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Abstract – The paper presents a denoising algorithm 
using which is particularly suited to ECG signals. The 
main stage of this algorithm consists in a MAP filtering 
in wavelet domain. Its effectiveness relies on the 
diversity enhancement of the signal to be processed and 
on realistic a-priori assumptions regarding statistical 
properties of the wavelet coefficients. Tests made on a 
big number ECG signals, in realistic conditions, showed 
very promising results. The noise is removed, while the 
useful waveforms are preserved. 
Keywords: denoising, wavelet, ECG , MAP  
 

I. INTRODUCTION 
 
The clinical electrocardiogram (ECG) records the 
changing potentials of the electrical field generated by 
the heart. Electrocardiography can be used, within 
limits, to identify anatomical, metabolic, ionic and 
hemodynamic changes. Automatic ECG signal 
processing aims the detection and even the prevention 
of cardiac illness and can be very helpful for the 
cardiologists. Unfortunately, ECG signal acquisition 
process is subjected to various disturbing 
perturbations like power-line interferences, 
electromyogram noise caused by muscle activity, 
motion artifacts and baseline drift due to the 
respiration mechanism. All these unwanted 
phenomena make from the automatic interpretation of 
the signal a difficult and sometimes even an 
impossible task. In these conditions, a pre-treatment 
of the signal is highly desirable for removing such 
interferences. This procedure will be next referred to 
as denoising.  

The term was introduced by Donoho [1] in 
relation with the wavelet transform (WT). WT has 
been extensively used in the signal processing 
community in order to highlight informative 
representations of non-stationary signals. WT is able 
to simultaneously provide time and frequency 
information and offers good temporal localization for 
high frequencies and high–frequency resolution for 
low frequencies. ECG record is a non-stationary 
signal, so WT-based denoising particularly matches to 
it. The architecture of a wavelet-based denoising 
system relies on WT ability to concentrate the useful 
signal energy into a small number of wavelet 

coefficients. The algorithm introduced by Donoho 
uses discrete wavelet transform (DWT) and it has 
three steps: 

1. DWT is applied on the noisy signal; 
2. Wavelet coefficients are filtered (procedure 

which is sometimes referred to as “shrinkage”, or 
“thresholding”). In general, some of these coefficients 
are put to 0, since they don’t contain useful 
information; 

3. Remaining coefficients are back-converted in 
time domain to estimate the useful signal. 

Generally, the results are highly dependent on the 
wavelet mother used (stages 1 and 3) and on the 
filtering procedure chosen (stage 2). Some modern 
wavelet denoising techniques implement a MAP 
filtering in the stage 2 of the algorithm, taking into 
account the statistical properties of the wavelet 
coefficients. Such a method, which is used for 
processing the ECG signal in noisy conditions [2], 
adapts the wavelet domain empirical Wiener filter 
presented in [3] to the particular case of ECG signals. 
The statistical properties of the wavelet coefficients 
are estimated through a pilot signal. The pilot is 
obtained by applying the classical Donoho’s 
algorithm on the input noisy signal. Next, a MAP 
filtering in wavelet domain is performed, using the 
properties estimated through the pilot. The wavelet 
basis used in the two stages (pilot estimation and 
MAP filtering) are different. Using a wavelet basis 
function with compact temporal support in the first 
stage allows for an accurate preservation of the areas 
around the QRS complex [2]. On the other hand, the 
use of wavelets with good frequency localization in 
the second stage of the algorithm refines the shapes of 
P and T waves. Note that Wiener filter could be 
regarded as a particular case of a MAP filter. The 
analytical solution required for implementing this 
kind of filter uses the hypothesis that both useful and 
noise samples (wavelet coefficients when the filter is 
applied in WT domain) have Gaussian probability 
density function (pdf). The two most important 
features of such a filtering technique are:  realistic a-
priori assumptions regarding statistical properties of 
both signal and noise components and a good 
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estimation of the parameters that describe these 
properties.  

An improved method to estimate the statistical 
parameters of the wavelet coefficients is proposed in 
this paper. This method relies on the diversity 
enhancement of the signal to be processed.  On the 
other hand, realistic a-priori assumptions were made 
regarding the statistical properties of the wavelet 
coefficients. These assumptions are well adapted to 
the characteristic shape of ECG signal.  

