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Abstract – In this paper we derive the quantitative – 
qualitative entropy an extension of order m of a 
semantic source, as well as the semantic entropy of 
discrete ergodic sources with memory. The Kraft 
inequality and Shannon’s first theorem are generalized 
for these sources. Some applications of semantic sources 
are also presented.  
Keywords: semantic sources, entropies, Kraft’s 
inequality, Shannon’s first theorem. 
 

I. INTRODUCTION 
 

Unlike the quantitative characterization of 
information [1,2,3], in [4] we have introduced the 
concept of quantitative – qualitative information, and 
derived the entropy for semantic sources. The main 
properties of entropy for these sources are also 
established. Longo [5], Guardial and Pessoa [6], Khan 
and Autar [7], Autar and Khan [8], Khan and Bhat [9] 
have studied generalized coding theorems by 
considering different generalized measures of 
information. In this paper we determine the entropy 
for an extension of a semantic source, and then we 
consider semantic sources with memory to determine 
their entropy. The Kraft inequality [3] and the first 
Shannon theorem [2] are extended for semantic 
sources. In the last part of our work we present some 
applications of semantic entropy. 
  

II. DETERMINING THE ENTROPY FOR AN 
EXTENSION OF A SEMANTIC SOURCE  

 
For many source models it is useful to consider that 
the source delivers groups of messages, instead 
individual ones. Generally, from a discrete, complete 
and memoryless source S which delivers n messages, 

1 2, ,..., ns s s , with probabilities 1 2, ,..., np p p  and 
utilities 1 2, ,..., nu u u , characterized by the distribution 

1 2

1 2

1 2

:
n

n

n

s s s
S p p p

u u u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                        (1) 

We can derive another source, called the extension of 
the order m of the former, denoted by mS , consisting 
in groups of m messages of the source S, in all 
possible combinations . 

 The extension of order m contains mn  composite 
symbols: 

1 2 3... , 1,2,..., m
k k k k kms s s s k nσ = =              (2) 

where 1 2 3, , , ...,k k k kms s s s  are messages of the source 
S. 
Assuming S memoryless, and its messages 
independent both probabilistic and logic – causal, we 
have 

1 2( ) ( ) ( ) ... ( )k k k kmp p s p s p sσ = ⋅ ⋅ ⋅            (3) 
and 

1 2( ) ( ) ( ) ... ( )k k k kmu u s u s p sσ = + + +         (4) 
 
 Theorem 1 
The quantitative – qualitative entropy of the extension 
of order m is m times the entropy of the semantic 
source, that is 

( ) ( )m
pu puH S mH S=                    (5) 

 Proof 
 We prove this theorem by induction. First, we 
verify easily that (5) is true for 1,2m = . Next, we 
assume that (5) holds true for m and prove that 

1( ) ( 1) ( )m
pu puH S m H S+ = +               (6) 

Let iξ  be a composite symbol made of 1m +  
messages of the source S, as 

, 1, 2,..., ; 1, 2,...,m
i k js k n j nξ σ= = =         (7) 

where js  is a messages the source S delivers.  
Since 

( ) ( ) ( ), ( ) ( ) ( )i k j i k jp p p s u u u sξ σ ξ σ= = +     (8) 

1 1
( ) 1, ( ) 1

mn n

k j
k j

p p sσ
= =

= =∑ ∑ ,                 (9) 

the entropy of the extension of order (m+1) becomes 
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      (10) 

which is equivalent to (6). 
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III. DETERMINING THE ENTROPY FOR A 
SEMANTIC SOURCE WITH MEMORY 

 
Let us consider a discrete, complete and ergodic 
source with memory of order m, with the distribution 
given in (1). 
 
 Theorem 2 

The entropy of sources with memory of order 
m is 

2
1 1

1 1

( ) ( | ) log ( | )

( | ) ( | )

m

m

n n
m
pu i j i j i

i j

n n

i j i j i
i j

H S p p s S p s S

p p s S u s S

= =

= =

= − ⋅ ⋅ +

+ ⋅ ⋅

∑ ∑

∑ ∑
 (11) 

Proof 
Let iS  be the state characterized by the 

sequence 
1 2, ,...,i i i imS s s s→ .                       (12) 

We denote 
.

1 2( | , ,..., ) ( | )
not

j i i im j ip s s s s p s S=               (13) 
the probability that the source delivers the message 

js , given the state iS , and 
.

