
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 51(65), Fascicola 2, 2006

Application for Frequent Pattern Recognition in
Telecommunication Alarm Logs

Petru Serafin1, Alimpie Ignea2

1 Alcatel Romania, IT S&D Department, 9 Gh.Lazăr, 300081, Timişoara, petru.serafin@alcatel.ro
2 “Politehnica” University of Timişoara, 2 V.Pârvan, 300223, Timişoara, alimpie.ignea@etc.upt.ro

Abstract – Based on an algorithm for frequent pattern
recognition, this paper presents the implementation of a
software application and its respective results in
analyzing real-time telecommunication alarm logs. The
software application was developed in OMNeT++
(Objective Modular Network Testbed in C++)
simulation environment using ACE (Adaptive
Communication Environment) toolkit. Different
working scenarios are presented in order to simulate
extensions of the frequent pattern recognition algorithm:
the introduction of time-constraints between alarms and
the construction of a Petri net whose transitions are
labeled by recognized frequent patterns of alarms.
Keywords: pattern recognition, OMNeT++ simulation
environment, ACE toolkit.

I. INTRODUCTION

The volume of information transported by
telecommunication networks increases and also the
number of specific alarms in telecommunication
networks increases. Therefore it became necessary to
study different alarm correlation techniques in order
to guarantee that all alarms are treated accordingly to
the telecommunication networks supervision policy
[3]. One of the alarm correlation techniques is to use
data-mining into alarm logs to search for possible
patterns (chronological sequences of alarms, also
called chronicles) that repeat themselves with a
certain frequency and therefore may indicate a
correlation between the respective alarms. Frequent
pattern recognition (chronicle recognition [4]) is used
to determine possible alarm correlations but does not
determine the relevance of these alarms. It is in the
scope of work of the network operator or of the
expert-system for network supervision to further
analyze alarm correlations and to establish relevance
for the recognized patterns.
For the purpose of analyzing real-time alarm logs,
such as telecommunication alarm logs, we developed
the theoretical aspects for a frequent pattern
recognition algorithm, presented in a previous paper
[8], and now we present the practical aspects
following a software application that implements the
given algorithm and its extensions. We also present in
this paper different working simulation scenarios that

were used for the purpose of assessing some
performance aspects of the algorithm [7] and of its
extensions by the introduction of time-constraints [2],
and Petri net analysis [1].
To implement the software application we used the
OMNeT++ (Objective Modular Network Testbed in
C++) simulation environment [10], previously
presented in paper [9]. For the real-time
communication modules we used ACE (Adaptive
Communication Environment) toolkit [5], [6], [11].
ACE is an open-source software of approximately
135.000 SLOC (Source Lines Of Code).

II. SIMULATION ENVIRONMENT

In the field of telecommunication network analysis
there are different simulation environments with
specific facilities for addressing different simulation
needs. For example, commercial simulation
environments such as COMNET, OPNET,
Hyperformix Workbench, Mesquite CSIM and
Simscript address industrial simulation needs, while
academic simulation environments such as Smurph,
NetSim++, OMNeT++ address laboratory and non-
commercial needs. For our analysis we have chosen
the open-source distribution of OMNeT++ (latest
binary 3.2p1 released on January 2006), which is well
supported and documented on the respective
community web site [10]. We mention though that
since last year OMNeT++ community offers also a
commercial version (called OMNEST) which
addresses industrial simulation needs. OMNeT++ is a
simulation environment based on object-oriented
technology and adapted for discrete event systems.
The main advantages of OMNeT++ are the following:
• It is not necessary to study new specific

programming languages for simulation, since it
integrates C++ programming code,

• It offers a complete GUI (Graphical User
Interface) to implement and supervise processes
and verify software functionality,

• Simulation is platform-independent and portable
on various operating systems, including win32-
based and unix-based distributions,

38

BUPT

• Structures can be quickly modified using multiple
parameterization facilities, without code impact,

• Predefined classes and libraries are under
continuous development and improvement in
open-source software development.