In ECG denoising, exact preservation of the 
useful waveforms is critical. However, distortions are 
sometimes introduced in the useful signal by DWT 
based denoising. In our algorithm, these distortions 
are mitigated by the use of a redundant WT, which 
provides translation invariance. On the other hand, the 
distortions can be controlled by a proper selection of 
the mother wavelet function and its corresponding 
scaling function.  In the present study, after averaging 
ten results that we got by using different wavelet 
mothers, SNR improvement was obtained. In the 
same time, we show that there isn’t a wavelet mother 
that offers the best results in all situations.  

The theoretical background of our algorithm 
especially considers the suppression of wide band 
EMG noise, but good practical results are provided 
for the power-line interference too. 

In section II, the proposed denoising algorithm is 
presented. Next, simulation results are shown.  
Section IV contains a few concluding ideas and draws 
future possible directions to continue our work on this 
subject.  
 

II. METHOD 
 
The architecture of the proposed denoising system is 
presented in fig. 1. 

To the input we get the useful signal (s) 
additively perturbed by a Gaussian colored noise (p): 
 

psx +=                                       (1) 
 
The denoising procedure is composed of two stages, 
presented below. 
Stage1: Pilot signal and noise estimation 
The goal of this stage is to provide a reliable 
estimation of both “clean” signal and noise statistical 
parameters.  

In this purpose, the classical denoising method 
proposed by Donoho [1] is applied in the wavelet 
domain W1. Thus, the signal is converted in the 
wavelet domain, the resulting wavelet coefficients are 
shrinked (“Sh” block, fig. 1) and then back-converted 
in time domain. 

As illustrated in [3], the use of a wavelet mother 
with compact temporal support is recommended in 
this stage. This choice mitigates pseudo-Gibbs 
phenomenon effects (ripples around discontinuities), 
usually associated with the shrinkage of the DWT 
coefficients. Thus, a good preservation of the zones 
around QRS is provided in this stage.  

The estimation of the pilot signal plays a double 
role. Besides the estimation of the “clean” signal, an 
estimation of the noise can be obtained as the 
difference between the noisy “observed” signal and 
the pilot signal. This operation takes into account the 
additive nature of the noise, illustrated by equation 1. 

Thus, the first stage of the algorithm provides two 
time-domain signals: a pilot signal (estimating the 
useful signal) and a “purely” noise signal estimation 
respectively. 
Stage 2: MAP filtering in the diversity-enhanced 
wavelet domain W2 
In this stage, an empirical MAP filtering in the 
wavelet domain W2 is implemented. In order to 
provide robustness and superior performance to our 
algorithm, we made realistic a-priori assumptions 
regarding pdf of the useful and noise coefficients. In 
the same time, the statistical parameters estimation is 
improved by the diversity-enhancement of the signal 
to be processed. The diversity enhancement is 
obtained in the wavelet domain, by combining two 
redundant wavelet transforms, each of them providing 
several versions of the signal to be processed. The 
sources of diversity are the type of wavelet mother 
used in the computation of the discrete wavelet 
transform (DWT) [4] and the circular translation of 
the signal samples respectively [5]. In the first case 
we consider L1 different wavelet mothers. In the 
second one, L2 circular translations of the signal 
samples are used, but only one wavelet mother 
(chosen from the L1 options). The two transforms are 
known as diversity-enhanced DWT (DEDWT) [4] and 
translation invariant DWT (TIDWT) [5] respectively. 
These transforms are combined in the following 
manner: L1 versions of TIDWT are performed, each 
of them corresponding to a different wavelet mother. 
A new transform is obtained, called TIDWTED 
(Translation Invariant Wavelet Transform with 
Enhanced Diversity). Its redundancy is L=L1xL2. In 
our denoising system (see fig. 1), this transform is 
denoted by W2. Thus, to the output of the W2 block, 
we get L sequences of discrete wavelet coefficients, 
as follows: 
 

L,...,1l,nuw lll =+=                    (2) 

Fig.1 :  Architecture of the denoising system. 
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 lu and ln denoting the useful and the noise 
coefficients respectively, for the l-th set of wavelet 
coefficients.  

