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Abstract – Kernel density estimation and mode finding 
techniques play an active role in solving contemporary 
computer vision problems, like edge preserving 
smoothing, segmentation, registration, motion 
estimation and tracking. The mean shift algorithm is a 
popular approach to locate density modes. Recently we 
proposed the multiscale mode filter, a generalization of 
the mean shift filter, which is able to avoid spurious 
modes while minimizing outlier sensitivity. In this paper 
we evaluate the effectiveness of the multiscale mode 
filter in edge preserving smoothing and image 
segmentation.  
Keywords: edge preserving smoothing, multiscale, mode 
location, mean shift, segmentation. 
 

I. INTRODUCTION 
 

Meaningful image segmentation and salient feature 
extraction are difficult low level image processing 
tasks. Reliable detection of image features and 
grouping pixels with similar features into image 
segments can be done based on uniformity or, 
conversely, based on non-uniformity detection. 
Preprocessing filters have to be able to discriminate 
between natural image variability within a real world 
object and variability between different adjacent 
objects of a scene. Image smoothing is an important 
tool for reducing the first kind of image variability. 
Since edges are important image features for proper 
region finding, smoothing filters used in computer 
vision are required to smooth the image differences 
within different object areas, while preserving edges 
separating objects. Such conflicting demands are best 
addressed within a nonlinear image processing 
framework. Currently, major research directions in 
edge preserving smoothing are anisotropic diffusion 
[1], [2], [3], bilateral filtering [4], [5], mean shift 
filtering [6], and mode filtering [7]. A unified 
framework for these approaches has been formulated 
in [8]. This paper concentrates on the bilateral and 
mean shift filter paradigm, theoretically founded on 
kernel density estimation and mode finding. 

Kernel density estimation methods use a 
continuous and convex kernel function to generate a 
continuous density estimate from a finite and usually 

small set of data samples. The kernel function is 
defined based on a set of scale or bandwidth 
parameters, controlling the amount of smoothing. 
Scale selection is a critical, yet not completely solved 
issue in kernel density estimation. In the context of 
computer vision applications, relevant papers 
addressing the problem lately are [9][10]. No matter 
what performance criterion is used, the optimal scale 
finds the desired trade-off between maximum use of 
inlaying data samples on one hand and outlier data 
rejection on the other hand. Inspired from multiscale 
approaches, in our previous work [11] we proposed a 
generalization of both bilateral and mean shift filters, 
called multiscale mode filter, as a means of obtaining 
a better compromise in this trade-off and we found 
some examples where the concept leads to 
performance improvement. Inherently, mode freedom 
in design means also more possibilities to explore and 
compare. In this paper we report results of our more 
recent work in exploring the potential of the MSMF 
approach in image filtering and segmentation.  

The remaining of the paper is organized as 
follows. In Section II, we give a brief review of the 
kernel density estimation methods, the bilateral and 
mean shift filters and show how the mean shift 
algorithm can be used for robust clustering. The 
MSMF is introduced in Section III, while the new 
experiments are included in Section IV. Some 
concluding remarks and proposal of future work are 
left for the last section.    
 

