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L2 Degree reduction of interval Bézier curves using

Chebyshev-Bernstein basis transformations

O. Ismail ∗

Abstract - This paper presents an algorithmic
approach to degree reduction of interval Bézier
curves. The four fixed Kharitonov’s polynomi-
als (four fixed Bézier curves) associated with
the original interval Bézier curve are obtained.
The four fixed Kharitonov’s polynomials (four
fixed Bézier curves) associated with the approx-
imate interval Bézier curve are also found. The
algorithm is based on the matrix representa-
tions of the degree elevation and degree reduc-
tion processes. The computations are carried
out by minimizing the L2 distance between
the four fixed Bézier curves P i

n of degree n
and the four fixed approximate Bézier curves
Qi

m degree m .

Keywords: computer graphics, signal and im-
age processing, CAGD, communication sys-
tems.

I. INTRODUCTION

Computer graphics is the art and science of com-
municating information using images that are gen-
erated and presented through computation. This
requires (a) the design and construction of models
that represent information in ways that support
the creation and viewing of images, (b) the design
of devices and techniques through which the per-
son may interact with the model or the view, (c)
the creation of techniques for rendering the model,
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and (d) the design of ways the images may be pre-
served. The goal of computer graphics is to engage
the persons visual centers alongside other cogni-
tive centers in understanding. The Bézier curve is
widely used in Image Processing, Computer Aided
Geometric Design (CAGD), Computer Graphics,
Pattern Recognition, Geometric Modeling, Com-
putational Geometry, Robotics, Computer Vision
and Scientific Visualization, and have many prop-
erties which are helpful for shape design. De-
veloping more convenient techniques for design-
ing and modifying Bézier curve is an important
problem, and is also an important research issue
in CAD/CAM and computer graphics technology
fields. When Bézier curves are created, we often
need to modify them to satisfy our design require-
ment. A lot of research [1-15] effort has gone into
curves and surfaces in the last 30 years because of
these reasons. Many sophisticated curve methods
are known today-some are specialized and others
are general purpose.
Degree reduction of polynomial curves and sur-
faces is a common process in CAGD. It consists
of approximating a polynomial by another one of
lower degree. This process is of great importance
in geometric modelling, such as data exchange,
data compression and data comparison. For ex-
ample, degree reduction is needed when data are
transferred from one modelling system to another
and these systems have different limitations on the
maximum degree of polynomials. Furthermore, it
can also be used to generate a piecewise continuous
lower degree approximation to a given curve or sur-
face so as to simplify some geometric or graphical
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algorithms like intersection calculation or render-
ing.
Degree reduction of Bézier curves is one of the
important problems in CAGD (Computer Aided
Geometric Design) or the approximation theory.
In general, degree reduction cannot be done ex-
actly, so that it invokes approximation problems.
Thus many papers dealing with the degree reduc-
tion have been published in the recent thirty years
[16], [17].
This paper is organized as follows. Section II
contains the interval Bézier curves, and section
III includes the basic results where as section IV
presents a numerical example, and the final section
offers conclusions.

II. INTERVAL BÉZIER CURVES

An interval polynomial is a polynomial whose coef-
ficients are interval. We shall denote such polyno-
mials in the form P I(u) to distinguish them from
ordinary (single-valued) polynomials. In general
we express an interval polynomial of degree n in
the form:

P I(u) =
n∑

k=0

[a−k , a+
k ]Bn

k (u), for all u ∈ [0, 1]

(1)
in terms of the Bernstein polynomial basis:

Bn
k (u) =

(
n

k

)
(1− u)(n−k)uk

(k = 0, 1, . . . , n) (2)

on [0, 1] . Usual interval arithmetic can be applied
to the interval polynomials [18].
We will define a vector-valued interval P I in the
most general terms as any compact set of points
(x, y) in two dimensions. The addition of such
sets is given by the Minkowski sum:

P I
1 + P I

2 = {(x1 + x2, y1 + y2)|(x1, y1) ∈ P I
1 ; (x2, y2) ∈ P I

2 }
(3)

It is prudent to restrict our attention to the vector-
valued intervals that are just the tensor products
of scalar intervals:

P I = [a−, a+]×[b−, b+] =

{(x, y)|x ∈ [a−, a+] and y ∈ [b−, b+]} (4)