Using Bayesian rules, the MAP estimation of lu 
can be computed as: 
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In the following, without loss of generality, we can 
consider for the noise coefficients a Gaussian 
distribution, with zero mean and variance 2

nσ : 
 
 

(4) 
 
 
For the useful signal coefficients pdf (pu), a Laplacian 
distribution seems to be well suited to the 
characteristic shape of the ECG signal. This 
supposition is supported by empirical work on large 
ECG databases [6]. In fact, the wavelet transform of 
an ECG signal consists into a small number of high 
value wavelet coefficients (especially marking the 
limits of the electrical activity zones) and a large 
number of small value coefficients (for the slow-
evolution portions of the ECG). A heavy-tailed 
distribution for these coefficients seems therefore far 
more realistic than a Gaussian-one, and the particular 
case of a Laplacian probability density function (pdf) 
becomes attractive by its computational tractability. 
Consequently, we take: 
 

(5) 
 

 
Under the considered assumptions, the solution of (3) 
is [6,7]: 
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This solution represents a softthresholding filtering of 
each of l sequences of noisy observations with the 
optimal threshold value lT. This value is computed 
using the estimated standard deviations of the pilot 
and noise coefficients (see stage 1): 
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Note that the threshold value is individually 

estimated for each coefficient w(j,k), positioned on 
the j-th decomposition scale and having the index k 

within the scale. This is highly recommendable, since 

u
∧
σ  (estimated standard deviation of the useful 
coefficients) must be performed locally, in order to 
accurately track the ruptures that exist in the signal 
(e.g. the QRS complex). This parameter is separately 
estimated for each coefficient, using a sliding 
window: 
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where )i,j(ξ represents the wavelet coefficient of the 
pilot signal, j standing for the decomposition scale 
and i for the position within the scale. ν is the length 
of the sliding window. Experimental work showed 
that the value ν=1 provides comparative results with 
higher window lengths (ν=3 or 5), so this value is 
chosen. On the other hand, the noise variance is 
separately estimated at each decomposition level j, 
using the wavelet coefficients of the purely noise 
signal at that level.  This approach takes into account 
the fact that, generally, the noise that affects an ECG 
signal is not white, so its variance changes within 
scales (different frequency subbands). 
 Finally, useful signal is estimated by averaging 
all L versions of the estimated signal. This implies L2 
un-shifting operations, and then an averaging-over-
shifts, performed by the Inverse Translation Invariant 
DWT (ITIDWT) [5]. Remember that we applied this 
transform for L1 different wavelet mothers. The final 
result is obtained by averaging the L2 variants of the 
denoised signal.  As observed, the wavelet transform 
used (TIDWTED) is double redundant. The 
translation invariance is offered by averaging over the 
circular shifts. This mitigates the problem of peudo-
Gibbs oscillations around fast transition portions of 
the signal (QRS area). The system performance is not 
sensitive to the wavelet mother chosen, since several 
basis functions are simultaneously used. Both 
transforms improve the SNR performance, by the 
averaging operation. 
 

III. RESULTS 
 
Several simulation sets were performed on real ECG 
signals, in order to demonstrate the performance of 
the proposed method. 
 

3.1 General simulation parameters 
 
 ECG test signals were chosen from CHU Brest 

database. The sampling frequency of these signals is 
of 1000 Hz, with a resolution of 16 bits/sample. In 
order to obtain the pilot estimation (stage I), we 
shrinked the Haar coefficients of the noisy signal, 
with the threshold value Mlog2)j(s)j(T = [8], where 
s(j) represents the standard deviation of the noisy 
wavelet coefficients at the decomposition level j and 
M is the length of the data block, namely M=4096 
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Fig. 2: PwSNR improvement factor
versus overall input SNR. 

samples. For the second stage of the algorithm, we 
have chosen for DEDWT implementation L1=10 
different wavelet mothers with good frequency 
localization, from Daubechies, Coiflet and Symmlet 
families. In the case of TIDWT, we used the "fully" 
TIDWT [5], which averages over all circular shifts of 
the signal. That is, in this case, we get L2=4096. Note 
that this transform can be calculated rapidly, in M 
logM time, despite appearances. This way, the 
redundancy factor is L=L1xL2=40960. 
 
3.2 Simulation sets 
 
In order to correctly evaluate the method’s 
performance, several types of simulations were 
performed. Thus, SNR improvement was estimated. 
On the other hand, we evaluated the denoising effects 
on the next stage of the automatic processing chain, 
namely signal segmentation.  
 