II. MODE FINDING FOR IMAGE FILTERING 
AND SEGMENTATION 

 
A common feature of the bilateral and mean shift 
filters is the use of an extended analysis space, joining 
both spatial data, that is, pixel coordinates - in the 
case of static images - and range data, like pixel color 
vectors. Denote spatial coordinates by a vector with 
index “s”: 
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For colour images using RGB space, the range vector 
will be indexed by „r” and expressed as: 
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A joint domain pixel data is then: 
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Since generally space and range data have different 
scales, data is supposed to be conveniently normalized 
prior to joint domain representation. A 2D image 
consisting of N pixels is represented by the set of 5D 
vectors: {xi}, i = 1,2,…,N. Let H(x1,x2) be a function 
measuring the similarity of two vectors, x1, x2. The 
bilateral filter response at pixel xc, is defined by an 
equation of the form: 
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Clearly, ycr, the output range vector at location xcs = 
ycs is a weighted sum of input image range vectors, xir, 
with weights defined by the similarity to the currently 
processed input data, measured by the function H(). 
The sum at the denominator is a normalization factor, 
needed to make weights add up to 1 in order to 
preserve the mean of each component of the range data. 
In the paper of Tomasi and Manduchi, the similarity 
function is the product of two functions, defining 
spatial similarity and range (colour) similarity with the 
pixel currently being processed: 
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In the equation above, xcs and xcr are the spatial and 
respectively the range components of the currently 
filtered data vector, xc, while xis xir, denote the same 
components of another data vector, xi. Two parameters, 
hs and hr are used to scale the similarity functions. With 
proper data normalization, a single scale parameter may 
be used. To have a high influence on the currently 
computed output image, an input image pixel needs to 
be similar in both location and value. This is why 
bilateral filters are able to effectively smooth the image 

without blurring edges. Even details with high contrast 
are preserved, despite low spatial extent, since only 
pixels similar to the currently processed pixel wil be 
given high weights. An often used similarity function is 
the Gaussian function: 
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A mean shift filter response at an input pixel, xc, is 
defined as the convergence point of the mean shift 
algorithm initialized with xc. The mean shift algorithm 
proposed by Fukunaga and Hostetler [12] is a Newton 
type optimization method [13], used to find local 
modes of the probability density in a data set. 
Therefore, the mean shift filter finds a nearby density 
mode in the feature space. Starting from the kernel 
density estimate at a data point, x, with scale h  and 
profile k,  
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the algorithm successively moves in the direction of 
the estimated density gradient. In the equation above, 
k() is the kernel profile and ck,h a normalization 
constant. It can be shown [6] that the density gradient 
estimated with the kernel profile k() is proportional to 
the mean shift vector, given by 
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where g(x) = -k’(x). The mean shift algorithm can be 
summarized as follows: 

1. Set the current result as the current input 
pixel: y0 = xc. 

2. Compute the next value of the current 
result:  
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until convergence has been reached, that 
is the mean shift vector norm drops 
under a small threshold: 
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ε<=−+ myy jj 1 .  

The result of filtering xc is yj+1. Only the range 
information of the result is stored in the output image. 
The similarity of the equation (8) iterated by the mean 
shift algorithm with the bilateral filter difned by 
equation (4) is obvious. Making H() = g() the bilateral 
filter is equivalent to one step of the mean shift filter.   
 The mean shift filtering algorithm can be easily 
used to obtain image segmentation by clustering  all 
pixels converging to the same mode[14],[15]. What is 
additionally needed after the filter is a simple pixel 
linking process. Optionally, close modes and small 
regions may be merged with nearest neighbour 
clusters. 
 

III. MULTISCALE MODE FILTER (MSMF) 
 
In contrast with the mean shift filter, the MSMF 
works on a different scale at each iteration and the 
number of iterations, J, is predefined. For an 
anisotropic kernel, the MSMF is defined in Fig. 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. ABOUT REFERENCES 
 
 
Note the similarity of equation (10) with the variable 
bandwidth mean shift filter [10]. The important 
difference is that here the scale parameter changes 
with the iteration index, j, not with the data sample, 
index, i. According to the value of J and the choice of 
scales hj, several multiscale mode filters can be 
designed. The case J = 1 corresponds to a 
conventional bilateral filter. The case hj = h0, for all j, 
with J sufficiently high, corresponds to the 
conventional mean shift filter. A monotonically 
decreasing set of scales hj+1 < hj for any j < J is the 
main case motivating the proposed generalization. 
The highest scale, h1, defines the degree of smoothing 
of the density field needed to clean out spurious local 
maxima, while the final scale of analysis, hJ, is 
supposed to be obtained by one of the many existing 
techniques described in the literature [9], [10]. 