We occasionally use the not ([a−, a+], [b−, b+]) in-
stead of ([a−, a+] × [b−, b+]) for P I . Such

vector-valued intervals are rectangular regions in
the plane, and their addition a trivial matter:

P i
1+P I

2 = [a−+c−, a++c+]×[b−+d−, b++d+] (5)

where, P I
1 = [a−, a+] × [b−, b+] and P I

2 =
[c−, c+]× [d−, d+] . The extension of these ideas to
vector-valued intervals in spaces of higher dimen-
sion is straightforward. An interval Bézier curve is
written in the form:

P I(u) =
n∑

k=0

[p−k , p+
k ]Bn

k (u) (6)

where, [p−, p+] are interval control points (rect-
angular intervals of the form (4)). For each u ∈
[0, 1] , the value P I(u) of the interval Bézier
curve (6) is a vector interval that has the follow-
ing significance: For any fixed Bézier curve P (u)
whose control points satisfy pk ∈ [p−k , p+

k ] for
k = 0, 1, . . . , n we have P (u) ∈ P I(u) . Like-
wise, the entire interval Bézier curve (6) defines a
region in the plane that contains all Bézier curves
whose control points satisfy pk ∈ [p−k , p+

k ] for
k = 0, 1, . . . , n .

III. THE BASIC RESULTS

Let {[p−i , p+
i ]}n

i=0 be a given set of interval control
points which defines the interval Bézier curve:

P I
n(u) =

n∑

i=0

[p−i , p+
i ]Bn

i (u), 0 ≤ u ≤ 1 (7)

of degree n where,

Bj
k =

(
j
k

)
(1− u)j−kuk, (k = 0, 1, . . . , j)

(8)
The problem is to find another interval point set
{[q−i , q+

i ]}m
i=0 defining the approximate interval

Bézier curve:

QI
m(u) =

m∑

i=0

[q−i , q+
i ]Bm

i (u), 0 ≤ u ≤ 1 (9)

of lower degree (m < n) so that the weighted
L2-norm between between P I

n(u) and QI
m(u) is

a minimum.
The four fixed Kharitonov’s polynomials (four
fixed Bézier curves) [19] are:

261

BUPT



P 1
n(u) = p−0 + p−1 u + p+

2 u2 + p+
3 u3 + p−4 u4 + p−5 u5 + · · ·

≡ α1
0 + α1

1u + α1
2u2 + · · ·+ α1

nun

P 2
n(u) = p−0 + p+

1 u + p+
2 u2 + p−3 u3 + p−4 u4 + p+

5 u5 + · · ·
≡ α2

0 + α2
1u + α2

2u2 + · · ·+ α2
nun

P 3
n(u) = p+

0 + p+
1 u + p−2 u2 + p−3 u3 + p+

4 u4 + p+
5 u5 + · · ·

≡ α3
0 + α3

1u + α3
2u2 + · · ·+ α3

nun

P 4
n(u) = p+

0 + p−1 u + p−2 u2 + p+
3 u3 + p+

4 u4 + p−5 u5 + · · ·
≡ α4

0 + α4
1u + α4

2u2 + · · ·+ α4
nun

(10)

The four fixed Kharitonov’s polynomials (four
fixed approximate Bézier curves) [19] associated
with the approximate interval Bézier curve are:

Q1
m(u) = q−0 + q−1 u + q+

2 u2 + q+
3 u3 + q−4 u4 + q−5 u5 + · · ·

≡ β1
0 + β1

1u + β1
2u2 + · · ·+ β1

mum

Q2
m(u) = q−0 + q+

1 u + q+
2 u2 + q−3 u3 + q−4 u4 + q+

5 u5 + · · ·
≡ β2

0 + β2
1u + β2

2u2 + · · ·+ β2
mum

Q3
m(u) = q+

0 + q+
1 u + q−2 u2 + q−3 u3 + q+

4 u4 + q+
5 u5 + · · ·

≡ β3
0 + β3

1u + β3
2u2 + · · ·+ β3

mum

Q4
m(u) = q+

0 + q−1 u + q−2 u2 + q+
3 u3 + q+

4 u4 + q−5 u5 + · · ·
≡ β4

0 + β4
1u + β4

2u2 + · · ·+ β4
mum

(11)

The four fixed Bézier curves associated with the
original interval Bézier curve P i

n(u) for (i =
1, 2, 3, 4) of degree n can be expressed in terms
of the Bernstein and the Chebyshev polynomials:

P i
n(u) =

n∑

j=0

αi
jB

n
j (u) =

n∑

k=0

tikTk(u)

(i = 1, 2, 3, 4) (12)

We consider the linear transformation of the
Chebyshev coefficients ti0, t

i
1, . . . , t

i
n into the Bern-

stein coefficients αi
0, α

i
2, . . . , α

i
n as follows:

αi
j =

n∑

k=0

Mn(j, k)tik

(i = 1, 2, 3, 4) and (j = 0, 1, . . . , n) (13)

The transformation above can be expressed in the
following matrix form:

αi = Mnti, (i = 1, 2, 3, 4) (14)

where,

αi = [αi
0 αi

1 . . . αi
n]T

ti = [ti0 ti1 . . . tin]T

(i = 1, 2, 3, 4)

Then the elements of the matrix Mn(j, k) for
(0 ≤ j, k ≤ n) are given in the following formula
[20]:

Mn(j, k) =
(2−

√
(2))δk +

√
(2)√

π

1(
n
j

)
min(j,k)∑

l=max(0,j+k−n)

(−1)k+l

(
2k

2l

)(
n− k

j − l

)

(15)

where,
{

δk = 0 if k = 0
δk = 1 otherwise

}

The elements of the Bernstein to Chebyshev trans-
formation matrix M−1

n (j, k) for (0 ≤ j, k ≤ n)
are given in the following formula [20]:

M−1
n (j, k) =

δj + 1
4n+j

(
n

k

) j∑

l=0

(−1)j+l

(
2j
2l

)(
2k+2l
k+l

)(
2n−2k+2j−2l

n−k+j−l

)
(
n+j
k+l

)
(16)

The weighted L2-norm of the four fixed Bézier
curves P i

n for (i = 1, 2, 3, 4) in the Bernstein
basis form is given by:

|| P i
n ||2w=

∫ 1

0

| ∑n
j=0 αjB

n
j (u) |2√

4u− 4u2
du

(i = 1, 2, 3, 4) (17)

The area under a Bernstein polynomial Bn
k for

(k = 0, 1, . . . , n) degree n is given by:
∫ 1

0

Bn
k (u)du =

1
n + 1

(18)

The product of Bernstein polynomials of degree
n and m is also Bernstein polynomial of degree
n + m and given by:

Bn
j (u)Bm

k (u) =

(
n
j

)(
m
k

)
(
n+m
j+k

) Bn+m
j+k (u) (19)

Simplifying equation (12) using equations (13) and
(14) gives:

|| P i
n ||2w= (αi)T Qnαi

(i = 1, 2, 3, 4) (20)

where,

Qn(j, k) =
Γ(2n− j − k + 1

2
)Γ(j + k + 1

2
)

2Γ(2n + 1)

(
n

j

)(
n

k

)
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(j, k = 0, 1, . . . , n) (21)

are the elements of the Gram matrix Qn of the
Bernstein basis. The matrix Qn is real symmetric
matrix, as a consequence of the symmetry of the
combinatorial function. The matrix Qn is also
a positive definite matrix, as a consequence of the
positivity of the left-hand side in the definition.
Thus Qn is a real symmetric positive definite
matrix.
The weighted L2-norm of the four fixed Bézier
and approximate Bézier curves P i

n and Qi
m for

(i = 1, 2, 3, 4) in the Bernstein basis form is given
by:

|| Qi
m − P i

n ||2w=
∫ 1

0

| Qi
m(u)− P i

n(u) |2√
4u− 4u2

du

(i = 1, 2, 3, 4) (22)

Elevating the degree of Qi
m from m to n

using the matrix Tm,r , where, r = n −m and
the (m + r + 1) × (m + 1) matrix Tm,r has the
elements:

Tm,r(j, k) =

(
m
k

)(
r

j−k

)
(
m+r

j

)

(j = 0, 1, . . . ,m + r) and (k = 0, 1, . . . , m)

gives:

Qi
r = Tm,rβ

i (23)

Equation (22) rewrites the curves Qi
m of degree

m as curves of degree n :

Qi
m(u) = Qi

r(u) =
n∑

j=0

β
(r)i
j Bn

j (u)

(i = 1, 2, 3, 4) (24)

and hence, the weighted L2-norm is given by:

|| Qi
n−P i

n ||2w=|| Qi
r−P i

n ||2w

=
∫ 1

0

| ∑n
j=0(β

(r)i
j − αi

j)B
n
j (u) |2√

4u− 4u2
du

(i = 1, 2, 3, 4) (25)