3.2.1 SNR improvement 
 
SNR improvement represents a classical measure of 
denoising quality. In order to compute this measure, 
the clean signal must be a-priori known. In this 
context, we chose 5 “clean” ECG test signals of 60 
seconds each. Artificially generated noise was added 
to this signal, resulting in SNR ratios between 10 and 

20 dB.  For the noise generation, a second-order AR-
process was used, generating a colored Gaussian 
noise. This simulates the physical EMG noise, which 
is a wide-band colored signal, whose dominant energy 
spans in the 50 – 150 Hz range.  
Output SNR is calculated for the entire ECG signal as 
well as for the fragments delimiting the P wave, 
which is the most sensitive to noise (this last measure 
is denoted by PwSNR). For each input SNR the 
experience was repeated 10 times and the results were 
averaged. The output SNR is computed for each of ten 
wavelet mothers used in TIDWT, as well as for the 
signal resulted by averaging this ten versions of the 
denoised signal ( the signal to the TIDWTED output). 
A selection of the results is shown in table 1. 
 For P wave region, an averaged PwSNR 
improvement factor was computed at each “overall” 
SNR (fig. 2). This factor represents the difference 
between the output and the input PwSNR. Note that in 
this case neither an input or output averaged PwSNR 
can be calculated, since for the same overall input 
SNR there is an important variation of the input 
PwSNR between different signals. The reason is that 
the ratio: energy of the P wave / energy of the whole 
beat is strongly dependent on the physical 
characteristics of the patient, so it’s different for each  
patient in particular.   

 
 

INPUT SNR Type 
10 12 14 16 18 20 

Coiflet 1 22.50 24.18 25.81 27.44 29.04 30.54 
Coiflet 2 22.49 24.21 25.84 27.52 29.16 30.64 
Coiflet 3 22.38 24.05 25.71 27.37 29.01 30.53 
Daubechies 4 22.42 24.05 25.72 27.34 28.98 30.49 
Daubechies 6 22.56 24.11 25.80 27.44 29.03 30.53 
Daubechies 8 22.45 24.10 25.74 27.40 29.02 30.54 
Daubechies 10 22.32 23.94 25.63 27.28 28.86 30.38 
Daubechies 12 22.23 23.84 25.43 27.07 28.72 30.27 
Symmlet 4 22.52 24.22 25.88 27.56 29.18 30.69 
Symmlet 6 22.41 24.08 25.73 27.41 28.71 30.57 

O
ut

pu
t S

N
R

 

TIDWTED 22.58 24.27 25.96 27.59 29.18 30.70 
                                   Table 1: SNR improvement results. 
 
 
The results shown in table 1 prove the effectiveness of 
the proposed method in terms of SNR improvement. 
This improvement is in all cases more than 10 dB. 
The performance is better compared to other ECG 
denoising results reported in literature [2,9,10], with 
spectacular differences for low SNRs. Yet, this 
comparison must be regarded with circumspection, 
since the work databases are different. The main gain 
in the SNR is brought by the use of a translation 
invariant wavelet transform (more than 1 dB better 
than DEDWT [6]). Note that in all cases, TIDWTED 
performs better than TIDWT with the best wavelet 
mother. Table 1 shows that there isn’t a wavelet basis 
that can be classified as being “the best” for use in 
ECG denoising, since for different signals (and even 
for the same signal, but different SNRs) the best basis 

is different. In conclusion, even if the diversity 
enhancement obtained by the use of several different 
wavelet mothers does not significantly improve the 
results over TIDWT, it eliminates the performance’s 
dependency on the choice of the wavelet mother. 
 The results in fig.2 illustrate excellent 
performance for the P wave denoising (more than 
11dB PwSNR improvement in all cases). Note that for 
higher SNRs, PwSNR improvement is less spectacular 
than in low SNR conditions. This tendency 
(observable, but less important for the overall SNR) 
can be caused by the reduced energy of the P wave, 
comparing with the overall beat energy. Thus, the 
shrinkage of the wavelet coefficients, even if adapted 
to different portions of the signal, could affect the 
useful P coefficients.    
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3.2.2 Denoising influence on signal segmentation 
 
This set of simulations evaluates the denoising 
influence on the signal segmentation. This approach 
takes into account the fact that signal denoising is 
only a pre-treatment step in ECG processing, being 
followed by segmentation, relevant parameters 
computation and patients classification. It is strongly 
desirable that segmentation results do not be 
dependent on the pre-treatment applied. When the 
signals are strongly affected by noise and their 
automatic segmentation is virtually impossible, a good 
denoising method should accurately estimate the 
useful ECG trace, allowing for a reasonable 
segmentation. The segmentation method used in this 
paper was presented and implemented by the authors 
in [11]. The method captures the dependencies that 
exist between the wavelet coefficients situated at 
different decomposition levels in the form of a 
probabilistic Markov tree with hidden states. The 
hidden state is represented by the coefficient’s energy.  