Examples of simulations already implemented in
OMNeT++ include queuing systems, communication
protocols and other discrete event dynamic systems
simulations (INET Framework, Mobility Framework,
IPv6Suite etc.).
OMNeT++ offers a modular architecture where
components are developed in C++ programming
language and then assembled into higher level
components using NED (Network Description
Language). NED is implemented as part of the
simulation environment and contains many
programming facilities and graphical definitions for
implementing network topology and parameterization
of processes.
The main components of OMNeT++ are the
following:
• Central simulation library,
• NED language compiler (nedc),
• GUI for network topology (GNED),
• Simulation interface (Tkenv),
• Command-line interface for simulation execution

(Cmdenv),
• Graphical application for simulation results

(Plove),
• Supporting toolkits for simulation development.
The modules can be dynamically modified during a
simulation in order to take into consideration the
evolution of the network topology.
The modules can have an arbitrary number of
connections that are developed based on input-output
ports. The usage of input-output ports allows further
reusability of modules in more complex connections.
The input ports detect the presence of messages and
following the validation of some execution conditions
other messages are presented at the output ports.
In our simulation, messages that are transported in the
network are in fact alarms or alarm patterns that will
be transiting the application as tokens.

III. APPLICATION DESIGN

The general architecture of the software application
for analyzing telecommunication alarm logs consists
of the following specialized modules:
• Collector module – with the purpose of reading

alarm logs using a specific collector interface
with the network elements,

• Pattern Recognition module – with the purpose
of generating candidate patterns, calculating
pattern frequency and retaining frequent patterns,

• Pattern Analysis module – to analyze collected
and generated data in order to consolidate results.

Frequent patterns of alarms that are discovered in the
recognition process are presented individually to the
operator to further analyze alarm correlation.

Fig. 1 presents the general architecture of the software
application for frequent pattern recognition:

The detailed architecture of the software application
contains the functional components and sub-modules.
Our functional implementation of the pattern
recognition process is presented in Fig. 2:

Breakpoints are represented in Fig. 2 by the means of
the ⊗ symbol and will be used in determining the
different simulation scenarios, which will be detailed
in the next paragraph.
A brief description of the modules and their
functionality is necessary in order to understand the
simulation scenarios we will later use.
The Collector module is located at the entry point of
the application and has the main role of mediation and
flow dispatcher between the network elements and the
Pattern Recognition module. The software
implementation of the Collector module can be
distributed in alarm concentrator units or centralized
in a network supervision unit. In our OMNeT++
implementation we centralized alarm collection in a
central unit. The internal architecture of the Collector
module uses the ACE toolkit as a library of platform-
independent adaptive communication functions. ACE
toolkit has the advantage of being portable on
different operating systems, contributing to the overall
portability of the software application. Different
network supervision systems are based on different
operating systems and therefore using a common
library is important for reusability aspects.