Invoking equation (21) into the last equation gives
the L2-norm between the four fixed Bézier curves
P i

n and Qi
m for (i = 1, 2, 3, 4) in the following

formula:

|| Qi
n − P i

n ||2w=|| Qi
r − P i

n ||2w= (Ai)T QnAi

(i = 1, 2, 3, 4) (26)

where,

Ai = αi − Tm,rβ
i

βi = [βi
0 βi

1 . . . βi
m]T

αi = [αi
0 αi

1 . . . αi
n]T

(i = 1, 2, 3, 4)

Substituting Ai = αi − Tm,rβ
i in || Qi

n − P i
n ||2w

and after some algebraic manipulation gives:

|| Qi
n−P i

n ||2w=

(αi)T Qnαi − 2(βi)T T T
m,rQnαi + (βi)T T T

m,rQnTm,rβ
i

(i = 1, 2, 3, 4) (27)

The error, defined above is a function of the el-
ements of the vectors βi for (i = 1, 2, 3, 4) .
To find the minimum, we use the method of least
squares approximation to find the vectors β̂i that
minimizes the formula in equation (23). This pro-
cess leads to the normal equations:

TT
m,rQnTm,rβ̂i = TT

m,rQnαi

(i = 1, 2, 3, 4) (28)

Since TT
m,rQnTm,r = Qm for (i = 1, 2, 3, 4)

and the matrix Qm is positive definite. Thus
TT

m,rQnTm,r is invertible. Hence the normal equa-
tions are uniquely solvable and have the solutions:

β̂i = Q−1
m TT

m,rQnαi

(i = 1, 2, 3, 4) (29)

The four fixed Bézier curves with fixed Bézier
points given in equation (25) are the best approx-
imation curves in the least-squares sense with re-
spect to the weighted L2-norm.
The degree reduction with respect to the weighted
L2-norm of the four fixed Bézier curves associ-
ated with the original interval Bézier curve P i

n

for (i = 1, 2, 3, 4) can be done by first
transforming the Bernstein coefficients αi =
[αi

0 αi
1 . . . αi

n]T for (i = 1, 2, 3, 4)
to the Chebyshev polynomials with coefficients
ti = [ti0 ti1 . . . tin]T for (i = 1, 2, 3, 4)
using M−1

n , and then the polynomials expressed
in terms of Chebyshev polynomials are reduced to
the polynomials of degree n− 1 with coefficients
t(−1)i = [t(1)i0 t

(1)i
1 . . . t

(1)i
n−1]

T .
Applying the process of degree reduction r times
to the four fixed Bézier curves P i

n; for (i =
1, 2, 3, 4) expressed in terms of the Chebyshev
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polynomials with respect to the weighted L2-norm
, we get the polynomials of degree n− r with co-
efficients t(−r)i = [t(r)i0 t

(r)i
1 . . . t

(r)i
n−r]

T

for (i = 1, 2, 3, 4) .
The r degree reduction can be written in the
matrix form t(−r)i = In,−rt

i for (i = 1, 2, 3, 4)
where, the (n− r + 1)× (n + 1) matrix In,−r is
given by:

In,−r =




1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0




(30)

Finally, the reduced four fixed Bézier curves ex-
pressed in terms of the Chebyshev polynomials are
converted to the Bernstein coefficients using Mn .
This is summarized in the following theorem.

Theorem 1: The r times degree reduction ma-
trix Rm,r of the four fixed Bézier curves associ-
ated with the original interval Bézier curve, and
the coefficients of the four fixed reduced Bézier
curves βi = α(−r)i for (i=1,2,3,4) can be calcu-
lated using the matrices M−1

n , In,−r and Mm

as follows:

Rm,r = MmIn,−rM
−1
n

βi = α(−r)i = Rm,rα
i

(i = 1, 2, 3, 4)

However, the r times degree reduction interval
error (EI

w)2 of the original interval Bézier curve
with respect to the weighted L2-norm is given in
the following theorem.