1 2( | , ,..., ) ( | )
not

j i i im j iu s s s s u s S=              (14) 
the utility the message js  possesses, given the state 

iS . 
In [4], we proved that for a memoryless semantic 
source, the information attached to the message ks  
having the probability kp  and the utility  ku , is given 
by  

2( ) logpu k k ki s p u= − + .                 (15) 
Then, the quantitative – qualitative information 
obtained when the source is in the state iS  and it 
delivers the message js  is then given by 

1 2 2( | , ,..., ) log ( | ) ( | )pu j i i im j i j ii s s s s p s S u s S= − +  (16) 
From the state iS  any message js  can be delivered 
with a certain conditional probability (even equal to 
zero, if from that state a certain message cannot be 
delivered). The average quantitative – qualitative 
information the state iS  can deliver is 

1
( ) ( | ) ( | )

n

pu i j i pu j i
j

i S p s S i s S
=

=∑                 (17) 

or, considering (16) 

2
1

1

( ) ( | ) log ( | )

( | ) ( | )

n

pu i j i j i
j

n

j i j i
j

i S p s S p s S

p s S u s S

=

=

= − +

+

∑

∑
        (18) 

Denoting by ip , 1, 2,..., mi n= , the state probabilities 
of the ergodic, discrete, complete source with 
memory, the average quantitative – qualitative 
information, or the quantitative – qualitative entropy, 
denoted by ( )m

puH S  can be computed by 

 
1

( ) ( )
mn

m
pu i pu i

i

H S p i S
=

=∑                      (19) 

Considering (18) and (19), we get (11). 
 

IV. KRAFT’S THEOREM FOR SEMANTIC 
SOURCES  

 
Theorem 3 

The Kraft’s theorem for semantic sources is 

1

2 1k k

n
l u

k

M −

=

⋅ ≤∑ ,                        (20) 

where n is the number of messages the information 
source supplies, M – the number of symbols in the 
code alphabet and kl  - the length of the codeword kc , 
( ) 1,2,...,k n∀ = . 
 Proof 

Let S be the semantic source characterized by the 
distribution given in (1). 
Let 

1 2{ , ,..., }MX x x x=                     (21) 
be the alphabet of the code,  

1 2{ , ,..., }nC c c c=                      (22) 
the code words attached to the messages, and 

1 2{ , ,..., }nL l l l=                       (23) 
the length of the code words. 

Due to the one – to one correspondence between 
the messages ks S∈  and the code words kc C∈ , the 
information attached to the message ks  is equal to 
that attached to the code word kc , i. e. 

( ) ( )pu k pu ki s i c=                        (24) 
On the other hand, the maximum information per 
symbol of the code alphabet is max 2( ) logH X M= , 
which can be reached when the symbols of the code 
alphabet are used independently and equally likely.  
The length kl  corresponding to the code word kc  has 
to satisfy 

2

2 2

( ) log
log log

pu k k k
k

i c p ul
M M

− +≥ =              (25) 

From (24) and (25), we have 
2 k ku l

kp M −≥ ⋅ .                      (26) 
As  

1
1

n

k
k

p
=

=∑                            (27) 

eq. (20) results. 
 

V. SHANNON’S FIRST THEOREM FOR 
SEMANTIC SOURCES  

 
Let there be the source characterized by (1) and the 
code characterized by (21), (22) and (23). 
Obviously, the probabilities and utilities of the source 
messages are equal to the probabilities ( )kp c  and 
utilities ( )ku c  of the code words, respectively, i. e. 

( )k kp p c=                              (28) 
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( )k ku u c=                              (29) 
The length of each code word must belong to 

the set of positive integers, therefore kl  must be 
chosen as an integer satisfying the condition 

2 2

2 2

log log
1

log log
k k k k

k
p u p u

l
M M

− + − +
≤ < +        (30) 

where 2log M is the maximum value ( )H X  can take 
on. 
By multiplying (30) by kp  and summing up from 1 to 
n, we have 

2
1 1

12

2
1 1

2

log

log

log
1

log

n n

k k k k n
k k

k k
k

n n

k k k k
k k

p p p u
p l

M

p p p u

M

= =

=

= =

− +
≤ <

− +
< +

∑ ∑
∑

∑ ∑
          (31) 

or,  

2 2

( ) ( )
1

log log
pu puH S H S

l
M M

≤ < +                   (32) 

where  

2
1 1

( ) log
n n

pu k k k k
k k

H S p p p u
= =

= − +∑ ∑            (33) 

is the entropy of the semantic source [4] and 

1

n

k k
k

l p l
=

=∑                                (34) 

is the average length of the code words. Relation (32) 
holds true also for the extension of order m, for which 
we can write  

2 2

( ) ( )
1

log log

m m
pu pu

m

H S H S
l

M M
≤ < +               (35) 

where ml  is the average length of the code words 
corresponding to a sequence of m messages of the 
source S and ( )m

puH S  is its entopy.  
 Since 

mll
m

= ,                               (36) 

we have 

2 2

( ) ( ) 1
log log

pu puH S H S
l

M M m
≤ < +                  (37) 

From (37) it follows that, when m → ∞ , the average 
length of the code words becomes equal to the 
minimum average length. Thus, (37) becomes a 
generalization of C. E. Shannon’s Theorem [2], for 
encoding discrete sources for noiseless channels, in 
the case of cybernetics systems. If the utilities of the 
messages of source S are zero, the classical results are 
obtained [1]. 
 