Alarm Logs

Assembly techniques
Pattern

 Analysis

P
A
T
T
E
R
N
S

Collector Pattern
Recognition

Σ

Fig. 1. General architecture for frequent pattern recognition

PATTERN
RECOGNITION

 Operator
Interface

Data
Presentation

Candidate
Generator

Pattern
Algorithm

Temporal
Constraint
Procedure

Mediation
Device

Collector

Flow
Dispatcher

ACE toolkit

Petri Net
Constructor

PN
Analysis

Marking
 Services

Causal
Graph

PATTERN
ANALYSIS

COLLECTOR

INTERFACE

Fig. 2. Detailed architecture for frequent pattern recognition

39

BUPT

Alarm data is collected by pull transfer mode which is
a synchronized extraction of data block piloted by the
Collector module. Generally the communication
protocol between network elements and Collector
module is constructor dependent. Our simulation uses
FTP (File Transfer Protocol) to retrieve buffered
alarm logs. Flow dispatcher further adapts and
negotiates alarm blocks transfer through the upper
level of the application. Alarm messages are
transmitted and consumed by the software modules
under the form of tokens.
Pattern Recognition module realizes the algorithm in
its initial description: based on some assembly
techniques it generates candidate patterns and then
applies a formula for frequency calculation and retain
only the frequent patterns to be presented to the
operator and/or to the Pattern Analysis module.
Different assembly techniques may be used to
determine patterns, depending on the prerequisite
relations between alarms.
Serial assembly may be used if there is no ordering
between alarms, neither by priority nor by
chronology. This generates sequences of unordered
alarms. For example, a sequence of alarms (a,b,c)
serial assembled with a repeating alarm b results in
the sequence (a,b,c,b).
Parallel assembly takes into consideration a certain
priority between alarms, dictated by network
supervision policy. This generates sequences of
ordered alarms. For example, a sequence of alarms
(a,b,c) parallel assembled with a repeating alarm b
results in the sequence (a,b,b,c). This presumes that
network supervision policy considered that a alarm
has priority over b alarm, and b alarm has priority
over c alarm.
Once the candidate patterns are generated, the
frequent pattern recognition algorithm calculates the
occurrence frequency of the candidate pattern using
expression (1):

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈
∈

=
∈ pa

La
pf

i

i

Lp
min)(min (1)

where p is the candidate pattern (included in the L
alarm log) and ai is the generic term for alarm
occurrences included in this pattern (i being the alarm
index in the pattern).
The algorithm then selects and retains only frequent
patterns (f ≥ fmin) to be further analyzed.
To explain the pattern recognition algorithm, we
consider the alarm log given by expression (2):

⎭
⎬
⎫

⎩
⎨
⎧

= abcc
c
b

acacbaL),,((2)

This considered alarm log L(a,b,c) contains
occurrences of alarms a, b and c (observe that at a
certain time alarms b and c occur simultaneously,

which is represented by a superposition of those
alarms).
At each step, the algorithm generates candidate
patterns of superior order, starting from the
elementary order (see Fig. 3 and Fig. 4). Then there is
a frequency calculation based on expression (1). To
explain the expression (1), we may calculate the
occurrence frequency for pattern (a,c,c) in the alarm
log L given by expression (2):

 2
2

,
1

min),,(
,min =⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ∈∈=

∈

LcLaccaf
Lca

 (3)

Serial assembly over L alarm log with a given
minimal frequency fmin=2 has the following results,
represented in Fig. 3:

Given the same alarm log and frequency, parallel
assembly results in the following frequent patterns,
represented in Fig. 4:

The results of the frequent pattern recognition
algorithm presented previously in Fig. 3 and Fig. 4
are based on simple hypothesis regarding assembly
techniques and do not take into consideration
temporal constraints between alarms. Therefore, the
first major extension of the algorithm consists in
defining and using temporal constraints in the pattern
recognition process.
Temporal constraints between alarms are introduces
by the following notions: given an alarm log that
contains alarms a and b, the temporal constraint

a

b

c

ab

Fig. 3. Frequent patterns recognized in serial assembly

ac

cb

cc

bc

abc

acb

 acc

a

b

c

Fig. 4. Frequent patterns recognized in parallel assembly

 ab

 ac

 bc

 cc

abc

acc

 bcc

 abcc

40

BUPT

between a and b is the superior limit of the temporal
distance between a and b with respect to their
occurrences in the pattern. For example, if we
consider the occurrence [(a,ta)(b,tb)] the temporal
distance would be T(a,b)=tb-ta.
We define a temporal constraint parameter c(T) that is
the ratio between a and b occurrences that verify
expression T over the total number of a and b
occurrences in the pattern:

[]{ }
ab

ababba

p
Tttptbta

Tc
=−∈

=
,),)(,(

)((4)

Following the introduction of the temporal constraints
and the parameter in expression (4), we construct the
temporal constraint procedure as follows:

Procedure Tconstraint));(,,(min Tcba

/* Temporal constraint calculations */

Input

[]{ }nitbtap i
b

i
aab ..1),,)(,(== /* pattern */

)(min Tc /* given minimal constraint */
Output

)(TC /* constr. set verifying)(min Tc */

{
/* Initialize constraint set */

;)(NULLTC =

/* Initialize constraint set space */

{ };..1 nittS i
a

i
b =−=

/* Calculate temporal constant k */

 [];)(min nTck ⋅=

/* Sorting temporal space */

Sorting { };...1 nxxS ≤≤=

/* Composing and verifying)(min Tc */

For +++−≤= iknii ;1;1

 For ++≤−+= jnjkij ;;1

 { };,)()(ji xxTCTC ∪=

/* Return constraint set */

Return)(TC ;

}

The introduction of the temporal constraint procedure
in the Pattern Recognition module further refines the
recognized patterns. A situation where temporal
constrains show their necessity is if the alarm log
contains occurrences of a pattern in a relatively closed
time frame and then also contains the same pattern
detected with a very large time frame. To speed up the
algorithm we define a minimal time frame during
which patterns may be recognized and so we will not

need to memorize a pattern once it was already
recognized. This scenario will constitute one of the
performance tests of the algorithm; detailed results are
presented in the following paragraph.
Once frequent patterns are recognized we want to
perform a first analysis of these patterns, related
essentially to finding consequent patterns or patterns
that include each other. One of the possible
approaches for this analysis is the construction of a
Petri net which transitions are labeled with the
previously recognized frequent patterns, and then we
want to analyze the marking situations in this Petri
net. Mixing pattern recognition with Petri net
assembly is a first step toward Pattern Analysis and it
provides important information about the recognized
patterns.
One of the main advantages of the Pattern Analysis
module is that it operates almost independently from
the Pattern Recognition module. Almost
independently because it takes inputs from the
recognition algorithm during the assembly of the Petri
net and then helps operate on the recognition
algorithm. Petri net simply provides results of the
eventually consequent patterns and therefore
simplifies some calculations of higher level candidate
patterns during the algorithm. The theoretical bases of
mixing Petri net assembly and pattern recognition are
detailed in [7].

IV. PERFORMANCE RESULTS

With the previous considerations, we constitute a list
of scenarios activating or deactivating functional sub-
modules of the software application.
The first scenario (further referred as Scenario 1),
consists of a simple execution of the pattern
recognition algorithm, without temporal constraint
procedure and without activating Pattern Analysis
module. This provides primary results that can be
compared with next scenarios.
The second scenario we use (further referred as
Scenario 2), consist of the activation of temporal
constraint procedure during the pattern recognition
algorithm. Referring to Fig. 2, Scenario 2 is obtained
by activating the ⊗ symbol between the Candidate
Generator procedure and the Temporal Constraint
procedure. As we expected, the introduction of the
algorithm does filtrate some patterns that are
recognized rather late with respect to a given time
frame. This leads to better performance of the overall
software application.
The third scenario (noted Scenario 3), activates the
independent module of Petri net assembly and
analyses possible inconsistencies between the
recognized frequent patterns. Therefore some frequent
patterns will not be presented to the operator since
they are included in other frequent patterns. Referring
to Fig. 2, Scenario 3 is obtained by activating the two
⊗ symbols that connect the Pattern Analysis module
to the software application. As expected, this scenario
leads to better performance of the pattern recognition.

41

BUPT

All scenarios were simulated over the same input
alarm log, in order to preserve the possible
comparative arguments between the scenarios.
Considering a recorder telecommunication alarm log
of 3000 occurrences of 25 types of alarms, we start by
executing simulations at given minimal frequencies.
For example, we chose 25, 50, 100, 250 and 500 as
minimal frequencies for our calculations.
For each considered frequency we then execute the
simulation and memorize or calculate following data:
• Frequent alarms,
• Generated candidate patterns,
• Frequent patterns,
• Simulation execution time.
For example, Table 1 contains results for the
simulation execution of Scenario 1:

Table 1

Patterns
Frequency

Frequent
Alarms

Candidate
Patterns

Frequent
Patterns

25 24 5817 366

50 17 4905 108

100 9 2892 28

250 3 838 11

500 1 78 0

As expected, by increasing the frequency we obtain
less frequent patterns and frequent patterns results are
refined by the simulation scenarios.
The synthesis graph showing frequent patterns
evolution in relation to given minimal frequencies is
presented in Fig. 5:

Simulation time decreases by increasing minimal
patterns frequency, which is explained by the fact that
fewer candidate patterns are generated and calculated
as they do not verify minimal frequency condition. At
the extreme cases, if the desired patterns frequency is
too high then the algorithm may stop at the first step
of calculating single alarm frequencies. Vice-versa, by
selecting a low frequency more and more candidate
patterns verifies the minimum frequency and therefore
the calculations become time-consuming and the
simulation time increases.
Concerning the simulation scenarios’ execution time,
we collected the following data that is presented in
Table 2:

Table 2
Patterns

Frequency
Scenario

1
Scenario

2
Scenario

3
25 13:27 12:51 11:34

50 03:10 02:50 02:29

100 00:44 00:42 00:35

250 00:28 00:25 00:22

500 00:04 00:04 00:03

The synthesis graph showing simulation scenarios
execution time in relation to given minimal
frequencies are presented in Fig. 6:

Some comments of the performance results are
necessary before concluding on the overall software
application. First we notice that the implementation of
the algorithm’s extensions is improving the simulation
time and also improving the quality of the solution
(less frequent patterns are recognized but the relative
relevance of these frequent patterns is greater, either
because a time frame for the recognition process was
defined or because inconsistent patterns were
eliminated from the final solution).
Performance improvements presented above
demonstrate the refinement of the final solution by the
means of eliminating some intermediate solutions to
reach a better final solution to be presented to the
network operator.
Further simulations on different alarms logs produced
equivalent results, depending on the topology of the
alarm logs. For example, the recognition algorithm
produces faster final solutions when applied over a
simpler alarm log with fewer occurrences of alarms.
On the contrary, when applied over a more complex
alarm log that contains more occurrences of alarms,
the recognition algorithm takes longer to produce both
intermediate (candidate patterns) and final (frequent
patterns) solutions.
Another aspect of these performance results is that it
proves that the recognition algorithm itself can be
extended with the help of theoretical contributions
and mixing other data analysis techniques to the
recognition process. Theoretical improvements
include the consideration of a certain time frame
limitation when recognizing patterns. This is
expressed mathematically by the introduction of time

00:00 05:00 10:00 15:00

25

50

100

250

500

Scenario 1 Scenario 2 Scenario 3
Patterns frequency

Simulation time [hh:mm]

Fig. 6. Simulation scenarios execution time

0
50

100
150
200
250
300
350
400

25 50 100 250 500

Patterns frequency

Frequent patterns
Scenario 1 Scenario 2 Scenario 3

Fig. 5. Frequent patterns in simulation scenarios

42

BUPT

constraints between alarms and the physical
application of these constraints is to filter out late
occurrences of alarms in the considered alarm log.
Data analysis techniques that may help obtain a better
final solution include the Petri net assembly. As
demonstrated in our software application
implementation, a dedicated module that constructs
Petri net and then provides a short analysis of the
resulting topologies increases the performance of the
overall application.
It is important to mention that only some preliminary
analysis was done with the help of the Petri net
assembly, only for the purpose of demonstrating the
possible application of this method for the scope of
pattern recognition. Based on this support we may
consider other methods for the scope of obtaining a
better final solution of the presented algorithm.