Theorem 2: The r times degree reduction in-
terval error (EI

w)2 of the original interval Bézier
curve with respect to the weighted L2-norm is
given by:

([E−
w , E+

w ])2 = [min(Ei
w)2,max(Ei

w)2]

(i = 1, 2, 3, 4)

where,

(Ei
w)2 = (αi)T F i

m,rα
i

(i = 1, 2, 3, 4)

and

F i
m,r = Qn[I − Tm,r(TT

m,rQnTm,r)−1TT
m,rQn]

(Ei
w)2 for (i = 1, 2, 3, 4) are the r times de-

gree reduction errors of the four fixed Bézier curves
associated with the original interval Bézier curve
with respect to the weighted L2-norm.
Finally, the new interval vertices of the new inter-
val polygon can be obtained as follows:

[q−k , q+
k ] = [min(βi

k),max(βi
k)]

(k = 0, 1, . . . , n− r) and (i = 1, 2, 3, 4) (31)

IV. NUMERICAL EXAMPLE

Consider the interval Bézier curve defined by the
four interval control points:

[p−0 , p+
0 ] = ([0.6000, 0.7500], [1.0000, 1.1000])

[p−1 , p+
1 ] = ([1.7500, 2.0000], [2.0000, 2.2500])

[p−2 , p+
2 ] = ([3.1000, 3.4000], [2.4500, 2.6000])

[p−3 , p+
3 ] = ([2.3500, 2.5000], [0.8500, 1.0000])

It is required to reduce the degree of the interval
Bézier curve defined by them.
The new interval vertices {[q−i , q+

i ]}2i=0 of the
new interval polygon are obtained as explained in
section III:

[q−0 , q+
0 ] = ([0.5047, 0.6969], [0.9437, 1.0734])

[q−1 , q+
1 ] = ([2.8250, 3.3125], [2.8125, 3.1750])

[q−2 , q+
2 ] = ([2.4031, 2.5953], [0.8766, 1.0562])

The interval error (EI
w)2 with respect to the

weighted L2-norm is:

([E−
w , E+

w ])2 = ([0.0006, 0.0018], [0.0001, 0.0006])
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QI
2(u) is the approximate interval Bézier curve of

the given interval Bézier curve P I
3 (u) , so that the

weighted L2-norm between between P I
3 (u) and

QI
2(u) is a minimum.

Simulation results in Figure(1) shows the envelopes
of the original interval Bézier curve and the re-
duced interval Bézier curve, respectively.

0.5 1 1.5 2 2.5 3
0.8

1

1.2

1.4

1.6

1.8

2

2.2

x

y

Fig.1:The original and reduced Bezier curve envelopes. 

o  Original Bezier Curves.

x  Reduced Bezier Curves.

V. CONCLUSIONS

An algorithmic approach to degree reduction of
interval Bézier curves is presented in this pa-
per. The four fixed Kharitonov’s polynomials
(four fixed Bézier curves) associated with the orig-
inal interval Bézier curve are obtained. The four
fixed Kharitonov’s polynomials (four fixed Bézier
curves) associated with the approximate interval
Bézier curve are also found. The algorithm is based
on the matrix representations of the degree eleva-
tion and degree reduction processes. The compu-
tations are carried out by minimizing the L2 dis-
tance between the four fixed Bézier curves P i

n of
degree n and the four fixed approximate Bézier
curves Qi

m of degree m .
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Comput. Aided Des., vol. 15, 1983, pp. 73-77.
[6] G. Farin, Curves and Surfaces for Computer Aided
Geometric Design, New York: Academic Press, 1988.
[7] G. Farin, Curves and Surfaces for CAGD: A Prac-
tical Guide, Morgan Kaufman, 2002.
[8] R. T. Farouki and V. T. Rajan, ”Algorithms for
polynomials in Bernstein form,” Comput-Aided Ge-
omet Des., vol. 5, 1988, pp. 1-26.
[9] A. R. Forrest, ”Interactive interpolation and ap-
proximation by Bézier polynomials,” Comput. J., vol.
15, 1972, pp. 71-79.
[10] J. Gallier, Curves and Surfaces in Geometric
Mod- eling: Theory and Algorithms, Morgan Kauf-
man, 1998.
[11] J. Hoscheck, ”Approximate conversion of spline
curves,” Comput. Aided Geometric Des., vol. 4, 1987,
pp. 59-66.

[12] J. Hoschek and D. Lasser, Fundamentals of Com-
puter Aided Geometric Design, Wesley, MA: AK Pe-
ters, 1993.
[13] J. Hoschek and M. Schneider, ”Interpolation and
approximation with developable surfaces”, in Curves
and Surfaces with Applications in CAGD, A. Le
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