In this respect, we applied our method as a pre-
treatment step for 30 relatively clean signals from 
CHU Brest database, that were next segmented using 
the procedure in [11] (only the first 20 beats were 
considered). The segmentation results for P wave 
were compared with the case where another denoising 
procedure [12] is applied (a SURE filtering [13], 
followed by a Wiener filtering with the protection of 
the QRS coefficients) (see table 2). The segmentation 
results, using the denoising proposed in [6] (the same 
algorithm, but comparing two different transforms- 
TIDWT with one wavelet mother and DEDWT) are 
also illustrated in the table.  
               

 
 
The results are quasi similar to those obtained by 
using TIDWT. The improvement is significant with 
respect to [12], showing a 2.5% reduction of the 
segmentation error rate. Note that a segmentation is 
considered erroneous if at least one of the three 
conditions are met: onset error>25ms, offset error>25 
ms, more than 10 P wave with segmentation error for 
one single patient. The reference segmentation was 
provided by cardiologists from CHU Brest. Note that, 
unlike in the SNR improvement case, diversity 
enhancement in TIDWT does not improve the 
segmentation results.  This could indicate that there 
are certain wavelet basis that are better for the 
segmentation than others.      
 In order to provide a deeper analysis of the 
denoising influence on the segmentation in various 
SNR conditions, another set of tests was performed. 
The test procedure has three steps: artificially 
generated noise is added on five signals with reduced 

segmentation error, the denoising procedure is applied 
and the segmentation is repeated, this time on the 
denoised signal. This way, a comparison of the 
segmentation results for the original and denoised 
signals can be done. In fig. 3, two extreme cases are 
shown. The worst case (test signal number 1) 
corresponds to a low-energy P wave, (input PwSNR= 
-6.69dB, for an overall input SNR of 10 dB). In this 
case, the denoising assures acceptable signal 
segmentation errors from input SNRs superior to 12 
dB (input PwSNR<-4dB), which is a promising result. 
In the best case (prominent P wave), the denoising has 
little effect on the segmentation error, since the 
amount of noise is not sufficiently large to perturb the 
segmentation. In this situation, segmentation shift is 
reduced from the beginning.         
   
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
3.2.3 Denoising of signals affected by real noise 
 
The algorithm was conceived for the denoising of 
ECG signals affected by real noise. This pre-treatment 
should allow correct signal segmentation. For testing 
our algorithm’s effectiveness in real conditions, we 
applied it on a high number of ECG signals strongly 
perturbed by noise. The signals are raw data, provided by 
Task Force Monitor 3040i, from CNS Systems.  An 
example is shown in figure 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Onset error End error Segmentation 
Error Rate 

Method in [12] 11.16 ms 11.37 ms 15.96 % 
DEDWT 11.01 ms 8.87 ms 15.2 % 
TIDWT 10.22 ms 7.99 ms 13.46 % 
TIDWTED 10.64 ms 8.09 ms 13.54% 

Table 2 : Denoising effects on the automatic segmentation  
of the P wave. 

Fig. 4: Denoising applied on signal affected by real noise.

Fig. 3: Segmentation errors in various SNR conditions: 
two illustrative examples. 
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In the background, the original signal is strongly 
affected by noise. The denoised signal (in black) 
allows for a simple visual identification of the 
elementary waveforms (P, QRS,T). The noise is 
eliminated. A loss in amplitude of the QRS complex 
can be noticed, but this loss is maintained in a 
tolerable range (<10 % is acceptable, accordingly to 
cardiologists).    

In conclusion, tests made on signals affected by 
real noise showed promising results. The noise that 
affects the signal in fig. 4 is a wide-band colored 
noise, which fits the theoretical background of the 
algorithm (see section II).  On some test signals, the 
parasite component of 50 Hz can be clearly 
highlighted. Our algorithm has good practical results 
in these situations too.     
 

IV. CONCLUSIONS 
 
A new ECG denoising algorithm is presented in this 
paper. This algorithm relies on a modification of the 
empirical Wiener filtering in wavelet domain 
proposed in [3]. Superior performance is provided by 
a diversity enhancement of the signal to be processed. 
Realistic assumptions on the statistical properties of 
the useful wavelet coefficients are made. Several set 
of tests were performed, in order to demonstrate our 
algorithm’s effectiveness. These tests highlight a good 
behavior of our method: an important SNR 
improvement (computed for signal affected by 
artificial noise), positive effect on signal segmentation 
and removal of noise (evaluated by a visual inspection 
of the denoised signal in real noise conditions). 
 Further improvements are still possible. In the 
future, we will focus on more elaborated methods for 
obtaining the pilot signal and in a deeper statistical 
study of the ECG wavelet coefficients.      
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