V. CONCLUSIONS

The main outcome of the software application
developed for frequent pattern recognition in alarm
logs is that it proved a feasible implementation of the
theoretical aspects of the recognition algorithm and
some of its extensions.
Using generic project management techniques we
developed the software application to support various
possible simulation scenarios for the purpose of
demonstrating value-added possible extensions of the
recognition algorithm.
Beside the performance aspects presented in the
previous paragraph, there are some interesting results
about the frequent patterns themselves. For example,
in a real-time situation analysis, we managed to detect
a pattern that was not taken into consideration by the
network operators, since it was collateral to the
telecommunication network supervision policy: it was
detected that an auxiliary power supply interruption
caused a sequence of alarms, starting from an over-
heating alarm and leading to a pattern of
telecommunication-related alarms. The explanation
was simple: the auxiliary power supply connected the
cooling system and therefore its interruption caused
cooling system malfunction and finally lead to
telecommunication equipment alarms. Generally this
kind of sequences of alarms demonstrates the interest
in pattern recognition for the telecommunication
alarm logs: it proves that some of the recognized
pattern may be useful in network maintenance and
supervision.
The most important factor in the analysis of frequent
patterns is to focus on the initial alarm in the sequence
of alarms. In most cases, the initial alarm represents
the primary cause of the defect that is being signalized
to the network operator. However, in real-time
telecommunication systems, alarms do not always
appear to the supervision network in the order in
which they were produces in the network. This is
caused mainly by alarm propagation delays that occur
in telecommunication networks.

One of the possible solutions to the problem of
considering propagation delays is to register original
occurrence time in the alarm logs (and to sort the
alarm log in the chronological order of appearance) or
to accept larger time slots which will induce the
possibility of alarms that appear to be simultaneous in
the mathematical representation prior to the
application of the pattern recognition algorithm.
Experts in telecommunication network supervision
systems that consulted our software application
concluded that frequent pattern recognition is useful
in networks supervision and has potential towards
further development of expert-systems applied to this
field of expertise. Also, it was observed that the
pattern recognition algorithm and its proposed
extensions are theoretically applicable to other fields
of expertise such as electrical energy network
supervision or other event correlation systems
analysis.

REFERENCES

[1] A. Aghasaryan, C. Dousson, “Mixing Chronicle and Petri Net
Approaches in Evolution Monitoring Problems”, Proceeedings of
the 12th WPD (Workshop Principles of Diagnosis), pp.1-7, San
Sicario, March 2001
[2] F. Fessant, C. Dousson, F. Clérot, “Mining on a
telecommunication alarm log to improve discovery of frequent
patterns”, Industrial Conference on Data Mining (ICDM), Leipzig,
July 2003
[3] G. Fiche, G. Hébuterne, “Trafic et performances des réseaux de
télécoms”, Ed.Hermes-Science, Groupe des Ecoles de
Telecommunication & Lavoisier, Paris, 2003
[4] B. Guerraz, C. Dousson, “Chronicle Construction Starting from
the Fault Model of the System to Diagnose”, International
Workshop on Principles of Diagnosis, pp.51-56, Carcassonne, 2004
[5] S. Hudson, J. Johnson, U. Syyid, “The ACE Progammer’s
Guide”, Ed.Addison-Westley, October 2003
[6] D. Schmidt, S. Hudson, “C++ Network Programming :
Mastering Complexity with ACE and Patterns”, Volume 1, C++
In-Depth Series, Bjarne Stroustrup, Ed. Addison-Westley,
December 2001
[7] P. Serafin, “Contribuţii la analiza alarmelor în reţelele de
telecomunicaţii”, Ph.D. Thesis, “Politehnica” University of
Timişoara, pp.91-134, December 9, 2005
[8] P. Serafin, “Algorithm for Frequent Pattern Recognition in
Telecommunication Alarm Logs”, Scientific Bulletin “Politehnica”
University of Timişoara, Transactions on Electronics and
Communications, Tom 50 (64), Fascicola 1, pp.30-33, September
22, 2005
[9] P. Serafin, “Network Simulation Using OMNeT++
Environment”, Scientific Bulletin “Politehnica” University of
Timişoara, Transactions on Electronics and Communications, Tom
49 (63), Fascicola 1, pp.407-411, Symposium of Electronics and
Telecommunications, Timişoara, October 22-23, 2004
[10] http://www.omnetpp.org, OMNeT++ (Objective Modular
Network Testbed in C++) community web site
[11] http://www.riverace.com, ACE (Adaptive Communication
Environment) web site

43

BUPT