Our purpose in using a decreasing set of scales is 
twofold. On one hand, we want to reduce the 
excessive influence of the range data of the processed 
pixel on the result. When images are corrupted by 

heavy noise, the current pixel may be an outlier and 
the result may be severely offset. If the first iterations 
are done at a larger scale, the influence of the other 
pixels is increased. This effect can be augmented by 
using smaller windows and space scale parameters in 
the first part of the filtering scenario.  On the other 
hand, we want to reduce the chances of the algorithm 
to be trapped into spurious local maxima of the 
density. As experiments with real data have shown, 
given a desired scale of analysis, the probability 
density function often has several local maxima close 
to one another. This is particularly true for ramp 
edges, with uniform densities, corrupted by noise. 
Since the mean shift is a gradient ascent type of 
algorithm, it may be trapped in such a spurious 
density maximum point. The event is more likely to 
happen at low signal to noise ratios. If a large scale is 
used to smooth the estimated pdf, spurious local 
modes can be removed at the expense of shifting the 
locations of the maxima, when the distributions are 
not symmetrical. This effect is illustrated in Fig. 2.  
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Fig. 2. a) 1D blurred edge with added noise; 
b) Estimated pdf of the signal at two different scales and 

multiscale mode finding with starting point x. 
 
A 1D blurred impulse signal with added noise is 

shown in Fig. 2a). The probability density function, 
pdf, estimated at two different scales and the 

For each image pixel, xc, do: 
1. Set the current result as the current input pixel: 
             y0 = xc. 
2. for j = 0 to J-1 compute 
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3. Set the final result as f(yc) = f(yJ). 
 

Fig. 1. Multiscale mode filter algorithm 

Spurious 
modes 
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multiscale mode seeking are illustrated in Fig. 2b). 
The algorithm starts the mode seeking on the large 
scale (red dotted line) and the large scale mode is 
found first. Then the search is continued on the finer 
scale (blue, cntinuous line) and mode location (the 
real mode is x = 3) is adjusted more precisely in the 
second step of the MSMF. A closer, spurious mode 
would have been reached by searching directly at the 
final scale. The conventional mean shift filter working 
on the final scale (0.1) would generate an impulse 
with jagged edges, as proved in our previous 
experiments [11]. Run at the lager scale, the 
conventional mean shift filter generates a rectangular 
response, but with the amplitude underestimated, as a 
result of excessive influence of the data samples in the 
tails of the distribution. Again, this has been 
demonstrated in our previous paper [11], along with 
experiments on colour images.  In the next section, we 
describe new experiments with image filtering and 
segmentation tasks.    
 

IV. EXPERIMENTS  
 
In the first experiment, we show that the MSMF can 
be used effectively to clean noise from images. In Fig. 
3, we show comparative results of the MSMF with 
Gaussian range kernel parameters h1 = 45, hJ = 20, J = 
8 and equal steps. The space kernel scale parameter 
was kept fixed to 12 and the space half window was 
incremented at each step, from 1 to 8.  The mean shift 
filter was run with range parameter h = 20, space 
scale 12 and halfwindow 8. The original image was 
corrupted with white zero mean Gaussian noise. The 
original image is shwon in Fig. 3a), while the noisy  
input image with a PSNR of  15.9481dB is shown in 
Fig. 3b). In Fig. 3c), we reproduce the result of the 
mean shift filter on the noisy image. This image has a 
PSNR of 16.7541dB and the visual quality is not too 
much changed.  In fact, the conventional mean shift 
filter is not particularly effective at cleaning heavy 
noise. The result of the MSMF is shown in Fig. 3d. 
The PSNR of this image is 17.0791 dB.  Although the 
gain in PSNR is not impressive the visual effect is 
more convincing.  
 
 

 
 

a) 

  
b) 

 
c) 

 

 
d) 

 
Figure 3 – Comparative results on a noisy image. a) original 
image; b) noisy image; c) result of the mean shift filter with 

scale h = 20; d) result of the MSMF with h1 = 45, hJ = 20, J = 
8. 