VI. APPLICATIONS OF QUALITATIVE – 
QUANTITATIVE ENTROPY 

 

A first application of quantitative – qualitative 
entropy regards the calculus of the  entropy for a 
binary block code.  
 Let us consider a binary block code, for which 
each codeword contains N binary symbols. If k 
denotes the number of information symbols in each 
codeword, the number of code words, n, is determined 
by  

2kn =                              (38) 
Due to the one - to – one correspondence 

between the code words and the messages of the 
information source, each codeword will have the same 
probability and utility as the corresponding message. 
 Let us also suppose that in order to correct the 
errors in each codeword, m parity – check symbols are 
used. 
 Considering the utility of each transmitted 
codeword equal to the number of parity check 
symbols m, the following distribution results: 

1 2: nc c c
C

m m m
⎛ ⎞
⎜ ⎟
⎝ ⎠

                      (39) 

The absolute maximum entropy ( )maH C  of this 
source is attained when the messages and the code 
words are equally likely delivered.  
From [4] we have 

2( ) logma
UH C n
n

= +                      (40) 

Considering (38) and the fact that the whole utility of 
the code words is 

U n m= ⋅ ,                                  (41) 
we get 

( )maH C k m N= + =            (42) 
According to (42) the absolute maximum entropy of a 
binary block error correcting code is equal to the 
codeword length. 
 A second application consists in the establishing 
of the delivering probabilities of unequal protected 
code words, so that the average information per 
codeword is maximum one. With this purpose in 
view, let us consider a binary block code of length N, 
in which the first codeword has 1m  parity check 
symbols, the second one, 2m , and so on, the last one 
having nm  parity check symbols. 
Further on, we consider the general case, in which 
code words with the same number of parity check 
symbols could exist. Obviously, the more parity check 
symbols the code words contain, the more errors can 
be corrected. 
We also consider that the parity check symbols in 
each codeword represent the utilities. 
In order to obtain the maximum average information 
per codeword, the source characterized by the 
distribution 

1 2

1 2

: n

n

s s s
S

m m m
⎛ ⎞
⎜ ⎟
⎝ ⎠

                   (43) 

provides its messages with the probabilities computed 
by [4] 
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1

2 , 1, 2,...,
2

k

j

m

k n
m

j

p k N

=

= =
∑

                    (44) 

The average information per codeword may be 
computed by means of [4] 

2
1

( ) log 2 k

n
m

m
k

H S
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑                      (45) 

The average information per symbol in a codeword 
results as follows: 

2
1

log 2
( )

j
n

m

jmH S
i

N N
=

⎛ ⎞
⎜ ⎟
⎝ ⎠= =
∑

                   (46) 

where n is given by (38). 
In the particular case, when all code words are 
identically protected 

1 2 ... Nm m m m= = = = ,                   (47) 
an information 1 bit/symboli = is obtained. 
The third application consists in the implementation 
of an encoding method for noiseless channels of 
sources characterized by the distribution 

1 2

1 2

: , , 1, 2,...,n
k

n

s s s
S u R k n

u u u
⎛ ⎞

∈ =⎜ ⎟
⎝ ⎠

,   (48) 

so that the average information per codeword is 
maximum and the average codeword length is 
minimum. 
From (48) we observe that each message utility is 
known and we want to find the message delivering 
probabilities, so that the average information per 
message is maximum one. To this aim the 
probabilities kp  with which the messages ks  have to 
be delivered are computed by means of (44). 
Therefore, the source entropy becomes maximum one. 
In order to obtain the code words of the smallest 
length, for a noiseless channel, one can use the 
Huffman encoding procedure [12], using the above 
obtained probabilities. 
 

VII. CONCLUSIONS 
 
In this paper, we derive the quantitative – qualitative 
entropies of an extension of order m of the source (eq. 
5) and of a discrete ergodic source with memory (eq. 
11). These relations represent generalizations of the 
classical concepts on information. The quantitative – 
qualitative information results as the sum between a 
quantitative information and a qualitative one. If the 
qualitative characteristic is neglected, the classical 
known relations [1] are obtained. When only the 
qualitative characteristic is required, the first term in 
the relations above is dropped out.  
By extending the notion of entropy to cybernetic 
systems, the Kraft inequality and Shannon’s first 
theorem have been generalized. Three applications of 
sources with preferences are also presented. The first 
one regards the error correcting block codes, the 
second one, the unequally error protection block 
codes and the third one, the possibility to encode 

sources characterized only qualitatively, so that the 
average information per codeword is maximum and 
the average length of code words is minimum. 
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