measures 
may be related by: 
 

]dB[3
N
ESNR

0

b +=           (13) 

 
The above presented scenario is repeated for every 
tested wavelet mother.   
 
 

IV. RESULTS AND DISCUSSIONS 
 
The fist goal of our simulations is to compare the 
performance achieved by using different wavelet 
mothers in flat fading. The results are slightly 
different for the values of the Doppler taken into 
account. In the first scenario, we consider fm=0.005. 
This value meets the slow fading condition, 
previously explained. One wavelet was chosen from 
each family and one iteration for the IDWT 
computation. The results are displayed in figure 5.  
The best results are by far obtained using the Haar 
wavelet (7dB of gain at a BER of 10-2), whereas there 
is no significant difference between the other tested 
wavelets. These results are confirmed for fm=0.05 
(figure 6). This time, the Daubechies wavelet has the 
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worst result. The explanation of the superior 
performance of the Haar wavelet resides in the 
waveform of this carrier. The above simulations were 
made for one iteration of the IDWT. This means that 
only the wavelets from the best time resolution were 
taken into account. At this scale, the Matlab 
representation of the Haar wavelet is composed of 
only two samples. Comparing this value with other    
tested wavelets, we notice that the Haar carrier 
duration is at least six times shorter than all the other 
wavelets. Considering L=1 and  a1,k and w1,k being two 
samples of the input data vector (data[n]), then every 
sample of the received signal r(n) only depends on the 
two transmitted symbols (one approximation and one 
wavelet coefficient). Consequently, the demodulator 
may decide what symbols were transmitted based 
only on two consecutive received samples. This 
minimizes the influence of the fading sequence ray(n) 
and leads to the excellent results of the Haar wavelet 
compared to the other wavelets. For conformity, we 
must however remark that the flatness of the fading 
favorizes the wavelets which have a shorter duration. 
Indeed, their spectrum is very large (see figure 2), and 
a frequency selective channel would affect more these 
kind of carriers than longer duration wavelets.  
 The next objective of our simulations was to test, 
for the same type of wavelets mother, the influence of 
the number of vanishing moments. Simuations made 

allow us to draw two conclusions. First, no significant 
effect of this parameter can be highlighted for the 
slow fading scenario. Next, at fm=0.05, the 
Daubechies family was the only one where some 
differences were observed (4 dB of gain for the 
wavelet with the shortest time support compared to 
the longest one).  Some results are displayed in the 
figures 7 and 8 (for the Daubechies wavelets) and a 
compendium of the results for all the tested wavelets 
and fm=0.05 is illustrated in Table 1.   
 
 
 

 

V. REMARKS 
 
D. Abbreviations and acronyms 
 
Abbreviations and acronyms should be explained 
when they appear for the first time in the text. 
Abbreviations such as IEEE, IEE, SI, MKS, CGS, ac, 
dc and rms need no further explanation. It is 
recommended not to use abbreviations in section or  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 shows that, excepting the Haar wavelets, 
significant differences introduced by the number of 
vanishing moments can be highlighted only at high 
SNRs. Excepting the first row of table 1 (which refers 
to the Haar carrier), the other "best results" are 
highlighted. The displayed results enforce the idea 
that for the flat, time variant channel, the compactness 
in time of the wavelet carriers leads to improved 
performance. Thus, for Eb/No=12 and above, it is the 
Daubechies-4 wavelet which achieves the second 
performance (after Haar). We may assume that at this 
SNR, the negative impact of the Doppler spread 
induced by the fading becomes more important than 
that of the additive noise affecting the signal.  

Fig. 5: WOFDM performance for different wavelet mothers, 
fm=0.005. 

Fig. 6: WOFDM performance for different wavelet mothers, 
fm=0.05. 

Fig. 7: The influence of the number of vanishing moments 
(Daubechies family), fm=0.005. 

Fig. 8: The influence of the number of vanishing moments 
(Daubechies family), fm=0.05. 
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Table 1: Compendium of the results for all the tested wavelets. 

 
 
 

V. CONCLUSIONS AND FUTURE WORK 
 
The influence of the wavelet mother choice on the 
BER performance of a WOFDM system is studied 
in this paper. The simulation scenario focuses on a 
transmission in a flat, time variant Rayleigh fading 
channel. The best results are always provided by 
the Haar wavelet, due to its compactness in time. 
This property of the Haar wavelet makes it more 
resilient to the time-variant character of the 
channel, simulated by a multiplicative Rayleigh 
sequence. For the other wavelets, the number of 
vanishing moments (somehow related to the time 
duration of these wavelets) shows no significant 
influence. However, Daubechies-4 constantly 
provides the second BER performance at high SNR 
values, fact which enforces the conclusions above. 
 Further work on this area will envision two 
aspects: the influence of the number of DWT 
iterations and the WOFDM performance on a 
frequency selective Rayleigh channel. Indeed, the 
multicarrier techniques can show their efficiency 
especially in channels which introduce strong Inter 
Symbol Interference because of their frequency 
selectivity. For the number of iterations involved in 
the DWT computation, we will try to show that, in 
the flat fading radio channel, the highest BER is 
observed at the transmission scales where longer 
duration carriers are used. 
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 Eb/No 0 2 4 6 8 10 12 14 16 18 20 
Haar 0.1255 0.0879 0.0580 0.0366 0.0218 0.0127 0.0072 0.0041 0.0025 0.0016 0.0011 

Daub4 0.1466 0.1086 0.0776 0.0536 0.0361 0.0241 0.0160 0.0109 0.0075 0.0053 0.0040 

Daub8 0.1468 0.1088 0.0774 0.0535 0.0363 0.0244 0.0166 0.0115 0.0082 0.0063 0.0051 

Daub12 0.1466 0.1086 0.0775 0.0537 0.0365 0.0248 0.0170 0.0122 0.0093 0.0073 0.0061 

Daub16 0.1465 0.1086 0.0775 0.0536 0.0368 0.0251 0.0178 0.0131 0.0100 0.0082 0.0071 

Daub20 0.1464 0.1085 0.0773 0.0539 0.0370 0.0256 0.0183 0.0137 0.0109 0.0091 0.0081 

Syymlet4 0.1469 0.1088 0.0775 0.0536 0.0362 0.0242 0.0162 0.0110 0.0077 0.0056 0.0043 

Symmlet6 0.1468 0.1088 0.0777 0.0538 0.0362 0.0243 0.0164 0.0113 0.0081 0.0061 0.0048 

Symmlet8 0.1467 0.1088 0.0776 0.0536 0.0365 0.0245 0.0166 0.0116 0.0083 0.0064 0.0053 

Symmlet10 0.1467 0.1088 0.0777 0.0536 0.0365 0.0245 0.0168 0.0118 0.0087 0.0067 0.0055 

Coiflet1 0.1467 0.1089 0.0776 0.0537 0.0363 0.0242 0.0163 0.0110 0.0078 0.0057 0.0044 

Coiflet2 0.1467 0.1089 0.0775 0.0537 0.0362 0.0242 0.0162 0.0110 0.0078 0.0057 0.0044 

Coiflet3 0.1468 0.1087 0.0776 0.0538 0.0362 0.0244 0.0165 0.0113 0.0080 0.0060 0.0047 

Coiflet4 0.1467 0.1089 0.0776 0.0537 0.0364 0.0245 0.0167 0.0115 0.0083 0.0064 0.0051 

Coiflet5 0.1465 0.1086 0.0777 0.0536 0.0364 0.0245 0.0167 0.0117 0.0085 0.0066 0.0054 
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