 
In the MSMF processed image from Fig. 8d), the 
noise is almost completely cleaned. However the 
improvement in PSNR is less dramatic, as the 
additional smoothing, which is actually useful (for 
example for subsequent segmentation), is penalized as 
error in the PSNR criterion.   

In a second experiment, we used the artificial test 
image, representing a circular shaped constant grey 
spot on a constant white background, shown in Fig. 
4a). The image was blurred by a Gaussian filter with 
scale sigma=4 and a 21× 21 window, then zero mean 
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white, Gaussian noise was added. The resulting 
blurred, noisy image is shown in Fig. 4b). This image 
was filtered by both the conventional mean shift filter 
and the MSMF, with the same parameters as in the 
first test. The conventional filter was run at three 
different range scales: the highest scale used by the 
MSMF, the average scale of the MSMF and the 
lowest, final scale of the MSMF. The results of the 
conventional mean shift filters are shown in Fig. 4c), 
Fig. 4d) and Fig. 4e). The results of the MSMF are 
shown in Fig. 4f).  

  
a) b) 

  
c) d) 

  
e) f) 

  
Fig. 4. a) Original test image; b) blurred noisy test image; c),d),e) 

mean shift restored image with scales 45, 32 and 20; f) MSMF 
restored image, with scales h1 = 45, hJ = 20, J = 8. 

The PSNR of the images in Fig. 4b) to 4f) are given in 
Table 1. 

Table1.  

 b) c) d) e) f) 

PSNR 33.43 46.77 46.50 42.25 53.57 

Clearly, the MSMF (f) outperformed the conventional 
mean shift filter at all scales. 

In a second group of experiments, we tested the 
effectiveness of the MSMF in image segmentation. 
The MSMF and the conventional mean shift filters 
were run with the same parameters as in the first 
experiment on two images with rather different 
features. Filtering was followed by a simple pixel 
linking process with the linking threshold set equal to 

the final filtering scale for both the MSMF and the 
conventional mean shift.  The results are shown in 
Fig. 5 and in Fig. 6. In both cases, the MSMF 
segmentation generates a simpler and more 
meaningful result. MSMF borders are somewhat 
smoother and less small regions result in this case. 

 
a) 

 
b) 

 
 

c) 

Fig. 5. a) Original hand image; b) mean shift segmentation borders; 
c) MSMF segmentation borders. 
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a) 

 
b) 

 
c) 

Fig. 6. a) Original house image;  b) Mean shift segmentation with 
highlighted borders; c) MSMF segmentation with highlighted 

borders;  

 

V. DISSCUSSION AND CONCLUSIONS 
 
The experiments reported in this paper further 
confirm that the MSMF can outperform the 
conventional mean shift filter in both image filtering 
and segmentation tasks. Since the MSMF is more 
general, the result should not be considered 
surprising. However, the best design of the MSMF 
remains an open question. Like the design of the mean 
shift filter, in fact. If optimal scale selection in kernel 
density estimation is still a matter of research, after 
several decades of work, the best filtering scenario for 
the MSMF leaves more freedom, hence more 
problems to solve.  By no means did we prove that the 

MSMF can always outperform a well designed mean 
shift filter. It is expected to be the case when the 
feature space has complex distributions with spurious 
local maxima that cannot be avoided by the 
conventional mean shift filter without using excessive 
smoothing, which is causing biased results. By 
gradually reducing the kernel scales, after avoiding 
the spurious maxima, the MSMF can obtain better 
location estimation. Additionally, using an increasing 
space scale is increasing the weights of nearby 
samples in the early filtering steps, causing more 
smoothing. In the final stages, the larger spatial scale 
combined with a narrower range scale allows higher 
resolution in estimating the mode location. We call 
this filtering strategy twisting and this is just one of 
the many capabilities of the MSMF, waiting to be 
explored in the future.          
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